BG – Biogeosciences
BG1.2 – Nitrogen cycling in terrestrial and aquatic ecosystems: microbiological processes, gas fluxes, modelling,atmospheric impacts and global change feedbacks
EGU2020-1795 | Displays | BG1.2
Differential nitrogen isotope variation of tree-rings in two coniferous forests under climate change, JapanMaximo Larry Lopez Caceres, Satoru Tanabe, Filippo Santini, Jordi Voltas, Felix Seidel, and Toshiro Yamanaka
Tree-ring δ15N provide long-term reliable information of soil available nitrogen, especially under increasing atmospheric N deposition upon forested ecosystems. In this study tree-ring δ15N values of Larix kaempferi and Cryptomeria japonica were measured for five trees each from a heavy snowfall region in north-eastern Japan, respectively. Larch and cedar tree-ring δ15N showed a range of -1.2 to 3.8 ‰ and -1.6 to 1.6 ‰, respectively. Larch trees showed a stable increase in δ15N values, while cedar trees showed a steady decreasing trend for the period 1970-2017. However, the divergence in the two tree series started in the early 1990’s. Both tree stands are exposed to the same atmospheric N deposition, therefore in principle both should have been affected equally. Similarly, an increase or a decrease in the δ15N value of the soil available N cannot be the reason since tree-rings values showed contrasting trends, unless this difference exists in each forest stand, however this seems unlikely. Another possibility could be the canopy uptake of depleted N from the atmosphere in cedar as the N demand increases could be responsible for cedar tree-ring δ15N temporal decrease but it does not explain the increase observed in larch. We speculate that low N demand and the increase in root biomass as tree grows could have decreased 15N discrimination by the EM fungi. The most plausible explanation for the contrasting results is that fractionation by the mycorrhiza fungi (Ecto and Arbuscular, respectively) during N root uptake was lower in larch (3.2 ‰) than in cedar (4.7 ‰) trees, which was related to the lower N demand as tree-ring wood %N was in average 0.06 and 0.10, respectively.
How to cite: Lopez Caceres, M. L., Tanabe, S., Santini, F., Voltas, J., Seidel, F., and Yamanaka, T.: Differential nitrogen isotope variation of tree-rings in two coniferous forests under climate change, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1795, https://doi.org/10.5194/egusphere-egu2020-1795, 2020.
Tree-ring δ15N provide long-term reliable information of soil available nitrogen, especially under increasing atmospheric N deposition upon forested ecosystems. In this study tree-ring δ15N values of Larix kaempferi and Cryptomeria japonica were measured for five trees each from a heavy snowfall region in north-eastern Japan, respectively. Larch and cedar tree-ring δ15N showed a range of -1.2 to 3.8 ‰ and -1.6 to 1.6 ‰, respectively. Larch trees showed a stable increase in δ15N values, while cedar trees showed a steady decreasing trend for the period 1970-2017. However, the divergence in the two tree series started in the early 1990’s. Both tree stands are exposed to the same atmospheric N deposition, therefore in principle both should have been affected equally. Similarly, an increase or a decrease in the δ15N value of the soil available N cannot be the reason since tree-rings values showed contrasting trends, unless this difference exists in each forest stand, however this seems unlikely. Another possibility could be the canopy uptake of depleted N from the atmosphere in cedar as the N demand increases could be responsible for cedar tree-ring δ15N temporal decrease but it does not explain the increase observed in larch. We speculate that low N demand and the increase in root biomass as tree grows could have decreased 15N discrimination by the EM fungi. The most plausible explanation for the contrasting results is that fractionation by the mycorrhiza fungi (Ecto and Arbuscular, respectively) during N root uptake was lower in larch (3.2 ‰) than in cedar (4.7 ‰) trees, which was related to the lower N demand as tree-ring wood %N was in average 0.06 and 0.10, respectively.
How to cite: Lopez Caceres, M. L., Tanabe, S., Santini, F., Voltas, J., Seidel, F., and Yamanaka, T.: Differential nitrogen isotope variation of tree-rings in two coniferous forests under climate change, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1795, https://doi.org/10.5194/egusphere-egu2020-1795, 2020.
EGU2020-19227 | Displays | BG1.2
Short-term fate of atmospherically deposited nitrogen in temperate forest under warmingYihang Duan and Yunting Fang
Anthropogenic activities have notably disturbed the natural carbon and nitrogen cycle since the industry revolution. The consequential results include a warmer climate and enhanced nitrogen deposition on forest ecosystems. Covering one-third of the landmass, forests possess vital ecosystem functions such as N retention and the resulting C sequestration. However, the ongoing changes in climate and nitrogen deposition could potentially alter these important processes. Therefore, measures need to be taken to assess the distribution of deposited N in warming forest ecosystems. Here, we use 15N tracer method to investigate the short-term (2 weeks, 1 month and 3 months) fate of deposited N in a temperate forest, and by taking advantage of the in situ infrared heating, we also attempt to explore the effect of warming ( 2 °C ) on deposited N in forest ecosystems. The results showed that deposited N was largely retained by litter in all treatments (38%-57%) and mineral soil layers contained the least nitrogen. Total 15N recovery of different ecosystem compartments between warmed and control treatments showed distinct pattern, recovery in warming treatment increased from 72% to 97% after 1 month while the respect recovery of control treatment gradually decreased with time. In the top mineral soil layer (0-10cm), control treatments had higher recovery than warming treatment, suggesting warming may hinder deposited N from forging downwards, however, higher δ15N value in top mineral soil layer suggesting enhanced microbial activities maybe in action. Little leaching loss of deposited N both in warm and control was observed. Difference in deposited N fate between warming and control could deepen our understanding of how global warming influence forest ecosystem processes, particularly the N cycle.
Key words: Soil warming; 15N tracer; N deposition; N retention and redistribution; Global warming; Temperate forest
How to cite: Duan, Y. and Fang, Y.: Short-term fate of atmospherically deposited nitrogen in temperate forest under warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19227, https://doi.org/10.5194/egusphere-egu2020-19227, 2020.
Anthropogenic activities have notably disturbed the natural carbon and nitrogen cycle since the industry revolution. The consequential results include a warmer climate and enhanced nitrogen deposition on forest ecosystems. Covering one-third of the landmass, forests possess vital ecosystem functions such as N retention and the resulting C sequestration. However, the ongoing changes in climate and nitrogen deposition could potentially alter these important processes. Therefore, measures need to be taken to assess the distribution of deposited N in warming forest ecosystems. Here, we use 15N tracer method to investigate the short-term (2 weeks, 1 month and 3 months) fate of deposited N in a temperate forest, and by taking advantage of the in situ infrared heating, we also attempt to explore the effect of warming ( 2 °C ) on deposited N in forest ecosystems. The results showed that deposited N was largely retained by litter in all treatments (38%-57%) and mineral soil layers contained the least nitrogen. Total 15N recovery of different ecosystem compartments between warmed and control treatments showed distinct pattern, recovery in warming treatment increased from 72% to 97% after 1 month while the respect recovery of control treatment gradually decreased with time. In the top mineral soil layer (0-10cm), control treatments had higher recovery than warming treatment, suggesting warming may hinder deposited N from forging downwards, however, higher δ15N value in top mineral soil layer suggesting enhanced microbial activities maybe in action. Little leaching loss of deposited N both in warm and control was observed. Difference in deposited N fate between warming and control could deepen our understanding of how global warming influence forest ecosystem processes, particularly the N cycle.
Key words: Soil warming; 15N tracer; N deposition; N retention and redistribution; Global warming; Temperate forest
How to cite: Duan, Y. and Fang, Y.: Short-term fate of atmospherically deposited nitrogen in temperate forest under warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19227, https://doi.org/10.5194/egusphere-egu2020-19227, 2020.
EGU2020-7760 | Displays | BG1.2 | Highlight
Three-year dynamics of N2O fluxes from soil, stem and canopy in a hemiboreal forest: Impacts of floods and droughtsÜlo Mander, Thomas Schindler, Kateřina Macháčová, Alisa Krasnova, Jordi Escuer-Gatius, Martin Maddison, Jaan Pärn, Gert Veber, Dmitrii Krasnov, and Kaido Soosaar
Forests are important regulators of carbon dioxide fluxes, whereas overall greenhouse gas (GHG) budgets, in particular, nitrous oxide (N2O), are still largely unknown. No studies on ecosystem-level N2O budgets (soil and tree stem fluxes with eddy covariance (EC) measurements above the canopy) are found. Only a few examples are available on N2O emissions from tree stems. Nevertheless, estimation of the N2O and the full GHG balance in different forest ecosystems under various environmental conditions is essential to understand their impact on climate.
During the period of August 2017 to December 2019, we measured the N2O budget of a 40-yr old hemiboreal grey alder (Alnus incana) forest stand on former agricultural land in Estonia considering fluxes from the soil, tree stems and whole ecosystem. Grey alder (Alnus incana) is a fast-growing tree species typically found in riparian zones, with great potential for short-rotation forestry. Their symbiotic dinitrogen (N2) fixation ability makes alders important for the regulation of nitrogen (N) cycle in forested areas.
We measured the N2O budget considering fluxes from the soil surface (12 automated chambers; Picarro 2508), tree stems (60 manual sampling campaigns from 12 model trees with chambers at 0.1, 0.8 and 1.7 m; gas chromatographic analysis in lab) and whole ecosystem (EC technique: Aerodyne TILDAS). Simultaneously, soil water level, temperature and moisture were measured automatically, and composite soil samples were taken for physico-chemical analysis. Potential N2 flux in intact soil cores was measured in the lab using the He-O incubation method.
Average N2O fluxes from the soil and tree stems varied from 1.2 to 3.0 and 0.01 to 0.03 kg N2O-N ha–1 yr–1, respectively, being the highest during the wet periods, peaking during the freezing-thawing, and being the lowest in dry periods. The average annual potential N2 flux in the soil was 140 kg N2 ha–1 yr–1 which made the average N2:N2O-N ratio in the soil about 60. According to the EC measurements, the forest was a net annual source of N2O (3.4 kg N2O ha–1). Thus, the main gaseous nitrogen flux in this forest was N2 emission. Our carbon (C) budget showed that the forest was a significant net annual C sink.
Results of our long-term study underline the high N and C buffering capacity of riparian alder forests. For better understanding of C and nutrient budgets of riparian forests, we need long-term, high-frequency measurements of N2O fluxes from the soil and tree stems in combination with ecosystem-level EC measurements. The identification of microorganisms and biogeochemical pathways associated with N2O production and consumption is another future challenge.
How to cite: Mander, Ü., Schindler, T., Macháčová, K., Krasnova, A., Escuer-Gatius, J., Maddison, M., Pärn, J., Veber, G., Krasnov, D., and Soosaar, K.: Three-year dynamics of N2O fluxes from soil, stem and canopy in a hemiboreal forest: Impacts of floods and droughts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7760, https://doi.org/10.5194/egusphere-egu2020-7760, 2020.
Forests are important regulators of carbon dioxide fluxes, whereas overall greenhouse gas (GHG) budgets, in particular, nitrous oxide (N2O), are still largely unknown. No studies on ecosystem-level N2O budgets (soil and tree stem fluxes with eddy covariance (EC) measurements above the canopy) are found. Only a few examples are available on N2O emissions from tree stems. Nevertheless, estimation of the N2O and the full GHG balance in different forest ecosystems under various environmental conditions is essential to understand their impact on climate.
During the period of August 2017 to December 2019, we measured the N2O budget of a 40-yr old hemiboreal grey alder (Alnus incana) forest stand on former agricultural land in Estonia considering fluxes from the soil, tree stems and whole ecosystem. Grey alder (Alnus incana) is a fast-growing tree species typically found in riparian zones, with great potential for short-rotation forestry. Their symbiotic dinitrogen (N2) fixation ability makes alders important for the regulation of nitrogen (N) cycle in forested areas.
We measured the N2O budget considering fluxes from the soil surface (12 automated chambers; Picarro 2508), tree stems (60 manual sampling campaigns from 12 model trees with chambers at 0.1, 0.8 and 1.7 m; gas chromatographic analysis in lab) and whole ecosystem (EC technique: Aerodyne TILDAS). Simultaneously, soil water level, temperature and moisture were measured automatically, and composite soil samples were taken for physico-chemical analysis. Potential N2 flux in intact soil cores was measured in the lab using the He-O incubation method.
Average N2O fluxes from the soil and tree stems varied from 1.2 to 3.0 and 0.01 to 0.03 kg N2O-N ha–1 yr–1, respectively, being the highest during the wet periods, peaking during the freezing-thawing, and being the lowest in dry periods. The average annual potential N2 flux in the soil was 140 kg N2 ha–1 yr–1 which made the average N2:N2O-N ratio in the soil about 60. According to the EC measurements, the forest was a net annual source of N2O (3.4 kg N2O ha–1). Thus, the main gaseous nitrogen flux in this forest was N2 emission. Our carbon (C) budget showed that the forest was a significant net annual C sink.
Results of our long-term study underline the high N and C buffering capacity of riparian alder forests. For better understanding of C and nutrient budgets of riparian forests, we need long-term, high-frequency measurements of N2O fluxes from the soil and tree stems in combination with ecosystem-level EC measurements. The identification of microorganisms and biogeochemical pathways associated with N2O production and consumption is another future challenge.
How to cite: Mander, Ü., Schindler, T., Macháčová, K., Krasnova, A., Escuer-Gatius, J., Maddison, M., Pärn, J., Veber, G., Krasnov, D., and Soosaar, K.: Three-year dynamics of N2O fluxes from soil, stem and canopy in a hemiboreal forest: Impacts of floods and droughts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7760, https://doi.org/10.5194/egusphere-egu2020-7760, 2020.
EGU2020-5983 | Displays | BG1.2
“Hot spots” in high-latitude moss-associated N fixation: What drives locally high fixation rates?Julia Stuart and Michelle Mack
Moss-associated nitrogen (N) fixation provides a substantial but heterogeneous input of new N to nutrient limited ecosystems at high latitudes. The presence of “hot spots”, defined as a rate of N fixation greater than three standard errors over the mean rate, can further increase the difficulty of scaling N inputs to plant communities or ecosystems. We used 15N2 incubations to quantify the fixation rates associated with 34 moss species from 24 sites ranging from 60 to 68 degrees N in Alaska, USA. The total moss-associated fixation rates ranged from 0.08 to 4.4 kg N ha-1yr-1, with an average of 1.1 kg N ha-1yr-1, based on abundance-weighted averages of all mosses summed for each site. Five of the 24 sampled sites were hot spots of N fixation. We hypothesized that host moss diversity would be correlated with higher N fixation rates, since different mosses often have distinct microbial assemblages and higher microbial diversity has been linked with higher N fixation rates in other ecosystems. However, we found no significant correlation between either moss taxonomic richness or Simpson’s D and N fixation rates (p=0.102, R2=0.01 and p=0.522, R2=0.02, respectively). What we found instead was that certain high-fixing species, most importantly Tomentypnum nitens, were present in almost all hot spots. The relevance of moss taxonomic identity in driving N fixation rates was repeatedly observed in our survey, where both machine learning and mixed model approaches found that moss family was a significant predictor of associated fixation rates across ecosystems in Alaska. Taken together, these results indicate the importance of moss identity in driving hot spots and illustrate that host taxonomy may be a useful tool in generating more accurate large-scale assessments of associated N inputs in these vulnerable and valuable ecosystems.
How to cite: Stuart, J. and Mack, M.: “Hot spots” in high-latitude moss-associated N fixation: What drives locally high fixation rates? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5983, https://doi.org/10.5194/egusphere-egu2020-5983, 2020.
Moss-associated nitrogen (N) fixation provides a substantial but heterogeneous input of new N to nutrient limited ecosystems at high latitudes. The presence of “hot spots”, defined as a rate of N fixation greater than three standard errors over the mean rate, can further increase the difficulty of scaling N inputs to plant communities or ecosystems. We used 15N2 incubations to quantify the fixation rates associated with 34 moss species from 24 sites ranging from 60 to 68 degrees N in Alaska, USA. The total moss-associated fixation rates ranged from 0.08 to 4.4 kg N ha-1yr-1, with an average of 1.1 kg N ha-1yr-1, based on abundance-weighted averages of all mosses summed for each site. Five of the 24 sampled sites were hot spots of N fixation. We hypothesized that host moss diversity would be correlated with higher N fixation rates, since different mosses often have distinct microbial assemblages and higher microbial diversity has been linked with higher N fixation rates in other ecosystems. However, we found no significant correlation between either moss taxonomic richness or Simpson’s D and N fixation rates (p=0.102, R2=0.01 and p=0.522, R2=0.02, respectively). What we found instead was that certain high-fixing species, most importantly Tomentypnum nitens, were present in almost all hot spots. The relevance of moss taxonomic identity in driving N fixation rates was repeatedly observed in our survey, where both machine learning and mixed model approaches found that moss family was a significant predictor of associated fixation rates across ecosystems in Alaska. Taken together, these results indicate the importance of moss identity in driving hot spots and illustrate that host taxonomy may be a useful tool in generating more accurate large-scale assessments of associated N inputs in these vulnerable and valuable ecosystems.
How to cite: Stuart, J. and Mack, M.: “Hot spots” in high-latitude moss-associated N fixation: What drives locally high fixation rates? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5983, https://doi.org/10.5194/egusphere-egu2020-5983, 2020.
EGU2020-11857 | Displays | BG1.2
The fixed nitrogen sensitivity of biological nitrogen fixation in salt marshes sediments from the northeastern United StatesRomain Darnajoux, Rei Zhang, Katja Luxem, and Xinning Zhang
Biological nitrogen fixation, the main input of fixed N into ecosystems, converts inert N2 gas into bioavailable ammonium in an energetically costly reaction catalyzed by the prokaryotic metalloenzyme nitrogenase. The high ATP and reductant requirements of N2 fixation explain why this process is highly regulated in diazotrophs, with the presence of ammonium inhibiting nitrogenase expression and activity. Yet, several reports of N2 fixation in ammonium- and nitrate-rich (10 to 300 µM) benthic environments challenge our understanding of a key environmental sensitivity of N2 fixation. Field studies point to heterotrophic sulfate reducers as the likely diazotrophs in these benthic settings, but the fixed N sensitivity of sulfate-reducing diazotrophs is not well understood due to a dearth of culture studies. Additionally, assays of N2 fixation in incubations rarely involve parallel measurements of dissolved inorganic nitrogen, possibly leading to experimental bias in favor of detecting activity under ammonium-replete initial conditions.
To help reconcile the environmental results, we investigate the ammonium sensitivity of N2 fixation using the acetylene reduction assay and 15N2 tracer methods in i) the model sulfate-reducing diazotroph, Desulfovibrio vulgaris str. Hildenborough (DvH), ii) four enrichment cultures from salt marsh sediments of New Jersey, and iii) slurry incubations of sediments collected from three northeastern salt marshes. In all instances, we found that ammonium strongly inhibits biological nitrogen fixation, with nitrogenase activity only detectable when ammonium concentration is below a threshold of 10 µM (slurry incubation) or 2 µM (pure cultures, enrichments). Amendment of ammonium quickly inhibits nitrogen fixation and nitrogenase activity only resumes once ammonium is depleted to the threshold level. Ammonium additions to actively fixing samples show complete inhibition of N2 fixation within several hours post-addition.
Our measurements of the ammonium sensitivity of benthic N2 fixation are consistent with the traditional understanding of nitrogen fixer metabolism and with early findings of Postgate et al. (1984) demonstrating that N2 fixation by the sulfate reducer Desulfovibrio gigas is inhibited by ammonium levels that exceed 10 µM. These results help clarify a long-standing paradox in benthic nitrogen cycling. We suggest that prior observations of N2 fixation at elevated ammonium levels could reflect methodological artifacts due to very fast depletion of ammonium during activity assays, legacy N2 fixation activity associated with incomplete inhibition by ammonium, or spatial heterogeneity. Further work to standardize fixed N sensitivity assays could help with cross-study comparisons and with clarifying inconsistencies in our understanding of how environmental fixed nitrogen levels control nitrogen fixation.
How to cite: Darnajoux, R., Zhang, R., Luxem, K., and Zhang, X.: The fixed nitrogen sensitivity of biological nitrogen fixation in salt marshes sediments from the northeastern United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11857, https://doi.org/10.5194/egusphere-egu2020-11857, 2020.
Biological nitrogen fixation, the main input of fixed N into ecosystems, converts inert N2 gas into bioavailable ammonium in an energetically costly reaction catalyzed by the prokaryotic metalloenzyme nitrogenase. The high ATP and reductant requirements of N2 fixation explain why this process is highly regulated in diazotrophs, with the presence of ammonium inhibiting nitrogenase expression and activity. Yet, several reports of N2 fixation in ammonium- and nitrate-rich (10 to 300 µM) benthic environments challenge our understanding of a key environmental sensitivity of N2 fixation. Field studies point to heterotrophic sulfate reducers as the likely diazotrophs in these benthic settings, but the fixed N sensitivity of sulfate-reducing diazotrophs is not well understood due to a dearth of culture studies. Additionally, assays of N2 fixation in incubations rarely involve parallel measurements of dissolved inorganic nitrogen, possibly leading to experimental bias in favor of detecting activity under ammonium-replete initial conditions.
To help reconcile the environmental results, we investigate the ammonium sensitivity of N2 fixation using the acetylene reduction assay and 15N2 tracer methods in i) the model sulfate-reducing diazotroph, Desulfovibrio vulgaris str. Hildenborough (DvH), ii) four enrichment cultures from salt marsh sediments of New Jersey, and iii) slurry incubations of sediments collected from three northeastern salt marshes. In all instances, we found that ammonium strongly inhibits biological nitrogen fixation, with nitrogenase activity only detectable when ammonium concentration is below a threshold of 10 µM (slurry incubation) or 2 µM (pure cultures, enrichments). Amendment of ammonium quickly inhibits nitrogen fixation and nitrogenase activity only resumes once ammonium is depleted to the threshold level. Ammonium additions to actively fixing samples show complete inhibition of N2 fixation within several hours post-addition.
Our measurements of the ammonium sensitivity of benthic N2 fixation are consistent with the traditional understanding of nitrogen fixer metabolism and with early findings of Postgate et al. (1984) demonstrating that N2 fixation by the sulfate reducer Desulfovibrio gigas is inhibited by ammonium levels that exceed 10 µM. These results help clarify a long-standing paradox in benthic nitrogen cycling. We suggest that prior observations of N2 fixation at elevated ammonium levels could reflect methodological artifacts due to very fast depletion of ammonium during activity assays, legacy N2 fixation activity associated with incomplete inhibition by ammonium, or spatial heterogeneity. Further work to standardize fixed N sensitivity assays could help with cross-study comparisons and with clarifying inconsistencies in our understanding of how environmental fixed nitrogen levels control nitrogen fixation.
How to cite: Darnajoux, R., Zhang, R., Luxem, K., and Zhang, X.: The fixed nitrogen sensitivity of biological nitrogen fixation in salt marshes sediments from the northeastern United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11857, https://doi.org/10.5194/egusphere-egu2020-11857, 2020.
EGU2020-1951 | Displays | BG1.2
Terrestrial Biological Nitrogen Fixation in CMIP6 ModelsTaraka Davies-Barnard, Johannes Meyerholt, Sönke Zaehle, Pierre Friedlingstein, Victor Brovkin, Yuanchao Fan, Rosie Fisher, Chris Jones, Hanna Lee, Daniele Peano, Benjamin Smith, David Wårlind, Andy Wiltshire, and Tilo Ziehn
Biological nitrogen fixation (BNF) is a key contributor to sustaining the terrestrial carbon cycle, providing nitrogen input that plants require. This is particularly salient for projections of carbon uptake under increased atmospheric carbon dioxide concentrations, which may allow for so-called ‘carbon dioxide fertilisation’ if other plant requirements, such as nitrogen, do not prevent increases in productivity. The amount, processes, and global distribution of BNF is highly disputed and consequently land surface models represent it in varying ways. Looking at the latest generation of CMIP6 earth system models with terrestrial nitrogen cycles, we consider their performance with regard to BNF. We assess models against a new comprehensive meta-analysis of BNF field measurements that gives a global range and site-specific values. We find that compared to the wide range of upscaled observations, the models still have a larger range, with under and overestimates.
How to cite: Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher, R., Jones, C., Lee, H., Peano, D., Smith, B., Wårlind, D., Wiltshire, A., and Ziehn, T.: Terrestrial Biological Nitrogen Fixation in CMIP6 Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1951, https://doi.org/10.5194/egusphere-egu2020-1951, 2020.
Biological nitrogen fixation (BNF) is a key contributor to sustaining the terrestrial carbon cycle, providing nitrogen input that plants require. This is particularly salient for projections of carbon uptake under increased atmospheric carbon dioxide concentrations, which may allow for so-called ‘carbon dioxide fertilisation’ if other plant requirements, such as nitrogen, do not prevent increases in productivity. The amount, processes, and global distribution of BNF is highly disputed and consequently land surface models represent it in varying ways. Looking at the latest generation of CMIP6 earth system models with terrestrial nitrogen cycles, we consider their performance with regard to BNF. We assess models against a new comprehensive meta-analysis of BNF field measurements that gives a global range and site-specific values. We find that compared to the wide range of upscaled observations, the models still have a larger range, with under and overestimates.
How to cite: Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher, R., Jones, C., Lee, H., Peano, D., Smith, B., Wårlind, D., Wiltshire, A., and Ziehn, T.: Terrestrial Biological Nitrogen Fixation in CMIP6 Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1951, https://doi.org/10.5194/egusphere-egu2020-1951, 2020.
EGU2020-21311 | Displays | BG1.2
Pulses of Biogenic Nitrogen Cycling Lead to Atmospheric-Based Nutrient Spiraling in Southern CaliforniaDarrel Jenerette, Alex Krichels, Stephanie Piper, Aral Greene, Jon Botthoff, Hannah Shulman, Emma Aronson, Peter Homyak, James Sickman, and Jun Wang
Nitrogen deposition into arid ecosystems is increasingly shaping biogeochemical dynamics worldwide. We propose a framework to investigate the role of pulsed soil N emission as a mechanism that relays the influences of atmospheric anthropogenic N deposition to areas that otherwise would be minimally affected. We use nutrient spiraling theory, developed in lotic ecosystems, to quantify how regeneration of N by soils influences N deposition downwind of an urban plume. Our hierarchical framework of landscape functioning thereby connects ecosystem processes occurring from microbial (<1cm and hours) to regional (>100km and inter-annual) scales through reciprocal interactions among soils and microbes, pollution sources, and the atmosphere. We use southern California, USA as a case study for evaluation where we test the terrestrial nitrogen spiraling framework using a combination of field experiments, isotopic measurements, theoretical models, and atmospheric transport and chemistry model outputs. Initial results from field wetting experiments, isotope measurements and contrasting modeling approaches all support a spiraling framework and the increasing importance of soil regeneration of nitrogen to deposition farther from the urban source. Soil microbiome communities associated with nitrogen cycling vary both spatially across the deposition gradient and temporally in response to wetting events. From these results we derive terrestrial spiraling metrics that can identify consequences of both soil and anthropogenic inputs to regional nitrogen cycling. New landscape frameworks for evaluating the role of transport and transformations on N cycling can help understand and predict spatial variation in ecosystems connected across multiple scales.
How to cite: Jenerette, D., Krichels, A., Piper, S., Greene, A., Botthoff, J., Shulman, H., Aronson, E., Homyak, P., Sickman, J., and Wang, J.: Pulses of Biogenic Nitrogen Cycling Lead to Atmospheric-Based Nutrient Spiraling in Southern California, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21311, https://doi.org/10.5194/egusphere-egu2020-21311, 2020.
Nitrogen deposition into arid ecosystems is increasingly shaping biogeochemical dynamics worldwide. We propose a framework to investigate the role of pulsed soil N emission as a mechanism that relays the influences of atmospheric anthropogenic N deposition to areas that otherwise would be minimally affected. We use nutrient spiraling theory, developed in lotic ecosystems, to quantify how regeneration of N by soils influences N deposition downwind of an urban plume. Our hierarchical framework of landscape functioning thereby connects ecosystem processes occurring from microbial (<1cm and hours) to regional (>100km and inter-annual) scales through reciprocal interactions among soils and microbes, pollution sources, and the atmosphere. We use southern California, USA as a case study for evaluation where we test the terrestrial nitrogen spiraling framework using a combination of field experiments, isotopic measurements, theoretical models, and atmospheric transport and chemistry model outputs. Initial results from field wetting experiments, isotope measurements and contrasting modeling approaches all support a spiraling framework and the increasing importance of soil regeneration of nitrogen to deposition farther from the urban source. Soil microbiome communities associated with nitrogen cycling vary both spatially across the deposition gradient and temporally in response to wetting events. From these results we derive terrestrial spiraling metrics that can identify consequences of both soil and anthropogenic inputs to regional nitrogen cycling. New landscape frameworks for evaluating the role of transport and transformations on N cycling can help understand and predict spatial variation in ecosystems connected across multiple scales.
How to cite: Jenerette, D., Krichels, A., Piper, S., Greene, A., Botthoff, J., Shulman, H., Aronson, E., Homyak, P., Sickman, J., and Wang, J.: Pulses of Biogenic Nitrogen Cycling Lead to Atmospheric-Based Nutrient Spiraling in Southern California, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21311, https://doi.org/10.5194/egusphere-egu2020-21311, 2020.
EGU2020-4954 | Displays | BG1.2
Does it pay off to link functional gene expression to denitrification rates via modelling?Anna Störiko, Holger Pagel, and Olaf Cirpka
The abundances of functional genes and transcripts have provided new insights into microbially mediated biogeochemical processes and might improve quantitative predictions of turnover rates.
However, the relationship between reaction rates and the gene and transcript abundances may not be a simple correlation.
Most mechanistic reaction models cannot predict molecular-biological data, and it is unclear how they can be informed by such data.
We developed a mechanistic model that considers transcript abundances of denitrification genes, enzyme concentrations, biomass, and solute concentrations as state variables that are interrelated by ordinary differential equations, and thus mechanistically links molecular-biological data to reaction rates.
Important features of transcript dynamics can be reproduced with the transcript-based model.
We calibrated the model using data from a batch experiment with a denitrifying organism at the onset of anoxia.
We explored the relationship between transcript abundances and reaction rates by analyzing the model results.
The transcript abundances reacted very quickly to substrate concentrations so that we could simplify the model by assuming a quasi steady state of the transcripts.
We compared our model to a classical Monod-type formulation, which was as good at simulating the concentrations of nitrogen species as the transcript-based model, but it cannot make use of any molecular-biological data.
Our results, thus, suggest that enzyme kinetics (substrate limitation, inhibition) control denitrification rates more strongly than the dynamics of gene expression.
How to cite: Störiko, A., Pagel, H., and Cirpka, O.: Does it pay off to link functional gene expression to denitrification rates via modelling?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4954, https://doi.org/10.5194/egusphere-egu2020-4954, 2020.
The abundances of functional genes and transcripts have provided new insights into microbially mediated biogeochemical processes and might improve quantitative predictions of turnover rates.
However, the relationship between reaction rates and the gene and transcript abundances may not be a simple correlation.
Most mechanistic reaction models cannot predict molecular-biological data, and it is unclear how they can be informed by such data.
We developed a mechanistic model that considers transcript abundances of denitrification genes, enzyme concentrations, biomass, and solute concentrations as state variables that are interrelated by ordinary differential equations, and thus mechanistically links molecular-biological data to reaction rates.
Important features of transcript dynamics can be reproduced with the transcript-based model.
We calibrated the model using data from a batch experiment with a denitrifying organism at the onset of anoxia.
We explored the relationship between transcript abundances and reaction rates by analyzing the model results.
The transcript abundances reacted very quickly to substrate concentrations so that we could simplify the model by assuming a quasi steady state of the transcripts.
We compared our model to a classical Monod-type formulation, which was as good at simulating the concentrations of nitrogen species as the transcript-based model, but it cannot make use of any molecular-biological data.
Our results, thus, suggest that enzyme kinetics (substrate limitation, inhibition) control denitrification rates more strongly than the dynamics of gene expression.
How to cite: Störiko, A., Pagel, H., and Cirpka, O.: Does it pay off to link functional gene expression to denitrification rates via modelling?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4954, https://doi.org/10.5194/egusphere-egu2020-4954, 2020.
EGU2020-12965 | Displays | BG1.2
Variability of nitrogen-cycle microbial communities determined by the age of restored wetlandsKuno Kasak, Tyler Anthony, Alex Valach, Kyle Hemes, Keit Kill, Whendee Silver, Ülo Mander, Daphne Szutu, Joseph Verfaillie, and Dennis Baldocchi
Restoring degraded peat soils to wetlands can be an attractive and efficient measure with many benefits including carbon sequestration, water quality improvement, food and habitat for wildlife, flood control, and opportunities for recreation. Agricultural lands which are restored to wetlands will start rebuild soils and reverse land subsidence. Using eddy covariance towers in four wetlands that were restored in 1997, 2010, 2013 and 2016 in the Sacramento-San Joaquin Delta in California, we saw high carbon sequestration potentials and peat accumulation. Since soil restoration takes place gradually, it is important to specify the critical turning-points in the process of improving soil microbial community structure and nitrogen cycling. In August 2018, soil samples from four wetlands with different restoration ages in the Delta were collected for chemical and microbial analyses. The bacterial and archaeal 16S rRNA genes and functional genes involved in nitrogen cycling (nirS, nirK, nosZ-I, nosZ-II, bacterial and archaeal amoA, nifH, nrfA, and ANAMMOX-specific genes) in soils were determined using a quantitative PCR method. Soil chemical parameters such as C%, N%, Al, Mn, Fe and two different organic and inorganic P pools were analysed as well. Preliminary results indicate significant dissimilarities in the abundance of soil bacterial and archaeal communities, as well as nirS, nirK, nosZ, nifH, nrfA and archaeal amoA gene-possessing microbial communities in different wetlands. Data analysis showed several statistically significant relationships between target gene parameters and soil chemical parameters that were different when comparing the sites with the restoration age. It is clear, that the complexity of the relationships increases as the wetland gets older. For example, in younger wetlands the availability of C and N plays a crucial role in gene abundances while in the oldest wetland, the most important chemical parameters were different phosphorus forms. This might indicate that more than 20 years of C and N accumulation has led to the availability of phosphorus for N transformation now to be the main limiting factor. Another important finding was that the design criteria can also determine how the wetland acts in terms of nitrogen gas emissions. For example, one of the wetlands was designed with more varied bathymetry that includes many open channels and a fluctuating water table. We saw that the nifH gene-possessing microbes that are responsible for molecular N fixing are highly abundant in open water areas while at the same time this wetland has also the highest abundance of nir genes that control N2O production by denitrifiers. Our study demonstrates that the design of the wetland can have a significant impact on N-transforming processes, but most importantly at some age, restored wetlands become more similar to natural wetlands.
How to cite: Kasak, K., Anthony, T., Valach, A., Hemes, K., Kill, K., Silver, W., Mander, Ü., Szutu, D., Verfaillie, J., and Baldocchi, D.: Variability of nitrogen-cycle microbial communities determined by the age of restored wetlands , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12965, https://doi.org/10.5194/egusphere-egu2020-12965, 2020.
Restoring degraded peat soils to wetlands can be an attractive and efficient measure with many benefits including carbon sequestration, water quality improvement, food and habitat for wildlife, flood control, and opportunities for recreation. Agricultural lands which are restored to wetlands will start rebuild soils and reverse land subsidence. Using eddy covariance towers in four wetlands that were restored in 1997, 2010, 2013 and 2016 in the Sacramento-San Joaquin Delta in California, we saw high carbon sequestration potentials and peat accumulation. Since soil restoration takes place gradually, it is important to specify the critical turning-points in the process of improving soil microbial community structure and nitrogen cycling. In August 2018, soil samples from four wetlands with different restoration ages in the Delta were collected for chemical and microbial analyses. The bacterial and archaeal 16S rRNA genes and functional genes involved in nitrogen cycling (nirS, nirK, nosZ-I, nosZ-II, bacterial and archaeal amoA, nifH, nrfA, and ANAMMOX-specific genes) in soils were determined using a quantitative PCR method. Soil chemical parameters such as C%, N%, Al, Mn, Fe and two different organic and inorganic P pools were analysed as well. Preliminary results indicate significant dissimilarities in the abundance of soil bacterial and archaeal communities, as well as nirS, nirK, nosZ, nifH, nrfA and archaeal amoA gene-possessing microbial communities in different wetlands. Data analysis showed several statistically significant relationships between target gene parameters and soil chemical parameters that were different when comparing the sites with the restoration age. It is clear, that the complexity of the relationships increases as the wetland gets older. For example, in younger wetlands the availability of C and N plays a crucial role in gene abundances while in the oldest wetland, the most important chemical parameters were different phosphorus forms. This might indicate that more than 20 years of C and N accumulation has led to the availability of phosphorus for N transformation now to be the main limiting factor. Another important finding was that the design criteria can also determine how the wetland acts in terms of nitrogen gas emissions. For example, one of the wetlands was designed with more varied bathymetry that includes many open channels and a fluctuating water table. We saw that the nifH gene-possessing microbes that are responsible for molecular N fixing are highly abundant in open water areas while at the same time this wetland has also the highest abundance of nir genes that control N2O production by denitrifiers. Our study demonstrates that the design of the wetland can have a significant impact on N-transforming processes, but most importantly at some age, restored wetlands become more similar to natural wetlands.
How to cite: Kasak, K., Anthony, T., Valach, A., Hemes, K., Kill, K., Silver, W., Mander, Ü., Szutu, D., Verfaillie, J., and Baldocchi, D.: Variability of nitrogen-cycle microbial communities determined by the age of restored wetlands , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12965, https://doi.org/10.5194/egusphere-egu2020-12965, 2020.
EGU2020-6367 | Displays | BG1.2
Key shaping factors of anammox bacterial geographical distribution and function in riverine ecosystemsSitong Liu and Liming Chen
The anaerobic ammonium oxidation (anammox) process converts ammonium to dinitrogen gas (N2) using nitrite as an electron acceptor under anaerobic conditions, which plays an important role in global nitrogen cycle. Anammox has been extensively investigated at different spatial scales. However, most previous studies have focused on the impacts of environmental factors on anammox bacterial community composition, whereas the influence of spatial factors, such as geographical distance, remains unclear. Here, we took sediment and water samples from two large-scale river in China: the Yangtze River. High-throughput biomolecule analysis was performed to explore the spatial patterns of anammox bacterial community and their response to environmental factors, spatial factors, community interchange and anammox bacterial traits. Additionally, 15N tracer analyses has been performed to estimated anammox activity and its contribution to N2 production (ra), and factors shaping its occurrence. Main conclusions are draw as follows:
(1) The Three Gorges Dam (TGD) induced sediment coarsening could enhance anammox role as an important N-sink and decrease anammox bacterial alpha diversity. Anammox is ubiquitous in sediment of the Yangtze River, with high bacterial abundance (1.0×105 to 2.90×108 copies g-1 dry sediment), and activity (0.003-6.67 nmol N g-1 h-1), accounting for 3.5-82.8% of total N2 production (ra). Our results showed that the ra at the post-dam site was steeper than that before the dam, whereas the alpha diversity of anammox bacteria showing an opposite trend. Further analysis showed that hydraulic erosion leads to sediment coarsening and loss of organic matter downstream of the dam, which ultimately leads to the enhancement of the ra and the decrease of anammox bacterial alpha diversity. TGD induced sediment coarsening would extend downstream nearly to the river mouth in the coming decades, which would inevitably enhance the importance of anammox in nitrogen loss and alter anammox bacterial community in the Yangtze River for a long time.
(2) A significant distance-decay relationship was observed for anammox bacterial community similarity in the Yangtze River, which was significantly influenced by geographical distance rather than local environmental factors. This implied that niche-independent dispersal limitation plays an important role in shaping anammox community assembly. Furthermore, the slope of the distance-decay curve was much higher than previously reported for whole bacteria, which indicating the species turnover rate of anammox bacteria (z-value = 0.35) was significantly higher than that of the whole bacteria (approximately 0.008-0.05). Anammox bacteria harbor stronger adsorption ability and film-forming ability than other bacteria. As such, anammox bacterial harbor lower dispersal potential, and ultimately exhibited a higher species turnover rate than whole bacteria.
This study investigated the geographical patterns and the driving mechanisms of anammox bacterial community in large-scale riverine ecosystems, and estimated the key shaping factors of anammox activity and its contribution to total N2 production. The results or conclusions of this study are of scientific significance for further revealing the community assembly and geographical patterns of anammox bacteria on a global scale, as well as the theoretical system of nitrogen cycle.
How to cite: Liu, S. and Chen, L.: Key shaping factors of anammox bacterial geographical distribution and function in riverine ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6367, https://doi.org/10.5194/egusphere-egu2020-6367, 2020.
The anaerobic ammonium oxidation (anammox) process converts ammonium to dinitrogen gas (N2) using nitrite as an electron acceptor under anaerobic conditions, which plays an important role in global nitrogen cycle. Anammox has been extensively investigated at different spatial scales. However, most previous studies have focused on the impacts of environmental factors on anammox bacterial community composition, whereas the influence of spatial factors, such as geographical distance, remains unclear. Here, we took sediment and water samples from two large-scale river in China: the Yangtze River. High-throughput biomolecule analysis was performed to explore the spatial patterns of anammox bacterial community and their response to environmental factors, spatial factors, community interchange and anammox bacterial traits. Additionally, 15N tracer analyses has been performed to estimated anammox activity and its contribution to N2 production (ra), and factors shaping its occurrence. Main conclusions are draw as follows:
(1) The Three Gorges Dam (TGD) induced sediment coarsening could enhance anammox role as an important N-sink and decrease anammox bacterial alpha diversity. Anammox is ubiquitous in sediment of the Yangtze River, with high bacterial abundance (1.0×105 to 2.90×108 copies g-1 dry sediment), and activity (0.003-6.67 nmol N g-1 h-1), accounting for 3.5-82.8% of total N2 production (ra). Our results showed that the ra at the post-dam site was steeper than that before the dam, whereas the alpha diversity of anammox bacteria showing an opposite trend. Further analysis showed that hydraulic erosion leads to sediment coarsening and loss of organic matter downstream of the dam, which ultimately leads to the enhancement of the ra and the decrease of anammox bacterial alpha diversity. TGD induced sediment coarsening would extend downstream nearly to the river mouth in the coming decades, which would inevitably enhance the importance of anammox in nitrogen loss and alter anammox bacterial community in the Yangtze River for a long time.
(2) A significant distance-decay relationship was observed for anammox bacterial community similarity in the Yangtze River, which was significantly influenced by geographical distance rather than local environmental factors. This implied that niche-independent dispersal limitation plays an important role in shaping anammox community assembly. Furthermore, the slope of the distance-decay curve was much higher than previously reported for whole bacteria, which indicating the species turnover rate of anammox bacteria (z-value = 0.35) was significantly higher than that of the whole bacteria (approximately 0.008-0.05). Anammox bacteria harbor stronger adsorption ability and film-forming ability than other bacteria. As such, anammox bacterial harbor lower dispersal potential, and ultimately exhibited a higher species turnover rate than whole bacteria.
This study investigated the geographical patterns and the driving mechanisms of anammox bacterial community in large-scale riverine ecosystems, and estimated the key shaping factors of anammox activity and its contribution to total N2 production. The results or conclusions of this study are of scientific significance for further revealing the community assembly and geographical patterns of anammox bacteria on a global scale, as well as the theoretical system of nitrogen cycle.
How to cite: Liu, S. and Chen, L.: Key shaping factors of anammox bacterial geographical distribution and function in riverine ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6367, https://doi.org/10.5194/egusphere-egu2020-6367, 2020.
EGU2020-15588 | Displays | BG1.2
The imprint of anammox on the stable isotope compositions of nitrogen-bearing moleculesPaul Magyar, Damian Hausherr, Robert Niederdorfer, Jing Wei, Joachim Mohn, Helmut Bürgmann, Adriano Joss, and Moritz Lehmann
Stable isotope measurements of nitrogen and oxygen in nitrogen-containing molecules provide important constraints on the sources, sinks and pools of these molecules in the environment. Anammox is one of two known biological processes for converting fixed nitrogen to N2, and through its consumption of ammonium and nitrite and production of nitrate, it impacts the supply of a wide variety of fixed N molecules. Nevertheless, the isotope fractionations associated with the various anammox-associated redox reactions remain poorly constrained. We have measured the isotope effects of anammox in microbial communities enriched for the purpose of nitrogen removal from wastewater by anammox. In this system, we can replicate the ecological complexity exhibited in environmental settings, while also performing controlled experiments. We find that under a variety of conditions, the nitrogen isotope effect for the anaerobic oxidation of ammonium in this system (NH4+ to N2) is between 19‰ and 32‰, that for the reduction of nitrite (NO2– to N2) is between 7‰ and 18‰, and that for the production of nitrate (NO2– to NO3–) is between -16‰ and -43‰. We propose that these ranges reflect both (1) a mixture of signals from different anammox-performing species and (2) variation of the isotope effect associated with the anammox process within a given microbial community under different conditions. We seek to understand further what factors control this variability to better interpret stable isotope measurements of N-bearing molecules in environmental settings.
How to cite: Magyar, P., Hausherr, D., Niederdorfer, R., Wei, J., Mohn, J., Bürgmann, H., Joss, A., and Lehmann, M.: The imprint of anammox on the stable isotope compositions of nitrogen-bearing molecules, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15588, https://doi.org/10.5194/egusphere-egu2020-15588, 2020.
Stable isotope measurements of nitrogen and oxygen in nitrogen-containing molecules provide important constraints on the sources, sinks and pools of these molecules in the environment. Anammox is one of two known biological processes for converting fixed nitrogen to N2, and through its consumption of ammonium and nitrite and production of nitrate, it impacts the supply of a wide variety of fixed N molecules. Nevertheless, the isotope fractionations associated with the various anammox-associated redox reactions remain poorly constrained. We have measured the isotope effects of anammox in microbial communities enriched for the purpose of nitrogen removal from wastewater by anammox. In this system, we can replicate the ecological complexity exhibited in environmental settings, while also performing controlled experiments. We find that under a variety of conditions, the nitrogen isotope effect for the anaerobic oxidation of ammonium in this system (NH4+ to N2) is between 19‰ and 32‰, that for the reduction of nitrite (NO2– to N2) is between 7‰ and 18‰, and that for the production of nitrate (NO2– to NO3–) is between -16‰ and -43‰. We propose that these ranges reflect both (1) a mixture of signals from different anammox-performing species and (2) variation of the isotope effect associated with the anammox process within a given microbial community under different conditions. We seek to understand further what factors control this variability to better interpret stable isotope measurements of N-bearing molecules in environmental settings.
How to cite: Magyar, P., Hausherr, D., Niederdorfer, R., Wei, J., Mohn, J., Bürgmann, H., Joss, A., and Lehmann, M.: The imprint of anammox on the stable isotope compositions of nitrogen-bearing molecules, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15588, https://doi.org/10.5194/egusphere-egu2020-15588, 2020.
EGU2020-3692 | Displays | BG1.2
Nitrite isotope characteristics in 15N-labelled and non-labelled agricultural soilDominika Lewicka-Szczebak and Reinhard Well
Nitrite (NO2-) is a crucial compound in the complex N soil cycle. As an intermediate of nearly all N transformations its isotopic signature may provide precious information on the active pathways and processes. NO2- analyses have been already applied in 15N tracing studies increasing their interpretation perspectives. Natural abundance NO2- isotope studies in soils were so far not applied and this study aims at testing if such analyses are useful in tracing the soil N cycle.
We conducted laboratory soil incubations with parallel natural abundance and 15N treatments accompanied by analyses of soil N compounds (NO3-, NO2-, NH4+) and released N gases (N2O and N2). Water content was varied during the experiment from 55 to 86% water-filled pore space. NO2- was immediately extracted and analysed with the denitrifier method for selective nitrite reduction with Stenotrophomonas nitritireducens.
NO2- content varied in the wide range from 0.6 to 6.6 μmol kg-1 soil, whereas NO3- content was one order higher and quite stable from 1.3 to 1.7 mmol kg-1 soil. Similarly, the δ15N(NO2-) varied largely from -16.7 to +8.8‰, whereas δ15N(NO3-) was very stable from 3.5 to 5.9‰. The δ15N(NO2-) was correlated with NO2- content. Applying Keeling plot the isotopic signature for the NO2- input of -11.7‰ was determined. When related to δ15N(NO3-) this gives the ε(NO2-/ NO3-) of -16.2‰, which is within the literature data for NO3- to NO2- reduction step of denitrification.
The parallel 15N treatment was used to provide interpretation for the natural abundance isotope nitrite dynamics. We observed a sudden drop in 15N abundance in NO2- (a15N(NO2-)) after water addition to the soil from 14.7 to 3.2 at%, whereas 15N abundance in NO3- (a15N_NO3-) showed only slight decrease from 14.2 to 13.1 at%. This indicates an incorporation of another source of unlabelled NO2- for the wet part of the experiment. In natural abundance isotopes this change was also reflected in higher Δ15N(NO2-/ NO3-); for the wet part of the experiment it was even positive with +1.6‰, whereas for the dry part it was lower with -5.9‰. This additional nitrite source is most probably oxidation of organic N, which will be clarified by further studies, including detailed analysis with the 15N Ntrace model.
The observed changes in nitrite isotope characteristics were not reflected in N2O. Whereas a15N(NO2-) droped to 3.2 at%, for a15N(N2O) still 13.6 at% were found. The pool derived N2O fraction calculated with the 15N gas flux method showed that the entire N2O originated from NO3- in the wet part of the experiment. This shows that NO2- pools originating from different pathways must be isolated and not the entire NO2- pool undergoes further reduction to N2O.
Natural abundance nitrite isotope studies may provide a new important tool in constraining the N soil cycling.
How to cite: Lewicka-Szczebak, D. and Well, R.: Nitrite isotope characteristics in 15N-labelled and non-labelled agricultural soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3692, https://doi.org/10.5194/egusphere-egu2020-3692, 2020.
Nitrite (NO2-) is a crucial compound in the complex N soil cycle. As an intermediate of nearly all N transformations its isotopic signature may provide precious information on the active pathways and processes. NO2- analyses have been already applied in 15N tracing studies increasing their interpretation perspectives. Natural abundance NO2- isotope studies in soils were so far not applied and this study aims at testing if such analyses are useful in tracing the soil N cycle.
We conducted laboratory soil incubations with parallel natural abundance and 15N treatments accompanied by analyses of soil N compounds (NO3-, NO2-, NH4+) and released N gases (N2O and N2). Water content was varied during the experiment from 55 to 86% water-filled pore space. NO2- was immediately extracted and analysed with the denitrifier method for selective nitrite reduction with Stenotrophomonas nitritireducens.
NO2- content varied in the wide range from 0.6 to 6.6 μmol kg-1 soil, whereas NO3- content was one order higher and quite stable from 1.3 to 1.7 mmol kg-1 soil. Similarly, the δ15N(NO2-) varied largely from -16.7 to +8.8‰, whereas δ15N(NO3-) was very stable from 3.5 to 5.9‰. The δ15N(NO2-) was correlated with NO2- content. Applying Keeling plot the isotopic signature for the NO2- input of -11.7‰ was determined. When related to δ15N(NO3-) this gives the ε(NO2-/ NO3-) of -16.2‰, which is within the literature data for NO3- to NO2- reduction step of denitrification.
The parallel 15N treatment was used to provide interpretation for the natural abundance isotope nitrite dynamics. We observed a sudden drop in 15N abundance in NO2- (a15N(NO2-)) after water addition to the soil from 14.7 to 3.2 at%, whereas 15N abundance in NO3- (a15N_NO3-) showed only slight decrease from 14.2 to 13.1 at%. This indicates an incorporation of another source of unlabelled NO2- for the wet part of the experiment. In natural abundance isotopes this change was also reflected in higher Δ15N(NO2-/ NO3-); for the wet part of the experiment it was even positive with +1.6‰, whereas for the dry part it was lower with -5.9‰. This additional nitrite source is most probably oxidation of organic N, which will be clarified by further studies, including detailed analysis with the 15N Ntrace model.
The observed changes in nitrite isotope characteristics were not reflected in N2O. Whereas a15N(NO2-) droped to 3.2 at%, for a15N(N2O) still 13.6 at% were found. The pool derived N2O fraction calculated with the 15N gas flux method showed that the entire N2O originated from NO3- in the wet part of the experiment. This shows that NO2- pools originating from different pathways must be isolated and not the entire NO2- pool undergoes further reduction to N2O.
Natural abundance nitrite isotope studies may provide a new important tool in constraining the N soil cycling.
How to cite: Lewicka-Szczebak, D. and Well, R.: Nitrite isotope characteristics in 15N-labelled and non-labelled agricultural soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3692, https://doi.org/10.5194/egusphere-egu2020-3692, 2020.
EGU2020-5257 | Displays | BG1.2
Oxygen supply and demand as controls of denitrification at the microscale in repacked soilLena Rohe, Steffen Schlüter, Bernd Apelt, Hans-Jörg Vogel, and Reinhard Well
The controlling factors of biotic denitrification in soil as a source of the greenhouse gas nitrous oxide (N2O) and of dinitrogen (N2) are still not fully understood due to the challenges in observing processes that co-occur in soil at microscopic scales and the difficulty to measure N2 fluxes. N2O production and reduction depend on the extent of anoxic conditions in soil, which in turn are a function of O2 supply through diffusion and O2 demand by soil respiration in the presence of an alternative electron acceptor (e.g. nitrate).
This study aimed to explore microscopic drivers that control total denitrification, i.e. N2O and (N2O+N2) fluxes. To provoke different levels of oxygen supply and demand, repacked soils from two locations in Germany were incubated in a full factorial design with soil organic matter (1.2 and 4.5 %), aggregate size (2-4 and 4-8mm) and water saturation (70%, 83% and 95% WHC) as factors. The sieved soils were repacked and incubated at constant temperature and moisture and gas emissions (CO2 and N2O) were monitored with gas chromatography. The 15N tracer application was used to estimate the N2O reduction to N2. The internal soil structure and air distribution was measured with X-ray computed tomography (X-ray CT).
The interplay of anaerobic soil volume fraction (ansvf) as an abiotic proxy of oxygen supply and CO2 emission as a biotic proxy of oxygen demand resulted in 81% and 84% explained variability in N2O and (N2O+N2) emissions, respectively. These high values dropped to 5-30% when only ansvf or CO2 was considered indicating strong interaction effects. The extent of N2O reduction in combination with ansvf and CO2 even increased the explained variability for N2O fluxes to 83%. Average O2 concentration measured by microsensors was a very poor predictor due to the extreme variability in O2 at short scales in combination with the small footprint of the micro sensors probing only 0.2% of the entire soil volume. The substitution of predictors by independent, readily available proxies for O2 supply (diffusivity based on air content) and O2 demand (SOM) leads to a reduction in predictive power.
To our knowledge this is the first study analyzing total denitrification in combination with X-ray CT image analysis, which opens up new perspectives to estimate denitrification in soil and also contribute to improving models of N2O fluxes and fertiliser loss at all scales and can help to develop mitigation strategies for N2O fluxes and improve N use efficiency.
How to cite: Rohe, L., Schlüter, S., Apelt, B., Vogel, H.-J., and Well, R.: Oxygen supply and demand as controls of denitrification at the microscale in repacked soil , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5257, https://doi.org/10.5194/egusphere-egu2020-5257, 2020.
The controlling factors of biotic denitrification in soil as a source of the greenhouse gas nitrous oxide (N2O) and of dinitrogen (N2) are still not fully understood due to the challenges in observing processes that co-occur in soil at microscopic scales and the difficulty to measure N2 fluxes. N2O production and reduction depend on the extent of anoxic conditions in soil, which in turn are a function of O2 supply through diffusion and O2 demand by soil respiration in the presence of an alternative electron acceptor (e.g. nitrate).
This study aimed to explore microscopic drivers that control total denitrification, i.e. N2O and (N2O+N2) fluxes. To provoke different levels of oxygen supply and demand, repacked soils from two locations in Germany were incubated in a full factorial design with soil organic matter (1.2 and 4.5 %), aggregate size (2-4 and 4-8mm) and water saturation (70%, 83% and 95% WHC) as factors. The sieved soils were repacked and incubated at constant temperature and moisture and gas emissions (CO2 and N2O) were monitored with gas chromatography. The 15N tracer application was used to estimate the N2O reduction to N2. The internal soil structure and air distribution was measured with X-ray computed tomography (X-ray CT).
The interplay of anaerobic soil volume fraction (ansvf) as an abiotic proxy of oxygen supply and CO2 emission as a biotic proxy of oxygen demand resulted in 81% and 84% explained variability in N2O and (N2O+N2) emissions, respectively. These high values dropped to 5-30% when only ansvf or CO2 was considered indicating strong interaction effects. The extent of N2O reduction in combination with ansvf and CO2 even increased the explained variability for N2O fluxes to 83%. Average O2 concentration measured by microsensors was a very poor predictor due to the extreme variability in O2 at short scales in combination with the small footprint of the micro sensors probing only 0.2% of the entire soil volume. The substitution of predictors by independent, readily available proxies for O2 supply (diffusivity based on air content) and O2 demand (SOM) leads to a reduction in predictive power.
To our knowledge this is the first study analyzing total denitrification in combination with X-ray CT image analysis, which opens up new perspectives to estimate denitrification in soil and also contribute to improving models of N2O fluxes and fertiliser loss at all scales and can help to develop mitigation strategies for N2O fluxes and improve N use efficiency.
How to cite: Rohe, L., Schlüter, S., Apelt, B., Vogel, H.-J., and Well, R.: Oxygen supply and demand as controls of denitrification at the microscale in repacked soil , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5257, https://doi.org/10.5194/egusphere-egu2020-5257, 2020.
EGU2020-3318 | Displays | BG1.2 | Highlight
Nitrogen removal and nitrous oxide emissions in woodchips biofilters treating agricultural drainage watersJoachim Audet, Dominik Zak, and Carl Christian Hoffmann
Eutrophication of aquatic ecosystems provoked by excess nitrogen (N) concentration is still a major concern worldwide with severe consequences such as hypoxia, biodiversity loss, and degradation of drinking water quality. To face these challenges, a novel N mitigation measure has emerged in the last decades consisting of biofilters made of woodchips. Drainage water from agricultural areas infiltrate through a layer of woodchips before it discharges to an aquatic recipient such as a ditch or a stream. The goal with this technique is to provide optimal conditions for denitrification i.e. an easy degradable carbon source (the woodchips) and an anaerobic environment. There is, however, some concerns regarding the emissions of the greenhouse gas nitrous oxide (N2O) which can be a by-product of denitrification.
Here, we present results on N removal and N2O emissions from 9 biofilters differing in age (1–8 years) and representing a total of 18 years of monitoring. The biofilters were all located in agricultural catchments in Denmark (temperate climate conditions). Nitrogen removal in the biofilters was estimated using a mass balance approach measuring N species dissolved in the water (total N, nitrate, nitrite, ammonium) using time proportional automated samplers placed at inlet and outlet of the biofilters. Nitrous oxide emissions were measured every third week both as gaseous form at the surface of the biofilters (closed chamber technique and gas chromatography) and in dissolved form in the water phase at inlet and outlet of the biofilters (headspace technique and gas chromatography). We take advantage of this unique dataset to identify the factors enabling to maximize N removal while minimizing N2O emissions. Furthermore, we make a first assessment of the potential impact of the increasing number of biofilters on N2O emissions in agricultural landscapes.
How to cite: Audet, J., Zak, D., and Hoffmann, C. C.: Nitrogen removal and nitrous oxide emissions in woodchips biofilters treating agricultural drainage waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3318, https://doi.org/10.5194/egusphere-egu2020-3318, 2020.
Eutrophication of aquatic ecosystems provoked by excess nitrogen (N) concentration is still a major concern worldwide with severe consequences such as hypoxia, biodiversity loss, and degradation of drinking water quality. To face these challenges, a novel N mitigation measure has emerged in the last decades consisting of biofilters made of woodchips. Drainage water from agricultural areas infiltrate through a layer of woodchips before it discharges to an aquatic recipient such as a ditch or a stream. The goal with this technique is to provide optimal conditions for denitrification i.e. an easy degradable carbon source (the woodchips) and an anaerobic environment. There is, however, some concerns regarding the emissions of the greenhouse gas nitrous oxide (N2O) which can be a by-product of denitrification.
Here, we present results on N removal and N2O emissions from 9 biofilters differing in age (1–8 years) and representing a total of 18 years of monitoring. The biofilters were all located in agricultural catchments in Denmark (temperate climate conditions). Nitrogen removal in the biofilters was estimated using a mass balance approach measuring N species dissolved in the water (total N, nitrate, nitrite, ammonium) using time proportional automated samplers placed at inlet and outlet of the biofilters. Nitrous oxide emissions were measured every third week both as gaseous form at the surface of the biofilters (closed chamber technique and gas chromatography) and in dissolved form in the water phase at inlet and outlet of the biofilters (headspace technique and gas chromatography). We take advantage of this unique dataset to identify the factors enabling to maximize N removal while minimizing N2O emissions. Furthermore, we make a first assessment of the potential impact of the increasing number of biofilters on N2O emissions in agricultural landscapes.
How to cite: Audet, J., Zak, D., and Hoffmann, C. C.: Nitrogen removal and nitrous oxide emissions in woodchips biofilters treating agricultural drainage waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3318, https://doi.org/10.5194/egusphere-egu2020-3318, 2020.
EGU2020-5396 | Displays | BG1.2
Validation of satellite-constrained ammonia using a CTM and ground and satellite measurementsNikolaos Evangeliou, Yves Balkanski, Sabine Eckhardt, Didier Hauglustaine, Anne Cozic, and Andreas Stohl
Ammonia (NH3) has received a lot of attention nowadays due to its major implications for the population and the environment. Global sources of ammonia include wild animals, ammonia-containing water areas, traffic, sewage systems, humans, biomass burning (mainly from dung fires and domestic coal combustion), volcanic eruptions and agriculture. In the present study, we used 10 years (2008–2017) of satellite measurements of ammonia retrieved from the Infrared Atmospheric Sounding Interferometer (IASI) to calculate surface emissions. In contrast to other methods, we first used a sophisticated Inverse Distance Weighting (IDW) interpolation algorithm to define a grid of column-integrated ammonia concentrations globally. In a hypothetical box model, emissions are given as a function of the mass of ammonia in each atmospheric box (in molecules cm-3) divided by the lifetime of ammonia in the box (in seconds) based on all the potential removal processes that affect atmospheric ammonia. Instead of considering the lifetime of ammonia as a constant value, such as in the relevant literature, we used calculated gridded lifetimes from a Chemistry Transport Model (CTM). The estimated emissions were then imported in a CTM and were simulated for the same 10–year period. To verify the improvement of the calculated emissions of ammonia, we evaluated the modelled surface concentrations against ground–based measurements from different monitoring stations. The same comparison was performed for the most recent state–of–the–art emission dataset for ammonia.
How to cite: Evangeliou, N., Balkanski, Y., Eckhardt, S., Hauglustaine, D., Cozic, A., and Stohl, A.: Validation of satellite-constrained ammonia using a CTM and ground and satellite measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5396, https://doi.org/10.5194/egusphere-egu2020-5396, 2020.
Ammonia (NH3) has received a lot of attention nowadays due to its major implications for the population and the environment. Global sources of ammonia include wild animals, ammonia-containing water areas, traffic, sewage systems, humans, biomass burning (mainly from dung fires and domestic coal combustion), volcanic eruptions and agriculture. In the present study, we used 10 years (2008–2017) of satellite measurements of ammonia retrieved from the Infrared Atmospheric Sounding Interferometer (IASI) to calculate surface emissions. In contrast to other methods, we first used a sophisticated Inverse Distance Weighting (IDW) interpolation algorithm to define a grid of column-integrated ammonia concentrations globally. In a hypothetical box model, emissions are given as a function of the mass of ammonia in each atmospheric box (in molecules cm-3) divided by the lifetime of ammonia in the box (in seconds) based on all the potential removal processes that affect atmospheric ammonia. Instead of considering the lifetime of ammonia as a constant value, such as in the relevant literature, we used calculated gridded lifetimes from a Chemistry Transport Model (CTM). The estimated emissions were then imported in a CTM and were simulated for the same 10–year period. To verify the improvement of the calculated emissions of ammonia, we evaluated the modelled surface concentrations against ground–based measurements from different monitoring stations. The same comparison was performed for the most recent state–of–the–art emission dataset for ammonia.
How to cite: Evangeliou, N., Balkanski, Y., Eckhardt, S., Hauglustaine, D., Cozic, A., and Stohl, A.: Validation of satellite-constrained ammonia using a CTM and ground and satellite measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5396, https://doi.org/10.5194/egusphere-egu2020-5396, 2020.
EGU2020-397 | Displays | BG1.2
Emissions of nitrous acid (HONO) and nitric oxide (NO) from soils and its impact on air quality in ShanghaiMengdi Wang, Jingwei Zhang, Junling An, Feng Zhou, Xiuying Zhang, Ruhai Wang, Lingling Deng, Lijun Hou, Min Liu, and Dianming Wu
Gaseous nitrous acid (HONO) and nitric oxide (NO) play a significant role in atmospheric chemistry through the contribution to the hydroxyl radical (OH) and influencing atmospheric oxidization capacity. Soil HONO emissions are considered as a major source of atmospheric HONO. However, soil HONO emissions and their contribution to air quality are rarely quantified. In this study, HONO and NO emissions from cropland, forest, urban green land, and grassland soils in Shanghai were measured by a dynamic chamber system under controlled laboratory conditions. HONO and NO emissions at the optimal water content (10 - 40% of water holding capacity) were highest from forest soil (50.3 ± 30.1 and 70.4 ± 43.9 ng m-2 s-1; average ± standard error, respectively), following by cropland soil (48.6 ± 17.4 and 55.8 ± 23.1 ng m-2 s-1, respectively), urban green land soil (44.2 ± 9.5 and 39.3 ± 13.3ng m-2 s-1, respectively), and grassland soil (27.7 ± 15.6 and 18.4 ± 6.9 ng m-2 s-1, respectively). Correlation analysis showed that soil HONO and NO emissions were significantly related with nitrate, total nitrogen, and total carbon (P < 0.01). The total soil emissions of HONO and NO in Shanghai were estimated based on “wetting-drying method”, and then upscaling to China and global. Results showed that global NO emissions from natural and fertilized soils were ~ 4.5 and 2.6 Tg N yr-1, respectively, which are comparable with the results from IPCC report (2013). The estimated global HONO emissions from natural and fertilized soils were ~ 3.3 and 2.7 Tg N yr-1, respectively, while those were 0.12 and 0.35 Tg N yr-1 for China, and 0.01 and 0.33 Gg N yr-1 for Shanghai, respectively.
The impact of soil HONO emissions on atmospheric oxidation capacity and O3 concentrations in Shanghai were evaluated using the WRF-Chem model in March of 2016. Daytime HONO concentrations were increased by 0.036 ± 0.015 ppb after considering soil HONO emissions during typical wetting-drying days, and the contribution of HONO photolysis to OH radicals enhanced from 0.095 ppb h-1 to 0.22 ppb h-1 and was ~ 2 times the contribution of O3 photolysis (0.1 ppb h-1), leading to 0.5 - 1.0 ppb enhancement of 8h-O3. The sensitivity test showed that O3 enhancement caused by soil HONO emissions were larger (1.0-1.5 ppb) under low NOx (cutting down 50%) conditions compared with the current conditions, implies that the importance of soil HONO emissions could be even larger in future considering the on-going NOx reducing management in China.
How to cite: Wang, M., Zhang, J., An, J., Zhou, F., Zhang, X., Wang, R., Deng, L., Hou, L., Liu, M., and Wu, D.: Emissions of nitrous acid (HONO) and nitric oxide (NO) from soils and its impact on air quality in Shanghai, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-397, https://doi.org/10.5194/egusphere-egu2020-397, 2020.
Gaseous nitrous acid (HONO) and nitric oxide (NO) play a significant role in atmospheric chemistry through the contribution to the hydroxyl radical (OH) and influencing atmospheric oxidization capacity. Soil HONO emissions are considered as a major source of atmospheric HONO. However, soil HONO emissions and their contribution to air quality are rarely quantified. In this study, HONO and NO emissions from cropland, forest, urban green land, and grassland soils in Shanghai were measured by a dynamic chamber system under controlled laboratory conditions. HONO and NO emissions at the optimal water content (10 - 40% of water holding capacity) were highest from forest soil (50.3 ± 30.1 and 70.4 ± 43.9 ng m-2 s-1; average ± standard error, respectively), following by cropland soil (48.6 ± 17.4 and 55.8 ± 23.1 ng m-2 s-1, respectively), urban green land soil (44.2 ± 9.5 and 39.3 ± 13.3ng m-2 s-1, respectively), and grassland soil (27.7 ± 15.6 and 18.4 ± 6.9 ng m-2 s-1, respectively). Correlation analysis showed that soil HONO and NO emissions were significantly related with nitrate, total nitrogen, and total carbon (P < 0.01). The total soil emissions of HONO and NO in Shanghai were estimated based on “wetting-drying method”, and then upscaling to China and global. Results showed that global NO emissions from natural and fertilized soils were ~ 4.5 and 2.6 Tg N yr-1, respectively, which are comparable with the results from IPCC report (2013). The estimated global HONO emissions from natural and fertilized soils were ~ 3.3 and 2.7 Tg N yr-1, respectively, while those were 0.12 and 0.35 Tg N yr-1 for China, and 0.01 and 0.33 Gg N yr-1 for Shanghai, respectively.
The impact of soil HONO emissions on atmospheric oxidation capacity and O3 concentrations in Shanghai were evaluated using the WRF-Chem model in March of 2016. Daytime HONO concentrations were increased by 0.036 ± 0.015 ppb after considering soil HONO emissions during typical wetting-drying days, and the contribution of HONO photolysis to OH radicals enhanced from 0.095 ppb h-1 to 0.22 ppb h-1 and was ~ 2 times the contribution of O3 photolysis (0.1 ppb h-1), leading to 0.5 - 1.0 ppb enhancement of 8h-O3. The sensitivity test showed that O3 enhancement caused by soil HONO emissions were larger (1.0-1.5 ppb) under low NOx (cutting down 50%) conditions compared with the current conditions, implies that the importance of soil HONO emissions could be even larger in future considering the on-going NOx reducing management in China.
How to cite: Wang, M., Zhang, J., An, J., Zhou, F., Zhang, X., Wang, R., Deng, L., Hou, L., Liu, M., and Wu, D.: Emissions of nitrous acid (HONO) and nitric oxide (NO) from soils and its impact on air quality in Shanghai, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-397, https://doi.org/10.5194/egusphere-egu2020-397, 2020.
EGU2020-2345 | Displays | BG1.2
The Effect of Cultivation on the Greenhouse Gases Emissions in wujiang river Basin, Yangtze River, Chinaxiaoling wu
Climate change has gained extensive international attention due to the impacts on the regional agriculture and water supply. According to IPCC, the global mean temperature will increase by 0.3-0.8 centigrade. Greenhouse gases such as CO2, CH4, and N2O will concentrate and global mean temperature are projected to be increasing. This study separately examines the Greenhouse gases effect arise from different tillage type (dry land and paddy crop) in Wujiang river basin using DeNitrification - DeComposition (DNDC) model. The simulations indicate that, the atmospheric CO2 and CH4 concentration increases with the paddy crop plants. Although between two irrigation periods, the field drying event can decrease the CH4 production effectively. In addition, the paddy soils in this region tend to increase the effect of carbon source resulted from the flooding irrigation. Especially in the first flood irrigation period, the N2O increases to the maximum value. By contrast, in crop land under rotation of rape and Maize, the effect of carbon sink induced from CO2 fertilization could generally offset the effect of carbon source. Meanwhile, the effect of carbon sink increased resulted by the plant grows. Thus, the production of CO2 is always negative. There is no CH4 production in crop land under rotation of rape and Maize. By contrast, with fertilization input, the N2O production increases from 0.05 kg C/kg to 0.5kg N/ha/day. The SOC from the top soils (0-10 cm) to bottom (40-50 cm) decreases from 0.021 kg C/kg to 0.014 kg C/kg in either dry land and paddy soils of the Wujiang River region from 1991 to 1994, respectively. These results suggest that SOC storage in paddy and dry land of this region is steady. For the dry land crop (rotation of rape and Maize), the N2O increased with the fertilization. But for the paddy soils, the irrigation time is the key point period for greenhouse gases production and the variation of carbon and nitrogen in soil. As a representative of paddy crop and dry land crop (rotation of rape and Maize) in western China, the insights gained from the Wujiang River basin may be potentially transferable to other similar agricultural practices in other part of China.
How to cite: wu, X.: The Effect of Cultivation on the Greenhouse Gases Emissions in wujiang river Basin, Yangtze River, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2345, https://doi.org/10.5194/egusphere-egu2020-2345, 2020.
Climate change has gained extensive international attention due to the impacts on the regional agriculture and water supply. According to IPCC, the global mean temperature will increase by 0.3-0.8 centigrade. Greenhouse gases such as CO2, CH4, and N2O will concentrate and global mean temperature are projected to be increasing. This study separately examines the Greenhouse gases effect arise from different tillage type (dry land and paddy crop) in Wujiang river basin using DeNitrification - DeComposition (DNDC) model. The simulations indicate that, the atmospheric CO2 and CH4 concentration increases with the paddy crop plants. Although between two irrigation periods, the field drying event can decrease the CH4 production effectively. In addition, the paddy soils in this region tend to increase the effect of carbon source resulted from the flooding irrigation. Especially in the first flood irrigation period, the N2O increases to the maximum value. By contrast, in crop land under rotation of rape and Maize, the effect of carbon sink induced from CO2 fertilization could generally offset the effect of carbon source. Meanwhile, the effect of carbon sink increased resulted by the plant grows. Thus, the production of CO2 is always negative. There is no CH4 production in crop land under rotation of rape and Maize. By contrast, with fertilization input, the N2O production increases from 0.05 kg C/kg to 0.5kg N/ha/day. The SOC from the top soils (0-10 cm) to bottom (40-50 cm) decreases from 0.021 kg C/kg to 0.014 kg C/kg in either dry land and paddy soils of the Wujiang River region from 1991 to 1994, respectively. These results suggest that SOC storage in paddy and dry land of this region is steady. For the dry land crop (rotation of rape and Maize), the N2O increased with the fertilization. But for the paddy soils, the irrigation time is the key point period for greenhouse gases production and the variation of carbon and nitrogen in soil. As a representative of paddy crop and dry land crop (rotation of rape and Maize) in western China, the insights gained from the Wujiang River basin may be potentially transferable to other similar agricultural practices in other part of China.
How to cite: wu, X.: The Effect of Cultivation on the Greenhouse Gases Emissions in wujiang river Basin, Yangtze River, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2345, https://doi.org/10.5194/egusphere-egu2020-2345, 2020.
EGU2020-10069 | Displays | BG1.2
Ecosystem scale evidence for the contribution of vanadium-based nitrogenase to biological nitrogen fixationJean-Philippe Bellenger, Romain Darnajoux, Nicolas Magain, Marie Renaudin, Francois Lutzoni, and Xinning Zhang
Nitrogen is the primary limiting nutrient in high latitude ecosystems. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is an important source of new reactive nitrogen in pristine, high-latitude ecosystems. BNF is catalyzed by the enzyme nitrogenase, for which three isoforms have been described; the canonical molybdenum (Mo) nitrogenase which requires Mo in its active site and two alternative nitrogenases, the vanadium and iron-only nitrogenases. The low availability of Mo on land has been shown to limit BNF in many ecosystems from the tropical forest to the arctic tundra. Alternative nitrogenases have been suggested as viable alternatives to cope with Mo limitation of BNF, however, field data supporting this long-standing hypothesis have been lacking.
Here, we elucidated the contribution of the vanadium nitrogenase to BNF by cyanolichens across a 600 km latitudinal transect in eastern Canadian boreal forests. We report a widespread activity of the vanadium nitrogenase which contributed between 15 to 50% of total BNF rates on all sites. Vanadium nitrogenase contribution to BNF was more robust in the northern part of the transect. Vanadium nitrogenase contribution to BNF also changed during the growing season, with a three-fold increase between the early (May) and late (September) growing season. By including the contribution of the vanadium nitrogenase to BNF, estimates of new N input by cyanolichens increase by up to 30%, a significant change in these low N input ecosystems. Finally, we found that Mo availability was the primary driver for the contribution of the vanadium nitrogenase to BNF with a Mo threshold of ~ 250 ng.glichen-1 for the onset of vanadium based BNF.
This study on N2-fixing cyanolichens provides extensive field evidence, at an ecosystem scale, that vanadium-based nitrogenase greatly contributes to BNF when Mo availability is limited. The results showcase the resilience of BNF to micronutrient limitation and reveal a strong link between the biogeochemical cycle of macro- and micronutrients in terrestrial ecosystems. Given widespread findings of Mo limitation of BNF in terrestrial ecosystems, additional consideration of vanadium-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.
How to cite: Bellenger, J.-P., Darnajoux, R., Magain, N., Renaudin, M., Lutzoni, F., and Zhang, X.: Ecosystem scale evidence for the contribution of vanadium-based nitrogenase to biological nitrogen fixation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10069, https://doi.org/10.5194/egusphere-egu2020-10069, 2020.
Nitrogen is the primary limiting nutrient in high latitude ecosystems. Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is an important source of new reactive nitrogen in pristine, high-latitude ecosystems. BNF is catalyzed by the enzyme nitrogenase, for which three isoforms have been described; the canonical molybdenum (Mo) nitrogenase which requires Mo in its active site and two alternative nitrogenases, the vanadium and iron-only nitrogenases. The low availability of Mo on land has been shown to limit BNF in many ecosystems from the tropical forest to the arctic tundra. Alternative nitrogenases have been suggested as viable alternatives to cope with Mo limitation of BNF, however, field data supporting this long-standing hypothesis have been lacking.
Here, we elucidated the contribution of the vanadium nitrogenase to BNF by cyanolichens across a 600 km latitudinal transect in eastern Canadian boreal forests. We report a widespread activity of the vanadium nitrogenase which contributed between 15 to 50% of total BNF rates on all sites. Vanadium nitrogenase contribution to BNF was more robust in the northern part of the transect. Vanadium nitrogenase contribution to BNF also changed during the growing season, with a three-fold increase between the early (May) and late (September) growing season. By including the contribution of the vanadium nitrogenase to BNF, estimates of new N input by cyanolichens increase by up to 30%, a significant change in these low N input ecosystems. Finally, we found that Mo availability was the primary driver for the contribution of the vanadium nitrogenase to BNF with a Mo threshold of ~ 250 ng.glichen-1 for the onset of vanadium based BNF.
This study on N2-fixing cyanolichens provides extensive field evidence, at an ecosystem scale, that vanadium-based nitrogenase greatly contributes to BNF when Mo availability is limited. The results showcase the resilience of BNF to micronutrient limitation and reveal a strong link between the biogeochemical cycle of macro- and micronutrients in terrestrial ecosystems. Given widespread findings of Mo limitation of BNF in terrestrial ecosystems, additional consideration of vanadium-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.
How to cite: Bellenger, J.-P., Darnajoux, R., Magain, N., Renaudin, M., Lutzoni, F., and Zhang, X.: Ecosystem scale evidence for the contribution of vanadium-based nitrogenase to biological nitrogen fixation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10069, https://doi.org/10.5194/egusphere-egu2020-10069, 2020.
EGU2020-8678 | Displays | BG1.2
Early response of biological nitrogen fixation in a mature oak dominated forest to elevated atmospheric CO2 fumigation at BIFoR-FACESami Ullah, Ernesto Saiz Val, Fotis Sgouridis, and Falko Drijfhout
Elevated atmospheric carbon dioxide concentrations are stimulating photosynthesis and carbon sequestration. However, the extent of photosynthetic stimulation in forests under future climates is highly uncertain given that nutrient limitation in soils may constrain the CO2 fertilization effect. The Birmingham Institute of Forest Research (BIFoR), University of Birmingham established the only global mature temperate deciduous forests Free Air Carbon Dioxide Enrichment (FACE) experiment to study the response of forests to future climates. Fumigation of the forest with ~550 ppm CO2 started in 2017 and will continue until at least 2026. Soil nutrients cycling including nitrogen transformation in response to elevated atmospheric CO2 (eCO2) fumigation is currently investigated to determine the role of nutrient availability in carbon capture by forests. In this paper, we show preliminary results of the response of asymbiotic biological nitrogen fixation (BNF) in soils and epiphytic bryophytes at BIFoR-FACE following a year of eCO2 fumigation. It is hypothesized that the demand for available nitrogen by trees will increase under eCO2 and that competition of roots and soil microbes for available nitrogen will enhance asymbiotic BNF to at least meet microbial metabolic nitrogen demands in the long run. Surface soils (0-5 cm) and epiphytic feather moss (Hypnum cupressiforme) growing on oak tree stems in the FACE site were collected during the second year of eCO2 fumigation for the quantification of BNF activity using the 15N2 assimilation methods (Saiz et al. 2019). Samples were incubated in 50 mL serum bottles under in situ conditions, followed by the analysis of soil and tissue samples for 15N signature on an Isotope Ratio Mass Spectrometer for the quantification of BNF activity.
The BNF activity under eCO2 were 369% higher than in soils under ambient atmospheric CO2. BNF rates associated with feather mosses (Hypnum cupressiforme) did not differ between the eCO2 and control plots; however, rates under eCO2 on average were 60% lower than in the control plots. Unlike soils, the moisture of feather mosses correlated significantly (R2 = 51%) with BNF activity. Among nutrients in soil with implications for BNF activity, the concentrations of Mg, K, Co and Ni were significantly lower in soils under eCO2 than in the control plots, while in feather moss tissues no differences were observed. Our preliminary results show that eCO2 fumigation primed asymbiotic BNF activity in soils. An enhancement of BNF together with the observation of a relatively low nutrient content under eCO2 points to important changes in nitrogen cycling processes in the early years of CO2 fumigation. Further detailed studies are underway to fully disentangle controls on nitrogen availability to trees under future climates.
Reference
Saiz, E, Sgouridis, F, Drifjhout, F & Ullah, S. 2019. Biological nitrogen fixation in peatlands: comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biol. Biochem:131:157-165
How to cite: Ullah, S., Saiz Val, E., Sgouridis, F., and Drijfhout, F.: Early response of biological nitrogen fixation in a mature oak dominated forest to elevated atmospheric CO2 fumigation at BIFoR-FACE , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8678, https://doi.org/10.5194/egusphere-egu2020-8678, 2020.
Elevated atmospheric carbon dioxide concentrations are stimulating photosynthesis and carbon sequestration. However, the extent of photosynthetic stimulation in forests under future climates is highly uncertain given that nutrient limitation in soils may constrain the CO2 fertilization effect. The Birmingham Institute of Forest Research (BIFoR), University of Birmingham established the only global mature temperate deciduous forests Free Air Carbon Dioxide Enrichment (FACE) experiment to study the response of forests to future climates. Fumigation of the forest with ~550 ppm CO2 started in 2017 and will continue until at least 2026. Soil nutrients cycling including nitrogen transformation in response to elevated atmospheric CO2 (eCO2) fumigation is currently investigated to determine the role of nutrient availability in carbon capture by forests. In this paper, we show preliminary results of the response of asymbiotic biological nitrogen fixation (BNF) in soils and epiphytic bryophytes at BIFoR-FACE following a year of eCO2 fumigation. It is hypothesized that the demand for available nitrogen by trees will increase under eCO2 and that competition of roots and soil microbes for available nitrogen will enhance asymbiotic BNF to at least meet microbial metabolic nitrogen demands in the long run. Surface soils (0-5 cm) and epiphytic feather moss (Hypnum cupressiforme) growing on oak tree stems in the FACE site were collected during the second year of eCO2 fumigation for the quantification of BNF activity using the 15N2 assimilation methods (Saiz et al. 2019). Samples were incubated in 50 mL serum bottles under in situ conditions, followed by the analysis of soil and tissue samples for 15N signature on an Isotope Ratio Mass Spectrometer for the quantification of BNF activity.
The BNF activity under eCO2 were 369% higher than in soils under ambient atmospheric CO2. BNF rates associated with feather mosses (Hypnum cupressiforme) did not differ between the eCO2 and control plots; however, rates under eCO2 on average were 60% lower than in the control plots. Unlike soils, the moisture of feather mosses correlated significantly (R2 = 51%) with BNF activity. Among nutrients in soil with implications for BNF activity, the concentrations of Mg, K, Co and Ni were significantly lower in soils under eCO2 than in the control plots, while in feather moss tissues no differences were observed. Our preliminary results show that eCO2 fumigation primed asymbiotic BNF activity in soils. An enhancement of BNF together with the observation of a relatively low nutrient content under eCO2 points to important changes in nitrogen cycling processes in the early years of CO2 fumigation. Further detailed studies are underway to fully disentangle controls on nitrogen availability to trees under future climates.
Reference
Saiz, E, Sgouridis, F, Drifjhout, F & Ullah, S. 2019. Biological nitrogen fixation in peatlands: comparison between acetylene reduction assay and 15N2 assimilation methods. Soil Biol. Biochem:131:157-165
How to cite: Ullah, S., Saiz Val, E., Sgouridis, F., and Drijfhout, F.: Early response of biological nitrogen fixation in a mature oak dominated forest to elevated atmospheric CO2 fumigation at BIFoR-FACE , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8678, https://doi.org/10.5194/egusphere-egu2020-8678, 2020.
EGU2020-15899 | Displays | BG1.2
Stimulation of soil N cycling after two years of Free Air CO2 Enrichment increases nitrous oxide emissions in a temperate forest, UK.Fotis Sgouridis, Suparat Cotchim, and Sami Ullah
Increasing atmospheric CO2 concentrations in temperate forests may affect soil nitrogen (N) cycling processes due to the increased demand for nitrogen availability by trees to support CO2 uptake through photosynthesis. This in turn can affect the emission of nitrous oxide (N2O) from the forest soil leading to a potential trade-off between the enhanced canopy CO2 uptake and soil N2O emission. The Birmingham Institute of Forest Research (BIFoR) established a Free-Air CO2 Enrichment (FACE) facility in a mature oak forest in Staffordshire, UK, which became operational in 2017. In April 2018 and again in May 2019, two years after the start of fumigation with 550 ppm CO2, we collected soil samples (0 – 15 cm depth) from the three elevated CO2 (eCO2) and three control plots. Soils were amended in the laboratory with 98 at % 15N-NH4+ and 15N-NO3- . Gross N mineralisation and nitrification were estimated by the isotope dilution technique, while N2O emission from nitrification (15N-NH4+ treatment) and denitrification (15N-NO3- treatment) were estimated by the 15N Gas-Flux method. Additionally, C/N ratio and δ15N and δ13C were measured in unamended eCO2 and control samples via EA-IRMS. Whilst gross N mineralisation and N2O emission were only marginally higher in eCO2 plots compared to controls after one year of fumigation, there was a significant stimulation of N cycling after the second year that led to more pronounced differences. Gross N mineralisation rates doubled in the eCO2 plots (mean: 4.09 μg N g-1 d-1, P < 0.05) compared to the control plots (mean: 2.02 μg N g-1 d-1), while a similar twofold increase was observed for gross nitrification rates (mean eCO2: 1.63 μg N g-1 d-1; mean control: 0.70 μg N g-1 d-1, P < 0.05). N2O emission from both denitrification (mean: 0.03 ng N g-1 d-1) and nitrification (mean: 0.02 ng N g-1 d-1) were generally low but of similar magnitude and more than double than in the control plots. C/N ratio was conservative between eCO2 and control plots as a result of proportional increase of C and N contents in the eCO2 plots. The observed stimulation in N cycling was further corroborated by the significantly enriched δ15N signal (-0.66 ‰) in eCO2 plots compared to the controls (-1.38‰). Moreover, the eCO2 samples had a more depleted δ13C signal (-28.37 ‰) compared to the controls (-27.99 ‰), as a result of the additional carbon supplied through fumigation (CO2 δ13C ~ -28 ‰). Following the first year of CO2 fumigation, there were indications of soil N limitation despite the high rates of atmospheric N deposition (22 kg N ha-1 y-1). However, after only 2 years of the FACE experiment there is strong evidence of a shift in key soil N processes to sustain the enhanced nutrient demands to support enhanced canopy CO2 uptake. Further research is underway in BiFOR-FACE to elucidate whether carbon quantity and/or quality drives the stimulation of soil N cycling and what are the long-term implications of the trade-off between enhanced CO2 sequestration and a potential increase in N2O emissions.
How to cite: Sgouridis, F., Cotchim, S., and Ullah, S.: Stimulation of soil N cycling after two years of Free Air CO2 Enrichment increases nitrous oxide emissions in a temperate forest, UK., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15899, https://doi.org/10.5194/egusphere-egu2020-15899, 2020.
Increasing atmospheric CO2 concentrations in temperate forests may affect soil nitrogen (N) cycling processes due to the increased demand for nitrogen availability by trees to support CO2 uptake through photosynthesis. This in turn can affect the emission of nitrous oxide (N2O) from the forest soil leading to a potential trade-off between the enhanced canopy CO2 uptake and soil N2O emission. The Birmingham Institute of Forest Research (BIFoR) established a Free-Air CO2 Enrichment (FACE) facility in a mature oak forest in Staffordshire, UK, which became operational in 2017. In April 2018 and again in May 2019, two years after the start of fumigation with 550 ppm CO2, we collected soil samples (0 – 15 cm depth) from the three elevated CO2 (eCO2) and three control plots. Soils were amended in the laboratory with 98 at % 15N-NH4+ and 15N-NO3- . Gross N mineralisation and nitrification were estimated by the isotope dilution technique, while N2O emission from nitrification (15N-NH4+ treatment) and denitrification (15N-NO3- treatment) were estimated by the 15N Gas-Flux method. Additionally, C/N ratio and δ15N and δ13C were measured in unamended eCO2 and control samples via EA-IRMS. Whilst gross N mineralisation and N2O emission were only marginally higher in eCO2 plots compared to controls after one year of fumigation, there was a significant stimulation of N cycling after the second year that led to more pronounced differences. Gross N mineralisation rates doubled in the eCO2 plots (mean: 4.09 μg N g-1 d-1, P < 0.05) compared to the control plots (mean: 2.02 μg N g-1 d-1), while a similar twofold increase was observed for gross nitrification rates (mean eCO2: 1.63 μg N g-1 d-1; mean control: 0.70 μg N g-1 d-1, P < 0.05). N2O emission from both denitrification (mean: 0.03 ng N g-1 d-1) and nitrification (mean: 0.02 ng N g-1 d-1) were generally low but of similar magnitude and more than double than in the control plots. C/N ratio was conservative between eCO2 and control plots as a result of proportional increase of C and N contents in the eCO2 plots. The observed stimulation in N cycling was further corroborated by the significantly enriched δ15N signal (-0.66 ‰) in eCO2 plots compared to the controls (-1.38‰). Moreover, the eCO2 samples had a more depleted δ13C signal (-28.37 ‰) compared to the controls (-27.99 ‰), as a result of the additional carbon supplied through fumigation (CO2 δ13C ~ -28 ‰). Following the first year of CO2 fumigation, there were indications of soil N limitation despite the high rates of atmospheric N deposition (22 kg N ha-1 y-1). However, after only 2 years of the FACE experiment there is strong evidence of a shift in key soil N processes to sustain the enhanced nutrient demands to support enhanced canopy CO2 uptake. Further research is underway in BiFOR-FACE to elucidate whether carbon quantity and/or quality drives the stimulation of soil N cycling and what are the long-term implications of the trade-off between enhanced CO2 sequestration and a potential increase in N2O emissions.
How to cite: Sgouridis, F., Cotchim, S., and Ullah, S.: Stimulation of soil N cycling after two years of Free Air CO2 Enrichment increases nitrous oxide emissions in a temperate forest, UK., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15899, https://doi.org/10.5194/egusphere-egu2020-15899, 2020.
EGU2020-13067 | Displays | BG1.2
Fate of atmospheric nitrogen depositions in two Italian temperate mountain forests assessed by isotopic analysisLuca Da Ros, Maurizio Ventura, Mirco Rodeghiero, Damiano Gianelle, and Giustino Tonon
Abstract. Forests ability to store carbon is strongly connected with the amount of nitrogen (N) that forest ecosystems can retain; N is indeed considered the most limiting nutrient for terrestrial ecosystem's net primary productivity. Since the industrial revolution, human activities have more than doubled the rate of N input into the nitrogen cycle and this could alleviate N limitation thus stimulating plant growth. However, it has been suggested that when N availability exceeds biotic demand and abiotic sinks, additional N can trigger a negative cascade effect: nutrient imbalance, reduced productivity, increased losses of N, eutrophication and acidification of soil and water, leading toward forest decline and net greenhouse gases emissions. The consequences of increased N deposition on forest depend in large share on the fate of N in the ecosystem, which can be simulated and quantified by a fertilization at a known isotopic signature. Nevertheless, most of the tracer experiments performed so far added the fertilizer directly to the forest floor, neglecting the potential role of N uptake by the forest canopy. In the Italian Alps, we are conducting an experiment where both types of N additions (above and below the canopy layer) are performed in two different forest stands, to understand if canopy fertilization better simulates ecological consequences of increased atmospheric N deposition. These field-scale manipulation experiments are willing to test two different hypotheses: i) the N uptake by trees in the above-canopy N addition experimental sites is higher than under-canopy N addition ii) forest growth rate varies with the type of treatment. To describe the fate of the applied N, stable isotope techniques have been adopted: the forest sites, fertilized with NH4NO3 at a known isotopic signature, are sampled for all the ecosystem components (plant, soil and water) periodically to determine the total N content and its isotopic signature. The δ15N values permit to calculate the recovery of N-fertilizer in tree tissues, soil and leaching-water, allowing us to understand how N allocation varies under these two fertilization strategies and how this affects C sequestration potential. Results regarding the short-term effects over the first 6 years of data collection will be presented.
How to cite: Da Ros, L., Ventura, M., Rodeghiero, M., Gianelle, D., and Tonon, G.: Fate of atmospheric nitrogen depositions in two Italian temperate mountain forests assessed by isotopic analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13067, https://doi.org/10.5194/egusphere-egu2020-13067, 2020.
Abstract. Forests ability to store carbon is strongly connected with the amount of nitrogen (N) that forest ecosystems can retain; N is indeed considered the most limiting nutrient for terrestrial ecosystem's net primary productivity. Since the industrial revolution, human activities have more than doubled the rate of N input into the nitrogen cycle and this could alleviate N limitation thus stimulating plant growth. However, it has been suggested that when N availability exceeds biotic demand and abiotic sinks, additional N can trigger a negative cascade effect: nutrient imbalance, reduced productivity, increased losses of N, eutrophication and acidification of soil and water, leading toward forest decline and net greenhouse gases emissions. The consequences of increased N deposition on forest depend in large share on the fate of N in the ecosystem, which can be simulated and quantified by a fertilization at a known isotopic signature. Nevertheless, most of the tracer experiments performed so far added the fertilizer directly to the forest floor, neglecting the potential role of N uptake by the forest canopy. In the Italian Alps, we are conducting an experiment where both types of N additions (above and below the canopy layer) are performed in two different forest stands, to understand if canopy fertilization better simulates ecological consequences of increased atmospheric N deposition. These field-scale manipulation experiments are willing to test two different hypotheses: i) the N uptake by trees in the above-canopy N addition experimental sites is higher than under-canopy N addition ii) forest growth rate varies with the type of treatment. To describe the fate of the applied N, stable isotope techniques have been adopted: the forest sites, fertilized with NH4NO3 at a known isotopic signature, are sampled for all the ecosystem components (plant, soil and water) periodically to determine the total N content and its isotopic signature. The δ15N values permit to calculate the recovery of N-fertilizer in tree tissues, soil and leaching-water, allowing us to understand how N allocation varies under these two fertilization strategies and how this affects C sequestration potential. Results regarding the short-term effects over the first 6 years of data collection will be presented.
How to cite: Da Ros, L., Ventura, M., Rodeghiero, M., Gianelle, D., and Tonon, G.: Fate of atmospheric nitrogen depositions in two Italian temperate mountain forests assessed by isotopic analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13067, https://doi.org/10.5194/egusphere-egu2020-13067, 2020.
EGU2020-17258 | Displays | BG1.2
Effects of nitrogen deposition on greenhouse gas fluxes from the soil: results from an innovative experimental designAnna Bortolazzi, Maurizio Ventura, Pietro Panzacchi, Flavio Fornasier, Claudio Mondini, and Giustino Tonon
In the last decades, the effects of nitrogen (N) deposition on temperate forests have received much interest. Studies recorded several changes in soil carbon (C) and N cycles due to extra reactive N available. For instance, past studies reported that N deposition, may influence CO2 emission, lower CH4 consumption by the soil and increase the emission of N2O. Nevertheless, the mechanistic understanding of these ecological responses is still far to be reached. However, most of the studies neglected to include the canopy interception in the experiments simulating N addition, notwithstanding tree canopy have shown to change both the amount and the chemical composition of the N deposition. Hence, experiments simulating this process by applying fertilization above the canopy are needed.
The aim of this study is to explore how N deposition influences greenhouse gas (GHG) emissions in a temperate oak forest (Quercus petraea Liebl.) located in Monticolo (Bolzano, Italy). In this site, a set of three plots was created and replicated three times. Each set includes a control plot, a plot with below-canopy fertilization (NBL) and a plot with above-canopy fertilization (NAB). The fertilization is applied, since 2015, from May to September, for a total annual N addition of 20 kg N ha-1.
Since April 2018, CO2 emission has been monthly measured with a portable infrared gas analyzer. Measurements were performed on three points per plot, for a total of 27 measurement points. During measurements, soil moisture and soil temperature at 10 cm depth were measured as well.
The measurements of CH4 and N2O started during the growing season in 2019 and are performed on a monthly basis by a static chamber method. Three chambers were installed per plots, for a total of 27 chambers.
We will present the preliminary results of this study. The results showed that the 5-year N fertilization did not lead to significant differences between plots in terms of GHG fluxes. The sensitivity of CO2 emission to temperature was not influenced by extra N. The differences were not significant between fertilized and unfertilized plots, nor between the two fertilization methods.
How to cite: Bortolazzi, A., Ventura, M., Panzacchi, P., Fornasier, F., Mondini, C., and Tonon, G.: Effects of nitrogen deposition on greenhouse gas fluxes from the soil: results from an innovative experimental design, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17258, https://doi.org/10.5194/egusphere-egu2020-17258, 2020.
In the last decades, the effects of nitrogen (N) deposition on temperate forests have received much interest. Studies recorded several changes in soil carbon (C) and N cycles due to extra reactive N available. For instance, past studies reported that N deposition, may influence CO2 emission, lower CH4 consumption by the soil and increase the emission of N2O. Nevertheless, the mechanistic understanding of these ecological responses is still far to be reached. However, most of the studies neglected to include the canopy interception in the experiments simulating N addition, notwithstanding tree canopy have shown to change both the amount and the chemical composition of the N deposition. Hence, experiments simulating this process by applying fertilization above the canopy are needed.
The aim of this study is to explore how N deposition influences greenhouse gas (GHG) emissions in a temperate oak forest (Quercus petraea Liebl.) located in Monticolo (Bolzano, Italy). In this site, a set of three plots was created and replicated three times. Each set includes a control plot, a plot with below-canopy fertilization (NBL) and a plot with above-canopy fertilization (NAB). The fertilization is applied, since 2015, from May to September, for a total annual N addition of 20 kg N ha-1.
Since April 2018, CO2 emission has been monthly measured with a portable infrared gas analyzer. Measurements were performed on three points per plot, for a total of 27 measurement points. During measurements, soil moisture and soil temperature at 10 cm depth were measured as well.
The measurements of CH4 and N2O started during the growing season in 2019 and are performed on a monthly basis by a static chamber method. Three chambers were installed per plots, for a total of 27 chambers.
We will present the preliminary results of this study. The results showed that the 5-year N fertilization did not lead to significant differences between plots in terms of GHG fluxes. The sensitivity of CO2 emission to temperature was not influenced by extra N. The differences were not significant between fertilized and unfertilized plots, nor between the two fertilization methods.
How to cite: Bortolazzi, A., Ventura, M., Panzacchi, P., Fornasier, F., Mondini, C., and Tonon, G.: Effects of nitrogen deposition on greenhouse gas fluxes from the soil: results from an innovative experimental design, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17258, https://doi.org/10.5194/egusphere-egu2020-17258, 2020.
EGU2020-12706 | Displays | BG1.2
Response of N2O and N2 Emissions in Forest Soils to Temperature Change across ChinaHaoming Yu, Yunting Fang, and Ronghua Kang
N2O and N2 Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q10) of N2O and N2 emissions is rather limited. We quantified the Q10 of N2O and N2 emissions in forest soils and explored their major driving factors by conducting an incubation experiment using 15N tracer (Na15NO3) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5oC and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35oC with an interval of 5oC for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N2O and N2. N2O and N2 production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q10 values ranged from 1.31 to 2.98 for N2O emission and 1.69 to 3.83 for N2 emission, indicating a generally positive feedback of N2O and N2 production to warming. Higher Q10 values for N2 than N2O implies that N2 emission is more sensitive to temperature increase. The N2O/(N2O+N2) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N2 emission. Strong spatial variation in Q10 were also observed, with tropical forest soils exhibiting high Q10 values and relatively low Q10 in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N2O and N2 emissions, we explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N2O and N2 emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox). The results indicated that denitrification was the main pathway of N2O and N2 production under anaerobic environment and the contribution increased as temperature rise.
Key words: Temperature sensitivity, N2O, N2, Forest soil, Nitrogen cycle, Global warming, Denitrification
How to cite: Yu, H., Fang, Y., and Kang, R.: Response of N2O and N2 Emissions in Forest Soils to Temperature Change across China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12706, https://doi.org/10.5194/egusphere-egu2020-12706, 2020.
N2O and N2 Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q10) of N2O and N2 emissions is rather limited. We quantified the Q10 of N2O and N2 emissions in forest soils and explored their major driving factors by conducting an incubation experiment using 15N tracer (Na15NO3) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5oC and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35oC with an interval of 5oC for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N2O and N2. N2O and N2 production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q10 values ranged from 1.31 to 2.98 for N2O emission and 1.69 to 3.83 for N2 emission, indicating a generally positive feedback of N2O and N2 production to warming. Higher Q10 values for N2 than N2O implies that N2 emission is more sensitive to temperature increase. The N2O/(N2O+N2) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N2 emission. Strong spatial variation in Q10 were also observed, with tropical forest soils exhibiting high Q10 values and relatively low Q10 in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N2O and N2 emissions, we explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N2O and N2 emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox). The results indicated that denitrification was the main pathway of N2O and N2 production under anaerobic environment and the contribution increased as temperature rise.
Key words: Temperature sensitivity, N2O, N2, Forest soil, Nitrogen cycle, Global warming, Denitrification
How to cite: Yu, H., Fang, Y., and Kang, R.: Response of N2O and N2 Emissions in Forest Soils to Temperature Change across China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12706, https://doi.org/10.5194/egusphere-egu2020-12706, 2020.
EGU2020-20450 | Displays | BG1.2
Response of N2O emissions to logging residue piles of Norway spruce, Scots pine and silver birchTiina Törmänen, Antti-Jussi Lindroos, Veikko Kitunen, and Aino Smolander
Utilization of forest bioenergy is increasing; however, the overall environmental impacts of forest bioenergy utilization are not fully understood. Especially effects on N2O emissions in mineral soils are less studied. With current harvesting practices, either whole-tree-harvest or stem-only-harvest, piles of logging residues are left on the forest floor. As a result, soil nitrogen (N) cycling processes can be accelerated on clear cut area under the piles, especially net nitrification. When N is transformed to more mobile form, the risk for N losses via nitrous oxide (N2O) emissions from the forest floor may increase.
We studied how logging residue piles of three tree species, Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.), influence gaseous losses of N after clear-cut. A Norway spruce dominated mixed stand on a mineral soil site was clear-cut and N2O emissions were monitored. There were four treatments; three tree species treatments consisting of 40 kg m-2 of fresh logging residues and control plot without residues as an additional treatment. Effects of logging residue piles on N2O emissions were monitored over 4 growing season with closed chamber technic. Simultaneously soil temperatures were recorded over 2 growing season. Soil denitrification activity and the contribution of nitrification and denitrification to N2O production were determined in laboratory experiments.
Logging residue piles lowered and balanced fluctuation of soil temperatures. N2O fluxes peaked under the piles during the second and third growing season after the establishment of the piles; however inconsistent fluxes tended to be low. The production of N2O was driven by both nitrification and denitrification processes, the proportion depending on the tree species. Our results indicate that logging residue piles accelerate N losses as gaseous form; however studies on the same field experiment shows that most of the N losses occur through soil percolation waters. Spruce residues tend to stimulate N2O emissions longer compared to other tree species. There was a positive correlation with net nitrification and microbial biomass C (Törmänen et al. 2018, FORECO). These results have implications for sustainable and productive forest management practices and nutrition of re-growing vegetation.
How to cite: Törmänen, T., Lindroos, A.-J., Kitunen, V., and Smolander, A.: Response of N2O emissions to logging residue piles of Norway spruce, Scots pine and silver birch , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20450, https://doi.org/10.5194/egusphere-egu2020-20450, 2020.
Utilization of forest bioenergy is increasing; however, the overall environmental impacts of forest bioenergy utilization are not fully understood. Especially effects on N2O emissions in mineral soils are less studied. With current harvesting practices, either whole-tree-harvest or stem-only-harvest, piles of logging residues are left on the forest floor. As a result, soil nitrogen (N) cycling processes can be accelerated on clear cut area under the piles, especially net nitrification. When N is transformed to more mobile form, the risk for N losses via nitrous oxide (N2O) emissions from the forest floor may increase.
We studied how logging residue piles of three tree species, Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.), influence gaseous losses of N after clear-cut. A Norway spruce dominated mixed stand on a mineral soil site was clear-cut and N2O emissions were monitored. There were four treatments; three tree species treatments consisting of 40 kg m-2 of fresh logging residues and control plot without residues as an additional treatment. Effects of logging residue piles on N2O emissions were monitored over 4 growing season with closed chamber technic. Simultaneously soil temperatures were recorded over 2 growing season. Soil denitrification activity and the contribution of nitrification and denitrification to N2O production were determined in laboratory experiments.
Logging residue piles lowered and balanced fluctuation of soil temperatures. N2O fluxes peaked under the piles during the second and third growing season after the establishment of the piles; however inconsistent fluxes tended to be low. The production of N2O was driven by both nitrification and denitrification processes, the proportion depending on the tree species. Our results indicate that logging residue piles accelerate N losses as gaseous form; however studies on the same field experiment shows that most of the N losses occur through soil percolation waters. Spruce residues tend to stimulate N2O emissions longer compared to other tree species. There was a positive correlation with net nitrification and microbial biomass C (Törmänen et al. 2018, FORECO). These results have implications for sustainable and productive forest management practices and nutrition of re-growing vegetation.
How to cite: Törmänen, T., Lindroos, A.-J., Kitunen, V., and Smolander, A.: Response of N2O emissions to logging residue piles of Norway spruce, Scots pine and silver birch , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20450, https://doi.org/10.5194/egusphere-egu2020-20450, 2020.
EGU2020-22205 | Displays | BG1.2
Effects of drying and rewetting cycles on denitrification and greenhouse gas emissions in normally saturated organic substrateFrançois Birgand, Bryan Maxwell, Augustin Thomas, Louis Schipper, David Williams, Laura Christianson, Shying Tian, Matthew Helmers, Chip Chescheir, and Mohamed Youssef
The effects of intermittent drying of normally saturated organic systems such as peatlands, swamps, or wetlands has not been reported quite as often as those of wetting and drying cycles of normally dry soils. We report here the effects of weekly drying and rewetting events on saturated woodchips used as denitrification bed. We used denitrification rates and gas effluxes as indicators of the response of normally saturated organic substrate to intermittent aerobic conditions. We used replicated eight upflow columns in the lab fed with nitrated water, and undergoing variable duration of intermittent aerobic conditions (none, 2, 8, and 24 hours) over a 400d experiment. We used high-frequency sensors to measure in- and outflow nitrate and DOC concentrations on a 2-hour basis, from which we calculated denitrification rates. We also measured the CO2 and N2O effluxes in the headspace on an hourly basis. The results show a burst of respiration activity during drying events and for several days after rewetting. Isotopic data suggest that respiration was bacterial denitrification. Intermittent aerobic conditions seem to provide the conditions conducive to the generation of more and better quality DOC, which microbes use during subsequent saturated conditions. Our results suggest that intermittent aerobic conditions may have lasting impacts on microbial respiration in wetlands.
How to cite: Birgand, F., Maxwell, B., Thomas, A., Schipper, L., Williams, D., Christianson, L., Tian, S., Helmers, M., Chescheir, C., and Youssef, M.: Effects of drying and rewetting cycles on denitrification and greenhouse gas emissions in normally saturated organic substrate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22205, https://doi.org/10.5194/egusphere-egu2020-22205, 2020.
The effects of intermittent drying of normally saturated organic systems such as peatlands, swamps, or wetlands has not been reported quite as often as those of wetting and drying cycles of normally dry soils. We report here the effects of weekly drying and rewetting events on saturated woodchips used as denitrification bed. We used denitrification rates and gas effluxes as indicators of the response of normally saturated organic substrate to intermittent aerobic conditions. We used replicated eight upflow columns in the lab fed with nitrated water, and undergoing variable duration of intermittent aerobic conditions (none, 2, 8, and 24 hours) over a 400d experiment. We used high-frequency sensors to measure in- and outflow nitrate and DOC concentrations on a 2-hour basis, from which we calculated denitrification rates. We also measured the CO2 and N2O effluxes in the headspace on an hourly basis. The results show a burst of respiration activity during drying events and for several days after rewetting. Isotopic data suggest that respiration was bacterial denitrification. Intermittent aerobic conditions seem to provide the conditions conducive to the generation of more and better quality DOC, which microbes use during subsequent saturated conditions. Our results suggest that intermittent aerobic conditions may have lasting impacts on microbial respiration in wetlands.
How to cite: Birgand, F., Maxwell, B., Thomas, A., Schipper, L., Williams, D., Christianson, L., Tian, S., Helmers, M., Chescheir, C., and Youssef, M.: Effects of drying and rewetting cycles on denitrification and greenhouse gas emissions in normally saturated organic substrate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22205, https://doi.org/10.5194/egusphere-egu2020-22205, 2020.
EGU2020-6628 | Displays | BG1.2 | Highlight
The effect of boichar on the emission of N2O from a calcareous soilWenxu Dong, Anna Walkiewicz, Caohui He, Andrzej Bieganowski, and Chunsheng Hu
Biochar additions may mitigate N2O emissions from soil. The mechanisms underpinning the mitigation of emissions remain to be elucidated. A series of incubation experiments were performed to investigate the effects of biochar on N2O production and reduction in columns with a low-fertility or high-fertility soil, with or without the injection of N2O in the subsoil and with and without glucose (to stimulate denitrification). Biochar was added to the calcareous soils in 0 and 1% (w/w) amounts and moisture was maintained at 70% water-filled pore space (WFPS) over the incubation period. The results revealed that biochar reduced the emissions of soil-produced N2O by 37−47% and those of injected N2O by 23−44%. The addition of glucose solution strongly increased N2O emissions, while biochar reduced total N2O emissions by as much as 64−81% and those of injected N2O alone by 29−51%. Differences between the low-fertility and high-fertility soils in the apparent N2O emission mitigation by biochar were relatively small, but tended to be larger for the low-fertility soil. The results suggest that biochar addition can suppress the production of N2O in soil and simultaneously stimulate the reduction of N2O to N2. Further studies are needed to elucidate the regulatory effects of biochar in soil.
How to cite: Dong, W., Walkiewicz, A., He, C., Bieganowski, A., and Hu, C.: The effect of boichar on the emission of N2O from a calcareous soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6628, https://doi.org/10.5194/egusphere-egu2020-6628, 2020.
Biochar additions may mitigate N2O emissions from soil. The mechanisms underpinning the mitigation of emissions remain to be elucidated. A series of incubation experiments were performed to investigate the effects of biochar on N2O production and reduction in columns with a low-fertility or high-fertility soil, with or without the injection of N2O in the subsoil and with and without glucose (to stimulate denitrification). Biochar was added to the calcareous soils in 0 and 1% (w/w) amounts and moisture was maintained at 70% water-filled pore space (WFPS) over the incubation period. The results revealed that biochar reduced the emissions of soil-produced N2O by 37−47% and those of injected N2O by 23−44%. The addition of glucose solution strongly increased N2O emissions, while biochar reduced total N2O emissions by as much as 64−81% and those of injected N2O alone by 29−51%. Differences between the low-fertility and high-fertility soils in the apparent N2O emission mitigation by biochar were relatively small, but tended to be larger for the low-fertility soil. The results suggest that biochar addition can suppress the production of N2O in soil and simultaneously stimulate the reduction of N2O to N2. Further studies are needed to elucidate the regulatory effects of biochar in soil.
How to cite: Dong, W., Walkiewicz, A., He, C., Bieganowski, A., and Hu, C.: The effect of boichar on the emission of N2O from a calcareous soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6628, https://doi.org/10.5194/egusphere-egu2020-6628, 2020.
EGU2020-3890 | Displays | BG1.2
Interactions between liming and availability of C and P regulate nitrogen transformations and denitrifying potential in an acidic arable soilZhi Liang, Diego Abalos, and Lars Elsgaard
Liming to increase pH of acidic soils is a common agricultural practice to optimize crop yields, which also modulates greenhouse gas emissions from soils. In particular, soil pH has been identified as a primary regulator of denitrification pathways with enhanced ratio of nitrous oxide (N2O) to dinitrogen (N2) emissions (i.e., enhanced N2O/N2 ratio) at lower soil pH. Therefore liming could represent a potential management option to mitigate soil N2O emissions. However, changes in soil pH have pervasive effects on general microbial activity and on soil properties, including transformations of carbon (C) and bioavailability of phosphorus (P), with a feedback on microbial processes. Thus, the eventual net effects of liming on microbially derived N2O emissions may be complex. The aim of this study was to discern the interaction between liming (soil pH), and availability of C and P in regulating N2O emissions from acidic fertilized agroecosystems. Using coarse sandy soils from a long-term liming field experiment, N2O/N2 ratios from denitrifying enzyme activity was shown to be strongly affected by liming, i.e., with gradually decreasing ratios at increasing soil pH. Although liming acidic soil (pH, 3.6) to almost neutral (pH, 6.4) favored the reduction of N2O to N2, it also enhanced the overall denitrification rate, which eventually resulted in the highest N2O emission from moderately limed treatments (pH, 4.7). Interactions between P availability and denitrification (and N2O emission) occurred, where P addition generally increased cumulative N2O emissions with strongest effect at the moderately limed soil. Mechanistic hypotheses for this effect are discussed. Overall, our results suggest that a critical liming rate should be pursued which may lead to substantial mitigation of N2O emissions from acidic arable soil.
How to cite: Liang, Z., Abalos, D., and Elsgaard, L.: Interactions between liming and availability of C and P regulate nitrogen transformations and denitrifying potential in an acidic arable soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3890, https://doi.org/10.5194/egusphere-egu2020-3890, 2020.
Liming to increase pH of acidic soils is a common agricultural practice to optimize crop yields, which also modulates greenhouse gas emissions from soils. In particular, soil pH has been identified as a primary regulator of denitrification pathways with enhanced ratio of nitrous oxide (N2O) to dinitrogen (N2) emissions (i.e., enhanced N2O/N2 ratio) at lower soil pH. Therefore liming could represent a potential management option to mitigate soil N2O emissions. However, changes in soil pH have pervasive effects on general microbial activity and on soil properties, including transformations of carbon (C) and bioavailability of phosphorus (P), with a feedback on microbial processes. Thus, the eventual net effects of liming on microbially derived N2O emissions may be complex. The aim of this study was to discern the interaction between liming (soil pH), and availability of C and P in regulating N2O emissions from acidic fertilized agroecosystems. Using coarse sandy soils from a long-term liming field experiment, N2O/N2 ratios from denitrifying enzyme activity was shown to be strongly affected by liming, i.e., with gradually decreasing ratios at increasing soil pH. Although liming acidic soil (pH, 3.6) to almost neutral (pH, 6.4) favored the reduction of N2O to N2, it also enhanced the overall denitrification rate, which eventually resulted in the highest N2O emission from moderately limed treatments (pH, 4.7). Interactions between P availability and denitrification (and N2O emission) occurred, where P addition generally increased cumulative N2O emissions with strongest effect at the moderately limed soil. Mechanistic hypotheses for this effect are discussed. Overall, our results suggest that a critical liming rate should be pursued which may lead to substantial mitigation of N2O emissions from acidic arable soil.
How to cite: Liang, Z., Abalos, D., and Elsgaard, L.: Interactions between liming and availability of C and P regulate nitrogen transformations and denitrifying potential in an acidic arable soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3890, https://doi.org/10.5194/egusphere-egu2020-3890, 2020.
EGU2020-2760 | Displays | BG1.2
Denitrification induced by plant residues is driven by water-soluble organic carbonRonny Surey, Corinna M. Schimpf, Leopold Sauheitl, Carsten W. Mueller, Pauline S. Rummel, Klaus Dittert, Klaus Kaiser, Jürgen Böttcher, and Robert Mikutta
Denitrification usually takes place under anoxic conditions and over short periods of time and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions from soils amended with plant residues have mainly been explained by differences in their decomposability. Another factor rarely considered so far is water-extractable organic matter (WEOM) released into soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentration of organic carbon (OC), organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 hours at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases as well as the molar N2O+N2-N/CO2-C ratio was directly related to the water-extractable OC (WEOC) content of the plant residues and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratios of the plant residues. Incubation of OM solutions revealed that the molar N2O+N2-N/CO2-C ratio and share of N2O are influenced by the WEOM’s chemical composition. In conclusion, the effect of plant residues on potential denitrification is governed by their composition and the related production of WEOM.
How to cite: Surey, R., Schimpf, C. M., Sauheitl, L., Mueller, C. W., Rummel, P. S., Dittert, K., Kaiser, K., Böttcher, J., and Mikutta, R.: Denitrification induced by plant residues is driven by water-soluble organic carbon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2760, https://doi.org/10.5194/egusphere-egu2020-2760, 2020.
Denitrification usually takes place under anoxic conditions and over short periods of time and depends on readily available nitrate and carbon sources. Variations in CO2 and N2O emissions from soils amended with plant residues have mainly been explained by differences in their decomposability. Another factor rarely considered so far is water-extractable organic matter (WEOM) released into soil during residue decomposition. Here, we examined the potential effect of plant residues on denitrification with special emphasis on WEOM. A range of fresh and leached plant residues was characterized by elemental analyses, 13C-NMR spectroscopy, and extraction with ultrapure water. The obtained solutions were analyzed for the concentration of organic carbon (OC), organic nitrogen (ON), and by UV-VIS spectroscopy. To test the potential denitrification induced by plant residues or three different OM solutions, these carbon sources were added to soil suspensions and incubated for 24 hours at 20 °C in the dark under anoxic conditions; KNO3 was added to ensure unlimited nitrate supply. Evolving N2O and CO2 were analyzed by gas chromatography and acetylene inhibition was used to determine denitrification and its product ratio. The production of all gases as well as the molar N2O+N2-N/CO2-C ratio was directly related to the water-extractable OC (WEOC) content of the plant residues and the WEOC increased with carboxylic/carbonyl C and decreasing OC/ON ratios of the plant residues. Incubation of OM solutions revealed that the molar N2O+N2-N/CO2-C ratio and share of N2O are influenced by the WEOM’s chemical composition. In conclusion, the effect of plant residues on potential denitrification is governed by their composition and the related production of WEOM.
How to cite: Surey, R., Schimpf, C. M., Sauheitl, L., Mueller, C. W., Rummel, P. S., Dittert, K., Kaiser, K., Böttcher, J., and Mikutta, R.: Denitrification induced by plant residues is driven by water-soluble organic carbon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2760, https://doi.org/10.5194/egusphere-egu2020-2760, 2020.
EGU2020-15158 | Displays | BG1.2
Response of soil N2 and N2O fluxes to denitrification control factors in two agricultural soilsAmanda Matson, Stefan Burkart, Balazs Grosz, Jan Reent Köster, Simone Merl, and Reinhard Well
Controlling soil N cycling to mitigate N-oxide emissions and optimize N use efficiency is an important aspect of agricultural soil management. Numerous denitrification models exist that can inform management decisions, but these are limited by the lack of soil N2 flux measurements to validate the model estimates. Measurements of soil denitrification - including both N2O and N2 fluxes - are challenging, however, due to methodological limitations for the measurement of N2 and the spatial/temporal heterogeneity of denitrification in soils.
We used laboratory incubations of re-packed soil cores, combined with both soil flushing and stable isotope techniques, to measure denitrification in two agricultural soils, as part of the DFG-research unit “Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)”. The laboratory incubations used an automated mesocosm system, with regular measurements of both N2O and N2, to assess the response of soil denitrification to a variety of control factors. Control factors simulated typical scenarios that might occur in the field, including different amounts/types of plant residue, and changes in moisture, temperature, NO3- and oxygen concentration. Both natural abundance and 15N labeling of the soil mineral N pool were used to assess denitrification pathways.
Here we contrast the results of the incubation data from a sandy Podzol and silt-loam Luvisol. These data will be used to calibrate newly developed DASIM models as well as denitrification sub-modules of existing biogeochemical models. They will also inform the next steps of this work, which will extend the laboratory incubation technique to measure denitrification in undisturbed field soils.
How to cite: Matson, A., Burkart, S., Grosz, B., Köster, J. R., Merl, S., and Well, R.: Response of soil N2 and N2O fluxes to denitrification control factors in two agricultural soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15158, https://doi.org/10.5194/egusphere-egu2020-15158, 2020.
Controlling soil N cycling to mitigate N-oxide emissions and optimize N use efficiency is an important aspect of agricultural soil management. Numerous denitrification models exist that can inform management decisions, but these are limited by the lack of soil N2 flux measurements to validate the model estimates. Measurements of soil denitrification - including both N2O and N2 fluxes - are challenging, however, due to methodological limitations for the measurement of N2 and the spatial/temporal heterogeneity of denitrification in soils.
We used laboratory incubations of re-packed soil cores, combined with both soil flushing and stable isotope techniques, to measure denitrification in two agricultural soils, as part of the DFG-research unit “Denitrification in Agricultural Soils: Integrated Control and Modelling at Various Scales (DASIM)”. The laboratory incubations used an automated mesocosm system, with regular measurements of both N2O and N2, to assess the response of soil denitrification to a variety of control factors. Control factors simulated typical scenarios that might occur in the field, including different amounts/types of plant residue, and changes in moisture, temperature, NO3- and oxygen concentration. Both natural abundance and 15N labeling of the soil mineral N pool were used to assess denitrification pathways.
Here we contrast the results of the incubation data from a sandy Podzol and silt-loam Luvisol. These data will be used to calibrate newly developed DASIM models as well as denitrification sub-modules of existing biogeochemical models. They will also inform the next steps of this work, which will extend the laboratory incubation technique to measure denitrification in undisturbed field soils.
How to cite: Matson, A., Burkart, S., Grosz, B., Köster, J. R., Merl, S., and Well, R.: Response of soil N2 and N2O fluxes to denitrification control factors in two agricultural soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15158, https://doi.org/10.5194/egusphere-egu2020-15158, 2020.
EGU2020-6822 | Displays | BG1.2
The effects of living roots and arbuscular mycorrhiza fungi (AMF) on soil N2O emissionsYawen Shen, Tianle Xu, and Biao Zhu
Living roots and arbuscular mycorrhiza fungi (AMF) are widespread in most terrestrial ecosystems and play an important role in ecosystem nitrogen (N) cycling. However, the influence of living roots and AMF on soil N2O emissions remains poorly understood. In this study, we conducted a pot experiment with ryegrass (Lolium perenne) growing in a greenhouse for three months with three factors: root and AMF presence (None or unplanted, Root or with roots, and Root+AMF or with roots colonized by AMF), two N addition levels (N0 and N1 with 0 and 50 mg N kg-1 soil) and two P addition levels (P0 and P1, with 0 and 20 mg P kg-1 soil).
Our results showed that N addition didn’t have significant effect on N2O emission, however, we detected significant effects of Root and Root+AMF, particularly under P addition. Though the colonization of AMF didn’t significantly influence N2O emission, the presence of roots (Root and AMF+Root treatments) deceased N2O emission by 58%-67% compared with the None treatment. P addition increased (+134%) N2O emission from unplanted soil but decreased (74%-98%) N2O emission under planted soil regardless of AMF colonization. Moreover, there were no significant relationship between N2O emission and soil pH, NH4+-N and net N mineralization. The lower N2O emission from rooted treatments were mainly due to the lower soil NO3--N (and MBN) content which might be immobilized by plant biomass, while the higher N2O emission from unplanted soil under P addition was attributed to increased soil available (r=0.760, P<0.01) and total (r=0.654, P<0.01) phosphorus content. We conclude that root presence and P addition played an important role in regulating N2O emission from P-limited soils.
How to cite: Shen, Y., Xu, T., and Zhu, B.: The effects of living roots and arbuscular mycorrhiza fungi (AMF) on soil N2O emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6822, https://doi.org/10.5194/egusphere-egu2020-6822, 2020.
Living roots and arbuscular mycorrhiza fungi (AMF) are widespread in most terrestrial ecosystems and play an important role in ecosystem nitrogen (N) cycling. However, the influence of living roots and AMF on soil N2O emissions remains poorly understood. In this study, we conducted a pot experiment with ryegrass (Lolium perenne) growing in a greenhouse for three months with three factors: root and AMF presence (None or unplanted, Root or with roots, and Root+AMF or with roots colonized by AMF), two N addition levels (N0 and N1 with 0 and 50 mg N kg-1 soil) and two P addition levels (P0 and P1, with 0 and 20 mg P kg-1 soil).
Our results showed that N addition didn’t have significant effect on N2O emission, however, we detected significant effects of Root and Root+AMF, particularly under P addition. Though the colonization of AMF didn’t significantly influence N2O emission, the presence of roots (Root and AMF+Root treatments) deceased N2O emission by 58%-67% compared with the None treatment. P addition increased (+134%) N2O emission from unplanted soil but decreased (74%-98%) N2O emission under planted soil regardless of AMF colonization. Moreover, there were no significant relationship between N2O emission and soil pH, NH4+-N and net N mineralization. The lower N2O emission from rooted treatments were mainly due to the lower soil NO3--N (and MBN) content which might be immobilized by plant biomass, while the higher N2O emission from unplanted soil under P addition was attributed to increased soil available (r=0.760, P<0.01) and total (r=0.654, P<0.01) phosphorus content. We conclude that root presence and P addition played an important role in regulating N2O emission from P-limited soils.
How to cite: Shen, Y., Xu, T., and Zhu, B.: The effects of living roots and arbuscular mycorrhiza fungi (AMF) on soil N2O emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6822, https://doi.org/10.5194/egusphere-egu2020-6822, 2020.
EGU2020-9218 | Displays | BG1.2
Analysis of N2O emissions and isotopomers to understand nitrogen cycling associated with multispecies grassland swards at a lysimeter scaleConor Bracken, Gary Lanigan, Karl Richards, Saoirse Tracy, Christoph Müller, and Paul Murphy
Nitrous oxide (N2O) is a potent greenhouse gas associated with nitrogen fertiliser inputs to agricultural production systems. Minimising N2O emissions is important to improving the efficiency and sustainability of grassland agriculture. Multispecies grassland swards composed of plants from different functional groups (grasses, legumes, herbs) have been considered as a management strategy to achieve this goal. Numerous soil nitrogen transformation pathways can lead to the production of N2O emissions. These transformation pathways are regulated by soil microbial communities and the environmental conditions and management practices that impact on them. Much research has been carried out on N cycling and N2O emissions from predominantly grass monoculture systems. However, there is a lot yet to understand about how agricultural grasslands with diverse plant communities influence soil N cycling and N2O emissions. A lysimeter experiment was set up as a completely randomised block design and carried out over a full year to investigate N2O production, and nitrogen cycling associated with four sward types. The swards four swards were: perennial ryegrass (PRG, Lolium perenne); PRG and low white clover (PRG + LWC, Trifolium repens); PRG and high white clover (PRG + HWC); PRG, WC and ribwort plantain (PRG + WC + PLAN, Plantago lanceolata) managed at 250, 90, 0, and 45 kg N ha-1yr-1, respectively. Fertiliser N was applied by syringe as urea in splits at suitable timings to meet grass growth demands. N2O fluxes were measured using a static chamber technique and additional samples were taken after the final flux sample to measure the associated N2O isotopomers using a novel Cavity Ring Down Spectroscopy technique. Leachate volumes were measured on a weekly basis and composite monthly samples were used to determine the total amount of N leached from each treatment over the full year. Herbage was harvested on a monthly basis to measure DM yield (kg DM ha-1), total N (%) and N yield (kg N ha-1).This work reports on the N2O emissions and N leaching associated with the four sward treatments and related these N losses to the treatments DM yields and N uptake as an estimation of the efficiency of these differing grassland management strategies. N2O isotopomer measurements were used to indicate N transformation pathways driving N loss over the growing season particularly around periods of peak N2O emissions.
How to cite: Bracken, C., Lanigan, G., Richards, K., Tracy, S., Müller, C., and Murphy, P.: Analysis of N2O emissions and isotopomers to understand nitrogen cycling associated with multispecies grassland swards at a lysimeter scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9218, https://doi.org/10.5194/egusphere-egu2020-9218, 2020.
Nitrous oxide (N2O) is a potent greenhouse gas associated with nitrogen fertiliser inputs to agricultural production systems. Minimising N2O emissions is important to improving the efficiency and sustainability of grassland agriculture. Multispecies grassland swards composed of plants from different functional groups (grasses, legumes, herbs) have been considered as a management strategy to achieve this goal. Numerous soil nitrogen transformation pathways can lead to the production of N2O emissions. These transformation pathways are regulated by soil microbial communities and the environmental conditions and management practices that impact on them. Much research has been carried out on N cycling and N2O emissions from predominantly grass monoculture systems. However, there is a lot yet to understand about how agricultural grasslands with diverse plant communities influence soil N cycling and N2O emissions. A lysimeter experiment was set up as a completely randomised block design and carried out over a full year to investigate N2O production, and nitrogen cycling associated with four sward types. The swards four swards were: perennial ryegrass (PRG, Lolium perenne); PRG and low white clover (PRG + LWC, Trifolium repens); PRG and high white clover (PRG + HWC); PRG, WC and ribwort plantain (PRG + WC + PLAN, Plantago lanceolata) managed at 250, 90, 0, and 45 kg N ha-1yr-1, respectively. Fertiliser N was applied by syringe as urea in splits at suitable timings to meet grass growth demands. N2O fluxes were measured using a static chamber technique and additional samples were taken after the final flux sample to measure the associated N2O isotopomers using a novel Cavity Ring Down Spectroscopy technique. Leachate volumes were measured on a weekly basis and composite monthly samples were used to determine the total amount of N leached from each treatment over the full year. Herbage was harvested on a monthly basis to measure DM yield (kg DM ha-1), total N (%) and N yield (kg N ha-1).This work reports on the N2O emissions and N leaching associated with the four sward treatments and related these N losses to the treatments DM yields and N uptake as an estimation of the efficiency of these differing grassland management strategies. N2O isotopomer measurements were used to indicate N transformation pathways driving N loss over the growing season particularly around periods of peak N2O emissions.
How to cite: Bracken, C., Lanigan, G., Richards, K., Tracy, S., Müller, C., and Murphy, P.: Analysis of N2O emissions and isotopomers to understand nitrogen cycling associated with multispecies grassland swards at a lysimeter scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9218, https://doi.org/10.5194/egusphere-egu2020-9218, 2020.
EGU2020-19445 | Displays | BG1.2
NO3- uptake and C exudation – do plant roots stimulate or inhibit denitrification?Pauline Sophie Rummel, Reinhard Well, Birgit Pfeiffer, Klaus Dittert, Sebastian Floßmann, and Johanna Pausch
Growing plants affect soil moisture, mineral N and organic C (Corg) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (Corg and NO3-) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO3- availability for denitrification leading to increased N2O and N2 emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher Corg availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N2O/(N2O+N2) ratios.
We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg-1 (Ca(15NO3)2, 60 at%), and the 15N tracer method was applied to estimate plant N uptake, N2O and N2 emissions. To link denitrification with available C in the rhizosphere, 13CO2 pulse labeling (5 g Na213CO3, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO2 evolving from soil was trapped in NaOH for δ13C analyses, and gas samples were taken for analysis of N2O and N2 from the headspace above the soil surface every 12 h.
Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N2O+N2 fluxes, cumulative N emissions, and N2O production pathways. In addition, total N2O+N2 emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (13C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher Corg availability in pots with large root systems did not lead to higher denitrification rates as NO3- was limited due to plant uptake. In conclusion, plant growth controlled water and NO3- uptake and, subsequently, formation of anaerobic hotspots for denitrification.
How to cite: Rummel, P. S., Well, R., Pfeiffer, B., Dittert, K., Floßmann, S., and Pausch, J.: NO3- uptake and C exudation – do plant roots stimulate or inhibit denitrification?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19445, https://doi.org/10.5194/egusphere-egu2020-19445, 2020.
Growing plants affect soil moisture, mineral N and organic C (Corg) availability in soil and may thus play an important role in regulating denitrification. The availability of the main substrates for denitrification (Corg and NO3-) is controlled by root activity and higher denitrification activity in rhizosphere soils has been reported. We hypothesized that (I) plant N uptake governs NO3- availability for denitrification leading to increased N2O and N2 emissions, when plant N uptake is low due to smaller root system or root senescence. (II) Denitrification is stimulated by higher Corg availability from root exudation or decaying roots increasing total gaseous N emissions while decreasing their N2O/(N2O+N2) ratios.
We tested these assumptions in a double labeling pot experiment with maize (Zea mays L.) grown under three N fertilization levels S / M / L (no / moderate / high N fertilization) and with cup plant (Silphium perfoliatum L., moderate N fertilization). After 6 weeks, all plants were labeled with 0.1 g N kg-1 (Ca(15NO3)2, 60 at%), and the 15N tracer method was applied to estimate plant N uptake, N2O and N2 emissions. To link denitrification with available C in the rhizosphere, 13CO2 pulse labeling (5 g Na213CO3, 99 at%) was used to trace C translocation from shoots to roots and its release by roots into the soil. CO2 evolving from soil was trapped in NaOH for δ13C analyses, and gas samples were taken for analysis of N2O and N2 from the headspace above the soil surface every 12 h.
Although pots were irrigated, changing soil moisture through differences in plant water uptake was the main factor controlling daily N2O+N2 fluxes, cumulative N emissions, and N2O production pathways. In addition, total N2O+N2 emissions were negatively correlated with plant N uptake and positively with soil N concentrations. Recently assimilated C released by roots (13C) was positively correlated with root dry matter, but we could not detect any relationship with cumulative N emissions. We anticipate that higher Corg availability in pots with large root systems did not lead to higher denitrification rates as NO3- was limited due to plant uptake. In conclusion, plant growth controlled water and NO3- uptake and, subsequently, formation of anaerobic hotspots for denitrification.
How to cite: Rummel, P. S., Well, R., Pfeiffer, B., Dittert, K., Floßmann, S., and Pausch, J.: NO3- uptake and C exudation – do plant roots stimulate or inhibit denitrification?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19445, https://doi.org/10.5194/egusphere-egu2020-19445, 2020.
EGU2020-8609 | Displays | BG1.2
Optimising Fertilisation Strategy for Nitrogen Uptake EfficiencyDaniel McKay Fletcher, Siul Ruiz, Simon Duncan, Dave Chadwick, David Jone, and Tiina Roose
Sufficient nitrogen fertilisation is essential for obtaining the crop yields required to feed the growing population. Moreover, nitrogen applied to fields is often lost to a number of processes including denitrification, surface run-off and leaching. These processes can damage the local ecology and contaminate water supplies. Additionally, nitrogen lost as ammonia gas and the large energy input required to synthesize ammonia are both large contributors to global greenhouse gas emissions. Choosing fertilisation strategies to optimise the proportion of nitrogen taken up by crops (nitrogen use efficiency) can reduce the production of ammonia and the pollution of water supplies.
We developed a mathematical model that describes the movement of water and multiple nitrogen species in soil at the field scale over a growing season. The model was then used to assess the nitrogen use efficiency of varying fertilisation strategies. We consider the effects of a number of biological, chemical, and physical processes including: root growth, root uptake, the transformation of nitrogen between different nitrogen species, and the effect of soil water movement on nitrogen transport. The resulting model is comprised of a coupled system of partial and ordinary differential equations that describe the mathematical interplay between nitrogen transport, water movement, and root uptake, which were solved numerically using a finite element approach. Numerical experiments were conducted to determine how nitrogen uptake efficiency was affected by different fertilisation strategies. We examine numerous cases by varying the quantity of fertiliser applied to the soil and the fertiliser application times.
The numerical experiments suggest that, under uniform rainfall rates, the optimal fertilisation times (within the bounds of typical times found in agriculture) can result in 25% more nitrogen uptake than the worst strategies. However, there were large time periods, 28 days for the first application and 10 days for the second, which resulted in close-to-optimal nitrogen use efficiency. The results of this study, in addition to crop health and past and predicted rainfall, could be taken into consideration by farmers while choosing fertilisation times to optimise nitrogen uptake efficiency.
How to cite: McKay Fletcher, D., Ruiz, S., Duncan, S., Chadwick, D., Jone, D., and Roose, T.: Optimising Fertilisation Strategy for Nitrogen Uptake Efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8609, https://doi.org/10.5194/egusphere-egu2020-8609, 2020.
Sufficient nitrogen fertilisation is essential for obtaining the crop yields required to feed the growing population. Moreover, nitrogen applied to fields is often lost to a number of processes including denitrification, surface run-off and leaching. These processes can damage the local ecology and contaminate water supplies. Additionally, nitrogen lost as ammonia gas and the large energy input required to synthesize ammonia are both large contributors to global greenhouse gas emissions. Choosing fertilisation strategies to optimise the proportion of nitrogen taken up by crops (nitrogen use efficiency) can reduce the production of ammonia and the pollution of water supplies.
We developed a mathematical model that describes the movement of water and multiple nitrogen species in soil at the field scale over a growing season. The model was then used to assess the nitrogen use efficiency of varying fertilisation strategies. We consider the effects of a number of biological, chemical, and physical processes including: root growth, root uptake, the transformation of nitrogen between different nitrogen species, and the effect of soil water movement on nitrogen transport. The resulting model is comprised of a coupled system of partial and ordinary differential equations that describe the mathematical interplay between nitrogen transport, water movement, and root uptake, which were solved numerically using a finite element approach. Numerical experiments were conducted to determine how nitrogen uptake efficiency was affected by different fertilisation strategies. We examine numerous cases by varying the quantity of fertiliser applied to the soil and the fertiliser application times.
The numerical experiments suggest that, under uniform rainfall rates, the optimal fertilisation times (within the bounds of typical times found in agriculture) can result in 25% more nitrogen uptake than the worst strategies. However, there were large time periods, 28 days for the first application and 10 days for the second, which resulted in close-to-optimal nitrogen use efficiency. The results of this study, in addition to crop health and past and predicted rainfall, could be taken into consideration by farmers while choosing fertilisation times to optimise nitrogen uptake efficiency.
How to cite: McKay Fletcher, D., Ruiz, S., Duncan, S., Chadwick, D., Jone, D., and Roose, T.: Optimising Fertilisation Strategy for Nitrogen Uptake Efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8609, https://doi.org/10.5194/egusphere-egu2020-8609, 2020.
EGU2020-11023 | Displays | BG1.2
Effect of maintenance liming with olivine, dolomite and calcite on growing-season N2O emissions in an arable soil of SE NorwayTeodora Todorcic Vekic, Lars Bakken, and Peter Dörsch
There is growing evidence that liming reduces the magnitude of N2O emissions in acidic soils. Here we report N2O emissions from a liming experiment with olivine, dolomite and calcite and of maintenance liming with the same materials in clay loam soil at Norwegian University of Life Sciences research farm. The field was bulk limed in 2014 and monitored for N2O fluxes by an autonomous filed flux robot (FFR). Over the course of four years, the fluxes varied but showed a potential of lime as a mitigation tool, with calcareous treatments (dolomite and calcite) displaying a clear decline in N2O emissions compared to unamended plots. To explore the effect of maintenance liming, subplots were maintenance limed and compared with bulk limed controls after sowing the field to winter wheat (Triticum aestivum L.) in summer and fertilizing with 50 kg NPK-N.
Growing-season N2O emissions (June-September) in maintenance limed dolomite plots were on average 26% lower than bulk limed plots and the corresponding reduction in calcite plots was 16%. There was no effect of maintenance liming in the olivine treatment. N2O emissions decreased in the order unlimed control > olivine > dolomite > calcite, covering a pHCaCl2 range of 4.9 to 6.5.
Our results suggest that maintenance liming, as a component of good agricultural practice, is important to maintain the N2O reducing effect of liming over time. However, the amount of CO2 released by the dissolution of lime should be investigated in order to fully explore the mitigation potential of soil pH management in crop production.
How to cite: Todorcic Vekic, T., Bakken, L., and Dörsch, P.: Effect of maintenance liming with olivine, dolomite and calcite on growing-season N2O emissions in an arable soil of SE Norway , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11023, https://doi.org/10.5194/egusphere-egu2020-11023, 2020.
There is growing evidence that liming reduces the magnitude of N2O emissions in acidic soils. Here we report N2O emissions from a liming experiment with olivine, dolomite and calcite and of maintenance liming with the same materials in clay loam soil at Norwegian University of Life Sciences research farm. The field was bulk limed in 2014 and monitored for N2O fluxes by an autonomous filed flux robot (FFR). Over the course of four years, the fluxes varied but showed a potential of lime as a mitigation tool, with calcareous treatments (dolomite and calcite) displaying a clear decline in N2O emissions compared to unamended plots. To explore the effect of maintenance liming, subplots were maintenance limed and compared with bulk limed controls after sowing the field to winter wheat (Triticum aestivum L.) in summer and fertilizing with 50 kg NPK-N.
Growing-season N2O emissions (June-September) in maintenance limed dolomite plots were on average 26% lower than bulk limed plots and the corresponding reduction in calcite plots was 16%. There was no effect of maintenance liming in the olivine treatment. N2O emissions decreased in the order unlimed control > olivine > dolomite > calcite, covering a pHCaCl2 range of 4.9 to 6.5.
Our results suggest that maintenance liming, as a component of good agricultural practice, is important to maintain the N2O reducing effect of liming over time. However, the amount of CO2 released by the dissolution of lime should be investigated in order to fully explore the mitigation potential of soil pH management in crop production.
How to cite: Todorcic Vekic, T., Bakken, L., and Dörsch, P.: Effect of maintenance liming with olivine, dolomite and calcite on growing-season N2O emissions in an arable soil of SE Norway , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11023, https://doi.org/10.5194/egusphere-egu2020-11023, 2020.
EGU2020-8818 | Displays | BG1.2
Interaction of decreased crop growth and retarded mineralisation of 15N 13C labelled green manure under decreased precipitation patternsAndreea Spiridon, Weronika Kisielinska, Rebecca Hood-Nowotny, Simon Leitner, Maria Heiling, Anna Wawra, Johannes Hösch, Erwin Murer, Herbert Formayer, Wolfgang Wanek, Judith Prommer, and Andrea Watzinger
Changes in climate will bring along changes in precipitation patterns, and as such, it will determine the availability of water in agricultural systems. We aimed to investigate the impact of climate-induced altered precipitation regimes on crop performance and soil processes such as organic matter mineralisation and nutrient release. The experiment took place at the lysimeter station located in Hirschstetten, Vienna, Austria (48° 15' 22" N, 16° 289 3" E, 160 m a.s.l.) where a future precipitation scenario was compared with current precipitation patterns on two different soil types – a sandy calcaric Phaeozem and a calcic Chernozem, both being representative for the Marchfeld region in Lower Austria. The future precipitation regime was calculated from four regionalised scenarios from Euro-Cordex out of the ÖKS 15 ensemble following the GHG emission scenarios RCP 4.5 and RCP 8.5.
Stable isotope analysis has become a useful tool for sensitively tracing biogeochemical processes in soils. In this study, plant residues of white mustard (Sinapis alba), isotopically labelled with carbon 13C and nitrogen 15N in a controlled laboratory environment were applied as organic fertiliser (green manure) on the lysimeter soils in April 2018. Soil, plant, gas and groundwater samples were collected from the lysimeters throughout the growing season of 2018 and 2019 and analysed using cavity ring-down spectrometry (CRDS) for 15N-N2O in the field and by isotope ratio mass spectrometry.
Crop results showed an increase in the shoot 13C signatures, indicative of drought stress, which resulted in diminished plant production by -20 to -50% under the decreased precipitation. Isotope analysis showed lower decomposition and mineralisation rates of labelled green manure only during the first few days under the future precipitation treatment, followed by an increase in 15N enrichment of soil solution NO3- during summer, emphasising the importance of plant biomass production on root NO3- uptake from the soil. N2O emissions were higher after the application of synthetic fertiliser during the first year, highlighting the importance of available NO3- in agricultural systems for nitrification and denitrification processes. However, lower N2O emissions were observed during the second year, indicating possible N stress. Overall we found that N losses through NO3- leaching and N2O emissions were most sensitive to reduced precipitation when NO3- is available, which can cause aggravating environmental problems in the future.
The stable isotope labelling technique proved to be successful for tracing and identifying drought stress effects on plant and soil processes in agricultural systems, allowing for a better understanding of soil-plant processes under changing climate conditions.
How to cite: Spiridon, A., Kisielinska, W., Hood-Nowotny, R., Leitner, S., Heiling, M., Wawra, A., Hösch, J., Murer, E., Formayer, H., Wanek, W., Prommer, J., and Watzinger, A.: Interaction of decreased crop growth and retarded mineralisation of 15N 13C labelled green manure under decreased precipitation patterns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8818, https://doi.org/10.5194/egusphere-egu2020-8818, 2020.
Changes in climate will bring along changes in precipitation patterns, and as such, it will determine the availability of water in agricultural systems. We aimed to investigate the impact of climate-induced altered precipitation regimes on crop performance and soil processes such as organic matter mineralisation and nutrient release. The experiment took place at the lysimeter station located in Hirschstetten, Vienna, Austria (48° 15' 22" N, 16° 289 3" E, 160 m a.s.l.) where a future precipitation scenario was compared with current precipitation patterns on two different soil types – a sandy calcaric Phaeozem and a calcic Chernozem, both being representative for the Marchfeld region in Lower Austria. The future precipitation regime was calculated from four regionalised scenarios from Euro-Cordex out of the ÖKS 15 ensemble following the GHG emission scenarios RCP 4.5 and RCP 8.5.
Stable isotope analysis has become a useful tool for sensitively tracing biogeochemical processes in soils. In this study, plant residues of white mustard (Sinapis alba), isotopically labelled with carbon 13C and nitrogen 15N in a controlled laboratory environment were applied as organic fertiliser (green manure) on the lysimeter soils in April 2018. Soil, plant, gas and groundwater samples were collected from the lysimeters throughout the growing season of 2018 and 2019 and analysed using cavity ring-down spectrometry (CRDS) for 15N-N2O in the field and by isotope ratio mass spectrometry.
Crop results showed an increase in the shoot 13C signatures, indicative of drought stress, which resulted in diminished plant production by -20 to -50% under the decreased precipitation. Isotope analysis showed lower decomposition and mineralisation rates of labelled green manure only during the first few days under the future precipitation treatment, followed by an increase in 15N enrichment of soil solution NO3- during summer, emphasising the importance of plant biomass production on root NO3- uptake from the soil. N2O emissions were higher after the application of synthetic fertiliser during the first year, highlighting the importance of available NO3- in agricultural systems for nitrification and denitrification processes. However, lower N2O emissions were observed during the second year, indicating possible N stress. Overall we found that N losses through NO3- leaching and N2O emissions were most sensitive to reduced precipitation when NO3- is available, which can cause aggravating environmental problems in the future.
The stable isotope labelling technique proved to be successful for tracing and identifying drought stress effects on plant and soil processes in agricultural systems, allowing for a better understanding of soil-plant processes under changing climate conditions.
How to cite: Spiridon, A., Kisielinska, W., Hood-Nowotny, R., Leitner, S., Heiling, M., Wawra, A., Hösch, J., Murer, E., Formayer, H., Wanek, W., Prommer, J., and Watzinger, A.: Interaction of decreased crop growth and retarded mineralisation of 15N 13C labelled green manure under decreased precipitation patterns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8818, https://doi.org/10.5194/egusphere-egu2020-8818, 2020.
EGU2020-15032 | Displays | BG1.2
Effect of organic amendments and inorganic fertiliser application on nitrogen use efficiency and denitrification in controlled and field conditionsXavier Albano, Ruben Sakrabani, and Stephan Haefele
The amount of bioavailable nitrogen is directly linked to anthropogenic activity (Kuypers, Marchant, & Kartal, 2018), particularly with the intensive application of synthetic nitrogen fertilisers. Although high nitrogen inputs are required to support the ever-increasing need for food production, nitrogen use efficiency is in many cases low, to the extent that even with extra nitrogen inputs over time, increases of food production are small and slow (Battye, Aneja, & Schlesinger, 2017).
It has been suggested that roughly 40% of reactive nitrogen is denitrified in the soil (Seitzinger, et al., 2006), and most of the reactive nitrogen that results from human activities is removed by denitrification, with consequent production of N2 and N2O. However, even if most reactive N forms are removed by denitrification, this is an indicator that N use efficiency is not at optimum levels.
A study is being conducted in field and controlled conditions, that aims to understand denitrification and nitrogen use efficiency in a long-term experiment (running continuously since 2013) at Rothamsted Research. The experiment was designed to provide a clearer look at the effect of applications of organic amendments and/or inorganic fertilisers on nitrogen dynamics and crop yields in a conventional cereal-based cropping system.
Simultaneously, using yield data from the same trial, we aim to understand a) if the application of organic amendments leads to a reduction of the nitrogen threshold for optimum yields and, by using a modelling approach, b) if the eventual higher yields obtained with organic amendment application are due to the effect of the extra nutrients contained in the amendment or to some other effect caused by the amendments.
Soil and gas samples are being collected from a) different treatments of the field experiment (four different organic amendments: anaerobic digestate, compost, farmyard manure, straw and unamended control; and different nitrogen application rates; area of each plot: 54 m2) to assess nitrogen dynamics, and b) from soil columns (height 35 cm; width 25.5 cm) placed in a controlled environment using soil collected from the same trial. Different measurements are being taken including leachate (measurements of mineralised nitrogen), microbiology and gas emissions (using a Picarro device that measures NH3, N2O, CO2, CH4, O2, H2O). Simultaneously, underground sensors are being used to understand moisture and temperature evolution in the soil column, while electrochemical nitrate sensors are being used to understand nitrate dynamics before and after application of organic amendments and inorganic fertilisers.
With this, we aim at having a better understanding on denitrification processes and nitrogen use efficiency issues that may occur when using a joint regime of organic amendments and inorganic fertilisers. The main objectives of the project are the validation of the effect of organic amendments in the Fosters long-term experiment and the quantification of nitrogen gas emissions with the application of organic amendments and nitrogen fertilisers.
How to cite: Albano, X., Sakrabani, R., and Haefele, S.: Effect of organic amendments and inorganic fertiliser application on nitrogen use efficiency and denitrification in controlled and field conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15032, https://doi.org/10.5194/egusphere-egu2020-15032, 2020.
The amount of bioavailable nitrogen is directly linked to anthropogenic activity (Kuypers, Marchant, & Kartal, 2018), particularly with the intensive application of synthetic nitrogen fertilisers. Although high nitrogen inputs are required to support the ever-increasing need for food production, nitrogen use efficiency is in many cases low, to the extent that even with extra nitrogen inputs over time, increases of food production are small and slow (Battye, Aneja, & Schlesinger, 2017).
It has been suggested that roughly 40% of reactive nitrogen is denitrified in the soil (Seitzinger, et al., 2006), and most of the reactive nitrogen that results from human activities is removed by denitrification, with consequent production of N2 and N2O. However, even if most reactive N forms are removed by denitrification, this is an indicator that N use efficiency is not at optimum levels.
A study is being conducted in field and controlled conditions, that aims to understand denitrification and nitrogen use efficiency in a long-term experiment (running continuously since 2013) at Rothamsted Research. The experiment was designed to provide a clearer look at the effect of applications of organic amendments and/or inorganic fertilisers on nitrogen dynamics and crop yields in a conventional cereal-based cropping system.
Simultaneously, using yield data from the same trial, we aim to understand a) if the application of organic amendments leads to a reduction of the nitrogen threshold for optimum yields and, by using a modelling approach, b) if the eventual higher yields obtained with organic amendment application are due to the effect of the extra nutrients contained in the amendment or to some other effect caused by the amendments.
Soil and gas samples are being collected from a) different treatments of the field experiment (four different organic amendments: anaerobic digestate, compost, farmyard manure, straw and unamended control; and different nitrogen application rates; area of each plot: 54 m2) to assess nitrogen dynamics, and b) from soil columns (height 35 cm; width 25.5 cm) placed in a controlled environment using soil collected from the same trial. Different measurements are being taken including leachate (measurements of mineralised nitrogen), microbiology and gas emissions (using a Picarro device that measures NH3, N2O, CO2, CH4, O2, H2O). Simultaneously, underground sensors are being used to understand moisture and temperature evolution in the soil column, while electrochemical nitrate sensors are being used to understand nitrate dynamics before and after application of organic amendments and inorganic fertilisers.
With this, we aim at having a better understanding on denitrification processes and nitrogen use efficiency issues that may occur when using a joint regime of organic amendments and inorganic fertilisers. The main objectives of the project are the validation of the effect of organic amendments in the Fosters long-term experiment and the quantification of nitrogen gas emissions with the application of organic amendments and nitrogen fertilisers.
How to cite: Albano, X., Sakrabani, R., and Haefele, S.: Effect of organic amendments and inorganic fertiliser application on nitrogen use efficiency and denitrification in controlled and field conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15032, https://doi.org/10.5194/egusphere-egu2020-15032, 2020.
EGU2020-2543 | Displays | BG1.2
Evaluation and adjustment of description of denitrification in the CoupModel, DNDC and DeNi model based on N2 and N2O laboratory mesocosm incubation system measurementsBalázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, M. Ibrahim Khalil, Hongxing He, Simone Merl, Andreas Rode, and Bianca Ziehmer
Quantifying soil nitrogen processes – especially denitrification – are critical for the adequate prediction of the produced and emitted N2O and N2 gasses and the production and consumption of NO3- and NH3. Biogeochemical models are useful tools for the description of these N processes, but recent research progress is not considered on the denitrification sub-modules of these models. Denitrification typically occurs in hot-spots of the soils but the models describe the soils as a homogenized system. Another critical problem is the calibration of the decomposition sub-modules. Suitable soil N2 flux data were not available during the development of the extensively used models but new measurement techniques provide appropriate N2 gas flux data.
In this study we investigate the N2 and N2O fluxes from mesocosm experiments of different complexity and use the measured data and experimental settings for testing the denitrification sub-module of existing biogeochemical models.
Two arable soils – a silty loam and a sandy soil – were used for the experiments and varied with N fertilization and organic matter amendment. The soils were incubated in laboratory incubation systems over 42 and 58 days, respectively. N2, N2O and CO2 fluxes were quantified by gas chromatography and isotope-ratio mass spectrometry. Seven moisture and three NO3- contents were set up to the loamy soil and only the temperature was manipulated during the experiment, while other factors were kept constant. In the experiment with the sandy soil, incubations were conducted with or without incorporation of organic litter (ryegrass) and initial water content was adjusted equivalent to 80% water-filled pore space. Temperature, water content and NO3- content were manipulated during that experiment.
Three commonly used biogeochemical models – namely CoupModel, DNDC and DeNi (a self programmed early stage version of the nitrification and denitrification sub-model of the DailyDayCent) – were tested on the experimental data.
The average N2+N2O fluxes of the loamy soil as given by measurements, DNDC, DeNi and CoupModel calculations was 287.5±202.3, 1.8±0.5, 779.1±282.2, 67.9±8.4 gN ha-1 day-1, respectively. For the sandy soil, these fluxes were 166.6±377.7, 23.7±34.7, 491.2±819.9 and 13.3±7.8 gN ha-1 day-1, respectively. The results show that the models did not calculate the same magnitude of the measured values. The DeNi model overestimated and the DNDC and CoupModel underestimated the measured fluxes. However, in some cases the temporal patterns of the measured and the modeled emission were similar. Most cases of over- or underestimations by the models could be explained by certain deficiencies of the models or of the experimental data.
How to cite: Grosz, B., Well, R., Dechow, R., Köster, J. R., Khalil, M. I., He, H., Merl, S., Rode, A., and Ziehmer, B.: Evaluation and adjustment of description of denitrification in the CoupModel, DNDC and DeNi model based on N2 and N2O laboratory mesocosm incubation system measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2543, https://doi.org/10.5194/egusphere-egu2020-2543, 2020.
Quantifying soil nitrogen processes – especially denitrification – are critical for the adequate prediction of the produced and emitted N2O and N2 gasses and the production and consumption of NO3- and NH3. Biogeochemical models are useful tools for the description of these N processes, but recent research progress is not considered on the denitrification sub-modules of these models. Denitrification typically occurs in hot-spots of the soils but the models describe the soils as a homogenized system. Another critical problem is the calibration of the decomposition sub-modules. Suitable soil N2 flux data were not available during the development of the extensively used models but new measurement techniques provide appropriate N2 gas flux data.
In this study we investigate the N2 and N2O fluxes from mesocosm experiments of different complexity and use the measured data and experimental settings for testing the denitrification sub-module of existing biogeochemical models.
Two arable soils – a silty loam and a sandy soil – were used for the experiments and varied with N fertilization and organic matter amendment. The soils were incubated in laboratory incubation systems over 42 and 58 days, respectively. N2, N2O and CO2 fluxes were quantified by gas chromatography and isotope-ratio mass spectrometry. Seven moisture and three NO3- contents were set up to the loamy soil and only the temperature was manipulated during the experiment, while other factors were kept constant. In the experiment with the sandy soil, incubations were conducted with or without incorporation of organic litter (ryegrass) and initial water content was adjusted equivalent to 80% water-filled pore space. Temperature, water content and NO3- content were manipulated during that experiment.
Three commonly used biogeochemical models – namely CoupModel, DNDC and DeNi (a self programmed early stage version of the nitrification and denitrification sub-model of the DailyDayCent) – were tested on the experimental data.
The average N2+N2O fluxes of the loamy soil as given by measurements, DNDC, DeNi and CoupModel calculations was 287.5±202.3, 1.8±0.5, 779.1±282.2, 67.9±8.4 gN ha-1 day-1, respectively. For the sandy soil, these fluxes were 166.6±377.7, 23.7±34.7, 491.2±819.9 and 13.3±7.8 gN ha-1 day-1, respectively. The results show that the models did not calculate the same magnitude of the measured values. The DeNi model overestimated and the DNDC and CoupModel underestimated the measured fluxes. However, in some cases the temporal patterns of the measured and the modeled emission were similar. Most cases of over- or underestimations by the models could be explained by certain deficiencies of the models or of the experimental data.
How to cite: Grosz, B., Well, R., Dechow, R., Köster, J. R., Khalil, M. I., He, H., Merl, S., Rode, A., and Ziehmer, B.: Evaluation and adjustment of description of denitrification in the CoupModel, DNDC and DeNi model based on N2 and N2O laboratory mesocosm incubation system measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2543, https://doi.org/10.5194/egusphere-egu2020-2543, 2020.
EGU2020-19467 | Displays | BG1.2
Understanding the Dynamics of Denitrification with high-resolution SimulationsOlaf Ippisch, Jan Zawallich, Peter Dörsch, Steffen Schlüter, Marcus A. Horn, and Hans-Jörg Vogel
Denitrification in unsaturated soils is widely assumed to be a result a result of the formation of so-called hot spots. However, this is a hypothesis, which is hard to test experimentally. Furthermore a better understanding of the microscale dynamics might be very helpful to derive better models at the macroscale.
Experiments have been conducted, where artificial aggregates from sintered glas have been inocculated with microorganisms and been placed in environments with different oxygen availabilities. Very high-resolution simulations are conducted to reproduce the dynamic of the generation of nitric and nitrous oxide based on a model of microbial growth parametrised with experimental data from batch experiments. The simulations allow a detailed analysis of the local and temporal dynamics of denitrification inside the aggregates.
How to cite: Ippisch, O., Zawallich, J., Dörsch, P., Schlüter, S., Horn, M. A., and Vogel, H.-J.: Understanding the Dynamics of Denitrification with high-resolution Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19467, https://doi.org/10.5194/egusphere-egu2020-19467, 2020.
Denitrification in unsaturated soils is widely assumed to be a result a result of the formation of so-called hot spots. However, this is a hypothesis, which is hard to test experimentally. Furthermore a better understanding of the microscale dynamics might be very helpful to derive better models at the macroscale.
Experiments have been conducted, where artificial aggregates from sintered glas have been inocculated with microorganisms and been placed in environments with different oxygen availabilities. Very high-resolution simulations are conducted to reproduce the dynamic of the generation of nitric and nitrous oxide based on a model of microbial growth parametrised with experimental data from batch experiments. The simulations allow a detailed analysis of the local and temporal dynamics of denitrification inside the aggregates.
How to cite: Ippisch, O., Zawallich, J., Dörsch, P., Schlüter, S., Horn, M. A., and Vogel, H.-J.: Understanding the Dynamics of Denitrification with high-resolution Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19467, https://doi.org/10.5194/egusphere-egu2020-19467, 2020.
EGU2020-1763 | Displays | BG1.2
Effects of the nitrification inhibitor nitrapyrin on urea-based fertilizers in a Mediterranean calcareous soil: N dynamics and microbial functional genes.Georgios Giannopoulos, Lars Elsgaard, Georgios Zanakis, Rima B. Franklin, Bonnie L. Brown, and Nikolaos Barbayannis
Nitrogen (N) fertilization is an essential agronomic practice, which increases crop yields and improves soil fertility. Globally, more than 110 x 109 kg of chemical N fertilizers are applied each year with urea-N being one of the most affordable options. Upon urea hydrolysis, any portion not assimilated by crops is either volatilized as NH3 or microbially nitrified (i.e., NH4+ oxidized) to leachable NO3- and NO2-. Nitrification inhibitors (NI) are increasingly co-applied as a sustainable agricultural practice and block the process of nitrification, resulting in a temporal increase of NH4+ in the soils. Several studies have documented the effectiveness of NIs in retaining soil NH4+ and increasing crop yields, but less is known about the effects of NIs on the fate of urea–N and the overall impact of NIs on the soil microbial community.
In a 60 day soil mesocosm experiment, we investigated the effects of Nitrapyrin (NI; 2-chloro-6-(trichloromethyl)pyridine) co-applied with a selection of urea-based fertilizers: urea (U); U with urease inhibitors (U+UI); methylene-urea (MU); and zeolite-coated urea (ZU), on a typical Mediterranean soil under ambient summer conditions. We showed that NI applied with urea fertilizers resulted in a slower decay of extractable NH4+ with a concurrent increase in NH3 volatilization. Integrated measures of soil NH4+ were 1.5 to 3.3-fold greater when NI was applied. At the same time, there was a 10 to 60% reduction in integrated measures of NO3- and NO2- when NI was applied with the tested fertilizer types, except MU fertilizer where the integrated measures of NO3- and NO2- doubled. Upon urea hydrolysis, the released NH4+ was transformed to NO3- and NO2-, which subsequently decreased in concentration following a typical nitrification - denitrification pathway in the absence of plants. Soil N2O emissions from urea fertilizers were reduced by 40% with UI, 50% with NI, and 66% with NI + UI.
Interestingly, 15 days after the application of NI, there was a decrease in bacterial abundance (eub genes; qPCR) in all fertilized treatments. NI dramatically reduced the abundance of ammonia-oxidizing microbes (amoA genes) and there were fewer bacteria associated with denitrification genes (nirK, nirS, nosZ) when NI was applied.
At the end of the experiment, there was no significant difference in total N among all fertilized soils. Total N was in excess when compared to the control, and it was a considerable N pool potentially immobilized in microbial biomass in the absence of crops.
In conclusion, the use of NI doubled NH4+ retention in the soil and decreased soil N2O emission by 50%, through negatively affecting ammonia oxidizing and denitrifying microbes and subsequently reducing soil available NO3- and NO2-. The application of NIs should be carefully planned and synchronized (timing) with crop growth to reduce subsequent N transformations and N loss to the environment.
Keywords: urea, zeolite, methylene-urea, nitrification inhibitor, nitrapyrin, calcareous soil, soil nitrogen
How to cite: Giannopoulos, G., Elsgaard, L., Zanakis, G., B. Franklin, R., L. Brown, B., and Barbayannis, N.: Effects of the nitrification inhibitor nitrapyrin on urea-based fertilizers in a Mediterranean calcareous soil: N dynamics and microbial functional genes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1763, https://doi.org/10.5194/egusphere-egu2020-1763, 2020.
Nitrogen (N) fertilization is an essential agronomic practice, which increases crop yields and improves soil fertility. Globally, more than 110 x 109 kg of chemical N fertilizers are applied each year with urea-N being one of the most affordable options. Upon urea hydrolysis, any portion not assimilated by crops is either volatilized as NH3 or microbially nitrified (i.e., NH4+ oxidized) to leachable NO3- and NO2-. Nitrification inhibitors (NI) are increasingly co-applied as a sustainable agricultural practice and block the process of nitrification, resulting in a temporal increase of NH4+ in the soils. Several studies have documented the effectiveness of NIs in retaining soil NH4+ and increasing crop yields, but less is known about the effects of NIs on the fate of urea–N and the overall impact of NIs on the soil microbial community.
In a 60 day soil mesocosm experiment, we investigated the effects of Nitrapyrin (NI; 2-chloro-6-(trichloromethyl)pyridine) co-applied with a selection of urea-based fertilizers: urea (U); U with urease inhibitors (U+UI); methylene-urea (MU); and zeolite-coated urea (ZU), on a typical Mediterranean soil under ambient summer conditions. We showed that NI applied with urea fertilizers resulted in a slower decay of extractable NH4+ with a concurrent increase in NH3 volatilization. Integrated measures of soil NH4+ were 1.5 to 3.3-fold greater when NI was applied. At the same time, there was a 10 to 60% reduction in integrated measures of NO3- and NO2- when NI was applied with the tested fertilizer types, except MU fertilizer where the integrated measures of NO3- and NO2- doubled. Upon urea hydrolysis, the released NH4+ was transformed to NO3- and NO2-, which subsequently decreased in concentration following a typical nitrification - denitrification pathway in the absence of plants. Soil N2O emissions from urea fertilizers were reduced by 40% with UI, 50% with NI, and 66% with NI + UI.
Interestingly, 15 days after the application of NI, there was a decrease in bacterial abundance (eub genes; qPCR) in all fertilized treatments. NI dramatically reduced the abundance of ammonia-oxidizing microbes (amoA genes) and there were fewer bacteria associated with denitrification genes (nirK, nirS, nosZ) when NI was applied.
At the end of the experiment, there was no significant difference in total N among all fertilized soils. Total N was in excess when compared to the control, and it was a considerable N pool potentially immobilized in microbial biomass in the absence of crops.
In conclusion, the use of NI doubled NH4+ retention in the soil and decreased soil N2O emission by 50%, through negatively affecting ammonia oxidizing and denitrifying microbes and subsequently reducing soil available NO3- and NO2-. The application of NIs should be carefully planned and synchronized (timing) with crop growth to reduce subsequent N transformations and N loss to the environment.
Keywords: urea, zeolite, methylene-urea, nitrification inhibitor, nitrapyrin, calcareous soil, soil nitrogen
How to cite: Giannopoulos, G., Elsgaard, L., Zanakis, G., B. Franklin, R., L. Brown, B., and Barbayannis, N.: Effects of the nitrification inhibitor nitrapyrin on urea-based fertilizers in a Mediterranean calcareous soil: N dynamics and microbial functional genes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1763, https://doi.org/10.5194/egusphere-egu2020-1763, 2020.
EGU2020-6567 | Displays | BG1.2
Seasonal comparison of potential denitrification rates and nitrogen functional genes with sediment depths in the wetland, KoreaJi Yeon Han, Dong-Hun Kim, Seolran Oh, and Hee Sun Moon
EGU2020-20866 | Displays | BG1.2
Advancing our understanding of novel nitrous oxide reducersJun Shan, Sean Ooi, Robert A Sanford, Joanne Chee-Sanford, Frank Löffler, Kostas Konstantinidis, and Wendy H. Yang
Sources of N2O (nitrous oxide) are multiple in the biosphere, but the only known process consuming N2O is the microbial reduction of N2O to dinitrogen (N2), which has traditionally been attributed to denitrifying bacteria and archaea. Recently, N2O reductase genes (nosZ) clearly phylogenetically differentiated from “typical” NosZ (Clade I) were shown to be more abundant in many soil ecosystems than “typical” nosZ genes, suggesting that our understanding of the role of nosZ in controlling soil N2O emissions was incomplete. This more abundant group of nosZ genes was designated as “atypical NosZ” or Clade II. Here, by synthesizing a meta-data of the 631 peer-reviewed papers published on NosZ in the six years since NosZ Clade II was first reported in the literature, we found that only 10% of studies evaluated Clade II NosZ and an additional 7% of papers merely mentioned Clade II NosZ showing little awareness of this novel gene. In addition, disciplinary silos also contribute to the slow spread of awareness about Clade II nosZ. A lack of consensus on the terminology used to refer to Clade I versus Clade II nosZ (more than 17 terminologies) may contribute to confusion about the two clades. Finally, we proposed several recommendations to accelerate progress in understanding the roles of Clade I versus Clade II N2O reducers in controlling soil N2O emissions.
How to cite: Shan, J., Ooi, S., Sanford, R. A., Chee-Sanford, J., Löffler, F., Konstantinidis, K., and Yang, W. H.: Advancing our understanding of novel nitrous oxide reducers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20866, https://doi.org/10.5194/egusphere-egu2020-20866, 2020.
Sources of N2O (nitrous oxide) are multiple in the biosphere, but the only known process consuming N2O is the microbial reduction of N2O to dinitrogen (N2), which has traditionally been attributed to denitrifying bacteria and archaea. Recently, N2O reductase genes (nosZ) clearly phylogenetically differentiated from “typical” NosZ (Clade I) were shown to be more abundant in many soil ecosystems than “typical” nosZ genes, suggesting that our understanding of the role of nosZ in controlling soil N2O emissions was incomplete. This more abundant group of nosZ genes was designated as “atypical NosZ” or Clade II. Here, by synthesizing a meta-data of the 631 peer-reviewed papers published on NosZ in the six years since NosZ Clade II was first reported in the literature, we found that only 10% of studies evaluated Clade II NosZ and an additional 7% of papers merely mentioned Clade II NosZ showing little awareness of this novel gene. In addition, disciplinary silos also contribute to the slow spread of awareness about Clade II nosZ. A lack of consensus on the terminology used to refer to Clade I versus Clade II nosZ (more than 17 terminologies) may contribute to confusion about the two clades. Finally, we proposed several recommendations to accelerate progress in understanding the roles of Clade I versus Clade II N2O reducers in controlling soil N2O emissions.
How to cite: Shan, J., Ooi, S., Sanford, R. A., Chee-Sanford, J., Löffler, F., Konstantinidis, K., and Yang, W. H.: Advancing our understanding of novel nitrous oxide reducers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20866, https://doi.org/10.5194/egusphere-egu2020-20866, 2020.
EGU2020-12613 | Displays | BG1.2
Formation and succession of microbial community structure in different ecological niches under reclaimed water acclimationJie Li, Yujiao Sun, Xiaoyu Wang, Meng Yin, and Shangwei Xu
Using reclaimed water as a resource for landscape water replenishment may alleviate the major problems of water resource shortages and water environment pollution. However, the safety of the water and the risk of eutrophication remain doubted by the public. Our study aimed to reveal the difference between natural water and reclaimed water and to discuss the rationality of reclaimed water replenishment from the perspective of microorganisms. We analyzed the microbial community structures in natural water, reclaimed water and natural biofilms and the community succession was clarified along the ecological niches, water resources, liquidity and time using 16S rRNA gene amplicon sequencing. Primary biofilms without the original community were added to study the formation of microbial community structures under reclaimed water acclimation. The results showed that the difference caused by ecological niches was more than those caused by the liquidity of water and different water resources. No significant difference was found in the microbial diversity and community structure caused by the addition of reclaimed water. Based on the microbial analysis, reclaimed water replenishment is a feasible solution that can be used for supplying river water. Innovatively, we introduced the study of biofilms and determined that the monitoring of biofilms or sediments closely related to water was also important for the early warning of water bloom, providing a unique perspective for the management of eutrophication.
How to cite: Li, J., Sun, Y., Wang, X., Yin, M., and Xu, S.: Formation and succession of microbial community structure in different ecological niches under reclaimed water acclimation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12613, https://doi.org/10.5194/egusphere-egu2020-12613, 2020.
Using reclaimed water as a resource for landscape water replenishment may alleviate the major problems of water resource shortages and water environment pollution. However, the safety of the water and the risk of eutrophication remain doubted by the public. Our study aimed to reveal the difference between natural water and reclaimed water and to discuss the rationality of reclaimed water replenishment from the perspective of microorganisms. We analyzed the microbial community structures in natural water, reclaimed water and natural biofilms and the community succession was clarified along the ecological niches, water resources, liquidity and time using 16S rRNA gene amplicon sequencing. Primary biofilms without the original community were added to study the formation of microbial community structures under reclaimed water acclimation. The results showed that the difference caused by ecological niches was more than those caused by the liquidity of water and different water resources. No significant difference was found in the microbial diversity and community structure caused by the addition of reclaimed water. Based on the microbial analysis, reclaimed water replenishment is a feasible solution that can be used for supplying river water. Innovatively, we introduced the study of biofilms and determined that the monitoring of biofilms or sediments closely related to water was also important for the early warning of water bloom, providing a unique perspective for the management of eutrophication.
How to cite: Li, J., Sun, Y., Wang, X., Yin, M., and Xu, S.: Formation and succession of microbial community structure in different ecological niches under reclaimed water acclimation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12613, https://doi.org/10.5194/egusphere-egu2020-12613, 2020.
EGU2020-5713 | Displays | BG1.2
Responses to dissolved organic nitrogen compounds by recently isolated freshwater microalgae speciesCatherine E. Bayliss, Penny Johnes, Richard P. Evershed, Patricia Sanchez-Baracaldo, and Stephen C. Maberly
Freshwater microalgae isolates from a UK headwater catchment (collected in 2017) were tested for their growth and media nitrogen speciation changes when presented with low molecular weight dissolved organic nitrogen compounds. The location has input from livestock run off increasing organic matter in stream. Experimental treatments and initial isolation took place in controlled culture cabinets kept at 15°C, with a 16:8 light:dark cycle and light c.a. 50 µmol m-2 s-1. Treatments included separately presented urea and glutamate, alongside negative (no N or P sources) and positive controls (nitrate or ammonium). Nitrogen addition treatments were provided with the same phosphorus source, trace minerals, trace metals and took place for two weeks. Different species isolated from the location showed optimal growth on different organic nitrogen sources. Organic nitrogen compounds caused growth at least comparable to inorganic sources. Cell growth was best on dissolved organic nitrogen compounds for some species. This relatively quick cycling of organic nitrogen compounds in river systems to photosynthetic growth has implications for ecosystem heath and capacity to mitigate organic nitrogen inputs. Anthropogenic activity that increases organic nitrogen may favour certain species compositions, altering downstream ecosystem functions such as algal bloom formation and dominant microalgae species. Further work will use stable isotope investigation of potential uptake mechanisms and wider work is required on understanding how the ecosystem may respond to organic nitrogen changes.
How to cite: Bayliss, C. E., Johnes, P., Evershed, R. P., Sanchez-Baracaldo, P., and Maberly, S. C.: Responses to dissolved organic nitrogen compounds by recently isolated freshwater microalgae species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5713, https://doi.org/10.5194/egusphere-egu2020-5713, 2020.
Freshwater microalgae isolates from a UK headwater catchment (collected in 2017) were tested for their growth and media nitrogen speciation changes when presented with low molecular weight dissolved organic nitrogen compounds. The location has input from livestock run off increasing organic matter in stream. Experimental treatments and initial isolation took place in controlled culture cabinets kept at 15°C, with a 16:8 light:dark cycle and light c.a. 50 µmol m-2 s-1. Treatments included separately presented urea and glutamate, alongside negative (no N or P sources) and positive controls (nitrate or ammonium). Nitrogen addition treatments were provided with the same phosphorus source, trace minerals, trace metals and took place for two weeks. Different species isolated from the location showed optimal growth on different organic nitrogen sources. Organic nitrogen compounds caused growth at least comparable to inorganic sources. Cell growth was best on dissolved organic nitrogen compounds for some species. This relatively quick cycling of organic nitrogen compounds in river systems to photosynthetic growth has implications for ecosystem heath and capacity to mitigate organic nitrogen inputs. Anthropogenic activity that increases organic nitrogen may favour certain species compositions, altering downstream ecosystem functions such as algal bloom formation and dominant microalgae species. Further work will use stable isotope investigation of potential uptake mechanisms and wider work is required on understanding how the ecosystem may respond to organic nitrogen changes.
How to cite: Bayliss, C. E., Johnes, P., Evershed, R. P., Sanchez-Baracaldo, P., and Maberly, S. C.: Responses to dissolved organic nitrogen compounds by recently isolated freshwater microalgae species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5713, https://doi.org/10.5194/egusphere-egu2020-5713, 2020.
EGU2020-12833 | Displays | BG1.2
Separating and characterizing functional nitrogen degraders via magnetic-nanoparticle mediated isolation technology in high concentration of ammonia nitrogen wastewater treatmentMeng Yin, Yujiao Sun, Danyang Zheng, Lei Wang, Xiaohui Zhao, and Jie Li
Magnetic-nanoparticle mediated isolation (MMI) is a new method for isolating active functional microbes from complex microorganisms without substrate labeling. In this study, the composition and properties of the magnetic nanoparticles (MNPs)were characterized by a number of techniques. And then the MNPs were added to activated sludge rich in ammonia nitrogen-degrading bacteria after long-term stable treatment, another set of experiments plus urea was set as the only carbon source in the system. Compared with the group without MNPs, degradation experiment results showed that the ammonia nitrogen degradation ability of a group of MNPs was slightly improved. The high-throughput sequencing results showed that the addition of MNPs did not change the microbial community structure of activated sludge under long-term stable conditions, and that the addition of urea as a nitrogen source significantly changed the microbial community structure. RDA analysis results also showed that Comamonadaceae_unclassified and Thiobacillus absolutely dominated in situ ammonia degradation, and the change in dominant genera showed the same trend as the degradation rate of ammonia nitrogen. It has also proved that the complex flora after adding magnetic nanoparticles is more adaptable to newly introduced pollutants, using MMI to study pollutant-degrading microorganisms under in-situ conditions has a broad application prospect.
How to cite: Yin, M., Sun, Y., Zheng, D., Wang, L., Zhao, X., and Li, J.: Separating and characterizing functional nitrogen degraders via magnetic-nanoparticle mediated isolation technology in high concentration of ammonia nitrogen wastewater treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12833, https://doi.org/10.5194/egusphere-egu2020-12833, 2020.
Magnetic-nanoparticle mediated isolation (MMI) is a new method for isolating active functional microbes from complex microorganisms without substrate labeling. In this study, the composition and properties of the magnetic nanoparticles (MNPs)were characterized by a number of techniques. And then the MNPs were added to activated sludge rich in ammonia nitrogen-degrading bacteria after long-term stable treatment, another set of experiments plus urea was set as the only carbon source in the system. Compared with the group without MNPs, degradation experiment results showed that the ammonia nitrogen degradation ability of a group of MNPs was slightly improved. The high-throughput sequencing results showed that the addition of MNPs did not change the microbial community structure of activated sludge under long-term stable conditions, and that the addition of urea as a nitrogen source significantly changed the microbial community structure. RDA analysis results also showed that Comamonadaceae_unclassified and Thiobacillus absolutely dominated in situ ammonia degradation, and the change in dominant genera showed the same trend as the degradation rate of ammonia nitrogen. It has also proved that the complex flora after adding magnetic nanoparticles is more adaptable to newly introduced pollutants, using MMI to study pollutant-degrading microorganisms under in-situ conditions has a broad application prospect.
How to cite: Yin, M., Sun, Y., Zheng, D., Wang, L., Zhao, X., and Li, J.: Separating and characterizing functional nitrogen degraders via magnetic-nanoparticle mediated isolation technology in high concentration of ammonia nitrogen wastewater treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12833, https://doi.org/10.5194/egusphere-egu2020-12833, 2020.
EGU2020-20953 | Displays | BG1.2
Archaea as Global Explorers: Let`s Exchange ATPase and Occupy More Extreme Habitats!Baozhan Wang and Wei Qin
The membrane rotary energy-yielding ATPases represent the cornerstone of cellular bioenergetics for all three domains of life. The archaeal ATPases (A-type ATPases) are functionally similar to the eukaryotic and bacterial F-type ATPases that catalyze ATP synthesis using a PMF. However, they are structurally more similar to the vacuolar-type (V-type) ATPases of eukaryotes and some bacteria that function as proton pumps driven by ATP hydrolysis. Significant variation in subunit composition, structure, and mechanism of the archaeal ATPases is thought to confer adaptive advantage in the variety of extreme environments that archaea inhabit.
The ammonia-oxidizing archaea are recognized to exert primary control of nitrification in the marine environment, are major contributors to soil nitrification, and have a habitat range extending from geothermal systems, to acidic soils and the oceanic abyss. The basis for their remarkable adaptive radiation is obscured by a relatively simple metabolism – autotrophic growth using ammonia for energy and nitrogen. In this study, we find that their adaptation to acidic habitats and the extreme pressures of the hadal zone of the ocean at depths below 6000 meters is correlated with horizontal transfer of a variant of the energy-yielding ATPase (atp) operon. Whereas the ATPase genealogy of neutrophilic soil and upper ocean pelagic AOA is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically disparate clades of acidophilic and piezophilic species.
A function of the so-acquired V-ATPases in pumping excessive cytoplasmic protons at low pH is consistent with its increased expression by acid-tolerant AOA with decreasing pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E.coli at low pH. Additional support for adaptive significance derives from our observation that horizontal transfer is also associated with the adaptive radiation of Micrarchaeota, Parvarchaeota and Marsarchaeota into acidic environments. Their ATPases are affiliated with the acidophilic lineage ATPases of Thermoplasmatales and phylogenetically divergent from the corresponding species tree.
Another notable finding is that single hadopelagic AOA species contain both A- and V-type ATPases, suggesting that extensive horizontal transfer of atp operons is a highly active and ongoing process within AOA. The presence of an additional V-type ATPase in hadopelagic AOA may provide fitness advantages in the deep ocean with elevated hydrostatic pressure, as the proposed function of V-ATPase in pumping excessive cytoplasmic protons at high pressure may serve to maintain the cytosolic pH homeostasis in marine AOA.
Taken together, our study provides the first clear evidence of a significant role of horizontal transfer of atp operon in the adaptive radiation of AOA, one of the most successful organisms on Earth, and other archaeal species, spanning the TACK and DPANN superphyla as well as Euryarchaeota phylum.
How to cite: Wang, B. and Qin, W.: Archaea as Global Explorers: Let`s Exchange ATPase and Occupy More Extreme Habitats!, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20953, https://doi.org/10.5194/egusphere-egu2020-20953, 2020.
The membrane rotary energy-yielding ATPases represent the cornerstone of cellular bioenergetics for all three domains of life. The archaeal ATPases (A-type ATPases) are functionally similar to the eukaryotic and bacterial F-type ATPases that catalyze ATP synthesis using a PMF. However, they are structurally more similar to the vacuolar-type (V-type) ATPases of eukaryotes and some bacteria that function as proton pumps driven by ATP hydrolysis. Significant variation in subunit composition, structure, and mechanism of the archaeal ATPases is thought to confer adaptive advantage in the variety of extreme environments that archaea inhabit.
The ammonia-oxidizing archaea are recognized to exert primary control of nitrification in the marine environment, are major contributors to soil nitrification, and have a habitat range extending from geothermal systems, to acidic soils and the oceanic abyss. The basis for their remarkable adaptive radiation is obscured by a relatively simple metabolism – autotrophic growth using ammonia for energy and nitrogen. In this study, we find that their adaptation to acidic habitats and the extreme pressures of the hadal zone of the ocean at depths below 6000 meters is correlated with horizontal transfer of a variant of the energy-yielding ATPase (atp) operon. Whereas the ATPase genealogy of neutrophilic soil and upper ocean pelagic AOA is congruent with their organismal genealogy inferred from concatenated conserved proteins, a common clade of V-type ATPases unites phylogenetically disparate clades of acidophilic and piezophilic species.
A function of the so-acquired V-ATPases in pumping excessive cytoplasmic protons at low pH is consistent with its increased expression by acid-tolerant AOA with decreasing pH. Consistently, heterologous expression of the thaumarchaeotal V-ATPase significantly increased the growth rate of E.coli at low pH. Additional support for adaptive significance derives from our observation that horizontal transfer is also associated with the adaptive radiation of Micrarchaeota, Parvarchaeota and Marsarchaeota into acidic environments. Their ATPases are affiliated with the acidophilic lineage ATPases of Thermoplasmatales and phylogenetically divergent from the corresponding species tree.
Another notable finding is that single hadopelagic AOA species contain both A- and V-type ATPases, suggesting that extensive horizontal transfer of atp operons is a highly active and ongoing process within AOA. The presence of an additional V-type ATPase in hadopelagic AOA may provide fitness advantages in the deep ocean with elevated hydrostatic pressure, as the proposed function of V-ATPase in pumping excessive cytoplasmic protons at high pressure may serve to maintain the cytosolic pH homeostasis in marine AOA.
Taken together, our study provides the first clear evidence of a significant role of horizontal transfer of atp operon in the adaptive radiation of AOA, one of the most successful organisms on Earth, and other archaeal species, spanning the TACK and DPANN superphyla as well as Euryarchaeota phylum.
How to cite: Wang, B. and Qin, W.: Archaea as Global Explorers: Let`s Exchange ATPase and Occupy More Extreme Habitats!, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20953, https://doi.org/10.5194/egusphere-egu2020-20953, 2020.
EGU2020-1814 | Displays | BG1.2
Evaluating nitrogen isotopes as proxies for depositional redox conditions in shales: A case study from the Chang 7 Shale in the Ordos basin, North China.Ruiqian Chen and Guangdi Liu
Bulk sedimentary nitrogen isotopes (δ15N) have been used as an accurate redox proxy in well-preserved sedimentary systems, however, fewer studies of N-isotope have been performed in lacustrine shales. In this paper, we report the first δ15N data from the Chang 7 Shale from a core drilled in the Ordos Basin. Bulk δ15N values are significantly higher in Zone A (the Chang 73 and the lower part of the Chang 72 submembers, average = 9.4 ± 1.3‰) than in Zone B (the upper part of the Chang 72 and the Chang 71 submembers, average = 5.4 ± 1.5‰). Given the lithological characteristics and previous geochemical measurements, we suggest that sediments within Zone A of the Chang 7 Shale were mainly deposited under suboxic bottom water conditions, whereas Zone B sediments show evidence of deposition under oxic deep water regimes. Additionally, organic carbon isotopes (δ13Corg) and total nitrogen (TN) values were measured to characterize any processes that might control alteration of the bulk δ15N signal, including changes in organic matter source and post-depositional processes. Our results show that there is no significant difference in the organic carbon isotopes (δ13Corg) and total nitrogen (TN) values between the two zones. In conclusion, we suggest that the difference in δ15N values through the Chang 7 Shale primarily reflects differences in the depositional redox conditions and δ15N values of shale can provide important details regarding the depositional history of unconventional resource plays.
How to cite: Chen, R. and Liu, G.: Evaluating nitrogen isotopes as proxies for depositional redox conditions in shales: A case study from the Chang 7 Shale in the Ordos basin, North China., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1814, https://doi.org/10.5194/egusphere-egu2020-1814, 2020.
Bulk sedimentary nitrogen isotopes (δ15N) have been used as an accurate redox proxy in well-preserved sedimentary systems, however, fewer studies of N-isotope have been performed in lacustrine shales. In this paper, we report the first δ15N data from the Chang 7 Shale from a core drilled in the Ordos Basin. Bulk δ15N values are significantly higher in Zone A (the Chang 73 and the lower part of the Chang 72 submembers, average = 9.4 ± 1.3‰) than in Zone B (the upper part of the Chang 72 and the Chang 71 submembers, average = 5.4 ± 1.5‰). Given the lithological characteristics and previous geochemical measurements, we suggest that sediments within Zone A of the Chang 7 Shale were mainly deposited under suboxic bottom water conditions, whereas Zone B sediments show evidence of deposition under oxic deep water regimes. Additionally, organic carbon isotopes (δ13Corg) and total nitrogen (TN) values were measured to characterize any processes that might control alteration of the bulk δ15N signal, including changes in organic matter source and post-depositional processes. Our results show that there is no significant difference in the organic carbon isotopes (δ13Corg) and total nitrogen (TN) values between the two zones. In conclusion, we suggest that the difference in δ15N values through the Chang 7 Shale primarily reflects differences in the depositional redox conditions and δ15N values of shale can provide important details regarding the depositional history of unconventional resource plays.
How to cite: Chen, R. and Liu, G.: Evaluating nitrogen isotopes as proxies for depositional redox conditions in shales: A case study from the Chang 7 Shale in the Ordos basin, North China., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1814, https://doi.org/10.5194/egusphere-egu2020-1814, 2020.
BG1.3 – Do geochemical background values still exist?
EGU2020-761 | Displays | BG1.3
Determination of geochemical backgroud of waters of Kola Peninsula in order to decrease anthropogenic pollution in analysed areaDorota Moroniak-Wawryszuk, Mateusz Wawryszuk, Stanisław Chmiel, Miłosz Huber, Paweł Kramarz, Lesia Lata, and Sebastian Skupiński
In this study the geochemical background of waters of Kola Peninsula in the context of decreasing the athropogenic pollution in that region was indicated. The study was conducted on 14 water samples from different phases of hydrological cycle- precipitation water, snow-melting water, ground water, river water, lake water, sea water; also 12 samples of rocks and soils were used. pH of waters, conductivity, isotopic ratio of δ18O i δD, concentration of ions (anions and cations) along with metal ions were analysed. For conductivity measure InoLab 1 (WTW) was used, cations and anions were indicated by ions chromatograph (Metrohm MIC 3), metal ions were indicated by spectrometer ICP-MS (Thermo Xseries2). Laser analyzer PICARRO L2130 was used for defining the isotopic ratio of δ18O i δD. Soils and rocks samples were analysed using scanning electrone microscope (Hitachi SU6600) with EDS add-on and spectroscope XRF Epsilon 3 (Pananalytical).
The study showed significant impact of bedrock and soils on ion composition of waters in different locations in Kola Peninsula in example on several geogenical metal ions of P, F, Cl, Fe, Mn, Cu, Ni, S. Chemical composition of water backround is strictly related to polymetalic rocks and metal ores of the Baltic Shield which build analysed area. The waters' richness in alkali minerals is due to alkaline bedrock occuring in numerous areas of Kola Peninsula. The content of metal ions like Zn, Pb, Cr, Cd in numerous water samples indicates severe anthropogenic influence on water composition which can be especially noticed in the composition of surface water affected by the nearby heavy industry plants thus pollution of surface water.
Analisys of water samples proves significant impact of geological structure on chemical composition of water and should be considered in reclamation of natural environment of Kola Peninsula from anthropogenic pollution.
How to cite: Moroniak-Wawryszuk, D., Wawryszuk, M., Chmiel, S., Huber, M., Kramarz, P., Lata, L., and Skupiński, S.: Determination of geochemical backgroud of waters of Kola Peninsula in order to decrease anthropogenic pollution in analysed area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-761, https://doi.org/10.5194/egusphere-egu2020-761, 2020.
In this study the geochemical background of waters of Kola Peninsula in the context of decreasing the athropogenic pollution in that region was indicated. The study was conducted on 14 water samples from different phases of hydrological cycle- precipitation water, snow-melting water, ground water, river water, lake water, sea water; also 12 samples of rocks and soils were used. pH of waters, conductivity, isotopic ratio of δ18O i δD, concentration of ions (anions and cations) along with metal ions were analysed. For conductivity measure InoLab 1 (WTW) was used, cations and anions were indicated by ions chromatograph (Metrohm MIC 3), metal ions were indicated by spectrometer ICP-MS (Thermo Xseries2). Laser analyzer PICARRO L2130 was used for defining the isotopic ratio of δ18O i δD. Soils and rocks samples were analysed using scanning electrone microscope (Hitachi SU6600) with EDS add-on and spectroscope XRF Epsilon 3 (Pananalytical).
The study showed significant impact of bedrock and soils on ion composition of waters in different locations in Kola Peninsula in example on several geogenical metal ions of P, F, Cl, Fe, Mn, Cu, Ni, S. Chemical composition of water backround is strictly related to polymetalic rocks and metal ores of the Baltic Shield which build analysed area. The waters' richness in alkali minerals is due to alkaline bedrock occuring in numerous areas of Kola Peninsula. The content of metal ions like Zn, Pb, Cr, Cd in numerous water samples indicates severe anthropogenic influence on water composition which can be especially noticed in the composition of surface water affected by the nearby heavy industry plants thus pollution of surface water.
Analisys of water samples proves significant impact of geological structure on chemical composition of water and should be considered in reclamation of natural environment of Kola Peninsula from anthropogenic pollution.
How to cite: Moroniak-Wawryszuk, D., Wawryszuk, M., Chmiel, S., Huber, M., Kramarz, P., Lata, L., and Skupiński, S.: Determination of geochemical backgroud of waters of Kola Peninsula in order to decrease anthropogenic pollution in analysed area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-761, https://doi.org/10.5194/egusphere-egu2020-761, 2020.
EGU2020-2179 | Displays | BG1.3 | Highlight
Towards spatial machine learning to reveal hidden patterns and relationships in national and international geochemical databasesChaosheng Zhang
Environmental geochemistry is playing an increasingly important role in mineral exploration, environmental management, agricultural practices as well as links with health. With rapidly growing databases available at regional, national, and global scales, environmental geochemistry is facing the challenges in the “big data” era. One of the main challenges is to find out useful information hidden in a large volume of data, with the existence of spatial variation found at all the sizes of global, regional (in square kilometers), field (in square meters) and micro scales (in square centimeters). Meanwhile, the rapidly developing techniques in machine learning become useful tools for classification, identification of clusters/patterns, identification of relationships and prediction. This presentation demonstrates the potential uses of a few practical spatial machine learning techniques (spatial analyses) in environmental geochemistry: neighborhood statistics, hot spot analysis and geographically weighted regression.
Neighborhood (local) statistics are calculated using data within a neighborhood such as a moving window. In this way, spatial variation at the local level can be quantified and more details are revealed. Hot spot analysis techniques are capable of revealing hidden spatial patterns. The techniques of hot spot analysis including local index of spatial association (LISA) and Getis Ord Gi* are investigated using examples of geochemical databases in Ireland, China, the UK and the USA. The geographically weighted regression (GWR) explores the relationships between geochemical parameters and their influencing factors at the local level, which is effective in identifying the complex spatially varying relationships. Machine learning techniques are expected to play more important roles in environmental geochemistry. Challenges for more effective “data analytics” are currently emerging in the era of “big data”.
How to cite: Zhang, C.: Towards spatial machine learning to reveal hidden patterns and relationships in national and international geochemical databases, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2179, https://doi.org/10.5194/egusphere-egu2020-2179, 2020.
Environmental geochemistry is playing an increasingly important role in mineral exploration, environmental management, agricultural practices as well as links with health. With rapidly growing databases available at regional, national, and global scales, environmental geochemistry is facing the challenges in the “big data” era. One of the main challenges is to find out useful information hidden in a large volume of data, with the existence of spatial variation found at all the sizes of global, regional (in square kilometers), field (in square meters) and micro scales (in square centimeters). Meanwhile, the rapidly developing techniques in machine learning become useful tools for classification, identification of clusters/patterns, identification of relationships and prediction. This presentation demonstrates the potential uses of a few practical spatial machine learning techniques (spatial analyses) in environmental geochemistry: neighborhood statistics, hot spot analysis and geographically weighted regression.
Neighborhood (local) statistics are calculated using data within a neighborhood such as a moving window. In this way, spatial variation at the local level can be quantified and more details are revealed. Hot spot analysis techniques are capable of revealing hidden spatial patterns. The techniques of hot spot analysis including local index of spatial association (LISA) and Getis Ord Gi* are investigated using examples of geochemical databases in Ireland, China, the UK and the USA. The geographically weighted regression (GWR) explores the relationships between geochemical parameters and their influencing factors at the local level, which is effective in identifying the complex spatially varying relationships. Machine learning techniques are expected to play more important roles in environmental geochemistry. Challenges for more effective “data analytics” are currently emerging in the era of “big data”.
How to cite: Zhang, C.: Towards spatial machine learning to reveal hidden patterns and relationships in national and international geochemical databases, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2179, https://doi.org/10.5194/egusphere-egu2020-2179, 2020.
EGU2020-11699 | Displays | BG1.3
Estimation of natural background level of Cr(VI) in ultramafic rock related alluvial aquifers of central Greece: Comparison of results by statistical and deterministic preselection method approachesAriadne Argyraki, Konstantina Pyrgaki, Efstratios Kelepertzis, Fotini Botsou, and Ifigeneia Megremi
The definition of natural background concentration levels (NBLs) of geogenic trace metals in groundwater is a challenging issue, particularly in areas where anthropogenic activities are also present. The estimation of NBLs, in combination with environmental quality standards, in such areas is particularly important for the establishment of relevant groundwater threshold values. Over 100 groundwater samples were collected and analysed from four Cr(VI) impacted, alluvial groundwater bodies of central Greece during two consecutive hydrologic years. A common feature of the examined aquifers is the presence of weathered ultramafic rock material in the alluvial sediments. Most sampled boreholes (79 %) are used for irrigation, whereas 21 % of them are used for domestic drinking water supply. Hexavalent Cr concentrations in groundwater, ranging from below detection limit to 430 μg/L, have been attributed to both geogenic and anthropogenic factors. The scope of the present study is to estimate the NBL of Cr(VI) by using a classical statistical approach and a deterministic preselection method and test the comparability of results. In the statistical approach the distribution of samples versus Cr(VI) concentrations has been explored by using probability plots. In this way, the concentration variations within the examined groundwater bodies can be studied and the presence of sub-populations becomes evident by breaks in the slope. In the instance of the preselection method, the concentrations of a set of additional analyzed parameters in ground water, including major water ions and nitrate as well as dissolved oxygen, have been taken into account in order to categorize the samples into two groups of low and high anthropogenic influence, respectively. The comparability of the results derived by the two approaches are discussed in the context of EU Water Framework Directive.
How to cite: Argyraki, A., Pyrgaki, K., Kelepertzis, E., Botsou, F., and Megremi, I.: Estimation of natural background level of Cr(VI) in ultramafic rock related alluvial aquifers of central Greece: Comparison of results by statistical and deterministic preselection method approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11699, https://doi.org/10.5194/egusphere-egu2020-11699, 2020.
The definition of natural background concentration levels (NBLs) of geogenic trace metals in groundwater is a challenging issue, particularly in areas where anthropogenic activities are also present. The estimation of NBLs, in combination with environmental quality standards, in such areas is particularly important for the establishment of relevant groundwater threshold values. Over 100 groundwater samples were collected and analysed from four Cr(VI) impacted, alluvial groundwater bodies of central Greece during two consecutive hydrologic years. A common feature of the examined aquifers is the presence of weathered ultramafic rock material in the alluvial sediments. Most sampled boreholes (79 %) are used for irrigation, whereas 21 % of them are used for domestic drinking water supply. Hexavalent Cr concentrations in groundwater, ranging from below detection limit to 430 μg/L, have been attributed to both geogenic and anthropogenic factors. The scope of the present study is to estimate the NBL of Cr(VI) by using a classical statistical approach and a deterministic preselection method and test the comparability of results. In the statistical approach the distribution of samples versus Cr(VI) concentrations has been explored by using probability plots. In this way, the concentration variations within the examined groundwater bodies can be studied and the presence of sub-populations becomes evident by breaks in the slope. In the instance of the preselection method, the concentrations of a set of additional analyzed parameters in ground water, including major water ions and nitrate as well as dissolved oxygen, have been taken into account in order to categorize the samples into two groups of low and high anthropogenic influence, respectively. The comparability of the results derived by the two approaches are discussed in the context of EU Water Framework Directive.
How to cite: Argyraki, A., Pyrgaki, K., Kelepertzis, E., Botsou, F., and Megremi, I.: Estimation of natural background level of Cr(VI) in ultramafic rock related alluvial aquifers of central Greece: Comparison of results by statistical and deterministic preselection method approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11699, https://doi.org/10.5194/egusphere-egu2020-11699, 2020.
EGU2020-12342 | Displays | BG1.3
Spatial distribution maps of Cu, Pb, Zn, Cr, As and V in rural soils in northern part of Chile: The use of geochemical baseline values as an index in environmental assessment.Arturo Reyes and Jose Delgado
Soil pollution is a worldwide concern and several countries are established guidelines. In the case of Chile, the very diverse soils characteristics along the country made difficult to set guidelines to acceptable levels of potentially toxic elements (PTEs) in soils. However, due to several reasons such as anthropogenic contamination, and increment of erosion rates there is urgency in to establish guidelines values to this parameters. In Chile, the most of abandoned mining wastes are located in the northern part which could negatively have impacted the ecosystem and human health. Thus, in absence of guidelines to PTEs in soils, the use of regional geochemical baseline (GBL) as a reference values could be a first approach to preliminary determine pollution levels of PTEs in soils. The objective of this study was to use the calculated GBL values to determine the influence of mining activities on the levels of PTEs in soils and to determine the spatial distribution maps of PTEs. A regional mapping of soils was conducted in northern part of Chile during 2017-2018 and the pH, electrical conductivity, redox potential and concentration of PTEs was determined. A systematic sampling in a 20,000 square-kilometer area was conducted and 467 rural top and sub soil samples were taken to determine their physical and chemical composition. The content of PTEs was determined by ICP-OES. The GBL values were estimated following the upper-whisker limit method. The pH, electrical conductivity, and redox potential of soils were 4.9-9.5, 10.5-56,000 mS/cm, and 89.7-348.3 mV, respectively. The median concentration of Mn (695.9 mgkg-1) was the highest followed by V (148.4 mgkg-1), Ni (75.2 mgkg-1), Zn (59.7 mgkg-1), Cu (59.0 mgkg-1), Sb (34.0 mgkg-1), As (18.3 mgkg-1), Cr (17.9 mgkg-1), Sn (17.5 mgkg-1), Pb (14.6 mgkg-1), Co (13.0 mgkg-1), Cd (12.9 mgkg-1), Hg (3.6 mgkg-1), and Mo (3.3 mgkg-1). The GBL for Cu, Zn, V, As, Mo, and Sb were higher than the reported average for world soils. The spatial distribution maps of Cu, Pb, Zn, Cr, As and V were used to determine pollution levels. Statistical correlation models showed the influence of either abandoned mining sites or active mining operation on the pollution levels of PTEs in the surrounding soils. The geochemical baseline values could contribute for government decision-makers to choose the best available remediation technologies for the impacted area.
How to cite: Reyes, A. and Delgado, J.: Spatial distribution maps of Cu, Pb, Zn, Cr, As and V in rural soils in northern part of Chile: The use of geochemical baseline values as an index in environmental assessment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12342, https://doi.org/10.5194/egusphere-egu2020-12342, 2020.
Soil pollution is a worldwide concern and several countries are established guidelines. In the case of Chile, the very diverse soils characteristics along the country made difficult to set guidelines to acceptable levels of potentially toxic elements (PTEs) in soils. However, due to several reasons such as anthropogenic contamination, and increment of erosion rates there is urgency in to establish guidelines values to this parameters. In Chile, the most of abandoned mining wastes are located in the northern part which could negatively have impacted the ecosystem and human health. Thus, in absence of guidelines to PTEs in soils, the use of regional geochemical baseline (GBL) as a reference values could be a first approach to preliminary determine pollution levels of PTEs in soils. The objective of this study was to use the calculated GBL values to determine the influence of mining activities on the levels of PTEs in soils and to determine the spatial distribution maps of PTEs. A regional mapping of soils was conducted in northern part of Chile during 2017-2018 and the pH, electrical conductivity, redox potential and concentration of PTEs was determined. A systematic sampling in a 20,000 square-kilometer area was conducted and 467 rural top and sub soil samples were taken to determine their physical and chemical composition. The content of PTEs was determined by ICP-OES. The GBL values were estimated following the upper-whisker limit method. The pH, electrical conductivity, and redox potential of soils were 4.9-9.5, 10.5-56,000 mS/cm, and 89.7-348.3 mV, respectively. The median concentration of Mn (695.9 mgkg-1) was the highest followed by V (148.4 mgkg-1), Ni (75.2 mgkg-1), Zn (59.7 mgkg-1), Cu (59.0 mgkg-1), Sb (34.0 mgkg-1), As (18.3 mgkg-1), Cr (17.9 mgkg-1), Sn (17.5 mgkg-1), Pb (14.6 mgkg-1), Co (13.0 mgkg-1), Cd (12.9 mgkg-1), Hg (3.6 mgkg-1), and Mo (3.3 mgkg-1). The GBL for Cu, Zn, V, As, Mo, and Sb were higher than the reported average for world soils. The spatial distribution maps of Cu, Pb, Zn, Cr, As and V were used to determine pollution levels. Statistical correlation models showed the influence of either abandoned mining sites or active mining operation on the pollution levels of PTEs in the surrounding soils. The geochemical baseline values could contribute for government decision-makers to choose the best available remediation technologies for the impacted area.
How to cite: Reyes, A. and Delgado, J.: Spatial distribution maps of Cu, Pb, Zn, Cr, As and V in rural soils in northern part of Chile: The use of geochemical baseline values as an index in environmental assessment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12342, https://doi.org/10.5194/egusphere-egu2020-12342, 2020.
EGU2020-13246 | Displays | BG1.3
Trace element concentrations in road deposited sediments of Athens, Greece: A comparison with baseline soil dataParaskevi-Maria Kourgia and Ariadne Argyraki
Urban areas are typical examples of disturbed natural environments where human development has significantly altered the geochemical background of trace elements in surface soil and sediment. Road dusts and gully sediments are reflective of a wide range of anthropogenic activities in cities and are a useful resource for evaluating the level and distribution of trace metal contaminants in the surface environment. The evaluation of contamination in these sinks provides useful information of how the drainage system of the cities contributes to urban pollution.
A total of 26 urban road deposited sediment samples were collected from different altitudes within the Athens basin based on the hydrographic network of the area. The samples were analyzed for 33 elements following an aqua regia dissolution. Sample organic carbon content, pH and grain size distribution have been determined and magnetic susceptibility measurements and mineralogical analysis by powder X-ray diffraction were also performed in order to identify possible factors explaining the variability of elemental concentrations. Also, sixteen samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) in order to detect their sources in the Athens urban environment.
Aqua regia concentrations in the analyzed sediments reached maximum values of 18 mg/kg for As, 2 mg/kg for Cd, 14 mg/kg Co, 193 mg/kg Cr, 640 mg/kg Cu, 25600 mg/kg Fe, 112 mg/kg Ni, 3092 mg/kg Pb and 1469 mg/kg Zn. The median values of the studied elements were estimated to be 13 mg/kg for As, 1 mg/kg for Cd, 8 mg/kg Co, 98 mg/kg Cr, 215 mg/kg Cu, 17154 mg/kg Fe, 70 mg/kg Ni, 267 mg/kg Pb and 598 mg/kg Zn, respectively. With the exception of Co and As, both maximum and median values were found to be much higher than those in Athens soils from a previous study. Cluster analysis on the results identified two major groups of elements based on an over 43.59% criterion of similarity. The first cluster contains elements of geogenic origin including Co, Fe, Mn and Ni. The parameters of % organic carbon, magnetic susceptibility, Cu and Cr are grouped together in a second cluster showing a similarity level over 65% while a third cluster groups together Pb, Zn and Cd and is interpreted as anthropogenic.
In a previous systematic baseline study of Athens, it was found that the major factor controlling variability of the chemical composition of surface soil was the bedrock chemistry, resulting in a significant enrichment in concentrations of Ni, Cr, Co and possibly As. Anthropogenic influences were also significant in soil, controlling a spectrum of elements that are typical of human activities, i.e. Pb, Zn, Cu, Cd, Sb, and Sn. The clustering of elements in the present study indicates that although the geogenic origin of some elements is retained in road sediments, a greater number of elements indicate anthropogenic influence in their distribution. Briefly, it was documented that road deposited sediments reflect the characteristics of the anthropogenic activities taking place, and that traffic- related activities are the primary sources of contaminants.
How to cite: Kourgia, P.-M. and Argyraki, A.: Trace element concentrations in road deposited sediments of Athens, Greece: A comparison with baseline soil data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13246, https://doi.org/10.5194/egusphere-egu2020-13246, 2020.
Urban areas are typical examples of disturbed natural environments where human development has significantly altered the geochemical background of trace elements in surface soil and sediment. Road dusts and gully sediments are reflective of a wide range of anthropogenic activities in cities and are a useful resource for evaluating the level and distribution of trace metal contaminants in the surface environment. The evaluation of contamination in these sinks provides useful information of how the drainage system of the cities contributes to urban pollution.
A total of 26 urban road deposited sediment samples were collected from different altitudes within the Athens basin based on the hydrographic network of the area. The samples were analyzed for 33 elements following an aqua regia dissolution. Sample organic carbon content, pH and grain size distribution have been determined and magnetic susceptibility measurements and mineralogical analysis by powder X-ray diffraction were also performed in order to identify possible factors explaining the variability of elemental concentrations. Also, sixteen samples were analyzed for polycyclic aromatic hydrocarbons (PAHs) in order to detect their sources in the Athens urban environment.
Aqua regia concentrations in the analyzed sediments reached maximum values of 18 mg/kg for As, 2 mg/kg for Cd, 14 mg/kg Co, 193 mg/kg Cr, 640 mg/kg Cu, 25600 mg/kg Fe, 112 mg/kg Ni, 3092 mg/kg Pb and 1469 mg/kg Zn. The median values of the studied elements were estimated to be 13 mg/kg for As, 1 mg/kg for Cd, 8 mg/kg Co, 98 mg/kg Cr, 215 mg/kg Cu, 17154 mg/kg Fe, 70 mg/kg Ni, 267 mg/kg Pb and 598 mg/kg Zn, respectively. With the exception of Co and As, both maximum and median values were found to be much higher than those in Athens soils from a previous study. Cluster analysis on the results identified two major groups of elements based on an over 43.59% criterion of similarity. The first cluster contains elements of geogenic origin including Co, Fe, Mn and Ni. The parameters of % organic carbon, magnetic susceptibility, Cu and Cr are grouped together in a second cluster showing a similarity level over 65% while a third cluster groups together Pb, Zn and Cd and is interpreted as anthropogenic.
In a previous systematic baseline study of Athens, it was found that the major factor controlling variability of the chemical composition of surface soil was the bedrock chemistry, resulting in a significant enrichment in concentrations of Ni, Cr, Co and possibly As. Anthropogenic influences were also significant in soil, controlling a spectrum of elements that are typical of human activities, i.e. Pb, Zn, Cu, Cd, Sb, and Sn. The clustering of elements in the present study indicates that although the geogenic origin of some elements is retained in road sediments, a greater number of elements indicate anthropogenic influence in their distribution. Briefly, it was documented that road deposited sediments reflect the characteristics of the anthropogenic activities taking place, and that traffic- related activities are the primary sources of contaminants.
How to cite: Kourgia, P.-M. and Argyraki, A.: Trace element concentrations in road deposited sediments of Athens, Greece: A comparison with baseline soil data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13246, https://doi.org/10.5194/egusphere-egu2020-13246, 2020.
EGU2020-18709 | Displays | BG1.3 | Highlight
Highlights on a UNESCO/Sida project to assess the environmental and health challenges of mining activities in Sub-Saharan AfricaToteu S. Félix
Mining is an important pillar of economic growth of many African countries. However, problems arising from this activity pose serious challenges, which most of these countries have difficulties to address properly because of poor environmental governance as highlighted in the Africa Mining Vision. Many African countries also lack a precise inventory and assessment of environmental impacts of abandoned and derelict mines. As a consequence, there is an urgent need to evaluate the true extent of the detrimental effects of metal and metalloid pollutants and their impact on human and animal health, as well as on ecosystems. Between 2013 and 2017 and thanks to a Partnership Programme between UNESCO and the Swedish International Development Cooperation Agency (Sida), a network of over 100 Earth scientists from 29 Africa assessed the impacts of mining activities in sub-Saharan Africa. The project intended to provide crucial scientific knowledge that will contribute to understanding the factors that control cycling of pollutants from mine sites (abandoned or active) to soils, water and vegetation and the impact on the food chain. We anticipate that the results of the project will be used to improve the environmental norms in individual countries in Sub-Saharan Africa and the efficiency of governments in addressing the challenges related to the adverse effects of mining activities. The preliminary results of the project have recently been published as a Special Issue in the Journal of Geochemical Exploration. During the presentation, we intend to highlight few examples where mining activities alone or in interaction geological background are contributing to threat the ecosystem and health of neighbouring communities. We will also draw the lessons learnt from the implementation of this continental-scale project.
How to cite: S. Félix, T.: Highlights on a UNESCO/Sida project to assess the environmental and health challenges of mining activities in Sub-Saharan Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18709, https://doi.org/10.5194/egusphere-egu2020-18709, 2020.
Mining is an important pillar of economic growth of many African countries. However, problems arising from this activity pose serious challenges, which most of these countries have difficulties to address properly because of poor environmental governance as highlighted in the Africa Mining Vision. Many African countries also lack a precise inventory and assessment of environmental impacts of abandoned and derelict mines. As a consequence, there is an urgent need to evaluate the true extent of the detrimental effects of metal and metalloid pollutants and their impact on human and animal health, as well as on ecosystems. Between 2013 and 2017 and thanks to a Partnership Programme between UNESCO and the Swedish International Development Cooperation Agency (Sida), a network of over 100 Earth scientists from 29 Africa assessed the impacts of mining activities in sub-Saharan Africa. The project intended to provide crucial scientific knowledge that will contribute to understanding the factors that control cycling of pollutants from mine sites (abandoned or active) to soils, water and vegetation and the impact on the food chain. We anticipate that the results of the project will be used to improve the environmental norms in individual countries in Sub-Saharan Africa and the efficiency of governments in addressing the challenges related to the adverse effects of mining activities. The preliminary results of the project have recently been published as a Special Issue in the Journal of Geochemical Exploration. During the presentation, we intend to highlight few examples where mining activities alone or in interaction geological background are contributing to threat the ecosystem and health of neighbouring communities. We will also draw the lessons learnt from the implementation of this continental-scale project.
How to cite: S. Félix, T.: Highlights on a UNESCO/Sida project to assess the environmental and health challenges of mining activities in Sub-Saharan Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18709, https://doi.org/10.5194/egusphere-egu2020-18709, 2020.
EGU2020-21458 | Displays | BG1.3
Spatial anomalies of uranium background levels in groundwater of Lower SaxonyRoland Stumpf, Dörte Budziak, Nico Deus, and Jörg Elbracht
Uranium is a trace metal yielding an average concentration in the Earth’s crust of about 2 to 4 mg/kg, and it occurs naturally in low levels in rock, soil, and water. Although widely known for its radioactive properties, at low levels dissolved uranium is more harmful by its chemical toxicity. The World Health Organisation (WHO) recommends a maximum concentration of 30 µg/l uranium in tap water, as well as a tolerable daily intake limit of 0.6 µg/kg body weight. Since 2011, tap water in Germany must not exceed uranium concentrations of 10 µg/l.
The uranium budget of the groundwater in Lower Saxony comprises mainly of geogenic input through water-rock interaction along the hydrological cycle and within the respective hydrogeological units, and possibly through century-old mining activities, and more recently the use of uranium bearing mineral fertilisers in farming. While the vast majority of uranium concentrations are significantly below 10 µg/l with many values below detection limit, some detached areas display elevated uranium with one confined maximum concentration of 124 µg/l. In order to determine uranium background values, statistical analyses accounted for hydrogeological units of the aquifer, land use, and well depths. Anomalous peak concentrations are unlikely to be a result of variations in geogenic background values alone and require further investigations. A possible rise of uranium concentrations caused by a downward shifting redox front, as proposed in other regions in Northern Germany, is yet to be identified in Lower Saxony.
How to cite: Stumpf, R., Budziak, D., Deus, N., and Elbracht, J.: Spatial anomalies of uranium background levels in groundwater of Lower Saxony, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21458, https://doi.org/10.5194/egusphere-egu2020-21458, 2020.
Uranium is a trace metal yielding an average concentration in the Earth’s crust of about 2 to 4 mg/kg, and it occurs naturally in low levels in rock, soil, and water. Although widely known for its radioactive properties, at low levels dissolved uranium is more harmful by its chemical toxicity. The World Health Organisation (WHO) recommends a maximum concentration of 30 µg/l uranium in tap water, as well as a tolerable daily intake limit of 0.6 µg/kg body weight. Since 2011, tap water in Germany must not exceed uranium concentrations of 10 µg/l.
The uranium budget of the groundwater in Lower Saxony comprises mainly of geogenic input through water-rock interaction along the hydrological cycle and within the respective hydrogeological units, and possibly through century-old mining activities, and more recently the use of uranium bearing mineral fertilisers in farming. While the vast majority of uranium concentrations are significantly below 10 µg/l with many values below detection limit, some detached areas display elevated uranium with one confined maximum concentration of 124 µg/l. In order to determine uranium background values, statistical analyses accounted for hydrogeological units of the aquifer, land use, and well depths. Anomalous peak concentrations are unlikely to be a result of variations in geogenic background values alone and require further investigations. A possible rise of uranium concentrations caused by a downward shifting redox front, as proposed in other regions in Northern Germany, is yet to be identified in Lower Saxony.
How to cite: Stumpf, R., Budziak, D., Deus, N., and Elbracht, J.: Spatial anomalies of uranium background levels in groundwater of Lower Saxony, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21458, https://doi.org/10.5194/egusphere-egu2020-21458, 2020.
EGU2020-22687 | Displays | BG1.3
Extending the concept of background to soil gas: natural radon concentrations in soils of Campania region.Stefano Albanese, Annalise Guarino, Daniela Zuzolo, Antonio Aruta, Domenico Cicchella, Antonio Iannone, Raffaele Melito, Francesco Verrilli, and Alessandro Fedele Gianvito
Radon is an ubiquitous radioactive gas proceeding from the decay of some radionuclides, mostly abundant in igneous rock and volcanic soils; it is the main source of natural radiation to which human beings are exposed during their life. Campania, a region located on the south-western sector of the Italian peninsula, has a territory mostly characterized by the presence of volcanic lithotypes and sediments.
An empirical method was applied to determine the concentration of Rn-222 in soils of Campania region by using radiometric and compositional data recorded in two extensive different environmental prospecting campaigns completed in 2003 and 2015, respectively.
Radiometric surveys were carried out with a nominal density of 1 station per 5 sqkm with a GRS-500 portable scintillometer produced by Scintrex Ltd (Ontario, Canada); topsoil samples were collected at 3535 sites regularly spread across the whole regional area with a nominal density of 1 sample per sqkm. Samples destinated to chemical analyses were analysed by ICP-MS after an aqua regia digestion at the ACME Analytical Laboratories Ltd (now Bureau Veritas) in Vancouver, Canada.
Specifically, the concentrations of U, Th and K in topsoil samples and the activity (gamma radiation) generated by the decay of U-238, Th-232 and K-40 (expressed as Bq) at each measurement station were used as proxies in order to determine the variation of Rn-222 flux from the ground and to estimate the distribution pattern of geogenic radon potential (GPR) across the region.
The use of a sequence of specific equations led to estimate the terrestrial gamma dose rate (nSv/h) at 1 m above the ground surface starting from both datasets and, therefore, allowed the generation of the Rn-222 flux and GPR maps for the whole regional territory.
Both Radon flux and GPR raster maps were produced by mean of some specific geospatial elaborations and the estimated values were compared among them and validated trough the completion of some field measurements.
How to cite: Albanese, S., Guarino, A., Zuzolo, D., Aruta, A., Cicchella, D., Iannone, A., Melito, R., Verrilli, F., and Gianvito, A. F.: Extending the concept of background to soil gas: natural radon concentrations in soils of Campania region., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22687, https://doi.org/10.5194/egusphere-egu2020-22687, 2020.
Radon is an ubiquitous radioactive gas proceeding from the decay of some radionuclides, mostly abundant in igneous rock and volcanic soils; it is the main source of natural radiation to which human beings are exposed during their life. Campania, a region located on the south-western sector of the Italian peninsula, has a territory mostly characterized by the presence of volcanic lithotypes and sediments.
An empirical method was applied to determine the concentration of Rn-222 in soils of Campania region by using radiometric and compositional data recorded in two extensive different environmental prospecting campaigns completed in 2003 and 2015, respectively.
Radiometric surveys were carried out with a nominal density of 1 station per 5 sqkm with a GRS-500 portable scintillometer produced by Scintrex Ltd (Ontario, Canada); topsoil samples were collected at 3535 sites regularly spread across the whole regional area with a nominal density of 1 sample per sqkm. Samples destinated to chemical analyses were analysed by ICP-MS after an aqua regia digestion at the ACME Analytical Laboratories Ltd (now Bureau Veritas) in Vancouver, Canada.
Specifically, the concentrations of U, Th and K in topsoil samples and the activity (gamma radiation) generated by the decay of U-238, Th-232 and K-40 (expressed as Bq) at each measurement station were used as proxies in order to determine the variation of Rn-222 flux from the ground and to estimate the distribution pattern of geogenic radon potential (GPR) across the region.
The use of a sequence of specific equations led to estimate the terrestrial gamma dose rate (nSv/h) at 1 m above the ground surface starting from both datasets and, therefore, allowed the generation of the Rn-222 flux and GPR maps for the whole regional territory.
Both Radon flux and GPR raster maps were produced by mean of some specific geospatial elaborations and the estimated values were compared among them and validated trough the completion of some field measurements.
How to cite: Albanese, S., Guarino, A., Zuzolo, D., Aruta, A., Cicchella, D., Iannone, A., Melito, R., Verrilli, F., and Gianvito, A. F.: Extending the concept of background to soil gas: natural radon concentrations in soils of Campania region., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22687, https://doi.org/10.5194/egusphere-egu2020-22687, 2020.
BG1.6 – Functions and functioning of the Critical Zone
EGU2020-12689 | Displays | BG1.6 | Highlight
How deep do signals of surface conditions extend into the subsurface Critical Zone?Susan Trumbore, Kai Uwe Totsche, and Kirsten Küsel
Fluids (water and gases) connect surface and subsurface compartments of the Critical Zone by transporting matter, including chemical energy and organisms. In the AquaDiva Collaborative Research Center, one of our research goals is to use a variety of tracers to determine how the subsurface and the organisms inhabiting it reflect and depend on surface conditions. This research is performed at the Hainich Critical Zone Exploratory (CZE), a hillslope transect in limestone and marlstone sedimentary rocks where a network of surface observations is linked to routinely monitored groundwater wells. This CZE is especially interesting because its different rock units and hydrogeologic conditions create environments with different microbiomes and conditions.
This talk will synthesize information collected by AquaDiva researchers on how different kinds of ‘signals’ identify important mechanisms connecting surface and subsurface. Biologically dominated signals, such as cell counts, metagenomics, metabolomics, the molecular composition and properties of dissolved organic matter, change with distance from the surface. While some individual compounds and organisms can be found across the different critical zone compartments, it is clear that that ground water and its inhabitants are not just diluted from the surface but reflect and co-evolve with microbial communities and subsurface environmental conditions. Isotopic tools trace elements rather than chemical compounds and provide independent information on the timescales for surface-subsurface transport or the sources of energy or metabolites. For example, we used bomb-radiocarbon as a tracer for surface carbon recently fixed by plants. The 14C in dissolved or particulate organic matter and inorganic C demonstrate how newly fixed, recycled or even fossil (rock derived) C is incorporated into microbial food webs. Finally, surface conditions, including structure, influence the subsurface metabolism by regulating the transfer of electron acceptors like O2, excess nutrients from fertilizers, or reactive nanocrystalline Fe, through soils and unsaturated zones into groundwaters.
How to cite: Trumbore, S., Totsche, K. U., and Küsel, K.: How deep do signals of surface conditions extend into the subsurface Critical Zone?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12689, https://doi.org/10.5194/egusphere-egu2020-12689, 2020.
Fluids (water and gases) connect surface and subsurface compartments of the Critical Zone by transporting matter, including chemical energy and organisms. In the AquaDiva Collaborative Research Center, one of our research goals is to use a variety of tracers to determine how the subsurface and the organisms inhabiting it reflect and depend on surface conditions. This research is performed at the Hainich Critical Zone Exploratory (CZE), a hillslope transect in limestone and marlstone sedimentary rocks where a network of surface observations is linked to routinely monitored groundwater wells. This CZE is especially interesting because its different rock units and hydrogeologic conditions create environments with different microbiomes and conditions.
This talk will synthesize information collected by AquaDiva researchers on how different kinds of ‘signals’ identify important mechanisms connecting surface and subsurface. Biologically dominated signals, such as cell counts, metagenomics, metabolomics, the molecular composition and properties of dissolved organic matter, change with distance from the surface. While some individual compounds and organisms can be found across the different critical zone compartments, it is clear that that ground water and its inhabitants are not just diluted from the surface but reflect and co-evolve with microbial communities and subsurface environmental conditions. Isotopic tools trace elements rather than chemical compounds and provide independent information on the timescales for surface-subsurface transport or the sources of energy or metabolites. For example, we used bomb-radiocarbon as a tracer for surface carbon recently fixed by plants. The 14C in dissolved or particulate organic matter and inorganic C demonstrate how newly fixed, recycled or even fossil (rock derived) C is incorporated into microbial food webs. Finally, surface conditions, including structure, influence the subsurface metabolism by regulating the transfer of electron acceptors like O2, excess nutrients from fertilizers, or reactive nanocrystalline Fe, through soils and unsaturated zones into groundwaters.
How to cite: Trumbore, S., Totsche, K. U., and Küsel, K.: How deep do signals of surface conditions extend into the subsurface Critical Zone?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12689, https://doi.org/10.5194/egusphere-egu2020-12689, 2020.
EGU2020-18437 | Displays | BG1.6
Exploring the hydrogeological functioning and microbial habitats of the deep hillslope aeration zone in limestone-mudrock alternationsRobert Lehmann, Cassandre Sara Lazar, Kirsten Küsel, and Kai Uwe Totsche
The aeration zone beneath topographic groundwater recharge areas, comprising variably water-saturated soil, regolith and bedrock is a typically large but hardly explored compartment of the Critical Zone. Fluid and matter exchange within the deep hillslope aeration zone, the dynamics of its diverse microbial dwellers and their contribution for subsurface matter cycling and groundwater quality are widely unknown. In the Hainich Critical Zone Exploratory (Collaborative Research Center AquaDiva, Küsel et al., 2016), we accessed the aeration zone and groundwater resources in fractured limestone-mudstone alternations by exploratory drillings and hillslope monitoring wells. Multi-year groundwater sampling, environmental monitoring, drill core and petrological analyses revealed a multi-storey architecture of the aeration zone, covering perched water bodies and multi-directional flow phenomena (Lehmann and Totsche 2020). In a ~50 m deep well that underwent pronounced seasonal head fluctuation up to 25 m of oligotrophic groundwater, we incubated bedrock fragments that mimicked large fracture habitats and monitored the dynamic environmental conditions in the fractured mixed carbonate-/siliciclastic alternations as well. During groundwater-saturated colonization, successional exposure to seasonal de-saturation and re-saturation, we analyzed the bacterial and archaeal 16S rRNA diversity and found a diverse bacterial, and less diverse archaeal community, both including persistent genera that withstood the harsh environmental changes. In accordance with mature fracture-surfaces (drill cores), the colonized rock fragments were dominated by Gammaproteobacteria. General compositional differences to communities within the phreatic zone (i.e. groundwater and rock matrices), and shallow sources in soil, suggest a distinct subsurface microbiome that is hardly represented by ecological surveys that utilize groundwater or rock samples.
References:
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., Herrmann, M. (2016). How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Frontiers in Earth Science 4 (32). https://doi.org/10.3389/feart.2016.00032
Lehmann, R., Totsche, K. U. (2020). Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. Journal of Hydrology 580. https://doi.org/10.1016/j.jhydrol.2019.124291
How to cite: Lehmann, R., Lazar, C. S., Küsel, K., and Totsche, K. U.: Exploring the hydrogeological functioning and microbial habitats of the deep hillslope aeration zone in limestone-mudrock alternations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18437, https://doi.org/10.5194/egusphere-egu2020-18437, 2020.
The aeration zone beneath topographic groundwater recharge areas, comprising variably water-saturated soil, regolith and bedrock is a typically large but hardly explored compartment of the Critical Zone. Fluid and matter exchange within the deep hillslope aeration zone, the dynamics of its diverse microbial dwellers and their contribution for subsurface matter cycling and groundwater quality are widely unknown. In the Hainich Critical Zone Exploratory (Collaborative Research Center AquaDiva, Küsel et al., 2016), we accessed the aeration zone and groundwater resources in fractured limestone-mudstone alternations by exploratory drillings and hillslope monitoring wells. Multi-year groundwater sampling, environmental monitoring, drill core and petrological analyses revealed a multi-storey architecture of the aeration zone, covering perched water bodies and multi-directional flow phenomena (Lehmann and Totsche 2020). In a ~50 m deep well that underwent pronounced seasonal head fluctuation up to 25 m of oligotrophic groundwater, we incubated bedrock fragments that mimicked large fracture habitats and monitored the dynamic environmental conditions in the fractured mixed carbonate-/siliciclastic alternations as well. During groundwater-saturated colonization, successional exposure to seasonal de-saturation and re-saturation, we analyzed the bacterial and archaeal 16S rRNA diversity and found a diverse bacterial, and less diverse archaeal community, both including persistent genera that withstood the harsh environmental changes. In accordance with mature fracture-surfaces (drill cores), the colonized rock fragments were dominated by Gammaproteobacteria. General compositional differences to communities within the phreatic zone (i.e. groundwater and rock matrices), and shallow sources in soil, suggest a distinct subsurface microbiome that is hardly represented by ecological surveys that utilize groundwater or rock samples.
References:
Küsel, K., Totsche, K. U., Trumbore, S. E., Lehmann, R., Steinhäuser, C., Herrmann, M. (2016). How deep can surface signals be traced in the critical zone? Merging biodiversity with biogeochemistry research in a central German Muschelkalk landscape. Frontiers in Earth Science 4 (32). https://doi.org/10.3389/feart.2016.00032
Lehmann, R., Totsche, K. U. (2020). Multi-directional flow dynamics shape groundwater quality in sloping bedrock strata. Journal of Hydrology 580. https://doi.org/10.1016/j.jhydrol.2019.124291
How to cite: Lehmann, R., Lazar, C. S., Küsel, K., and Totsche, K. U.: Exploring the hydrogeological functioning and microbial habitats of the deep hillslope aeration zone in limestone-mudrock alternations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18437, https://doi.org/10.5194/egusphere-egu2020-18437, 2020.
EGU2020-14556 | Displays | BG1.6
Nitrate sources and sinks in oligotrophic groundwaterMartina Herrmann, Markus Krüger, Bo Thamdrup, and Kirsten Küsel
Despite the high relevance of karstic aquifers as drinking water reservoirs, nitrate pollution of groundwater is posing an increasing threat on a global scale. Under anoxic conditions, nitrate can be converted to N2 by denitrification or anaerobic ammonia oxidation (anammox) and thus be removed from the system. However, in the presence of oxygen, nitrification may continue in the groundwater, supported by the activity of ammonia oxidizing bacteria (AOB), archaea (AOA), and the recently discovered complete ammonia oxidizers (comammox bacteria). We aimed to disentangle different sources and sinks of nitrate and key microbial players involved in nitrogen transformation processes in oligotrophic limestone aquifers of the Hainich Critical Zone Exploratory (CZE; Germany). Assessment of process rates using 15N-labeling techniques revealed a variance of nitrification rates by two orders of magnitude across six oxic groundwater wells. Surprisingly, wells with nitrate concentrations higher than 300 µmol L−1 showed only very low nitrification activity of less than 2 nmol NO3− L−1 d−1, pointing to surface inputs rather than in situ production. In turn, maximum nitrification activity of 127 nmol NO3− L−1 d−1 coincided with a consistently large fraction of comammox bacteria of more than 70% in the groundwater nitrifier community. Estimated per cell activities of ammonia oxidation suggested that a contribution from comammox was needed to sufficiently explain the observed nitrification rates. Anaerobic ammonia oxidation (anammox) and denitrification as potential nitrate or nitrite sinks varied within a smaller range of 1 to 5 nmol N2 L−1 d−1 across anoxic wells and were dominated by anammox, most likely linked to a low availability of organic carbon and suitable inorganic electron donors for chemolithoautotrophic denitrification. Differences in activities agreed well with 100 times higher transcriptional activity of hzsA genes involved in anammox compared to nirS genes involved in denitrification. Our findings provide strong evidence for nitrification supported by comammox bacteria in oligotrophic groundwater and for anammox as the dominating N removing process.
How to cite: Herrmann, M., Krüger, M., Thamdrup, B., and Küsel, K.: Nitrate sources and sinks in oligotrophic groundwater, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14556, https://doi.org/10.5194/egusphere-egu2020-14556, 2020.
Despite the high relevance of karstic aquifers as drinking water reservoirs, nitrate pollution of groundwater is posing an increasing threat on a global scale. Under anoxic conditions, nitrate can be converted to N2 by denitrification or anaerobic ammonia oxidation (anammox) and thus be removed from the system. However, in the presence of oxygen, nitrification may continue in the groundwater, supported by the activity of ammonia oxidizing bacteria (AOB), archaea (AOA), and the recently discovered complete ammonia oxidizers (comammox bacteria). We aimed to disentangle different sources and sinks of nitrate and key microbial players involved in nitrogen transformation processes in oligotrophic limestone aquifers of the Hainich Critical Zone Exploratory (CZE; Germany). Assessment of process rates using 15N-labeling techniques revealed a variance of nitrification rates by two orders of magnitude across six oxic groundwater wells. Surprisingly, wells with nitrate concentrations higher than 300 µmol L−1 showed only very low nitrification activity of less than 2 nmol NO3− L−1 d−1, pointing to surface inputs rather than in situ production. In turn, maximum nitrification activity of 127 nmol NO3− L−1 d−1 coincided with a consistently large fraction of comammox bacteria of more than 70% in the groundwater nitrifier community. Estimated per cell activities of ammonia oxidation suggested that a contribution from comammox was needed to sufficiently explain the observed nitrification rates. Anaerobic ammonia oxidation (anammox) and denitrification as potential nitrate or nitrite sinks varied within a smaller range of 1 to 5 nmol N2 L−1 d−1 across anoxic wells and were dominated by anammox, most likely linked to a low availability of organic carbon and suitable inorganic electron donors for chemolithoautotrophic denitrification. Differences in activities agreed well with 100 times higher transcriptional activity of hzsA genes involved in anammox compared to nirS genes involved in denitrification. Our findings provide strong evidence for nitrification supported by comammox bacteria in oligotrophic groundwater and for anammox as the dominating N removing process.
How to cite: Herrmann, M., Krüger, M., Thamdrup, B., and Küsel, K.: Nitrate sources and sinks in oligotrophic groundwater, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14556, https://doi.org/10.5194/egusphere-egu2020-14556, 2020.
EGU2020-18141 | Displays | BG1.6
Characterizing denitrification in the aquifer and transit times based on spatially-distributed measurements in streamsCamille Vautier, Christophe Petton, Ronan Abhervé, Gilles Pinay, Anniet Lavermann, and Jean-Raynald de Dreuzy
Human activity has more than doubled reactive nitrogen delivery to Earth’s ecosystems. In the past several decades, efforts have been made to reduce agricultural inputs of nitrogen, but the decrease of the nitrate concentration in rivers is also controlled by natural processes, especially by flow and denitrification in the aquifer. Yet, with current knowledge, it remains difficult to characterize transit times and groundwater denitrification rates at scales relevant for mitigation actions (catchment scale to regional scale).
Data directly obtained in piezometers generally display large variabilities without any obvious correlation to any landscape, geological or geomorphological characteristics. Here we propose an alternative method based on in-stream measurements to get a representative view of the role of the aquifer in the temporary storage and degradation of nitrates. We performed spatially-distributed measurements in low-order streams within a 35 km2 agricultural catchment underlain by a crystalline, fractured bedrock aquifer. Measurements were performed during low-flow. Stream discharge and radon activity were used to determine the groundwater discharge into the streams. Silica was used as an age-tracer [1]. Nitrate concentrations and isotopic ratios allowed to characterize the denitrification in the aquifer.
Results show that in-stream measurements provide a representative view of transport and denitrification in the aquifer. They highlight that the scale of homogenization is larger than the studied catchment, and reveal an unexpected correlation between the mean residence time and the characteristic denitrification time. This allows to hypothesize a common control on residence time and denitrification in the aquifer, that could be exercised by the depth of the weathered zone. Unraveling such a correlation could be a first step towards a global characterization of aquifer processes through geophysical imagery methods.
[1] Marcais, J., et al. 2018. Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers. STOTEN.
How to cite: Vautier, C., Petton, C., Abhervé, R., Pinay, G., Lavermann, A., and de Dreuzy, J.-R.: Characterizing denitrification in the aquifer and transit times based on spatially-distributed measurements in streams, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18141, https://doi.org/10.5194/egusphere-egu2020-18141, 2020.
Human activity has more than doubled reactive nitrogen delivery to Earth’s ecosystems. In the past several decades, efforts have been made to reduce agricultural inputs of nitrogen, but the decrease of the nitrate concentration in rivers is also controlled by natural processes, especially by flow and denitrification in the aquifer. Yet, with current knowledge, it remains difficult to characterize transit times and groundwater denitrification rates at scales relevant for mitigation actions (catchment scale to regional scale).
Data directly obtained in piezometers generally display large variabilities without any obvious correlation to any landscape, geological or geomorphological characteristics. Here we propose an alternative method based on in-stream measurements to get a representative view of the role of the aquifer in the temporary storage and degradation of nitrates. We performed spatially-distributed measurements in low-order streams within a 35 km2 agricultural catchment underlain by a crystalline, fractured bedrock aquifer. Measurements were performed during low-flow. Stream discharge and radon activity were used to determine the groundwater discharge into the streams. Silica was used as an age-tracer [1]. Nitrate concentrations and isotopic ratios allowed to characterize the denitrification in the aquifer.
Results show that in-stream measurements provide a representative view of transport and denitrification in the aquifer. They highlight that the scale of homogenization is larger than the studied catchment, and reveal an unexpected correlation between the mean residence time and the characteristic denitrification time. This allows to hypothesize a common control on residence time and denitrification in the aquifer, that could be exercised by the depth of the weathered zone. Unraveling such a correlation could be a first step towards a global characterization of aquifer processes through geophysical imagery methods.
[1] Marcais, J., et al. 2018. Dating groundwater with dissolved silica and CFC concentrations in crystalline aquifers. STOTEN.
How to cite: Vautier, C., Petton, C., Abhervé, R., Pinay, G., Lavermann, A., and de Dreuzy, J.-R.: Characterizing denitrification in the aquifer and transit times based on spatially-distributed measurements in streams, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18141, https://doi.org/10.5194/egusphere-egu2020-18141, 2020.
EGU2020-3389 | Displays | BG1.6
Predicting microbial redox dynamics and nutrient cycling in the subsurface considering spatio-temporal heterogeneitiesSwamini Khurana, Falk Heße, and Martin Thullner
Biogeochemical cycles are extensively studied as they control the flow of matter (carbon and nitrogen, specifically) up to the global scale, further impacting ecosystem functions and services. To be able to predict carbon and nitrogen budgets, it is necessary to study carbon and nitrogen cycles in all compartments of the biosphere, from forests to water, to soil and deep subsurface. Since the soil and deeper subsurface compartments store a high share of the global carbon and nitrogen budget, it is necessary to study the carbon and nitrogen cycles in the subsurface at a higher resolution. Given the spatial heterogeneity and temporal dynamics exhibited by the subsurface, coupled with lack of observational opportunities, the prediction of these cycles in the subsurface is a challenge. For this purpose, this study aims to resolve microbial mediated carbon and nitrogen dynamics in the subsurface with respect to spatial and temporal heterogeneity using a numerical modeling approach. The model considers the response of microbial growth and activity to varying environmental conditions such as access to nutrients and energy sources.
The obtained results show a linear relationship between the relative impact on carbon and nitrogen removal and relative difference in breakthrough times between homogeneous scenarios and the spatially heterogeneous scenarios. In contrast, the temporal dynamics of changing flow rates induces minimal aggregated impact on the carbon and nitrogen cycles in the subsurface. This implies that short term temporal dynamics do little to influence the long-term nutrient cycles, given the same average water flux through the entire simulation period. The findings of this study can assist in identification of drivers of microbial dynamics and nutrient cycling in the Critical Zone. This, in turn, can assist towards the regional scale modeling of biogeochemical cycles resulting from microbial dynamics.
How to cite: Khurana, S., Heße, F., and Thullner, M.: Predicting microbial redox dynamics and nutrient cycling in the subsurface considering spatio-temporal heterogeneities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3389, https://doi.org/10.5194/egusphere-egu2020-3389, 2020.
Biogeochemical cycles are extensively studied as they control the flow of matter (carbon and nitrogen, specifically) up to the global scale, further impacting ecosystem functions and services. To be able to predict carbon and nitrogen budgets, it is necessary to study carbon and nitrogen cycles in all compartments of the biosphere, from forests to water, to soil and deep subsurface. Since the soil and deeper subsurface compartments store a high share of the global carbon and nitrogen budget, it is necessary to study the carbon and nitrogen cycles in the subsurface at a higher resolution. Given the spatial heterogeneity and temporal dynamics exhibited by the subsurface, coupled with lack of observational opportunities, the prediction of these cycles in the subsurface is a challenge. For this purpose, this study aims to resolve microbial mediated carbon and nitrogen dynamics in the subsurface with respect to spatial and temporal heterogeneity using a numerical modeling approach. The model considers the response of microbial growth and activity to varying environmental conditions such as access to nutrients and energy sources.
The obtained results show a linear relationship between the relative impact on carbon and nitrogen removal and relative difference in breakthrough times between homogeneous scenarios and the spatially heterogeneous scenarios. In contrast, the temporal dynamics of changing flow rates induces minimal aggregated impact on the carbon and nitrogen cycles in the subsurface. This implies that short term temporal dynamics do little to influence the long-term nutrient cycles, given the same average water flux through the entire simulation period. The findings of this study can assist in identification of drivers of microbial dynamics and nutrient cycling in the Critical Zone. This, in turn, can assist towards the regional scale modeling of biogeochemical cycles resulting from microbial dynamics.
How to cite: Khurana, S., Heße, F., and Thullner, M.: Predicting microbial redox dynamics and nutrient cycling in the subsurface considering spatio-temporal heterogeneities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3389, https://doi.org/10.5194/egusphere-egu2020-3389, 2020.
EGU2020-15958 | Displays | BG1.6
Water as a critical zone currency: linking water storage and age to root uptake and biogeochemical transportSylvain Kuppel, Isabelle Braud, Yves Goddéris, Sekhar Muddu, Jean Riotte, and Laurent Ruiz
Efforts to grasp hydrological functioning in landscapes have gradually been evolving from inferring when water output fluxes respond to precipitation and energy inputs in catchments, towards tracking down which water is present in the different flow pathways of the critical zone (CZ). In the CZ where almost all terrestrial life developed, quantifying water storage and age (residence times in stores and transit times in fluxes) is key to the understanding of how water is i) available to supply root uptake, ii) in interaction with regolith minerals and biota, and iii) a medium for solute transport. We propose an approach to characterize the dynamics and non-linearities of CZ functioning first by mapping time-varying transit times of water exiting as plant transpiration as well as soil evaporation and stream discharge, against the corresponding water storage states. This picture is then extended by assessing the resulting relationships between hydrological states and patterns of nutrient concentration in, and export out of, the critical zone. This analysis considers several spatial scales, from the hillslope to the whole catchment. To this end, we use simulations from a cascade of spatially-distributed numerical tools: a process-based ecohydrological model – accounting for the coupling between energy balance, critical zone hydrology and vegetation dynamics, and a modular chemical weathering model – simulating dissolution/precipitation rates of mineral phases based on kinetics laws. We particularly focus on the long-term experimental tropical catchment of Mule Hole in Peninsular India (part of both the Indian Kabini CZ observatory and the French CZ observatory network OZCAR), with a highly seasonal hydroclimate and deep unsaturated profile, and where extensive hydrometric and chemical datasets are available for model calibration and evaluation. We discuss the interplay between distinctively mobilized critical zone compartments for each output flux, and the time-varying spatial organization of flow pathways.
How to cite: Kuppel, S., Braud, I., Goddéris, Y., Muddu, S., Riotte, J., and Ruiz, L.: Water as a critical zone currency: linking water storage and age to root uptake and biogeochemical transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15958, https://doi.org/10.5194/egusphere-egu2020-15958, 2020.
Efforts to grasp hydrological functioning in landscapes have gradually been evolving from inferring when water output fluxes respond to precipitation and energy inputs in catchments, towards tracking down which water is present in the different flow pathways of the critical zone (CZ). In the CZ where almost all terrestrial life developed, quantifying water storage and age (residence times in stores and transit times in fluxes) is key to the understanding of how water is i) available to supply root uptake, ii) in interaction with regolith minerals and biota, and iii) a medium for solute transport. We propose an approach to characterize the dynamics and non-linearities of CZ functioning first by mapping time-varying transit times of water exiting as plant transpiration as well as soil evaporation and stream discharge, against the corresponding water storage states. This picture is then extended by assessing the resulting relationships between hydrological states and patterns of nutrient concentration in, and export out of, the critical zone. This analysis considers several spatial scales, from the hillslope to the whole catchment. To this end, we use simulations from a cascade of spatially-distributed numerical tools: a process-based ecohydrological model – accounting for the coupling between energy balance, critical zone hydrology and vegetation dynamics, and a modular chemical weathering model – simulating dissolution/precipitation rates of mineral phases based on kinetics laws. We particularly focus on the long-term experimental tropical catchment of Mule Hole in Peninsular India (part of both the Indian Kabini CZ observatory and the French CZ observatory network OZCAR), with a highly seasonal hydroclimate and deep unsaturated profile, and where extensive hydrometric and chemical datasets are available for model calibration and evaluation. We discuss the interplay between distinctively mobilized critical zone compartments for each output flux, and the time-varying spatial organization of flow pathways.
How to cite: Kuppel, S., Braud, I., Goddéris, Y., Muddu, S., Riotte, J., and Ruiz, L.: Water as a critical zone currency: linking water storage and age to root uptake and biogeochemical transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15958, https://doi.org/10.5194/egusphere-egu2020-15958, 2020.
EGU2020-11400 | Displays | BG1.6
Main knowledge gaps in critical zone processes and behaviour: Extracting information from water quality time-series data and models outputsZahra Thomas, Ophélie Fovet, Qian Zhang, Channa Rajanayaka, Christian Zammit, and Chantal Gascuel-Odoux
In the last few decades, the degradation of water quality and resulting regulations, such as the European Water Framework Directive, the United States Clean Water Act, and the New Zealand Resource Management Act 1991 have promoted water quality monitoring in terms of parameter richness, spatial density and high temporal resolution. Long-term catchment observatories have been strengthened to gain insight into hydrological and biogeochemical processes. New technologies have been developed and deployed to collect more in situ water quality data at higher frequencies. Thus, water quality monitoring around the world has produced a large amount of data from research catchments but also from national monitoring networks. Despite these efforts, water quality data are highly heterogeneous in terms of targeted parameters, measurement methods, sampling frequencies. Also, accessibility to water samples differ from each hydrological compartment (stream, groundwater, soil water and precipitation). Among water quality time-series, higher sampling frequencies are available for stream water where monitoring is relatively easy to carry out generating a high amount of data. However, groundwater data are rare since monitoring and access is relatively difficult. Also, the aim of monitoring network evolved with time. In fact, networks are usually established for a specific purpose which is changing with time and the questions the network is trying to answer? This raise the issue of spatial and temporal flexibility- multi purpose network and the use of network to support model development which could be seen as a “theoretical” monitoring network.
The objective of this talk is to present a review of methods used for analysing temporal water quality signals and models outputs, based on a panel of examples from few but densely monitored environmental research observatories. Such infrastructures also give an insight into critical zone (CZ) research that help to build a transdisciplinary community to identify the main knowledge gaps in CZ processes and behaviour.
How to cite: Thomas, Z., Fovet, O., Zhang, Q., Rajanayaka, C., Zammit, C., and Gascuel-Odoux, C.: Main knowledge gaps in critical zone processes and behaviour: Extracting information from water quality time-series data and models outputs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11400, https://doi.org/10.5194/egusphere-egu2020-11400, 2020.
In the last few decades, the degradation of water quality and resulting regulations, such as the European Water Framework Directive, the United States Clean Water Act, and the New Zealand Resource Management Act 1991 have promoted water quality monitoring in terms of parameter richness, spatial density and high temporal resolution. Long-term catchment observatories have been strengthened to gain insight into hydrological and biogeochemical processes. New technologies have been developed and deployed to collect more in situ water quality data at higher frequencies. Thus, water quality monitoring around the world has produced a large amount of data from research catchments but also from national monitoring networks. Despite these efforts, water quality data are highly heterogeneous in terms of targeted parameters, measurement methods, sampling frequencies. Also, accessibility to water samples differ from each hydrological compartment (stream, groundwater, soil water and precipitation). Among water quality time-series, higher sampling frequencies are available for stream water where monitoring is relatively easy to carry out generating a high amount of data. However, groundwater data are rare since monitoring and access is relatively difficult. Also, the aim of monitoring network evolved with time. In fact, networks are usually established for a specific purpose which is changing with time and the questions the network is trying to answer? This raise the issue of spatial and temporal flexibility- multi purpose network and the use of network to support model development which could be seen as a “theoretical” monitoring network.
The objective of this talk is to present a review of methods used for analysing temporal water quality signals and models outputs, based on a panel of examples from few but densely monitored environmental research observatories. Such infrastructures also give an insight into critical zone (CZ) research that help to build a transdisciplinary community to identify the main knowledge gaps in CZ processes and behaviour.
How to cite: Thomas, Z., Fovet, O., Zhang, Q., Rajanayaka, C., Zammit, C., and Gascuel-Odoux, C.: Main knowledge gaps in critical zone processes and behaviour: Extracting information from water quality time-series data and models outputs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11400, https://doi.org/10.5194/egusphere-egu2020-11400, 2020.
EGU2020-12486 | Displays | BG1.6
Prospective upscaling of quantification of non-rainfall water inputs to regional scaleNurit Agam and Dilia Kool
In drylands, the annual amount of non-rainfall water inputs (NRWIs), i.e., a gain of water to the surface soil layer that is not caused by rainfall, can exceed that of rainfall. They thus significantly contribute to the water cycle and to biogeochemical dynamics. However, the small magnitude of the fluxes involved in the formation and evaporation of NRWIs challenges their measurement. Various methods were applied in attempting to quantify NRWIs amount and duration, all being point/local measurements. Given the large heterogeneity of soils, both at local and at regional scale, upscaling from the small point measurement methods to larger scales is necessary in order to fully understand the environmental factors controlling NRWIs and the role of NRWIs in dryland ecosystems. Numerous remote sensing-based models have been developed to assess spatially distributed latent heat fluxes, greatly varying in complexity. Unfortunately, the magnitude of diurnal fluxes due to NRWIs is too small to be detected by any of the existing models. Hypothesizing that soil surface emissivity is sensitive to very small changes in water content at the top soil layer, our objective was to quantify NRWIs by analyzing the temporal changes in land surface emissivity over bare loess soil in the Negev desert, Israel. Proven successful, this can be utilized over large areas.
Intensive measurements using a longwave infrared radiometer (CLIMAT 312-2n ASTER, Cimel Electronique, Paris, France) were conducted in summer 2019 at the Wadi Mashash Experimental Farm (31o08’N, 34o53’E). Radiance and temperature measurements were obtained for a broad band (8.01-13.34 μm) and 5 subsections of this bandwidth. The radiometer was mounted at 0.5 m directly above one of four microlysimeters (undisturbed soil samples installed flash with the soil surface and weighed continuously). Radiometer readings were automatically taken every 15 min for 24-h cycles.
Initial results indicate an agreement between the diurnal cycle of NRWIs detected by the microlysimeters and between the diurnal cycle of an index derived from the radiometer bands: (e11.3-e8.3)/ e10.6 (the numbers are the center of the band in µm). These preliminary results show the potential to upscale quantifying NRWIs to regional scale.
How to cite: Agam, N. and Kool, D.: Prospective upscaling of quantification of non-rainfall water inputs to regional scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12486, https://doi.org/10.5194/egusphere-egu2020-12486, 2020.
In drylands, the annual amount of non-rainfall water inputs (NRWIs), i.e., a gain of water to the surface soil layer that is not caused by rainfall, can exceed that of rainfall. They thus significantly contribute to the water cycle and to biogeochemical dynamics. However, the small magnitude of the fluxes involved in the formation and evaporation of NRWIs challenges their measurement. Various methods were applied in attempting to quantify NRWIs amount and duration, all being point/local measurements. Given the large heterogeneity of soils, both at local and at regional scale, upscaling from the small point measurement methods to larger scales is necessary in order to fully understand the environmental factors controlling NRWIs and the role of NRWIs in dryland ecosystems. Numerous remote sensing-based models have been developed to assess spatially distributed latent heat fluxes, greatly varying in complexity. Unfortunately, the magnitude of diurnal fluxes due to NRWIs is too small to be detected by any of the existing models. Hypothesizing that soil surface emissivity is sensitive to very small changes in water content at the top soil layer, our objective was to quantify NRWIs by analyzing the temporal changes in land surface emissivity over bare loess soil in the Negev desert, Israel. Proven successful, this can be utilized over large areas.
Intensive measurements using a longwave infrared radiometer (CLIMAT 312-2n ASTER, Cimel Electronique, Paris, France) were conducted in summer 2019 at the Wadi Mashash Experimental Farm (31o08’N, 34o53’E). Radiance and temperature measurements were obtained for a broad band (8.01-13.34 μm) and 5 subsections of this bandwidth. The radiometer was mounted at 0.5 m directly above one of four microlysimeters (undisturbed soil samples installed flash with the soil surface and weighed continuously). Radiometer readings were automatically taken every 15 min for 24-h cycles.
Initial results indicate an agreement between the diurnal cycle of NRWIs detected by the microlysimeters and between the diurnal cycle of an index derived from the radiometer bands: (e11.3-e8.3)/ e10.6 (the numbers are the center of the band in µm). These preliminary results show the potential to upscale quantifying NRWIs to regional scale.
How to cite: Agam, N. and Kool, D.: Prospective upscaling of quantification of non-rainfall water inputs to regional scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12486, https://doi.org/10.5194/egusphere-egu2020-12486, 2020.
EGU2020-11430 | Displays | BG1.6
Dissolved gas (CO2, alkanes, O2, N2) in critical zone developed on claystoneCatherine Lerouge, Michaela Blessing, Mathieu Debure, Frédérick Gal, Wolfram Kloppmann, and Jean-Charles Robinet
Weathering processes in clay environments are of major importance because they participate to regulate elemental cycling and mass transfer in the critical zone with major implications for carbon and nitrogen cycling.
In that aim, we measured 1) dissolved CO2, alkanes, O2 and N2 concentrations in clay pore waters by rock degassing, 2) soil gas flux and concentrations, and 3) δ13C of CO2 and alkanes in two contrasted tectonic contexts.
The first context is the marine Jurassic black marls in the French Alps, characterized by deep burial, high erosion rates and dominant physical weathering processes. These marls are well-known for their occurrences of natural methane gas seeps. In this area, we carried out rock degassing on outcropping weathered claystone in complement of soil flux measurements to constrain the implication of weathering processes on the natural gas releases. These measurements are also tested as a new component of environmental baseline assessment in the field of unconventional hydrocarbons.
The second context is the marine Cretaceous Tégulines Clay of the north-eastern part of the Paris Basin, characterized by low burial, low erosion rates, and dominant chemical weathering processes. In this area, we carried out rock degassing on soil and weathered claystone accessible by deep boreholes, in order to define the depth of the critical zone and major reactions controlling the weathering profile.
Oxygen and nitrogen concentrations are the record of the atmospheric diffusion through the formations. Some values are higher than the gas solubility, which could be attributed to rock desaturation and air bubbles, and clay sorption (only for nitrogen).
Weathering processes induce a significant CO2 increase and a large range of δ13CCO2, providing evidence of two major CO2 sources: CO2 internally controlled by carbonates and organic-derived CO2 of internal and external origins. In Alpine black marls, field observations suggest a low depth affected by weathering, due to intense erosion. In Tégulines Clay, the CO2 increase provides evidence of a ~ 20 m-thick critical zone. The lowest δ13CCO2 indicates that the highest reactive zone (organic matter degradation, calcite dissolution and pyrite oxidation) is ~10 m deep, in agreement with the depth of the root network.
Nature and amounts of alkanes are contrasted in the two contexts. In deep burial environment, alkanes are abundant, in particular, in the “ fontaines ardentes” gas seeps in the French Alps. Composition of hydrocarbon gas and δ13C of methane strongly suggest a thermogenic origin. Outcropping black marls contain methane, suggesting oxidation of higher alkanes. That assumption is supported by δ13CCO2 of soil close to δ13C of alkanes. In low burial environment, small amounts of methane are present that rapidly disappear with weathering. Some methane concentrations could be attributed to diffusion of external methane formed by degradation of organic matter under reducing conditions in soil.
Overall those results suggest that dissolved gas and their isotopic signature are good markers of weathering processes in the critical zone.
This research was funded by the EU H2020 Programme (grant 764531 - SECURe), ANDRA-BRGM projects.
How to cite: Lerouge, C., Blessing, M., Debure, M., Gal, F., Kloppmann, W., and Robinet, J.-C.: Dissolved gas (CO2, alkanes, O2, N2) in critical zone developed on claystone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11430, https://doi.org/10.5194/egusphere-egu2020-11430, 2020.
Weathering processes in clay environments are of major importance because they participate to regulate elemental cycling and mass transfer in the critical zone with major implications for carbon and nitrogen cycling.
In that aim, we measured 1) dissolved CO2, alkanes, O2 and N2 concentrations in clay pore waters by rock degassing, 2) soil gas flux and concentrations, and 3) δ13C of CO2 and alkanes in two contrasted tectonic contexts.
The first context is the marine Jurassic black marls in the French Alps, characterized by deep burial, high erosion rates and dominant physical weathering processes. These marls are well-known for their occurrences of natural methane gas seeps. In this area, we carried out rock degassing on outcropping weathered claystone in complement of soil flux measurements to constrain the implication of weathering processes on the natural gas releases. These measurements are also tested as a new component of environmental baseline assessment in the field of unconventional hydrocarbons.
The second context is the marine Cretaceous Tégulines Clay of the north-eastern part of the Paris Basin, characterized by low burial, low erosion rates, and dominant chemical weathering processes. In this area, we carried out rock degassing on soil and weathered claystone accessible by deep boreholes, in order to define the depth of the critical zone and major reactions controlling the weathering profile.
Oxygen and nitrogen concentrations are the record of the atmospheric diffusion through the formations. Some values are higher than the gas solubility, which could be attributed to rock desaturation and air bubbles, and clay sorption (only for nitrogen).
Weathering processes induce a significant CO2 increase and a large range of δ13CCO2, providing evidence of two major CO2 sources: CO2 internally controlled by carbonates and organic-derived CO2 of internal and external origins. In Alpine black marls, field observations suggest a low depth affected by weathering, due to intense erosion. In Tégulines Clay, the CO2 increase provides evidence of a ~ 20 m-thick critical zone. The lowest δ13CCO2 indicates that the highest reactive zone (organic matter degradation, calcite dissolution and pyrite oxidation) is ~10 m deep, in agreement with the depth of the root network.
Nature and amounts of alkanes are contrasted in the two contexts. In deep burial environment, alkanes are abundant, in particular, in the “ fontaines ardentes” gas seeps in the French Alps. Composition of hydrocarbon gas and δ13C of methane strongly suggest a thermogenic origin. Outcropping black marls contain methane, suggesting oxidation of higher alkanes. That assumption is supported by δ13CCO2 of soil close to δ13C of alkanes. In low burial environment, small amounts of methane are present that rapidly disappear with weathering. Some methane concentrations could be attributed to diffusion of external methane formed by degradation of organic matter under reducing conditions in soil.
Overall those results suggest that dissolved gas and their isotopic signature are good markers of weathering processes in the critical zone.
This research was funded by the EU H2020 Programme (grant 764531 - SECURe), ANDRA-BRGM projects.
How to cite: Lerouge, C., Blessing, M., Debure, M., Gal, F., Kloppmann, W., and Robinet, J.-C.: Dissolved gas (CO2, alkanes, O2, N2) in critical zone developed on claystone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11430, https://doi.org/10.5194/egusphere-egu2020-11430, 2020.
EGU2020-10078 | Displays | BG1.6
Lithium isotopes tracing weathering processes in a time series through soil porewatersDavid Wilson, Philip Pogge von Strandmann, Gary Tarbuck, Jo White, Tim Atkinson, and Philip Hopley
Chemical weathering is a key process that controls Earth’s geochemical cycles and global climate, yet at present the climate-weathering feedback is poorly understood. Lithium (Li) isotopes are sensitive to silicate weathering processes [1] and can be applied in a range of settings to improve our understanding of weathering mechanisms and timescales, and hence to quantify the role of weathering in the global carbon cycle. While marine carbonates [2] and speleothems [3] are suitable for recording changes over million year and thousand year timescales, respectively, it is equally important to assess how weathering operates over seasonal [4] and shorter [5] timescales.
In order to explore seasonal variability in a natural system, we analysed Li isotopes and major/trace elements in a time series of cave drip-water samples from Ease Gill and White Scar caves (Yorkshire Dales, U.K.). Since the drip-waters are sourced from the overlying soil porewaters, these measurements provide a record of the evolving weathering fluid chemistry at approximately monthly intervals. Our data reveal striking temporal variations in ∂7Li of 4 to 8 permil, hinting at rapid changes in weathering processes over monthly to seasonal timescales. We assess the sources of Li using isotope measurements on local rocks and soils, which enables a first order quantification of the temporal changes in Li removal by clay formation. Comparison to records of temperature, precipitation, drip rates, and drip-water chemistry allows the local controls on weathering to be assessed and indicates that a dominant control is exerted by the fluid residence time.
These data are further complemented by batch reactor experiments, which were conducted to replicate rock weathering over timescales of hours to weeks. In combination, the time series and experiments contribute to a better understanding of weathering changes over short timescales and their influence on Li isotopes. In addition, results from the drip-waters provide key ground-truthing for interpreting our ongoing Li isotope measurements on speleothems, which will provide new records of weathering changes over longer timescales in response to regional climate forcing.
[1] Pogge von Strandmann, P.A.E., Frings, P.J., Murphy, M.J. (2017) Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. GCA 198, 17-31.
[2] Misra, S. & Froelich, P.N. (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818-823.
[3] Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., Ayalon, A., Jacob, E., Henderson, G.M. (2017) Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. EPSL 469, 64-74.
[4] Liu, X.-M., Wanner, C., Rudnick, R.L., McDonough, W.F. (2015) Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts. EPSL 409, 212-224.
[5] Pogge von Strandmann, P.A.E., Fraser, W.T., Hammond, S.J., Tarbuck, G., Wood, I.G., Oelkers, E.H., Murphy, M.J. (2019) Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology 517, 34-43.
How to cite: Wilson, D., Pogge von Strandmann, P., Tarbuck, G., White, J., Atkinson, T., and Hopley, P.: Lithium isotopes tracing weathering processes in a time series through soil porewaters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10078, https://doi.org/10.5194/egusphere-egu2020-10078, 2020.
Chemical weathering is a key process that controls Earth’s geochemical cycles and global climate, yet at present the climate-weathering feedback is poorly understood. Lithium (Li) isotopes are sensitive to silicate weathering processes [1] and can be applied in a range of settings to improve our understanding of weathering mechanisms and timescales, and hence to quantify the role of weathering in the global carbon cycle. While marine carbonates [2] and speleothems [3] are suitable for recording changes over million year and thousand year timescales, respectively, it is equally important to assess how weathering operates over seasonal [4] and shorter [5] timescales.
In order to explore seasonal variability in a natural system, we analysed Li isotopes and major/trace elements in a time series of cave drip-water samples from Ease Gill and White Scar caves (Yorkshire Dales, U.K.). Since the drip-waters are sourced from the overlying soil porewaters, these measurements provide a record of the evolving weathering fluid chemistry at approximately monthly intervals. Our data reveal striking temporal variations in ∂7Li of 4 to 8 permil, hinting at rapid changes in weathering processes over monthly to seasonal timescales. We assess the sources of Li using isotope measurements on local rocks and soils, which enables a first order quantification of the temporal changes in Li removal by clay formation. Comparison to records of temperature, precipitation, drip rates, and drip-water chemistry allows the local controls on weathering to be assessed and indicates that a dominant control is exerted by the fluid residence time.
These data are further complemented by batch reactor experiments, which were conducted to replicate rock weathering over timescales of hours to weeks. In combination, the time series and experiments contribute to a better understanding of weathering changes over short timescales and their influence on Li isotopes. In addition, results from the drip-waters provide key ground-truthing for interpreting our ongoing Li isotope measurements on speleothems, which will provide new records of weathering changes over longer timescales in response to regional climate forcing.
[1] Pogge von Strandmann, P.A.E., Frings, P.J., Murphy, M.J. (2017) Lithium isotope behaviour during weathering in the Ganges Alluvial Plain. GCA 198, 17-31.
[2] Misra, S. & Froelich, P.N. (2012) Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818-823.
[3] Pogge von Strandmann, P.A.E., Vaks, A., Bar-Matthews, M., Ayalon, A., Jacob, E., Henderson, G.M. (2017) Lithium isotopes in speleothems: Temperature-controlled variation in silicate weathering during glacial cycles. EPSL 469, 64-74.
[4] Liu, X.-M., Wanner, C., Rudnick, R.L., McDonough, W.F. (2015) Processes controlling δ7Li in rivers illuminated by study of streams and groundwaters draining basalts. EPSL 409, 212-224.
[5] Pogge von Strandmann, P.A.E., Fraser, W.T., Hammond, S.J., Tarbuck, G., Wood, I.G., Oelkers, E.H., Murphy, M.J. (2019) Experimental determination of Li isotope behaviour during basalt weathering. Chemical Geology 517, 34-43.
How to cite: Wilson, D., Pogge von Strandmann, P., Tarbuck, G., White, J., Atkinson, T., and Hopley, P.: Lithium isotopes tracing weathering processes in a time series through soil porewaters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10078, https://doi.org/10.5194/egusphere-egu2020-10078, 2020.
EGU2020-20605 | Displays | BG1.6
Urban sediment: a specific geochemical signature compared to natural sediments?Qiufang Zhan, Vincent Chatain, Jean-Baptiste Aubin, Gislain Lipeme Kouyi, Mathieu Gautier, Thierry Winiarski, and Cécile Delolme
Detention and infiltration basin has been increasingly implemented in France in order to provide additional storage of runoff from impervious surfaces due to rapid urbanization. These sustainable urban drainage systems also ensure quality of stormwater infiltrated into groundwater. In urban areas, these devices accumulate suspended particles eroded from city watershed and represent a geochemical signature of these urban watershed. Urban sediments are known to be polluted by high organic and inorganic substance contents, but their geochemical properties and specificities are insufficiently informed. The objective of this work is to study whether geochemical properties of urban sediment accumulated in detention and infiltration basins is distinguished from other natural sediments (from rivers, lake, marine environment). For this purpose, this study focused on relating watershed characteristics and physico-chemical properties of sediment using multivariate analyses based on rank data values. Data were notably collected from the national programs GESSOL (GEStion du patrimoine SOL, i.e. soil environmental functions - soil heritage management) and EC2CO (Ecosphère Continentale et Côtière, i.e. continental and coastal ecosphere) based on 19 infiltration basins around Lyon (France) and from literature (lake, basin, river etc.). Principal Component Analysis (PCA) was used to identify the most important sources of variation between trace metals and organic matters in different sediments. Cluster analysis was performed to group samples of similar sediment characteristics between major variables and trace metals contents. A significant amount of Fe (from 2.52 to 3.92 wt.%) and organic matters (from 18 to 27 wt.%) was found in the urban sediment. The results of PCA showed the influence of grain size on metal variability. Metals are more associated with the aluminosilicates (<63μm fraction), Fe and organic matters. Cluster analysis shows that Ti, Ni, Zn, Cd and Pb are originated from anthropogenic sources, especially discharged from commercial and industrial watershed. This work highlights the singularity of the urban sediment, as they are highly contaminated compared to natural sediments. Hence, the specific treatments are needed to tackle this problematic contamination.
How to cite: Zhan, Q., Chatain, V., Aubin, J.-B., Lipeme Kouyi, G., Gautier, M., Winiarski, T., and Delolme, C.: Urban sediment: a specific geochemical signature compared to natural sediments?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20605, https://doi.org/10.5194/egusphere-egu2020-20605, 2020.
Detention and infiltration basin has been increasingly implemented in France in order to provide additional storage of runoff from impervious surfaces due to rapid urbanization. These sustainable urban drainage systems also ensure quality of stormwater infiltrated into groundwater. In urban areas, these devices accumulate suspended particles eroded from city watershed and represent a geochemical signature of these urban watershed. Urban sediments are known to be polluted by high organic and inorganic substance contents, but their geochemical properties and specificities are insufficiently informed. The objective of this work is to study whether geochemical properties of urban sediment accumulated in detention and infiltration basins is distinguished from other natural sediments (from rivers, lake, marine environment). For this purpose, this study focused on relating watershed characteristics and physico-chemical properties of sediment using multivariate analyses based on rank data values. Data were notably collected from the national programs GESSOL (GEStion du patrimoine SOL, i.e. soil environmental functions - soil heritage management) and EC2CO (Ecosphère Continentale et Côtière, i.e. continental and coastal ecosphere) based on 19 infiltration basins around Lyon (France) and from literature (lake, basin, river etc.). Principal Component Analysis (PCA) was used to identify the most important sources of variation between trace metals and organic matters in different sediments. Cluster analysis was performed to group samples of similar sediment characteristics between major variables and trace metals contents. A significant amount of Fe (from 2.52 to 3.92 wt.%) and organic matters (from 18 to 27 wt.%) was found in the urban sediment. The results of PCA showed the influence of grain size on metal variability. Metals are more associated with the aluminosilicates (<63μm fraction), Fe and organic matters. Cluster analysis shows that Ti, Ni, Zn, Cd and Pb are originated from anthropogenic sources, especially discharged from commercial and industrial watershed. This work highlights the singularity of the urban sediment, as they are highly contaminated compared to natural sediments. Hence, the specific treatments are needed to tackle this problematic contamination.
How to cite: Zhan, Q., Chatain, V., Aubin, J.-B., Lipeme Kouyi, G., Gautier, M., Winiarski, T., and Delolme, C.: Urban sediment: a specific geochemical signature compared to natural sediments?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20605, https://doi.org/10.5194/egusphere-egu2020-20605, 2020.
EGU2020-17490 | Displays | BG1.6
Influence of pH on the formation of organic and mineral colloïds and the associated release of various elements from surface sludge deposits of vertical flow constructed wetlands.Camille Banc, Mathieu Gautier, Blanc Denise, Lupsea-Toader Maria, Marsac Rémi, and Gourdon Rémy
In the treatment of raw domestic wastewaters in vertical flow constructed wetlands (VFCW), a sludge layer is formed at the surface of the first-stage filters by the retention of wastewater’s suspended solids. The deposits constituting this layer is now known to accumulate and degrade a large variety of contaminants during regular conditions of operation. The potential release of the contaminants from the sludge deposits under disturbed conditions or during off-site sludge reuse is therefore a major concern. This study investigated the influence of organic colloids on the mobilization of major and trace elements bound to VFCW surface sludge deposits.
Although the role of organic and/or mineral colloidal carrier phases in the transport of elements in natural systems has been extensively studied, little is known in contrast on the production of colloidal carrier phases from anthropic materials and media such as the sludge deposits considered here.
The acid/base neutralizing capacity (environmental assessment procedure ANC/BNC) (CEN/TS 14429) was carried out to assess the release at different pHs. Samples of sludge deposits were contacted with solutions in a wide pH range and the suspensions filtered through 0.45 µm acetate cellulose filters were subsequently analyzed. In addition, the suspensions were also treated by ultrafiltration using successively membranes of decreasing pore size (30 kDa, 10 kDa and 3 kDa). The leached organic molecules were thereby divided into three groups: (i) large colloids (30 kDa-0.45 µm), (ii) small colloids (10 kDa-3 kDa) and (iii) truly dissolved fraction (< 3 kda). The permeates were analyzed for major and trace elements and organic particles. UV-vis spectra were also recorded to evaluate organic matter aromaticity.
Results showed that the molecular weight of the organic matter released was pH-dependent. Under very acidic conditions, the release of dissolved and poorly aromatic organic matter was mostly observed. At natural pH, close to neutrality, the sludge deposits released mostly large organic colloids. At higher pHs, the release of larger organic colloids was observed associated with an increase in the aromaticity of organic molecules.
The major and trace mineral elements released were found in the different fractions analyzed, depending on their affinity with the organic colloidal carrier phases described previously. A first group of elements (As, P, B, V, Na, K) were mostly found in solution, and therefore poorly affected by colloidal transport regardless of pH conditions. A second group (Co, Cu, Ni, Cd, Zn) was found to be relatively uniformly distributed in the fractions associated with the large and small colloids as well as in the dissolved fraction. A third group (Cr, Ba, Mn, Ca, Li, Mg, Sr) was mostly associated to large organic and/or mineral colloids.
The results obtained in this study are a contribution to a better description of colloidal production and the release of associated elements and contaminants from VFCW sludge deposits. This is a key issue in the assessment of environmental risks related to the operation of the treatment plants or the reuse of the sludge material.
How to cite: Banc, C., Gautier, M., Denise, B., Maria, L.-T., Rémi, M., and Rémy, G.: Influence of pH on the formation of organic and mineral colloïds and the associated release of various elements from surface sludge deposits of vertical flow constructed wetlands., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17490, https://doi.org/10.5194/egusphere-egu2020-17490, 2020.
In the treatment of raw domestic wastewaters in vertical flow constructed wetlands (VFCW), a sludge layer is formed at the surface of the first-stage filters by the retention of wastewater’s suspended solids. The deposits constituting this layer is now known to accumulate and degrade a large variety of contaminants during regular conditions of operation. The potential release of the contaminants from the sludge deposits under disturbed conditions or during off-site sludge reuse is therefore a major concern. This study investigated the influence of organic colloids on the mobilization of major and trace elements bound to VFCW surface sludge deposits.
Although the role of organic and/or mineral colloidal carrier phases in the transport of elements in natural systems has been extensively studied, little is known in contrast on the production of colloidal carrier phases from anthropic materials and media such as the sludge deposits considered here.
The acid/base neutralizing capacity (environmental assessment procedure ANC/BNC) (CEN/TS 14429) was carried out to assess the release at different pHs. Samples of sludge deposits were contacted with solutions in a wide pH range and the suspensions filtered through 0.45 µm acetate cellulose filters were subsequently analyzed. In addition, the suspensions were also treated by ultrafiltration using successively membranes of decreasing pore size (30 kDa, 10 kDa and 3 kDa). The leached organic molecules were thereby divided into three groups: (i) large colloids (30 kDa-0.45 µm), (ii) small colloids (10 kDa-3 kDa) and (iii) truly dissolved fraction (< 3 kda). The permeates were analyzed for major and trace elements and organic particles. UV-vis spectra were also recorded to evaluate organic matter aromaticity.
Results showed that the molecular weight of the organic matter released was pH-dependent. Under very acidic conditions, the release of dissolved and poorly aromatic organic matter was mostly observed. At natural pH, close to neutrality, the sludge deposits released mostly large organic colloids. At higher pHs, the release of larger organic colloids was observed associated with an increase in the aromaticity of organic molecules.
The major and trace mineral elements released were found in the different fractions analyzed, depending on their affinity with the organic colloidal carrier phases described previously. A first group of elements (As, P, B, V, Na, K) were mostly found in solution, and therefore poorly affected by colloidal transport regardless of pH conditions. A second group (Co, Cu, Ni, Cd, Zn) was found to be relatively uniformly distributed in the fractions associated with the large and small colloids as well as in the dissolved fraction. A third group (Cr, Ba, Mn, Ca, Li, Mg, Sr) was mostly associated to large organic and/or mineral colloids.
The results obtained in this study are a contribution to a better description of colloidal production and the release of associated elements and contaminants from VFCW sludge deposits. This is a key issue in the assessment of environmental risks related to the operation of the treatment plants or the reuse of the sludge material.
How to cite: Banc, C., Gautier, M., Denise, B., Maria, L.-T., Rémi, M., and Rémy, G.: Influence of pH on the formation of organic and mineral colloïds and the associated release of various elements from surface sludge deposits of vertical flow constructed wetlands., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17490, https://doi.org/10.5194/egusphere-egu2020-17490, 2020.
EGU2020-10953 | Displays | BG1.6
Impact of Sustainable Urban Drainage Systems (SUDS) on Vadose Zone WaterArne Reck, Eva Paton, and Björn Kluge
Sustainable Urban Drainage System (SUDS), like bioretention for stormwater runoff infiltration, offer several advantages compared to the traditional centralised sewage drainage. Such approaches maintain the natural water cycle in the urban critical zone and help to mitigate climatic extremes impact on urban areas by retarding, storing and evaporating stormwater runoff. Although SUDS are established since longer time (>25 years for example in Germany) we lack systematic investigations on the hydrological functionality and pollutant retention performance of these systems after long-term operation. We employed laboratory and field experiments coupled with numerical simulations to investigate three long-term operated bioretention systems in Germany with following objectives: (i) a detailed mapping of spatial contamination patterns; (ii) a soil hydrological and -chemical substrate characterisation; (iii) an event-based influent and effluent trace metal concentrations monitoring covering 36 months in total; and (iv) a soil water balance simulation using HYDRUS-1D. Regarding the pollution patterns, we found significantly enhanced trace metal contents in the soil substrate mainly as a function of the drainage area type and kind of inflow regime. Nonetheless, average free metal ion concentrations in the soil seepage water extracted below the upper soil layers (30-45 cm) fall below German trigger values considering the soil-groundwater pathway at all three investigated sites. Compared to influent concentrations, average load reduction of the major pollutants Cu and Zn was 55-95 % within the upper soil layers. With regard to infiltrated runoff volumes, simulated water balances revealed hydraulic load reductions of 10-40 % by evapotranspiration. Our current findings demonstrate no risk of groundwater degradation suggesting bioretention as a powerful tool in terms of maintaining the natural water cycle in the urban vadose zone even after long-term operation. Debatable might be the handling of soil substrates modified by stormwater infiltration showing enhanced trace metal contents and a certain amount of technogenic sediments like tyre wear. On the one hand, a big metal pool is specifically bound meaning it can easily turn into free ions during changing conditions like the application of de-icing agents. On the other hand, these substrates perfectly fulfil pollutant retention and water conductivity requirements as mandatory for an effective stormwater treatment using SUDS approaches.
How to cite: Reck, A., Paton, E., and Kluge, B.: Impact of Sustainable Urban Drainage Systems (SUDS) on Vadose Zone Water, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10953, https://doi.org/10.5194/egusphere-egu2020-10953, 2020.
Sustainable Urban Drainage System (SUDS), like bioretention for stormwater runoff infiltration, offer several advantages compared to the traditional centralised sewage drainage. Such approaches maintain the natural water cycle in the urban critical zone and help to mitigate climatic extremes impact on urban areas by retarding, storing and evaporating stormwater runoff. Although SUDS are established since longer time (>25 years for example in Germany) we lack systematic investigations on the hydrological functionality and pollutant retention performance of these systems after long-term operation. We employed laboratory and field experiments coupled with numerical simulations to investigate three long-term operated bioretention systems in Germany with following objectives: (i) a detailed mapping of spatial contamination patterns; (ii) a soil hydrological and -chemical substrate characterisation; (iii) an event-based influent and effluent trace metal concentrations monitoring covering 36 months in total; and (iv) a soil water balance simulation using HYDRUS-1D. Regarding the pollution patterns, we found significantly enhanced trace metal contents in the soil substrate mainly as a function of the drainage area type and kind of inflow regime. Nonetheless, average free metal ion concentrations in the soil seepage water extracted below the upper soil layers (30-45 cm) fall below German trigger values considering the soil-groundwater pathway at all three investigated sites. Compared to influent concentrations, average load reduction of the major pollutants Cu and Zn was 55-95 % within the upper soil layers. With regard to infiltrated runoff volumes, simulated water balances revealed hydraulic load reductions of 10-40 % by evapotranspiration. Our current findings demonstrate no risk of groundwater degradation suggesting bioretention as a powerful tool in terms of maintaining the natural water cycle in the urban vadose zone even after long-term operation. Debatable might be the handling of soil substrates modified by stormwater infiltration showing enhanced trace metal contents and a certain amount of technogenic sediments like tyre wear. On the one hand, a big metal pool is specifically bound meaning it can easily turn into free ions during changing conditions like the application of de-icing agents. On the other hand, these substrates perfectly fulfil pollutant retention and water conductivity requirements as mandatory for an effective stormwater treatment using SUDS approaches.
How to cite: Reck, A., Paton, E., and Kluge, B.: Impact of Sustainable Urban Drainage Systems (SUDS) on Vadose Zone Water, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10953, https://doi.org/10.5194/egusphere-egu2020-10953, 2020.
EGU2020-8668 | Displays | BG1.6
Can climate adaptation solutions fix the urban heat island? An assessment of the thermal conditions during heat waves in Vienna impacted by climate change and urban development scenarios for the mid-21st-centuryPaul Hamer, Heidelinde Trimmel, Philipp Weihs, Stéphanie Faroux, Herbert Formayer, Kristofer Hasel, Johannes Laiminghofer, David Leidinger, Valéry Masson, Imran Nadeem, Sandro Oswald, Michael Revesz, and Robert Schoetter
Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.
We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21st century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.
Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.
Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K. Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.
This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.
We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.
How to cite: Hamer, P., Trimmel, H., Weihs, P., Faroux, S., Formayer, H., Hasel, K., Laiminghofer, J., Leidinger, D., Masson, V., Nadeem, I., Oswald, S., Revesz, M., and Schoetter, R.: Can climate adaptation solutions fix the urban heat island? An assessment of the thermal conditions during heat waves in Vienna impacted by climate change and urban development scenarios for the mid-21st-century , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8668, https://doi.org/10.5194/egusphere-egu2020-8668, 2020.
Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.
We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21st century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.
Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.
Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K. Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.
This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.
We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.
How to cite: Hamer, P., Trimmel, H., Weihs, P., Faroux, S., Formayer, H., Hasel, K., Laiminghofer, J., Leidinger, D., Masson, V., Nadeem, I., Oswald, S., Revesz, M., and Schoetter, R.: Can climate adaptation solutions fix the urban heat island? An assessment of the thermal conditions during heat waves in Vienna impacted by climate change and urban development scenarios for the mid-21st-century , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8668, https://doi.org/10.5194/egusphere-egu2020-8668, 2020.
EGU2020-11645 | Displays | BG1.6
Hydroclimatic control on global weathering regimesSalvatore Calabrese and Amilcare Porporato
Chemical weathering strongly impacts the evolution of the Critical Zone and the climate system. The large number of factors affecting weathering rates, however, makes it difficult to interpret measurements across different climatic and geologic settings. Here, we use the π theorem of dimensional analysis to develop a theoretical framework for global datasets of chemical weathering rates. The analysis reveals the dominant role of wetness on the chemical depletion of parent materials and provides a functional relationship to estimate the chemical depletion fraction from readily available climatic variables. Based on this finding, we calculate the spatial distribution of chemical depletion fraction and identify the areas where weathering rates are limited by the supply of fresh minerals or by water availability, and the areas where they are susceptible to future shifts in wetness.
How to cite: Calabrese, S. and Porporato, A.: Hydroclimatic control on global weathering regimes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11645, https://doi.org/10.5194/egusphere-egu2020-11645, 2020.
Chemical weathering strongly impacts the evolution of the Critical Zone and the climate system. The large number of factors affecting weathering rates, however, makes it difficult to interpret measurements across different climatic and geologic settings. Here, we use the π theorem of dimensional analysis to develop a theoretical framework for global datasets of chemical weathering rates. The analysis reveals the dominant role of wetness on the chemical depletion of parent materials and provides a functional relationship to estimate the chemical depletion fraction from readily available climatic variables. Based on this finding, we calculate the spatial distribution of chemical depletion fraction and identify the areas where weathering rates are limited by the supply of fresh minerals or by water availability, and the areas where they are susceptible to future shifts in wetness.
How to cite: Calabrese, S. and Porporato, A.: Hydroclimatic control on global weathering regimes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11645, https://doi.org/10.5194/egusphere-egu2020-11645, 2020.
EGU2020-11100 | Displays | BG1.6
Regolith production rates from 238U-234U-230Th disequilibrium in a deep granitic weathering profile (Longnan, SE China)Guodong Jia, François Chabaux, Jérôme van der Woerd, Eric Pelt, Raphaël di Chiara, Julien Ackerer, Zhi-Qi Zhao, Ye Yang, Sheng Xu, and Cong-Qiang Liu
The present study seeks to evaluate the application of the 238U-234U-230Th radioactive disequilibrium methodology for the determination of the regolith production rates in thick weathering profiles marked by long histories, encountered under various climate regimes, but still very little studied by these techniques. For this purpose, 238U-234U-230Th disequilibria have been analyzed in a ≈ 11 m-deep profile developed on a granitic bedrock in south China (Longnan, Jiangxi Province) under a subtropical climate. The results demonstrate that in such deep weathering profiles the determination of weathering rates from the analysis of U-series nuclides in bulk rock samples cannot be recovered by applying in one step to the entire alteration profile the modeling approach classically used to interpret the U-series nuclides, i.e. the “gain and loss” model. The modeling has to be made on subsections of relatively small size (<1 or 2 meters of thickness), so that the model assumptions can be met, especially the constancy of the mobility parameters along the weathering zone. The results also confirm that the upper part of the weathering profiles marked by the vegetation/biological influences and responding to the short-term climate variations is not well adapted for applying the U-series nuclides methodology for recovering regolith production rates. Based on the data, regolith production rates were estimated independently on four different zones of the profile. Similar values of ~2m/Ma have been obtained whatever the level, suggesting that such a profile of more than 5 million years would be formed at a relatively stable long-term production rate (averaged over several thousand years). This slow production rate of 2 m/Ma can be reconciled with the previously published in situ 10Be data from the same profile, when assuming non steady-state erosion of the upper part of the profile. Slow denudation rates similar to the U-series derived production rates of 2 m/Ma can thus be obtained with a minimum exposure time of 40 ky, and an inherited component of 20-25*104 at/g originating from the exhumed deeper part of the profile. Altogether the data demonstrate that the combined analysis of U-series and cosmogenic nuclides, which has the potential to become a relevant approach to constrain the dynamics of continental surfaces, requires (a) dense and deep sampling for both nuclides studies, and (b) also to consider more systematically the polyphased and variable history of erosion of the continental surface during the Quaternary. These results have implications for the interpretation of long-term accumulation of 10Be at depth and 10Be data variations in granitic alteration profiles.
How to cite: Jia, G., Chabaux, F., van der Woerd, J., Pelt, E., di Chiara, R., Ackerer, J., Zhao, Z.-Q., Yang, Y., Xu, S., and Liu, C.-Q.: Regolith production rates from 238U-234U-230Th disequilibrium in a deep granitic weathering profile (Longnan, SE China), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11100, https://doi.org/10.5194/egusphere-egu2020-11100, 2020.
The present study seeks to evaluate the application of the 238U-234U-230Th radioactive disequilibrium methodology for the determination of the regolith production rates in thick weathering profiles marked by long histories, encountered under various climate regimes, but still very little studied by these techniques. For this purpose, 238U-234U-230Th disequilibria have been analyzed in a ≈ 11 m-deep profile developed on a granitic bedrock in south China (Longnan, Jiangxi Province) under a subtropical climate. The results demonstrate that in such deep weathering profiles the determination of weathering rates from the analysis of U-series nuclides in bulk rock samples cannot be recovered by applying in one step to the entire alteration profile the modeling approach classically used to interpret the U-series nuclides, i.e. the “gain and loss” model. The modeling has to be made on subsections of relatively small size (<1 or 2 meters of thickness), so that the model assumptions can be met, especially the constancy of the mobility parameters along the weathering zone. The results also confirm that the upper part of the weathering profiles marked by the vegetation/biological influences and responding to the short-term climate variations is not well adapted for applying the U-series nuclides methodology for recovering regolith production rates. Based on the data, regolith production rates were estimated independently on four different zones of the profile. Similar values of ~2m/Ma have been obtained whatever the level, suggesting that such a profile of more than 5 million years would be formed at a relatively stable long-term production rate (averaged over several thousand years). This slow production rate of 2 m/Ma can be reconciled with the previously published in situ 10Be data from the same profile, when assuming non steady-state erosion of the upper part of the profile. Slow denudation rates similar to the U-series derived production rates of 2 m/Ma can thus be obtained with a minimum exposure time of 40 ky, and an inherited component of 20-25*104 at/g originating from the exhumed deeper part of the profile. Altogether the data demonstrate that the combined analysis of U-series and cosmogenic nuclides, which has the potential to become a relevant approach to constrain the dynamics of continental surfaces, requires (a) dense and deep sampling for both nuclides studies, and (b) also to consider more systematically the polyphased and variable history of erosion of the continental surface during the Quaternary. These results have implications for the interpretation of long-term accumulation of 10Be at depth and 10Be data variations in granitic alteration profiles.
How to cite: Jia, G., Chabaux, F., van der Woerd, J., Pelt, E., di Chiara, R., Ackerer, J., Zhao, Z.-Q., Yang, Y., Xu, S., and Liu, C.-Q.: Regolith production rates from 238U-234U-230Th disequilibrium in a deep granitic weathering profile (Longnan, SE China), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11100, https://doi.org/10.5194/egusphere-egu2020-11100, 2020.
EGU2020-11626 | Displays | BG1.6
Lithological controls on soil formation rates and the implications for soil sustainabilityDaniel Evans, John Quinton, Andrew Tye, Angel Rodes, Jessica Davies, and Simon Mudd
Soils deliver multiple ecosystem services and their long-term sustainability is fundamentally determined by the rates at which they form and erode. Our knowledge and understanding of soil formation is not commensurate with that of soil erosion, but developments in cosmogenic radionuclide analysis have enabled soil scientists to more accurately constrain the rates at which soils form from bedrock. To date, all three major rock types – igneous, sedimentary and metamorphic lithologies – have been examined in such work. Soil formation rates have been measured and compared between these rock types but the impact of rock characteristics such as mineralogy or porosity on soil formation rates has seldom been explored. In this UK-based study, we addressed this knowledge gap by using cosmogenic radionuclide analysis to investigate whether the lithological variability of sandstone governs pedogenesis. Soil formation rates from two arable hillslopes underlain by different types of arenite sandstone were calculated. Rates ranged from 0.090 to 0.193 mm yr-1 and although the sandstones differed in porosity, no significant differences in soil formation rates were found between them. On the contrary, these rates significantly differed from those measured at two other sandstone-based sites in the UK, and with the rates compiled in global inventory of cosmogenic studies on sandstone-based soils. We suggest that this is due to the absence of matrix and the greater porosities exhibited at our UK sites in comparison to the matrix-abundant, less porous wackes that have been studied previously. We then used soil formation rates to calculate first-order soil lifespans for both of our hillslopes. In a worst case scenario, the lifespan of the A horizon at one of our sites could be eroded in less than 40 years, with bedrock exposure occurring in less than 190 years. This underlines the urgency required in ameliorating rates of soil erosion. However, we also demonstrate the importance of measuring soil erosion and formation in parallel, at the site of interest, rather than calculating a mean rate from the literature, as we demonstrate soil formation rates can vary significantly among variants of the same rock type.
How to cite: Evans, D., Quinton, J., Tye, A., Rodes, A., Davies, J., and Mudd, S.: Lithological controls on soil formation rates and the implications for soil sustainability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11626, https://doi.org/10.5194/egusphere-egu2020-11626, 2020.
Soils deliver multiple ecosystem services and their long-term sustainability is fundamentally determined by the rates at which they form and erode. Our knowledge and understanding of soil formation is not commensurate with that of soil erosion, but developments in cosmogenic radionuclide analysis have enabled soil scientists to more accurately constrain the rates at which soils form from bedrock. To date, all three major rock types – igneous, sedimentary and metamorphic lithologies – have been examined in such work. Soil formation rates have been measured and compared between these rock types but the impact of rock characteristics such as mineralogy or porosity on soil formation rates has seldom been explored. In this UK-based study, we addressed this knowledge gap by using cosmogenic radionuclide analysis to investigate whether the lithological variability of sandstone governs pedogenesis. Soil formation rates from two arable hillslopes underlain by different types of arenite sandstone were calculated. Rates ranged from 0.090 to 0.193 mm yr-1 and although the sandstones differed in porosity, no significant differences in soil formation rates were found between them. On the contrary, these rates significantly differed from those measured at two other sandstone-based sites in the UK, and with the rates compiled in global inventory of cosmogenic studies on sandstone-based soils. We suggest that this is due to the absence of matrix and the greater porosities exhibited at our UK sites in comparison to the matrix-abundant, less porous wackes that have been studied previously. We then used soil formation rates to calculate first-order soil lifespans for both of our hillslopes. In a worst case scenario, the lifespan of the A horizon at one of our sites could be eroded in less than 40 years, with bedrock exposure occurring in less than 190 years. This underlines the urgency required in ameliorating rates of soil erosion. However, we also demonstrate the importance of measuring soil erosion and formation in parallel, at the site of interest, rather than calculating a mean rate from the literature, as we demonstrate soil formation rates can vary significantly among variants of the same rock type.
How to cite: Evans, D., Quinton, J., Tye, A., Rodes, A., Davies, J., and Mudd, S.: Lithological controls on soil formation rates and the implications for soil sustainability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11626, https://doi.org/10.5194/egusphere-egu2020-11626, 2020.
EGU2020-20385 | Displays | BG1.6
Lithium isotopes as a probe of anthropogenic activities: Dommel RiverPhilippe Negrel, Romain Millot, and Emmanuelle Petelet-Giraud
Lithium (Li) contents and isotopes were studied in the Dommel catchment, a small riverine system in northern Belgium and the southern part of the Netherlands discharging into the Meuse River downstream of Eindhoven. This covered surface and groundwaters developed onto sand and gravel in the catchment. The integrated investigation aimed at evaluating the potential of Li isotopes as effective tracers of anthropogenic activities in addition to efficiently trace water/rock interaction processes within a sandy environment. The d7Li values and Li concentrations were measured following standard chemical purification of Li using the cationic exchange resin protocol in a clean lab. Lithium-isotope compositions were measured with a Neptune MC-ICP-MS and Li concentrations by ICP-MS.
Dissolved lithium concentrations in the Dommel catchment span one order of magnitude ranging from 1.55 to 39.20 µg/L, with a mean concentration of 6.58 µg/L higher than the worldwide riverine average of 1.9 µg/L. The dissolved d7Li displays a large range of variation from +5.4‰ to +27.8‰. Part of the catchment can be impacted by smelter effluents with Li concentrations in the range 91 – 526 µg/L (mean value 288.36 µg/L) and a d7Li of around +25.6‰ and then dilution along the flowpath of the river basin.
To go further into the interpretation of the dataset in terms of using Li isotopes as a probe of anthropogenic activities, we first applied an atmospheric-input correction to waters both for Li concentration and d7Li as rainfall constitutes an important fraction of dissolved elements in the Dommel waters (8 to 100% of Li in waters is derived from atmosphere). Secondly, we determined and quantified the anthropogenic influence using δ7Li and mixing equations in the impacted parts of the catchment.
How to cite: Negrel, P., Millot, R., and Petelet-Giraud, E.: Lithium isotopes as a probe of anthropogenic activities: Dommel River, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20385, https://doi.org/10.5194/egusphere-egu2020-20385, 2020.
Lithium (Li) contents and isotopes were studied in the Dommel catchment, a small riverine system in northern Belgium and the southern part of the Netherlands discharging into the Meuse River downstream of Eindhoven. This covered surface and groundwaters developed onto sand and gravel in the catchment. The integrated investigation aimed at evaluating the potential of Li isotopes as effective tracers of anthropogenic activities in addition to efficiently trace water/rock interaction processes within a sandy environment. The d7Li values and Li concentrations were measured following standard chemical purification of Li using the cationic exchange resin protocol in a clean lab. Lithium-isotope compositions were measured with a Neptune MC-ICP-MS and Li concentrations by ICP-MS.
Dissolved lithium concentrations in the Dommel catchment span one order of magnitude ranging from 1.55 to 39.20 µg/L, with a mean concentration of 6.58 µg/L higher than the worldwide riverine average of 1.9 µg/L. The dissolved d7Li displays a large range of variation from +5.4‰ to +27.8‰. Part of the catchment can be impacted by smelter effluents with Li concentrations in the range 91 – 526 µg/L (mean value 288.36 µg/L) and a d7Li of around +25.6‰ and then dilution along the flowpath of the river basin.
To go further into the interpretation of the dataset in terms of using Li isotopes as a probe of anthropogenic activities, we first applied an atmospheric-input correction to waters both for Li concentration and d7Li as rainfall constitutes an important fraction of dissolved elements in the Dommel waters (8 to 100% of Li in waters is derived from atmosphere). Secondly, we determined and quantified the anthropogenic influence using δ7Li and mixing equations in the impacted parts of the catchment.
How to cite: Negrel, P., Millot, R., and Petelet-Giraud, E.: Lithium isotopes as a probe of anthropogenic activities: Dommel River, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20385, https://doi.org/10.5194/egusphere-egu2020-20385, 2020.
EGU2020-12113 | Displays | BG1.6
Soils in the urban critical zone - Analyse of anthropogenic pressures and current proposals to preserve soil functions and ecosystem servicesBeatrice Bechet, Laure Beaudet, Philippe Branchu, Patrice Cannavo, Cécile Delolme, Liliane Jean-Soro, Thierry Lebeau, Cécile Le Guern, Fabienne Marseille, and Christophe Schwartz
By 2017, the book "Soils within cities" (Levin et al., 2017) is moving away from the pedologist's description of urban soils to a broader understanding of urban soils, including the functions and the services they provide. This approach, which complements the naturalistic description of the soil, corresponds to the approach derived from the millennium ecosystems assessment (Morel et al., 2015; Walter et al., 2015). It is considered to be relatively anthropocentric and thus favours the integration of the soil in the urban socio-ecosystem.
Considering the soil by both its pedogenesis and functioning in ecosystems induces taking into account the dynamics of this system, but raises, with regard to the literature on urban soils, the existing lack to qualify and quantify the processes of genesis and evolution, especially in relation to ongoing climate change (Baveye et al., 2016). On the other hand, the description of soil ecosystem services (regulation, provisioning, cultural services) immediately reveals the interdependence of soil biophysicochemical processes with those occurring in the hydrosphere, the atmosphere and the biosphere (Adhikari and Hartemink, 2016). In this respect, the soil plays an interface role, but is deeply disturbed in urban areas.
The objective of the communication will be to review the status of urban soil in the "urban critical zone" concept. Through methodologies and results from projects implemented in French major cities that have enabled the development of databases, we will review the classification of these atypical soils and the changes in their properties and functions. Through the definition of the services they provide, we will propose a more integrated vision of this compartment of the urban ecosystem, by specifying the forcing caused by its interface position, but also the opportunities of improvement foreseen by the development of solutions for revegetation and de-sealing. We will see how the timeframe of soil evolution in urban zones can influence the data collection of soil parameters and mapping.
How to cite: Bechet, B., Beaudet, L., Branchu, P., Cannavo, P., Delolme, C., Jean-Soro, L., Lebeau, T., Le Guern, C., Marseille, F., and Schwartz, C.: Soils in the urban critical zone - Analyse of anthropogenic pressures and current proposals to preserve soil functions and ecosystem services, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12113, https://doi.org/10.5194/egusphere-egu2020-12113, 2020.
By 2017, the book "Soils within cities" (Levin et al., 2017) is moving away from the pedologist's description of urban soils to a broader understanding of urban soils, including the functions and the services they provide. This approach, which complements the naturalistic description of the soil, corresponds to the approach derived from the millennium ecosystems assessment (Morel et al., 2015; Walter et al., 2015). It is considered to be relatively anthropocentric and thus favours the integration of the soil in the urban socio-ecosystem.
Considering the soil by both its pedogenesis and functioning in ecosystems induces taking into account the dynamics of this system, but raises, with regard to the literature on urban soils, the existing lack to qualify and quantify the processes of genesis and evolution, especially in relation to ongoing climate change (Baveye et al., 2016). On the other hand, the description of soil ecosystem services (regulation, provisioning, cultural services) immediately reveals the interdependence of soil biophysicochemical processes with those occurring in the hydrosphere, the atmosphere and the biosphere (Adhikari and Hartemink, 2016). In this respect, the soil plays an interface role, but is deeply disturbed in urban areas.
The objective of the communication will be to review the status of urban soil in the "urban critical zone" concept. Through methodologies and results from projects implemented in French major cities that have enabled the development of databases, we will review the classification of these atypical soils and the changes in their properties and functions. Through the definition of the services they provide, we will propose a more integrated vision of this compartment of the urban ecosystem, by specifying the forcing caused by its interface position, but also the opportunities of improvement foreseen by the development of solutions for revegetation and de-sealing. We will see how the timeframe of soil evolution in urban zones can influence the data collection of soil parameters and mapping.
How to cite: Bechet, B., Beaudet, L., Branchu, P., Cannavo, P., Delolme, C., Jean-Soro, L., Lebeau, T., Le Guern, C., Marseille, F., and Schwartz, C.: Soils in the urban critical zone - Analyse of anthropogenic pressures and current proposals to preserve soil functions and ecosystem services, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12113, https://doi.org/10.5194/egusphere-egu2020-12113, 2020.
EGU2020-14486 | Displays | BG1.6 | Highlight
Observil - A French network project of urban critical zone observatoriesFabrice Rodriguez, Jean Nabucet, Jules Kouadio, Beatrice Bechet, Nadege Blond, Emmanuel Bozonnet, Ghassan Chebbo, Damien David, Sihem Guernouti, Thomas Houet, Pascal Keravec, Thierry Lebeau, Gislain Lipeme-Kouyi, Valery Masson, Anne Puissant, Yves Richard, Christophe Schwartz, and Zahra Thomas
One significant effect of urbanization is the modification of environmental conditions, with potential effects on the functioning of urban ecosystems and on their ability to perform functions and to provide service. This is due to both the multiple changes of surfaces and soils, and to an increased human pressure. These changes have indeed major negative impacts on natural resources such as air, water, soil, and biodiversity they host, and may affect locally the human thermal comfort, in addition to the climate change. A better understanding of the physical and biogeochemical processes leading to these changes is then crucial in order to propose and to optimize the mitigation and adaptation strategies. Following the recent efforts in the development of Critical Zones Observatories (CZOs), a new research initiative will regroup well-monitored and well-characterized urban field sites all over the French national territory within a National Observation Service called Observil. This observatory aims to address a multidisciplinary approach of urban environments, through a smart definition of appropriate variables and indicators required to better describe the physical and geochemical processes involved in the quality and the dynamic of the soil-surface-atmosphere compartments in cities. To do that, a common Spatial Information System dedicated to the creation of a structured observation database is under construction, in order to regroup the data from a large network bringing together 9 French cities under very contrasted environmental conditions (urban morphology, geology, climate). The main scientific questions addressed by this observation network project will be presented, along with a description of the the selected variables measured on the different sites.
How to cite: Rodriguez, F., Nabucet, J., Kouadio, J., Bechet, B., Blond, N., Bozonnet, E., Chebbo, G., David, D., Guernouti, S., Houet, T., Keravec, P., Lebeau, T., Lipeme-Kouyi, G., Masson, V., Puissant, A., Richard, Y., Schwartz, C., and Thomas, Z.: Observil - A French network project of urban critical zone observatories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14486, https://doi.org/10.5194/egusphere-egu2020-14486, 2020.
One significant effect of urbanization is the modification of environmental conditions, with potential effects on the functioning of urban ecosystems and on their ability to perform functions and to provide service. This is due to both the multiple changes of surfaces and soils, and to an increased human pressure. These changes have indeed major negative impacts on natural resources such as air, water, soil, and biodiversity they host, and may affect locally the human thermal comfort, in addition to the climate change. A better understanding of the physical and biogeochemical processes leading to these changes is then crucial in order to propose and to optimize the mitigation and adaptation strategies. Following the recent efforts in the development of Critical Zones Observatories (CZOs), a new research initiative will regroup well-monitored and well-characterized urban field sites all over the French national territory within a National Observation Service called Observil. This observatory aims to address a multidisciplinary approach of urban environments, through a smart definition of appropriate variables and indicators required to better describe the physical and geochemical processes involved in the quality and the dynamic of the soil-surface-atmosphere compartments in cities. To do that, a common Spatial Information System dedicated to the creation of a structured observation database is under construction, in order to regroup the data from a large network bringing together 9 French cities under very contrasted environmental conditions (urban morphology, geology, climate). The main scientific questions addressed by this observation network project will be presented, along with a description of the the selected variables measured on the different sites.
How to cite: Rodriguez, F., Nabucet, J., Kouadio, J., Bechet, B., Blond, N., Bozonnet, E., Chebbo, G., David, D., Guernouti, S., Houet, T., Keravec, P., Lebeau, T., Lipeme-Kouyi, G., Masson, V., Puissant, A., Richard, Y., Schwartz, C., and Thomas, Z.: Observil - A French network project of urban critical zone observatories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14486, https://doi.org/10.5194/egusphere-egu2020-14486, 2020.
EGU2020-2956 | Displays | BG1.6
A Critical Zone Approach to Carbon Fluxes in the Arctic TundraMariasilvia Giamberini, Ilaria Baneschi, Matteo Lelli, Marta Magnani, Brunella Raco, and Antonello Provenzale
Arctic tundra is currently undergoing significant changes induced by the effects of a rapid temperature rise, that in the Arctic is about twice as fast as in the rest of the world. The response of the system composed by the permafrost active layer, soil and vegetation is especially relevant. In fact, it is still unclear whether the system will turn from a carbon sink to a carbon source, owing to the interplay of two opposite phenomena: the increasing time span of the growing season, favouring Net Ecosystem Production (NEP), and the increasing soil temperatures, favouring degradation of organic matter through heterotrophic respiration (HR) and then creating a positive climate feedback. In this work, we analyse soil-vegetation-atmosphere CO2 flux data of a field campaign conducted in the Bayelva river basin, Spitzbergen, in the Svalbard Archipelago (NO) during summer 2019, measured by a portable accumulation chamber. We use a “Critical Zone” perspective, considering the multiple interactions between biotic and abiotic components. We measured the Net Ecosystem Exchange (NEE) and Ecosystem Respiration (ER) along a slope gradient at different degrees of soil humidity and active layer depths, relating flux data to climate and environmental parameters, soil physical-chemical parameters and vegetation type. The statistical empirical relationships between variables are analysed to identify the main drivers of carbon exchanges. An empirical data-driven model is built to describe the coupled dynamics of soil, vegetation, water and atmosphere that contributes to budgeting the carbon cycle in the Arctic Critical Zone. A comparison of the carbon fluxes obtained with the accumulation chamber method and an Eddy Covariance tower located in the same area is also addressed.
How to cite: Giamberini, M., Baneschi, I., Lelli, M., Magnani, M., Raco, B., and Provenzale, A.: A Critical Zone Approach to Carbon Fluxes in the Arctic Tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2956, https://doi.org/10.5194/egusphere-egu2020-2956, 2020.
Arctic tundra is currently undergoing significant changes induced by the effects of a rapid temperature rise, that in the Arctic is about twice as fast as in the rest of the world. The response of the system composed by the permafrost active layer, soil and vegetation is especially relevant. In fact, it is still unclear whether the system will turn from a carbon sink to a carbon source, owing to the interplay of two opposite phenomena: the increasing time span of the growing season, favouring Net Ecosystem Production (NEP), and the increasing soil temperatures, favouring degradation of organic matter through heterotrophic respiration (HR) and then creating a positive climate feedback. In this work, we analyse soil-vegetation-atmosphere CO2 flux data of a field campaign conducted in the Bayelva river basin, Spitzbergen, in the Svalbard Archipelago (NO) during summer 2019, measured by a portable accumulation chamber. We use a “Critical Zone” perspective, considering the multiple interactions between biotic and abiotic components. We measured the Net Ecosystem Exchange (NEE) and Ecosystem Respiration (ER) along a slope gradient at different degrees of soil humidity and active layer depths, relating flux data to climate and environmental parameters, soil physical-chemical parameters and vegetation type. The statistical empirical relationships between variables are analysed to identify the main drivers of carbon exchanges. An empirical data-driven model is built to describe the coupled dynamics of soil, vegetation, water and atmosphere that contributes to budgeting the carbon cycle in the Arctic Critical Zone. A comparison of the carbon fluxes obtained with the accumulation chamber method and an Eddy Covariance tower located in the same area is also addressed.
How to cite: Giamberini, M., Baneschi, I., Lelli, M., Magnani, M., Raco, B., and Provenzale, A.: A Critical Zone Approach to Carbon Fluxes in the Arctic Tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2956, https://doi.org/10.5194/egusphere-egu2020-2956, 2020.
EGU2020-21791 | Displays | BG1.6
From the Critical Zone to decision support tools for China's agriculturePaul Hallett and the China/UK Critical Zone Obervatory Team
A number of critical zone observatories across China have focussed on human impacts caused by agriculture, particularly the sustainability of soil and water resources. Using the CZO approach of measuring from the top of vegetation, through soil, to the bedrock below, joint China/UK projects at these CZOs have quantified large pools of previously undocumented nitrogen stored at depth, pathways for water loss and pollutant transport and drivers of accentuated soil erosion. Socioeconomic studies have found that these challenges to land and water resources tie in well with the concerns of farmers. In two different regions of China, farmers identified fertilisers as their greatest cost and water availability as their biggest challenge. Using large data-sets generated over the past 4 years in these projects, we are developing Decision Support Tools (DSTs) underpinned by CZO science that can guide farmers and policy makers. The work addresses food and water security in the context of climate change and diminishing resources, with an aim to improve livelihoods and sustainable economic development. We have been guided by a review of over 400 DSTs designed for agriculture and the environment, which have been ranked in terms of their outputs and data requirements. A goal at the EGU will be to develop links with other CZO projects to help with our DST development.
How to cite: Hallett, P. and the China/UK Critical Zone Obervatory Team: From the Critical Zone to decision support tools for China's agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21791, https://doi.org/10.5194/egusphere-egu2020-21791, 2020.
A number of critical zone observatories across China have focussed on human impacts caused by agriculture, particularly the sustainability of soil and water resources. Using the CZO approach of measuring from the top of vegetation, through soil, to the bedrock below, joint China/UK projects at these CZOs have quantified large pools of previously undocumented nitrogen stored at depth, pathways for water loss and pollutant transport and drivers of accentuated soil erosion. Socioeconomic studies have found that these challenges to land and water resources tie in well with the concerns of farmers. In two different regions of China, farmers identified fertilisers as their greatest cost and water availability as their biggest challenge. Using large data-sets generated over the past 4 years in these projects, we are developing Decision Support Tools (DSTs) underpinned by CZO science that can guide farmers and policy makers. The work addresses food and water security in the context of climate change and diminishing resources, with an aim to improve livelihoods and sustainable economic development. We have been guided by a review of over 400 DSTs designed for agriculture and the environment, which have been ranked in terms of their outputs and data requirements. A goal at the EGU will be to develop links with other CZO projects to help with our DST development.
How to cite: Hallett, P. and the China/UK Critical Zone Obervatory Team: From the Critical Zone to decision support tools for China's agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21791, https://doi.org/10.5194/egusphere-egu2020-21791, 2020.
EGU2020-4130 | Displays | BG1.6
The occurrence of drought amplified yield loss risk for maize production in ChinaShengli Liu and Wenbin Wu
Increasing drought event is one of the major threats to yield stability and crop production. However, the precise quantification of crop response to such extreme weather is still in lack. Unlike the deterministic researches of drought effects, we propose an insightful probabilistic perspective to quantify drought impacts on maize yield across China. The county-specific combination of annual maize yield anomaly and standardized precipitation evapotranspiration index (SPEI) across its growing season during 1981-2010 was utilized to build a copula-based probabilistic diagram, for the purpose to predict yield loss risk under different drought types. The results reveal that, when compared with the expected long-term yield, the reduction of maize yield and its uncertainty was in line with the drought severity across the growth season, with yield reduced by -5.14%, -8.05% and -3.94% under moderately dry, severely dry, and extremely dry, respectively. Despite the spatial pattern of SPEI existed varying timescales in determining yield anomaly across different counties, the number of counties where maize experienced drought with a response time starts from June and July accounted for 55.28% of counties across China, and that drought with one month duration occupied 50.29%. A considerable gap in the likelihood of maize yield reduction was detected under drought and under non-drought conditions, which further confirmed the negative impacts of drought on maize yield. Moreover, the conditional estimation revealed that the semi-arid region was more susceptible to the drought-induced yield loss risk of maize in comparison to other regions. The probability of yield loss for maize amplified according to the drought severity along with the significant differences (P < 0.05) among the extreme, severely and moderately drought conditions across all of these sub-regions. Our results highlight the improving knowledge of drought on crop yield anomaly and consequent adaptation was essential for the decision making in coping with extreme weather in agricultural production.
How to cite: Liu, S. and Wu, W.: The occurrence of drought amplified yield loss risk for maize production in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4130, https://doi.org/10.5194/egusphere-egu2020-4130, 2020.
Increasing drought event is one of the major threats to yield stability and crop production. However, the precise quantification of crop response to such extreme weather is still in lack. Unlike the deterministic researches of drought effects, we propose an insightful probabilistic perspective to quantify drought impacts on maize yield across China. The county-specific combination of annual maize yield anomaly and standardized precipitation evapotranspiration index (SPEI) across its growing season during 1981-2010 was utilized to build a copula-based probabilistic diagram, for the purpose to predict yield loss risk under different drought types. The results reveal that, when compared with the expected long-term yield, the reduction of maize yield and its uncertainty was in line with the drought severity across the growth season, with yield reduced by -5.14%, -8.05% and -3.94% under moderately dry, severely dry, and extremely dry, respectively. Despite the spatial pattern of SPEI existed varying timescales in determining yield anomaly across different counties, the number of counties where maize experienced drought with a response time starts from June and July accounted for 55.28% of counties across China, and that drought with one month duration occupied 50.29%. A considerable gap in the likelihood of maize yield reduction was detected under drought and under non-drought conditions, which further confirmed the negative impacts of drought on maize yield. Moreover, the conditional estimation revealed that the semi-arid region was more susceptible to the drought-induced yield loss risk of maize in comparison to other regions. The probability of yield loss for maize amplified according to the drought severity along with the significant differences (P < 0.05) among the extreme, severely and moderately drought conditions across all of these sub-regions. Our results highlight the improving knowledge of drought on crop yield anomaly and consequent adaptation was essential for the decision making in coping with extreme weather in agricultural production.
How to cite: Liu, S. and Wu, W.: The occurrence of drought amplified yield loss risk for maize production in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4130, https://doi.org/10.5194/egusphere-egu2020-4130, 2020.
EGU2020-4423 | Displays | BG1.6
Coupling model of ecohydrology and simulation of typical shrub ecosystems on the Loess PlateauYu Zhang, Xiaoyan Li, Wei Li, Weiwei Fang, and Fangzhong Shi
Shrub is the main vegetation type for vegetation restoration in the Loess Plateau, which plays an important role in the regional ecosystem restoration. Study on the relationships between vegetation and soil water of typical shrub ecosystems are significant for the restoration and reconstruction of ecosystems in the Loess Plateau. Three typical shrub (Hippophae rhamnoides Linn., Spiraea pubescens Turcz., and Caragana korshinskii Kom.) ecosystems were chosen in the Loess Plateau. Field experiments were conducted to investigate the factors that influencing the processes of rainfall interception and root uptake of typical shrubs. S-Biome-BGC model was established based on the Biome-BGC model by developing the rainfall interception and soil water movement sub-models. The model was calibrated and verified using field data. The calibrated S-Biome-BGC model was used to simulate the characteristics of leaf area index (LAI), net primary productivity (NPP), soil water content and the interactions among them for the shrub ecosystems along the precipitation gradients in the Loess Plateau, respectively. The results showed that the predictions of the S-Biome-BGC model for soil water content and LAI of typical shrub ecosystems in Loess Plateau were significantly more accurate than that of Biome-BGC model. The simulated RMSE of soil water content decreased from 0.040~0.130 cm3 cm-3 to 0.026~0.035 cm3 cm-3, and the simulated RMSE of LAI decreased from 0.37~0.70 m2 m-2 to 0.35~0.37 m2 m-2. Therefore, the S-Biome-BGC model can reflect the interaction between plant growth and soil water content in the shrub ecosystems of the Loess Plateau. The S-Biome-BGC model simulation for LAI, NPP and soil water content of the three typical shrubs were significantly different along the precipitation gradients, and increased with annual precipitation together. However, different LAI, NPP and soil water correlations were found under different precipitation gradients. LAI and NPP have significant positive correlations with soil water content in the areas where the annual precipitation is above 460~500 mm that could afford the shrubs growth. The results of the study provide a re-vegetation threshold to guide future re-vegetation activities in the Loess Plateau.
How to cite: Zhang, Y., Li, X., Li, W., Fang, W., and Shi, F.: Coupling model of ecohydrology and simulation of typical shrub ecosystems on the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4423, https://doi.org/10.5194/egusphere-egu2020-4423, 2020.
Shrub is the main vegetation type for vegetation restoration in the Loess Plateau, which plays an important role in the regional ecosystem restoration. Study on the relationships between vegetation and soil water of typical shrub ecosystems are significant for the restoration and reconstruction of ecosystems in the Loess Plateau. Three typical shrub (Hippophae rhamnoides Linn., Spiraea pubescens Turcz., and Caragana korshinskii Kom.) ecosystems were chosen in the Loess Plateau. Field experiments were conducted to investigate the factors that influencing the processes of rainfall interception and root uptake of typical shrubs. S-Biome-BGC model was established based on the Biome-BGC model by developing the rainfall interception and soil water movement sub-models. The model was calibrated and verified using field data. The calibrated S-Biome-BGC model was used to simulate the characteristics of leaf area index (LAI), net primary productivity (NPP), soil water content and the interactions among them for the shrub ecosystems along the precipitation gradients in the Loess Plateau, respectively. The results showed that the predictions of the S-Biome-BGC model for soil water content and LAI of typical shrub ecosystems in Loess Plateau were significantly more accurate than that of Biome-BGC model. The simulated RMSE of soil water content decreased from 0.040~0.130 cm3 cm-3 to 0.026~0.035 cm3 cm-3, and the simulated RMSE of LAI decreased from 0.37~0.70 m2 m-2 to 0.35~0.37 m2 m-2. Therefore, the S-Biome-BGC model can reflect the interaction between plant growth and soil water content in the shrub ecosystems of the Loess Plateau. The S-Biome-BGC model simulation for LAI, NPP and soil water content of the three typical shrubs were significantly different along the precipitation gradients, and increased with annual precipitation together. However, different LAI, NPP and soil water correlations were found under different precipitation gradients. LAI and NPP have significant positive correlations with soil water content in the areas where the annual precipitation is above 460~500 mm that could afford the shrubs growth. The results of the study provide a re-vegetation threshold to guide future re-vegetation activities in the Loess Plateau.
How to cite: Zhang, Y., Li, X., Li, W., Fang, W., and Shi, F.: Coupling model of ecohydrology and simulation of typical shrub ecosystems on the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4423, https://doi.org/10.5194/egusphere-egu2020-4423, 2020.
EGU2020-8931 | Displays | BG1.6
Energy demand estimates in large Russian cities and its biometeorological characteristicsIya Belova, Liudmila Krivenok, and Sergy Dokukin
To estimate the energy amount needed to heat indoor living and public spaces, the heating degree day (HDD) parameter is applied. This is the most common climatic indicator of energy consumption for the building heating, which is calculated for a certain period of the year by summing the absolute deviations of the average daily ambient temperature from the selected base temperature. However, human biometeorological sensitivity is based not only on the ambient temperature, but on a combination of temperature, humidity, and wind speed.
We have conducted a comparative analysis of the climatic and biometeorological characteristics of the regions including the largest Russian cities. For the effective ambient temperature range of 17.2 to 21.7⁰C (comfort zone), we have calculated changes in the comfort zone for Moscow, St. Petersburg, Krasnodar, Novosibirsk, and Vladivostok according to data from 1959 to the present. Despite all climate differences between regions with selected cities, allowance for wind speed leads to a decrease in the number of days with temperature within the comfort zone.
This study supported by Russian Science Foundation (project No 16-17-00114).
How to cite: Belova, I., Krivenok, L., and Dokukin, S.: Energy demand estimates in large Russian cities and its biometeorological characteristics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8931, https://doi.org/10.5194/egusphere-egu2020-8931, 2020.
To estimate the energy amount needed to heat indoor living and public spaces, the heating degree day (HDD) parameter is applied. This is the most common climatic indicator of energy consumption for the building heating, which is calculated for a certain period of the year by summing the absolute deviations of the average daily ambient temperature from the selected base temperature. However, human biometeorological sensitivity is based not only on the ambient temperature, but on a combination of temperature, humidity, and wind speed.
We have conducted a comparative analysis of the climatic and biometeorological characteristics of the regions including the largest Russian cities. For the effective ambient temperature range of 17.2 to 21.7⁰C (comfort zone), we have calculated changes in the comfort zone for Moscow, St. Petersburg, Krasnodar, Novosibirsk, and Vladivostok according to data from 1959 to the present. Despite all climate differences between regions with selected cities, allowance for wind speed leads to a decrease in the number of days with temperature within the comfort zone.
This study supported by Russian Science Foundation (project No 16-17-00114).
How to cite: Belova, I., Krivenok, L., and Dokukin, S.: Energy demand estimates in large Russian cities and its biometeorological characteristics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8931, https://doi.org/10.5194/egusphere-egu2020-8931, 2020.
EGU2020-9272 | Displays | BG1.6
Spatiotemporal analysis of the housing bubble’s contribution to the proliferation of illegal landfills – The case of Gran CanariaLorenzo Carlos Quesada-Ruiz, Liliana Perez, Victor Rodriguez-Galiano, and David Aragones
The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This study investigates the spatiotemporal distribution of IL occurrence for 2000, 2006 and 2012 in two representative areas of Gran Canaria island: northwest (Zone A) and east (Zone B). The interannual growth rate of surfaces affected by ILs for the period between 2000 and 2006 was 4.5% and 9.5% and between 2006 and 2012 it was 6.6% and 6.7%, for Zone A and Zone B respectively. The growth of ILs between 2000 and 2006 was higher in urban areas, spaces under construction, and industrial zones, and may be closely related to the process of urban expansion linked to the real estate boom. The latter would have a deep impact on the landscape due to the proliferation of illegal construction and demolition waste. The growth rate of ILs in urban environments fell during the later period of urban expansion. Besides, this work shows the application of cellular automata (CA) in the analysis of IL occurrence, with ILs considered to be a dynamic and complex system. This may supply added value to policies for environmental repair and protection as well as territorial planning (land use and management), by delimiting possible future areas of IL occurrence. In this regard, IL occurrence was simulated over a long timescale (18 years), to estimate and spatially locate the surface growth of ILs based on CA-Markov and Multiobjective Land Allocation models. The modelling of IL proliferation was divided into three phases: calibration, validation and simulation of the future 2018 scenario. Synchronic data series were used, along with Markov chains and transition rules, in all phases. In the calibration phase the suitability analysis was done and the transition rules and transition potential maps were obtained. The use of dynamic characteristics such as those associated to land uses and static characteristics such as elevation and slope helped model the ILs’ growth. Models’ accuracy was assessed using Kappa index and landscape metrics. Simulation outputs were not highly accurate when reproducing the exact location of ILs, however, they did correctly reproduce the distribution patterns for IL proliferation. Obtaining the best validation results, the CA_Markov model was used to simulating IL proliferation in 2018, predicting that increases of 52.3 ha and 81.5 ha affected by ILs in Zone A and Zone B respectively.
How to cite: Quesada-Ruiz, L. C., Perez, L., Rodriguez-Galiano, V., and Aragones, D.: Spatiotemporal analysis of the housing bubble’s contribution to the proliferation of illegal landfills – The case of Gran Canaria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9272, https://doi.org/10.5194/egusphere-egu2020-9272, 2020.
The management of disposed waste in illegal landfills (ILs) is a significant problem in contemporary societies due to respective hazards for the environment and human health. This study investigates the spatiotemporal distribution of IL occurrence for 2000, 2006 and 2012 in two representative areas of Gran Canaria island: northwest (Zone A) and east (Zone B). The interannual growth rate of surfaces affected by ILs for the period between 2000 and 2006 was 4.5% and 9.5% and between 2006 and 2012 it was 6.6% and 6.7%, for Zone A and Zone B respectively. The growth of ILs between 2000 and 2006 was higher in urban areas, spaces under construction, and industrial zones, and may be closely related to the process of urban expansion linked to the real estate boom. The latter would have a deep impact on the landscape due to the proliferation of illegal construction and demolition waste. The growth rate of ILs in urban environments fell during the later period of urban expansion. Besides, this work shows the application of cellular automata (CA) in the analysis of IL occurrence, with ILs considered to be a dynamic and complex system. This may supply added value to policies for environmental repair and protection as well as territorial planning (land use and management), by delimiting possible future areas of IL occurrence. In this regard, IL occurrence was simulated over a long timescale (18 years), to estimate and spatially locate the surface growth of ILs based on CA-Markov and Multiobjective Land Allocation models. The modelling of IL proliferation was divided into three phases: calibration, validation and simulation of the future 2018 scenario. Synchronic data series were used, along with Markov chains and transition rules, in all phases. In the calibration phase the suitability analysis was done and the transition rules and transition potential maps were obtained. The use of dynamic characteristics such as those associated to land uses and static characteristics such as elevation and slope helped model the ILs’ growth. Models’ accuracy was assessed using Kappa index and landscape metrics. Simulation outputs were not highly accurate when reproducing the exact location of ILs, however, they did correctly reproduce the distribution patterns for IL proliferation. Obtaining the best validation results, the CA_Markov model was used to simulating IL proliferation in 2018, predicting that increases of 52.3 ha and 81.5 ha affected by ILs in Zone A and Zone B respectively.
How to cite: Quesada-Ruiz, L. C., Perez, L., Rodriguez-Galiano, V., and Aragones, D.: Spatiotemporal analysis of the housing bubble’s contribution to the proliferation of illegal landfills – The case of Gran Canaria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9272, https://doi.org/10.5194/egusphere-egu2020-9272, 2020.
EGU2020-13129 | Displays | BG1.6
Research on Improvement of Rural area Population Spatial Distribution Model Based on Random ForestsChun Dong
Since the founding of New China, especially since the reform and opening up, China has experienced the fastest economic development and the most profound population migration in history. The large-scale migration of China's rural population and labor force is particularly evident. China's rural population accounts for 40.42% in 2019. China's rural population is large, and urban-rural and regional differences are also large. Due to the current data and information limitations and the characteristics of China's national conditions, there are very few related studies on China's overall rural population.
Fine-scale population distribution data at the fine scale play an essential role in numerous fields, for example urban planning and management, and disaster assessment and developing population differentiation policies. The rapid technological development of remote sensing (RS) and geographical information system (GIS) in recent decades has benefited many fine resolution population spatialization studies. However, most of the existing population spatialization methods have been studied at the regional or urban scale, and few studies have been conducted on the unit population in rural areas. In view of the fact that existing demographic data cannot meet the actual needs of analysis, management and scientific research in terms of spatial precision, a new population distribution estimation method combining nighttime lighting and residential building attributes is proposed in our study. In view of this, studying the spatial distribution of the population in rural areas is used as the purpose of this article. Based on the night light data, natural city boundaries are determined. A rural area delineation method based on Head-to-Tail segmentation classification combined with administrative village verification is proposed, which provides a feasible method for large-scale automatic extraction of rural area boundaries. Coupled with POI (Points of Interest) data, based on elevation, slope, night light images, and land cover, the population spatialization model of the random forest is developed and improved based on the weight of the house properties and light intensity. Finally, a high-precision population distribution dataset is obtained, which is closer to the actual population distribution. The research results show that based on the proposed population spatialization model, street demographic values can be fitted better, and the basis for more accurate population estimation is laid. It provides a reference for data fusion and is of great significance for rural area development planning.
How to cite: Dong, C.: Research on Improvement of Rural area Population Spatial Distribution Model Based on Random Forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13129, https://doi.org/10.5194/egusphere-egu2020-13129, 2020.
Since the founding of New China, especially since the reform and opening up, China has experienced the fastest economic development and the most profound population migration in history. The large-scale migration of China's rural population and labor force is particularly evident. China's rural population accounts for 40.42% in 2019. China's rural population is large, and urban-rural and regional differences are also large. Due to the current data and information limitations and the characteristics of China's national conditions, there are very few related studies on China's overall rural population.
Fine-scale population distribution data at the fine scale play an essential role in numerous fields, for example urban planning and management, and disaster assessment and developing population differentiation policies. The rapid technological development of remote sensing (RS) and geographical information system (GIS) in recent decades has benefited many fine resolution population spatialization studies. However, most of the existing population spatialization methods have been studied at the regional or urban scale, and few studies have been conducted on the unit population in rural areas. In view of the fact that existing demographic data cannot meet the actual needs of analysis, management and scientific research in terms of spatial precision, a new population distribution estimation method combining nighttime lighting and residential building attributes is proposed in our study. In view of this, studying the spatial distribution of the population in rural areas is used as the purpose of this article. Based on the night light data, natural city boundaries are determined. A rural area delineation method based on Head-to-Tail segmentation classification combined with administrative village verification is proposed, which provides a feasible method for large-scale automatic extraction of rural area boundaries. Coupled with POI (Points of Interest) data, based on elevation, slope, night light images, and land cover, the population spatialization model of the random forest is developed and improved based on the weight of the house properties and light intensity. Finally, a high-precision population distribution dataset is obtained, which is closer to the actual population distribution. The research results show that based on the proposed population spatialization model, street demographic values can be fitted better, and the basis for more accurate population estimation is laid. It provides a reference for data fusion and is of great significance for rural area development planning.
How to cite: Dong, C.: Research on Improvement of Rural area Population Spatial Distribution Model Based on Random Forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13129, https://doi.org/10.5194/egusphere-egu2020-13129, 2020.
EGU2020-22557 | Displays | BG1.6
A case study aiming to promote cities resilience based on urban critical zone management as a wholeMarion Diaz, Zahra Thomas, Alain Prenveille, and Nicolas Floch
Adaptation to global changes and promotion of cities resilience requires the development of integrated approaches to take into account the urban critical area as a whole. The major challenge is to assess this integrated approach evolving the main actors taking part on critical zone management. One way to do so might be the development of a network of actors and scientists committed to the long-term evolution of practices and having a common strategy for territories use. The poster presents a case study aiming to implement an integrated water management strategy in urban development based on the organization of a network of territory actors and scientists. The methodology here presented was built to focus on three main questions: what specific problems does integrated water management reveal for the various stakeholders? What are their usual opportunities of exchange and information? And which organization allows them to solve their problems, while taking into account the pre-existing networks on water management?. To answer these questions, we conducted comprehensive interviews with water and development stakeholders and representatives of networking organization.
Our results highlights the need of collaborative development of urban projects between planners and water managers: each of them is confronted with a diversity of concerns related to several factors, such as
- their position as a stakeholder in the intentional management of water or in the effective management of water;
- the scope of responsibilities of local communities in the management of wastewater, stormwater, drinking water, biodiversity ;
- the specific regional characteristics (coastal territories, morphologies of urban area).
Moreover, the results show that the existing networks address partially some of the questions: the study highlights in particular the lack of dialogue and knowledge transfer between water management actors and urban development actors, resulting in the design of urban projects that are not adapted to the new standards of urban management (e.g. stormwater). In addition, research projects are emerging in relation to big cities issues, but are sometimes in competition with each other. Also, the dissemination of results remains reserved for cities already endowed with significant engineering capacities.
Improvements in the networking is required to promote integrated urban water management, we come up with three organizational scenarios including objective analysis of existing networks of the main actors. The implementation of an integrated approach to hydrological systems linked to energy efficiency in urban areas requires taking into account the critical zone as a whole.
How to cite: Diaz, M., Thomas, Z., Prenveille, A., and Floch, N.: A case study aiming to promote cities resilience based on urban critical zone management as a whole, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22557, https://doi.org/10.5194/egusphere-egu2020-22557, 2020.
Adaptation to global changes and promotion of cities resilience requires the development of integrated approaches to take into account the urban critical area as a whole. The major challenge is to assess this integrated approach evolving the main actors taking part on critical zone management. One way to do so might be the development of a network of actors and scientists committed to the long-term evolution of practices and having a common strategy for territories use. The poster presents a case study aiming to implement an integrated water management strategy in urban development based on the organization of a network of territory actors and scientists. The methodology here presented was built to focus on three main questions: what specific problems does integrated water management reveal for the various stakeholders? What are their usual opportunities of exchange and information? And which organization allows them to solve their problems, while taking into account the pre-existing networks on water management?. To answer these questions, we conducted comprehensive interviews with water and development stakeholders and representatives of networking organization.
Our results highlights the need of collaborative development of urban projects between planners and water managers: each of them is confronted with a diversity of concerns related to several factors, such as
- their position as a stakeholder in the intentional management of water or in the effective management of water;
- the scope of responsibilities of local communities in the management of wastewater, stormwater, drinking water, biodiversity ;
- the specific regional characteristics (coastal territories, morphologies of urban area).
Moreover, the results show that the existing networks address partially some of the questions: the study highlights in particular the lack of dialogue and knowledge transfer between water management actors and urban development actors, resulting in the design of urban projects that are not adapted to the new standards of urban management (e.g. stormwater). In addition, research projects are emerging in relation to big cities issues, but are sometimes in competition with each other. Also, the dissemination of results remains reserved for cities already endowed with significant engineering capacities.
Improvements in the networking is required to promote integrated urban water management, we come up with three organizational scenarios including objective analysis of existing networks of the main actors. The implementation of an integrated approach to hydrological systems linked to energy efficiency in urban areas requires taking into account the critical zone as a whole.
How to cite: Diaz, M., Thomas, Z., Prenveille, A., and Floch, N.: A case study aiming to promote cities resilience based on urban critical zone management as a whole, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22557, https://doi.org/10.5194/egusphere-egu2020-22557, 2020.
EGU2020-12929 | Displays | BG1.6
Analysis of the level of urban residential land based on land cover/land usekang fengguang
The level of urban residential land has a great relationship with the composition of urban residential land and the urban residential area of human settlements. Urban residential land includes residential land, road land, ancillary facilities and public green land. Geographical information monitoring land cover/land use includes cultivated land, garden land, forest land, grassland, housing construction area, roads, structures, artificial digging land, desert and bare land, and water. The Land cover/land use data and resident population spatialization data based on maps of housing construction areas are this article’s data sources. This article chose urban residential land types and per capita residential land area as an evaluation index system, establish the relationship between residential land indicators and geographical information monitoring indicators, calculate the area of various residential land areas and per capita land area, and follow the "Urban Residential Area Planning and Design Standards", a statistical analysis of the land use of residents in the five-, ten-, and fifteen-minute living quarters. Select a test area from each of the megacities, megacities, large cities, medium cities, and small cities, and use the statistical results to determine the level of urban residential land Perform a comparative evaluation.
How to cite: fengguang, K.: Analysis of the level of urban residential land based on land cover/land use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12929, https://doi.org/10.5194/egusphere-egu2020-12929, 2020.
The level of urban residential land has a great relationship with the composition of urban residential land and the urban residential area of human settlements. Urban residential land includes residential land, road land, ancillary facilities and public green land. Geographical information monitoring land cover/land use includes cultivated land, garden land, forest land, grassland, housing construction area, roads, structures, artificial digging land, desert and bare land, and water. The Land cover/land use data and resident population spatialization data based on maps of housing construction areas are this article’s data sources. This article chose urban residential land types and per capita residential land area as an evaluation index system, establish the relationship between residential land indicators and geographical information monitoring indicators, calculate the area of various residential land areas and per capita land area, and follow the "Urban Residential Area Planning and Design Standards", a statistical analysis of the land use of residents in the five-, ten-, and fifteen-minute living quarters. Select a test area from each of the megacities, megacities, large cities, medium cities, and small cities, and use the statistical results to determine the level of urban residential land Perform a comparative evaluation.
How to cite: fengguang, K.: Analysis of the level of urban residential land based on land cover/land use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12929, https://doi.org/10.5194/egusphere-egu2020-12929, 2020.
EGU2020-19992 | Displays | BG1.6
Study of metallic trace elements in attic dust from two former industrial cities, Salgótarján and Ózd (Hungary)Nelson Salazar, Gorkhmaz Abbaszade, Davaakhuu Tserendorj, Péter Völgyesi, Dóra Zacháry, Katalin Szabó, and Csaba Szabó
Anthropogenic activities such as heavy industries produced, among others, airborne pollutants, which are deposited inside the attic of houses like dust material for decades. Study of attic dust can be an efficient media to better understand long-term airborne dust contamination and distribution in urban areas. Ózd (OZD) and Salgótarján (STN) are two former industrial cities in the northeastern part of Hungary and separated by 40 km. Both cities have exposed contaminants for different time periods and sources such as coal mining, local coal fired power plant, iron/steelworks and glass factories, transportation, etc.
For this study, 40 attic dust samples from STN and 49 attic dust samples from OZD were collected in houses with attics intact for at least 30 years containing long-term industrial pollution. The concentrations of 13 metals (Ti, V, Cr, Mn, Fe, Co, Ni Cu, Zn, Ag, Sn, Mo and W) were analyzed with ICP-MS. Most of these elements are considered potentially toxic elements related to industrial activities. The main aim of the present study was to compare the concentrations, enrichment factors (EFs) in both cities. EF of each metal was calculated with the formula: EF = [M/Fe]sample/[M/Fe] background, where (M) metals concentration and Fe was used for normalization, following the suggestion in the literature [1] for industrialized cities. However, geochemical background values for both cities were taken from STN brown-forest soil.
The median concentration (mg kg-1) of the studied metals for the 40 attic dust samples for STN= Fe(23000), Zn(631), Mn(422), Ti(385), Cu(67.7), Cr(26.9), V(42.0), Ni(29.7), Sn(8.70), Co(7.60), Mo(5.24), W(3.26), and Ag(0.030). Likewise, median concentration (mg kg-1) for the 49 attic dust samples for OZD= Fe(48000), Zn(1338), Mn(1249), Ti(230), Cu(104), Cr(55.9), V(42.0), Ni(28.0), Sn(16.2), Co(7.20), Mo(4.68), W(3.64), Ag(0.116).
The values of median enrichment factor (EF) revealed the following order: STN=(Ti>W>Sn>Cu>Zn>Mo>Ag>Cr>V>Ni>Mn>Co) and OZD=(W>Ti>Sn>Ag>Zn>Cu>Cr>Mo>V>Mn>Ni>Co). The results for both cities are Ti, W, Sn, Cu, Ag, Zn with enrichment factor (EF)>5, which represent significant or very significant enrichment; Ni, Mn, Co show values of (EF)<2 indicating no enrichment- to minimal enrichment, and Cr has 2<(EF)<5 = moderate enrichment. Note that V shows moderate enrichment in STN samples and minimal enrichment in OZD samples. Molybdenum shows significant in STN samples and moderate enrichment in OZD samples.
The differences between OZD and STN attic dusts show the complexity of two scenarios where concentrations in OZD attic dusts are 1.5 – 4 times higher than STN ones and significant enrichment for Sn, Ag, Zn, Cu, Cr due to probably more intense steelwork activities.
Keyword: Attic dust, enrichment factor, Salgótarján, Ózd.
Reference:
[1] Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157. https://doi.org/10.1016/j.chemosphere.2015.01.048
How to cite: Salazar, N., Abbaszade, G., Tserendorj, D., Völgyesi, P., Zacháry, D., Szabó, K., and Szabó, C.: Study of metallic trace elements in attic dust from two former industrial cities, Salgótarján and Ózd (Hungary), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19992, https://doi.org/10.5194/egusphere-egu2020-19992, 2020.
Anthropogenic activities such as heavy industries produced, among others, airborne pollutants, which are deposited inside the attic of houses like dust material for decades. Study of attic dust can be an efficient media to better understand long-term airborne dust contamination and distribution in urban areas. Ózd (OZD) and Salgótarján (STN) are two former industrial cities in the northeastern part of Hungary and separated by 40 km. Both cities have exposed contaminants for different time periods and sources such as coal mining, local coal fired power plant, iron/steelworks and glass factories, transportation, etc.
For this study, 40 attic dust samples from STN and 49 attic dust samples from OZD were collected in houses with attics intact for at least 30 years containing long-term industrial pollution. The concentrations of 13 metals (Ti, V, Cr, Mn, Fe, Co, Ni Cu, Zn, Ag, Sn, Mo and W) were analyzed with ICP-MS. Most of these elements are considered potentially toxic elements related to industrial activities. The main aim of the present study was to compare the concentrations, enrichment factors (EFs) in both cities. EF of each metal was calculated with the formula: EF = [M/Fe]sample/[M/Fe] background, where (M) metals concentration and Fe was used for normalization, following the suggestion in the literature [1] for industrialized cities. However, geochemical background values for both cities were taken from STN brown-forest soil.
The median concentration (mg kg-1) of the studied metals for the 40 attic dust samples for STN= Fe(23000), Zn(631), Mn(422), Ti(385), Cu(67.7), Cr(26.9), V(42.0), Ni(29.7), Sn(8.70), Co(7.60), Mo(5.24), W(3.26), and Ag(0.030). Likewise, median concentration (mg kg-1) for the 49 attic dust samples for OZD= Fe(48000), Zn(1338), Mn(1249), Ti(230), Cu(104), Cr(55.9), V(42.0), Ni(28.0), Sn(16.2), Co(7.20), Mo(4.68), W(3.64), Ag(0.116).
The values of median enrichment factor (EF) revealed the following order: STN=(Ti>W>Sn>Cu>Zn>Mo>Ag>Cr>V>Ni>Mn>Co) and OZD=(W>Ti>Sn>Ag>Zn>Cu>Cr>Mo>V>Mn>Ni>Co). The results for both cities are Ti, W, Sn, Cu, Ag, Zn with enrichment factor (EF)>5, which represent significant or very significant enrichment; Ni, Mn, Co show values of (EF)<2 indicating no enrichment- to minimal enrichment, and Cr has 2<(EF)<5 = moderate enrichment. Note that V shows moderate enrichment in STN samples and minimal enrichment in OZD samples. Molybdenum shows significant in STN samples and moderate enrichment in OZD samples.
The differences between OZD and STN attic dusts show the complexity of two scenarios where concentrations in OZD attic dusts are 1.5 – 4 times higher than STN ones and significant enrichment for Sn, Ag, Zn, Cu, Cr due to probably more intense steelwork activities.
Keyword: Attic dust, enrichment factor, Salgótarján, Ózd.
Reference:
[1] Luo, X. S., Xue, Y., Wang, Y. L., Cang, L., Xu, B., & Ding, J. (2015). Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 127, 152–157. https://doi.org/10.1016/j.chemosphere.2015.01.048
How to cite: Salazar, N., Abbaszade, G., Tserendorj, D., Völgyesi, P., Zacháry, D., Szabó, K., and Szabó, C.: Study of metallic trace elements in attic dust from two former industrial cities, Salgótarján and Ózd (Hungary), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19992, https://doi.org/10.5194/egusphere-egu2020-19992, 2020.
EGU2020-17524 | Displays | BG1.6
Nitrate transfer in the Critical zone view through N & O isotopes of NO3 and CFC-SF6 groundwater residence time assessmentEmmanuelle Petelet-Giraud, Nicole Baran, Virginie Vergnaud, Flora Lucassou, and Jean-Michel Schroetter
Drinking water quality in agricultural rural areas remains locally a challenge even all the effort made by local authorities to restore the groundwater resources quality, especially regarding nitrates. In Plourhan, a ~2000 inhabitants, about 10 km from the sea, NW France, the drinking water is pumped in a natural spring emerging from the Brioverian basement. The nitrate concentrations exceed the 50 mg/L standard for drinking water supply, and thus needs to be diluted to be delivered to the population. Over the last 15 years, a large programme of measures was undertaken in order to reduce the NO3 concentration, including the purchase of agricultural parcels around the spring, moving progressively from mixed farming and livestock to fallows and meadows, and thus drastically change the local land use. Despite all these efforts, nitrate concentrations only decrease very slowly and remain above the 50 mg/L standard.
In this context, the objective of this study is to better understand the transfer of nitrates at the basin scale, by studying flow paths, geochemical reactions, transit times that are key parameters to estimate the vulnerability and the recovery-time of the critical zone. In that way, a geochemical and isotopic approach is applied at the basin scale. Major elements analysis of the groundwater reflect the drained contrasted lithologies as metasediments (pelites & sandstones) and amphibolite, with a large spatial heterogeneity of the NO3 concentrations, ranging from a few mg/L to more than 50 mg/L. Nitrogen and oxygen isotopes of nitrates (δ15N-NO3 and δ18O-NO3) suggest that denitrification can occur locally in some wells presenting low or intermediate NO3 contents, whereas other wells present high or low NO3 concentrations without any evidence of denitrification processes. The mean residence time of groundwater is assessed through CFCs and SF6 dissolved gas measurements. Some wells preferentially in amphibolite, present water with low recharge temperature (around 6°C while the mean recharge temperature in Britany is 11-12°C) correlated with low CFCs/SF6 values indicating that some very old groundwater (last glaciation : -19/17 k yrs) exists in the reservoir. Other ones in metasediments have modern water or a mixing between an old and a present day recharge. These results, together with structural and lithological detailed geological field mapping, help to draw up the conceptual model of the aquifer functioning regarding nitrates transfer in the critical zone.
This work is part of the POLDIFF study that benefits from the funding of BRGM and the French Loire-Bretagne water Agency.
How to cite: Petelet-Giraud, E., Baran, N., Vergnaud, V., Lucassou, F., and Schroetter, J.-M.: Nitrate transfer in the Critical zone view through N & O isotopes of NO3 and CFC-SF6 groundwater residence time assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17524, https://doi.org/10.5194/egusphere-egu2020-17524, 2020.
Drinking water quality in agricultural rural areas remains locally a challenge even all the effort made by local authorities to restore the groundwater resources quality, especially regarding nitrates. In Plourhan, a ~2000 inhabitants, about 10 km from the sea, NW France, the drinking water is pumped in a natural spring emerging from the Brioverian basement. The nitrate concentrations exceed the 50 mg/L standard for drinking water supply, and thus needs to be diluted to be delivered to the population. Over the last 15 years, a large programme of measures was undertaken in order to reduce the NO3 concentration, including the purchase of agricultural parcels around the spring, moving progressively from mixed farming and livestock to fallows and meadows, and thus drastically change the local land use. Despite all these efforts, nitrate concentrations only decrease very slowly and remain above the 50 mg/L standard.
In this context, the objective of this study is to better understand the transfer of nitrates at the basin scale, by studying flow paths, geochemical reactions, transit times that are key parameters to estimate the vulnerability and the recovery-time of the critical zone. In that way, a geochemical and isotopic approach is applied at the basin scale. Major elements analysis of the groundwater reflect the drained contrasted lithologies as metasediments (pelites & sandstones) and amphibolite, with a large spatial heterogeneity of the NO3 concentrations, ranging from a few mg/L to more than 50 mg/L. Nitrogen and oxygen isotopes of nitrates (δ15N-NO3 and δ18O-NO3) suggest that denitrification can occur locally in some wells presenting low or intermediate NO3 contents, whereas other wells present high or low NO3 concentrations without any evidence of denitrification processes. The mean residence time of groundwater is assessed through CFCs and SF6 dissolved gas measurements. Some wells preferentially in amphibolite, present water with low recharge temperature (around 6°C while the mean recharge temperature in Britany is 11-12°C) correlated with low CFCs/SF6 values indicating that some very old groundwater (last glaciation : -19/17 k yrs) exists in the reservoir. Other ones in metasediments have modern water or a mixing between an old and a present day recharge. These results, together with structural and lithological detailed geological field mapping, help to draw up the conceptual model of the aquifer functioning regarding nitrates transfer in the critical zone.
This work is part of the POLDIFF study that benefits from the funding of BRGM and the French Loire-Bretagne water Agency.
How to cite: Petelet-Giraud, E., Baran, N., Vergnaud, V., Lucassou, F., and Schroetter, J.-M.: Nitrate transfer in the Critical zone view through N & O isotopes of NO3 and CFC-SF6 groundwater residence time assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17524, https://doi.org/10.5194/egusphere-egu2020-17524, 2020.
EGU2020-21141 | Displays | BG1.6
Microbial role in N2O-NO2 production and CH4 oxidation under active hypogenic settingsTamara Martin-Pozas, Soledad Cuezva, Valme Jurado, Raul Perez-Lopez, Cesareo Saiz-Jimenez, Jose Maria Calaforra, Sergio Sanchez-Moral, and Angel Fernandez-Cortes
The hydrothermal caves linked to active faulting have subterranean atmospheres with a distinctive gaseous composition containing deep endogenous gases, such as carbon dioxide, methane and nitrogen oxides (NOx). Ascending fluids through associated near-surface hydrothermal processes can mobilize endogenous gases into the Critical Zone and, ultimately, to the lower troposphere.
Nitrogen oxides are polluting gases and can have adverse effects on human health, especially inhaled NO2. They also catalyse ozone (O3) production in the lower layers of the atmosphere and the greenhouse effect, when they react with volatile organic compounds. The largest source of NOx emissions is anthropogenic. The rest is produced naturally by microbial processes in soil and water, by lightning, volcanic activity, storms, etc. Production of N2O and NO2 is associated with soil and other active-geothermal ecosystems, far less is known about the sources and sinks of these gases within subterranean locations. Here, we report high N2O and NO2 concentrations detected along a hypogenic system associated with an active faulting (Vapour Cave, southern Spain), which enables direct gas exchange with the low-atmosphere. These anomalous concentrations of N2O and, NO2 are about ten and five times higher than the typical atmospheric background, respectively.
Gaseous composition analyses of subterranean atmosphere were conducted by high precision field-deployable CRDS and FTIR spectrometers for measuring in situ the target tracer gases (NO2, N2O, CH4, CO2) and δ13C of both carbon-GHGs. DNA extraction, sequencing and phylogenetic analyses were conducted to characterize the microbial community of cave sediments. The results showed that N2O and NO2 emission depends on the activity of nitrification by ammonia oxidizing microorganisms (such as members of the family Nitrosomonadaceae and phylum Thaumarchaeota) and/or as a result of incomplete denitrification by heterotrophic denitrifying bacteria (such as Bacillus, Acinetobacter and Cupriavidus) from this hydrothermal and hypoxic ecosystem.
On the other hand, CH4 concentrations and δ13CH4 vary along the cave (with the deep), in deepest cave locations CH4 values are higher with lighter δ13C values in comparison with the more superficial areas, which indicates a deep endogenous origin of methane. However, in areas near the entrance we observe lower concentrations of methane and heavier δ13C values (CH4<1 ppm and δ13C close to −30‰), as a result of methane oxidation by denitrifying methanotrophs of the NC10 phylum during gas migration from the deepest areas to the surface.
These new findings reveal the sourcing of these nitrogenous gases into the upper vadose zone of a hypogenic/geothermal ecosystem, and its potential release to the lower troposphere. A better understanding of biogeochemical processes controlling the production of nitrogenous gases in subterranean environments will be useful to identify and characterize new possible
sources, reservoirs and sinks of greenhouse gases (CO2, CH4, N2O and NOx) in order to calculate more accurately the budgets and for the design of new mitigation strategies of these gases.
How to cite: Martin-Pozas, T., Cuezva, S., Jurado, V., Perez-Lopez, R., Saiz-Jimenez, C., Calaforra, J. M., Sanchez-Moral, S., and Fernandez-Cortes, A.: Microbial role in N2O-NO2 production and CH4 oxidation under active hypogenic settings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21141, https://doi.org/10.5194/egusphere-egu2020-21141, 2020.
The hydrothermal caves linked to active faulting have subterranean atmospheres with a distinctive gaseous composition containing deep endogenous gases, such as carbon dioxide, methane and nitrogen oxides (NOx). Ascending fluids through associated near-surface hydrothermal processes can mobilize endogenous gases into the Critical Zone and, ultimately, to the lower troposphere.
Nitrogen oxides are polluting gases and can have adverse effects on human health, especially inhaled NO2. They also catalyse ozone (O3) production in the lower layers of the atmosphere and the greenhouse effect, when they react with volatile organic compounds. The largest source of NOx emissions is anthropogenic. The rest is produced naturally by microbial processes in soil and water, by lightning, volcanic activity, storms, etc. Production of N2O and NO2 is associated with soil and other active-geothermal ecosystems, far less is known about the sources and sinks of these gases within subterranean locations. Here, we report high N2O and NO2 concentrations detected along a hypogenic system associated with an active faulting (Vapour Cave, southern Spain), which enables direct gas exchange with the low-atmosphere. These anomalous concentrations of N2O and, NO2 are about ten and five times higher than the typical atmospheric background, respectively.
Gaseous composition analyses of subterranean atmosphere were conducted by high precision field-deployable CRDS and FTIR spectrometers for measuring in situ the target tracer gases (NO2, N2O, CH4, CO2) and δ13C of both carbon-GHGs. DNA extraction, sequencing and phylogenetic analyses were conducted to characterize the microbial community of cave sediments. The results showed that N2O and NO2 emission depends on the activity of nitrification by ammonia oxidizing microorganisms (such as members of the family Nitrosomonadaceae and phylum Thaumarchaeota) and/or as a result of incomplete denitrification by heterotrophic denitrifying bacteria (such as Bacillus, Acinetobacter and Cupriavidus) from this hydrothermal and hypoxic ecosystem.
On the other hand, CH4 concentrations and δ13CH4 vary along the cave (with the deep), in deepest cave locations CH4 values are higher with lighter δ13C values in comparison with the more superficial areas, which indicates a deep endogenous origin of methane. However, in areas near the entrance we observe lower concentrations of methane and heavier δ13C values (CH4<1 ppm and δ13C close to −30‰), as a result of methane oxidation by denitrifying methanotrophs of the NC10 phylum during gas migration from the deepest areas to the surface.
These new findings reveal the sourcing of these nitrogenous gases into the upper vadose zone of a hypogenic/geothermal ecosystem, and its potential release to the lower troposphere. A better understanding of biogeochemical processes controlling the production of nitrogenous gases in subterranean environments will be useful to identify and characterize new possible
sources, reservoirs and sinks of greenhouse gases (CO2, CH4, N2O and NOx) in order to calculate more accurately the budgets and for the design of new mitigation strategies of these gases.
How to cite: Martin-Pozas, T., Cuezva, S., Jurado, V., Perez-Lopez, R., Saiz-Jimenez, C., Calaforra, J. M., Sanchez-Moral, S., and Fernandez-Cortes, A.: Microbial role in N2O-NO2 production and CH4 oxidation under active hypogenic settings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21141, https://doi.org/10.5194/egusphere-egu2020-21141, 2020.
EGU2020-21794 | Displays | BG1.6
Estimating the Vegetation phenology Time of recovery after a critical perturbation from Landsat time series within the frame of a Bayesian Harmonic modelsaverio vicario, Maria adamo, Cristina tarantino, and palma blonda
In Murgia Alta National Park the repeated fire perturb the stability of the environment and it s capacity to be a carbon sink. Thanks to the Landsat archive we can observed change in phenology t over the two decade (2000-2019). Unfortunately the phenological signal extracted from Landsat time series bear several uncertainties caused by missing data and error in atmospheric correction that makes difficult to reconstruct the trajectory of each pixel. Applying a Bayesian Harmonic model we can obtain not only expected values for the vegetation index time series but also confidence interval both for vegetation index and derived statistics. We took the phenological statistical framework of the Ecological Functional Attributes (EFA) to obtain annual statics and evaluate the time of recovery to obtain EFA with no statistical difference from the pre-perturbation time.
The results highlighted that only of subset of burned forest recover EFA values after 10 years of critical events. In particular the values of intra year variability tend to be higher due to the different trajectory of young shoots. The burned grassland time of recovery is much shorter given that the vast majority of pixel recover pre-event EFA in less than 4 year.
How to cite: vicario, S., adamo, M., tarantino, C., and blonda, P.: Estimating the Vegetation phenology Time of recovery after a critical perturbation from Landsat time series within the frame of a Bayesian Harmonic model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21794, https://doi.org/10.5194/egusphere-egu2020-21794, 2020.
In Murgia Alta National Park the repeated fire perturb the stability of the environment and it s capacity to be a carbon sink. Thanks to the Landsat archive we can observed change in phenology t over the two decade (2000-2019). Unfortunately the phenological signal extracted from Landsat time series bear several uncertainties caused by missing data and error in atmospheric correction that makes difficult to reconstruct the trajectory of each pixel. Applying a Bayesian Harmonic model we can obtain not only expected values for the vegetation index time series but also confidence interval both for vegetation index and derived statistics. We took the phenological statistical framework of the Ecological Functional Attributes (EFA) to obtain annual statics and evaluate the time of recovery to obtain EFA with no statistical difference from the pre-perturbation time.
The results highlighted that only of subset of burned forest recover EFA values after 10 years of critical events. In particular the values of intra year variability tend to be higher due to the different trajectory of young shoots. The burned grassland time of recovery is much shorter given that the vast majority of pixel recover pre-event EFA in less than 4 year.
How to cite: vicario, S., adamo, M., tarantino, C., and blonda, P.: Estimating the Vegetation phenology Time of recovery after a critical perturbation from Landsat time series within the frame of a Bayesian Harmonic model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21794, https://doi.org/10.5194/egusphere-egu2020-21794, 2020.
EGU2020-1286 | Displays | BG1.6
Assessing the Impact of ~65 years of Land Use and Land Cover Change on the Utah Lake Watershed with Remote Sensing and Spatial ModelingWeihong Wang
Utah Lake is one of the largest natural freshwater lakes in the western United States. Its watershed is 9,800 km2. Utah Lake is located in Utah County which is expected to have the highest population growth in the state through 2060. Land use and water regulation has shifted the Utah Lake shoreline since the 1900s. Monitoring the land use and land cover change (LULCC) in the watershed is critical to understanding surrounding hydrology and future sustainability. In this study, we compared the Utah Lake shoreline change from 1953-2014 and classified the land cover in the Utah Lake watershed from 1985-2018. Our results show that there was a 41.45 km2 decrease in lake surface from 1953 to 2014. The shoreline around the Provo Bay and Goshen Bay has receded lake-ward considerably in 2014 compared to the 1953 shoreline, and the lost water and wetland area was equivalent to 3,851 football fields in size. Land cover change calculations indicate that from 1985 to 2018 urbanization increased by 6%, forest by 2%, and barren by 3%, whereas water and agriculture decreased by 1% and 6%, respectively. The findings from this project could be used by Utah’s legislature to implement meaningful watershed planning and management, especially in light of the state considering House Bill 272 that promotes “comprehensive restoration of Utah Lake by building an island on it.” The bill proposes an island in Utah Lake which could dramatically alter LULCC around the lake. In addition, any significant LULCC on and around the lake will modify the lake water budget, its ecosystem, and have profound consequences on Utah Lake watershed and the surrounding regions.
How to cite: Wang, W.: Assessing the Impact of ~65 years of Land Use and Land Cover Change on the Utah Lake Watershed with Remote Sensing and Spatial Modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1286, https://doi.org/10.5194/egusphere-egu2020-1286, 2020.
Utah Lake is one of the largest natural freshwater lakes in the western United States. Its watershed is 9,800 km2. Utah Lake is located in Utah County which is expected to have the highest population growth in the state through 2060. Land use and water regulation has shifted the Utah Lake shoreline since the 1900s. Monitoring the land use and land cover change (LULCC) in the watershed is critical to understanding surrounding hydrology and future sustainability. In this study, we compared the Utah Lake shoreline change from 1953-2014 and classified the land cover in the Utah Lake watershed from 1985-2018. Our results show that there was a 41.45 km2 decrease in lake surface from 1953 to 2014. The shoreline around the Provo Bay and Goshen Bay has receded lake-ward considerably in 2014 compared to the 1953 shoreline, and the lost water and wetland area was equivalent to 3,851 football fields in size. Land cover change calculations indicate that from 1985 to 2018 urbanization increased by 6%, forest by 2%, and barren by 3%, whereas water and agriculture decreased by 1% and 6%, respectively. The findings from this project could be used by Utah’s legislature to implement meaningful watershed planning and management, especially in light of the state considering House Bill 272 that promotes “comprehensive restoration of Utah Lake by building an island on it.” The bill proposes an island in Utah Lake which could dramatically alter LULCC around the lake. In addition, any significant LULCC on and around the lake will modify the lake water budget, its ecosystem, and have profound consequences on Utah Lake watershed and the surrounding regions.
How to cite: Wang, W.: Assessing the Impact of ~65 years of Land Use and Land Cover Change on the Utah Lake Watershed with Remote Sensing and Spatial Modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1286, https://doi.org/10.5194/egusphere-egu2020-1286, 2020.
EGU2020-22447 | Displays | BG1.6
Significance and driving forces of dark CO2 fixation for organic carbon inputs in temperate forest soilsRachael Akinyede, Martin Taubert, Marion Schrumpf, Susan Trumbore, and Kirsten Küsel
Soils are the largest terrestrial organic carbon pool and one of the largest terrestrial sources of CO2 in the atmosphere. However, not all CO2 produced in soils is released into the atmosphere, as dark CO2 fixation has been shown to modulate CO2 release from soils. Temperate forest soils store up to half of the soil organic carbon pool to 1m depth and are recognized as important components of the global carbon cycle, yet studies on dark CO2 fixation in temperate forest soils are scarce. Using a well characterized Cambisol soil plot in the Hainich National Park (temperate forest), Germany, we explore dark CO2 fixation with the aim to assess the CO2 fixation rates, the influencing biogeochemical parameters, and the contribution of this process to temperate forest soil organic carbon (SOC).
Dark CO2 fixation was quantified via the uptake of 13C-CO2 added to microcosms containing soils sampled from three depths. Under 2% CO2 headspace, rates of dark CO2 fixation at soil level decreased with depth from 0.86 µg C gdw-1d-1 in 0 - 12 cm to 0.05 µg C gdw-1d-1 in 70 -100 cm, accounting for up to 1.1% of microbial biomass and up to 0.035% of soil organic carbon. However, as differences in microbial biomass abundance and community profiles with depth were found, no significant difference in the rates across depth was observed at microbial level. This suggests that microbial biomass is an important driver of dark CO2 fixation in soils. Given a global temperate forest area of 6.9 million km2 and an average soil bulk density of 1 Mg/m3 dark CO2 fixation will potentially account for the gross sequestration of 0.31 - 0.48 GtC/yr to a depth of 1 m. Furthermore, an increase in headspace CO2 concentration enhanced CO2 fixation rates by up to 3.4-fold under 20% v:v CO2 showing that dark CO2 fixation can be substantial in soils with higher CO2 concentrations.
To validate microbial biomass as a driver of dark CO2 fixation in soils, we made comparisons with soil plots from the Schorfheide-Chorin exploratory forest, Germany, a temperate forest characterized by vegetation-specific bacterial community structure, higher sand content and acidic pH gradients. Under these conditions, CO2 fixation rates at microbial level were significantly different across depth suggesting that aside microbial biomass, other abiotic factors may influence dark CO2 fixation in these soils. Of all the tested abiotic variables, water content was the main explanatory factor for the variations in dark CO2 fixation rates in the Schorfheide-chorin soils. Additionally, based on 16S rRNA sequencing, qPCR and PICRUSt2 analysis, only a few putative autotrophic communities were present and displayed vegetation-specific variations indicating an influence of vegetation type and input on the active community.
Our findings highlight microbial biomass, CO2 and water content as the main drivers of dark CO2 fixation in temperate forest soils with only a small proportion of autotrophs being present, suggesting the potential mediators of this process. We also demonstrate the significance of this process in global temperate forest SOC inputs.
How to cite: Akinyede, R., Taubert, M., Schrumpf, M., Trumbore, S., and Küsel, K.: Significance and driving forces of dark CO2 fixation for organic carbon inputs in temperate forest soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22447, https://doi.org/10.5194/egusphere-egu2020-22447, 2020.
Soils are the largest terrestrial organic carbon pool and one of the largest terrestrial sources of CO2 in the atmosphere. However, not all CO2 produced in soils is released into the atmosphere, as dark CO2 fixation has been shown to modulate CO2 release from soils. Temperate forest soils store up to half of the soil organic carbon pool to 1m depth and are recognized as important components of the global carbon cycle, yet studies on dark CO2 fixation in temperate forest soils are scarce. Using a well characterized Cambisol soil plot in the Hainich National Park (temperate forest), Germany, we explore dark CO2 fixation with the aim to assess the CO2 fixation rates, the influencing biogeochemical parameters, and the contribution of this process to temperate forest soil organic carbon (SOC).
Dark CO2 fixation was quantified via the uptake of 13C-CO2 added to microcosms containing soils sampled from three depths. Under 2% CO2 headspace, rates of dark CO2 fixation at soil level decreased with depth from 0.86 µg C gdw-1d-1 in 0 - 12 cm to 0.05 µg C gdw-1d-1 in 70 -100 cm, accounting for up to 1.1% of microbial biomass and up to 0.035% of soil organic carbon. However, as differences in microbial biomass abundance and community profiles with depth were found, no significant difference in the rates across depth was observed at microbial level. This suggests that microbial biomass is an important driver of dark CO2 fixation in soils. Given a global temperate forest area of 6.9 million km2 and an average soil bulk density of 1 Mg/m3 dark CO2 fixation will potentially account for the gross sequestration of 0.31 - 0.48 GtC/yr to a depth of 1 m. Furthermore, an increase in headspace CO2 concentration enhanced CO2 fixation rates by up to 3.4-fold under 20% v:v CO2 showing that dark CO2 fixation can be substantial in soils with higher CO2 concentrations.
To validate microbial biomass as a driver of dark CO2 fixation in soils, we made comparisons with soil plots from the Schorfheide-Chorin exploratory forest, Germany, a temperate forest characterized by vegetation-specific bacterial community structure, higher sand content and acidic pH gradients. Under these conditions, CO2 fixation rates at microbial level were significantly different across depth suggesting that aside microbial biomass, other abiotic factors may influence dark CO2 fixation in these soils. Of all the tested abiotic variables, water content was the main explanatory factor for the variations in dark CO2 fixation rates in the Schorfheide-chorin soils. Additionally, based on 16S rRNA sequencing, qPCR and PICRUSt2 analysis, only a few putative autotrophic communities were present and displayed vegetation-specific variations indicating an influence of vegetation type and input on the active community.
Our findings highlight microbial biomass, CO2 and water content as the main drivers of dark CO2 fixation in temperate forest soils with only a small proportion of autotrophs being present, suggesting the potential mediators of this process. We also demonstrate the significance of this process in global temperate forest SOC inputs.
How to cite: Akinyede, R., Taubert, M., Schrumpf, M., Trumbore, S., and Küsel, K.: Significance and driving forces of dark CO2 fixation for organic carbon inputs in temperate forest soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22447, https://doi.org/10.5194/egusphere-egu2020-22447, 2020.
EGU2020-13716 | Displays | BG1.6
Peatland hydrological behavior with global warmingStefano Ferraris, Davide Canone, Davide Gisolo, Mario Putti, Pietro Teatini, and Maurizio Previati
A peat deposit close to Venice was monitored both in the field and in the lab (1) to investigate the hydrological response of peat soil to changing meteorological conditions in the frame of land subsidence assessment. The whole area is about 3 meters lower than the sea level and therefore subsidence is a major issue. Predictions highlighted the risk of an almost complete disappearance of the peat layer in this area during the next 50 years, due to the increased frequency of warmer periods. Unfortunately, despite the considerable impacts that are expected to affect peatland worldwide, only a few measured datasets are currently available to assess the response of a peat deposit to enhanced drying due to global warming.
The lab measurements were performed both at the pedon and at the core scale. An undisturbed peat monolith of approximately 0.7 m3 was collected, transferred to the lab, and instrumented to monitor matric potential, water content, and total weight. This undisturbed peat lysimeter allows to monitor water content variations (both through the weight monitoring and time domain reflectometry sensors), and matric potential, with drier conditions with respect to the field campaign. A complete cycle of wetting and drainage was performed, raising the water table from the bottom to the top of the sample and down again. Additional measurements of matric potential and water content were collected by testing peat cores on a suction table.
A set of water retention curves was experimentally determined. They were derived for a range of matric potential much broader than that experienced in situ . Variations were found, with respect to the field natural conditions, in the relations between the matric potential and the volumetric water content of different horizons as a result of the initial prolonged drying. Also, the hysteresis behaviours in the lab and in the field were different, with much wider loops in the lab conditions because of extended range of potential. Hydraulic non-equilibrium between the water content and water potential could also be a possible cause, but further modelling work is necessary to assess it. The van Genuchten parameters were obtained for both wetting and drying, for modelling purposes.
(1) Previati et al. (2019), Hydrological Processes.
How to cite: Ferraris, S., Canone, D., Gisolo, D., Putti, M., Teatini, P., and Previati, M.: Peatland hydrological behavior with global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13716, https://doi.org/10.5194/egusphere-egu2020-13716, 2020.
A peat deposit close to Venice was monitored both in the field and in the lab (1) to investigate the hydrological response of peat soil to changing meteorological conditions in the frame of land subsidence assessment. The whole area is about 3 meters lower than the sea level and therefore subsidence is a major issue. Predictions highlighted the risk of an almost complete disappearance of the peat layer in this area during the next 50 years, due to the increased frequency of warmer periods. Unfortunately, despite the considerable impacts that are expected to affect peatland worldwide, only a few measured datasets are currently available to assess the response of a peat deposit to enhanced drying due to global warming.
The lab measurements were performed both at the pedon and at the core scale. An undisturbed peat monolith of approximately 0.7 m3 was collected, transferred to the lab, and instrumented to monitor matric potential, water content, and total weight. This undisturbed peat lysimeter allows to monitor water content variations (both through the weight monitoring and time domain reflectometry sensors), and matric potential, with drier conditions with respect to the field campaign. A complete cycle of wetting and drainage was performed, raising the water table from the bottom to the top of the sample and down again. Additional measurements of matric potential and water content were collected by testing peat cores on a suction table.
A set of water retention curves was experimentally determined. They were derived for a range of matric potential much broader than that experienced in situ . Variations were found, with respect to the field natural conditions, in the relations between the matric potential and the volumetric water content of different horizons as a result of the initial prolonged drying. Also, the hysteresis behaviours in the lab and in the field were different, with much wider loops in the lab conditions because of extended range of potential. Hydraulic non-equilibrium between the water content and water potential could also be a possible cause, but further modelling work is necessary to assess it. The van Genuchten parameters were obtained for both wetting and drying, for modelling purposes.
(1) Previati et al. (2019), Hydrological Processes.
How to cite: Ferraris, S., Canone, D., Gisolo, D., Putti, M., Teatini, P., and Previati, M.: Peatland hydrological behavior with global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13716, https://doi.org/10.5194/egusphere-egu2020-13716, 2020.
EGU2020-9146 | Displays | BG1.6
Combining concentration–discharge relationships with mixing modelsGaëlle Tallec, José Manuel Tunqui Neira, Andréassian Vazken, and Jean-Marie Mouchel
Discharge is one of the major factors influencing the evolution of solute concentration in river water. Different modeling approaches exist to characterize the dependency of concentration on discharge: the simplest require calibration, they are based on measurable quantities (stream discharge and stream water concentration) but do not allow for an explicit, physical, flow-path interpretation; the more complex are based on mixing assumptions with different end-member sources, but require knowledge of the (unmeasurable) flow components. Here, we present a combination between the simple concentration–discharge (C-Q) approach with the mass balance (MB) mixing approach, which we apply to a new high-frequency series on the Oracle-Orgeval Observatory (France) (Tunqui et al., submitted). This new methodology shows a better performance than the two approaches applied separately, allowing us to better describe the concentrations measured in the stream.
Reference : Tunqui et al. Combining concentration-discharge relationships with mixing models. Submitted to Journal of Hydrology
How to cite: Tallec, G., Tunqui Neira, J. M., Vazken, A., and Mouchel, J.-M.: Combining concentration–discharge relationships with mixing models , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9146, https://doi.org/10.5194/egusphere-egu2020-9146, 2020.
Discharge is one of the major factors influencing the evolution of solute concentration in river water. Different modeling approaches exist to characterize the dependency of concentration on discharge: the simplest require calibration, they are based on measurable quantities (stream discharge and stream water concentration) but do not allow for an explicit, physical, flow-path interpretation; the more complex are based on mixing assumptions with different end-member sources, but require knowledge of the (unmeasurable) flow components. Here, we present a combination between the simple concentration–discharge (C-Q) approach with the mass balance (MB) mixing approach, which we apply to a new high-frequency series on the Oracle-Orgeval Observatory (France) (Tunqui et al., submitted). This new methodology shows a better performance than the two approaches applied separately, allowing us to better describe the concentrations measured in the stream.
Reference : Tunqui et al. Combining concentration-discharge relationships with mixing models. Submitted to Journal of Hydrology
How to cite: Tallec, G., Tunqui Neira, J. M., Vazken, A., and Mouchel, J.-M.: Combining concentration–discharge relationships with mixing models , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9146, https://doi.org/10.5194/egusphere-egu2020-9146, 2020.
EGU2020-9972 | Displays | BG1.6
Identifying stemflow pathways and infiltration areas for sycamore maple (Acer pseudoplatanus) and European beech (Fagus sylvatica) by passive dye applicationBeate Michalzik, Alexander Tischer, and Robert Lotze
Throughfall and stemflow are critical components of the hydrological and biogeochemical cycles of forested ecosystems, as they are the two hydrological processes responsible for the transfer of precipitation and solutes from vegetative canopies to the soil. Despite stemflow rarely accounts for >10% of the rainfall, its concentration over small areas at the base of trunks seems to affect the magnitude and timing of water inputs to the soil and biogeochemical cycling excessively.
Though substantial amount of literature on throughfall and stemflow research is available, recent reviews on eco-hydrology of forested ecosystems identified several key points of uncertainty where current knowledge is weak. These points especially address the role of canopy structure among tree species (i.e., interspecific variation) as well as within a single tree species (i.e., intraspecific variation as caused e.g. by morphology and age) for explaining the large variations in precipitation partitioning into throughfall and stemflow, the spatial variability of throughfall volume and chemistry as well as the temporal and spatial patterning of stemflow inputs to the ground. The latter two points are particular sources of uncertainty, since most sampling approaches fail to adequately identify the infiltration area of stemflow inputs at the trunk base resulting in incomplete or biased evaluations of tree species effects on rainfall partitioning.
Based on these deliberations we conducted a color tracer experiment with Brilliant Blue to identify flow patterns of stemflow water along the stem surface of two broad-leafed tree species (Fagus sylvatica and Acer pseudoplatanus) and to estimate the infiltration area at the trunk base and down to 12 cm soil depth. The trunk area was dye-stained up to 1.5 m height in advance and stemflow patterns along the trunk surface and soil infiltration zone were visually quantified following two natural rainfall events. Furthermore, we tested the relationship between color-stained zones of "high through-flow” and ecological soil characteristics such as fine root distribution and soil pH. This approach differs from common color tracer experiments, where stems are actively and homogeneously sprinkled with large amounts of color tracer solution.
We found distinct spatially restricted stemflow pathways on the tree trunks, which appeared specific for the tree individual exhibiting larger washed-off areas for beech (4441 cm²) compared to maple (1816 cm²). The infiltration area of stemflow at the trunk base was smaller than the basal area (BA) amounting to 17% (226.2 cm²) of the BA for beech and to 30% (414.4 cm²) for maple. For beech, colored areas were restricted to a maximum extension of 13 cm distance from the stem and of 30 cm for maple.
Our investigation exhibited that stemflow infiltration was spatially more concentrated at the trunk base than commonly assumed. The outcome of this study might contribute to our understanding on hydrological and biogeochemical interlinkages between the surface and subsurface of the Critical Zone.
How to cite: Michalzik, B., Tischer, A., and Lotze, R.: Identifying stemflow pathways and infiltration areas for sycamore maple (Acer pseudoplatanus) and European beech (Fagus sylvatica) by passive dye application, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9972, https://doi.org/10.5194/egusphere-egu2020-9972, 2020.
Throughfall and stemflow are critical components of the hydrological and biogeochemical cycles of forested ecosystems, as they are the two hydrological processes responsible for the transfer of precipitation and solutes from vegetative canopies to the soil. Despite stemflow rarely accounts for >10% of the rainfall, its concentration over small areas at the base of trunks seems to affect the magnitude and timing of water inputs to the soil and biogeochemical cycling excessively.
Though substantial amount of literature on throughfall and stemflow research is available, recent reviews on eco-hydrology of forested ecosystems identified several key points of uncertainty where current knowledge is weak. These points especially address the role of canopy structure among tree species (i.e., interspecific variation) as well as within a single tree species (i.e., intraspecific variation as caused e.g. by morphology and age) for explaining the large variations in precipitation partitioning into throughfall and stemflow, the spatial variability of throughfall volume and chemistry as well as the temporal and spatial patterning of stemflow inputs to the ground. The latter two points are particular sources of uncertainty, since most sampling approaches fail to adequately identify the infiltration area of stemflow inputs at the trunk base resulting in incomplete or biased evaluations of tree species effects on rainfall partitioning.
Based on these deliberations we conducted a color tracer experiment with Brilliant Blue to identify flow patterns of stemflow water along the stem surface of two broad-leafed tree species (Fagus sylvatica and Acer pseudoplatanus) and to estimate the infiltration area at the trunk base and down to 12 cm soil depth. The trunk area was dye-stained up to 1.5 m height in advance and stemflow patterns along the trunk surface and soil infiltration zone were visually quantified following two natural rainfall events. Furthermore, we tested the relationship between color-stained zones of "high through-flow” and ecological soil characteristics such as fine root distribution and soil pH. This approach differs from common color tracer experiments, where stems are actively and homogeneously sprinkled with large amounts of color tracer solution.
We found distinct spatially restricted stemflow pathways on the tree trunks, which appeared specific for the tree individual exhibiting larger washed-off areas for beech (4441 cm²) compared to maple (1816 cm²). The infiltration area of stemflow at the trunk base was smaller than the basal area (BA) amounting to 17% (226.2 cm²) of the BA for beech and to 30% (414.4 cm²) for maple. For beech, colored areas were restricted to a maximum extension of 13 cm distance from the stem and of 30 cm for maple.
Our investigation exhibited that stemflow infiltration was spatially more concentrated at the trunk base than commonly assumed. The outcome of this study might contribute to our understanding on hydrological and biogeochemical interlinkages between the surface and subsurface of the Critical Zone.
How to cite: Michalzik, B., Tischer, A., and Lotze, R.: Identifying stemflow pathways and infiltration areas for sycamore maple (Acer pseudoplatanus) and European beech (Fagus sylvatica) by passive dye application, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9972, https://doi.org/10.5194/egusphere-egu2020-9972, 2020.
EGU2020-4296 | Displays | BG1.6
Vertical distribution of microbial communities and their response to metal(loid)s along vadose zone-aquifer sedimentsQian Chen and Sining Zhong
Microbial community in the vadose zone has been widely investigated. However, how microbial community varies from the vadose zone to deep-subsurface aquifer are poorly understood. In this study, 12 samples from vadose zone and three aquifer sediments were collected along a 42.5 m bore at a typical agricultural land in central China. High-throughput sequencing and multivariate statistical analysis were applied to explore the underlying distributions of bacterial, archaeal and fungal communities, and their response to environmental factors. The results showed that bacterial community changed considerably at vertical scales and essential variation occurred at the third aquifer layer. Actinobacteria (19.5%), NC10 (11.0%), Alphaproteobacteria (7.7%), Gammaproteobacteria (6.9%), and Deltaproteobacteria (6.4%) were most abundant classes in the vadose zone, where Alphaproteobacteria (22.3%), Gammaproteobacteria (20.1%), Actinobacteria (17.7%) and Bacteroidia (6.9%) enriched in the aquifer sediments. Archaeal and fungal communities were relatively more homogenous, with no significant trend as a function of depth. Process analysis further indicated that Selection dominated in bacterial community, whereas stochastic process governed archaeal and fungal communities. Moreover, environment-bacteria interaction analysis revealed that metal(loid)s (especially alkali metals) rather than physiochemical variables highly shaped the bacteria community in the vadose zone-aquifer continuum, where Bacteroidetes exhibited the strongest link to the variation of metal(loid)s. This research extends our knowledge about microbial community’s variation through the vadose zone to deep aquifer sediments in the studied area and similar agricultural areas.
How to cite: Chen, Q. and Zhong, S.: Vertical distribution of microbial communities and their response to metal(loid)s along vadose zone-aquifer sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4296, https://doi.org/10.5194/egusphere-egu2020-4296, 2020.
Microbial community in the vadose zone has been widely investigated. However, how microbial community varies from the vadose zone to deep-subsurface aquifer are poorly understood. In this study, 12 samples from vadose zone and three aquifer sediments were collected along a 42.5 m bore at a typical agricultural land in central China. High-throughput sequencing and multivariate statistical analysis were applied to explore the underlying distributions of bacterial, archaeal and fungal communities, and their response to environmental factors. The results showed that bacterial community changed considerably at vertical scales and essential variation occurred at the third aquifer layer. Actinobacteria (19.5%), NC10 (11.0%), Alphaproteobacteria (7.7%), Gammaproteobacteria (6.9%), and Deltaproteobacteria (6.4%) were most abundant classes in the vadose zone, where Alphaproteobacteria (22.3%), Gammaproteobacteria (20.1%), Actinobacteria (17.7%) and Bacteroidia (6.9%) enriched in the aquifer sediments. Archaeal and fungal communities were relatively more homogenous, with no significant trend as a function of depth. Process analysis further indicated that Selection dominated in bacterial community, whereas stochastic process governed archaeal and fungal communities. Moreover, environment-bacteria interaction analysis revealed that metal(loid)s (especially alkali metals) rather than physiochemical variables highly shaped the bacteria community in the vadose zone-aquifer continuum, where Bacteroidetes exhibited the strongest link to the variation of metal(loid)s. This research extends our knowledge about microbial community’s variation through the vadose zone to deep aquifer sediments in the studied area and similar agricultural areas.
How to cite: Chen, Q. and Zhong, S.: Vertical distribution of microbial communities and their response to metal(loid)s along vadose zone-aquifer sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4296, https://doi.org/10.5194/egusphere-egu2020-4296, 2020.
EGU2020-20390 | Displays | BG1.6
Transfer processes in the chalk critical zone – Multidisciplinary study of the undergound quarry of Saint Martin le NoeudDanièle Valdés, Ningxin Chen, Marc Dumont, Christelle Marlin, Hélène Blanchoud, Cyrille Fauchard, Fabrice Alliot, Ayoub Saydy, Emmanuel Aubry, Julien Guillemoteau, Roger Guérin, and Pierre Ribstein
The Chalk aquifer is a crucial, vital resource for water supply in France, Belgium and England. However, since several decades, this resource is threatened by high anthropogenic pressures: inducing a degradation of the groundwater’s quality.
The aim of our multidisciplinary study is to understand the transfer processes of the water and associated elements - solutes and contaminants (nitrate, pesticides) - throughout the critical zone (CZ) of chalk from the topsoil to the water table.
This study is focused on the underground quarry of Saint Martin le Noeud which is located in the Upper Cretaceous chalk layer of the Paris Basin. A layer of clay-with-flints covers the chalk of the quarry with a variable thickness. At a depth from 16 to 30m, the quarry is about 1200 m long and 150 m wide, giving a direct access to different groundwater compartments: (1) the Chalk water table through a series of 16 underground lakes, and (2) the vadose zone thanks to infiltration water percolating at the ceiling of the quarry. The set-up of this site allows to study the behaviors of both compartments.
Surface geophysical measurements: electrical resistivity tomography and electromagnetic induction mapping, have allowed to describe precisely the structure of the critical zone: in particular the geometry of the clay layer which has a variable thickness from 0 to about 5m.
The hydrodynamic and the quality of the groundwaters of both compartments (vadose zone and Chalk water table) have been characterized in time and space: (1) time series of flow percolation, water level, electrical conductivity and temperature, (2) geochemical analyses (major elements, nitrate, pesticides). The hydrodynamic and geochemical properties of the groundwaters vary spatially along the quarry highlighting different transfer processes.
Time series analysis and geochemical data allow to estimate the transfer velocities of the water and the contaminants and to precise the biogeochemical reactions (degradation, adsorption/desorption, storage …) that occurs in the CZ. These processes vary spatially depending on the properties of the CZ. The precise description of the clay layer compared to the groundwater behaviors allows to better characterize the infiltration processes. (1) a thin layer of clay induces a “diffuse infiltration”, low velocities, and low degradation of the pesticides in the subsurface, (2) a thick layer of clay induces a perched groundwater in the near-surface, degradation processes, concentrated infiltration and higher velocities.
How to cite: Valdés, D., Chen, N., Dumont, M., Marlin, C., Blanchoud, H., Fauchard, C., Alliot, F., Saydy, A., Aubry, E., Guillemoteau, J., Guérin, R., and Ribstein, P.: Transfer processes in the chalk critical zone – Multidisciplinary study of the undergound quarry of Saint Martin le Noeud, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20390, https://doi.org/10.5194/egusphere-egu2020-20390, 2020.
The Chalk aquifer is a crucial, vital resource for water supply in France, Belgium and England. However, since several decades, this resource is threatened by high anthropogenic pressures: inducing a degradation of the groundwater’s quality.
The aim of our multidisciplinary study is to understand the transfer processes of the water and associated elements - solutes and contaminants (nitrate, pesticides) - throughout the critical zone (CZ) of chalk from the topsoil to the water table.
This study is focused on the underground quarry of Saint Martin le Noeud which is located in the Upper Cretaceous chalk layer of the Paris Basin. A layer of clay-with-flints covers the chalk of the quarry with a variable thickness. At a depth from 16 to 30m, the quarry is about 1200 m long and 150 m wide, giving a direct access to different groundwater compartments: (1) the Chalk water table through a series of 16 underground lakes, and (2) the vadose zone thanks to infiltration water percolating at the ceiling of the quarry. The set-up of this site allows to study the behaviors of both compartments.
Surface geophysical measurements: electrical resistivity tomography and electromagnetic induction mapping, have allowed to describe precisely the structure of the critical zone: in particular the geometry of the clay layer which has a variable thickness from 0 to about 5m.
The hydrodynamic and the quality of the groundwaters of both compartments (vadose zone and Chalk water table) have been characterized in time and space: (1) time series of flow percolation, water level, electrical conductivity and temperature, (2) geochemical analyses (major elements, nitrate, pesticides). The hydrodynamic and geochemical properties of the groundwaters vary spatially along the quarry highlighting different transfer processes.
Time series analysis and geochemical data allow to estimate the transfer velocities of the water and the contaminants and to precise the biogeochemical reactions (degradation, adsorption/desorption, storage …) that occurs in the CZ. These processes vary spatially depending on the properties of the CZ. The precise description of the clay layer compared to the groundwater behaviors allows to better characterize the infiltration processes. (1) a thin layer of clay induces a “diffuse infiltration”, low velocities, and low degradation of the pesticides in the subsurface, (2) a thick layer of clay induces a perched groundwater in the near-surface, degradation processes, concentrated infiltration and higher velocities.
How to cite: Valdés, D., Chen, N., Dumont, M., Marlin, C., Blanchoud, H., Fauchard, C., Alliot, F., Saydy, A., Aubry, E., Guillemoteau, J., Guérin, R., and Ribstein, P.: Transfer processes in the chalk critical zone – Multidisciplinary study of the undergound quarry of Saint Martin le Noeud, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20390, https://doi.org/10.5194/egusphere-egu2020-20390, 2020.
EGU2020-3919 | Displays | BG1.6
Drivers of carbon fluxes in high-altitude Alpine Critical Zone: a novel data-based modelMarta Magnani, Ilaria Baneschi, Mariasilvia Giamberini, Brunella Raco, Pietro Mosca, and Antonello Provenzale
In high mountains, the Critical Zone (CZ) is a thin layer sustaining the whole local ecosystem. Here, however, the effects of climate change are manifesting most rapidly than in the surrounding lowlands. This is especially critical for the high-altitude carbon cycle, for which our knowledge is still patchy and new feedbacks could possibly be triggered. In particular, models of the processes that control carbon fluxes in mountain grasslands and Alpine tundra need to be improved. To contribute to fill this knowledge gap, in 2017 a new Critical Zone Observatory was established at the valley of the Nivolet Plain (CZO@Nivolet) in the Gran Paradiso National Park (GPNP), in the western Italian Alps, at about 2700 m asl. Three measurement sites were identified along the flanks of the valley. The sites are characterized by soils developed over carbonate rocks, gneiss rocks and glacial deposits. Since 2017, every year, from July to October, fluxes of carbon dioxide (CO2) were measured using a portable accumulation chamber, together with basic meteo-climatic and environmental variables, such as soil and air temperature and moisture, air pressure and solar radiation. This work is focused on a novel empirical model that uses unbiased and rigorous statistical analysis of these data to identify the environmental variables that control CO2 fluxes in Alpine tundra. The modelling approach is applied to the full dataset of simultaneous in situ measurements of the net exchange, ecosystem respiration and environmental variables for the three sites and the three measurement years. Since a large year-to-year variability in the dependencies on solar irradiance and environmental temperature is observed, a multi-regressive model has been implemented, where additional variables are introduced as perturbations of the standard functions. The multi-regressive model identifies the main drivers, highlighting the crucial role of soil moisture, and largely explains the temporal variability of the fluxes, with explained variance up to 90%. This model provides a basis for estimating future scenarios of carbon fluxes in high-altitude Alpine ecosystems.
How to cite: Magnani, M., Baneschi, I., Giamberini, M., Raco, B., Mosca, P., and Provenzale, A.: Drivers of carbon fluxes in high-altitude Alpine Critical Zone: a novel data-based model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3919, https://doi.org/10.5194/egusphere-egu2020-3919, 2020.
In high mountains, the Critical Zone (CZ) is a thin layer sustaining the whole local ecosystem. Here, however, the effects of climate change are manifesting most rapidly than in the surrounding lowlands. This is especially critical for the high-altitude carbon cycle, for which our knowledge is still patchy and new feedbacks could possibly be triggered. In particular, models of the processes that control carbon fluxes in mountain grasslands and Alpine tundra need to be improved. To contribute to fill this knowledge gap, in 2017 a new Critical Zone Observatory was established at the valley of the Nivolet Plain (CZO@Nivolet) in the Gran Paradiso National Park (GPNP), in the western Italian Alps, at about 2700 m asl. Three measurement sites were identified along the flanks of the valley. The sites are characterized by soils developed over carbonate rocks, gneiss rocks and glacial deposits. Since 2017, every year, from July to October, fluxes of carbon dioxide (CO2) were measured using a portable accumulation chamber, together with basic meteo-climatic and environmental variables, such as soil and air temperature and moisture, air pressure and solar radiation. This work is focused on a novel empirical model that uses unbiased and rigorous statistical analysis of these data to identify the environmental variables that control CO2 fluxes in Alpine tundra. The modelling approach is applied to the full dataset of simultaneous in situ measurements of the net exchange, ecosystem respiration and environmental variables for the three sites and the three measurement years. Since a large year-to-year variability in the dependencies on solar irradiance and environmental temperature is observed, a multi-regressive model has been implemented, where additional variables are introduced as perturbations of the standard functions. The multi-regressive model identifies the main drivers, highlighting the crucial role of soil moisture, and largely explains the temporal variability of the fluxes, with explained variance up to 90%. This model provides a basis for estimating future scenarios of carbon fluxes in high-altitude Alpine ecosystems.
How to cite: Magnani, M., Baneschi, I., Giamberini, M., Raco, B., Mosca, P., and Provenzale, A.: Drivers of carbon fluxes in high-altitude Alpine Critical Zone: a novel data-based model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3919, https://doi.org/10.5194/egusphere-egu2020-3919, 2020.
EGU2020-20621 | Displays | BG1.6
Mobile matter in the aeration zone of the Hainich Critical Zone Exploratory: First results from one-year monitoring by employing novel drain collectorsDinusha Eshvara Arachchige and Kai Uwe Totsche
Biogeochemical processes in the aeration zone (AZ) may severely affect the fluid flow, composition, and the amount of mobile matter. The AZ is a subsurface part of the Critical Zone (CZ) that connects the soils sensu stricto (SSS) with the aquifers. Depending on the groundwater dynamics, the fluid transiting in the AZ is not only recharged by the ascending seepage, but also by upwelling groundwater. Since the collection of fluids is a rather demanding task, fluid migration and matter transport have not been considered in CZ research so far. To address this research gap, we developed novel drain collectors and installed twenty of them within four different lithologies in the fractured carbonate AZ of the Hainich Critical Zone Exploratory (Hainich CZE) in central Germany. Drainage sampling was done on a regular monthly basis with additional event-based sampling. Size, chemical composition, and physio-chemical properties of the aqueous samples were analyzed by a range of spectroscopic, chromatographic, and microscopic techniques.
The amount of drainage water varied extremely between the locations and lithologies. We attribute this both to the foremost migration pathway operative (i.e., fractures, fluid flow regime, fracture flow, and film-flow) and to the different spatial extents of the “capture zones” that recharge the drainage collectors. For all lithologies, pH and EC were found to be independent of the lithology with rather high contents of organic carbon and showed significant differences between the hydrological summer and winter season. Significant amounts of colloids and larger suspended particles of calcite, clay minerals (Illite), and quartz were identified in almost all samples. While the general hydrochemistry seems to be controlled by the biogeochemical processes in the topsoils, we presume that the percolating water collects the mobilizable materials from exposed interfaces in the AZ. These materials are made “susceptible” to release and transport by weathering within the AZ during the periods of no flow. Additionally, upwelling groundwater may also be replenished the inventory of mobilizable materials in the AZ. Our study suggests that the AZ is not just an “inert” transition zone, but has to be considered as a biogeochemical reactor that may severely alter the seepage composition and properties, and thus the groundwater recharge.
How to cite: Eshvara Arachchige, D. and Totsche, K. U.: Mobile matter in the aeration zone of the Hainich Critical Zone Exploratory: First results from one-year monitoring by employing novel drain collectors , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20621, https://doi.org/10.5194/egusphere-egu2020-20621, 2020.
Biogeochemical processes in the aeration zone (AZ) may severely affect the fluid flow, composition, and the amount of mobile matter. The AZ is a subsurface part of the Critical Zone (CZ) that connects the soils sensu stricto (SSS) with the aquifers. Depending on the groundwater dynamics, the fluid transiting in the AZ is not only recharged by the ascending seepage, but also by upwelling groundwater. Since the collection of fluids is a rather demanding task, fluid migration and matter transport have not been considered in CZ research so far. To address this research gap, we developed novel drain collectors and installed twenty of them within four different lithologies in the fractured carbonate AZ of the Hainich Critical Zone Exploratory (Hainich CZE) in central Germany. Drainage sampling was done on a regular monthly basis with additional event-based sampling. Size, chemical composition, and physio-chemical properties of the aqueous samples were analyzed by a range of spectroscopic, chromatographic, and microscopic techniques.
The amount of drainage water varied extremely between the locations and lithologies. We attribute this both to the foremost migration pathway operative (i.e., fractures, fluid flow regime, fracture flow, and film-flow) and to the different spatial extents of the “capture zones” that recharge the drainage collectors. For all lithologies, pH and EC were found to be independent of the lithology with rather high contents of organic carbon and showed significant differences between the hydrological summer and winter season. Significant amounts of colloids and larger suspended particles of calcite, clay minerals (Illite), and quartz were identified in almost all samples. While the general hydrochemistry seems to be controlled by the biogeochemical processes in the topsoils, we presume that the percolating water collects the mobilizable materials from exposed interfaces in the AZ. These materials are made “susceptible” to release and transport by weathering within the AZ during the periods of no flow. Additionally, upwelling groundwater may also be replenished the inventory of mobilizable materials in the AZ. Our study suggests that the AZ is not just an “inert” transition zone, but has to be considered as a biogeochemical reactor that may severely alter the seepage composition and properties, and thus the groundwater recharge.
How to cite: Eshvara Arachchige, D. and Totsche, K. U.: Mobile matter in the aeration zone of the Hainich Critical Zone Exploratory: First results from one-year monitoring by employing novel drain collectors , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20621, https://doi.org/10.5194/egusphere-egu2020-20621, 2020.
EGU2020-18089 | Displays | BG1.6
Evaluating the potential of FT-ICR-MS to identify source-specific markers and trace molecular transformations in particulate organic matterJohanna Menges, Niels Hovius, Stefanie Poetz, Helena Osterholz, and Dirk Sachse
On long timescales, carbon fluxes in and out of rock, soil and biological reservoirs control carbon dioxide concentrations in the atmosphere and therefore modulate global climate. For example, the transfer of particulate organic matter (POM) from mountain ranges into rivers and subsequent burial in the ocean constitutes a carbon sink from the atmosphere if the eroded POM is sourced from vegetation and soils. In contrast, the transfer and burial of rock-derived petrogenic POM has no effect on atmospheric carbon concentrations. However, if petrogenic POM is remineralized during transfer, often mediated by microorganisms, it constitutes a carbon source to the atmosphere. To evaluate the net effect of these processes, it is essential to understand sourcing, mobilization and fluxes of POM. Bulk stable and radiogenic isotopes as well as a range of lipid biomarkers and their stable isotope ratios have been used to trace the sourcing and transfer of POM. However, these methods are limited to the distinction of broad classes of source materials and do not contain information on potential molecular transformations during organic matter mobilization and transport.
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allows the simultaneous measurement of a large range of compounds (i.e. hundreds to thousands) and has been applied in dissolved organic matter research to trace different sources as well as to identify transformations. FT-ICR-MS measurements on solvent-extractable POM provide direct information on the compositional variability of POM with a much larger analytical window than single biomarker or bulk isotope analysis and additionally might allow to trace transformations of POM upon mobilization.
Here, we test this method to decipher the different sources of POM and their mobilization in the upper catchment of the trans-Himalayan Kali Gandaki River, which sources petrogenic POM from abundant Jurassic sediments as well as biospheric POM from aged and modern soils. We evaluate the potential of the high-resolution molecular dataset to identify new marker compounds for specific organic matter sources and, by applying indicator species analysis, to statistically identify indicator compounds. In a second step, we evaluate the potential to trace transformations across the mobilization step from each specific organic matter source to particulate organic matter in river sediments.
We found a large number of source-specific elemental formulas for biospheric carbon and strong heterogeneity for bedrock-derived organic carbon which highlights that petrogenic carbon varies in molecular composition depending on its (geological) origin. Regarding transformations, we found a loss of source-specific formulas during mobilization of organic matter, related to intrinsic chemical properties. These formulas were characterized by a higher number of double bond equivalents, a higher nominal oxidation state and higher oxygen content than formulas shared between riverine POM and source organic matter for all sources, which is consistent with the preferential loss of more labile organic matter during transport and/or mobilization. Overall, our study highlights the potential of FT-ICR-MS to identify molecular-level transformations of solvent extractable lipids along the source-to-sink pathway of sedimentary organic matter.
How to cite: Menges, J., Hovius, N., Poetz, S., Osterholz, H., and Sachse, D.: Evaluating the potential of FT-ICR-MS to identify source-specific markers and trace molecular transformations in particulate organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18089, https://doi.org/10.5194/egusphere-egu2020-18089, 2020.
On long timescales, carbon fluxes in and out of rock, soil and biological reservoirs control carbon dioxide concentrations in the atmosphere and therefore modulate global climate. For example, the transfer of particulate organic matter (POM) from mountain ranges into rivers and subsequent burial in the ocean constitutes a carbon sink from the atmosphere if the eroded POM is sourced from vegetation and soils. In contrast, the transfer and burial of rock-derived petrogenic POM has no effect on atmospheric carbon concentrations. However, if petrogenic POM is remineralized during transfer, often mediated by microorganisms, it constitutes a carbon source to the atmosphere. To evaluate the net effect of these processes, it is essential to understand sourcing, mobilization and fluxes of POM. Bulk stable and radiogenic isotopes as well as a range of lipid biomarkers and their stable isotope ratios have been used to trace the sourcing and transfer of POM. However, these methods are limited to the distinction of broad classes of source materials and do not contain information on potential molecular transformations during organic matter mobilization and transport.
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allows the simultaneous measurement of a large range of compounds (i.e. hundreds to thousands) and has been applied in dissolved organic matter research to trace different sources as well as to identify transformations. FT-ICR-MS measurements on solvent-extractable POM provide direct information on the compositional variability of POM with a much larger analytical window than single biomarker or bulk isotope analysis and additionally might allow to trace transformations of POM upon mobilization.
Here, we test this method to decipher the different sources of POM and their mobilization in the upper catchment of the trans-Himalayan Kali Gandaki River, which sources petrogenic POM from abundant Jurassic sediments as well as biospheric POM from aged and modern soils. We evaluate the potential of the high-resolution molecular dataset to identify new marker compounds for specific organic matter sources and, by applying indicator species analysis, to statistically identify indicator compounds. In a second step, we evaluate the potential to trace transformations across the mobilization step from each specific organic matter source to particulate organic matter in river sediments.
We found a large number of source-specific elemental formulas for biospheric carbon and strong heterogeneity for bedrock-derived organic carbon which highlights that petrogenic carbon varies in molecular composition depending on its (geological) origin. Regarding transformations, we found a loss of source-specific formulas during mobilization of organic matter, related to intrinsic chemical properties. These formulas were characterized by a higher number of double bond equivalents, a higher nominal oxidation state and higher oxygen content than formulas shared between riverine POM and source organic matter for all sources, which is consistent with the preferential loss of more labile organic matter during transport and/or mobilization. Overall, our study highlights the potential of FT-ICR-MS to identify molecular-level transformations of solvent extractable lipids along the source-to-sink pathway of sedimentary organic matter.
How to cite: Menges, J., Hovius, N., Poetz, S., Osterholz, H., and Sachse, D.: Evaluating the potential of FT-ICR-MS to identify source-specific markers and trace molecular transformations in particulate organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18089, https://doi.org/10.5194/egusphere-egu2020-18089, 2020.
EGU2020-14451 | Displays | BG1.6
Dynamics of seepage mobile inventory in forest and agricultural soils - Results from a comparative multi-year lysimeter studyKatharina Lehmann, Robert Lehmann, and Kai Uwe Totsche
The mobile inventory in soil seepage is of fundamental importance for soil development and for functioning of subsurface ecosystem compartments. The mobile inventory may encompass inorganic, organo-mineral and organics, dissolved and colloidal, but also particulate matter and microbiota. Still unknown are the conditions and factors that trigger the release and export of seepage-contained mobile matter within soil, and its translocation through the subsurface of the critical zone. Long-term and high-resolution field studies that includes the mobile particulate inventory are essentially lacking. To overcome this knowledge gap, we established long-term soil monitoring plots in the Hainich Critical Zone Exploratory (HCZE; NW-Thuringia, central Germany). Soil seepage from 22 tension-supported lysimeters in topsoil and subsoil, covering different land use (forest, pasture, cropland) in the topographic recharge area of the HCZE, was collected and analyzed by a variety of analytical methods (physico-/chemical and spectroscopic) on a regular (biweekly) and event-scale cycle. With our study we proved that substances up to a size of 50 µm are mobile in the soils. The material spectra comprised minerals, mineral-organic particulates, diverse bioparticles and biotic detritus. Atmospheric forcing was found to be the major factor triggering the translocation of the mobile inventory. Especially episodic infiltration events during hydrological winter seasons (e.g. snow melts) with high seepage volume influences seepage hydrochemistry (e.g. pH, EC) and is important for transport of mobile matter to deeper compartments. Seasonal events cause mobilization of significant amounts of OC. On average, 21% of the total OC of the seepage was particulate (>0.45 µm). Furthermore, our results suggest that the formation environment and the geopedological setting (soil group, parent rock, land use) are controlling factors for the composition and the amount of soil-born mobile inventory. Our study provides evidence for the importance of the mobile inventory fraction >0,45 µm for soil element dynamics and budgets and highlights the role of weather events on soil and subsoil development and subsurface ecosystem functioning.
How to cite: Lehmann, K., Lehmann, R., and Totsche, K. U.: Dynamics of seepage mobile inventory in forest and agricultural soils - Results from a comparative multi-year lysimeter study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14451, https://doi.org/10.5194/egusphere-egu2020-14451, 2020.
The mobile inventory in soil seepage is of fundamental importance for soil development and for functioning of subsurface ecosystem compartments. The mobile inventory may encompass inorganic, organo-mineral and organics, dissolved and colloidal, but also particulate matter and microbiota. Still unknown are the conditions and factors that trigger the release and export of seepage-contained mobile matter within soil, and its translocation through the subsurface of the critical zone. Long-term and high-resolution field studies that includes the mobile particulate inventory are essentially lacking. To overcome this knowledge gap, we established long-term soil monitoring plots in the Hainich Critical Zone Exploratory (HCZE; NW-Thuringia, central Germany). Soil seepage from 22 tension-supported lysimeters in topsoil and subsoil, covering different land use (forest, pasture, cropland) in the topographic recharge area of the HCZE, was collected and analyzed by a variety of analytical methods (physico-/chemical and spectroscopic) on a regular (biweekly) and event-scale cycle. With our study we proved that substances up to a size of 50 µm are mobile in the soils. The material spectra comprised minerals, mineral-organic particulates, diverse bioparticles and biotic detritus. Atmospheric forcing was found to be the major factor triggering the translocation of the mobile inventory. Especially episodic infiltration events during hydrological winter seasons (e.g. snow melts) with high seepage volume influences seepage hydrochemistry (e.g. pH, EC) and is important for transport of mobile matter to deeper compartments. Seasonal events cause mobilization of significant amounts of OC. On average, 21% of the total OC of the seepage was particulate (>0.45 µm). Furthermore, our results suggest that the formation environment and the geopedological setting (soil group, parent rock, land use) are controlling factors for the composition and the amount of soil-born mobile inventory. Our study provides evidence for the importance of the mobile inventory fraction >0,45 µm for soil element dynamics and budgets and highlights the role of weather events on soil and subsoil development and subsurface ecosystem functioning.
How to cite: Lehmann, K., Lehmann, R., and Totsche, K. U.: Dynamics of seepage mobile inventory in forest and agricultural soils - Results from a comparative multi-year lysimeter study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14451, https://doi.org/10.5194/egusphere-egu2020-14451, 2020.
BG1.7 – Sustainable phosphorus management and recovery: linking phosphorus and other element/material cycles
EGU2020-10238 | Displays | BG1.7
Time to wake up to climate change and the accelerating phosphorus cyclePhil Haygarth
We urgently need to wake up to the role that climate change will be playing in the phosphorus cycle. The paper will attempt to address the complexities, controversies and uncertainties of estimating the effects that climate change is having on the phosphorus cycle. Citing an example from three UK catchments, the effect of climate change on average winter phosphorus loads is predicted to increase by up to 30% by the 2050s, and these effects will only be off-set by large-scale agricultural changes (e.g. a 20–80% reduction in phosphorus inputs). Achieving phosphorus-related quality water in diverse and productive agricultural landscapes under a changing climate is going to be a massive challenge. It is less than a century since we started mining rock phosphate, but in the context of a 4.5-billion-year-old earth and the acceleration due to climate, we are living through a switching point for phosphorus in the earth system.
How to cite: Haygarth, P.: Time to wake up to climate change and the accelerating phosphorus cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10238, https://doi.org/10.5194/egusphere-egu2020-10238, 2020.
We urgently need to wake up to the role that climate change will be playing in the phosphorus cycle. The paper will attempt to address the complexities, controversies and uncertainties of estimating the effects that climate change is having on the phosphorus cycle. Citing an example from three UK catchments, the effect of climate change on average winter phosphorus loads is predicted to increase by up to 30% by the 2050s, and these effects will only be off-set by large-scale agricultural changes (e.g. a 20–80% reduction in phosphorus inputs). Achieving phosphorus-related quality water in diverse and productive agricultural landscapes under a changing climate is going to be a massive challenge. It is less than a century since we started mining rock phosphate, but in the context of a 4.5-billion-year-old earth and the acceleration due to climate, we are living through a switching point for phosphorus in the earth system.
How to cite: Haygarth, P.: Time to wake up to climate change and the accelerating phosphorus cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10238, https://doi.org/10.5194/egusphere-egu2020-10238, 2020.
EGU2020-9980 | Displays | BG1.7 | Highlight
Obvious but overlooked: soil erosion neglect in the global phosphorus cycleChristine Alewell, Pasquale Borrelli, Bruno Ringeval, Cristiano Ballabio, David A. Robinson, and Panos Panagos
Phosphorus (P) as a key element in DNA, RNA as well as ATP and phospholipids is essential for the growth, functioning and reproduction of all life on earth. However, if fertilization with animal wastes or human excreta is not available or not organized, P fertilizers stem from nonrenewable geological P deposits, which are an increasingly limited resource. The potential threats of a global P limitation due to “peak phosphorus” have been discussed intensively in the recent past including the socio economic as well as political consequences which will be dramatic. While a deficit in available soil P leads to a loss of agricultural yield, an excess of total P in soils triggers aquatic eutrophication, loss in biodiversity and wildlife habitat in surrounding water bodies in other regions of the world.
We calculated global soil P balances considering input from atmosphere and plant management (as sum of manure and residue input minus plant uptake) versus depletion due to soil erosion in coupling P fluxes from (Ringeval et al., 2017) with soil erosion rates from (Borrelli et al., 2017).
The world’s soils are currently being depleted in P in spite of high chemical fertilizer input. Considering the current high chemical fertilizer inputs most continents result in slightly positive P balances (e.g. net P input to soils). Exception are Africa with very low chemical fertilizer input of 1.7 kg ha-1yr-1 paired with high losses due to soil erosion of 2 kg ha-1yr-1 and Europe (the latter is the average for the geographic Europe including eastern European countries with very low chemical fertilizer input). Results indicate negative balances globally as well as for all continents (depletion between 4 and 19 kg P ha-1yr-1 ) if input of chemical fertilizers is neglected.
Parallel to the distribution pattern and dynamics of global soil erosion by water (Borrelli et al., 2017), P losses from soils due to water erosion are most dramatic in countries and regions with intensive agriculture and/or extreme climates (e.g., high frequencies of heavy rain storm or droughts followed by significant rain events).
References
Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L. and Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1): 2013.
Ringeval, B., Augusto, L., Monod, H., van Apeldoorn, D., Bouwman, L., Yang, X., Achat, D.L., Chini, L.P., Van Oost, K., Guenet, B., Wang, R., Decharme, B., Nesme, T. and Pellerin, S., 2017. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology
How to cite: Alewell, C., Borrelli, P., Ringeval, B., Ballabio, C., Robinson, D. A., and Panagos, P.: Obvious but overlooked: soil erosion neglect in the global phosphorus cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9980, https://doi.org/10.5194/egusphere-egu2020-9980, 2020.
Phosphorus (P) as a key element in DNA, RNA as well as ATP and phospholipids is essential for the growth, functioning and reproduction of all life on earth. However, if fertilization with animal wastes or human excreta is not available or not organized, P fertilizers stem from nonrenewable geological P deposits, which are an increasingly limited resource. The potential threats of a global P limitation due to “peak phosphorus” have been discussed intensively in the recent past including the socio economic as well as political consequences which will be dramatic. While a deficit in available soil P leads to a loss of agricultural yield, an excess of total P in soils triggers aquatic eutrophication, loss in biodiversity and wildlife habitat in surrounding water bodies in other regions of the world.
We calculated global soil P balances considering input from atmosphere and plant management (as sum of manure and residue input minus plant uptake) versus depletion due to soil erosion in coupling P fluxes from (Ringeval et al., 2017) with soil erosion rates from (Borrelli et al., 2017).
The world’s soils are currently being depleted in P in spite of high chemical fertilizer input. Considering the current high chemical fertilizer inputs most continents result in slightly positive P balances (e.g. net P input to soils). Exception are Africa with very low chemical fertilizer input of 1.7 kg ha-1yr-1 paired with high losses due to soil erosion of 2 kg ha-1yr-1 and Europe (the latter is the average for the geographic Europe including eastern European countries with very low chemical fertilizer input). Results indicate negative balances globally as well as for all continents (depletion between 4 and 19 kg P ha-1yr-1 ) if input of chemical fertilizers is neglected.
Parallel to the distribution pattern and dynamics of global soil erosion by water (Borrelli et al., 2017), P losses from soils due to water erosion are most dramatic in countries and regions with intensive agriculture and/or extreme climates (e.g., high frequencies of heavy rain storm or droughts followed by significant rain events).
References
Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L. and Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1): 2013.
Ringeval, B., Augusto, L., Monod, H., van Apeldoorn, D., Bouwman, L., Yang, X., Achat, D.L., Chini, L.P., Van Oost, K., Guenet, B., Wang, R., Decharme, B., Nesme, T. and Pellerin, S., 2017. Phosphorus in agricultural soils: drivers of its distribution at the global scale. Global Change Biology
How to cite: Alewell, C., Borrelli, P., Ringeval, B., Ballabio, C., Robinson, D. A., and Panagos, P.: Obvious but overlooked: soil erosion neglect in the global phosphorus cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9980, https://doi.org/10.5194/egusphere-egu2020-9980, 2020.
EGU2020-10893 | Displays | BG1.7
Continental scale climate, land-use and geological controls of soil P cycling and relations with soil C and NWolfgang Wanek, Daniel Wasner, Johann Püspök, Theresa Böckle, Lisa Noll, Shasha Zhang, Qing Zheng, and Yuntao Hu
Despite the importance of phosphorus (P) as a nutrient for all life, its availability is highly constrained in terrestrial ecosystems. The availability of P to plants and microbes is regulated by abiotic processes (e.g. P sorption/desorption, precipitation/dissolution) and biological activities (microbial P immobilization/organic P mineralization). Due to the strong geochemical component of the P cycle, it can be expected that soil C, N and P cycling may differ in terms of effects of geology, climate and management. Despite advances in our understanding of physico-chemical controls on P availability, there is still little mechanistic understanding of large scale controls on soil P cycling and its relation to soil C and N cycling, due to a lack of broad scale studies using common methodologies.
Here we aimed to investigate soil physicochemical and biological factors that drive soil P cycling and may cause a (de)coupling of C, N and P processes. We therefore sampled mineral topsoils (0-10 cm, n=95) across a continental transect in Europe (Southern Spain to Northern Scandinavia), covering major geological, climatic and land use gradients. The soils derived from different land uses (cropland, grassland, forest/woodland) and bedrock types (silicate, sediment, calcareous). We analyzed a wide range of potentially relevant physico-chemical and biological properties and measured gross rates of soil N and P processes by short term (24 h) incubations of soils with 33P and 15N following isotope pool dilution approaches.
(i) Across the whole transect land-use effects on soil P pools and processes exceeded those of geology, reflecting the accumulation of fertilizer P in soils of managed ecosystems. Cropland (and grasslands) had higher values of soil total P and soil inorganic P (Pi), available Pi (Olsen P), and gross Pi mobilization rates by abiotic and biotic processes compared to forests. Soil phosphatase activity did not vary between land-uses. Soils on silicate bedrock had significantly higher total and labile P than calcareous soils.
(ii) Climate differentially affected P pools and processes. Soil total P, dissolved organic P, and gross Pi desorption decreased with mean annual temperature (MAT; these properties were not sensitive to mean annual precipitation - MAP), while soil phosphatase activity and gross total Pi mobilization through abiotic and biotic processes increased with MAP but were insensitive to MAT. This clearly points to adverse climatic controls of biotic and abiotic soil P processes.
(iii) We found strong interlinkages between soil C, N and P pools (soil organic matter and microbial biomass) and soil enzymes (beta-glucosidase, chitinase, phosphatase) but not in related gross processes (respiration, N and P mineralization). Interestingly the slopes of C-P and N-P relations of pools and enzymes differed systematically between land-uses, indicating that land management causes a partial decoupling of P from C and N cycles, reflecting the P-richness of croplands.
How to cite: Wanek, W., Wasner, D., Püspök, J., Böckle, T., Noll, L., Zhang, S., Zheng, Q., and Hu, Y.: Continental scale climate, land-use and geological controls of soil P cycling and relations with soil C and N, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10893, https://doi.org/10.5194/egusphere-egu2020-10893, 2020.
Despite the importance of phosphorus (P) as a nutrient for all life, its availability is highly constrained in terrestrial ecosystems. The availability of P to plants and microbes is regulated by abiotic processes (e.g. P sorption/desorption, precipitation/dissolution) and biological activities (microbial P immobilization/organic P mineralization). Due to the strong geochemical component of the P cycle, it can be expected that soil C, N and P cycling may differ in terms of effects of geology, climate and management. Despite advances in our understanding of physico-chemical controls on P availability, there is still little mechanistic understanding of large scale controls on soil P cycling and its relation to soil C and N cycling, due to a lack of broad scale studies using common methodologies.
Here we aimed to investigate soil physicochemical and biological factors that drive soil P cycling and may cause a (de)coupling of C, N and P processes. We therefore sampled mineral topsoils (0-10 cm, n=95) across a continental transect in Europe (Southern Spain to Northern Scandinavia), covering major geological, climatic and land use gradients. The soils derived from different land uses (cropland, grassland, forest/woodland) and bedrock types (silicate, sediment, calcareous). We analyzed a wide range of potentially relevant physico-chemical and biological properties and measured gross rates of soil N and P processes by short term (24 h) incubations of soils with 33P and 15N following isotope pool dilution approaches.
(i) Across the whole transect land-use effects on soil P pools and processes exceeded those of geology, reflecting the accumulation of fertilizer P in soils of managed ecosystems. Cropland (and grasslands) had higher values of soil total P and soil inorganic P (Pi), available Pi (Olsen P), and gross Pi mobilization rates by abiotic and biotic processes compared to forests. Soil phosphatase activity did not vary between land-uses. Soils on silicate bedrock had significantly higher total and labile P than calcareous soils.
(ii) Climate differentially affected P pools and processes. Soil total P, dissolved organic P, and gross Pi desorption decreased with mean annual temperature (MAT; these properties were not sensitive to mean annual precipitation - MAP), while soil phosphatase activity and gross total Pi mobilization through abiotic and biotic processes increased with MAP but were insensitive to MAT. This clearly points to adverse climatic controls of biotic and abiotic soil P processes.
(iii) We found strong interlinkages between soil C, N and P pools (soil organic matter and microbial biomass) and soil enzymes (beta-glucosidase, chitinase, phosphatase) but not in related gross processes (respiration, N and P mineralization). Interestingly the slopes of C-P and N-P relations of pools and enzymes differed systematically between land-uses, indicating that land management causes a partial decoupling of P from C and N cycles, reflecting the P-richness of croplands.
How to cite: Wanek, W., Wasner, D., Püspök, J., Böckle, T., Noll, L., Zhang, S., Zheng, Q., and Hu, Y.: Continental scale climate, land-use and geological controls of soil P cycling and relations with soil C and N, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10893, https://doi.org/10.5194/egusphere-egu2020-10893, 2020.
EGU2020-4664 | Displays | BG1.7
Phosphate supply to the eutrophic lake Eichbaumsee (Germany): Sedimentary versus groundwater sourcesJan Scholten, Wiebe Förster, Michael Schubert, Kay Knöller, Nikolaus Classen, Michael Lechelt, Jan-Helge Richard, Udo Rohweder, and Isabell Zunker
The eutrophic lake Eichbaumsee, a ~ 1 km long and 280m wide (maximum water depth 16m) dredging lake southeast of Hamburg (Germany), has been treated for water quality improvements using various techniques (i.e. aeration plants, removal of dissolved phosphate by aluminium phosphate precipitation and by Benthophos adsorption) during the past ~ 15 years. Despite these treatments no long-term improvement of the water quality was observed and the lake water phosphate content continued to increase by e.g. ~ 350 kg phosphate per year between March 2016 and February 2019. As no creeks or rivers drain into the lake and hydrological groundwater models do not suggest any major groundwater discharge into the lake, sources of phosphate (and other nutrients) are unknown.
We investigated the phosphate fluxes from sediment pore water and groundwater into the water body of the lake. Sediment pore water was extracted from sediment cores recovered by divers in August 2018 and February 2019. Diffusive phosphate fluxes from pore water were calculated based on phosphate gradients using first Fick`s law. Stable water isotopes (δ2H, δ18O) were measured in the lake water, sediment pore water, interstitial waters in the banks surrounding the lake, the Elbe river and in three groundwater wells close to lake. Stable isotope (δ2H, δ18O) water mass balance models were used to compute water inflow/outflow to/from the lake.
Our results revealed pore-water borne phosphate fluxes between – 0.07 mg/m²/d (i.e. slight phosphate uptake by the sediments) and 2.6 mg/m²/d (i.e. phosphate release to the lake). Assuming that the measured phosphate fluxes are temporarily and spatially representative for the whole lake, about 100 kg/a to 220 kg/a of phosphate is released from sediments. This amount is slightly lower than the observed phosphate increase of the lake water. Stable isotope signatures indicate a water exchange between the aquifer and the lake water. Based on stable isotope mass balances (δ2H, δ18O) we estimate an inflow of phosphate from the aquifer to the lake between 190 kg/a and 1400 kg/a. This inflow indicates that groundwater-born phosphate is as or even more important than phosphate supply via sediment pore-water. Our study suggests that groundwater may have an important impact on lake nutrient budgets.
How to cite: Scholten, J., Förster, W., Schubert, M., Knöller, K., Classen, N., Lechelt, M., Richard, J.-H., Rohweder, U., and Zunker, I.: Phosphate supply to the eutrophic lake Eichbaumsee (Germany): Sedimentary versus groundwater sources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4664, https://doi.org/10.5194/egusphere-egu2020-4664, 2020.
The eutrophic lake Eichbaumsee, a ~ 1 km long and 280m wide (maximum water depth 16m) dredging lake southeast of Hamburg (Germany), has been treated for water quality improvements using various techniques (i.e. aeration plants, removal of dissolved phosphate by aluminium phosphate precipitation and by Benthophos adsorption) during the past ~ 15 years. Despite these treatments no long-term improvement of the water quality was observed and the lake water phosphate content continued to increase by e.g. ~ 350 kg phosphate per year between March 2016 and February 2019. As no creeks or rivers drain into the lake and hydrological groundwater models do not suggest any major groundwater discharge into the lake, sources of phosphate (and other nutrients) are unknown.
We investigated the phosphate fluxes from sediment pore water and groundwater into the water body of the lake. Sediment pore water was extracted from sediment cores recovered by divers in August 2018 and February 2019. Diffusive phosphate fluxes from pore water were calculated based on phosphate gradients using first Fick`s law. Stable water isotopes (δ2H, δ18O) were measured in the lake water, sediment pore water, interstitial waters in the banks surrounding the lake, the Elbe river and in three groundwater wells close to lake. Stable isotope (δ2H, δ18O) water mass balance models were used to compute water inflow/outflow to/from the lake.
Our results revealed pore-water borne phosphate fluxes between – 0.07 mg/m²/d (i.e. slight phosphate uptake by the sediments) and 2.6 mg/m²/d (i.e. phosphate release to the lake). Assuming that the measured phosphate fluxes are temporarily and spatially representative for the whole lake, about 100 kg/a to 220 kg/a of phosphate is released from sediments. This amount is slightly lower than the observed phosphate increase of the lake water. Stable isotope signatures indicate a water exchange between the aquifer and the lake water. Based on stable isotope mass balances (δ2H, δ18O) we estimate an inflow of phosphate from the aquifer to the lake between 190 kg/a and 1400 kg/a. This inflow indicates that groundwater-born phosphate is as or even more important than phosphate supply via sediment pore-water. Our study suggests that groundwater may have an important impact on lake nutrient budgets.
How to cite: Scholten, J., Förster, W., Schubert, M., Knöller, K., Classen, N., Lechelt, M., Richard, J.-H., Rohweder, U., and Zunker, I.: Phosphate supply to the eutrophic lake Eichbaumsee (Germany): Sedimentary versus groundwater sources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4664, https://doi.org/10.5194/egusphere-egu2020-4664, 2020.
EGU2020-9777 | Displays | BG1.7
Reconstructing past lake water total phosphorus concentration using sediment geochemical recordsMadeleine Moyle, John Boyle, and Richard Chiverrell
To understand current phosphorus (P) cycling, which encompasses disturbances caused by human activity, it is necessary to quantify the long-term natural P cycles on which modern drivers act. The shortness of monitored P records renders this difficult by only covering the post-disturbance period and therefore fail to capture pre-disturbance baselines. Target driven management of sensitive ecosystems suffering from eutrophication uses baselines for P that cannot be reliably quantified at present. Recovery will only be possible if P loadings can be brought under control and this requires an understanding of what water quality targets are both desirable and achievable on a site-specific basis. This matters because a well-functioning ecosystem will be more resilient under future climate change and increasing human pressure on the landscape.
Where lakes are present in the landscape, there is the opportunity to use the sediment archive to provide long records of past P concentration. At present, these reconstructions rely on diatoms or related microfossil indicators. These require time and resource intensive tailored training sets and furthermore the records do not preserve in all lakes. Here we present a novel geochemical method for reconstructing water P concentrations based on lake sediment P burial fluxes, which in principle is universally applicable.
Tested at six published lake sites, the method produces results that agree very well with overlapping monitoring data for those lakes (r2 = 0.8). We want to share our method with the research community to identify additional sites to further verify the general applicability.
To illustrate the value of this approach to site-specific management, we compare past lake water total P reconstructions at Crosemere (UK) with a record of Holocene land cover change to identify the drivers of acceleration in the P cycle. Wider application of this lake sediment geochemical method will allow more critical evaluation of the human and natural drivers of the P cycle and be of benefit to ‘systems understanding’ spanning terrestrial and aquatic ecosystems.
How to cite: Moyle, M., Boyle, J., and Chiverrell, R.: Reconstructing past lake water total phosphorus concentration using sediment geochemical records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9777, https://doi.org/10.5194/egusphere-egu2020-9777, 2020.
To understand current phosphorus (P) cycling, which encompasses disturbances caused by human activity, it is necessary to quantify the long-term natural P cycles on which modern drivers act. The shortness of monitored P records renders this difficult by only covering the post-disturbance period and therefore fail to capture pre-disturbance baselines. Target driven management of sensitive ecosystems suffering from eutrophication uses baselines for P that cannot be reliably quantified at present. Recovery will only be possible if P loadings can be brought under control and this requires an understanding of what water quality targets are both desirable and achievable on a site-specific basis. This matters because a well-functioning ecosystem will be more resilient under future climate change and increasing human pressure on the landscape.
Where lakes are present in the landscape, there is the opportunity to use the sediment archive to provide long records of past P concentration. At present, these reconstructions rely on diatoms or related microfossil indicators. These require time and resource intensive tailored training sets and furthermore the records do not preserve in all lakes. Here we present a novel geochemical method for reconstructing water P concentrations based on lake sediment P burial fluxes, which in principle is universally applicable.
Tested at six published lake sites, the method produces results that agree very well with overlapping monitoring data for those lakes (r2 = 0.8). We want to share our method with the research community to identify additional sites to further verify the general applicability.
To illustrate the value of this approach to site-specific management, we compare past lake water total P reconstructions at Crosemere (UK) with a record of Holocene land cover change to identify the drivers of acceleration in the P cycle. Wider application of this lake sediment geochemical method will allow more critical evaluation of the human and natural drivers of the P cycle and be of benefit to ‘systems understanding’ spanning terrestrial and aquatic ecosystems.
How to cite: Moyle, M., Boyle, J., and Chiverrell, R.: Reconstructing past lake water total phosphorus concentration using sediment geochemical records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9777, https://doi.org/10.5194/egusphere-egu2020-9777, 2020.
EGU2020-12462 | Displays | BG1.7
Recycling of Polyphosphate accumulated in picoplankton in coastal Lake OntarioMaria Dittrich, Jiying Li, Diane Diane Plouchart, and Arthur Zastepa
Phytoplankton can accumulate polyphosphate (polyP) to alleviate the limitation of essential nutrient phosphorus (P). Yet polyP metabolisms in aquatic systems and their roles in P biogeochemical cycle remain elusive. Previously reported polyP enrichment in low-phosphorus oligotrophic marine waters contradicts the common view of polyP as a luxury P-storage molecule. Here, we show that in a P-rich eutrophic bay of Lake Ontario, planktonic polyP is controlled by multiple mechanisms and responds strongly to seasonal variations. Plankton accumulates polyP as P storage under high-P conditions via luxury uptake and uses it under acute P stress. Low phosphorus also triggers enrichment of polyP that can be preferentially recycled to attenuate P lost. We discover that picoplankton, despite their low production rates, are responsible for the dynamic polyP metabolisms. Picoplankton store and liberate polyP to support the high primary productivity of blooming algae. PolyP mechanisms enable and P exchange and efficient P recycling on the ecosystem and even larger scales.
How to cite: Dittrich, M., Li, J., Diane Plouchart, D., and Zastepa, A.: Recycling of Polyphosphate accumulated in picoplankton in coastal Lake Ontario, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12462, https://doi.org/10.5194/egusphere-egu2020-12462, 2020.
Phytoplankton can accumulate polyphosphate (polyP) to alleviate the limitation of essential nutrient phosphorus (P). Yet polyP metabolisms in aquatic systems and their roles in P biogeochemical cycle remain elusive. Previously reported polyP enrichment in low-phosphorus oligotrophic marine waters contradicts the common view of polyP as a luxury P-storage molecule. Here, we show that in a P-rich eutrophic bay of Lake Ontario, planktonic polyP is controlled by multiple mechanisms and responds strongly to seasonal variations. Plankton accumulates polyP as P storage under high-P conditions via luxury uptake and uses it under acute P stress. Low phosphorus also triggers enrichment of polyP that can be preferentially recycled to attenuate P lost. We discover that picoplankton, despite their low production rates, are responsible for the dynamic polyP metabolisms. Picoplankton store and liberate polyP to support the high primary productivity of blooming algae. PolyP mechanisms enable and P exchange and efficient P recycling on the ecosystem and even larger scales.
How to cite: Dittrich, M., Li, J., Diane Plouchart, D., and Zastepa, A.: Recycling of Polyphosphate accumulated in picoplankton in coastal Lake Ontario, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12462, https://doi.org/10.5194/egusphere-egu2020-12462, 2020.
EGU2020-8677 | Displays | BG1.7
Monitoring early stages of P release from fertilizer pellets to bulk soil using non-invasive sampling techniquesChiara Petroselli, Katherine Williams, Arpan Ghosh, Callum Scotson, Daniel McKay Fletcher, Siul Ruiz, Nancy Walker, Tiago Gerheim Sousa Dias, and Tiina Roose
Phosphorus (P) is a development-limiting nutrient for crops, hence global food production relies on P fertilizer application. However, P mobility in soil depends on many abiotic and biological processes, most notably its chemical interactions with the soil particles. Optimizing the timing and amount of fertilization could lead to higher production efficiencies and also reduce P runoff and subsequent contamination of water bodies. Plants have developed strategies to improve P uptake by optimizing the root system architecture and exuding organic acids for enhancing P mining locally to the root tips. However, these adaptations are mainly a response to low P availability or to already immobilized P patches in soil, and little is known about the fate of P in the early stages of fertilization.
In this framework, we developed an experimental assay for investigating P release from the fertilizer pellets, and its movement through soil using non-invasive microdialysis sampling techniques and inductively coupled plasma - mass spectrometry (ICP-MS) analytical techniques. Microdialysis allowed for time resolved in-situ samplings and the small size of the probes also allows for a fine spatial resolution.
Results showed a very rapid release of the P from the fertilizer pellet (triple super phosphate, TSP), producing a high concentration pulse that lasts a few hours. P concentrations then decrease over time until reaching steady low concentrations after 6-8 days and P replenishment from the pellet was not observed after the first pulse. The experiments showed that the speed of P movement in soil is greatly influenced by soil particle size distribution, and that gravity plays an important role in promoting quick P movement in the downward direction, while diffusion can account for P observed in the upward direction. Modelling was also applied to data fitting for quantifying trends and deriving an effective P diffusion coefficient in saturated soil.
How to cite: Petroselli, C., Williams, K., Ghosh, A., Scotson, C., McKay Fletcher, D., Ruiz, S., Walker, N., Sousa Dias, T. G., and Roose, T.: Monitoring early stages of P release from fertilizer pellets to bulk soil using non-invasive sampling techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8677, https://doi.org/10.5194/egusphere-egu2020-8677, 2020.
Phosphorus (P) is a development-limiting nutrient for crops, hence global food production relies on P fertilizer application. However, P mobility in soil depends on many abiotic and biological processes, most notably its chemical interactions with the soil particles. Optimizing the timing and amount of fertilization could lead to higher production efficiencies and also reduce P runoff and subsequent contamination of water bodies. Plants have developed strategies to improve P uptake by optimizing the root system architecture and exuding organic acids for enhancing P mining locally to the root tips. However, these adaptations are mainly a response to low P availability or to already immobilized P patches in soil, and little is known about the fate of P in the early stages of fertilization.
In this framework, we developed an experimental assay for investigating P release from the fertilizer pellets, and its movement through soil using non-invasive microdialysis sampling techniques and inductively coupled plasma - mass spectrometry (ICP-MS) analytical techniques. Microdialysis allowed for time resolved in-situ samplings and the small size of the probes also allows for a fine spatial resolution.
Results showed a very rapid release of the P from the fertilizer pellet (triple super phosphate, TSP), producing a high concentration pulse that lasts a few hours. P concentrations then decrease over time until reaching steady low concentrations after 6-8 days and P replenishment from the pellet was not observed after the first pulse. The experiments showed that the speed of P movement in soil is greatly influenced by soil particle size distribution, and that gravity plays an important role in promoting quick P movement in the downward direction, while diffusion can account for P observed in the upward direction. Modelling was also applied to data fitting for quantifying trends and deriving an effective P diffusion coefficient in saturated soil.
How to cite: Petroselli, C., Williams, K., Ghosh, A., Scotson, C., McKay Fletcher, D., Ruiz, S., Walker, N., Sousa Dias, T. G., and Roose, T.: Monitoring early stages of P release from fertilizer pellets to bulk soil using non-invasive sampling techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8677, https://doi.org/10.5194/egusphere-egu2020-8677, 2020.
EGU2020-2871 | Displays | BG1.7
Mobilization of P from crystalline and amorphous Fe- and Al-hydroxidesStella Gypser and Dirk Freese
In neutral to acidic soils, the availability of phosphorus (P) is affected by its strong affinity for mineral surfaces. Especially the interaction between P and iron- and aluminum-(oxy)hydroxides (Fe- and Al-hydroxides) plays a crucial role in the immobilization and hence, availability of P for plants. In this context, the fixation of P is mainly determined by processes of adsorption, desorption, and precipitation. In that sense, the kinetics and mechanisms of P desorption from synthetic well crystalline goethite (α-FeO(OH)) and gibbsite (γ-Al(OH)3) as well as from amorphous ferrihydrite (Fe2O3·H2O) and Al-hydroxide (Al(OH)3) were characterized.
Different inorganic and organic desorption solutions were selected for these experiments. On the one hand, substance conversion processes take place in the soil system. High-molecular-weight organic compounds formed during humification and mineralization play an important role in soil environment and P mobilization. On the other hand, plants had developed a range of adaptive strategies in case of P demand. Plant roots excrete complex mixtures of organic compounds such as organic acids, amino acids, and sugars. Additionally, there are equilibrium reactions, which are determined by the respective ionic strength of the soil solution itself. For a comparison regarding the efficiency of P mobilization from synthetic Fe- and Al-hydroxides, the desorption solutions CaCl2, and CaSO4 were chosen as main components of the soil solution, and humic and citric acid were selected as organic ligands following humification or produced by organisms in the rhizosphere.
Previous P adsorption experiments revealed the formation of adsorbed P surface complexes on crystalline hydroxides by using Fourier-Transform Infrared spectroscopy. Amorphous Al-hydroxides, characterized by a less rigid crystal structure, revealed higher accessibility of P binding sites within the particle structure. The higher accessibility of binding sites was also observed for ferrihydrite. The amorphous character enabled the diffusion of P into the mineral particle, where stable surface complexes and precipitates were formed. Hence, the grade of crystallinity affects the extent of precipitated and low-soluble P complexes.
After 8 weeks of desorption time, the cumulative P desorption increased following the order CaCl2 < CaSO4 < humic acid < citric acid. Amorphous ferrihydrite exhibited much less desorption when exposed to inorganic solutions than goethite, gibbsite, or Al-hydroxide. Modeling of the desorption data suggested a diffusion-controlled desorption step for ferrihydrite with citric acid as sorptive. The determination of CTotal also indicated various release mechanisms of the organic acids: while the use of humic acid led to the accumulation of metal-organic complexes in the solution, citric acid dissolved the mineral phase and hence, also low-soluble precipitated P-complexes. The results suggest organic compounds, especially citric acid, are more important for the mobilization of P from both crystalline and amorphous Fe- and Al-hydroxides than inorganic ions present in the soil solution.
How to cite: Gypser, S. and Freese, D.: Mobilization of P from crystalline and amorphous Fe- and Al-hydroxides, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2871, https://doi.org/10.5194/egusphere-egu2020-2871, 2020.
In neutral to acidic soils, the availability of phosphorus (P) is affected by its strong affinity for mineral surfaces. Especially the interaction between P and iron- and aluminum-(oxy)hydroxides (Fe- and Al-hydroxides) plays a crucial role in the immobilization and hence, availability of P for plants. In this context, the fixation of P is mainly determined by processes of adsorption, desorption, and precipitation. In that sense, the kinetics and mechanisms of P desorption from synthetic well crystalline goethite (α-FeO(OH)) and gibbsite (γ-Al(OH)3) as well as from amorphous ferrihydrite (Fe2O3·H2O) and Al-hydroxide (Al(OH)3) were characterized.
Different inorganic and organic desorption solutions were selected for these experiments. On the one hand, substance conversion processes take place in the soil system. High-molecular-weight organic compounds formed during humification and mineralization play an important role in soil environment and P mobilization. On the other hand, plants had developed a range of adaptive strategies in case of P demand. Plant roots excrete complex mixtures of organic compounds such as organic acids, amino acids, and sugars. Additionally, there are equilibrium reactions, which are determined by the respective ionic strength of the soil solution itself. For a comparison regarding the efficiency of P mobilization from synthetic Fe- and Al-hydroxides, the desorption solutions CaCl2, and CaSO4 were chosen as main components of the soil solution, and humic and citric acid were selected as organic ligands following humification or produced by organisms in the rhizosphere.
Previous P adsorption experiments revealed the formation of adsorbed P surface complexes on crystalline hydroxides by using Fourier-Transform Infrared spectroscopy. Amorphous Al-hydroxides, characterized by a less rigid crystal structure, revealed higher accessibility of P binding sites within the particle structure. The higher accessibility of binding sites was also observed for ferrihydrite. The amorphous character enabled the diffusion of P into the mineral particle, where stable surface complexes and precipitates were formed. Hence, the grade of crystallinity affects the extent of precipitated and low-soluble P complexes.
After 8 weeks of desorption time, the cumulative P desorption increased following the order CaCl2 < CaSO4 < humic acid < citric acid. Amorphous ferrihydrite exhibited much less desorption when exposed to inorganic solutions than goethite, gibbsite, or Al-hydroxide. Modeling of the desorption data suggested a diffusion-controlled desorption step for ferrihydrite with citric acid as sorptive. The determination of CTotal also indicated various release mechanisms of the organic acids: while the use of humic acid led to the accumulation of metal-organic complexes in the solution, citric acid dissolved the mineral phase and hence, also low-soluble precipitated P-complexes. The results suggest organic compounds, especially citric acid, are more important for the mobilization of P from both crystalline and amorphous Fe- and Al-hydroxides than inorganic ions present in the soil solution.
How to cite: Gypser, S. and Freese, D.: Mobilization of P from crystalline and amorphous Fe- and Al-hydroxides, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2871, https://doi.org/10.5194/egusphere-egu2020-2871, 2020.
EGU2020-4211 | Displays | BG1.7
Development of a regeneration technique for aluminum-rich and iron-rich phosphorus sorption materialsIsis S P C Scott, Chad J Penn, and Chi Hua Huang
Preventing dissolved phosphorus (P) accumulation in soils and its transport to water bodies has been subject of many studies. However, despite the continuous efforts and advances, excessive P is still a concern and it is especially problematic in freshwater systems: excessive dissolved P leads to eutrophic conditions, a threat for water quality and aquatic life. P removal structures are a novel technology used in urban and rural settings to intercept dissolved P in surface and subsurface flows. P sorption materials (PSMs), active media with high affinity for dissolved P, are the core components of these structures. Once the PSMs reach service life, replacing the spent media can be costly. The objective of this research is to assess potential regeneration techniques that will extend the lifetime of Aluminum (Al)/Iron (Fe)-rich PSMs. We are proposing a regeneration involving a continuous circulation of 1M KOH aiming to restore unavailable sorption sites on the PSMs. A series of flow-through experiments was conducted alternating between P sorption (0.5 and 50 mg/L input solution) and desorption with KOH (5 or 20 pore volumes), varying residence times (0.5 min and 10 min) and number of recirculations (0, 6 and 24). We tested the treatments in 3 manufactured PSMs, Alcan, Biomax and PhosRedeem. Across two cycles of sorption-desorption, Alcan, Biomax and PhosRedeem showed an average P recovery of 81%, 79% and 7%, respectively. The comparative investigation of the tested treatments revealed that the most effective regeneration treatment is characterized by a larger KOH volume (20 pore volumes) and no recirculation, with up to 100% reported P recovery. This research demonstrates the ability of Al/Fe-rich PSMs regeneration to contribute to a circular economy of P, as P recovery enables a more sustainable P cycle in both terrestrial and aquatic environments.
How to cite: S P C Scott, I., J Penn, C., and Huang, C. H.: Development of a regeneration technique for aluminum-rich and iron-rich phosphorus sorption materials , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4211, https://doi.org/10.5194/egusphere-egu2020-4211, 2020.
Preventing dissolved phosphorus (P) accumulation in soils and its transport to water bodies has been subject of many studies. However, despite the continuous efforts and advances, excessive P is still a concern and it is especially problematic in freshwater systems: excessive dissolved P leads to eutrophic conditions, a threat for water quality and aquatic life. P removal structures are a novel technology used in urban and rural settings to intercept dissolved P in surface and subsurface flows. P sorption materials (PSMs), active media with high affinity for dissolved P, are the core components of these structures. Once the PSMs reach service life, replacing the spent media can be costly. The objective of this research is to assess potential regeneration techniques that will extend the lifetime of Aluminum (Al)/Iron (Fe)-rich PSMs. We are proposing a regeneration involving a continuous circulation of 1M KOH aiming to restore unavailable sorption sites on the PSMs. A series of flow-through experiments was conducted alternating between P sorption (0.5 and 50 mg/L input solution) and desorption with KOH (5 or 20 pore volumes), varying residence times (0.5 min and 10 min) and number of recirculations (0, 6 and 24). We tested the treatments in 3 manufactured PSMs, Alcan, Biomax and PhosRedeem. Across two cycles of sorption-desorption, Alcan, Biomax and PhosRedeem showed an average P recovery of 81%, 79% and 7%, respectively. The comparative investigation of the tested treatments revealed that the most effective regeneration treatment is characterized by a larger KOH volume (20 pore volumes) and no recirculation, with up to 100% reported P recovery. This research demonstrates the ability of Al/Fe-rich PSMs regeneration to contribute to a circular economy of P, as P recovery enables a more sustainable P cycle in both terrestrial and aquatic environments.
How to cite: S P C Scott, I., J Penn, C., and Huang, C. H.: Development of a regeneration technique for aluminum-rich and iron-rich phosphorus sorption materials , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4211, https://doi.org/10.5194/egusphere-egu2020-4211, 2020.
EGU2020-5603 | Displays | BG1.7
Identifying opportunities for sustainable phosphorus management in Northern Ireland with substance flow analysisShane Rothwell, Kirsty Forber, Chris Johnson, Donnacha Doody, and Paul Withers
In common with most national agricultural systems, phosphorus (P) inputs are essential for production of crops and livestock in Northern Ireland (NI). However, the negative environmental impacts on their aquatic environments of inappropriate P management both in agriculture and the wider food system are widely acknowledged. Recent gains in reducing P loading to fresh waters through regulatory intervention are now reversing (Northern Ireland Environmental Statistics Report, DAERA 2018) suggesting the need for additional approaches that improve the sustainability of P use in the NI food system. Such approaches should ensure that P entering the food system (e.g. as food, fertilisers and animal feed) is efficiently recycled back into the system to ‘close the P cycle’, and thus reduce the demand for imported P. Furthermore, minimising P losses from different stages of the food system are critical to mitigating negative environmental impacts. To effectively achieve this, the flows, stores and losses of P within the food system must first be understood. Here, we report on a P substance flow analysis (SFA) undertaken for NI for the year 2017, that provided a focus to empower stakeholders to explore options to change P stewardship in the NI food system. Total P import to the NI food system in 2017 as food, feed, fertiliser and chemical P was 19096 t (10.21 kg person-1 yr-1), total P exports were 8097 t (4.33 kg person-1 yr-1) leaving a system surplus of 10999 t (5.88 kg person-1 yr-1). Of this surplus, 923 t of P (0.49 kg person-1 yr-1 or 8%) was consumed in food by the population of NI, 7959 t (72%) accumulated in agricultural soil as excess application, 1528 t (14%) were lost to fresh and coastal waters and 1189 t (11%) were disposed in landfill, demonstrating the current imbalance of P use in NI. This P SFA model created a framework of understanding to engage key stakeholders, in scenario analysis, to explore opportunities for improving the sustainability of P use in the NI food system.
How to cite: Rothwell, S., Forber, K., Johnson, C., Doody, D., and Withers, P.: Identifying opportunities for sustainable phosphorus management in Northern Ireland with substance flow analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5603, https://doi.org/10.5194/egusphere-egu2020-5603, 2020.
In common with most national agricultural systems, phosphorus (P) inputs are essential for production of crops and livestock in Northern Ireland (NI). However, the negative environmental impacts on their aquatic environments of inappropriate P management both in agriculture and the wider food system are widely acknowledged. Recent gains in reducing P loading to fresh waters through regulatory intervention are now reversing (Northern Ireland Environmental Statistics Report, DAERA 2018) suggesting the need for additional approaches that improve the sustainability of P use in the NI food system. Such approaches should ensure that P entering the food system (e.g. as food, fertilisers and animal feed) is efficiently recycled back into the system to ‘close the P cycle’, and thus reduce the demand for imported P. Furthermore, minimising P losses from different stages of the food system are critical to mitigating negative environmental impacts. To effectively achieve this, the flows, stores and losses of P within the food system must first be understood. Here, we report on a P substance flow analysis (SFA) undertaken for NI for the year 2017, that provided a focus to empower stakeholders to explore options to change P stewardship in the NI food system. Total P import to the NI food system in 2017 as food, feed, fertiliser and chemical P was 19096 t (10.21 kg person-1 yr-1), total P exports were 8097 t (4.33 kg person-1 yr-1) leaving a system surplus of 10999 t (5.88 kg person-1 yr-1). Of this surplus, 923 t of P (0.49 kg person-1 yr-1 or 8%) was consumed in food by the population of NI, 7959 t (72%) accumulated in agricultural soil as excess application, 1528 t (14%) were lost to fresh and coastal waters and 1189 t (11%) were disposed in landfill, demonstrating the current imbalance of P use in NI. This P SFA model created a framework of understanding to engage key stakeholders, in scenario analysis, to explore opportunities for improving the sustainability of P use in the NI food system.
How to cite: Rothwell, S., Forber, K., Johnson, C., Doody, D., and Withers, P.: Identifying opportunities for sustainable phosphorus management in Northern Ireland with substance flow analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5603, https://doi.org/10.5194/egusphere-egu2020-5603, 2020.
EGU2020-5870 | Displays | BG1.7
Evaluating P sustainability using biosolids in comparison to commercial fertilizer for P-use efficient genetically transformed lettuceNeng Iong Chan, Bruce Rittmann, and James Elser
The sustainable management of phosphorus (P) includes recycling and enhancing P-use efficiency (PUE) in agriculture. In this study, we compared plant yield and the PUE of lettuce growing with soil amendments of biosolids from three wastewater treatment plants in comparison to commercial fertilizer. Furthermore, we used AVP1-transformed lettuce (Lactuca sativa cv. Conquistador), which is genetically improved to enhance its PUE, and compared its performance to non-transformed (wildtype, WT) lettuce in greenhouse conditions. AVP1 lettuce produced higher yield than WT lettuce only with commercial-fertilizer treatments; the yield with biosolid treatments did not vary between the two lettuce types. PUE did not differ between WT and AVP1 lettuce but was higher for commercial fertilizer than for biosolids. WT lettuce had higher P content in below-ground biomass than AVP1 lettuce when both were treated with biosolids. This suggests that capability of AVP1 lettuce to acidify the root zone may have mobilized heavy metals from biosolids and these toxins reduced the yield, P uptake, and PUE in AVP1 lettuce. In particular, Cd and As contents were high in lettuce biomass from biosolid treatments and exceeded recommendations for human daily oral dose.
How to cite: Chan, N. I., Rittmann, B., and Elser, J.: Evaluating P sustainability using biosolids in comparison to commercial fertilizer for P-use efficient genetically transformed lettuce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5870, https://doi.org/10.5194/egusphere-egu2020-5870, 2020.
The sustainable management of phosphorus (P) includes recycling and enhancing P-use efficiency (PUE) in agriculture. In this study, we compared plant yield and the PUE of lettuce growing with soil amendments of biosolids from three wastewater treatment plants in comparison to commercial fertilizer. Furthermore, we used AVP1-transformed lettuce (Lactuca sativa cv. Conquistador), which is genetically improved to enhance its PUE, and compared its performance to non-transformed (wildtype, WT) lettuce in greenhouse conditions. AVP1 lettuce produced higher yield than WT lettuce only with commercial-fertilizer treatments; the yield with biosolid treatments did not vary between the two lettuce types. PUE did not differ between WT and AVP1 lettuce but was higher for commercial fertilizer than for biosolids. WT lettuce had higher P content in below-ground biomass than AVP1 lettuce when both were treated with biosolids. This suggests that capability of AVP1 lettuce to acidify the root zone may have mobilized heavy metals from biosolids and these toxins reduced the yield, P uptake, and PUE in AVP1 lettuce. In particular, Cd and As contents were high in lettuce biomass from biosolid treatments and exceeded recommendations for human daily oral dose.
How to cite: Chan, N. I., Rittmann, B., and Elser, J.: Evaluating P sustainability using biosolids in comparison to commercial fertilizer for P-use efficient genetically transformed lettuce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5870, https://doi.org/10.5194/egusphere-egu2020-5870, 2020.
EGU2020-6206 | Displays | BG1.7
Regulation of dissolved phosphate through incorporation into schwertmanniteHelen E. King, Stan Bakker, Gijs Munnecom, and Felipe Gomez
Phosphate is known to absorb strongly to schwertmannite (Fe8O8(OH)6(SO4)·nH2O)1 and as such, schwertmannite has been proposed to limit phosphate in solution in acid mine drainage (AMD) environments. This in turn will limit phosphate availability to the micro-organisms that live in and propagate AMD2. Here we have studied sediment samples from the Rio Tinto river in Spain collected during Europlanet field area visit to verify whether phosphate can be incorporated into sulphate-rich minerals in this river. The minerals were identified using X-ray diffraction. Our analyses show that the concentration of phosphate in the river is in the nM range. Digestion of modern sediments in nitric acid followed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis indicate that sites with sulphate-rich minerals are correlated with elevated phosphate concentrations. In addition, phosphate is also retained in ancient sediments that are dominated by goethite (FeO(OH)).
We have also conducted experiments to explore the competition between Fe3+, phosphate and sulphate ions in solution as well as the effect of this on schwertmannite nucleation. UV-Vis and Raman spectroscopy demonstrate that contact ion pairs form between Fe3+ and phosphate or sulphate in solution. Particularly, phosphate and sulphate compete for Fe3+ in solution consistent with predictions by the solution speciation modelling program PHREEQC. Our experiments also show that above a critical concentration, phosphate retards the nucleation of schwertmannite. As this critical concentration is above that found in Rio Tinto river fluids, phosphate is expected to have a limited role in schwertmannite precipitation, but, its concentration is regulated by its incorporation into schwertmannite and other sulphate-bearing phases in AMD systems.
References
1Eskandarpour et al. 2006, Material Transactions, 1832. 2Chen et al. 2015, ISME, 1579.
How to cite: King, H. E., Bakker, S., Munnecom, G., and Gomez, F.: Regulation of dissolved phosphate through incorporation into schwertmannite , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6206, https://doi.org/10.5194/egusphere-egu2020-6206, 2020.
Phosphate is known to absorb strongly to schwertmannite (Fe8O8(OH)6(SO4)·nH2O)1 and as such, schwertmannite has been proposed to limit phosphate in solution in acid mine drainage (AMD) environments. This in turn will limit phosphate availability to the micro-organisms that live in and propagate AMD2. Here we have studied sediment samples from the Rio Tinto river in Spain collected during Europlanet field area visit to verify whether phosphate can be incorporated into sulphate-rich minerals in this river. The minerals were identified using X-ray diffraction. Our analyses show that the concentration of phosphate in the river is in the nM range. Digestion of modern sediments in nitric acid followed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis indicate that sites with sulphate-rich minerals are correlated with elevated phosphate concentrations. In addition, phosphate is also retained in ancient sediments that are dominated by goethite (FeO(OH)).
We have also conducted experiments to explore the competition between Fe3+, phosphate and sulphate ions in solution as well as the effect of this on schwertmannite nucleation. UV-Vis and Raman spectroscopy demonstrate that contact ion pairs form between Fe3+ and phosphate or sulphate in solution. Particularly, phosphate and sulphate compete for Fe3+ in solution consistent with predictions by the solution speciation modelling program PHREEQC. Our experiments also show that above a critical concentration, phosphate retards the nucleation of schwertmannite. As this critical concentration is above that found in Rio Tinto river fluids, phosphate is expected to have a limited role in schwertmannite precipitation, but, its concentration is regulated by its incorporation into schwertmannite and other sulphate-bearing phases in AMD systems.
References
1Eskandarpour et al. 2006, Material Transactions, 1832. 2Chen et al. 2015, ISME, 1579.
How to cite: King, H. E., Bakker, S., Munnecom, G., and Gomez, F.: Regulation of dissolved phosphate through incorporation into schwertmannite , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6206, https://doi.org/10.5194/egusphere-egu2020-6206, 2020.
EGU2020-7857 | Displays | BG1.7 | Highlight
P-TRAP - Diffuse phosphorus input to surface watersSylvia Walter and Thilo Behrends and the P-TRAP team
Phosphate (P) as an essential resource for food production is becoming scarce. Its uncontrolled loss from agricultural areas is in conflict with the principles of a circular economy. Enhanced loading of surface waters with P is the main cause for eutrophication and presents a key challenge in meeting the objectives of the EU Water Framework Directive. Understanding and controlling environmental P fluxes therefore is key to target both problems, to develop new methods and approaches to manage environmental P fluxes, and to improve surface water quality.
In March 2019 the EU Marie Sklodowska-Curie Innovative Training Network P-TRAP has been launched. P-TRAP establishes a framework of partners from multiple science and engineering disciplines. Integration of non-academic partners from various stakeholder groups into the P-TRAP consortium paves the way for direct implementation of the acquired knowledge. The project is targeting the diffuse flux of phosphate (P) into surface waters, i.e. the problems of understanding and controlling environmental P fluxes. P-TRAP aims to develop new methods and approaches to trap P in drained agricultural areas and in the sediments of eutrophic lakes. Trapping of P involves the application of iron(Fe)-containing by-products from drinking water treatment. P-TRAP aspires the ideas of a circular economy and aims at recovering the retained P in agricultural systems. Novel microbial technologies will be developed to convert P-loaded Fe-minerals into marketable fertilizers whose suitability will be evaluated. The P-TRAP technologies have in common that they rely on the naturally strong connection between P and Fe and the innovative P-TRAP strategies will be underpinned by process-orientated investigations on the behaviour of P during the transformation of Fe minerals. The latter are key in trapping and recycling of P in agricultural systems and lakes. The poster will present the structure and the planned research of the project, including a first overview of achievements of the first year.
How to cite: Walter, S. and Behrends, T. and the P-TRAP team: P-TRAP - Diffuse phosphorus input to surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7857, https://doi.org/10.5194/egusphere-egu2020-7857, 2020.
Phosphate (P) as an essential resource for food production is becoming scarce. Its uncontrolled loss from agricultural areas is in conflict with the principles of a circular economy. Enhanced loading of surface waters with P is the main cause for eutrophication and presents a key challenge in meeting the objectives of the EU Water Framework Directive. Understanding and controlling environmental P fluxes therefore is key to target both problems, to develop new methods and approaches to manage environmental P fluxes, and to improve surface water quality.
In March 2019 the EU Marie Sklodowska-Curie Innovative Training Network P-TRAP has been launched. P-TRAP establishes a framework of partners from multiple science and engineering disciplines. Integration of non-academic partners from various stakeholder groups into the P-TRAP consortium paves the way for direct implementation of the acquired knowledge. The project is targeting the diffuse flux of phosphate (P) into surface waters, i.e. the problems of understanding and controlling environmental P fluxes. P-TRAP aims to develop new methods and approaches to trap P in drained agricultural areas and in the sediments of eutrophic lakes. Trapping of P involves the application of iron(Fe)-containing by-products from drinking water treatment. P-TRAP aspires the ideas of a circular economy and aims at recovering the retained P in agricultural systems. Novel microbial technologies will be developed to convert P-loaded Fe-minerals into marketable fertilizers whose suitability will be evaluated. The P-TRAP technologies have in common that they rely on the naturally strong connection between P and Fe and the innovative P-TRAP strategies will be underpinned by process-orientated investigations on the behaviour of P during the transformation of Fe minerals. The latter are key in trapping and recycling of P in agricultural systems and lakes. The poster will present the structure and the planned research of the project, including a first overview of achievements of the first year.
How to cite: Walter, S. and Behrends, T. and the P-TRAP team: P-TRAP - Diffuse phosphorus input to surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7857, https://doi.org/10.5194/egusphere-egu2020-7857, 2020.
EGU2020-8267 | Displays | BG1.7
Physico-chemical transformation of bone char for soil amendmentPartha Pratim Biswas, Yi-tse Weng, Gordon Turner-Walker, and Biqing Liang*
* Corresponding author. Tel: 886-62757575 ext65433; E-mail: BL93@cornell.edu; liangbq@mail.ncku.edu.tw
Abstract: Bone residue was found an important constituent of the miraculous Amazonian Dark Earth and considered as an effective supply of Ca and P nutrient to increase soil fertility. The application of bone-char to the soil as amendment is a favorable practice, yet more research is needed to understand the behavior and fate of bone hydroxyapatite (Ca10(PO4)6(OH)2) (HAp) in the natural environment over time. In our study, we explored Fourier Transform Infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) to study the physicochemical properties of bone and bone-char (300-1200 °C) under pyrolysis temperatures and their dissolution behavior at different pH (4 and 6). We observed the structural transformation from B-type CHAp to a higher level of disorder AB or A-type CHAp with increasing temperatures, which could be explained by the reaction CO2 with 2 OH- in the CHAp channel. A weak band of CO32- at 700 °C implied thermal decomposition of inorganic CO32- at above 700 °C, which partially contributed to the increasing crystallinity and stability of bone char. As the pyrolysis temperature increased up to 1100 °C, the centroid of v3c PO43- peak shifted to a higher wavenumber (1029-1051 cm-1), resulting from the rearrangement of P-O bonds. The loss of water and organic component contributed to an increase in vacancy. The amide and lipids decomposition occurred within 300-600 °C, rendering a better crystal symmetry. The signal of structural OH- band increased with increasing temperature from 300 to 500 °C, due to the reaction of inorganic CO32- and H2O [CO32- + H2O ↔ 2(OH-) + CO2]. There was more A-type CHAp formation due to simultaneous reverse reaction, and the OH- band became weaker at above 500 °C. The surface consolidation of bone char was obvious at 700 °C, according to observation by the Transmission X-ray Microscopy (TXM). The P dissolution was the highest for bone at pH 4 (11.82±0.98 ppm), compared to that at pH 6 (10.93±0.39 ppm). The dissolution was relatively low in 500 °C biochar, and the amount was comparable at pH 4 (7.08±0.16 ppm) and pH 6 (6.902±0.16 ppm) after 140 hours’ incubation. The lowest P dissolution was observed at 700 °C biochar, and a higher dissolution was observed at higher pH 6(6.03±0.03 ppm) when compared to that at pH 4 (3.489 ±0.07 ppm). There was a very large increase in pH after bone char addition, which increased from 4 to 8.12 and 6 to 8.14, respectively. The solution end pH was similar after bone char addition. Surface complex reaction (≡CaOH2++HPO42–⇌≡OPO3H-+H+) explained the PO43- re-adsorption to bone char surface within the pH range of 4.5 to 8.2. Charring of bone would lead to a longer lifetime in the natural environment and render a stable pool of P nutrient in infertile soils. The scale-up application of bone char offers new opportunities to restore degraded soil by waste recycling and management.
Keywords: Bone char, hydroxyapatite (HAp), CHAp, FTIR, TXM, Phosphorus dissolution, soil fertility.
How to cite: Biswas, P. P., Weng, Y., Turner-Walker, G., and Liang*, B.: Physico-chemical transformation of bone char for soil amendment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8267, https://doi.org/10.5194/egusphere-egu2020-8267, 2020.
* Corresponding author. Tel: 886-62757575 ext65433; E-mail: BL93@cornell.edu; liangbq@mail.ncku.edu.tw
Abstract: Bone residue was found an important constituent of the miraculous Amazonian Dark Earth and considered as an effective supply of Ca and P nutrient to increase soil fertility. The application of bone-char to the soil as amendment is a favorable practice, yet more research is needed to understand the behavior and fate of bone hydroxyapatite (Ca10(PO4)6(OH)2) (HAp) in the natural environment over time. In our study, we explored Fourier Transform Infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) to study the physicochemical properties of bone and bone-char (300-1200 °C) under pyrolysis temperatures and their dissolution behavior at different pH (4 and 6). We observed the structural transformation from B-type CHAp to a higher level of disorder AB or A-type CHAp with increasing temperatures, which could be explained by the reaction CO2 with 2 OH- in the CHAp channel. A weak band of CO32- at 700 °C implied thermal decomposition of inorganic CO32- at above 700 °C, which partially contributed to the increasing crystallinity and stability of bone char. As the pyrolysis temperature increased up to 1100 °C, the centroid of v3c PO43- peak shifted to a higher wavenumber (1029-1051 cm-1), resulting from the rearrangement of P-O bonds. The loss of water and organic component contributed to an increase in vacancy. The amide and lipids decomposition occurred within 300-600 °C, rendering a better crystal symmetry. The signal of structural OH- band increased with increasing temperature from 300 to 500 °C, due to the reaction of inorganic CO32- and H2O [CO32- + H2O ↔ 2(OH-) + CO2]. There was more A-type CHAp formation due to simultaneous reverse reaction, and the OH- band became weaker at above 500 °C. The surface consolidation of bone char was obvious at 700 °C, according to observation by the Transmission X-ray Microscopy (TXM). The P dissolution was the highest for bone at pH 4 (11.82±0.98 ppm), compared to that at pH 6 (10.93±0.39 ppm). The dissolution was relatively low in 500 °C biochar, and the amount was comparable at pH 4 (7.08±0.16 ppm) and pH 6 (6.902±0.16 ppm) after 140 hours’ incubation. The lowest P dissolution was observed at 700 °C biochar, and a higher dissolution was observed at higher pH 6(6.03±0.03 ppm) when compared to that at pH 4 (3.489 ±0.07 ppm). There was a very large increase in pH after bone char addition, which increased from 4 to 8.12 and 6 to 8.14, respectively. The solution end pH was similar after bone char addition. Surface complex reaction (≡CaOH2++HPO42–⇌≡OPO3H-+H+) explained the PO43- re-adsorption to bone char surface within the pH range of 4.5 to 8.2. Charring of bone would lead to a longer lifetime in the natural environment and render a stable pool of P nutrient in infertile soils. The scale-up application of bone char offers new opportunities to restore degraded soil by waste recycling and management.
Keywords: Bone char, hydroxyapatite (HAp), CHAp, FTIR, TXM, Phosphorus dissolution, soil fertility.
How to cite: Biswas, P. P., Weng, Y., Turner-Walker, G., and Liang*, B.: Physico-chemical transformation of bone char for soil amendment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8267, https://doi.org/10.5194/egusphere-egu2020-8267, 2020.
EGU2020-2337 | Displays | BG1.7
Effects of intermittency and land use on the in-stream phosphorus and organic carbon uptakeGabriele Weigelhofer and Matthias Pucher
Understanding the consequences of the interplay between land use and climate change is among the most pressing challenges of the 21st century for river managers. Over the past decades, agricultural land use has altered nutrient concentrations and stoichiometric ratios in stream ecosystems, thereby affecting aquatic biogeochemical cycles and the coupling among carbon, phosphorus, and nitrogen. In addition, the frequency and duration of droughts has increased dramatically across Europe, causing perennial streams to shift to intermittency and changing the capacity of sediments for the uptake and storage of macronutrients.
Our study aims to understand the effects of drying and re-wetting on the uptake, storage, and release of phosphorus and organic carbon from the benthic and the hyporheic zone of headwater streams under the additional stressor of agricultural land use. In specific, we are interested in the potential coupling and decoupling of phosphorus and dissolved organic carbon cycling in autotrophic and heterotrophic benthic biofilms. We sampled headwater streams before, during, and after the dry period in 2018 and 2019 and performed laboratory experiments with artificial drying and re-wetting and additions of dissolved organic carbon. We measured nutrient uptake and release, microbial biomass, respiration, and the activity of extra-cellular enzymes. The first results show an increased phosphorus release from the sediments immediately after re-wetting, foolowed by a reduced uptake capacity. The uptake of DOC was correlated with phosphorus in autotrophic biofilms, but not in heterotrophic ones.
How to cite: Weigelhofer, G. and Pucher, M.: Effects of intermittency and land use on the in-stream phosphorus and organic carbon uptake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2337, https://doi.org/10.5194/egusphere-egu2020-2337, 2020.
Understanding the consequences of the interplay between land use and climate change is among the most pressing challenges of the 21st century for river managers. Over the past decades, agricultural land use has altered nutrient concentrations and stoichiometric ratios in stream ecosystems, thereby affecting aquatic biogeochemical cycles and the coupling among carbon, phosphorus, and nitrogen. In addition, the frequency and duration of droughts has increased dramatically across Europe, causing perennial streams to shift to intermittency and changing the capacity of sediments for the uptake and storage of macronutrients.
Our study aims to understand the effects of drying and re-wetting on the uptake, storage, and release of phosphorus and organic carbon from the benthic and the hyporheic zone of headwater streams under the additional stressor of agricultural land use. In specific, we are interested in the potential coupling and decoupling of phosphorus and dissolved organic carbon cycling in autotrophic and heterotrophic benthic biofilms. We sampled headwater streams before, during, and after the dry period in 2018 and 2019 and performed laboratory experiments with artificial drying and re-wetting and additions of dissolved organic carbon. We measured nutrient uptake and release, microbial biomass, respiration, and the activity of extra-cellular enzymes. The first results show an increased phosphorus release from the sediments immediately after re-wetting, foolowed by a reduced uptake capacity. The uptake of DOC was correlated with phosphorus in autotrophic biofilms, but not in heterotrophic ones.
How to cite: Weigelhofer, G. and Pucher, M.: Effects of intermittency and land use on the in-stream phosphorus and organic carbon uptake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2337, https://doi.org/10.5194/egusphere-egu2020-2337, 2020.
EGU2020-9968 | Displays | BG1.7
Comparing lake sediment records of landscape macronutrient loadings with N14CP model simulations: 200 years of change in British lakesJohn Boyle, Ed Tipping, Jess Davies, Neil Rose, Simon Turner, Hannah Toberman, Dan Schillereff, and Richard Chiverrell
To fully understand coupling between P and other macronutrients it is necessary to have both long-term data sets and process models, combining empirical reality with numerical simulation of coupling processes. Here, lake sediment records of N and P from four UK lakes are compared with model output from N14CP, a long-term, large-scale model of cycling and export of macronutrients from the landscape. The sediment records at the three lakes that have substantial lowland contributions reveal strongly increasing N and P loading through the late 19th century, with steady increases through the twentieth century. Corresponding changes in N and C isotopes are observed. However, the one mountain lake show maximum N and P loadings in the 19th century, with declines through the twentieth, consistent with a wholly different land use history. The N14CP model shows N and P increasing from mid 19th century for average lowland sites, in agreement with the lowland sediment records. The implications of these results for our knowledge about the history of P and N coupling and leaching from UK soils are discussed.
How to cite: Boyle, J., Tipping, E., Davies, J., Rose, N., Turner, S., Toberman, H., Schillereff, D., and Chiverrell, R.: Comparing lake sediment records of landscape macronutrient loadings with N14CP model simulations: 200 years of change in British lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9968, https://doi.org/10.5194/egusphere-egu2020-9968, 2020.
To fully understand coupling between P and other macronutrients it is necessary to have both long-term data sets and process models, combining empirical reality with numerical simulation of coupling processes. Here, lake sediment records of N and P from four UK lakes are compared with model output from N14CP, a long-term, large-scale model of cycling and export of macronutrients from the landscape. The sediment records at the three lakes that have substantial lowland contributions reveal strongly increasing N and P loading through the late 19th century, with steady increases through the twentieth century. Corresponding changes in N and C isotopes are observed. However, the one mountain lake show maximum N and P loadings in the 19th century, with declines through the twentieth, consistent with a wholly different land use history. The N14CP model shows N and P increasing from mid 19th century for average lowland sites, in agreement with the lowland sediment records. The implications of these results for our knowledge about the history of P and N coupling and leaching from UK soils are discussed.
How to cite: Boyle, J., Tipping, E., Davies, J., Rose, N., Turner, S., Toberman, H., Schillereff, D., and Chiverrell, R.: Comparing lake sediment records of landscape macronutrient loadings with N14CP model simulations: 200 years of change in British lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9968, https://doi.org/10.5194/egusphere-egu2020-9968, 2020.
EGU2020-12974 | Displays | BG1.7
Recovering P from a eutrophic lake via hypolimnetic withdrawal and purificationSoila Silvonen, Juha Niemistö, Leena Nurminen, Anne-Mari Aurola, Ismo Malin, Matti Kotakorpi, Jukka Horppila, and Tom Jilbert
Hypolimnetic withdrawal (HW) is a restoration method for eutrophied lakes that aims to remove phosphorus (P) and other nutrients from the system. It is conventionally carried out by pumping or siphoning nutrient-rich bottom water to the discharge of the lake during periods of thermal stratification. However, there is growing interest in developing closed circuit modifications of HW in which nutrients could be captured and the purified water returned to the same lake. This would tackle some problematic aspects of conventional HW, and additionally enable the capture and recycling of P stored in lakes.
A pilot closed circuit HW system has been constructed at a eutrophic dimictic lake located in Southern Finland. This hypolimnetic withdrawal and purification circuit (HWPC) consists of a withdrawal pipe installed at the lake deep, a treatment and filtering unit on shore, and a wetland. In the treatment unit, P is first precipitated and then captured by sand filters, while the purified water flows subsequently through a wetland and finally back into the lake.
In the current study, we investigated the pool of potentially removable P in the study lake, the optimal timing of HW within the annual cycle, and the functioning of the HWPC. The P retention capacity of the purification unit and the composition of the precipitate trapped in the filters were both examined. The results showed that P accumulation in the near-bottom water of the study lake during thermal stratification is substantial, allowing significant amounts of P to be removed from the lake via HW. The concentration of total P of the water entering the HWPC was over 300 µg/L, of which the system captured more than 80%. The P content of the precipitate trapped in the filters varied between 6-12 g P/kg, and consisted of both iron and calcium-bound P phases. These results imply that it is possible to recover P accumulated in eutrophied lakes for potential recycling purposes.
How to cite: Silvonen, S., Niemistö, J., Nurminen, L., Aurola, A.-M., Malin, I., Kotakorpi, M., Horppila, J., and Jilbert, T.: Recovering P from a eutrophic lake via hypolimnetic withdrawal and purification, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12974, https://doi.org/10.5194/egusphere-egu2020-12974, 2020.
Hypolimnetic withdrawal (HW) is a restoration method for eutrophied lakes that aims to remove phosphorus (P) and other nutrients from the system. It is conventionally carried out by pumping or siphoning nutrient-rich bottom water to the discharge of the lake during periods of thermal stratification. However, there is growing interest in developing closed circuit modifications of HW in which nutrients could be captured and the purified water returned to the same lake. This would tackle some problematic aspects of conventional HW, and additionally enable the capture and recycling of P stored in lakes.
A pilot closed circuit HW system has been constructed at a eutrophic dimictic lake located in Southern Finland. This hypolimnetic withdrawal and purification circuit (HWPC) consists of a withdrawal pipe installed at the lake deep, a treatment and filtering unit on shore, and a wetland. In the treatment unit, P is first precipitated and then captured by sand filters, while the purified water flows subsequently through a wetland and finally back into the lake.
In the current study, we investigated the pool of potentially removable P in the study lake, the optimal timing of HW within the annual cycle, and the functioning of the HWPC. The P retention capacity of the purification unit and the composition of the precipitate trapped in the filters were both examined. The results showed that P accumulation in the near-bottom water of the study lake during thermal stratification is substantial, allowing significant amounts of P to be removed from the lake via HW. The concentration of total P of the water entering the HWPC was over 300 µg/L, of which the system captured more than 80%. The P content of the precipitate trapped in the filters varied between 6-12 g P/kg, and consisted of both iron and calcium-bound P phases. These results imply that it is possible to recover P accumulated in eutrophied lakes for potential recycling purposes.
How to cite: Silvonen, S., Niemistö, J., Nurminen, L., Aurola, A.-M., Malin, I., Kotakorpi, M., Horppila, J., and Jilbert, T.: Recovering P from a eutrophic lake via hypolimnetic withdrawal and purification, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12974, https://doi.org/10.5194/egusphere-egu2020-12974, 2020.
EGU2020-16112 | Displays | BG1.7
The exchange of inorganic phosphorus between soil solution and matrix might largely affect the model predictions of terrestrial carbon cycleLin Yu, Bernhard Ahrens, Thomas Wutzler, Marion Schrumpf, Julian Helfenstein, Chiara Pistocchi, and Sönke Zaehle
Phosphorus (P) availability may influence the response of terrestrial ecosystems to environmental and climate change. Soil biogeochemical (organic) and geophysical (inorganic) P cycling processes are the key players in this regulation. There has been a continuous effort to include P cycling processes into terrestrial biosphere models (TBMs) and many modelling studies agreed on the significance of organic P cycling processes to terrestrial ecosystems. However, the role of inorganic P cycling processes remains unclear. Although the model representations of inorganic P cycling in most TBMs are similar, their parameterisations differ greatly, and none of TBMs have been validated against soil P measurements.
In this study, we developed a new algorithm based on the two-surface Langmuir isotherm to describe the inorganic P exchange between soil solution and soil matrix in the QUINCY TBM, and tested both the novel and conventional models at five beech forest sites in Germany along a soil P stock gradient, which are the main study sites of the German Research Foundation (DFG) funded priority programme 1685.
We conducted a literature review on Langmuir P sorption parameters, which indicates that the P sorption capacity (Smax) is strongly correlated with soil texture and the Langmuir coefficient (km) is strongly correlated with soil pH and organic matter (OM) content. We divided soil P sorption sites into the OM-rich clay and silty sites and OM-poor sandy sites and extracted empirical equations to calculate their Smax and km.
The two-surface Langmuir isotherm approach was implemented to QUINCY, and both the novel and conventional (one-surface Langmuir isotherm) models were applied to the study sites. The models were evaluated with observed soil inorganic P fractionations, foliar N and P contents, and normalized vegetation carbon (C) without calibration. The novel model significantly improved the goodness of model fit to P fractionation measurements at all sites. Both models were able to adequately capture the observed foliar N and P contents, but only the novel one reproduced the observed pattern of vegetation C along the soil P gradient.
We further tested the effect of both models on the responses to CO2 addition, P addition and C&P addition at all study sites. The conventional model showed stronger ecosystem responses to P and C&P additions than the two-surface Langmuir one, especially at P-poor sites. It is probably due to that plants store more added P in the conventional model than the novel one. We also tested the sensitivity of both models to the P cycling parameterisation at one low-P site. Despite better model fit to the observed soil P fractionation, the novel model also produced higher and more robust gross primary production, foliar P content and vegetation C than the conventional one.
In summary, we showed that the two-surface Langmuir isotherm approach adequately reproduced the observed soil P fractionations and the pattern of vegetation C along a soil P gradient, owing to its better representation of inorganic P cycling and thus C-P interactions, particularly at low-P ecosystems.
How to cite: Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., Helfenstein, J., Pistocchi, C., and Zaehle, S.: The exchange of inorganic phosphorus between soil solution and matrix might largely affect the model predictions of terrestrial carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16112, https://doi.org/10.5194/egusphere-egu2020-16112, 2020.
Phosphorus (P) availability may influence the response of terrestrial ecosystems to environmental and climate change. Soil biogeochemical (organic) and geophysical (inorganic) P cycling processes are the key players in this regulation. There has been a continuous effort to include P cycling processes into terrestrial biosphere models (TBMs) and many modelling studies agreed on the significance of organic P cycling processes to terrestrial ecosystems. However, the role of inorganic P cycling processes remains unclear. Although the model representations of inorganic P cycling in most TBMs are similar, their parameterisations differ greatly, and none of TBMs have been validated against soil P measurements.
In this study, we developed a new algorithm based on the two-surface Langmuir isotherm to describe the inorganic P exchange between soil solution and soil matrix in the QUINCY TBM, and tested both the novel and conventional models at five beech forest sites in Germany along a soil P stock gradient, which are the main study sites of the German Research Foundation (DFG) funded priority programme 1685.
We conducted a literature review on Langmuir P sorption parameters, which indicates that the P sorption capacity (Smax) is strongly correlated with soil texture and the Langmuir coefficient (km) is strongly correlated with soil pH and organic matter (OM) content. We divided soil P sorption sites into the OM-rich clay and silty sites and OM-poor sandy sites and extracted empirical equations to calculate their Smax and km.
The two-surface Langmuir isotherm approach was implemented to QUINCY, and both the novel and conventional (one-surface Langmuir isotherm) models were applied to the study sites. The models were evaluated with observed soil inorganic P fractionations, foliar N and P contents, and normalized vegetation carbon (C) without calibration. The novel model significantly improved the goodness of model fit to P fractionation measurements at all sites. Both models were able to adequately capture the observed foliar N and P contents, but only the novel one reproduced the observed pattern of vegetation C along the soil P gradient.
We further tested the effect of both models on the responses to CO2 addition, P addition and C&P addition at all study sites. The conventional model showed stronger ecosystem responses to P and C&P additions than the two-surface Langmuir one, especially at P-poor sites. It is probably due to that plants store more added P in the conventional model than the novel one. We also tested the sensitivity of both models to the P cycling parameterisation at one low-P site. Despite better model fit to the observed soil P fractionation, the novel model also produced higher and more robust gross primary production, foliar P content and vegetation C than the conventional one.
In summary, we showed that the two-surface Langmuir isotherm approach adequately reproduced the observed soil P fractionations and the pattern of vegetation C along a soil P gradient, owing to its better representation of inorganic P cycling and thus C-P interactions, particularly at low-P ecosystems.
How to cite: Yu, L., Ahrens, B., Wutzler, T., Schrumpf, M., Helfenstein, J., Pistocchi, C., and Zaehle, S.: The exchange of inorganic phosphorus between soil solution and matrix might largely affect the model predictions of terrestrial carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16112, https://doi.org/10.5194/egusphere-egu2020-16112, 2020.
EGU2020-16637 | Displays | BG1.7
Sedimentary phosphorus speciation dynamics following artificial eutrophication of Lake 227, Experimental Lakes Area, Ontario, CanadaDavid O'Connell, Nienke Ansems, Ravi Kukkadapu, Deb jaisi, Diane orihel, Barbara Cade-Menun, Yongfeng Hu, Johan Wiklund, Roland Hall, Hannah Chessell, Thilo Brehends, and Philippe Van Cappellen
Stringent environmental policies in many countries have played an extensive role in reducing external phosphorus (P) loading to lakes from agriculture and urban sources. Nonetheless, such reductions in external P loading to many eutrophic lakes have not resulted in the expected concurrent restitution of water quality. Such a delayed recovery of many lakes is blamed both on internal loading of legacy P from lake sediments (i.e., benthic recycling) and the amplification of such internal P loading processes due to the reduction in external P concentrations. Hence, a detailed process understanding of P cycling at the sediment-water interface (SWI) is critical to understand nutrient loading, water quality and associated effects on lake water quality. Much of the work on sedimentary P cycling has traditionally focused on inorganic processes of soluble phosphate, particularly sorption to metals (Fe, Mn, Al) oxyhydroxides and clays. However, there is increasing recognition that organic forms of P, along with interactions between phosphate and humic substances, also play a decisive role in controlling P fluxes between sediments and the overlying water column.
This study focused on gaining further understanding of the such processes through the collection of sediment cores from the oxygenated epilimnion and the mostly anoxic hypolimnion of Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada. Since 1969, this unique experimental lake has been fertilized with phosphorus (P), which triggered a relatively rapid trophic transition from oligotrophic to eutrophic conditions. The cores contain a chronological record of changes in sediment burial rates and sediment P speciation across this trophic transition.
Interpretation of such changes was undertaken by coupling results of chemical extractions with 210Pb sediment dating, 31P NMR, XANES and Mössbauer spectroscopy. The major sedimentary P fraction prior to lake enrichment starting in 1969 was organic P (POrg). Fertilization of the lake in 1969 coincided with significant increases in the accumulation rate of sediment, total organic carbon (TOC) and total P (TP), in addition to a marked relative contribution of NaHCO3 extractable P. The combined proportion of PHum and POrg desposited since artificial fertilization in 1969 account for ≥70% of total P burial in the sediments. The anticipated composition of such PHum fractions was hypothesized to be ternary phosphate (PO4) complexes with humic substances. In support of this, the strong linear correlation between P and iron (Fe) extracted by NaHCO3 implies a close association of the two elements in the humic fraction. Furthermore, XANES and Mössbauer spectra indicate that most Fe in the post-1969 sediments is conserved in the +3 oxidation state, which may be ascribed to the stabilization of reducible Fe by organic matter, partially due to the formation of ternary PO4-Fe(III)-humic complexes. Our findings suggest the artificial eutrophication of Lake 227 resulted in the accelerated accumulation of a large sedimentary reservoir of reactive sediment P that may drive continued internal P loading to the water column following the cessation of artificial fertilization.
How to cite: O'Connell, D., Ansems, N., Kukkadapu, R., jaisi, D., orihel, D., Cade-Menun, B., Hu, Y., Wiklund, J., Hall, R., Chessell, H., Brehends, T., and Van Cappellen, P.: Sedimentary phosphorus speciation dynamics following artificial eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16637, https://doi.org/10.5194/egusphere-egu2020-16637, 2020.
Stringent environmental policies in many countries have played an extensive role in reducing external phosphorus (P) loading to lakes from agriculture and urban sources. Nonetheless, such reductions in external P loading to many eutrophic lakes have not resulted in the expected concurrent restitution of water quality. Such a delayed recovery of many lakes is blamed both on internal loading of legacy P from lake sediments (i.e., benthic recycling) and the amplification of such internal P loading processes due to the reduction in external P concentrations. Hence, a detailed process understanding of P cycling at the sediment-water interface (SWI) is critical to understand nutrient loading, water quality and associated effects on lake water quality. Much of the work on sedimentary P cycling has traditionally focused on inorganic processes of soluble phosphate, particularly sorption to metals (Fe, Mn, Al) oxyhydroxides and clays. However, there is increasing recognition that organic forms of P, along with interactions between phosphate and humic substances, also play a decisive role in controlling P fluxes between sediments and the overlying water column.
This study focused on gaining further understanding of the such processes through the collection of sediment cores from the oxygenated epilimnion and the mostly anoxic hypolimnion of Lake 227 of the Experimental Lakes Area (ELA) in Ontario, Canada. Since 1969, this unique experimental lake has been fertilized with phosphorus (P), which triggered a relatively rapid trophic transition from oligotrophic to eutrophic conditions. The cores contain a chronological record of changes in sediment burial rates and sediment P speciation across this trophic transition.
Interpretation of such changes was undertaken by coupling results of chemical extractions with 210Pb sediment dating, 31P NMR, XANES and Mössbauer spectroscopy. The major sedimentary P fraction prior to lake enrichment starting in 1969 was organic P (POrg). Fertilization of the lake in 1969 coincided with significant increases in the accumulation rate of sediment, total organic carbon (TOC) and total P (TP), in addition to a marked relative contribution of NaHCO3 extractable P. The combined proportion of PHum and POrg desposited since artificial fertilization in 1969 account for ≥70% of total P burial in the sediments. The anticipated composition of such PHum fractions was hypothesized to be ternary phosphate (PO4) complexes with humic substances. In support of this, the strong linear correlation between P and iron (Fe) extracted by NaHCO3 implies a close association of the two elements in the humic fraction. Furthermore, XANES and Mössbauer spectra indicate that most Fe in the post-1969 sediments is conserved in the +3 oxidation state, which may be ascribed to the stabilization of reducible Fe by organic matter, partially due to the formation of ternary PO4-Fe(III)-humic complexes. Our findings suggest the artificial eutrophication of Lake 227 resulted in the accelerated accumulation of a large sedimentary reservoir of reactive sediment P that may drive continued internal P loading to the water column following the cessation of artificial fertilization.
How to cite: O'Connell, D., Ansems, N., Kukkadapu, R., jaisi, D., orihel, D., Cade-Menun, B., Hu, Y., Wiklund, J., Hall, R., Chessell, H., Brehends, T., and Van Cappellen, P.: Sedimentary phosphorus speciation dynamics following artificial eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16637, https://doi.org/10.5194/egusphere-egu2020-16637, 2020.
EGU2020-18193 | Displays | BG1.7
Interaction with phosphate alters the environmental behavior of iron minerals: double eutrophication trouble?Peter Kraal, Thilo Behrends, Case van Genuchten, and Wytze Lenstra
Iron (oxyhydr)oxides (FeOx) such as ferrihydrite (Fh) and lepidocrocite (Lp) control the mobility of trace elements, contaminants and nutrients such as phosphorus (P) in aquatic systems. Conversely, the sorption of P can alter the structure and reactivity of FeOx. As such, elevated P concentrations in eutrophic, coastal aquatic systems may have far-reaching but currently poorly understood consequences for coupled Fe-nutrient cycling. Here, we present laboratory and field experiments to elucidate the effects of P incorporation on (i) FeOx structure and reactivity and (2) environmental FeOx transformations (crystallization, sulfidation). The structure of the FeOx, synthesized in the absence or presence of P (‘pure’ or ‘P-bearing’ respectively), was probed with synchrotron-based methods (X-ray absorption spectroscopy, high-energy X-ray scattering). Laboratory-based acidic and reductive dissolution experiments (abiotic and microbial) with pure and P-bearing FeOx were combined with novel in-situ field experimentation. The field experiments, which were conducted in freshwater and marine aquatic systems, involved gel-based diffusive samplers loaded with pure and P-bearing FeOx (Fh and Lp) to obtain detailed insight into FeOx chemistry and structure without interference from the sediment matrix. Results from FeOx synthesis experiments showed differences in the impact of P incorporation between FeOx. Ferrihydrite underwent only minor structural changes because of P sorption, yet these changes significantly destabilized the mineral, as evidenced by enhanced rates of reduction and dissolution. Incorporation of P during Lp formation resulted in FeOx precipitate that was significantly less structured than pure Lp. Field experiments in Fe(II)-rich freshwater sediment conducted with Fh showed relatively slow crystallization rates for Fh compared to published laboratory studies. This likely was the result of FeOx surface passivation by adsorption of pore-water P. In H2S-rich sediment, the degree of sulfidation was higher for P-bearing Fh compared to pure Fh, while the opposite was observed for pure and P-bearing Lp. These findings may be related to differences in electron transfer characteristics and surface reactions with sulfide between Fh and Lp. The novel field experiments provide detailed insight into natural FeOx dynamics in relation to environmental conditions. Decreased stability of FeOx formed in the presence of high nutrient concentrations, leading to less efficient retention of these nutrients, may represent an important feedback mechanism in eutrophication.
How to cite: Kraal, P., Behrends, T., van Genuchten, C., and Lenstra, W.: Interaction with phosphate alters the environmental behavior of iron minerals: double eutrophication trouble?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18193, https://doi.org/10.5194/egusphere-egu2020-18193, 2020.
Iron (oxyhydr)oxides (FeOx) such as ferrihydrite (Fh) and lepidocrocite (Lp) control the mobility of trace elements, contaminants and nutrients such as phosphorus (P) in aquatic systems. Conversely, the sorption of P can alter the structure and reactivity of FeOx. As such, elevated P concentrations in eutrophic, coastal aquatic systems may have far-reaching but currently poorly understood consequences for coupled Fe-nutrient cycling. Here, we present laboratory and field experiments to elucidate the effects of P incorporation on (i) FeOx structure and reactivity and (2) environmental FeOx transformations (crystallization, sulfidation). The structure of the FeOx, synthesized in the absence or presence of P (‘pure’ or ‘P-bearing’ respectively), was probed with synchrotron-based methods (X-ray absorption spectroscopy, high-energy X-ray scattering). Laboratory-based acidic and reductive dissolution experiments (abiotic and microbial) with pure and P-bearing FeOx were combined with novel in-situ field experimentation. The field experiments, which were conducted in freshwater and marine aquatic systems, involved gel-based diffusive samplers loaded with pure and P-bearing FeOx (Fh and Lp) to obtain detailed insight into FeOx chemistry and structure without interference from the sediment matrix. Results from FeOx synthesis experiments showed differences in the impact of P incorporation between FeOx. Ferrihydrite underwent only minor structural changes because of P sorption, yet these changes significantly destabilized the mineral, as evidenced by enhanced rates of reduction and dissolution. Incorporation of P during Lp formation resulted in FeOx precipitate that was significantly less structured than pure Lp. Field experiments in Fe(II)-rich freshwater sediment conducted with Fh showed relatively slow crystallization rates for Fh compared to published laboratory studies. This likely was the result of FeOx surface passivation by adsorption of pore-water P. In H2S-rich sediment, the degree of sulfidation was higher for P-bearing Fh compared to pure Fh, while the opposite was observed for pure and P-bearing Lp. These findings may be related to differences in electron transfer characteristics and surface reactions with sulfide between Fh and Lp. The novel field experiments provide detailed insight into natural FeOx dynamics in relation to environmental conditions. Decreased stability of FeOx formed in the presence of high nutrient concentrations, leading to less efficient retention of these nutrients, may represent an important feedback mechanism in eutrophication.
How to cite: Kraal, P., Behrends, T., van Genuchten, C., and Lenstra, W.: Interaction with phosphate alters the environmental behavior of iron minerals: double eutrophication trouble?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18193, https://doi.org/10.5194/egusphere-egu2020-18193, 2020.
EGU2020-18863 | Displays | BG1.7
The potential of Sorghum landraces to overcome P and water limitationSara Halicki, Eva Maria Görk, Anna Sauer, Kintala Sudhabindu, Lalitha Kumari Erugoti, Jana Kholova, Mutez Ali Ahmed, and Michaela Anna Dippold
Crop production in semi-arid regions is often affected by nutrient (N and P) and water deficiency. Hence, crop selection and cropping sequences are mainly influenced by the water supply during the rainy season, which underlies severe annual fluctuations. Under these conditions sorghum cultivation is common practice in smallholder farming systems due to its high potential to cope with water scarcity.
To examine the adaptation potential of sorghum (Sorghum bicolor L. Moench) to water and P stress, we measured transpiration and N uptake of five different sorghum lines (two Indian sorghum landraces, two African landraces and an Indian elite line) under the impact of organic (cowpea root residues) and mineral N-15 inputs. The plants were cultivated in either a P depleted (100 mg P kg-1 soil) or P enriched (320 mg P kg-1) Alfisol with a well-watered (WW) or water-stressed (WS) treatment. The experiment was carried out in the lysimetric phenotyping system (ICRISAT, India).
Cowpea labelling was carried out by injecting liquid N-15-label into the plant stem on a weekly basis over the growth period to ensure a homogeneous N-15 distribution in all parts of the plant. Mineral N-15-label was applied after soil saturation on the soil surface approximately two weeks after sorghum sowing to ensure no leakage of the tracer. The sorghum growth period was from middle of September 2018 till beginning of February 2019.
Under WW conditions, the sorghum lines showed different transpiration rates irrespectively of the P supply, whereas biomass and yield production was affected positively by P supply and organic residues. All sorghum lines had reduced transpiration rates, biomass and yield production under WS conditions. However, the African landraces were less susceptible to water stress than the Indian lines and could still produce yield and biomass. Furthermore, N delivery from cowpea residues could be proven in all treatments, while an efficient water supply had a positive impact on the N uptake from residues.
Overall an efficient P supply had only a positive influence on sorghum biomass and yield in interactions with a sufficient water supply or crop residues.
We can conclude that yield and biomass production of sorghum is not only dependent on transpiration rates. The potential to overcome water stress is enhanced for landraces and most properly belowground traits can explain the variation. Furthermore, we could demonstrate that all sorghum lines used biopores at both P levels to cover part of their N demand from cowpea residues.
In this experiment, African landraces showed improved drought adaptation mechanisms compared to the bread elite line. Further soil and plant analysis will unravel the underlying traits such as improved mycorrhization, root morphology or nutrient uptake.
How to cite: Halicki, S., Görk, E. M., Sauer, A., Sudhabindu, K., Erugoti, L. K., Kholova, J., Ahmed, M. A., and Dippold, M. A.: The potential of Sorghum landraces to overcome P and water limitation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18863, https://doi.org/10.5194/egusphere-egu2020-18863, 2020.
Crop production in semi-arid regions is often affected by nutrient (N and P) and water deficiency. Hence, crop selection and cropping sequences are mainly influenced by the water supply during the rainy season, which underlies severe annual fluctuations. Under these conditions sorghum cultivation is common practice in smallholder farming systems due to its high potential to cope with water scarcity.
To examine the adaptation potential of sorghum (Sorghum bicolor L. Moench) to water and P stress, we measured transpiration and N uptake of five different sorghum lines (two Indian sorghum landraces, two African landraces and an Indian elite line) under the impact of organic (cowpea root residues) and mineral N-15 inputs. The plants were cultivated in either a P depleted (100 mg P kg-1 soil) or P enriched (320 mg P kg-1) Alfisol with a well-watered (WW) or water-stressed (WS) treatment. The experiment was carried out in the lysimetric phenotyping system (ICRISAT, India).
Cowpea labelling was carried out by injecting liquid N-15-label into the plant stem on a weekly basis over the growth period to ensure a homogeneous N-15 distribution in all parts of the plant. Mineral N-15-label was applied after soil saturation on the soil surface approximately two weeks after sorghum sowing to ensure no leakage of the tracer. The sorghum growth period was from middle of September 2018 till beginning of February 2019.
Under WW conditions, the sorghum lines showed different transpiration rates irrespectively of the P supply, whereas biomass and yield production was affected positively by P supply and organic residues. All sorghum lines had reduced transpiration rates, biomass and yield production under WS conditions. However, the African landraces were less susceptible to water stress than the Indian lines and could still produce yield and biomass. Furthermore, N delivery from cowpea residues could be proven in all treatments, while an efficient water supply had a positive impact on the N uptake from residues.
Overall an efficient P supply had only a positive influence on sorghum biomass and yield in interactions with a sufficient water supply or crop residues.
We can conclude that yield and biomass production of sorghum is not only dependent on transpiration rates. The potential to overcome water stress is enhanced for landraces and most properly belowground traits can explain the variation. Furthermore, we could demonstrate that all sorghum lines used biopores at both P levels to cover part of their N demand from cowpea residues.
In this experiment, African landraces showed improved drought adaptation mechanisms compared to the bread elite line. Further soil and plant analysis will unravel the underlying traits such as improved mycorrhization, root morphology or nutrient uptake.
How to cite: Halicki, S., Görk, E. M., Sauer, A., Sudhabindu, K., Erugoti, L. K., Kholova, J., Ahmed, M. A., and Dippold, M. A.: The potential of Sorghum landraces to overcome P and water limitation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18863, https://doi.org/10.5194/egusphere-egu2020-18863, 2020.
EGU2020-19920 | Displays | BG1.7
The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in ChinaNyamdavaa Mongol
The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in China
Nyamdavaa Mongol1,2, Jianbo Shen2, Philip M. Haygarth1
1Lancaster Environmental Centre, Lancaster University, Lancaster, LA1 4YW, United Kingdom.
2Department of Plant Nutrition, China Agriculture University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, PR China
Abstract
This paper tested the hypothesis that agricultural soils with a recent history of drying and rewetting (DRW) can trigger P solubilisation in the rhizosphere and a subsequent growth response of maize (Zea mays). Specifically, it aimed at investigating a possible delayed effect of soil DRW stresses by studying P solubilisation in the rhizosphere, plant P acquisition and performance, and root growth, all under the previous history of series of DRW events, combined with different types of agricultural soils of varied texture and pH. The soils were collected from four different agricultural regions of China, Shandong, Chongqing, Heilongjiang and Beijing, treated with four varying cycles of DRW events prior to the experiment, to raise levels of soil biotic and abiotic activities and potential development of maize growth. A controlled small pot experiment was conducted to establish the Olsen P in the soil, maize shoot P concentrations, root morphology and other rhizosphere parameters, for the duration of 43 days after planting. The results show a positive relationship between plant biomass, plant P concentration, and Olsen P. The effect was most clearly demonstrated by growth of plants and their biological performance in the rhizosphere, as the plants responded better in the soil with a DRW background than a soil that did not have a history of DRW in the past. However, the soluble P concentration and plant growth response varied depending on soil types and P application rates, and the most positive was under Haplic Phaeozems soil from Heilongjiang, leading to an acceptance of hypothesis.
How to cite: Mongol, N.: The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19920, https://doi.org/10.5194/egusphere-egu2020-19920, 2020.
The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in China
Nyamdavaa Mongol1,2, Jianbo Shen2, Philip M. Haygarth1
1Lancaster Environmental Centre, Lancaster University, Lancaster, LA1 4YW, United Kingdom.
2Department of Plant Nutrition, China Agriculture University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, PR China
Abstract
This paper tested the hypothesis that agricultural soils with a recent history of drying and rewetting (DRW) can trigger P solubilisation in the rhizosphere and a subsequent growth response of maize (Zea mays). Specifically, it aimed at investigating a possible delayed effect of soil DRW stresses by studying P solubilisation in the rhizosphere, plant P acquisition and performance, and root growth, all under the previous history of series of DRW events, combined with different types of agricultural soils of varied texture and pH. The soils were collected from four different agricultural regions of China, Shandong, Chongqing, Heilongjiang and Beijing, treated with four varying cycles of DRW events prior to the experiment, to raise levels of soil biotic and abiotic activities and potential development of maize growth. A controlled small pot experiment was conducted to establish the Olsen P in the soil, maize shoot P concentrations, root morphology and other rhizosphere parameters, for the duration of 43 days after planting. The results show a positive relationship between plant biomass, plant P concentration, and Olsen P. The effect was most clearly demonstrated by growth of plants and their biological performance in the rhizosphere, as the plants responded better in the soil with a DRW background than a soil that did not have a history of DRW in the past. However, the soluble P concentration and plant growth response varied depending on soil types and P application rates, and the most positive was under Haplic Phaeozems soil from Heilongjiang, leading to an acceptance of hypothesis.
How to cite: Mongol, N.: The effects of soil drying and rewetting history on phosphorus solubilisation and growth of maize (Zea mays) under contrasting agricultural soils in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19920, https://doi.org/10.5194/egusphere-egu2020-19920, 2020.
EGU2020-20474 | Displays | BG1.7
Competitive divalent cation incorporation in the ferrous phosphate mineral vivianiteL. Joëlle Kubeneck, Laurel K. ThomasArrigo, Katherine A. Rothwell, and Ruben Kretzschmar
Phosphorus (P) is often a limiting nutrient in soils and aquatic systems, but excessive concentrations can lead to eutrophication. The chemical forms in which P is retained in soils and sediments determine its bioavailability. Under reducing conditions, the ferrous phosphate mineral vivianite has been shown to be a major P burial phase in various environments such as coastal sediments. Depending on the local environmental geochemistry, ferrous iron (Fe2+) can be substituted by other divalent cations such as magnesium (Mg2+) and manganese (Mn2+). The substitution of Fe2+ could alter mineralogical characteristics of vivianite, which influences its further reactivity and thus the P and iron (Fe) cycle. Despite the importance of divalent cation substitution in vivianite in the environment, questions remain if certain divalent cations are preferentially incorporated and how they compete for substitution.
Here, we assessed the competitive incorporation of Mn2+ and Mg2+ into vivianite by carrying out vivianite precipitation experiments in anoxic aqueous solutions at pH 7. Additionally, we explored how varying salinity simulating an estuarine gradient influences the incorporation of Mn2+ and Mg2+. Changes in mineralogy with different degrees of Mn2+/ Mg2+ substitution were studied with X-ray powder diffraction, Raman spectroscopy, total elemental dissolution and other techniques.
Based on 19 different vivianites, our results demonstrate that Fe2+ is replaced by up to 50% by Mn2+/ Mg2+ in the vivianite structure, with preferential incorporation of Mn2+ over Mg2+. Increases in salinity seem to slightly enhance divalent cation incorporation. Following from our results, we will discuss the factors influencing divalent cation incorporation into vivianite, and how divalent cation substitution alters mineralogical characteristics. Finally, we will highlight how the substitution of Fe2+ by other divalent cations potentially enhances P fixation in form of vivianite under Fe-limiting conditions.
How to cite: Kubeneck, L. J., ThomasArrigo, L. K., Rothwell, K. A., and Kretzschmar, R.: Competitive divalent cation incorporation in the ferrous phosphate mineral vivianite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20474, https://doi.org/10.5194/egusphere-egu2020-20474, 2020.
Phosphorus (P) is often a limiting nutrient in soils and aquatic systems, but excessive concentrations can lead to eutrophication. The chemical forms in which P is retained in soils and sediments determine its bioavailability. Under reducing conditions, the ferrous phosphate mineral vivianite has been shown to be a major P burial phase in various environments such as coastal sediments. Depending on the local environmental geochemistry, ferrous iron (Fe2+) can be substituted by other divalent cations such as magnesium (Mg2+) and manganese (Mn2+). The substitution of Fe2+ could alter mineralogical characteristics of vivianite, which influences its further reactivity and thus the P and iron (Fe) cycle. Despite the importance of divalent cation substitution in vivianite in the environment, questions remain if certain divalent cations are preferentially incorporated and how they compete for substitution.
Here, we assessed the competitive incorporation of Mn2+ and Mg2+ into vivianite by carrying out vivianite precipitation experiments in anoxic aqueous solutions at pH 7. Additionally, we explored how varying salinity simulating an estuarine gradient influences the incorporation of Mn2+ and Mg2+. Changes in mineralogy with different degrees of Mn2+/ Mg2+ substitution were studied with X-ray powder diffraction, Raman spectroscopy, total elemental dissolution and other techniques.
Based on 19 different vivianites, our results demonstrate that Fe2+ is replaced by up to 50% by Mn2+/ Mg2+ in the vivianite structure, with preferential incorporation of Mn2+ over Mg2+. Increases in salinity seem to slightly enhance divalent cation incorporation. Following from our results, we will discuss the factors influencing divalent cation incorporation into vivianite, and how divalent cation substitution alters mineralogical characteristics. Finally, we will highlight how the substitution of Fe2+ by other divalent cations potentially enhances P fixation in form of vivianite under Fe-limiting conditions.
How to cite: Kubeneck, L. J., ThomasArrigo, L. K., Rothwell, K. A., and Kretzschmar, R.: Competitive divalent cation incorporation in the ferrous phosphate mineral vivianite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20474, https://doi.org/10.5194/egusphere-egu2020-20474, 2020.
EGU2020-20652 | Displays | BG1.7
A 150-year phosphorus budget for the Thames catchment, UKNicholas Howden, Fred Worrall, Tim Burt, Helen Jarvie, and Francesca Pianosi
Phosphorus (P) is critical for food production but rising P inputs to agricultural land have contributed to eutrophication of fresh and marine waters. Concurrently, wastewater effluent from increasing populations has also become a major P input to natural waters, particularly in urbanised catchments. This study considers the long-term phosphorus budget of the River Thames catchment from 1867 to the present. We combine databases of agricultural land use, human population and river monitoring to develop a phosphorus budget model for the gauged catchment area (9,948 km2) and identify key inputs, outputs and transfers over the period. We quantify P imports and exports of fertilizer, food, feedstuffs, and industrial products (1867-2017), along with direct discharge of fluvial P at the tidal limit (1936-2017).
Net P input to land from animal production was essentially stable at ~1,700 tonnes P until 1940, after which there was a steady rise, peaking at approximately 3,800 tonnes P in the early 1970s. Since then, P inputs to land have fallen to a current stable level of ~2,200 tonnes P. This represents a cumulative net input to land of 350 kT P since 1867. Whilst this input is somewhat counterbalanced by losses to the fluvial system and crop harvest, there is nevertheless a large P legacy in catchment soils.
Net inputs from wastewater (urine and faeces) rose steadily from 0.8 kT in 1936 to 2 kT in 2010, whilst the marked change occurred in relation to P in detergents rising from zero in 1950 to a peak of ~2kT in 1987, since when there has been a gradual decline to <1 kT at present. The total wastewater effluent contribution rose from 0.8 kT in 1936 to a peak of 3.4 kT at the end of the 1980s. The Urban Waste Water Treatment Directive (91/271/EEC) enforced enhanced removal of P in wastewater from the early 1990s, which led to an immediate, sharp decrease in wastewater contribution of 1 kT P since when there has been a steady decline to 0.4 kT at present. This has shifted the environmental pathway of wastewater P from discharge to rivers to accumulation in sludge which is now largely disposed of by application to agricultural land thus adding to the P legacy in catchment soils.
Our analysis of the Thames P budget will end with a discussion of uncertainties in the P model, and the sensitivity of our overall conclusions to assumptions about model structure and parameters applied to our historical records.
How to cite: Howden, N., Worrall, F., Burt, T., Jarvie, H., and Pianosi, F.: A 150-year phosphorus budget for the Thames catchment, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20652, https://doi.org/10.5194/egusphere-egu2020-20652, 2020.
Phosphorus (P) is critical for food production but rising P inputs to agricultural land have contributed to eutrophication of fresh and marine waters. Concurrently, wastewater effluent from increasing populations has also become a major P input to natural waters, particularly in urbanised catchments. This study considers the long-term phosphorus budget of the River Thames catchment from 1867 to the present. We combine databases of agricultural land use, human population and river monitoring to develop a phosphorus budget model for the gauged catchment area (9,948 km2) and identify key inputs, outputs and transfers over the period. We quantify P imports and exports of fertilizer, food, feedstuffs, and industrial products (1867-2017), along with direct discharge of fluvial P at the tidal limit (1936-2017).
Net P input to land from animal production was essentially stable at ~1,700 tonnes P until 1940, after which there was a steady rise, peaking at approximately 3,800 tonnes P in the early 1970s. Since then, P inputs to land have fallen to a current stable level of ~2,200 tonnes P. This represents a cumulative net input to land of 350 kT P since 1867. Whilst this input is somewhat counterbalanced by losses to the fluvial system and crop harvest, there is nevertheless a large P legacy in catchment soils.
Net inputs from wastewater (urine and faeces) rose steadily from 0.8 kT in 1936 to 2 kT in 2010, whilst the marked change occurred in relation to P in detergents rising from zero in 1950 to a peak of ~2kT in 1987, since when there has been a gradual decline to <1 kT at present. The total wastewater effluent contribution rose from 0.8 kT in 1936 to a peak of 3.4 kT at the end of the 1980s. The Urban Waste Water Treatment Directive (91/271/EEC) enforced enhanced removal of P in wastewater from the early 1990s, which led to an immediate, sharp decrease in wastewater contribution of 1 kT P since when there has been a steady decline to 0.4 kT at present. This has shifted the environmental pathway of wastewater P from discharge to rivers to accumulation in sludge which is now largely disposed of by application to agricultural land thus adding to the P legacy in catchment soils.
Our analysis of the Thames P budget will end with a discussion of uncertainties in the P model, and the sensitivity of our overall conclusions to assumptions about model structure and parameters applied to our historical records.
How to cite: Howden, N., Worrall, F., Burt, T., Jarvie, H., and Pianosi, F.: A 150-year phosphorus budget for the Thames catchment, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20652, https://doi.org/10.5194/egusphere-egu2020-20652, 2020.
EGU2020-21600 | Displays | BG1.7 | Highlight
Run4Life project: A step forward in NPK recovery from source-separated wastewaters.Gemma Torres Sallan, Eduard Borras, Martí Aliaguilla, Daniele Molognoni, Sonia Sanchis, Miriam van-Eekert, Merijn Moerland, Daniel Todt, Paraschos Chatzopoulos, Brendo Meulman, Hamse Kjerstadius, Lieven Demolder, Peter de-Smet, and Nicolas Morales
Domestic wastewater (WW) is an important carrier of nutrients usually wasted away by current centralised sewage treatment plants. The Run4Life project proposes an alternative strategy for increasing circularity of WW treatment systems and improving nutrient recovery rates and material qualities. This is based on a decentralised treatment of segregated black water (BW), kitchen waste and grey water combining existing and innovative technologies.
Run4Life is currently improving innovative nutrient recovery technologies, these being: (i) an ultra-low flush vacuum toilet, which uses around 0.5L/flush, thus less water than conventional vacuum toilets, allowing concentration of BW compared to conventional toilets and vacuum toilets. (ii) Bio-electrochemical systems for nitrogen recovery, which recovers up to 12.8 g/m2*d of Nitrogen present in blackwater as liquid fertilizer (ammonium nitrate) iii) (Hyper-)thermophilic anaerobic digestion, which aims to recover the phosphorous and nitrogen in the hygienised effluent in a one-step treatment and ready for use as fertilisers.
Nutrient recycling technologies from domestic WW are demonstrated at large scale in four demonstration sites where decentralised WW treatment systems are implemented: Ghent (Belgium, 430 houses), Helsingborg (Sweden, 320 apartments), Sneek (The Netherlands, 32 houses), and Vigo (Spain, 1 office building). This will result in solid and liquid NPK fertilizers being recovered in the form of struvite, ammonium nitrate, calcium phosphate, organic fertilizers and reclaimed water.
The environmental, economic and societal impact of the obtained fertilizers is being tested by means of ecotoxicology tests, pot experiments, field trials, and by a selection of key performance indicators based on European, national and regional legislation present in the four different countries. Life cycle assessments are being performed for each technology and demonstration site, and active measures such as knowledge brokerage activities are being developed as an engagement strategy to advocate the institutional, legal and social acceptance of the Run4Life nutrient recovery technologies and fertilizers produced. In addition, new business models which can benefit from the Run4Life project are currently being assessed.
It is expected that, by the end of the project, more than 90% of the water will be reused, and that nutrient recovery rates will achieve 100%.
How to cite: Torres Sallan, G., Borras, E., Aliaguilla, M., Molognoni, D., Sanchis, S., van-Eekert, M., Moerland, M., Todt, D., Chatzopoulos, P., Meulman, B., Kjerstadius, H., Demolder, L., de-Smet, P., and Morales, N.: Run4Life project: A step forward in NPK recovery from source-separated wastewaters., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21600, https://doi.org/10.5194/egusphere-egu2020-21600, 2020.
Domestic wastewater (WW) is an important carrier of nutrients usually wasted away by current centralised sewage treatment plants. The Run4Life project proposes an alternative strategy for increasing circularity of WW treatment systems and improving nutrient recovery rates and material qualities. This is based on a decentralised treatment of segregated black water (BW), kitchen waste and grey water combining existing and innovative technologies.
Run4Life is currently improving innovative nutrient recovery technologies, these being: (i) an ultra-low flush vacuum toilet, which uses around 0.5L/flush, thus less water than conventional vacuum toilets, allowing concentration of BW compared to conventional toilets and vacuum toilets. (ii) Bio-electrochemical systems for nitrogen recovery, which recovers up to 12.8 g/m2*d of Nitrogen present in blackwater as liquid fertilizer (ammonium nitrate) iii) (Hyper-)thermophilic anaerobic digestion, which aims to recover the phosphorous and nitrogen in the hygienised effluent in a one-step treatment and ready for use as fertilisers.
Nutrient recycling technologies from domestic WW are demonstrated at large scale in four demonstration sites where decentralised WW treatment systems are implemented: Ghent (Belgium, 430 houses), Helsingborg (Sweden, 320 apartments), Sneek (The Netherlands, 32 houses), and Vigo (Spain, 1 office building). This will result in solid and liquid NPK fertilizers being recovered in the form of struvite, ammonium nitrate, calcium phosphate, organic fertilizers and reclaimed water.
The environmental, economic and societal impact of the obtained fertilizers is being tested by means of ecotoxicology tests, pot experiments, field trials, and by a selection of key performance indicators based on European, national and regional legislation present in the four different countries. Life cycle assessments are being performed for each technology and demonstration site, and active measures such as knowledge brokerage activities are being developed as an engagement strategy to advocate the institutional, legal and social acceptance of the Run4Life nutrient recovery technologies and fertilizers produced. In addition, new business models which can benefit from the Run4Life project are currently being assessed.
It is expected that, by the end of the project, more than 90% of the water will be reused, and that nutrient recovery rates will achieve 100%.
How to cite: Torres Sallan, G., Borras, E., Aliaguilla, M., Molognoni, D., Sanchis, S., van-Eekert, M., Moerland, M., Todt, D., Chatzopoulos, P., Meulman, B., Kjerstadius, H., Demolder, L., de-Smet, P., and Morales, N.: Run4Life project: A step forward in NPK recovery from source-separated wastewaters., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21600, https://doi.org/10.5194/egusphere-egu2020-21600, 2020.
BG2.1 – Stable isotopes and novel tracers in biogeochemical and atmospheric research
EGU2020-5961 | Displays | BG2.1 | Highlight
Triple isotopic composition of oxygen in water and dioxygen during deglaciations recorded in the EPICA Dome C ice core to link climate, biosphere productivity and water cycleAmaelle Landais, Ji-Woong Yang, Nicolas Pasquier, Antoine Grisart, Margaux Brandon, Thomas Extier, Frédéric Prié, Bénédicte Minster, Clément Piel, Joana Sauze, Alexandru Milcu, Barbara Stenni, and Thomas Blunier
High precision measurements of triple isotopic composition of oxygen in water is a useful tool to infer the dynamic of past hydrological cycle when measured in ice core together with δ18O and δD. In particular, the triple isotopic composition of oxygen in water provides information on the climatic conditions of the evaporative sources. In parallel, it has been shown that the triple isotopic composition of oxygen in the atmospheric dioxygen can be a useful tracer of the global biosphere productivity and hence reconstruct the dynamic of the global biosphere productivity in the past from measurements performed in the air bubbles. Measuring triple isotopic composition of oxygen both in the water and in the atmospheric dioxygen trapped in bubbles in ice cores is thus a strong added value to study the past variability of water cycle and biosphere productivity in parallel to climate change.
Here, we first present new laboratory experiments performed in closed biological chambers to show how the triple isotopic composition of oxygen in atmospheric dioxygen can be used for quantification of the biosphere productivity with determination of fractionation coefficients. Then, we present new records of triple isotopic composition of oxygen in water and O2 trapped in bubbles from the EPICA Dome C ice core over the deglaciations of the last 800 ka.
How to cite: Landais, A., Yang, J.-W., Pasquier, N., Grisart, A., Brandon, M., Extier, T., Prié, F., Minster, B., Piel, C., Sauze, J., Milcu, A., Stenni, B., and Blunier, T.: Triple isotopic composition of oxygen in water and dioxygen during deglaciations recorded in the EPICA Dome C ice core to link climate, biosphere productivity and water cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5961, https://doi.org/10.5194/egusphere-egu2020-5961, 2020.
High precision measurements of triple isotopic composition of oxygen in water is a useful tool to infer the dynamic of past hydrological cycle when measured in ice core together with δ18O and δD. In particular, the triple isotopic composition of oxygen in water provides information on the climatic conditions of the evaporative sources. In parallel, it has been shown that the triple isotopic composition of oxygen in the atmospheric dioxygen can be a useful tracer of the global biosphere productivity and hence reconstruct the dynamic of the global biosphere productivity in the past from measurements performed in the air bubbles. Measuring triple isotopic composition of oxygen both in the water and in the atmospheric dioxygen trapped in bubbles in ice cores is thus a strong added value to study the past variability of water cycle and biosphere productivity in parallel to climate change.
Here, we first present new laboratory experiments performed in closed biological chambers to show how the triple isotopic composition of oxygen in atmospheric dioxygen can be used for quantification of the biosphere productivity with determination of fractionation coefficients. Then, we present new records of triple isotopic composition of oxygen in water and O2 trapped in bubbles from the EPICA Dome C ice core over the deglaciations of the last 800 ka.
How to cite: Landais, A., Yang, J.-W., Pasquier, N., Grisart, A., Brandon, M., Extier, T., Prié, F., Minster, B., Piel, C., Sauze, J., Milcu, A., Stenni, B., and Blunier, T.: Triple isotopic composition of oxygen in water and dioxygen during deglaciations recorded in the EPICA Dome C ice core to link climate, biosphere productivity and water cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5961, https://doi.org/10.5194/egusphere-egu2020-5961, 2020.
EGU2020-3064 | Displays | BG2.1
Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2Getachew Adnew, Thijs Pons, Gerbrand Koren, Wouter Peters, and Thomas Röckmann
Understanding the processes affecting the triple oxygen isotope composition of atmospheric CO2 during photosynthesis can help to constrain the interaction and fluxes between the atmosphere and the biosphere. We conducted leaf cuvette experiments under controlled conditions, using sunflower (Helianthus annuus), an annual C3 species with high photosynthetic capacity and stomatal conductance for CO2, an evergreen C3 species, ivy (Hedera hybernica) with lower values for these traits, and a C4 species maize (Zea mays) that has a high photosynthetic capacity and low stomatal conductance. The experiments were conducted at different light intensities and using CO2 with different 17O- excess. Our results demonstrate that two key factors determine the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2: The relative difference in Δ17O of the CO2 entering the leaf and Δ17O of leaf water, and the back-diffusion flux from the leaf to the atmosphere, which can be quantified by the cm/ca ratio. At low cm/ca the discrimination is governed by diffusion into the leaf, and at high cm/ca by back-diffusion of CO2 that has equilibrated with the leaf water. Plants with a higher cm/ca ratio modify the Δ17O of atmospheric CO2 more strongly than plants with lower cm/ca.
Based on the leaf cuvette experiments using both C4 and C3 plants, the global discrimination in 17O-excess of atmospheric CO2 due to assimilation is estimated to be -0.6±0.2‰. The main uncertainty in the global estimation is due to the uncertainty in the cm/ca ratio.
How to cite: Adnew, G., Pons, T., Koren, G., Peters, W., and Röckmann, T.: Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2 , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3064, https://doi.org/10.5194/egusphere-egu2020-3064, 2020.
Understanding the processes affecting the triple oxygen isotope composition of atmospheric CO2 during photosynthesis can help to constrain the interaction and fluxes between the atmosphere and the biosphere. We conducted leaf cuvette experiments under controlled conditions, using sunflower (Helianthus annuus), an annual C3 species with high photosynthetic capacity and stomatal conductance for CO2, an evergreen C3 species, ivy (Hedera hybernica) with lower values for these traits, and a C4 species maize (Zea mays) that has a high photosynthetic capacity and low stomatal conductance. The experiments were conducted at different light intensities and using CO2 with different 17O- excess. Our results demonstrate that two key factors determine the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2: The relative difference in Δ17O of the CO2 entering the leaf and Δ17O of leaf water, and the back-diffusion flux from the leaf to the atmosphere, which can be quantified by the cm/ca ratio. At low cm/ca the discrimination is governed by diffusion into the leaf, and at high cm/ca by back-diffusion of CO2 that has equilibrated with the leaf water. Plants with a higher cm/ca ratio modify the Δ17O of atmospheric CO2 more strongly than plants with lower cm/ca.
Based on the leaf cuvette experiments using both C4 and C3 plants, the global discrimination in 17O-excess of atmospheric CO2 due to assimilation is estimated to be -0.6±0.2‰. The main uncertainty in the global estimation is due to the uncertainty in the cm/ca ratio.
How to cite: Adnew, G., Pons, T., Koren, G., Peters, W., and Röckmann, T.: Leaf-scale quantification of the effect of photosynthetic gas exchange on Δ17O of atmospheric CO2 , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3064, https://doi.org/10.5194/egusphere-egu2020-3064, 2020.
EGU2020-10588 | Displays | BG2.1
Simulations of atmospheric CO2 and δ13C-CO2 compared to real-time observations at the high altitude station JungfraujochSimone M. Pieber, Béla Tuzson, Stephan Henne, Ute Karstens, Dominik Brunner, Martin Steinbacher, and Lukas Emmenegger
Evaluating atmospheric transport simulations against observations helps refining bottom-up estimates of greenhouse gas fluxes and identifying gaps in our understanding of regional and category-specific contributions to atmospheric mole fractions. This insight is critical in the efforts to mitigate anthropogenic environmental impact. Beside total mole fractions, stable isotope ratios provide further constraints on source-sink processes [1-3].
Here, we present two receptor-oriented model simulations for carbon dioxide (CO2) mole fraction and δ13C-CO2 stable isotope ratios for a nine year period (2009-2017) at the High Altitude Research Station Jungfraujoch (Switzerland, 3580 m asl). The model simulations of CO2 were performed on a 3-hourly time-resolution with two backward Lagrangian particle dispersion models driven by two different numerical weather forecast fields: FLEXPART-COSMO and STILT-ECMWF. Anthropogenic CO2 fluxes were based on the EDGAR v4.3 emissions inventory aggregated into 14 source categories representing fossil and biogenic fuel uses as well as emissions from cement production. Biospheric CO2 fluxes representing the photosynthetic uptake and respiration of 8 plant functional types were based on the Vegetation Photosynthesis and Respiration Model (VPRM). The simulated CO2 emissions per source and sink category were weighted with category-specific δ13C-CO2 signatures from published experimental studies. Background CO2 values at the boundaries of both model domains were taken from global model simulations and the corresponding δ13C-CO2 values were constructed as suggested in Ref. [3]. We compare the simulations to a unique data set of continuous in-situ observations of CO2 mole fractions and δ13C-CO2 stable isotope ratios by quantum cascade laser absorption spectroscopy as described in previous work [1, 4-5], available for the whole nine year period at the site.
The simulated atmospheric CO2 and δ13C-CO2 time-series are in good agreement with the observations and capture the observed variability at the models' 3-hourly time-resolution. This allows for an in-depth evaluation of the contribution of different CO2 emission sources and for an allocation of source regions when Jungfraujoch is influenced by air masses from the planetary boundary layer. In brief, the receptor-oriented model simulations suggest that anthropogenic CO2 contributions are primarily of fossil origin (90%). Anthropogenic emissions contribute between 60% in February, and 20% in July/August, to the CO2 enhancements observed at Jungfraujoch. The remaining fraction is due to biosphere respiration, which thus largely dominates emissions during the summer season. However, intense photosynthetic CO2 uptake during June, July and August roughly outweighs CO2 contributions from anthropogenic activities and biosphere respiration at JFJ.
REFERENCES
[1] Tuzson et al., 2011. ACP, 11, 1685
[2] Röckmann et al., 2016. ACP, 16, 10469
[3] Vardag et al., 2016. Biogeosciences, 13, 4237
[4] Tuzson et al., 2008. Appl. Phys. B, 92, 451
[5] Sturm et al., 2013. AMT 6, 1659
How to cite: Pieber, S. M., Tuzson, B., Henne, S., Karstens, U., Brunner, D., Steinbacher, M., and Emmenegger, L.: Simulations of atmospheric CO2 and δ13C-CO2 compared to real-time observations at the high altitude station Jungfraujoch , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10588, https://doi.org/10.5194/egusphere-egu2020-10588, 2020.
Evaluating atmospheric transport simulations against observations helps refining bottom-up estimates of greenhouse gas fluxes and identifying gaps in our understanding of regional and category-specific contributions to atmospheric mole fractions. This insight is critical in the efforts to mitigate anthropogenic environmental impact. Beside total mole fractions, stable isotope ratios provide further constraints on source-sink processes [1-3].
Here, we present two receptor-oriented model simulations for carbon dioxide (CO2) mole fraction and δ13C-CO2 stable isotope ratios for a nine year period (2009-2017) at the High Altitude Research Station Jungfraujoch (Switzerland, 3580 m asl). The model simulations of CO2 were performed on a 3-hourly time-resolution with two backward Lagrangian particle dispersion models driven by two different numerical weather forecast fields: FLEXPART-COSMO and STILT-ECMWF. Anthropogenic CO2 fluxes were based on the EDGAR v4.3 emissions inventory aggregated into 14 source categories representing fossil and biogenic fuel uses as well as emissions from cement production. Biospheric CO2 fluxes representing the photosynthetic uptake and respiration of 8 plant functional types were based on the Vegetation Photosynthesis and Respiration Model (VPRM). The simulated CO2 emissions per source and sink category were weighted with category-specific δ13C-CO2 signatures from published experimental studies. Background CO2 values at the boundaries of both model domains were taken from global model simulations and the corresponding δ13C-CO2 values were constructed as suggested in Ref. [3]. We compare the simulations to a unique data set of continuous in-situ observations of CO2 mole fractions and δ13C-CO2 stable isotope ratios by quantum cascade laser absorption spectroscopy as described in previous work [1, 4-5], available for the whole nine year period at the site.
The simulated atmospheric CO2 and δ13C-CO2 time-series are in good agreement with the observations and capture the observed variability at the models' 3-hourly time-resolution. This allows for an in-depth evaluation of the contribution of different CO2 emission sources and for an allocation of source regions when Jungfraujoch is influenced by air masses from the planetary boundary layer. In brief, the receptor-oriented model simulations suggest that anthropogenic CO2 contributions are primarily of fossil origin (90%). Anthropogenic emissions contribute between 60% in February, and 20% in July/August, to the CO2 enhancements observed at Jungfraujoch. The remaining fraction is due to biosphere respiration, which thus largely dominates emissions during the summer season. However, intense photosynthetic CO2 uptake during June, July and August roughly outweighs CO2 contributions from anthropogenic activities and biosphere respiration at JFJ.
REFERENCES
[1] Tuzson et al., 2011. ACP, 11, 1685
[2] Röckmann et al., 2016. ACP, 16, 10469
[3] Vardag et al., 2016. Biogeosciences, 13, 4237
[4] Tuzson et al., 2008. Appl. Phys. B, 92, 451
[5] Sturm et al., 2013. AMT 6, 1659
How to cite: Pieber, S. M., Tuzson, B., Henne, S., Karstens, U., Brunner, D., Steinbacher, M., and Emmenegger, L.: Simulations of atmospheric CO2 and δ13C-CO2 compared to real-time observations at the high altitude station Jungfraujoch , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10588, https://doi.org/10.5194/egusphere-egu2020-10588, 2020.
EGU2020-11501 | Displays | BG2.1
Rapid and Precise Carbon Dioxide Clumped Isotope Composition Analysis by Tunable Infrared Laser Differential Absorption SpectroscopyDavid Nelson, Zhennan Wang, David Dettman, Barry McManus, Jay Quade, Nitzan Yanay, Katharine Huntington, and Andrew Schauer
Carbon dioxide clumped isotope thermometry is one of the most developed applications of the geochemistry of multiply substituted isotopologues. The degree of heavy isotope clumping (e.g., 16O13C18O) beyond an expected random distribution can be related to the temperature of calcite precipitation. This provides an independent temperature estimate that, when combined with carbonate δ18O values, can constrain paleowater δ18O values. However, the use of isotope ratio mass spectrometry (IRMS) to do these measurements remains relatively rare because it is time-consuming and costly. We have developed an isotope ratio laser spectrometry method using tunable infrared laser differential absorption spectroscopy (TILDAS) and describe our latest results using both gaseous carbon dioxide samples and CO2 derived from carbonate minerals. The TILDAS instrument has two continuous wave lasers to directly and simultaneously measure four isotopologues involved in the 16O13C18O equilibrium calculation. Because each isotopologue is independently resolved, this approach does not have to correct for isobaric peaks. The gas samples are trapped in a low volume (~250 ml) optical multi-pass cell with a path length of 36 meters. Raw data are collected at 1.6 kHz, providing 96,000 peak-area measurements of each CO2 isotopologue per minute. With a specially designed sampling system, each sample measurement is bracketed with measurements of a working reference gas, and a precision of 0.01‰ is achieved within 20 minutes, based on four repeated measurements. The total sample size needed for a complete measurement is approximately 15 μmol of CO2, or 1.5 mg of calcite equivalent. TILDAS reported ∆16O13C18O values show a linear relationship with theoretical calculations, with a very weak dependence on bulk isotope composition. The performance of the TILDAS system demonstrated in this study is competitive with the best IRMS systems and surpasses typical IRMS measurements in several key respects, such as measurement duration and isobaric interference problems. This method can easily be applied more widely in stable isotope geochemistry by changing spectral regions and laser configurations, leading to rapid and high precision (0.01‰) measurement of conventional stable isotope ratios and δ17O in CO2 gas samples.
How to cite: Nelson, D., Wang, Z., Dettman, D., McManus, B., Quade, J., Yanay, N., Huntington, K., and Schauer, A.: Rapid and Precise Carbon Dioxide Clumped Isotope Composition Analysis by Tunable Infrared Laser Differential Absorption Spectroscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11501, https://doi.org/10.5194/egusphere-egu2020-11501, 2020.
Carbon dioxide clumped isotope thermometry is one of the most developed applications of the geochemistry of multiply substituted isotopologues. The degree of heavy isotope clumping (e.g., 16O13C18O) beyond an expected random distribution can be related to the temperature of calcite precipitation. This provides an independent temperature estimate that, when combined with carbonate δ18O values, can constrain paleowater δ18O values. However, the use of isotope ratio mass spectrometry (IRMS) to do these measurements remains relatively rare because it is time-consuming and costly. We have developed an isotope ratio laser spectrometry method using tunable infrared laser differential absorption spectroscopy (TILDAS) and describe our latest results using both gaseous carbon dioxide samples and CO2 derived from carbonate minerals. The TILDAS instrument has two continuous wave lasers to directly and simultaneously measure four isotopologues involved in the 16O13C18O equilibrium calculation. Because each isotopologue is independently resolved, this approach does not have to correct for isobaric peaks. The gas samples are trapped in a low volume (~250 ml) optical multi-pass cell with a path length of 36 meters. Raw data are collected at 1.6 kHz, providing 96,000 peak-area measurements of each CO2 isotopologue per minute. With a specially designed sampling system, each sample measurement is bracketed with measurements of a working reference gas, and a precision of 0.01‰ is achieved within 20 minutes, based on four repeated measurements. The total sample size needed for a complete measurement is approximately 15 μmol of CO2, or 1.5 mg of calcite equivalent. TILDAS reported ∆16O13C18O values show a linear relationship with theoretical calculations, with a very weak dependence on bulk isotope composition. The performance of the TILDAS system demonstrated in this study is competitive with the best IRMS systems and surpasses typical IRMS measurements in several key respects, such as measurement duration and isobaric interference problems. This method can easily be applied more widely in stable isotope geochemistry by changing spectral regions and laser configurations, leading to rapid and high precision (0.01‰) measurement of conventional stable isotope ratios and δ17O in CO2 gas samples.
How to cite: Nelson, D., Wang, Z., Dettman, D., McManus, B., Quade, J., Yanay, N., Huntington, K., and Schauer, A.: Rapid and Precise Carbon Dioxide Clumped Isotope Composition Analysis by Tunable Infrared Laser Differential Absorption Spectroscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11501, https://doi.org/10.5194/egusphere-egu2020-11501, 2020.
EGU2020-6726 | Displays | BG2.1
Clumped isotope analysis in nitrous oxide by mid-IR laser spectroscopy: analytical developments and validationKristýna Kantnerová, Longfei Yu, Daniel Zindel, Mark S. Zahniser, David D. Nelson, Béla Tuzson, Lukas Emmenegger, Mayuko Nakagawa, Sakae Toyoda, Naohiro Yoshida, Stefano M. Bernasconi, and Joachim Mohn
Nitrous oxide (N2O) has been for long a major focus of all greenhouse gas accounting agreements. Understanding the mechanisms of its formation and clarifying its sources and sinks are highly important for mitigating N2O emissions. In this context, measuring the doubly substituted isotopocules of N2O can add new and unique opportunities to fingerprint and constrain the biogeochemical N2O cycle, similar to other atmospheric species such as CO2, CH4, and O2.
We address this challenging research field by developing and validating a laser spectroscopic technique for selective analysis of the eight most abundant N2O isotopic species including the doubly substituted isotopocules 14N15N18O, 15N14N18O, and 15N15N16O. This method is based on quantum cascade laser absorption spectroscopy (QCLAS) and reaches a precision of 0.01 – 0.20 ‰ with 1 – 2 min spectral averaging on samples of 4 μmol of N2O in N2 at 4 hPa.
Furthermore, we have established a new reference frame combining two independent approaches: (1) clumped N2O isotopocule abundances were linked to stochastic distribution by equilibrating the N–O bond in the N2O molecule over activated Al2O3 at 100 and 200 °C, and (2) individual isotopocule concentrations were calibrated using a set of high-accuracy gravimetric N2O-in-N2 gas mixtures. The latter approach, applied for the first time to clumped isotope measurements, has a particular potential in realizing regular multi-point calibration for species like 15N15N16O, because no procedure for equilibration of the N–N bond has been successful yet.
Results of the validation measurements, using the QCLAS method and calibration approach, are presented for a large range of δ values (approx. 100 ‰ for d15N and d18O). Inter-comparison measurements with high-resolution mass spectrometry show compatible results for bulk isotopic composition (d15N, d(458+548)), but superior performance of QCLAS for determining site-selectivity (SP, SP18). In summary, this work provides new methodological basis for the measurements of clumped N2O isotopes and has a high potential to stimulate future research in the N2O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.
How to cite: Kantnerová, K., Yu, L., Zindel, D., Zahniser, M. S., Nelson, D. D., Tuzson, B., Emmenegger, L., Nakagawa, M., Toyoda, S., Yoshida, N., Bernasconi, S. M., and Mohn, J.: Clumped isotope analysis in nitrous oxide by mid-IR laser spectroscopy: analytical developments and validation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6726, https://doi.org/10.5194/egusphere-egu2020-6726, 2020.
Nitrous oxide (N2O) has been for long a major focus of all greenhouse gas accounting agreements. Understanding the mechanisms of its formation and clarifying its sources and sinks are highly important for mitigating N2O emissions. In this context, measuring the doubly substituted isotopocules of N2O can add new and unique opportunities to fingerprint and constrain the biogeochemical N2O cycle, similar to other atmospheric species such as CO2, CH4, and O2.
We address this challenging research field by developing and validating a laser spectroscopic technique for selective analysis of the eight most abundant N2O isotopic species including the doubly substituted isotopocules 14N15N18O, 15N14N18O, and 15N15N16O. This method is based on quantum cascade laser absorption spectroscopy (QCLAS) and reaches a precision of 0.01 – 0.20 ‰ with 1 – 2 min spectral averaging on samples of 4 μmol of N2O in N2 at 4 hPa.
Furthermore, we have established a new reference frame combining two independent approaches: (1) clumped N2O isotopocule abundances were linked to stochastic distribution by equilibrating the N–O bond in the N2O molecule over activated Al2O3 at 100 and 200 °C, and (2) individual isotopocule concentrations were calibrated using a set of high-accuracy gravimetric N2O-in-N2 gas mixtures. The latter approach, applied for the first time to clumped isotope measurements, has a particular potential in realizing regular multi-point calibration for species like 15N15N16O, because no procedure for equilibration of the N–N bond has been successful yet.
Results of the validation measurements, using the QCLAS method and calibration approach, are presented for a large range of δ values (approx. 100 ‰ for d15N and d18O). Inter-comparison measurements with high-resolution mass spectrometry show compatible results for bulk isotopic composition (d15N, d(458+548)), but superior performance of QCLAS for determining site-selectivity (SP, SP18). In summary, this work provides new methodological basis for the measurements of clumped N2O isotopes and has a high potential to stimulate future research in the N2O community by establishing a new class of reservoir-insensitive tracers and molecular-scale insights.
How to cite: Kantnerová, K., Yu, L., Zindel, D., Zahniser, M. S., Nelson, D. D., Tuzson, B., Emmenegger, L., Nakagawa, M., Toyoda, S., Yoshida, N., Bernasconi, S. M., and Mohn, J.: Clumped isotope analysis in nitrous oxide by mid-IR laser spectroscopy: analytical developments and validation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6726, https://doi.org/10.5194/egusphere-egu2020-6726, 2020.
EGU2020-5761 | Displays | BG2.1
Evaluation of continuous δ13CH4 measurements in Heidelberg and at Schauinsland, GermanyAntje Hoheisel, Frank Meinhardt, and Martina Schmidt
Instrumental development in measurement technique now allows continuous in-situ isotope analysis of 13CH4 by Cavity Ring-Down Spectroscopy (CRDS). Analyses of the isotopic composition of methane in ambient air can potentially be used to partition between different CH4 source categories.
Since 2014 a CRDS G2201-i analyser has been used to continuously measure CH4 and its 13C/12C ratio in ambient air at the Institute of Environmental Physics (IUP) in Heidelberg (116m a.s.l.), South-West Germany. Furthermore, the CRDS G2201-i analyser was installed twice for a month at the measurement station of the German Environment Agency at Schauinsland (1205m a.s.l.). In September 2018 and in February 2019 the analyser was moved to Schauinsland to examine the validity of evaluations of continuous δ13CH4 measurements at a semi-rural station.
As an urban station, the seasonal and daily variations of the measured CH4 mole fraction and isotopic composition in Heidelberg vary much stronger than at the mountain station Schauinsland. The precision of the isotopic source signature calculation using a Keeling plot strongly depends on the CH4 peak height and instrumental precision. Therefore, at Schauinsland station the lower variability in the CH4 mole fraction makes the evaluation challenging. Different methods such as monthly/weekly interval evaluations and moving Keeling/Miller Tans methods has been used to calculate the isotopic source signature in ambient air.
The isotopic methane source signatures of the air in Heidelberg was found to be between -75 ‰ and -35 ‰, with an average of (-54 ± 2) ‰. An annual cycle can be noticed with more depleted values (-56 ‰) in summer and more enriched values (-51 ‰) in winter, due to larger biogenic emissions in summer and more thermogenic (e.g. natural gas) emissions in winter. The mean isotopic source signature calculated at Schauinsland shows variations, too, with more enriched values (−56 ‰) in winter and more depleted (−60 ‰) ones in autumn. The more depleted values in summer/autumn at Schauinsland corresponds to more biogenic methane and can be explained by dairy cows grazing near the station especially during this time.
The generally more enriched values at Schauinsland are caused by the more rural surrounding. Emission estimates of county provided by the LUBW Landesanstalt für Umwelt Baden-Württemberg shows that around Schauinsland 60 % of the CH4 emissions are emitted by livestock farming and around Heidelberg only 28 %. The mean isotopic source signature calculated using these emissions is (-58 ± 2) ‰ for Schauinsland and (-53 ± 2) ‰ for Heidelberg. These results agreed well with the mean source signatures determined out of continuous isotopic measurements.
How to cite: Hoheisel, A., Meinhardt, F., and Schmidt, M.: Evaluation of continuous δ13CH4 measurements in Heidelberg and at Schauinsland, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5761, https://doi.org/10.5194/egusphere-egu2020-5761, 2020.
Instrumental development in measurement technique now allows continuous in-situ isotope analysis of 13CH4 by Cavity Ring-Down Spectroscopy (CRDS). Analyses of the isotopic composition of methane in ambient air can potentially be used to partition between different CH4 source categories.
Since 2014 a CRDS G2201-i analyser has been used to continuously measure CH4 and its 13C/12C ratio in ambient air at the Institute of Environmental Physics (IUP) in Heidelberg (116m a.s.l.), South-West Germany. Furthermore, the CRDS G2201-i analyser was installed twice for a month at the measurement station of the German Environment Agency at Schauinsland (1205m a.s.l.). In September 2018 and in February 2019 the analyser was moved to Schauinsland to examine the validity of evaluations of continuous δ13CH4 measurements at a semi-rural station.
As an urban station, the seasonal and daily variations of the measured CH4 mole fraction and isotopic composition in Heidelberg vary much stronger than at the mountain station Schauinsland. The precision of the isotopic source signature calculation using a Keeling plot strongly depends on the CH4 peak height and instrumental precision. Therefore, at Schauinsland station the lower variability in the CH4 mole fraction makes the evaluation challenging. Different methods such as monthly/weekly interval evaluations and moving Keeling/Miller Tans methods has been used to calculate the isotopic source signature in ambient air.
The isotopic methane source signatures of the air in Heidelberg was found to be between -75 ‰ and -35 ‰, with an average of (-54 ± 2) ‰. An annual cycle can be noticed with more depleted values (-56 ‰) in summer and more enriched values (-51 ‰) in winter, due to larger biogenic emissions in summer and more thermogenic (e.g. natural gas) emissions in winter. The mean isotopic source signature calculated at Schauinsland shows variations, too, with more enriched values (−56 ‰) in winter and more depleted (−60 ‰) ones in autumn. The more depleted values in summer/autumn at Schauinsland corresponds to more biogenic methane and can be explained by dairy cows grazing near the station especially during this time.
The generally more enriched values at Schauinsland are caused by the more rural surrounding. Emission estimates of county provided by the LUBW Landesanstalt für Umwelt Baden-Württemberg shows that around Schauinsland 60 % of the CH4 emissions are emitted by livestock farming and around Heidelberg only 28 %. The mean isotopic source signature calculated using these emissions is (-58 ± 2) ‰ for Schauinsland and (-53 ± 2) ‰ for Heidelberg. These results agreed well with the mean source signatures determined out of continuous isotopic measurements.
How to cite: Hoheisel, A., Meinhardt, F., and Schmidt, M.: Evaluation of continuous δ13CH4 measurements in Heidelberg and at Schauinsland, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5761, https://doi.org/10.5194/egusphere-egu2020-5761, 2020.
EGU2020-13618 | Displays | BG2.1
Isotopomer approaches to the detection of anaerobic oxidation of natural gas hydrocarbonsAlexis Gilbert, Maxime Julien, Naohiro Yoshida, and Yuichiro Ueno
Hydrocarbons are the main constituents of natural gas. Their chemical and isotope abundance is a window to biogeochemical processes occurring in the subsurface. Stable isotopes of natural gas hydrocarbons are traditionally measured through compound-specific isotope analysis (CSIA) where each hydrocarbon is separated before its isotope ratio is determined.
Recently a variety of methods have been developed to determine position-specific isotope composition of propane, the first hydrocarbon with two distinct isotopomers: central and terminal [1][2][3][4]. The relative abundance of propane isotopomers (e.g. Δ13Ccentral = δ13Ccentral - δ13Cterminal) is a promising tool for tracing sources and sinks of hydrocarbons in natural gas reservoirs. In particular, anaerobic oxidation of propane starts with a fumarate addition at the central position, which is expected to lead to a specific enrichment of the central 13C-isotopomer of the remaining propane.
We measured Δ13Ccentral values of propane throughout the course of its oxidation by bacteria BuS5 [5] and showed that the isotope fractionation is located mainly on the central position, which differs from the signature expected for thermogenic evolution [6]. The approach has been used to detect anaerobic oxidation of propane in several natural gas reservoirs: Southwest Ontario (Canada), Carnarvon Basin (Australia), Michigan (USA) [6], and more recently Tokamachi mud volcano in Japan [7]. In addition, isotopomers of n-butane and i-butane analysed using the same technique allows gaining insights into the mechanism of their microbial oxidation.
The isotopomer approach presented here can thus shed light on the fate of natural gas hydrocarbons. In combination with clumped isotope measurements of methane and ethane, the approach can provide unprecedented information regarding carbon cycling in the subsurface.
[1] Gilbert et al., 2016 GCA v177, p205
[2] Piasecki et al., 2016 GCA v188 p58
[3] Gao et al., 2016 Chem Geol. v435, p1
[4] Liu et al., 2018 Chem Geol. v491, p14
[5] Kniemeyer et al., 2007 Nature v449, p898
[6] Gilbert et al., 2019 PNAS v116, p6653
[7] Etiope et al., 2011 Appl. Geochem. v26, p348
How to cite: Gilbert, A., Julien, M., Yoshida, N., and Ueno, Y.: Isotopomer approaches to the detection of anaerobic oxidation of natural gas hydrocarbons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13618, https://doi.org/10.5194/egusphere-egu2020-13618, 2020.
Hydrocarbons are the main constituents of natural gas. Their chemical and isotope abundance is a window to biogeochemical processes occurring in the subsurface. Stable isotopes of natural gas hydrocarbons are traditionally measured through compound-specific isotope analysis (CSIA) where each hydrocarbon is separated before its isotope ratio is determined.
Recently a variety of methods have been developed to determine position-specific isotope composition of propane, the first hydrocarbon with two distinct isotopomers: central and terminal [1][2][3][4]. The relative abundance of propane isotopomers (e.g. Δ13Ccentral = δ13Ccentral - δ13Cterminal) is a promising tool for tracing sources and sinks of hydrocarbons in natural gas reservoirs. In particular, anaerobic oxidation of propane starts with a fumarate addition at the central position, which is expected to lead to a specific enrichment of the central 13C-isotopomer of the remaining propane.
We measured Δ13Ccentral values of propane throughout the course of its oxidation by bacteria BuS5 [5] and showed that the isotope fractionation is located mainly on the central position, which differs from the signature expected for thermogenic evolution [6]. The approach has been used to detect anaerobic oxidation of propane in several natural gas reservoirs: Southwest Ontario (Canada), Carnarvon Basin (Australia), Michigan (USA) [6], and more recently Tokamachi mud volcano in Japan [7]. In addition, isotopomers of n-butane and i-butane analysed using the same technique allows gaining insights into the mechanism of their microbial oxidation.
The isotopomer approach presented here can thus shed light on the fate of natural gas hydrocarbons. In combination with clumped isotope measurements of methane and ethane, the approach can provide unprecedented information regarding carbon cycling in the subsurface.
[1] Gilbert et al., 2016 GCA v177, p205
[2] Piasecki et al., 2016 GCA v188 p58
[3] Gao et al., 2016 Chem Geol. v435, p1
[4] Liu et al., 2018 Chem Geol. v491, p14
[5] Kniemeyer et al., 2007 Nature v449, p898
[6] Gilbert et al., 2019 PNAS v116, p6653
[7] Etiope et al., 2011 Appl. Geochem. v26, p348
How to cite: Gilbert, A., Julien, M., Yoshida, N., and Ueno, Y.: Isotopomer approaches to the detection of anaerobic oxidation of natural gas hydrocarbons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13618, https://doi.org/10.5194/egusphere-egu2020-13618, 2020.
EGU2020-22570 | Displays | BG2.1
Testing different methods for the extraction and purification of leaf and phloem sugars for oxygen isotope analysisMelanie Egli, Marco M. Lehmann, Nadine Brinkmann, Roland A. Werner, Matthias Saurer, and Ansgar Kahmen
Oxygen isotope analysis of plant material, such as sugars in different tissues, provides an important tool to understand how plants function, interact with their environment and also cope with climate change. Knowing how to extract and purify carbohydrates without artificially altering their oxygen isotope ratio (δ18O) is therefore essential.
We aimed to resolve the impact of different steps on sugars' δ18O values during their extraction and purification from leaf and phloem tissue. More precisely, we investigated (1) different drying processes (oven- vs freeze-drying), and (2) how extraction and purification affect leaf sugars. To clearly see fractionation and exchange processes, these experiments were performed using 18O-labelled water. We further examined (3) the influence of different EDTA media and immersion times to facilitate sugar exudation and subsequent yield from twig phloem tissue. Finally, we analysed (4) the sugar phloem composition, as well as the individual compounds’ carbon isotopic signatures (δ13C).
Comparison of freeze- and oven-dried sugars showed lower δ18O memory effects and more consistent oxygen isotopic signatures across different sugars, indicating lyophilisation as the more reliable method. The extraction and purification can be conducted without significant oxygen isotope fractionation. However, 18O-depletion was observed when sugars were dissolved and dried multiple times. This suggests that additional dissolution and drying steps should best be avoided whenever possible. Different immersion times and exudation media during twig phloem extraction revealed to have a substantial influence on the phloem sugars' overall oxygen isotopic signature, their composition, and the individual compounds' δ13C values.
Our research illustrates which precautions during sample preparation – from drying to extracting and purifying – need to be taken when plant sugars and their oxygen isotopic signature are of interest. Regarding the preservation of the phloem sugars' original δ18O values and stabilising their composition (prevention of sucrose degradation) as much as possible, we recommend a short immersion time of approx. 1 hour. After a thorough initial rinse of the tissue, the sap should be eluted in pure water without any additives (no EDTA). This further reduces the possibility of hexoses to exchange oxygen with that of the surrounding water.
How to cite: Egli, M., Lehmann, M. M., Brinkmann, N., Werner, R. A., Saurer, M., and Kahmen, A.: Testing different methods for the extraction and purification of leaf and phloem sugars for oxygen isotope analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22570, https://doi.org/10.5194/egusphere-egu2020-22570, 2020.
Oxygen isotope analysis of plant material, such as sugars in different tissues, provides an important tool to understand how plants function, interact with their environment and also cope with climate change. Knowing how to extract and purify carbohydrates without artificially altering their oxygen isotope ratio (δ18O) is therefore essential.
We aimed to resolve the impact of different steps on sugars' δ18O values during their extraction and purification from leaf and phloem tissue. More precisely, we investigated (1) different drying processes (oven- vs freeze-drying), and (2) how extraction and purification affect leaf sugars. To clearly see fractionation and exchange processes, these experiments were performed using 18O-labelled water. We further examined (3) the influence of different EDTA media and immersion times to facilitate sugar exudation and subsequent yield from twig phloem tissue. Finally, we analysed (4) the sugar phloem composition, as well as the individual compounds’ carbon isotopic signatures (δ13C).
Comparison of freeze- and oven-dried sugars showed lower δ18O memory effects and more consistent oxygen isotopic signatures across different sugars, indicating lyophilisation as the more reliable method. The extraction and purification can be conducted without significant oxygen isotope fractionation. However, 18O-depletion was observed when sugars were dissolved and dried multiple times. This suggests that additional dissolution and drying steps should best be avoided whenever possible. Different immersion times and exudation media during twig phloem extraction revealed to have a substantial influence on the phloem sugars' overall oxygen isotopic signature, their composition, and the individual compounds' δ13C values.
Our research illustrates which precautions during sample preparation – from drying to extracting and purifying – need to be taken when plant sugars and their oxygen isotopic signature are of interest. Regarding the preservation of the phloem sugars' original δ18O values and stabilising their composition (prevention of sucrose degradation) as much as possible, we recommend a short immersion time of approx. 1 hour. After a thorough initial rinse of the tissue, the sap should be eluted in pure water without any additives (no EDTA). This further reduces the possibility of hexoses to exchange oxygen with that of the surrounding water.
How to cite: Egli, M., Lehmann, M. M., Brinkmann, N., Werner, R. A., Saurer, M., and Kahmen, A.: Testing different methods for the extraction and purification of leaf and phloem sugars for oxygen isotope analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22570, https://doi.org/10.5194/egusphere-egu2020-22570, 2020.
EGU2020-10484 | Displays | BG2.1
Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plantsUlrike Dusek, Roland Vernooij, Anupam Shaikat, Chenxi Qiu, Elena Popa, Patrik Winiger, Nick A. J. Schutgens, Peng Yao, and Guido R. van der Werf
Biomass burning on the African continent emits large amounts of CO2, CO, and aerosols. Our aim is to use measurements of the stable carbon isotope 13C in organic carbon, CO and CO2 in biomass burning smoke to estimate the contribution of C3 plants (trees and bushes) and C4 plants (mainly Savannah grass), which have very distinct 13C/12C ratios. This is possible, if 13C/12C ratios are not significantly altered by the combustion process. This assumption is investigated in a series of laboratory experiments, where C3 and C4 plants (corn and willow wood), or C3-C4 plant mixtures are burned. The laboratory results are used to interpret the results of pilot studies of smoke sampled in African savannah fires.
First results from the laboratory studies indicate that organic carbon (OC) from combustion of willow or corn shows 13C/12C ratios comparable to the burned plant material. For combustion of willow (C3), the 13C/12C ratios in OC tend to be slightly higher than in the wood fuel, depending on combustion conditions. For combustion of corn 13C/12C ratios of OC tend to be slightly lower than in the fuel. For mixtures of willow and corn the relationship between 13C/12C ratios in the emitted organic carbon and the fuel mixture is slightly non-linear: For a 50-50% oak wood and corn mixture the 13C/12C ratio in OC is closer to that of corn than that of willow. First results from pilot field studies indicate that a larger fraction of OC comes from trees and bushes, although mainly Savannah grass is burned in the investigated fires.
How to cite: Dusek, U., Vernooij, R., Shaikat, A., Qiu, C., Popa, E., Winiger, P., Schutgens, N. A. J., Yao, P., and van der Werf, G. R.: Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10484, https://doi.org/10.5194/egusphere-egu2020-10484, 2020.
Biomass burning on the African continent emits large amounts of CO2, CO, and aerosols. Our aim is to use measurements of the stable carbon isotope 13C in organic carbon, CO and CO2 in biomass burning smoke to estimate the contribution of C3 plants (trees and bushes) and C4 plants (mainly Savannah grass), which have very distinct 13C/12C ratios. This is possible, if 13C/12C ratios are not significantly altered by the combustion process. This assumption is investigated in a series of laboratory experiments, where C3 and C4 plants (corn and willow wood), or C3-C4 plant mixtures are burned. The laboratory results are used to interpret the results of pilot studies of smoke sampled in African savannah fires.
First results from the laboratory studies indicate that organic carbon (OC) from combustion of willow or corn shows 13C/12C ratios comparable to the burned plant material. For combustion of willow (C3), the 13C/12C ratios in OC tend to be slightly higher than in the wood fuel, depending on combustion conditions. For combustion of corn 13C/12C ratios of OC tend to be slightly lower than in the fuel. For mixtures of willow and corn the relationship between 13C/12C ratios in the emitted organic carbon and the fuel mixture is slightly non-linear: For a 50-50% oak wood and corn mixture the 13C/12C ratio in OC is closer to that of corn than that of willow. First results from pilot field studies indicate that a larger fraction of OC comes from trees and bushes, although mainly Savannah grass is burned in the investigated fires.
How to cite: Dusek, U., Vernooij, R., Shaikat, A., Qiu, C., Popa, E., Winiger, P., Schutgens, N. A. J., Yao, P., and van der Werf, G. R.: Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10484, https://doi.org/10.5194/egusphere-egu2020-10484, 2020.
EGU2020-21320 | Displays | BG2.1
Stable carbon δ13C analysis of automotive particulate matter emissions under controlled conditionsLaurynas Bučinskas, Jonas Matijošius, and Andrius Garbaras
Excessive automotive engine exhaust emissions of gases and particulate matter (PM) pose a threat to public health and urban air quality. In an effort to reduce automotive emissions modern cars use a variety of engine modifications, catalytic systems and filters which in turn alter the isotope ratio of carbonaceous particles (isotope fractionation effect). Diesel engines are of particular interest due to higher production of particulates (soot) in comparison to gasoline engines [1].
The aim of this work was to examine particulate matter δ13C variation in automotive emissions using stable carbon isotope ratio measurements. Emission experiments were performed in dynamometer laboratory using four light passenger vehicles with differing liquid fuels - diesel, diesel with additives, 92 RON and 95 RON. Vehicles were tested with varying engine power and using simulated transient cycles in urban and rural areas. Engine exhaust particulate matter was collected on quartz filters. Later, isotope ratio δ13C values of fuel and exhaust carbonaceous particulates were measured using IRMS. δ13C values were then compared and level of isotope fractionation determined.
The obtained results show particulate matter δ13C values ranging from -28.8 ‰ to -27.2 ‰ during separate driving modes. Isotope fractionation Δ (particulates-fuel) values varied between 1.8 ‰ and 3.5 ‰. It was determined that δ13C values of automotive emissions depend on the type of fuel used, applied engine power, driving modes (urban, rural) and can be used to characterize automotive carbonaceous particle emissions.
[1] M. V. Twigg, “Progress and future challenges in controlling automotive exhaust gas emissions,” Appl. Catal. B Environ., 2007.
How to cite: Bučinskas, L., Matijošius, J., and Garbaras, A.: Stable carbon δ13C analysis of automotive particulate matter emissions under controlled conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21320, https://doi.org/10.5194/egusphere-egu2020-21320, 2020.
Excessive automotive engine exhaust emissions of gases and particulate matter (PM) pose a threat to public health and urban air quality. In an effort to reduce automotive emissions modern cars use a variety of engine modifications, catalytic systems and filters which in turn alter the isotope ratio of carbonaceous particles (isotope fractionation effect). Diesel engines are of particular interest due to higher production of particulates (soot) in comparison to gasoline engines [1].
The aim of this work was to examine particulate matter δ13C variation in automotive emissions using stable carbon isotope ratio measurements. Emission experiments were performed in dynamometer laboratory using four light passenger vehicles with differing liquid fuels - diesel, diesel with additives, 92 RON and 95 RON. Vehicles were tested with varying engine power and using simulated transient cycles in urban and rural areas. Engine exhaust particulate matter was collected on quartz filters. Later, isotope ratio δ13C values of fuel and exhaust carbonaceous particulates were measured using IRMS. δ13C values were then compared and level of isotope fractionation determined.
The obtained results show particulate matter δ13C values ranging from -28.8 ‰ to -27.2 ‰ during separate driving modes. Isotope fractionation Δ (particulates-fuel) values varied between 1.8 ‰ and 3.5 ‰. It was determined that δ13C values of automotive emissions depend on the type of fuel used, applied engine power, driving modes (urban, rural) and can be used to characterize automotive carbonaceous particle emissions.
[1] M. V. Twigg, “Progress and future challenges in controlling automotive exhaust gas emissions,” Appl. Catal. B Environ., 2007.
How to cite: Bučinskas, L., Matijošius, J., and Garbaras, A.: Stable carbon δ13C analysis of automotive particulate matter emissions under controlled conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21320, https://doi.org/10.5194/egusphere-egu2020-21320, 2020.
EGU2020-4529 | Displays | BG2.1
Identification of potential methane source regions in Europe using d13C-CH4 measurements and back trajectory modelingTamás Varga, László Haszpra, István Major, Eugan G. Nisbet, David Lowry, Rebecca E. Fisher, Timothy A.J. Jull, Mihály Molnár, and Elemér László
A three-year-long methane mole fraction and d13CCH4 measurement campaign was performed at the Hungarian tall tower station, Hegyhátsál, between 2013-2016. The results were compared with that of two NOAA atmospheric monitoring sites Mace Head and Zeppelin to determine the continental methane excess and the relative isotopic shift. The data then were used for bac trajectory analyses to identify potential methane source regions in Europe coupled with d13CCH4 results. The Hungarian station can be separated from the coastal and polar areas based on the mole fraction results having higher maxima and seasonal amplitude, but the d13CCH4 results match well with the NOAA stations’ results. Our study shows that although the local, regional anthropogenic and natural sources are major influences, more distant regions can also influence the measured CH4 level and d13CCH4 signal in the Pannonian Basin.
How to cite: Varga, T., Haszpra, L., Major, I., Nisbet, E. G., Lowry, D., Fisher, R. E., Jull, T. A. J., Molnár, M., and László, E.: Identification of potential methane source regions in Europe using d13C-CH4 measurements and back trajectory modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4529, https://doi.org/10.5194/egusphere-egu2020-4529, 2020.
A three-year-long methane mole fraction and d13CCH4 measurement campaign was performed at the Hungarian tall tower station, Hegyhátsál, between 2013-2016. The results were compared with that of two NOAA atmospheric monitoring sites Mace Head and Zeppelin to determine the continental methane excess and the relative isotopic shift. The data then were used for bac trajectory analyses to identify potential methane source regions in Europe coupled with d13CCH4 results. The Hungarian station can be separated from the coastal and polar areas based on the mole fraction results having higher maxima and seasonal amplitude, but the d13CCH4 results match well with the NOAA stations’ results. Our study shows that although the local, regional anthropogenic and natural sources are major influences, more distant regions can also influence the measured CH4 level and d13CCH4 signal in the Pannonian Basin.
How to cite: Varga, T., Haszpra, L., Major, I., Nisbet, E. G., Lowry, D., Fisher, R. E., Jull, T. A. J., Molnár, M., and László, E.: Identification of potential methane source regions in Europe using d13C-CH4 measurements and back trajectory modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4529, https://doi.org/10.5194/egusphere-egu2020-4529, 2020.
EGU2020-10777 | Displays | BG2.1 | Highlight
Sources, trends, and fate of methane in shallow aquifers of Alberta, CanadaPauline Humez, Florian Osselin, Wolfram Kloppmann, Cynthia McClain, Michael Nightingale, and Bernhard Mayer
Due to concerns regarding potential impacts of the development of natural gas from unconventional hydrocarbon resources on groundwater systems in North America and elsewhere, it has been crucial to improve methods of Environmental Baseline Assessment (EBA). Any subsequent deviations from the EBA could indicate migration of natural gas into the monitored groundwater systems. In collaboration with Alberta Environment and Parks, over 800 groundwater samples have been collected from dedicated monitoring wells since 2006 resulting in an extensive high-quality database of aqueous and gaseous geochemical and isotopic compositions. Because methane is the main component of natural gas, it had been the principal target of our groundwater studies. Our objectives were a) to assess the occurrence of methane in groundwater throughout the province of Alberta (Canada), b) to use isotope techniques to track the predominant sources of methane, c) to use a combination of chemical and multi-isotopic techniques and models to assess the fate of methane in groundwater, and d) to use probability for predicting the presence of methane in groundwater based on hydrogeochemical parameters in regions where no gas data exist.
Methane was found to be ubiquitous in groundwater samples throughout the province of Alberta with concentrations varying from 2.9 10-4 to >2.4 mmol/l. The highest methane concentrations were found in Na-HCO3 and Na-Cl water-types where the sulfate concentrations were <1 mmol/l. Analyses of the isotopic compositions of sulfate, dissolved inorganic carbon (DIC) and methane revealed that in some groundwater systems bacterial sulfate reduction occurred (δ34SSO4 >+10‰ associated with lowest sulfate concentrations) and evidence for methane oxidation was also detected (highest δ13CCH4 values > ‑55‰ associated with lowest methane concentrations). Moreover, some δ13CDIC values were as high as +13.8‰ associated with the highest methane concentrations. A geochemical and multi-isotope model using long-term monitoring data was developed and revealed two different sources of methane: 1) microbial methane resulting from in-situ methanogenesis within the aquifer for a subset of the samples; 2) migration of microbial methane into aquifers characterized by various redox conditions, followed by methane oxidation potentially coupled with bacterial sulfate reduction within sulfate-rich zones causing a pseudo-thermogenic carbon isotopic fingerprint for the remaining methane. So far, no evidence of unambiguously thermogenic methane in the groundwater samples collected from dedicated monitoring wells has been found. Efforts to assess the probability of regional occurrence of methane in groundwater systems in Alberta have then focused on a model for methane prediction model based on logistic regression (LR) for regions of Alberta where no gas data exist. Using basic hydrogeochemical parameters such as occurrence of electron donors, well depth and total dissolved solids of groundwater, the LR approach shows excellent performance metrics e.g. model sensitivity, specificity >80% regarding the prediction of methane occurrence in groundwater of Alberta.
How to cite: Humez, P., Osselin, F., Kloppmann, W., McClain, C., Nightingale, M., and Mayer, B.: Sources, trends, and fate of methane in shallow aquifers of Alberta, Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10777, https://doi.org/10.5194/egusphere-egu2020-10777, 2020.
Due to concerns regarding potential impacts of the development of natural gas from unconventional hydrocarbon resources on groundwater systems in North America and elsewhere, it has been crucial to improve methods of Environmental Baseline Assessment (EBA). Any subsequent deviations from the EBA could indicate migration of natural gas into the monitored groundwater systems. In collaboration with Alberta Environment and Parks, over 800 groundwater samples have been collected from dedicated monitoring wells since 2006 resulting in an extensive high-quality database of aqueous and gaseous geochemical and isotopic compositions. Because methane is the main component of natural gas, it had been the principal target of our groundwater studies. Our objectives were a) to assess the occurrence of methane in groundwater throughout the province of Alberta (Canada), b) to use isotope techniques to track the predominant sources of methane, c) to use a combination of chemical and multi-isotopic techniques and models to assess the fate of methane in groundwater, and d) to use probability for predicting the presence of methane in groundwater based on hydrogeochemical parameters in regions where no gas data exist.
Methane was found to be ubiquitous in groundwater samples throughout the province of Alberta with concentrations varying from 2.9 10-4 to >2.4 mmol/l. The highest methane concentrations were found in Na-HCO3 and Na-Cl water-types where the sulfate concentrations were <1 mmol/l. Analyses of the isotopic compositions of sulfate, dissolved inorganic carbon (DIC) and methane revealed that in some groundwater systems bacterial sulfate reduction occurred (δ34SSO4 >+10‰ associated with lowest sulfate concentrations) and evidence for methane oxidation was also detected (highest δ13CCH4 values > ‑55‰ associated with lowest methane concentrations). Moreover, some δ13CDIC values were as high as +13.8‰ associated with the highest methane concentrations. A geochemical and multi-isotope model using long-term monitoring data was developed and revealed two different sources of methane: 1) microbial methane resulting from in-situ methanogenesis within the aquifer for a subset of the samples; 2) migration of microbial methane into aquifers characterized by various redox conditions, followed by methane oxidation potentially coupled with bacterial sulfate reduction within sulfate-rich zones causing a pseudo-thermogenic carbon isotopic fingerprint for the remaining methane. So far, no evidence of unambiguously thermogenic methane in the groundwater samples collected from dedicated monitoring wells has been found. Efforts to assess the probability of regional occurrence of methane in groundwater systems in Alberta have then focused on a model for methane prediction model based on logistic regression (LR) for regions of Alberta where no gas data exist. Using basic hydrogeochemical parameters such as occurrence of electron donors, well depth and total dissolved solids of groundwater, the LR approach shows excellent performance metrics e.g. model sensitivity, specificity >80% regarding the prediction of methane occurrence in groundwater of Alberta.
How to cite: Humez, P., Osselin, F., Kloppmann, W., McClain, C., Nightingale, M., and Mayer, B.: Sources, trends, and fate of methane in shallow aquifers of Alberta, Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10777, https://doi.org/10.5194/egusphere-egu2020-10777, 2020.
EGU2020-13274 | Displays | BG2.1
Modelling the seasonal cycle of atmospheric δ13C-CH4 using source specific δ13C-CH4 valuesVilma Kangasaho, Aki Tsuruta, Tuula Aalto, Leif Backman, Sander Houweling, Maarten Krol, Wouter Peters, Ingrid Luijkx, Sebastian Lienert, Fortunat Joos, Edward Dlugokencky, Sylvia Michael, James White, and Rebecca Fisher
The atmospheric burden of methane (CH4) has more than doubled since the 18th Century. Currently the abundance of CH4 in the atmosphere is well known, but emission rates from different source sectors are uncertain. CH4 is emitted to the atmosphere from various sources. To better understand the changes in atmospheric CH4 abundance before and after 2006, it is important to study the contribution from these different sources separately. Most CH4 source have process specific δ13C-CH4 values, which can be used to broadly identify source sectors.
This study examines the seasonal cycle of atmospheric δ13C-CH4 in recent decades using the TM5 atmospheric transport. TM5 is driven by ECMWF ERA-Interim meteorological fields, and uses pre-calculated OH-fields and reaction rates with Cl and O(1D) to account for the CH4 sink processes in the atmosphere. TM5 is run at a 1ox1o resolution over Europe and globally at 6ox4o. Emissions for enteric fermentation and manure management, landfills and waste water treatment, rice cultivation, coal industry, oil and gas industry, and residential are taken from the EDGAR inventory. Natural emission for wetlands, peatlands and mineral soils, and soil sinks are taken from the LPX-Bern DYPTOP ecosystem model. Emissions for geological seeps including onshore hydrocarbon macro-seeps (including mud volcanoes), submarine (offshore) seeps, diffuse microseepage and geothermal manifestations are included. Emissions for fires (GFED v4), termites, wild animals and from the ocean are also included. Several sensitivity analyses are carried out. The sensitivity analyses include simulations with and without seasonal cycles in the anthropogenic emission fields (EDGAR v4.2 FT2010 vs EDGAR v4.3.2), and with and without spatial variations in source specific δ13C-CH4 values, which are used to calculate 13CH4/CH4 emission ratios. The effect of including the seasonal cycle in the anthropogenic emissions were not significant, which means natural sources probably play more important role in determining the seasonal cycle of δ13C-CH4. The global observations of atmospheric CH4 and δ13C-CH4, provided by NOAA’s GMD, the INSTAAR and Royal Holloway, the University of London, are used for evaluation. We present the importance of having reasonable initial fields of atmospheric 13CH4, which will be later used as inputs for CarbonTracker Europe-δ13CH4 (CTE-δ13CH4) data assimilation system to optimise CH4 emissions by source category.
How to cite: Kangasaho, V., Tsuruta, A., Aalto, T., Backman, L., Houweling, S., Krol, M., Peters, W., Luijkx, I., Lienert, S., Joos, F., Dlugokencky, E., Michael, S., White, J., and Fisher, R.: Modelling the seasonal cycle of atmospheric δ13C-CH4 using source specific δ13C-CH4 values, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13274, https://doi.org/10.5194/egusphere-egu2020-13274, 2020.
The atmospheric burden of methane (CH4) has more than doubled since the 18th Century. Currently the abundance of CH4 in the atmosphere is well known, but emission rates from different source sectors are uncertain. CH4 is emitted to the atmosphere from various sources. To better understand the changes in atmospheric CH4 abundance before and after 2006, it is important to study the contribution from these different sources separately. Most CH4 source have process specific δ13C-CH4 values, which can be used to broadly identify source sectors.
This study examines the seasonal cycle of atmospheric δ13C-CH4 in recent decades using the TM5 atmospheric transport. TM5 is driven by ECMWF ERA-Interim meteorological fields, and uses pre-calculated OH-fields and reaction rates with Cl and O(1D) to account for the CH4 sink processes in the atmosphere. TM5 is run at a 1ox1o resolution over Europe and globally at 6ox4o. Emissions for enteric fermentation and manure management, landfills and waste water treatment, rice cultivation, coal industry, oil and gas industry, and residential are taken from the EDGAR inventory. Natural emission for wetlands, peatlands and mineral soils, and soil sinks are taken from the LPX-Bern DYPTOP ecosystem model. Emissions for geological seeps including onshore hydrocarbon macro-seeps (including mud volcanoes), submarine (offshore) seeps, diffuse microseepage and geothermal manifestations are included. Emissions for fires (GFED v4), termites, wild animals and from the ocean are also included. Several sensitivity analyses are carried out. The sensitivity analyses include simulations with and without seasonal cycles in the anthropogenic emission fields (EDGAR v4.2 FT2010 vs EDGAR v4.3.2), and with and without spatial variations in source specific δ13C-CH4 values, which are used to calculate 13CH4/CH4 emission ratios. The effect of including the seasonal cycle in the anthropogenic emissions were not significant, which means natural sources probably play more important role in determining the seasonal cycle of δ13C-CH4. The global observations of atmospheric CH4 and δ13C-CH4, provided by NOAA’s GMD, the INSTAAR and Royal Holloway, the University of London, are used for evaluation. We present the importance of having reasonable initial fields of atmospheric 13CH4, which will be later used as inputs for CarbonTracker Europe-δ13CH4 (CTE-δ13CH4) data assimilation system to optimise CH4 emissions by source category.
How to cite: Kangasaho, V., Tsuruta, A., Aalto, T., Backman, L., Houweling, S., Krol, M., Peters, W., Luijkx, I., Lienert, S., Joos, F., Dlugokencky, E., Michael, S., White, J., and Fisher, R.: Modelling the seasonal cycle of atmospheric δ13C-CH4 using source specific δ13C-CH4 values, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13274, https://doi.org/10.5194/egusphere-egu2020-13274, 2020.
EGU2020-7841 | Displays | BG2.1
Simulating the seasonal cycle of 13CSebastian Lienert, Christoph Köstler, Sönke Zaehle, and Fortunat Joos
We investigate the seasonal cycle of δ13CO2 using the Earth system model of intermediate complexity Bern3D-LPX. Using a model of atmospheric transport (TM3), the spatial fields of simulated 13CO2 and CO2 exchange are translated to local δ13CO2 anomalies, which are then compared to atmospheric measurements. We discuss the ability of the model to accurately simulate the atmospheric seasonal δ13CO2 cycle, which could prove to be a valuable novel observational constraint. The coupled simulation allows us to distinguish the relative importance of the biosphere and ocean in determining the seasonal cycle of δ13CO2 at different measurement sites across the world.
The amplitude of the seasonal cycle of δ13CO2 is of particular importance to quantify land biosphere processes. The decreasing δ13CO2 of the atmosphere during the last decades (Suess effect) leads to a divergence of the δ13C signature in assimilation and heterotrophic respiration, because of the long lifetime of soil pools. This is expected to lead to a high sensitivity of the seasonal amplitude to the amount of soil respiration. The effect of changes in soil turnover times on the simulated seasonal cycle is explored with factorial simulations of the Dynamic Global Vegetation Model LPX-Bern.
How to cite: Lienert, S., Köstler, C., Zaehle, S., and Joos, F.: Simulating the seasonal cycle of 13C, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7841, https://doi.org/10.5194/egusphere-egu2020-7841, 2020.
We investigate the seasonal cycle of δ13CO2 using the Earth system model of intermediate complexity Bern3D-LPX. Using a model of atmospheric transport (TM3), the spatial fields of simulated 13CO2 and CO2 exchange are translated to local δ13CO2 anomalies, which are then compared to atmospheric measurements. We discuss the ability of the model to accurately simulate the atmospheric seasonal δ13CO2 cycle, which could prove to be a valuable novel observational constraint. The coupled simulation allows us to distinguish the relative importance of the biosphere and ocean in determining the seasonal cycle of δ13CO2 at different measurement sites across the world.
The amplitude of the seasonal cycle of δ13CO2 is of particular importance to quantify land biosphere processes. The decreasing δ13CO2 of the atmosphere during the last decades (Suess effect) leads to a divergence of the δ13C signature in assimilation and heterotrophic respiration, because of the long lifetime of soil pools. This is expected to lead to a high sensitivity of the seasonal amplitude to the amount of soil respiration. The effect of changes in soil turnover times on the simulated seasonal cycle is explored with factorial simulations of the Dynamic Global Vegetation Model LPX-Bern.
How to cite: Lienert, S., Köstler, C., Zaehle, S., and Joos, F.: Simulating the seasonal cycle of 13C, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7841, https://doi.org/10.5194/egusphere-egu2020-7841, 2020.
EGU2020-20422 | Displays | BG2.1
The influence of light on soil community structure and consequences for soil CO2, CO18O and COS exchangeLisa Wingate, Clement Foucault, Nicolas Fanin, Joana Sauze, Pierre-Alain Maron, Virginie Nowak, Sebastian Terrat, Samuel Mondy, Evert van Schaik, Olivier Crouzet, Jérôme Ogée, and Steven Wohl
The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (COS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO2 and COS and their expression should also vary between different microbial groups, differences in the community structure could impact the ‘community-integrated’ CA activity differently for CO2 and COS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and COS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototroph genes. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototroph abundance. COS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. In addition we developed a metabarcoding approach to reveal the interactions of specific taxonomic groups incuding photosynthetic eukaryotic algae and cyanobacteria when exposed to light and their impact on flux rates. Our findings demonstrate that soil-atmosphere CO2, COS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and support the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and COS.
How to cite: Wingate, L., Foucault, C., Fanin, N., Sauze, J., Maron, P.-A., Nowak, V., Terrat, S., Mondy, S., van Schaik, E., Crouzet, O., Ogée, J., and Wohl, S.: The influence of light on soil community structure and consequences for soil CO2, CO18O and COS exchange , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20422, https://doi.org/10.5194/egusphere-egu2020-20422, 2020.
The stable oxygen isotope composition of atmospheric CO2 and the mixing ratio of carbonyl sulphide (COS) are potential tracers of biospheric CO2 fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO2 and COS and their expression should also vary between different microbial groups, differences in the community structure could impact the ‘community-integrated’ CA activity differently for CO2 and COS. Four soils of different pH were incubated in the dark or with a diurnal cycle for forty days to vary the abundance of native phototrophs. Fluxes of CO2, CO18O and COS were measured to estimate CA activity alongside the abundance of bacteria, fungi and phototroph genes. The abundance of soil phototrophs increased most at higher soil pH. In the light, the strength of the soil CO2 sink and the CA-driven CO2-H2O isotopic exchange rates correlated with phototroph abundance. COS uptake rates were attributed to fungi whose abundance was positively enhanced in alkaline soils but only in the presence of increased phototrophs. In addition we developed a metabarcoding approach to reveal the interactions of specific taxonomic groups incuding photosynthetic eukaryotic algae and cyanobacteria when exposed to light and their impact on flux rates. Our findings demonstrate that soil-atmosphere CO2, COS and CO18O fluxes are strongly regulated by the microbial community structure in response to changes in soil pH and light availability and support the idea that different members of the microbial community express different classes of CA, with different affinities to CO2 and COS.
How to cite: Wingate, L., Foucault, C., Fanin, N., Sauze, J., Maron, P.-A., Nowak, V., Terrat, S., Mondy, S., van Schaik, E., Crouzet, O., Ogée, J., and Wohl, S.: The influence of light on soil community structure and consequences for soil CO2, CO18O and COS exchange , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20422, https://doi.org/10.5194/egusphere-egu2020-20422, 2020.
EGU2020-3528 | Displays | BG2.1 | Highlight
Isotopic Measurements: A New Tool for Studying Global Carbonyl SulfideSophie Baartman, Elena Popa, Maarten Krol, and Thomas Röckmann
Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO2, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.
Within the framework of the COS-OCS project, we developed a new pre-concentration and measurement system at Utrecht University, that can measure d33S and d34S from COS from 2 to 5 L air samples, with a current precision of about 5‰ and 2‰ for d33S and d34S, respectively. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. Here, I will present the details of the new measurement system and results from various atmospheric samples.
How to cite: Baartman, S., Popa, E., Krol, M., and Röckmann, T.: Isotopic Measurements: A New Tool for Studying Global Carbonyl Sulfide, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3528, https://doi.org/10.5194/egusphere-egu2020-3528, 2020.
Carbonyl sulfide (COS) is the most abundant sulfur-containing trace gas in the atmosphere, with an average mixing ratio of 500 parts per trillion (ppt). It has a relatively long lifetime of about 2 years, which permits it to travel into the stratosphere. There, it likely plays an important role in the formation of stratospheric sulfur aerosols (SSA), which have a cooling effect on the Earth’s climate. Furthermore, during photosynthetic uptake by plants, COS follows essentially the same pathway as CO2, and therefore COS could be used to estimate gross primary production (GPP). Unfortunately, significant uncertainties still exist in the sources, sinks and global cycling of COS, which need to be overcome. Isotopic measurements of COS could be a promising tool for constraining the COS budget, as well as for investigating its role in the formation of stratospheric sulfur aerosols.
Within the framework of the COS-OCS project, we developed a new pre-concentration and measurement system at Utrecht University, that can measure d33S and d34S from COS from 2 to 5 L air samples, with a current precision of about 5‰ and 2‰ for d33S and d34S, respectively. The aim of the project is to perform a global-scale characterization of COS isotopes by measuring seasonal, latitudinal and altitudinal variations in the troposphere and stratosphere. Here, I will present the details of the new measurement system and results from various atmospheric samples.
How to cite: Baartman, S., Popa, E., Krol, M., and Röckmann, T.: Isotopic Measurements: A New Tool for Studying Global Carbonyl Sulfide, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3528, https://doi.org/10.5194/egusphere-egu2020-3528, 2020.
EGU2020-18822 | Displays | BG2.1
Measuring oxygen fluxes in a European beech forest - results from the OXYFLUX projectAlexander Knohl, Jan Muhr, M. Julian Deventer, Emanuel Blei, Jelka Braden-Behrens, Edgar Tunsch, Mattia Bonazza, Penelope A. Pickers, David Nelson, Mark Zahniser, and Andrew C. Manning
Ecosystem assimilation and respiration result in anti-correlated fluxes of oxygen (O2) and carbon dioxide (CO2). While the ecosystem O2:CO2 molar exchange ratio is usually assumed constant at ≈1.1 on longer timescales, variations for individual ecosystem compartments or shorter timescales have been reported in the past. We hypothesize that these exchange ratio variations can reveal information about underlying biotic and abiotic processes in plants or soil that cannot be inferred from traditional net ecosystem exchange measurements. To date, oxygen measurements have not been widely implemented in ecosystem research due to the technical challenge of detecting very small variations (ppm-level) against an atmospheric background of ≈21% (≈210,000 ppm).
We evaluate the performance and applicability of two commercial oxygen analyzers Integrated into custom-built gas handling and calibration systems, and report first results from measurements of O2:CO2 exchange ratios in a managed European beech forest in central Germany.
System 1, consisting of a relatively slow response differential fuel cell O2 analyzer (Oxzilla FC-2, Sable Systems Inc., USA) together with a non-dispersive infrared CO2 analyzer (LI-840, LI-COR Biosciences, USA), was used to simultaneously measure O2 and CO2 mole fractions in air sampled from soil, stem, and branch chambers. Chambers were operated in an open flow-through steady-state design aimed at equilibrium mole fractions within a few hundred ppm of atmospheric background. Using a multiplexer valve design, we measured chambers sequentially by directing chamber air at a controlled flow rate to the gas analyzing system.
Preliminary analysis of August to December 2018 data show that chamber-based flux estimates for O2 and CO2 were anti-correlated at all times, and that the O2:CO2 molar exchange ratios (defined as ‑Δ[O2]/Δ[CO2]) varied considerably over time and between the different ecosystem compartments (soil, stems, and branches) with a median (interquartile range) of 0.94 (0.75 to 1.09).
In system 2, CO2, O2 and water vapor (H2O) measurements were performed with a fast response (5 Hz) gas analyzer using tunable infrared laser direct absorption spectroscopy (TILDAS, Aerodyne Research Inc., USA). We measured fluctuations in O2:CO2 exchange ratios in air sampled at 1.5 times the canopy height, i.e. a typical eddy covariance set-up.
Analysis of the high-frequency data revealed instrumental noise levels of ≈±12 ppm O2. Fourier transformation of high-frequency data obtained during well-mixed boundary layer conditions indicate that turbulent fluctuations of the O2 signal were insufficiently resolved when compared to the CO2 power spectra. When averaging high-frequency data to 2-min aggregates, instrumental noise was reduced to ≈±1 ppm, similar to the precision of system 1. At this timescale, contemporaneous measurements of above-canopy air revealed agreement between the fuel cell and the laser systems, both in O2 mole fraction (R2 = 0.6 slope = 0.7, MAE = 1.6 ppm) and in estimated O2:CO2 exchange ratios of 1.01 and 0.97 for system 1 and 2, respectively.
Our presentation will expand on the applicability of both O2 and CO2 measurement systems with regard to micrometeorological flux techniques. Specifically, we elucidate on the potential of using O2 flux measurements as a constraint for estimating ecosystem-scale gross primary production.
How to cite: Knohl, A., Muhr, J., Deventer, M. J., Blei, E., Braden-Behrens, J., Tunsch, E., Bonazza, M., Pickers, P. A., Nelson, D., Zahniser, M., and Manning, A. C.: Measuring oxygen fluxes in a European beech forest - results from the OXYFLUX project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18822, https://doi.org/10.5194/egusphere-egu2020-18822, 2020.
Ecosystem assimilation and respiration result in anti-correlated fluxes of oxygen (O2) and carbon dioxide (CO2). While the ecosystem O2:CO2 molar exchange ratio is usually assumed constant at ≈1.1 on longer timescales, variations for individual ecosystem compartments or shorter timescales have been reported in the past. We hypothesize that these exchange ratio variations can reveal information about underlying biotic and abiotic processes in plants or soil that cannot be inferred from traditional net ecosystem exchange measurements. To date, oxygen measurements have not been widely implemented in ecosystem research due to the technical challenge of detecting very small variations (ppm-level) against an atmospheric background of ≈21% (≈210,000 ppm).
We evaluate the performance and applicability of two commercial oxygen analyzers Integrated into custom-built gas handling and calibration systems, and report first results from measurements of O2:CO2 exchange ratios in a managed European beech forest in central Germany.
System 1, consisting of a relatively slow response differential fuel cell O2 analyzer (Oxzilla FC-2, Sable Systems Inc., USA) together with a non-dispersive infrared CO2 analyzer (LI-840, LI-COR Biosciences, USA), was used to simultaneously measure O2 and CO2 mole fractions in air sampled from soil, stem, and branch chambers. Chambers were operated in an open flow-through steady-state design aimed at equilibrium mole fractions within a few hundred ppm of atmospheric background. Using a multiplexer valve design, we measured chambers sequentially by directing chamber air at a controlled flow rate to the gas analyzing system.
Preliminary analysis of August to December 2018 data show that chamber-based flux estimates for O2 and CO2 were anti-correlated at all times, and that the O2:CO2 molar exchange ratios (defined as ‑Δ[O2]/Δ[CO2]) varied considerably over time and between the different ecosystem compartments (soil, stems, and branches) with a median (interquartile range) of 0.94 (0.75 to 1.09).
In system 2, CO2, O2 and water vapor (H2O) measurements were performed with a fast response (5 Hz) gas analyzer using tunable infrared laser direct absorption spectroscopy (TILDAS, Aerodyne Research Inc., USA). We measured fluctuations in O2:CO2 exchange ratios in air sampled at 1.5 times the canopy height, i.e. a typical eddy covariance set-up.
Analysis of the high-frequency data revealed instrumental noise levels of ≈±12 ppm O2. Fourier transformation of high-frequency data obtained during well-mixed boundary layer conditions indicate that turbulent fluctuations of the O2 signal were insufficiently resolved when compared to the CO2 power spectra. When averaging high-frequency data to 2-min aggregates, instrumental noise was reduced to ≈±1 ppm, similar to the precision of system 1. At this timescale, contemporaneous measurements of above-canopy air revealed agreement between the fuel cell and the laser systems, both in O2 mole fraction (R2 = 0.6 slope = 0.7, MAE = 1.6 ppm) and in estimated O2:CO2 exchange ratios of 1.01 and 0.97 for system 1 and 2, respectively.
Our presentation will expand on the applicability of both O2 and CO2 measurement systems with regard to micrometeorological flux techniques. Specifically, we elucidate on the potential of using O2 flux measurements as a constraint for estimating ecosystem-scale gross primary production.
How to cite: Knohl, A., Muhr, J., Deventer, M. J., Blei, E., Braden-Behrens, J., Tunsch, E., Bonazza, M., Pickers, P. A., Nelson, D., Zahniser, M., and Manning, A. C.: Measuring oxygen fluxes in a European beech forest - results from the OXYFLUX project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18822, https://doi.org/10.5194/egusphere-egu2020-18822, 2020.
EGU2020-20741 | Displays | BG2.1
17O18O and 18O18O in ice core O2 from Greenland: implications to reconstruct past atmospheric photochemistryAmzad Laskar, Rahul Peethambaran, Sergey Gromov, Thomas Blunier, and Thomas Roeckmann
Abundances of 17O18O and 18O18O (also called clumped isotopes and denoted by Δ35 and Δ36) of O2 in firn and ice core air are novel tracers that can be useful to study past changes in atmospheric photochemistry and temperature. We present Δ35 and Δ36 values measured in firn and ice core air O2 from North Greenland (NEEM; 77.45°N 51.06°W). The aim is to reconstruct the preindustrial-industrial, Holocene and glacial-interglacial variation in the tropospheric ozone photochemistry and temperature. Measurements of Δ35 and Δ36 are carried out using a high-resolution stable isotope ratio mass spectrometer Thermo Fisher 253 ULTRA[1]. Our measurements of Δ35 and Δ36 across past air, from archive samples, to the modern-day show significant changes in the atmospheric photochemistry via ozone burdening and stratospheric- tropospheric transport processes. We will present the measurement results along with a detailed discussion on the dominant process using explicit dynamic simulations of ∆36 in the AC-GCM EMAC model [2,3,4].
How to cite: Laskar, A., Peethambaran, R., Gromov, S., Blunier, T., and Roeckmann, T.: 17O18O and 18O18O in ice core O2 from Greenland: implications to reconstruct past atmospheric photochemistry , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20741, https://doi.org/10.5194/egusphere-egu2020-20741, 2020.
Abundances of 17O18O and 18O18O (also called clumped isotopes and denoted by Δ35 and Δ36) of O2 in firn and ice core air are novel tracers that can be useful to study past changes in atmospheric photochemistry and temperature. We present Δ35 and Δ36 values measured in firn and ice core air O2 from North Greenland (NEEM; 77.45°N 51.06°W). The aim is to reconstruct the preindustrial-industrial, Holocene and glacial-interglacial variation in the tropospheric ozone photochemistry and temperature. Measurements of Δ35 and Δ36 are carried out using a high-resolution stable isotope ratio mass spectrometer Thermo Fisher 253 ULTRA[1]. Our measurements of Δ35 and Δ36 across past air, from archive samples, to the modern-day show significant changes in the atmospheric photochemistry via ozone burdening and stratospheric- tropospheric transport processes. We will present the measurement results along with a detailed discussion on the dominant process using explicit dynamic simulations of ∆36 in the AC-GCM EMAC model [2,3,4].
How to cite: Laskar, A., Peethambaran, R., Gromov, S., Blunier, T., and Roeckmann, T.: 17O18O and 18O18O in ice core O2 from Greenland: implications to reconstruct past atmospheric photochemistry , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20741, https://doi.org/10.5194/egusphere-egu2020-20741, 2020.
EGU2020-6708 | Displays | BG2.1
Triple isotope effects accompanying evaporation of water: new insights from laboratory experimentsAnna Pierchala, Kazimierz Rozanski, Marek Dulinski, Zbigniew Gorczyca, and Robert Czub
Stable isotopes of hydrogen and oxygen (2H and 18O) are often used for quantification of water budgets of lakes and other surface water bodies, in particular for the assessment of underground components of those budgets [1]. Recent advances in laser spectroscopy enabled simultaneous analyses of 2H, 18O and 17O content in water, with measurement uncertainties comparable (δ18O) or surpassing (δ2H) those routinely achieved by off-line sample preparation methods combined with conventional IRMS technique [2]. This open up the doors for improving reliability of isotope-aided budgets of surface water bodies by adding third isotope tracer (17O). This, however, requires adequate information on triple isotope effects accompanying evaporation of water, in particular the kinetic isotope effect related to evaporation of 1H217O isotopologue.
Here we present the results of dedicated laboratory experiments aimed at quantification of triple isotope effects accompanying evaporation of water under fully developed diffusive sublayer [3]. Identical containers with predefined mass of water of known isotopic composition were placed in an isolated chamber with controlled atmosphere during the experiment (temperature, relative humidity). The chamber was flushed with synthetic air. At regular time intervals (approximately one week) containers were removed one by one from the chamber, the remaining mass of water in the removed container was determined gravimetrically, and stored for subsequent isotope analyses. The flow rate was adjusted at each step of the process to keep humidity inside the chamber constant. Evaporation continued until approximately half of the initial mass of water was removed from the containers. The experiment was repeated under diiferent conditions inside the chamber (two different temperatures and three different values of relative humidty).
The results of the experiments were interpreted in the framework of Craig-Gordon model of evaporation [3]. It turned out that the assumption often used in the description of isotopic effects accompanying evaporation that liquid phase is isotopically homogeneous during the process, leads to conflicting results for three isotope systems in use. However, if surface enrichment of the liquid phase, different for each heavy isotopologue (1H2H16O, 1H218O, 1H217O) is included in the model, consistent results for all three isotopes can be achieved, with calculated kinetic fractionation factor for 1H217O isotopologue equal 14.76 ± 0.48 ‰,. This value agrees, within the quoted uncertainty, with the value of 14.60 ± 0.30 ‰ obtained by Barkan and Luz [4].
Acknowledgements: The presented work was supported by National Science Centre (research grant No. 2016/23/B/ST10/00909) and by the Ministry of Science and Higher Education (project no. 16.16.220.842 B02)
References:
[1] Rozanski K. Froehlich K. Mook WG. Technical Documents in Hydrology, No. 39, Vol. III, UNESCO, Paris, 2001 117 pp.
[2] Pierchala A, Rozanski K, Dulinski M, Gorczyca Z, Marzec M, Czub R, Isotopes in Environmental and Health Studies, 2019 (55) 290-307.
[3] Horita, J. Rozanski K. Cohen S. 2007. Isotopes in Environmental and Health Studies, 2007 (44) 23-49.
[4] Barkan E. Luz B. Rapid Commun. Mass Spectrom., 2007(21) 2999-3005.
How to cite: Pierchala, A., Rozanski, K., Dulinski, M., Gorczyca, Z., and Czub, R.: Triple isotope effects accompanying evaporation of water: new insights from laboratory experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6708, https://doi.org/10.5194/egusphere-egu2020-6708, 2020.
Stable isotopes of hydrogen and oxygen (2H and 18O) are often used for quantification of water budgets of lakes and other surface water bodies, in particular for the assessment of underground components of those budgets [1]. Recent advances in laser spectroscopy enabled simultaneous analyses of 2H, 18O and 17O content in water, with measurement uncertainties comparable (δ18O) or surpassing (δ2H) those routinely achieved by off-line sample preparation methods combined with conventional IRMS technique [2]. This open up the doors for improving reliability of isotope-aided budgets of surface water bodies by adding third isotope tracer (17O). This, however, requires adequate information on triple isotope effects accompanying evaporation of water, in particular the kinetic isotope effect related to evaporation of 1H217O isotopologue.
Here we present the results of dedicated laboratory experiments aimed at quantification of triple isotope effects accompanying evaporation of water under fully developed diffusive sublayer [3]. Identical containers with predefined mass of water of known isotopic composition were placed in an isolated chamber with controlled atmosphere during the experiment (temperature, relative humidity). The chamber was flushed with synthetic air. At regular time intervals (approximately one week) containers were removed one by one from the chamber, the remaining mass of water in the removed container was determined gravimetrically, and stored for subsequent isotope analyses. The flow rate was adjusted at each step of the process to keep humidity inside the chamber constant. Evaporation continued until approximately half of the initial mass of water was removed from the containers. The experiment was repeated under diiferent conditions inside the chamber (two different temperatures and three different values of relative humidty).
The results of the experiments were interpreted in the framework of Craig-Gordon model of evaporation [3]. It turned out that the assumption often used in the description of isotopic effects accompanying evaporation that liquid phase is isotopically homogeneous during the process, leads to conflicting results for three isotope systems in use. However, if surface enrichment of the liquid phase, different for each heavy isotopologue (1H2H16O, 1H218O, 1H217O) is included in the model, consistent results for all three isotopes can be achieved, with calculated kinetic fractionation factor for 1H217O isotopologue equal 14.76 ± 0.48 ‰,. This value agrees, within the quoted uncertainty, with the value of 14.60 ± 0.30 ‰ obtained by Barkan and Luz [4].
Acknowledgements: The presented work was supported by National Science Centre (research grant No. 2016/23/B/ST10/00909) and by the Ministry of Science and Higher Education (project no. 16.16.220.842 B02)
References:
[1] Rozanski K. Froehlich K. Mook WG. Technical Documents in Hydrology, No. 39, Vol. III, UNESCO, Paris, 2001 117 pp.
[2] Pierchala A, Rozanski K, Dulinski M, Gorczyca Z, Marzec M, Czub R, Isotopes in Environmental and Health Studies, 2019 (55) 290-307.
[3] Horita, J. Rozanski K. Cohen S. 2007. Isotopes in Environmental and Health Studies, 2007 (44) 23-49.
[4] Barkan E. Luz B. Rapid Commun. Mass Spectrom., 2007(21) 2999-3005.
How to cite: Pierchala, A., Rozanski, K., Dulinski, M., Gorczyca, Z., and Czub, R.: Triple isotope effects accompanying evaporation of water: new insights from laboratory experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6708, https://doi.org/10.5194/egusphere-egu2020-6708, 2020.
EGU2020-8881 | Displays | BG2.1
Interannual analysis of high spatially-resolved δ18O and δ2H data in precipitation across North-East ItalyMauro Masiol, Daniele Zannoni, Barbara Stenni, Giuliano Dreossi, Luca Zini, Chiara Calligaris, Daniele Karlicek, Marzia Michelini, Onelio Flora, Franco Cucchi, and Francesco Treu
Stable water isotopes are widely-used tracers to investigate hydrological processes occurring in the atmosphere and to determine the geospatial origin of water, i.e. to acquire useful information about the hydrological cycles over catchment basins and to find the origin of water recharging rivers, aquifers, and springs. Mapping the isotopic composition of precipitation provides hydrological and climate information at regional and global scales. However, the isotopic composition of precipitation is usually analyzed at large scales with a limited spatial resolution. In Italy, a few studies mapped the oxygen stable isotopes using annually-averaged data, not accounting for the strong seasonality of the isotopic composition linked to climatic and weather factors. To partially fill this gap, the present study proposes a detailed analysis of more than 2250 isotope data (δ18O, δ2H, and deuterium excess) related to precipitations collected in the Friuli Venezia Giulia (FVG) region (Italy) with monthly or seasonal frequency in 36 sites between 1984 and 2015.
The FVG region lies at the north-eastern end of Italy, bordering Austria in the North and Slovenia in the East, and extends over ~7.9·103 km2. From a hydrogeological point of view, FVG is an interesting case study. Large highly-permeable carbonate aquifers are present in the Alps and Prealps, while the southern part of the region is characterized by an alluvial plain, split by the spring belt into two sectors: the High Plain in the North, characterized by an highly-permeable unconfined aquifer, and the Low Plain in the South, characterized by a system of confined and artesian aquifers. All the aquifers are recharged by the effective precipitations which in the FVG exhibits among the highest annual precipitation rates in Italy (with peaks >3000 mm/year).
For the present research, the isotopic data were used: (i) to analyze the spatial and seasonal variability of isotopic composition; (ii) to relate water isotopes with orography and weather parameters collected from meteorological stations as well as using ECMWF ERA5 reanalysis; (iii) to reconstruct the local meteoric water lines across the FVG at annual and seasonal bases; (iv) to quantify interannual trends and analyze their spatial distribution; and (iv) to model the spatial distribution of isotope content in precipitation and create annual and seasonal maps.
How to cite: Masiol, M., Zannoni, D., Stenni, B., Dreossi, G., Zini, L., Calligaris, C., Karlicek, D., Michelini, M., Flora, O., Cucchi, F., and Treu, F.: Interannual analysis of high spatially-resolved δ18O and δ2H data in precipitation across North-East Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8881, https://doi.org/10.5194/egusphere-egu2020-8881, 2020.
Stable water isotopes are widely-used tracers to investigate hydrological processes occurring in the atmosphere and to determine the geospatial origin of water, i.e. to acquire useful information about the hydrological cycles over catchment basins and to find the origin of water recharging rivers, aquifers, and springs. Mapping the isotopic composition of precipitation provides hydrological and climate information at regional and global scales. However, the isotopic composition of precipitation is usually analyzed at large scales with a limited spatial resolution. In Italy, a few studies mapped the oxygen stable isotopes using annually-averaged data, not accounting for the strong seasonality of the isotopic composition linked to climatic and weather factors. To partially fill this gap, the present study proposes a detailed analysis of more than 2250 isotope data (δ18O, δ2H, and deuterium excess) related to precipitations collected in the Friuli Venezia Giulia (FVG) region (Italy) with monthly or seasonal frequency in 36 sites between 1984 and 2015.
The FVG region lies at the north-eastern end of Italy, bordering Austria in the North and Slovenia in the East, and extends over ~7.9·103 km2. From a hydrogeological point of view, FVG is an interesting case study. Large highly-permeable carbonate aquifers are present in the Alps and Prealps, while the southern part of the region is characterized by an alluvial plain, split by the spring belt into two sectors: the High Plain in the North, characterized by an highly-permeable unconfined aquifer, and the Low Plain in the South, characterized by a system of confined and artesian aquifers. All the aquifers are recharged by the effective precipitations which in the FVG exhibits among the highest annual precipitation rates in Italy (with peaks >3000 mm/year).
For the present research, the isotopic data were used: (i) to analyze the spatial and seasonal variability of isotopic composition; (ii) to relate water isotopes with orography and weather parameters collected from meteorological stations as well as using ECMWF ERA5 reanalysis; (iii) to reconstruct the local meteoric water lines across the FVG at annual and seasonal bases; (iv) to quantify interannual trends and analyze their spatial distribution; and (iv) to model the spatial distribution of isotope content in precipitation and create annual and seasonal maps.
How to cite: Masiol, M., Zannoni, D., Stenni, B., Dreossi, G., Zini, L., Calligaris, C., Karlicek, D., Michelini, M., Flora, O., Cucchi, F., and Treu, F.: Interannual analysis of high spatially-resolved δ18O and δ2H data in precipitation across North-East Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8881, https://doi.org/10.5194/egusphere-egu2020-8881, 2020.
BG2.2 – The ancient DNA revolution: sedaDNA from Pleistocene-Holocene lacustrine and marine sediments
EGU2020-9605 | Displays | BG2.2
Ancient sedimentary DNA reveals long-term impact of climate change on northern floraInger Alsos and the ECOGEN and IceAGenT teams
Arctic and alpine species are disproportionally affected by climate change, and knowledge about their ability to survive or disperse is essential for their long-term conservation. Ancient sedimentary DNA (sedaDNA) has improved as a proxy for reconstructing past floras, and may now be applied in high throughput analyses. Our lab has analysed, or is in the process of analysing, sedaDNA from ~40 long (up to 26 000 years old) and 11 short (0-1000 years old) lake sediment cores from the Europe (Alps, Norway, Svalbard, Iceland, Polar Urals). Both general and site-specific patterns have emerged from these data. For example, the taxa recorded in sedaDNA often indicate a warmer climate than that which has been inferred based on pollen records; this is in concordance with macrofossil evidence. Also, the limits of past northern tree lines may have been underestimated based on pollen studies. Some heathland species, such as Vaccinium spp. and Empetrum, often show a time lag in arrival compared with other species with similar climatic requirements. Thus, despite the fact that they have berries and therefore are well adapted to long-distance dispersal by birds, our data show they are constrained from rapid responses to climate changes. Other patterns are site-specific. For example, we see a stepwise doubling of floristic richness from the Last Glacial Maximum to the Holocene in the Polar Urals, which is barely detectable in the pollen analyses. Further, the majority of taxa with a mainly arctic-alpine distributions survived the early-Holocene climate warming, when shrub and trees entered the region, probably due to a very heterogeneous landscape that allows co-existence of species with different requirements. In contrast, arctic-alpine taxa disappear from the catchment a subset of the lakes studied in North Norway after shrub and forest expansion. Linking this type of information to characteristics of these biogeographic regions may provide useful when planning for future nature reserves. In the near future, the combination of many sites, complete DNA reference libraries, and emerging molecular methods will allow for the tracking of individual species through time and space.
How to cite: Alsos, I. and the ECOGEN and IceAGenT teams: Ancient sedimentary DNA reveals long-term impact of climate change on northern flora, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9605, https://doi.org/10.5194/egusphere-egu2020-9605, 2020.
Arctic and alpine species are disproportionally affected by climate change, and knowledge about their ability to survive or disperse is essential for their long-term conservation. Ancient sedimentary DNA (sedaDNA) has improved as a proxy for reconstructing past floras, and may now be applied in high throughput analyses. Our lab has analysed, or is in the process of analysing, sedaDNA from ~40 long (up to 26 000 years old) and 11 short (0-1000 years old) lake sediment cores from the Europe (Alps, Norway, Svalbard, Iceland, Polar Urals). Both general and site-specific patterns have emerged from these data. For example, the taxa recorded in sedaDNA often indicate a warmer climate than that which has been inferred based on pollen records; this is in concordance with macrofossil evidence. Also, the limits of past northern tree lines may have been underestimated based on pollen studies. Some heathland species, such as Vaccinium spp. and Empetrum, often show a time lag in arrival compared with other species with similar climatic requirements. Thus, despite the fact that they have berries and therefore are well adapted to long-distance dispersal by birds, our data show they are constrained from rapid responses to climate changes. Other patterns are site-specific. For example, we see a stepwise doubling of floristic richness from the Last Glacial Maximum to the Holocene in the Polar Urals, which is barely detectable in the pollen analyses. Further, the majority of taxa with a mainly arctic-alpine distributions survived the early-Holocene climate warming, when shrub and trees entered the region, probably due to a very heterogeneous landscape that allows co-existence of species with different requirements. In contrast, arctic-alpine taxa disappear from the catchment a subset of the lakes studied in North Norway after shrub and forest expansion. Linking this type of information to characteristics of these biogeographic regions may provide useful when planning for future nature reserves. In the near future, the combination of many sites, complete DNA reference libraries, and emerging molecular methods will allow for the tracking of individual species through time and space.
How to cite: Alsos, I. and the ECOGEN and IceAGenT teams: Ancient sedimentary DNA reveals long-term impact of climate change on northern flora, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9605, https://doi.org/10.5194/egusphere-egu2020-9605, 2020.
EGU2020-19272 | Displays | BG2.2
Shotgun DNA, pollen and biological multi-proxy analysis of Lateglacial lake sediments from Monticchio, ItalyLaura Parducci, Kevin Nota, Willy Tinner, Jacqueline van Leeuwen, Pim van der Knaap, Dirk Sachse, Zuobing Liang, Achim Brauer, Markus J. Schwab, Xuery Zhao, Aldo Marchetto, Andrea Lami, and Sabine Wulf
We used shotgun DNA sequencing of the full metagenome preserved in varved lake sediments from southern Italy (Lago Grande di Monticchio) to investigate the whole diversity of taxonomic groups present. We combine sedimentary aDNA and pollen data as well as other biological multi-proxy data and tested if it was possible to correlate the relative abundances of plants and other biological communities to distinct climatic shifts that occurred between the Late Glacial and Holocene. In addition, we used the metabarcoding technique to compare the two sequencing approaches specifically for plants.
Our studies showed that the inhibition of DNA replication was almost absent in older (full glacial) sediment samples while it increased substantially in more recent samples. DNA provides a strong signal of plant community changes and a large number of new plant taxa were recorded. A comparison between sequencing approaches and proxies highlights differences and similarities and supports earlier findings that plants growing close to or within a lake are often recorded by DNA and that DNA provides important complementary information to that collected from palaeoecological analyses. Nevertheless, increasing DNA reference libraries and enrichment strategies prior to sequencing are necessary to improve the potential and accuracy of plant identification using the metagenomic approach.
How to cite: Parducci, L., Nota, K., Tinner, W., van Leeuwen, J., van der Knaap, P., Sachse, D., Liang, Z., Brauer, A., Schwab, M. J., Zhao, X., Marchetto, A., Lami, A., and Wulf, S.: Shotgun DNA, pollen and biological multi-proxy analysis of Lateglacial lake sediments from Monticchio, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19272, https://doi.org/10.5194/egusphere-egu2020-19272, 2020.
We used shotgun DNA sequencing of the full metagenome preserved in varved lake sediments from southern Italy (Lago Grande di Monticchio) to investigate the whole diversity of taxonomic groups present. We combine sedimentary aDNA and pollen data as well as other biological multi-proxy data and tested if it was possible to correlate the relative abundances of plants and other biological communities to distinct climatic shifts that occurred between the Late Glacial and Holocene. In addition, we used the metabarcoding technique to compare the two sequencing approaches specifically for plants.
Our studies showed that the inhibition of DNA replication was almost absent in older (full glacial) sediment samples while it increased substantially in more recent samples. DNA provides a strong signal of plant community changes and a large number of new plant taxa were recorded. A comparison between sequencing approaches and proxies highlights differences and similarities and supports earlier findings that plants growing close to or within a lake are often recorded by DNA and that DNA provides important complementary information to that collected from palaeoecological analyses. Nevertheless, increasing DNA reference libraries and enrichment strategies prior to sequencing are necessary to improve the potential and accuracy of plant identification using the metagenomic approach.
How to cite: Parducci, L., Nota, K., Tinner, W., van Leeuwen, J., van der Knaap, P., Sachse, D., Liang, Z., Brauer, A., Schwab, M. J., Zhao, X., Marchetto, A., Lami, A., and Wulf, S.: Shotgun DNA, pollen and biological multi-proxy analysis of Lateglacial lake sediments from Monticchio, Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19272, https://doi.org/10.5194/egusphere-egu2020-19272, 2020.
EGU2020-19733 | Displays | BG2.2
Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forestLuise Schulte, Nadine Bernhardt, Kathleen Stoof-Leichsenring, Heike Zimmermann, Luidmila Pestryakova, Laura Epp, and Ulrike Herzschuh
Siberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the earth. To be able to predict future responses of these forests to a changing climate, it is important to understand also past dynamics of larch populations. One well-preserved archive to study vegetation changes of the past is sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores. We studied a lake sediment core covering 6700 calibrated years BP, from the Taymyr region in northern Siberia. To enrich the sedaDNA for DNA of our focal species Larix, we combine shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome. In comparison to shotgun sequencing, hybridization capture results in an increase of taxonomically classified reads by several orders of magnitude and the recovery of near-complete chloroplast genomes of Larix. Variation in the chloroplast reads confirm an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. In this time span, both species can be detected at the site, although larch populations have decreased from a forested area to a single-tree tundra at present. This study demonstrates for the first time that hybridization capture applied to ancient DNA from lake sediments can provide genome-scale information and is a viable tool for studying past changes of a specific taxon.
How to cite: Schulte, L., Bernhardt, N., Stoof-Leichsenring, K., Zimmermann, H., Pestryakova, L., Epp, L., and Herzschuh, U.: Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19733, https://doi.org/10.5194/egusphere-egu2020-19733, 2020.
Siberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the earth. To be able to predict future responses of these forests to a changing climate, it is important to understand also past dynamics of larch populations. One well-preserved archive to study vegetation changes of the past is sedimentary ancient DNA (sedaDNA) extracted from lake sediment cores. We studied a lake sediment core covering 6700 calibrated years BP, from the Taymyr region in northern Siberia. To enrich the sedaDNA for DNA of our focal species Larix, we combine shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome. In comparison to shotgun sequencing, hybridization capture results in an increase of taxonomically classified reads by several orders of magnitude and the recovery of near-complete chloroplast genomes of Larix. Variation in the chloroplast reads confirm an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. In this time span, both species can be detected at the site, although larch populations have decreased from a forested area to a single-tree tundra at present. This study demonstrates for the first time that hybridization capture applied to ancient DNA from lake sediments can provide genome-scale information and is a viable tool for studying past changes of a specific taxon.
How to cite: Schulte, L., Bernhardt, N., Stoof-Leichsenring, K., Zimmermann, H., Pestryakova, L., Epp, L., and Herzschuh, U.: Hybridization capture of larch (Larix Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19733, https://doi.org/10.5194/egusphere-egu2020-19733, 2020.
EGU2020-10928 | Displays | BG2.2
A sedimentary ancient DNA approach to elucidate the Labrador Sea paleoceanography over the last ~130,000 yearsStijn De Schepper, Jessica Louise Ray, Lisa Griem, Nicolas Van Nieuwenhove, Danielle Magann Grant, Kristine Steinsland, Katrine Sandnes Skaar, and Umer Zeeshan Ijaz
Long sedimentary ancient DNA (sedaDNA) records from the marine environment are at present a curiosity and their utility in paleoceanographic research is not yet fully explored. Nevertheless, a few studies indicate that this ecogenetic repository represents an untapped source of new information with which paleoclimatic and paleoceanographic variability can be more deeply explored. We have generated a sedaDNA record from a 19.6 m-long sediment core in the Labrador Sea (Eirik Drift, south of Greenland). The record extends from the early Holocene to Marine Isotope Stage 5 (ca. 130,000 years ago), and we characterized several important climatic transitions in this time interval using stable isotope stratigraphy, ice-rafted detritus counts, and dinoflagellate cyst census counts. The primary goal of this investigation was to query the sedaDNA record for a biological indication of the last and penultimate deglaciation, as well as Heinrich events identified between 65,000 and 25,000 years ago. Our metabarcoding strategy targeted a broad diversity of eukaryotic organisms through amplification of the V7 hypervariable region of the small subunit ribosomal RNA (SSU rRNA) gene. The preliminary sedaDNA results indicate that eukaryote ancient DNA is present in all samples investigated, including those dating back to Marine Isotope Stage 5. Furthermore, we identified abundance shifts in Protaspidae (cercozoa), diatoms, dinoflagellates, and marine stramenopiles (amongst others) that may be linked to changes in paleoceanography during the last two deglaciations as well as Heinrich events (HE3, HE4).
How to cite: De Schepper, S., Ray, J. L., Griem, L., Van Nieuwenhove, N., Grant, D. M., Steinsland, K., Sandnes Skaar, K., and Ijaz, U. Z.: A sedimentary ancient DNA approach to elucidate the Labrador Sea paleoceanography over the last ~130,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10928, https://doi.org/10.5194/egusphere-egu2020-10928, 2020.
Long sedimentary ancient DNA (sedaDNA) records from the marine environment are at present a curiosity and their utility in paleoceanographic research is not yet fully explored. Nevertheless, a few studies indicate that this ecogenetic repository represents an untapped source of new information with which paleoclimatic and paleoceanographic variability can be more deeply explored. We have generated a sedaDNA record from a 19.6 m-long sediment core in the Labrador Sea (Eirik Drift, south of Greenland). The record extends from the early Holocene to Marine Isotope Stage 5 (ca. 130,000 years ago), and we characterized several important climatic transitions in this time interval using stable isotope stratigraphy, ice-rafted detritus counts, and dinoflagellate cyst census counts. The primary goal of this investigation was to query the sedaDNA record for a biological indication of the last and penultimate deglaciation, as well as Heinrich events identified between 65,000 and 25,000 years ago. Our metabarcoding strategy targeted a broad diversity of eukaryotic organisms through amplification of the V7 hypervariable region of the small subunit ribosomal RNA (SSU rRNA) gene. The preliminary sedaDNA results indicate that eukaryote ancient DNA is present in all samples investigated, including those dating back to Marine Isotope Stage 5. Furthermore, we identified abundance shifts in Protaspidae (cercozoa), diatoms, dinoflagellates, and marine stramenopiles (amongst others) that may be linked to changes in paleoceanography during the last two deglaciations as well as Heinrich events (HE3, HE4).
How to cite: De Schepper, S., Ray, J. L., Griem, L., Van Nieuwenhove, N., Grant, D. M., Steinsland, K., Sandnes Skaar, K., and Ijaz, U. Z.: A sedimentary ancient DNA approach to elucidate the Labrador Sea paleoceanography over the last ~130,000 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10928, https://doi.org/10.5194/egusphere-egu2020-10928, 2020.
EGU2020-17545 | Displays | BG2.2
Exploring diversity of marine eukaryotes across 385 ka old gravity core using sedaDNAInes Barrenechea Angeles, Luc Beaufort, Daniel Ariztegui, and Jan Pawlowski
In the last ten years, sedimentary ancient DNA (sedaDNA) becomes a new proxy for paleoceanographic analyses that provide information about large range of non-fossilized taxa. Usually, the sediment samples destinated for sedaDNA study are immediately frozen after collection or stored in special buffer to preserve the DNA. However, there are many cores that have been collected long time before the advent of paleogenomics and that are commonly refrigerated and stored at 4°C. Here, we test whether such cores can be used as a source of ancient DNA, by analysing the sedaDNA samples from 36 meters long marine gravity core that was stored during 14 years at 4 °C. The core MD05-2920 was retrieved during the MD148/PECTEN – Images XII cruise, in Bismarck Sea, off New Papua Guinea, and records the past 385 ka. We analysed samples from 20 layers spanning the interval from 1.6 ka to 384 ka, where isotopic measures of ∂18O showed significant paleoceanographic changes. We started by analysing a universal eukaryotic marker, the V9 (170 bp) region of the 18S rRNA. However, the obtained datasets were dominated by sequences belonging to species of fungi and amoebae that probably originated from post-collection storage. More data were obtained by using markers specific to selected marine taxa, such as foraminifera, radiolaria, and diatoms. The analysis of these data show clearly that the DNA is preserved in marine sediment down to 385 ka old layers. Our study also shows a possibility to exploit the sedaDNA from refrigerated material stored in cores repositories.
How to cite: Barrenechea Angeles, I., Beaufort, L., Ariztegui, D., and Pawlowski, J.: Exploring diversity of marine eukaryotes across 385 ka old gravity core using sedaDNA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17545, https://doi.org/10.5194/egusphere-egu2020-17545, 2020.
In the last ten years, sedimentary ancient DNA (sedaDNA) becomes a new proxy for paleoceanographic analyses that provide information about large range of non-fossilized taxa. Usually, the sediment samples destinated for sedaDNA study are immediately frozen after collection or stored in special buffer to preserve the DNA. However, there are many cores that have been collected long time before the advent of paleogenomics and that are commonly refrigerated and stored at 4°C. Here, we test whether such cores can be used as a source of ancient DNA, by analysing the sedaDNA samples from 36 meters long marine gravity core that was stored during 14 years at 4 °C. The core MD05-2920 was retrieved during the MD148/PECTEN – Images XII cruise, in Bismarck Sea, off New Papua Guinea, and records the past 385 ka. We analysed samples from 20 layers spanning the interval from 1.6 ka to 384 ka, where isotopic measures of ∂18O showed significant paleoceanographic changes. We started by analysing a universal eukaryotic marker, the V9 (170 bp) region of the 18S rRNA. However, the obtained datasets were dominated by sequences belonging to species of fungi and amoebae that probably originated from post-collection storage. More data were obtained by using markers specific to selected marine taxa, such as foraminifera, radiolaria, and diatoms. The analysis of these data show clearly that the DNA is preserved in marine sediment down to 385 ka old layers. Our study also shows a possibility to exploit the sedaDNA from refrigerated material stored in cores repositories.
How to cite: Barrenechea Angeles, I., Beaufort, L., Ariztegui, D., and Pawlowski, J.: Exploring diversity of marine eukaryotes across 385 ka old gravity core using sedaDNA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17545, https://doi.org/10.5194/egusphere-egu2020-17545, 2020.
EGU2020-21944 | Displays | BG2.2 | Highlight
The use of sedimentary ancient DNA from lakes in tracing human-environment interactions in the Western AlpsKatharina Dulias, Juliette Knockaert, Charline Giguet-Covex, and Kevin Walsh
Archaeologists working in high altitude-zones in the Alps where faunal remains were absent have until relatively recently, been reliant on palynology in order to infer the probable presence of pastured animals. The development of sedimentary ancient DNA (sedaDNA) analysis has changed this. We are now able, if taphonomic conditions permit, to identify the presence and absence of specific domesticated animals as well as changes in vegetation communities that were a consequence of pastoral activity. Over the past decade, lake sediment DNA has been used by an increasing number of studies to trace past agricultural activities, human presence and landscape changes.
More recently, lake sedaDNA sequencing has proven applicable to investigate the relative impact of human activities, such as transhumance pastoralism, on the vegetation in the catchment of lakes in the Western French Alps and the domestic species used at different time periods. Thus, providing a new outlook on the anthropogenic effect on alpine landscapes.
Our use of sedaDNA is one element in a project designed to elucidate the evolution of transhumance in the Western Alps. While the sequential isotope analyses from domesticated herbivore teeth facilitate our comprehension of seasonal pastoral mobility, the sedaDNA complements this work via its potential for inferring which pastures were frequented and the effect of livestock presence on these environments. This combined approach can demonstrate not only the existence of pastoral practises in the region, but also reconstruct the movement patterns as well as the direct impact of transhumance pastoralism in the Western Alps in a wide chronological and spatial frame.
With the application of advanced bioinformatic techniques, we combine previous data on past and present vegetation with our findings. The genetic data was obtained through the established method of metabarcoding, which is a relevant tool for reconstructing palaeoenvironments. Using the same approach with additional quantitative PCR analysis for mammalian sedaDNA offers even more detailed insights into the presence and possible abundance of domestic species in the lake catchment area.
This application can demonstrate the potential of sedaDNA in reconstructing palaeoenvironments and its relevance in conceptualising long-term ecosystem changes relating to human and non-human agencies.
How to cite: Dulias, K., Knockaert, J., Giguet-Covex, C., and Walsh, K.: The use of sedimentary ancient DNA from lakes in tracing human-environment interactions in the Western Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21944, https://doi.org/10.5194/egusphere-egu2020-21944, 2020.
Archaeologists working in high altitude-zones in the Alps where faunal remains were absent have until relatively recently, been reliant on palynology in order to infer the probable presence of pastured animals. The development of sedimentary ancient DNA (sedaDNA) analysis has changed this. We are now able, if taphonomic conditions permit, to identify the presence and absence of specific domesticated animals as well as changes in vegetation communities that were a consequence of pastoral activity. Over the past decade, lake sediment DNA has been used by an increasing number of studies to trace past agricultural activities, human presence and landscape changes.
More recently, lake sedaDNA sequencing has proven applicable to investigate the relative impact of human activities, such as transhumance pastoralism, on the vegetation in the catchment of lakes in the Western French Alps and the domestic species used at different time periods. Thus, providing a new outlook on the anthropogenic effect on alpine landscapes.
Our use of sedaDNA is one element in a project designed to elucidate the evolution of transhumance in the Western Alps. While the sequential isotope analyses from domesticated herbivore teeth facilitate our comprehension of seasonal pastoral mobility, the sedaDNA complements this work via its potential for inferring which pastures were frequented and the effect of livestock presence on these environments. This combined approach can demonstrate not only the existence of pastoral practises in the region, but also reconstruct the movement patterns as well as the direct impact of transhumance pastoralism in the Western Alps in a wide chronological and spatial frame.
With the application of advanced bioinformatic techniques, we combine previous data on past and present vegetation with our findings. The genetic data was obtained through the established method of metabarcoding, which is a relevant tool for reconstructing palaeoenvironments. Using the same approach with additional quantitative PCR analysis for mammalian sedaDNA offers even more detailed insights into the presence and possible abundance of domestic species in the lake catchment area.
This application can demonstrate the potential of sedaDNA in reconstructing palaeoenvironments and its relevance in conceptualising long-term ecosystem changes relating to human and non-human agencies.
How to cite: Dulias, K., Knockaert, J., Giguet-Covex, C., and Walsh, K.: The use of sedimentary ancient DNA from lakes in tracing human-environment interactions in the Western Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21944, https://doi.org/10.5194/egusphere-egu2020-21944, 2020.
EGU2020-3011 | Displays | BG2.2 | Highlight
Recent ecological trajectory of lake Taihu and land-use history reconstructed from lake sediment DNACharline Giguet-Covex, Qi Lin, Ludovic Gielly, Fabien Arnaud, and Ke Zhang
More than 80% of shallow lake ecosystems in the Yangtze floodplain suffer significant disturbances from the 50’s, especially eutrophication. These environmental degradations and subsequent loss of services are related with the important and rapid development of the agriculture, industry, urban areas and the population boom in the region. Lake Taihu is one of the largest lakes of the floodplain and represents an important water resource (for drinking and fishing) for the population of the two big cities on the lake shore. This lake experimented two shifts toward the degradation of the trophic state: one in the 50-60’s and a second in 80’s.
In order to document the causes of these ecological shifts, we applied the DNA metabarcoding approach on lake sediments and focused on plants as proxy of land use. Whereas this proxy has been successfully applied in many lakes over the world, it has never been tested in large shallow lakes and not in China either.
We show important changes in land use in 50’s and 80’s related with agricultural developments (i.e. intensification) and urban expansion, respectively. In fact, in the 50’s crop plants are increasing (rapeseed and/or cabbage, rice and/or wheat, barley and Poaceae) whereas in 80’s, we record the development of several plants associated to gardens (e.g. ornamental species). Moreover, this last period is characterised by the presence of trees mostly cultivated along stream banks to protect dikes against erosion. Between the 80’s and the years 2000, the plant diversity recorded in the sediment strongly increase, which may be due to higher detrital inputs (i.e. more efficient DNA transfer). The timing in land-use changes corresponds to the main shifts in lake trophic state.
How to cite: Giguet-Covex, C., Lin, Q., Gielly, L., Arnaud, F., and Zhang, K.: Recent ecological trajectory of lake Taihu and land-use history reconstructed from lake sediment DNA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3011, https://doi.org/10.5194/egusphere-egu2020-3011, 2020.
More than 80% of shallow lake ecosystems in the Yangtze floodplain suffer significant disturbances from the 50’s, especially eutrophication. These environmental degradations and subsequent loss of services are related with the important and rapid development of the agriculture, industry, urban areas and the population boom in the region. Lake Taihu is one of the largest lakes of the floodplain and represents an important water resource (for drinking and fishing) for the population of the two big cities on the lake shore. This lake experimented two shifts toward the degradation of the trophic state: one in the 50-60’s and a second in 80’s.
In order to document the causes of these ecological shifts, we applied the DNA metabarcoding approach on lake sediments and focused on plants as proxy of land use. Whereas this proxy has been successfully applied in many lakes over the world, it has never been tested in large shallow lakes and not in China either.
We show important changes in land use in 50’s and 80’s related with agricultural developments (i.e. intensification) and urban expansion, respectively. In fact, in the 50’s crop plants are increasing (rapeseed and/or cabbage, rice and/or wheat, barley and Poaceae) whereas in 80’s, we record the development of several plants associated to gardens (e.g. ornamental species). Moreover, this last period is characterised by the presence of trees mostly cultivated along stream banks to protect dikes against erosion. Between the 80’s and the years 2000, the plant diversity recorded in the sediment strongly increase, which may be due to higher detrital inputs (i.e. more efficient DNA transfer). The timing in land-use changes corresponds to the main shifts in lake trophic state.
How to cite: Giguet-Covex, C., Lin, Q., Gielly, L., Arnaud, F., and Zhang, K.: Recent ecological trajectory of lake Taihu and land-use history reconstructed from lake sediment DNA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3011, https://doi.org/10.5194/egusphere-egu2020-3011, 2020.
EGU2020-4846 | Displays | BG2.2
Getting it Together: Combining plant and mammal DNA with Lipid Biomarkers from Irish and Scottish LakesTony Brown, Thierry Fonville, Helen Mackay, Maarten van Hardenbroek, and Inger Alsos
Lowland lakes in Scotland and Ireland have been heavily impacted by human activity since the Neolithic due to forest clearance, agriculture and lakeside settlement. Whilst plant macrofossils, pollen and other microfossils, especially diatoms, have been able to outline these changes many uncertainties remain about the origin and exact nature of these impacts. Obtaining independent measures of both vascular plants and mammals (and other animals) allows for more taxonomically precise reconstructions and the study of long-term biotic interactions. Lipid biomarkers, such as faecal steroids and bile acids, can both validate the mammal DNA, and also indicate the magnitude of agricultural and human lake inputs into the lake ecosystem. Our initial work focused on small artificial islands (crannogs) common in the Celtic parts of the UK. Unusually strong sedaDNA and lipid biomarker results from both plants and animals are believed to result from the creation of a biogeochemical halo around the crannogs due to the direct input of bone and viscera, rapid organic and clastic sedimentation, and a lack of disturbance. The human activities on the artificial islands, such as slaughter, butchery and feasting, caused severe eutrophication of the smaller lakes, which only partially recovered after the abandonment of the sites. Similar but less pronounced effects can be seen at lake-side settlement sites in larger lakes and away from archaeological sites which reflect catchment-wide influences. This paper will present data from crannogs, lake-side sites and from a new study of lakes on small islands on the Celtic Seaboard. These island sites are being studied to test the narrative of ‘marginality’ and a perceived lack of resilience in small islands during the last two thousand years. Overall our sedaDNA and steroid results complement data from both archaeological excavation, survey and traditional palaeoenvironmental proxies to provide a more detailed and comprehensive image of the environment in which our ancestors were operating, the changes they had on their ecosystems and our inheritance of this today.
How to cite: Brown, T., Fonville, T., Mackay, H., van Hardenbroek, M., and Alsos, I.: Getting it Together: Combining plant and mammal DNA with Lipid Biomarkers from Irish and Scottish Lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4846, https://doi.org/10.5194/egusphere-egu2020-4846, 2020.
Lowland lakes in Scotland and Ireland have been heavily impacted by human activity since the Neolithic due to forest clearance, agriculture and lakeside settlement. Whilst plant macrofossils, pollen and other microfossils, especially diatoms, have been able to outline these changes many uncertainties remain about the origin and exact nature of these impacts. Obtaining independent measures of both vascular plants and mammals (and other animals) allows for more taxonomically precise reconstructions and the study of long-term biotic interactions. Lipid biomarkers, such as faecal steroids and bile acids, can both validate the mammal DNA, and also indicate the magnitude of agricultural and human lake inputs into the lake ecosystem. Our initial work focused on small artificial islands (crannogs) common in the Celtic parts of the UK. Unusually strong sedaDNA and lipid biomarker results from both plants and animals are believed to result from the creation of a biogeochemical halo around the crannogs due to the direct input of bone and viscera, rapid organic and clastic sedimentation, and a lack of disturbance. The human activities on the artificial islands, such as slaughter, butchery and feasting, caused severe eutrophication of the smaller lakes, which only partially recovered after the abandonment of the sites. Similar but less pronounced effects can be seen at lake-side settlement sites in larger lakes and away from archaeological sites which reflect catchment-wide influences. This paper will present data from crannogs, lake-side sites and from a new study of lakes on small islands on the Celtic Seaboard. These island sites are being studied to test the narrative of ‘marginality’ and a perceived lack of resilience in small islands during the last two thousand years. Overall our sedaDNA and steroid results complement data from both archaeological excavation, survey and traditional palaeoenvironmental proxies to provide a more detailed and comprehensive image of the environment in which our ancestors were operating, the changes they had on their ecosystems and our inheritance of this today.
How to cite: Brown, T., Fonville, T., Mackay, H., van Hardenbroek, M., and Alsos, I.: Getting it Together: Combining plant and mammal DNA with Lipid Biomarkers from Irish and Scottish Lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4846, https://doi.org/10.5194/egusphere-egu2020-4846, 2020.
EGU2020-5444 | Displays | BG2.2
Ancient plant DNA, macro- and microfossil studies of the lake sediments from the High Arctic lake Tenndammen, SvalbardAnastasia Poliakova, Lena M. Håkansson, Anders Schomacker, Sandra Garces Pastor, and Inger Greve Alsos
Ancient DNA metabarcoding applied together with the investigations of the plant macro-remains, pollen, spores and non-pollen palynomorphs (NPP), open new perspectives and give better taxonomical resolution, allowing to obtain more precise and specific data on the local environment conditions and their changes. So far, only three multiproxy studies that involve both molecular and palaeobotanical/palynological methods are available for the high Arctic archipelago Svalbard. We intend to contribute filling this gap. Therefore, a field trip to Svalbard was undertaken in September, 2019, and three sediment cores were retrieved from the Tenndammen lake (N 78°06.118; E 15°02.024, 7 m asl) which is a small and shallow water body (ca 2.5 m depth). The lake is located in the valley of Colesdalen, a well-known Svalbard’s biodiversity hot spots and a home for about seven to ten thermophilic plant species.
To investigate the Holocene to modern vegetation history of this place, the 85cm core Te2019 was chosen, it was described for lithology, X-rayed, µXRF-scanned, line-scan photographed with high resolution and sampled for sedaDNA, pollen, spores and NPP studies as well as for studies on plant macrofossils. Ten 14C AMS dates were taken in order to establish an age-depth model. The DNA record contains around 100 taxa, most findings of those are supported by pollen studies (Asteraceae, Betula, Brassicaceae, Salix, Saxifraga, Vaccinium/Ericaceae) and by spores (Equisetum and Bryophyta). In addition, various fungi spores were identified. Investigations of plant macro-remains well support findings of the aquatic (i.e. Warnstorfia fluitans) and terrestrial mosses (e.g. Aulacomnium conf. turgidum, Bryum spp., Distichium capillaceum, Calliergon richardsonii, Scorpidium cossonii, Sphagnum spp., Rhizomnium spp.). Besides, fragments of Salix and Betula leaves and fruit parts, various leaf, stem tissues and flower fragments of Saxifraga species were found within the samples from the same depths with the correspondence to DNA records. Three DNA zones (SvDNA 1 – SvDNA3) and one subzone within the earliest zone (SvDNA-1a – SvDNA-1b) were established. Relations between DNA, pollen and macrofossil zones were studied. This study is performed within the “Future ArcTic Ecosystems” (FATE) research program: Initiative for investigation on drivers of diversity and future scenarios from ethnoecology, contemporary ecology and ancient DNA.
How to cite: Poliakova, A., Håkansson, L. M., Schomacker, A., Garces Pastor, S., and Alsos, I. G.: Ancient plant DNA, macro- and microfossil studies of the lake sediments from the High Arctic lake Tenndammen, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5444, https://doi.org/10.5194/egusphere-egu2020-5444, 2020.
Ancient DNA metabarcoding applied together with the investigations of the plant macro-remains, pollen, spores and non-pollen palynomorphs (NPP), open new perspectives and give better taxonomical resolution, allowing to obtain more precise and specific data on the local environment conditions and their changes. So far, only three multiproxy studies that involve both molecular and palaeobotanical/palynological methods are available for the high Arctic archipelago Svalbard. We intend to contribute filling this gap. Therefore, a field trip to Svalbard was undertaken in September, 2019, and three sediment cores were retrieved from the Tenndammen lake (N 78°06.118; E 15°02.024, 7 m asl) which is a small and shallow water body (ca 2.5 m depth). The lake is located in the valley of Colesdalen, a well-known Svalbard’s biodiversity hot spots and a home for about seven to ten thermophilic plant species.
To investigate the Holocene to modern vegetation history of this place, the 85cm core Te2019 was chosen, it was described for lithology, X-rayed, µXRF-scanned, line-scan photographed with high resolution and sampled for sedaDNA, pollen, spores and NPP studies as well as for studies on plant macrofossils. Ten 14C AMS dates were taken in order to establish an age-depth model. The DNA record contains around 100 taxa, most findings of those are supported by pollen studies (Asteraceae, Betula, Brassicaceae, Salix, Saxifraga, Vaccinium/Ericaceae) and by spores (Equisetum and Bryophyta). In addition, various fungi spores were identified. Investigations of plant macro-remains well support findings of the aquatic (i.e. Warnstorfia fluitans) and terrestrial mosses (e.g. Aulacomnium conf. turgidum, Bryum spp., Distichium capillaceum, Calliergon richardsonii, Scorpidium cossonii, Sphagnum spp., Rhizomnium spp.). Besides, fragments of Salix and Betula leaves and fruit parts, various leaf, stem tissues and flower fragments of Saxifraga species were found within the samples from the same depths with the correspondence to DNA records. Three DNA zones (SvDNA 1 – SvDNA3) and one subzone within the earliest zone (SvDNA-1a – SvDNA-1b) were established. Relations between DNA, pollen and macrofossil zones were studied. This study is performed within the “Future ArcTic Ecosystems” (FATE) research program: Initiative for investigation on drivers of diversity and future scenarios from ethnoecology, contemporary ecology and ancient DNA.
How to cite: Poliakova, A., Håkansson, L. M., Schomacker, A., Garces Pastor, S., and Alsos, I. G.: Ancient plant DNA, macro- and microfossil studies of the lake sediments from the High Arctic lake Tenndammen, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5444, https://doi.org/10.5194/egusphere-egu2020-5444, 2020.
EGU2020-7131 | Displays | BG2.2
The dawn of Molecular Genetics in Paleoceanography: tracing Arctic change during the Holocene with marine sedaDNA records from GreenlandSofia Ribeiro, Sara Hardardottir, Jessica Louise Ray, Stijn De Schepper, Audrey Limoges, Connie Lovejoy, and Marit-Solveig Seidenkrantz
As we move towards a “blue” Arctic Ocean in the summer within the next decades, predicting the full range of effects of climate change on the marine arctic environment remains a challenge. This is partly due to the paucity of long-term data on ocean-biosphere-cryosphere interactions over time and partly because, today, much of our knowledge on past ocean variability derives from microfossil and biogeochemical tracers that all have considerable limitations such as preservation biases and low taxonomic resolution or coverage.
Recent studies have revealed sedaDNA as a potential “game-changer” in our ability to reconstruct past ocean conditions, due to the preservation of DNA at low temperatures, and the possibility to capture a much larger fraction of the Arctic marine biome diversity than with classical approaches. However, while sedaDNA has been used in terrestrial, archeological, and lake studies for some years, its application to marine sediment records is still in its infancy.
Here, we will present new results from material recently collected along the two Arctic Ocean outflow shelves off Greenland (Greenland Sea/Fram Strait and Northern Baffin Bay/Nares Strait). We have used a combination of modern and ancient DNA methods applied to seawater, surface sediments, and sediment cores covering the past ca. 12 000 years with the objectives of: 1) characterizing the vertical export of sea ice-associated genetic material through the water column and into the sediments following sea ice melt and 2) exploring the potential of sedaDNA from the circum-polar sea ice dinoflagellate Polarella glacialis as a new sea ice proxy. For the first objective, we followed a comparative metabarcoding approach while the second objective included designing species-specific primers followed by gene copy number quantification by a droplet digital PCR assay.
We argue that sedaDNA will have a critical role in expanding the Paleoceanography “toolbox” and lead to the establishment of a new cross-disciplinary field.
How to cite: Ribeiro, S., Hardardottir, S., Ray, J. L., De Schepper, S., Limoges, A., Lovejoy, C., and Seidenkrantz, M.-S.: The dawn of Molecular Genetics in Paleoceanography: tracing Arctic change during the Holocene with marine sedaDNA records from Greenland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7131, https://doi.org/10.5194/egusphere-egu2020-7131, 2020.
As we move towards a “blue” Arctic Ocean in the summer within the next decades, predicting the full range of effects of climate change on the marine arctic environment remains a challenge. This is partly due to the paucity of long-term data on ocean-biosphere-cryosphere interactions over time and partly because, today, much of our knowledge on past ocean variability derives from microfossil and biogeochemical tracers that all have considerable limitations such as preservation biases and low taxonomic resolution or coverage.
Recent studies have revealed sedaDNA as a potential “game-changer” in our ability to reconstruct past ocean conditions, due to the preservation of DNA at low temperatures, and the possibility to capture a much larger fraction of the Arctic marine biome diversity than with classical approaches. However, while sedaDNA has been used in terrestrial, archeological, and lake studies for some years, its application to marine sediment records is still in its infancy.
Here, we will present new results from material recently collected along the two Arctic Ocean outflow shelves off Greenland (Greenland Sea/Fram Strait and Northern Baffin Bay/Nares Strait). We have used a combination of modern and ancient DNA methods applied to seawater, surface sediments, and sediment cores covering the past ca. 12 000 years with the objectives of: 1) characterizing the vertical export of sea ice-associated genetic material through the water column and into the sediments following sea ice melt and 2) exploring the potential of sedaDNA from the circum-polar sea ice dinoflagellate Polarella glacialis as a new sea ice proxy. For the first objective, we followed a comparative metabarcoding approach while the second objective included designing species-specific primers followed by gene copy number quantification by a droplet digital PCR assay.
We argue that sedaDNA will have a critical role in expanding the Paleoceanography “toolbox” and lead to the establishment of a new cross-disciplinary field.
How to cite: Ribeiro, S., Hardardottir, S., Ray, J. L., De Schepper, S., Limoges, A., Lovejoy, C., and Seidenkrantz, M.-S.: The dawn of Molecular Genetics in Paleoceanography: tracing Arctic change during the Holocene with marine sedaDNA records from Greenland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7131, https://doi.org/10.5194/egusphere-egu2020-7131, 2020.
EGU2020-12257 | Displays | BG2.2
Temporal pattern of terrestrial plant diversity in northern FennoscandiaDilli Prasad Rijal, Peter D. Heintzman, Youri Lammers, Nigel Gilles Yoccoz, Tony Gavin Brown, Kelsey Lorberau, Dorothee Ehrich, Iva Pitelkova, Tomasz Goslar, Jostein Bakke, Kari Anne Bråthen, and Inger Greve Alsos
Understanding the dynamics of biodiversity in the past will contribute to a better informed inference of future biodiversity. Palaeoecological patterns in biodiversity are mainly preserved in natural archives such as lake sediments. Using ancient DNA from the sediment of 10 lakes from northern Fennoscandia, we analysed terrestrial plant diversity pattern for the entire Holocene, and how these patterns correspond to drivers of change such as temperature and biota. We modeled temporal trends in taxonomic richness and turnover using generalized additive models (GAM). We included delta oxygen isotope values from North Greenland Ice Core Project as a proxy for regional temperature, and the presence of dominant woody species as biotic drivers of terrestrial plant diversity.
Results show a general tendency of an increase in species richness from the early Holocene onwards, but this pattern is asynchronous across the lakes, with some lakes having a peak in diversity in the mid-Holocene (8,000-6,000 cal. BP), late Holocene (~2,500 cal. BP), or in recent times. The turnover decreases in most of the lakes throughout the Holocene. Meanwhile, it consistently increases in a few lakes. With some exceptions, temperature and biotic variable differentially affects the richness and turnover across the lakes. Our study from multiple lakes and heterogeneous habitats may be able to identify the main drivers of past biodiversity changes in these systems. As a result, it may help us to understand the mechanisms of change so that the impacts of current climate change and biotic factors on biodiversity may be assessed.
Author's list and affiliations:
Dilli Prasad Rijal1, Peter D. Heintzman2, Youri Lammers2, Nigel Gilles Yoccoz1, Tony Gavin Brown2,3, Kelsey Lorberau1, Dorothee Ehrich1, Iva Pitelkova2, Tomasz Goslar4, Jostein Bakke5, Kari Anne Bråthen1, Inger Greve Alsos2
1Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
2The Arctic University Museum of Norway, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
3School of Geography and Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.4
4Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
5Department of Earth Science, University of Bergen, 5020 Bergen, Norway
How to cite: Rijal, D. P., Heintzman, P. D., Lammers, Y., Yoccoz, N. G., Brown, T. G., Lorberau, K., Ehrich, D., Pitelkova, I., Goslar, T., Bakke, J., Bråthen, K. A., and Alsos, I. G.: Temporal pattern of terrestrial plant diversity in northern Fennoscandia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12257, https://doi.org/10.5194/egusphere-egu2020-12257, 2020.
Understanding the dynamics of biodiversity in the past will contribute to a better informed inference of future biodiversity. Palaeoecological patterns in biodiversity are mainly preserved in natural archives such as lake sediments. Using ancient DNA from the sediment of 10 lakes from northern Fennoscandia, we analysed terrestrial plant diversity pattern for the entire Holocene, and how these patterns correspond to drivers of change such as temperature and biota. We modeled temporal trends in taxonomic richness and turnover using generalized additive models (GAM). We included delta oxygen isotope values from North Greenland Ice Core Project as a proxy for regional temperature, and the presence of dominant woody species as biotic drivers of terrestrial plant diversity.
Results show a general tendency of an increase in species richness from the early Holocene onwards, but this pattern is asynchronous across the lakes, with some lakes having a peak in diversity in the mid-Holocene (8,000-6,000 cal. BP), late Holocene (~2,500 cal. BP), or in recent times. The turnover decreases in most of the lakes throughout the Holocene. Meanwhile, it consistently increases in a few lakes. With some exceptions, temperature and biotic variable differentially affects the richness and turnover across the lakes. Our study from multiple lakes and heterogeneous habitats may be able to identify the main drivers of past biodiversity changes in these systems. As a result, it may help us to understand the mechanisms of change so that the impacts of current climate change and biotic factors on biodiversity may be assessed.
Author's list and affiliations:
Dilli Prasad Rijal1, Peter D. Heintzman2, Youri Lammers2, Nigel Gilles Yoccoz1, Tony Gavin Brown2,3, Kelsey Lorberau1, Dorothee Ehrich1, Iva Pitelkova2, Tomasz Goslar4, Jostein Bakke5, Kari Anne Bråthen1, Inger Greve Alsos2
1Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
2The Arctic University Museum of Norway, UiT - The Arctic University of Norway, NO-9037 Tromsø, Norway.
3School of Geography and Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.4
4Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
5Department of Earth Science, University of Bergen, 5020 Bergen, Norway
How to cite: Rijal, D. P., Heintzman, P. D., Lammers, Y., Yoccoz, N. G., Brown, T. G., Lorberau, K., Ehrich, D., Pitelkova, I., Goslar, T., Bakke, J., Bråthen, K. A., and Alsos, I. G.: Temporal pattern of terrestrial plant diversity in northern Fennoscandia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12257, https://doi.org/10.5194/egusphere-egu2020-12257, 2020.
EGU2020-16933 | Displays | BG2.2
Quantification of past arctic herbivore populations from ancient sedimentary DNA by hybridization capture enrichment, metabarcoding, and droplet digital PCRPeter Seeber, Ulrike Herzschuh, Beth Shapiro, Hendrik Poinar, Duane Froese, and Laura Epp
The Arctic is currently experiencing dramatic ecosystem changes with immediate effects on biodiversity. Sedimentary ancient DNA is a unique and valuable source of information on ecosystem changes over a long temporal scale. Understanding these past changes may help predict the relative impacts of climate change, herbivory, and anthropogenic effects on present ecosystems. In the BiodivERsA project “Future ArcTic Ecosystems” (FATE), we aim to assess changes in past herbivore abundance over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales using three (semi-)quantitative methods on sedimentary ancient DNA of plants, herbivores, and herbivore proxies (i.e. coprophilous fungi and parasites) – metabarcoding, hybridization capture enrichment, and droplet digital PCR (ddPCR).
Metabarcoding was applied to DNA of plants and also of coprophilous fungi as proxies of herbivore abundance. This approach is an established and important tool for assessing biodiversity from recent environmental DNA; however, quantification of specific taxa may be complicated due to inherent methodological biases (e.g. amplification efficiency due to primer bias), and our current understanding of the factors affecting potential quantification by metabarcoding is still limited. Moreover, ancient DNA is highly fragmented, which may prevent PCR amplification altogether. As an alternative, target enrichment by hybridization capture is a method that does not depend on target PCR amplification and is typically not affected by DNA fragmentation. Furthermore, hybridization capture can be used to target numerous genetic markers of a vast range of highly diverse taxa. We are using hybridization capture to enrich DNA of a range of herbivore species and numerous proxy organisms. Metabarcoding and hybridization capture can be applied to a vast taxonomic range and may be used quantitatively based on relative sequencing read abundance; however, the respective read abundance may be confounded by random and systematic errors and other biases. We are therefore using an additional quantification method – ddPCR – on several selected taxa, which is taxon-specific but facilitates highly accurate quantification of template DNA molecules in a given sample. The combined taxonomic and quantitative results of these three approaches are used to generate highly resolved datasets on past vegetation and herbivores, which allows us to reconstruct past vegetation changes over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales.
Detailed inferences on herbivore abundance and reconstructing past ecological conditions may be important for ecosystem management and conservation in the face of accelerating changes in Arctic ecosystems due to global climate change.
How to cite: Seeber, P., Herzschuh, U., Shapiro, B., Poinar, H., Froese, D., and Epp, L.: Quantification of past arctic herbivore populations from ancient sedimentary DNA by hybridization capture enrichment, metabarcoding, and droplet digital PCR, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16933, https://doi.org/10.5194/egusphere-egu2020-16933, 2020.
The Arctic is currently experiencing dramatic ecosystem changes with immediate effects on biodiversity. Sedimentary ancient DNA is a unique and valuable source of information on ecosystem changes over a long temporal scale. Understanding these past changes may help predict the relative impacts of climate change, herbivory, and anthropogenic effects on present ecosystems. In the BiodivERsA project “Future ArcTic Ecosystems” (FATE), we aim to assess changes in past herbivore abundance over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales using three (semi-)quantitative methods on sedimentary ancient DNA of plants, herbivores, and herbivore proxies (i.e. coprophilous fungi and parasites) – metabarcoding, hybridization capture enrichment, and droplet digital PCR (ddPCR).
Metabarcoding was applied to DNA of plants and also of coprophilous fungi as proxies of herbivore abundance. This approach is an established and important tool for assessing biodiversity from recent environmental DNA; however, quantification of specific taxa may be complicated due to inherent methodological biases (e.g. amplification efficiency due to primer bias), and our current understanding of the factors affecting potential quantification by metabarcoding is still limited. Moreover, ancient DNA is highly fragmented, which may prevent PCR amplification altogether. As an alternative, target enrichment by hybridization capture is a method that does not depend on target PCR amplification and is typically not affected by DNA fragmentation. Furthermore, hybridization capture can be used to target numerous genetic markers of a vast range of highly diverse taxa. We are using hybridization capture to enrich DNA of a range of herbivore species and numerous proxy organisms. Metabarcoding and hybridization capture can be applied to a vast taxonomic range and may be used quantitatively based on relative sequencing read abundance; however, the respective read abundance may be confounded by random and systematic errors and other biases. We are therefore using an additional quantification method – ddPCR – on several selected taxa, which is taxon-specific but facilitates highly accurate quantification of template DNA molecules in a given sample. The combined taxonomic and quantitative results of these three approaches are used to generate highly resolved datasets on past vegetation and herbivores, which allows us to reconstruct past vegetation changes over large spatial (circumarctic) and temporal (Last Glacial Maximum until today) scales.
Detailed inferences on herbivore abundance and reconstructing past ecological conditions may be important for ecosystem management and conservation in the face of accelerating changes in Arctic ecosystems due to global climate change.
How to cite: Seeber, P., Herzschuh, U., Shapiro, B., Poinar, H., Froese, D., and Epp, L.: Quantification of past arctic herbivore populations from ancient sedimentary DNA by hybridization capture enrichment, metabarcoding, and droplet digital PCR, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16933, https://doi.org/10.5194/egusphere-egu2020-16933, 2020.
EGU2020-19336 | Displays | BG2.2
Holocene plant community changes in the Western Alps, as inferred from sedaDNASandra Garces Pastor, Peter D. Heintzman, Youri Lammers, Scarlett Zetter, Antony Gavin Brown, Kevin Walsh, Charline Giguet Covex, Willy Tinner, Christoph Schwörer, Oliver Heiri, Sébastien Lavergne, Eric Coissac, Boris Vannière, Isabelle Jouffroy-Bapicot, Andreas Tribsch, and Inger G. Alsos
Climate change has already started to rapidly transform ecosystems. Predicted scenarios of future ecosystem changes inferred from contemporary ecological data may be uncertain, as these records do not provide the temporal depth needed to understand how ecosystems have responded to past periods of climatic changes and human pressure. However, palaeoecological approaches allow for the reconstruction of past ecosystem changes, including the composition of plant communities, thereby enabling researchers to improve models of future climatic change impacts.
Lakes located in high-mountain ranges, such as the Alps, are suitable ecosystems for studying long-term species turnover and environmental shifts driven by past climate changes, as they preserve a wealth of palaeoecological information in its sediment archives. The Alpine ecosystems are expected to be affected by ongoing climate warming, prompting an upward displacement of vegetation, elevated replacement rates and species losses, with projected increased intensity of impacts in the future.
Previous studies of the Alps have used pollen and macrofossil evidence to infer past vegetation dynamics. However, microscopic morphological determinations are time-consuming and some inferences have been limited by low taxonomic resolution and the biased preservation of identifiable remains. Ancient DNA from organisms is also often preserved in the sediment (sedaDNA), which can rapidly be detected and analysed using metabarcoding approaches. Together with a novel, region-specific barcode reference database for the flora of the Alps (PhyloAlps; 4500 taxa), we can bypass the morphological limitations of previous palaeobotanical studies and refine taxonomic resolution, often to the species level.
To investigate the origin and impact of past environmental changes in alpine ecosystems throughout the Holocene, we performed a multi-proxy reconstruction of 9 lake sediment cores from the Western Alps (France, Italy and Switzerland). Using metabarcoding, we reconstructed the plant community composition and used XRF, magnetic susceptibility, and loss-on-ignition data to understand lacustrine dynamics during the Holocene for each lake. We will present the major findings from these analysed records, the general ecosystem shifts inferred, and the impacts of perturbations caused by human pressure and climatic changes.
How to cite: Garces Pastor, S., D. Heintzman, P., Lammers, Y., Zetter, S., Gavin Brown, A., Walsh, K., Giguet Covex, C., Tinner, W., Schwörer, C., Heiri, O., Lavergne, S., Coissac, E., Vannière, B., Jouffroy-Bapicot, I., Tribsch, A., and G. Alsos, I.: Holocene plant community changes in the Western Alps, as inferred from sedaDNA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19336, https://doi.org/10.5194/egusphere-egu2020-19336, 2020.
Climate change has already started to rapidly transform ecosystems. Predicted scenarios of future ecosystem changes inferred from contemporary ecological data may be uncertain, as these records do not provide the temporal depth needed to understand how ecosystems have responded to past periods of climatic changes and human pressure. However, palaeoecological approaches allow for the reconstruction of past ecosystem changes, including the composition of plant communities, thereby enabling researchers to improve models of future climatic change impacts.
Lakes located in high-mountain ranges, such as the Alps, are suitable ecosystems for studying long-term species turnover and environmental shifts driven by past climate changes, as they preserve a wealth of palaeoecological information in its sediment archives. The Alpine ecosystems are expected to be affected by ongoing climate warming, prompting an upward displacement of vegetation, elevated replacement rates and species losses, with projected increased intensity of impacts in the future.
Previous studies of the Alps have used pollen and macrofossil evidence to infer past vegetation dynamics. However, microscopic morphological determinations are time-consuming and some inferences have been limited by low taxonomic resolution and the biased preservation of identifiable remains. Ancient DNA from organisms is also often preserved in the sediment (sedaDNA), which can rapidly be detected and analysed using metabarcoding approaches. Together with a novel, region-specific barcode reference database for the flora of the Alps (PhyloAlps; 4500 taxa), we can bypass the morphological limitations of previous palaeobotanical studies and refine taxonomic resolution, often to the species level.
To investigate the origin and impact of past environmental changes in alpine ecosystems throughout the Holocene, we performed a multi-proxy reconstruction of 9 lake sediment cores from the Western Alps (France, Italy and Switzerland). Using metabarcoding, we reconstructed the plant community composition and used XRF, magnetic susceptibility, and loss-on-ignition data to understand lacustrine dynamics during the Holocene for each lake. We will present the major findings from these analysed records, the general ecosystem shifts inferred, and the impacts of perturbations caused by human pressure and climatic changes.
How to cite: Garces Pastor, S., D. Heintzman, P., Lammers, Y., Zetter, S., Gavin Brown, A., Walsh, K., Giguet Covex, C., Tinner, W., Schwörer, C., Heiri, O., Lavergne, S., Coissac, E., Vannière, B., Jouffroy-Bapicot, I., Tribsch, A., and G. Alsos, I.: Holocene plant community changes in the Western Alps, as inferred from sedaDNA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19336, https://doi.org/10.5194/egusphere-egu2020-19336, 2020.
EGU2020-19582 | Displays | BG2.2
Holocene reconstruction of plant and mammal communities in the Austrian and Italian AlpsScarlett Zetter, Sandra Garces Pastor, Youri Lammers, Antony Gavin Brown, Andreas Tribsch, Eric Coissac, Sebastien Lavergne, Peter D. Heintzman, and Inger G. Alsos
The Eastern Alps in Europe have a rich alpine biodiversity and a long archaeological history. However, the palaeoecological record of this region has been relatively understudied, which has limited our understanding of the formation of the contemporary vegetation since the end of the last Ice Age, including the likely impacts of changes in climate and human pressures through pasturing and agriculture. To fill this knowledge gap, we are using plant and mammal sedaDNA taken from five sub-alpine to alpine Holocene lake cores in the Austrian and Italian Eastern Alps: Grosser Winterleitensee, Krummschnabelsee, Mittlerer Kaltenbachsee and Sulzkarsee (Austria), and Laghetti Colbricon (Italy). We will outline our first results on full plant community reconstructions from some lakes and on the mammal presence. Findings from the plant record will allow us for uncovering the Holocene dynamics of plant communities, and for identifying key intervals where biodiversity may have been strongly affected by anthropogenic factors and climate change. The mammal sedaDNA data will also be used to track the presence of domestic livestock through time and therefore provide insight into past human pastoral practices in the region.
How to cite: Zetter, S., Garces Pastor, S., Lammers, Y., Brown, A. G., Tribsch, A., Coissac, E., Lavergne, S., Heintzman, P. D., and Alsos, I. G.: Holocene reconstruction of plant and mammal communities in the Austrian and Italian Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19582, https://doi.org/10.5194/egusphere-egu2020-19582, 2020.
The Eastern Alps in Europe have a rich alpine biodiversity and a long archaeological history. However, the palaeoecological record of this region has been relatively understudied, which has limited our understanding of the formation of the contemporary vegetation since the end of the last Ice Age, including the likely impacts of changes in climate and human pressures through pasturing and agriculture. To fill this knowledge gap, we are using plant and mammal sedaDNA taken from five sub-alpine to alpine Holocene lake cores in the Austrian and Italian Eastern Alps: Grosser Winterleitensee, Krummschnabelsee, Mittlerer Kaltenbachsee and Sulzkarsee (Austria), and Laghetti Colbricon (Italy). We will outline our first results on full plant community reconstructions from some lakes and on the mammal presence. Findings from the plant record will allow us for uncovering the Holocene dynamics of plant communities, and for identifying key intervals where biodiversity may have been strongly affected by anthropogenic factors and climate change. The mammal sedaDNA data will also be used to track the presence of domestic livestock through time and therefore provide insight into past human pastoral practices in the region.
How to cite: Zetter, S., Garces Pastor, S., Lammers, Y., Brown, A. G., Tribsch, A., Coissac, E., Lavergne, S., Heintzman, P. D., and Alsos, I. G.: Holocene reconstruction of plant and mammal communities in the Austrian and Italian Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19582, https://doi.org/10.5194/egusphere-egu2020-19582, 2020.
EGU2020-20209 | Displays | BG2.2
Sedimentary DNA analyses decipher past and present aquatic plant diversity in Siberian and Tibetan lakesKathleen R. Stoof-Leichsenring, Sisi Liu, Weihan Jia, Laura S. Epp, Kai Li, Luidmila A. Pestryakova, and Ulrike Herzschuh
In recent decades Arctic and Alpine terrestrial ecosystems experienced an increase in aquatic plant biomass due to global warming, which motivates the investigation of aquatic plant diversity in High Arctic and Alpine regions, whereof so far only sparse data exist. Aquatic plants are important primary producers, food resource and supply habitat structure and thus have been widely used to infer the ecological status of modern lakes. Identification of past aquatic plants using macrofossil records only partly reflects the past community structure due to differences in spatial distribution, preservation and seed abundance of taxa. Thus, in our study we applied sedimentary DNA analyses to detect aquatic plant diversity in modern surface samples of over 200 lakes from various localities across Northern, Eastern and Central Siberia and the Tibetan plateau and selected lake core samples (covering Holocene timescales) from these regions. We applied metabarcoding of the trnL marker and used Illumina technology for NGS amplicon sequencing of PCR products and performed OBITools pipeline for bioinformatic analyses and taxonomic assignment. Firstly, our study aims to evaluate if the trnL marker typically used for detecting terrestrial plant diversity can deliver valuable information on the composition of aquatic plants. Secondly, we will use ordination analyses to test which environmental variables (e.g. lake water depth, pH and conductivity) shape the diversity of genetically detected aquatic plants. Thirdly, we will analyze past genetic aquatic plant diversity from Holocene lake cores and compare it with the modern genetic data set to reconstruct putative drivers of past diversity changes. So far, we identified free-floating (Nymphoides, Ceratophyllum), submerged (Potamogeton sp.), wetland taxa (Caltha, Carex, Juncus) and bryophytes (Sphagnum) in modern and past genetic data sets. Further statistical analyses are pending and will be finalized and presented at EGU.
How to cite: Stoof-Leichsenring, K. R., Liu, S., Jia, W., Epp, L. S., Li, K., Pestryakova, L. A., and Herzschuh, U.: Sedimentary DNA analyses decipher past and present aquatic plant diversity in Siberian and Tibetan lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20209, https://doi.org/10.5194/egusphere-egu2020-20209, 2020.
In recent decades Arctic and Alpine terrestrial ecosystems experienced an increase in aquatic plant biomass due to global warming, which motivates the investigation of aquatic plant diversity in High Arctic and Alpine regions, whereof so far only sparse data exist. Aquatic plants are important primary producers, food resource and supply habitat structure and thus have been widely used to infer the ecological status of modern lakes. Identification of past aquatic plants using macrofossil records only partly reflects the past community structure due to differences in spatial distribution, preservation and seed abundance of taxa. Thus, in our study we applied sedimentary DNA analyses to detect aquatic plant diversity in modern surface samples of over 200 lakes from various localities across Northern, Eastern and Central Siberia and the Tibetan plateau and selected lake core samples (covering Holocene timescales) from these regions. We applied metabarcoding of the trnL marker and used Illumina technology for NGS amplicon sequencing of PCR products and performed OBITools pipeline for bioinformatic analyses and taxonomic assignment. Firstly, our study aims to evaluate if the trnL marker typically used for detecting terrestrial plant diversity can deliver valuable information on the composition of aquatic plants. Secondly, we will use ordination analyses to test which environmental variables (e.g. lake water depth, pH and conductivity) shape the diversity of genetically detected aquatic plants. Thirdly, we will analyze past genetic aquatic plant diversity from Holocene lake cores and compare it with the modern genetic data set to reconstruct putative drivers of past diversity changes. So far, we identified free-floating (Nymphoides, Ceratophyllum), submerged (Potamogeton sp.), wetland taxa (Caltha, Carex, Juncus) and bryophytes (Sphagnum) in modern and past genetic data sets. Further statistical analyses are pending and will be finalized and presented at EGU.
How to cite: Stoof-Leichsenring, K. R., Liu, S., Jia, W., Epp, L. S., Li, K., Pestryakova, L. A., and Herzschuh, U.: Sedimentary DNA analyses decipher past and present aquatic plant diversity in Siberian and Tibetan lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20209, https://doi.org/10.5194/egusphere-egu2020-20209, 2020.
EGU2020-21385 | Displays | BG2.2
Early Holocene presences of Norway spruce (Picea abies L. Karst.) at high latitudes in Norway and Sweden: the genetic story of up to 9550 year old spruce clones in the Scandinavian mountainsKevin Nota and Laura Parducci
The survival of boreal trees in ice-free cryptic refugia’s at high latitudes during the Last Glacial Maximum has been subjected to a long-standing debate. Norway spruce (Picea abies L. Karst) is generally believed to have recolonised Scandinavia from the east. Spruce appears for the first time in the pollen assemblages in central Sweden around 3000 years before present (yr BP), however, a growing body of macrofossil and genetic evidence suggested that spruce might have survived in ice-free areas around the Norwegian shore or closer to the Weichselian ice sheet than previously thought. These satellite populations may have contributed to the recolonisation of Scandinavia from the west and may be ancestors to the ancient (up to 9550-year-old) but still living clonal spruce trees occurring today in the Scandinavian mountains (e. g. Old Tjikko and Old Rasmus). Genetic research has shown that modern P. abies contain two sequence variants for the maternal inherited mitochondrial mh05 fragment across its Eurasian distribution, of which one is unique to Scandinavia. The Scandinavian variant shows the highest frequency in western Scandinavia and its modern distribution suggests that it was already present before the last glacial period. The Scandinavian variant was also detected in lake sediment dating back to 10300 yr BP at Trøndelag in Central Norway (63°N).
We are using sensitive melting curve qPCR assay and high-throughput sequencing to detect the presence of the Scandinavian variant in several sediment cores covering Scandinavia and north-east & southern Russia. So far, the qPCR melting curve assay detected the Scandinavian variant in peat sediment from northern Finland (~52,000 – 42,000 yr BP), in lake sediments in central Sweden and central Norway (~10,000 – 900 yr BP) and in southern Sweden (~12000 – 11000 yr BP), which is far earlier than currently believed. Additional lakes are being processed and samples positive for the Scandinavian variant will be sequenced to confirm sequence identity. We are also conducting population genetic analysis of the ancient clonal spruce stands to see how these trees are related to the modern spruce forest and weather they have contributed to the recolonization of Scandinavia. The results of this study will increase our understanding of the post glacial colonisation of P. abies in Scandinavia after the Last Glacial Maximum.
How to cite: Nota, K. and Parducci, L.: Early Holocene presences of Norway spruce (Picea abies L. Karst.) at high latitudes in Norway and Sweden: the genetic story of up to 9550 year old spruce clones in the Scandinavian mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21385, https://doi.org/10.5194/egusphere-egu2020-21385, 2020.
The survival of boreal trees in ice-free cryptic refugia’s at high latitudes during the Last Glacial Maximum has been subjected to a long-standing debate. Norway spruce (Picea abies L. Karst) is generally believed to have recolonised Scandinavia from the east. Spruce appears for the first time in the pollen assemblages in central Sweden around 3000 years before present (yr BP), however, a growing body of macrofossil and genetic evidence suggested that spruce might have survived in ice-free areas around the Norwegian shore or closer to the Weichselian ice sheet than previously thought. These satellite populations may have contributed to the recolonisation of Scandinavia from the west and may be ancestors to the ancient (up to 9550-year-old) but still living clonal spruce trees occurring today in the Scandinavian mountains (e. g. Old Tjikko and Old Rasmus). Genetic research has shown that modern P. abies contain two sequence variants for the maternal inherited mitochondrial mh05 fragment across its Eurasian distribution, of which one is unique to Scandinavia. The Scandinavian variant shows the highest frequency in western Scandinavia and its modern distribution suggests that it was already present before the last glacial period. The Scandinavian variant was also detected in lake sediment dating back to 10300 yr BP at Trøndelag in Central Norway (63°N).
We are using sensitive melting curve qPCR assay and high-throughput sequencing to detect the presence of the Scandinavian variant in several sediment cores covering Scandinavia and north-east & southern Russia. So far, the qPCR melting curve assay detected the Scandinavian variant in peat sediment from northern Finland (~52,000 – 42,000 yr BP), in lake sediments in central Sweden and central Norway (~10,000 – 900 yr BP) and in southern Sweden (~12000 – 11000 yr BP), which is far earlier than currently believed. Additional lakes are being processed and samples positive for the Scandinavian variant will be sequenced to confirm sequence identity. We are also conducting population genetic analysis of the ancient clonal spruce stands to see how these trees are related to the modern spruce forest and weather they have contributed to the recolonization of Scandinavia. The results of this study will increase our understanding of the post glacial colonisation of P. abies in Scandinavia after the Last Glacial Maximum.
How to cite: Nota, K. and Parducci, L.: Early Holocene presences of Norway spruce (Picea abies L. Karst.) at high latitudes in Norway and Sweden: the genetic story of up to 9550 year old spruce clones in the Scandinavian mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21385, https://doi.org/10.5194/egusphere-egu2020-21385, 2020.
EGU2020-22045 | Displays | BG2.2
The making of sedimentary DNA: Insights from distribution patterns of DNA in sedimentsLaura S. Epp, Anan Ibrahim, Yi Wang, Lisa Gutbrod, Patrick Bartolin, Franziska Chucholl, Rebecca Kuehner, David Schleheck, and Peter Andreas Seeber
Sedimentary ancient DNA has by now become a recognized source of information on past biodiversity change, but our understanding of its dynamics and taphonomy is still limited. While for environmental DNA in water, dedicated investigations on its provenance and degradation are being increasingly carried out, we know very little about sedimentary DNA, in particular with respect to aquatic organisms. We are therefore conducting investigations on the distribution of DNA in surface sediments and a short sediment core, with a focus on aquatic communities in the large and heterogeneous Lake Constance. Targeted organisms range from phyto- and zooplankton to fish and waterbirds. Initial results and comparison with sightings of rare species indicate that the DNA is not distributed uniformly or widely across the lake, especially for multicellular animals, but rather linked to the local presence of the organisms. This has implications for our understanding of how DNA enters the sediment and for paleoecological inferences derived from these records.
How to cite: Epp, L. S., Ibrahim, A., Wang, Y., Gutbrod, L., Bartolin, P., Chucholl, F., Kuehner, R., Schleheck, D., and Seeber, P. A.: The making of sedimentary DNA: Insights from distribution patterns of DNA in sediments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22045, https://doi.org/10.5194/egusphere-egu2020-22045, 2020.
Sedimentary ancient DNA has by now become a recognized source of information on past biodiversity change, but our understanding of its dynamics and taphonomy is still limited. While for environmental DNA in water, dedicated investigations on its provenance and degradation are being increasingly carried out, we know very little about sedimentary DNA, in particular with respect to aquatic organisms. We are therefore conducting investigations on the distribution of DNA in surface sediments and a short sediment core, with a focus on aquatic communities in the large and heterogeneous Lake Constance. Targeted organisms range from phyto- and zooplankton to fish and waterbirds. Initial results and comparison with sightings of rare species indicate that the DNA is not distributed uniformly or widely across the lake, especially for multicellular animals, but rather linked to the local presence of the organisms. This has implications for our understanding of how DNA enters the sediment and for paleoecological inferences derived from these records.
How to cite: Epp, L. S., Ibrahim, A., Wang, Y., Gutbrod, L., Bartolin, P., Chucholl, F., Kuehner, R., Schleheck, D., and Seeber, P. A.: The making of sedimentary DNA: Insights from distribution patterns of DNA in sediments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22045, https://doi.org/10.5194/egusphere-egu2020-22045, 2020.
EGU2020-22051 | Displays | BG2.2
Characterizing diatoms and their correlation with the distribution of macrophytes and parasitic Fungi using sedimentary genetic records from lake Constance, GermanyAnan Ibrahim, Laura Epp, Axel Meyer, and David schleheck
Algae and macrophytes are two of the main primary producers that interact with higher trophic levels by providing food and habitat. Their distribution thereby affect the physical and chemical characteristics of the ecosystem and hence act as its bioindicators. The use of multiple molecular markers to capture DNA signals in sediments allow for the reconstruction of their historical communities. We here use metabarcoding of different primers to illustrate the trophic history and the interactions between diatoms, macrophytes and microbial eukaryotes and their response to anthropogenic impacts. Sediment samples were taken from a large deep lake representing different regions of different chemical and physical characteristics. Preliminary data suggest a congruent trophic history using each of the molecular markers and an interaction between the presence of fungal parasites and the prevalence of diatoms.
How to cite: Ibrahim, A., Epp, L., Meyer, A., and schleheck, D.: Characterizing diatoms and their correlation with the distribution of macrophytes and parasitic Fungi using sedimentary genetic records from lake Constance, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22051, https://doi.org/10.5194/egusphere-egu2020-22051, 2020.
Algae and macrophytes are two of the main primary producers that interact with higher trophic levels by providing food and habitat. Their distribution thereby affect the physical and chemical characteristics of the ecosystem and hence act as its bioindicators. The use of multiple molecular markers to capture DNA signals in sediments allow for the reconstruction of their historical communities. We here use metabarcoding of different primers to illustrate the trophic history and the interactions between diatoms, macrophytes and microbial eukaryotes and their response to anthropogenic impacts. Sediment samples were taken from a large deep lake representing different regions of different chemical and physical characteristics. Preliminary data suggest a congruent trophic history using each of the molecular markers and an interaction between the presence of fungal parasites and the prevalence of diatoms.
How to cite: Ibrahim, A., Epp, L., Meyer, A., and schleheck, D.: Characterizing diatoms and their correlation with the distribution of macrophytes and parasitic Fungi using sedimentary genetic records from lake Constance, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22051, https://doi.org/10.5194/egusphere-egu2020-22051, 2020.
BG2.3 – Smart Farming and Land Management Enabled by Remotely Sensed Big Data
EGU2020-102 | Displays | BG2.3
Extracting field boundaries from satellite imagery with a convolutional neural network to enable smart farming at scaleFranz Waldner and Foivos Diakogiannis
Many of the promises of smart farming centre on assisting farmers to monitor their fields throughout the growing season. Having precise field boundaries has thus become a prerequisite for field-level assessment. When farmers are being signed up by agricultural service providers, they are often asked for precise digital records of their boundaries. Unfortunately, this process remains largely manual, time-consuming and prone to errors which creates disincentives. There are also increasing applications whereby remote monitoring of crops using earth observation is used for estimating areas of crop planted and yield forecasts. Automating the extraction of field boundaries would facilitate bringing farmers on board, and hence fostering wider adoption of these services, but would also improve products and services to be provided using remote sensing. Several methods to extract field boundaries from satellite imagery have been proposed, but the apparent lack of field boundary data sets seems to indicate low uptake, presumably because of expensive image preprocessing requirements and local, often arbitrary, tuning. Here, we introduce a novel approach with low image preprocessing requirements to extract field boundaries from satellite imagery. It poses the problem as a semantic segmentation problem with three tasks designed to answer the following questions: 1) Does a given pixel belong to a field? 2) Is that pixel part of a field boundary? and 3) What is the distance from that pixel to the closest field boundary? Closed field boundaries and individual fields can then be extracted by combining the answers to these three questions. The tasks are performed with ResUNet-a, a deep convolutional neural network with a fully connected UNet backbone that features dilated convolutions and conditioned inference. First, we characterise the model’s performance at local scale. Using a single composite image from Sentinel-2 over South Africa, the model is highly accurate in mapping field extent, field boundaries, and, consequently, individual fields. Replacing the monthly composite with a single-date image close to the compositing period marginally decreases accuracy. We then show that, without recalibration, ResUNet-a generalises well across resolutions (10 m to 30 m), sensors (Sentinel-2 to Landsat-8), space and time. Averaging model predictions from at least four images well-distributed across the season is the key to coping with the temporal variations of accuracy. Finally, we apply the lessons learned from the previous experiments to extract field boundaries for the whole of the Australian cropping region. To that aim, we compare three ResUNet-a models which are trained with different data sets: field boundaries from Australia, field boundaries from overseas, and field boundaries from both Australia and overseas (transfer learning). By minimising image preprocessing requirements and replacing local arbitrary decisions by data-driven ones, our approach is expected to facilitate the adoption of smart farming services and improve land management at scale.
How to cite: Waldner, F. and Diakogiannis, F.: Extracting field boundaries from satellite imagery with a convolutional neural network to enable smart farming at scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-102, https://doi.org/10.5194/egusphere-egu2020-102, 2020.
Many of the promises of smart farming centre on assisting farmers to monitor their fields throughout the growing season. Having precise field boundaries has thus become a prerequisite for field-level assessment. When farmers are being signed up by agricultural service providers, they are often asked for precise digital records of their boundaries. Unfortunately, this process remains largely manual, time-consuming and prone to errors which creates disincentives. There are also increasing applications whereby remote monitoring of crops using earth observation is used for estimating areas of crop planted and yield forecasts. Automating the extraction of field boundaries would facilitate bringing farmers on board, and hence fostering wider adoption of these services, but would also improve products and services to be provided using remote sensing. Several methods to extract field boundaries from satellite imagery have been proposed, but the apparent lack of field boundary data sets seems to indicate low uptake, presumably because of expensive image preprocessing requirements and local, often arbitrary, tuning. Here, we introduce a novel approach with low image preprocessing requirements to extract field boundaries from satellite imagery. It poses the problem as a semantic segmentation problem with three tasks designed to answer the following questions: 1) Does a given pixel belong to a field? 2) Is that pixel part of a field boundary? and 3) What is the distance from that pixel to the closest field boundary? Closed field boundaries and individual fields can then be extracted by combining the answers to these three questions. The tasks are performed with ResUNet-a, a deep convolutional neural network with a fully connected UNet backbone that features dilated convolutions and conditioned inference. First, we characterise the model’s performance at local scale. Using a single composite image from Sentinel-2 over South Africa, the model is highly accurate in mapping field extent, field boundaries, and, consequently, individual fields. Replacing the monthly composite with a single-date image close to the compositing period marginally decreases accuracy. We then show that, without recalibration, ResUNet-a generalises well across resolutions (10 m to 30 m), sensors (Sentinel-2 to Landsat-8), space and time. Averaging model predictions from at least four images well-distributed across the season is the key to coping with the temporal variations of accuracy. Finally, we apply the lessons learned from the previous experiments to extract field boundaries for the whole of the Australian cropping region. To that aim, we compare three ResUNet-a models which are trained with different data sets: field boundaries from Australia, field boundaries from overseas, and field boundaries from both Australia and overseas (transfer learning). By minimising image preprocessing requirements and replacing local arbitrary decisions by data-driven ones, our approach is expected to facilitate the adoption of smart farming services and improve land management at scale.
How to cite: Waldner, F. and Diakogiannis, F.: Extracting field boundaries from satellite imagery with a convolutional neural network to enable smart farming at scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-102, https://doi.org/10.5194/egusphere-egu2020-102, 2020.
EGU2020-2457 | Displays | BG2.3
Evaluating Different Learning Tools for Spring Wheat Nitrogen Content Estimation from UAV-Remote Sensing DataSanaz Shafian and Olga Walsh
Monitoring the nitrogen status of spring wheat under different nitrogen treatments is important for effective nitrogen management in precision agriculture. Unmanned aerial vehicle (UAV) integrated with machine learning techniques shows to be a promising tool for precisely estimating crop nitrogen content. In this study UAV-base spectral indices, artificial neural network model (ANN) and Support Vector Machine (SVM) were used to estimate spring wheat nitrogen content. The experiment was conducted on 144 spring wheat plots located at Parma Research and Extension Center, ID on six different spring wheat varieties and six different nitrogen rates. A rotary-wing UAV equipped with a multispectral sensor (RededgeM, Micasense Systems) was used to acquire very high spatial resolution images of the related plots. Validation of the methods was based on the cross-validation procedure and using three statistical indicators: R2, RMSE and relative RMSE. The cross-validated results identified all models providing accurate estimates of canopy nitrogen content in spring wheat crop.
How to cite: Shafian, S. and Walsh, O.: Evaluating Different Learning Tools for Spring Wheat Nitrogen Content Estimation from UAV-Remote Sensing Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2457, https://doi.org/10.5194/egusphere-egu2020-2457, 2020.
Monitoring the nitrogen status of spring wheat under different nitrogen treatments is important for effective nitrogen management in precision agriculture. Unmanned aerial vehicle (UAV) integrated with machine learning techniques shows to be a promising tool for precisely estimating crop nitrogen content. In this study UAV-base spectral indices, artificial neural network model (ANN) and Support Vector Machine (SVM) were used to estimate spring wheat nitrogen content. The experiment was conducted on 144 spring wheat plots located at Parma Research and Extension Center, ID on six different spring wheat varieties and six different nitrogen rates. A rotary-wing UAV equipped with a multispectral sensor (RededgeM, Micasense Systems) was used to acquire very high spatial resolution images of the related plots. Validation of the methods was based on the cross-validation procedure and using three statistical indicators: R2, RMSE and relative RMSE. The cross-validated results identified all models providing accurate estimates of canopy nitrogen content in spring wheat crop.
How to cite: Shafian, S. and Walsh, O.: Evaluating Different Learning Tools for Spring Wheat Nitrogen Content Estimation from UAV-Remote Sensing Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2457, https://doi.org/10.5194/egusphere-egu2020-2457, 2020.
EGU2020-6117 | Displays | BG2.3
Advance in a meteorological station, developed in educational environment, for agricultural and urban purposesIlaria Cantini, Benedetto Allotta, Luca Bini, and Marco Vieri
Internet of Things (IoT) has revolutionized many fields in every-day life. It addresses many aspects related to data management, storage and connectivity.
The main objective of this project focuses on the application of IoT to a low-cost system to be used on land for monitoring plant life parameters (humidity, temperature, rain, solar radiation, etc.) in crop growing control, viticulture, pest prevention for olive groves, greenhouse automation and other applications in agriculture.
Additional applications are in urban environment (where major problems of extreme weather phenomena occur) and in the integration with existing trust networks for better characterization of weather phenomena on very limited space and time scales. Adaptation strategies must start from the knowledge and the availability of additional information.
In a previous project (EGU2018), an ArduinoUno-based control system board was utilized. The fully automatic equipment allowed transmission of real-time data using external esp8266 Wi-Fi.
In the new version, a LoLiN board, an Arduino board-compatible with integrated ESP8266 and RTC with a few Lua script lines, is used. The board allows a simplification of the design-and-development phase, and an overall reduction of costs.
The proposed system uses wireless sensors placed in open space and collects information stored on cloud server. The diffusion of a large number of sensors is possible through the use of low-cost sensors and technologies. The new target for this project is to develop a microcontroller system on Wi-Fi protocol based on ESP8266 connected in station mode for data collection, and on LoRa protocol for interconnection among multiple systems that cannot be connected with Wi-Fi.
The system has been fully developed in the University of Florence, and a high school under the supervision of teachers, involving potential stakeholders interested in the use of low-cost sensors in agriculture. Some traditional sensors, tipping bucket raingauges, magnetic reed devices anemometers, capacitive/resistive thermos-hygrometers, and an innovative impact piezo-element raingauge have been adapted in order to develop the meteorological station.
During the current year 2020, the LoRa protocol will be developed on the new system to interconnect multiple systems in the absence of Wi-Fi coverage.
Despite the low nominal cost of data collection, the current use for application in precision and smart agriculture, as well as in climate change monitoring and adaptation, could be possible only through a massive work of sensor calibration in order to reach the standards of the WMO. In any case, also in absence of absolute calibration the quantification of measurement uncertainties is mandatory to give value to the amateur network observations.
All these aspects are included in the presented project, an attempt to develop a low-cost weather monitoring system for educational purposes, but with lateral effects of awareness among students.
How to cite: Cantini, I., Allotta, B., Bini, L., and Vieri, M.: Advance in a meteorological station, developed in educational environment, for agricultural and urban purposes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6117, https://doi.org/10.5194/egusphere-egu2020-6117, 2020.
Internet of Things (IoT) has revolutionized many fields in every-day life. It addresses many aspects related to data management, storage and connectivity.
The main objective of this project focuses on the application of IoT to a low-cost system to be used on land for monitoring plant life parameters (humidity, temperature, rain, solar radiation, etc.) in crop growing control, viticulture, pest prevention for olive groves, greenhouse automation and other applications in agriculture.
Additional applications are in urban environment (where major problems of extreme weather phenomena occur) and in the integration with existing trust networks for better characterization of weather phenomena on very limited space and time scales. Adaptation strategies must start from the knowledge and the availability of additional information.
In a previous project (EGU2018), an ArduinoUno-based control system board was utilized. The fully automatic equipment allowed transmission of real-time data using external esp8266 Wi-Fi.
In the new version, a LoLiN board, an Arduino board-compatible with integrated ESP8266 and RTC with a few Lua script lines, is used. The board allows a simplification of the design-and-development phase, and an overall reduction of costs.
The proposed system uses wireless sensors placed in open space and collects information stored on cloud server. The diffusion of a large number of sensors is possible through the use of low-cost sensors and technologies. The new target for this project is to develop a microcontroller system on Wi-Fi protocol based on ESP8266 connected in station mode for data collection, and on LoRa protocol for interconnection among multiple systems that cannot be connected with Wi-Fi.
The system has been fully developed in the University of Florence, and a high school under the supervision of teachers, involving potential stakeholders interested in the use of low-cost sensors in agriculture. Some traditional sensors, tipping bucket raingauges, magnetic reed devices anemometers, capacitive/resistive thermos-hygrometers, and an innovative impact piezo-element raingauge have been adapted in order to develop the meteorological station.
During the current year 2020, the LoRa protocol will be developed on the new system to interconnect multiple systems in the absence of Wi-Fi coverage.
Despite the low nominal cost of data collection, the current use for application in precision and smart agriculture, as well as in climate change monitoring and adaptation, could be possible only through a massive work of sensor calibration in order to reach the standards of the WMO. In any case, also in absence of absolute calibration the quantification of measurement uncertainties is mandatory to give value to the amateur network observations.
All these aspects are included in the presented project, an attempt to develop a low-cost weather monitoring system for educational purposes, but with lateral effects of awareness among students.
How to cite: Cantini, I., Allotta, B., Bini, L., and Vieri, M.: Advance in a meteorological station, developed in educational environment, for agricultural and urban purposes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6117, https://doi.org/10.5194/egusphere-egu2020-6117, 2020.
EGU2020-8191 | Displays | BG2.3
Remote Sensing based comparative analysis of cotton irrigation and water productivity in Pakistan, Turkey and UzbekistanMuhammad Usman, Talha Mahmood, and Christopher Conrad
Textile products made with cotton produced in Pakistan, Turkey, and Uzbekistan are largely imported to European markets. This is responsible for high virtual water imports from these countries and thus puts immense pressure on their water resources, which is further extravagated due to climate change and population growth. The solution to combat the issue, on one hand, is to cut water usage for cotton irrigation, and on the other hand, to increase water productivity. The biggest challenge in this regard is the correct quantification of consumptive water use, cotton yield estimation and crop water productivities at a finer spatial resolution on regional levels, which is now possible by utilizing remote sensing (RS) data and approaches. It can also facilitate comparing regions of interest, like in this study, Pakistan, Turkey, and Uzbekistan by utilizing similar data and techniques. For the current study, MODIS data along with various climatic variables were utilized for the estimation of consumptive water use and cotton yield estimation by employing SEBAL and Light Use Efficiency (LUE) models, respectively. These estimations were then used for working out water productivities of different regions of selected countries as case studies. The results show that the study area in Turkey achieved maximum cotton water productivity (i.e. 0.75 - 1.2 kg.m-3) followed by those in Uzbekistan (0.05 – 0.85 kg.m-3) and Pakistan (0.04 – 0.23 kg.m-3). The variability is higher for Uzbekistan possibly due to agricultural transition post-soviet-union era. In the case of Pakistan, the lower cotton water productivities are mainly attributed to lower crop yields (400 – 1200 kg.ha-1) in comparison to Turkey (3850 – 5800 kg.ha-1) and Uzbekistan (450 – 2500 kg.ha-1). Although the highest crop water productivity is achieved for the study region in Turkey, there is still potential for further improvement by introducing on-farm water management. In the case of the other two countries, especially for Pakistan, major improvements are possible through maximizing crop yields. The next steps include comparisons of the results in economic out-turns.
How to cite: Usman, M., Mahmood, T., and Conrad, C.: Remote Sensing based comparative analysis of cotton irrigation and water productivity in Pakistan, Turkey and Uzbekistan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8191, https://doi.org/10.5194/egusphere-egu2020-8191, 2020.
Textile products made with cotton produced in Pakistan, Turkey, and Uzbekistan are largely imported to European markets. This is responsible for high virtual water imports from these countries and thus puts immense pressure on their water resources, which is further extravagated due to climate change and population growth. The solution to combat the issue, on one hand, is to cut water usage for cotton irrigation, and on the other hand, to increase water productivity. The biggest challenge in this regard is the correct quantification of consumptive water use, cotton yield estimation and crop water productivities at a finer spatial resolution on regional levels, which is now possible by utilizing remote sensing (RS) data and approaches. It can also facilitate comparing regions of interest, like in this study, Pakistan, Turkey, and Uzbekistan by utilizing similar data and techniques. For the current study, MODIS data along with various climatic variables were utilized for the estimation of consumptive water use and cotton yield estimation by employing SEBAL and Light Use Efficiency (LUE) models, respectively. These estimations were then used for working out water productivities of different regions of selected countries as case studies. The results show that the study area in Turkey achieved maximum cotton water productivity (i.e. 0.75 - 1.2 kg.m-3) followed by those in Uzbekistan (0.05 – 0.85 kg.m-3) and Pakistan (0.04 – 0.23 kg.m-3). The variability is higher for Uzbekistan possibly due to agricultural transition post-soviet-union era. In the case of Pakistan, the lower cotton water productivities are mainly attributed to lower crop yields (400 – 1200 kg.ha-1) in comparison to Turkey (3850 – 5800 kg.ha-1) and Uzbekistan (450 – 2500 kg.ha-1). Although the highest crop water productivity is achieved for the study region in Turkey, there is still potential for further improvement by introducing on-farm water management. In the case of the other two countries, especially for Pakistan, major improvements are possible through maximizing crop yields. The next steps include comparisons of the results in economic out-turns.
How to cite: Usman, M., Mahmood, T., and Conrad, C.: Remote Sensing based comparative analysis of cotton irrigation and water productivity in Pakistan, Turkey and Uzbekistan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8191, https://doi.org/10.5194/egusphere-egu2020-8191, 2020.
EGU2020-9802 | Displays | BG2.3
Application of drone borne LiDAR technology for monitoring agricultural biomass and plant growth.Katerina Trepekli, Andreas Westergaard-Nielsen, and Thomas Friborg
With rising demand for increasing the yield potential of agricultural products and for reducing greenhouse gas emissions during food production, strengthening our scientific and technological capacity to monitor crop growth and above ground biomass (AGB) is indispensable to move towards more sustainable management of our agricultural resources. Pivotal to meet this goal is the application of high-throughput field-phenotyping tools such as drone borne Light Detection and Ranging (Lidar) systems for accurate, fine-grained, rapid and labor-saving measurements of vegetation growth parameters. Our objective is to develop and assess a workflow to estimate AGB, leaf area index (LAI), plant height (PH) and volume of a homogeneous and highly dense agricultural field using the capabilities of UAV-Lidar technology. The experimental site is located in Denmark and populated by potato plants. Aerial campaigns and field experiments, including destructive biomass sampling and measurements of LAI and plants’ geometrical characteristics at 1m2 square plots, were performed once per month during the vegetation growth period (May–September 2019). The high resolution (3.6 cm) Canopy Height model (CHM) is generated by first evaluating the performance of different filtering algorithms that separate the ground points from the Lidar-derived point cloud datasets. To extract the geometrical parameters of individual crop plants, we delineate the CHM by applying segmentation directly to the Lidar point cloud rather than segmenting the CHM as an interpolated raster surface. The PH obtained by the Lidar scanner is highly correlated with the field-measured PH (R²=0.89 and RMSE=0.028 m) implying that the point cloud data processing evaluated here is efficient and able to generate serviceably accurate CHMs for agricultural sites with similar vegetation structures. Throughout the observed vegetation growth period, the AGB can be quantified with high accuracy when it is considered to be a function of plant volume (R²=0.81 and RMSE=31.65 %) rather than a function of PH, as the latter approximating an exponential relationship with AGB. Height and density Lidar metrics were more effective in predicting in situ LAI measurements in comparison with remotely sensed LAI calculated directly from Lidar vegetation points following the Beer Lambert law. The predictive frameworks emerging from this approach indicate the applicability of drone borne Lidar systems for obtaining agricultural crop growth parameters in both high spatial and temporal resolution.
How to cite: Trepekli, K., Westergaard-Nielsen, A., and Friborg, T.: Application of drone borne LiDAR technology for monitoring agricultural biomass and plant growth., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9802, https://doi.org/10.5194/egusphere-egu2020-9802, 2020.
With rising demand for increasing the yield potential of agricultural products and for reducing greenhouse gas emissions during food production, strengthening our scientific and technological capacity to monitor crop growth and above ground biomass (AGB) is indispensable to move towards more sustainable management of our agricultural resources. Pivotal to meet this goal is the application of high-throughput field-phenotyping tools such as drone borne Light Detection and Ranging (Lidar) systems for accurate, fine-grained, rapid and labor-saving measurements of vegetation growth parameters. Our objective is to develop and assess a workflow to estimate AGB, leaf area index (LAI), plant height (PH) and volume of a homogeneous and highly dense agricultural field using the capabilities of UAV-Lidar technology. The experimental site is located in Denmark and populated by potato plants. Aerial campaigns and field experiments, including destructive biomass sampling and measurements of LAI and plants’ geometrical characteristics at 1m2 square plots, were performed once per month during the vegetation growth period (May–September 2019). The high resolution (3.6 cm) Canopy Height model (CHM) is generated by first evaluating the performance of different filtering algorithms that separate the ground points from the Lidar-derived point cloud datasets. To extract the geometrical parameters of individual crop plants, we delineate the CHM by applying segmentation directly to the Lidar point cloud rather than segmenting the CHM as an interpolated raster surface. The PH obtained by the Lidar scanner is highly correlated with the field-measured PH (R²=0.89 and RMSE=0.028 m) implying that the point cloud data processing evaluated here is efficient and able to generate serviceably accurate CHMs for agricultural sites with similar vegetation structures. Throughout the observed vegetation growth period, the AGB can be quantified with high accuracy when it is considered to be a function of plant volume (R²=0.81 and RMSE=31.65 %) rather than a function of PH, as the latter approximating an exponential relationship with AGB. Height and density Lidar metrics were more effective in predicting in situ LAI measurements in comparison with remotely sensed LAI calculated directly from Lidar vegetation points following the Beer Lambert law. The predictive frameworks emerging from this approach indicate the applicability of drone borne Lidar systems for obtaining agricultural crop growth parameters in both high spatial and temporal resolution.
How to cite: Trepekli, K., Westergaard-Nielsen, A., and Friborg, T.: Application of drone borne LiDAR technology for monitoring agricultural biomass and plant growth., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9802, https://doi.org/10.5194/egusphere-egu2020-9802, 2020.
EGU2020-13335 | Displays | BG2.3
Classification of Paddy Fields using Convolutional Neural Network with MODIS imagery in Northeast AsiaSeungtaek Jeong, Jonghan Ko, Gwanyong Jeong, and Myungjin Choi
A satellite image-based classification for crop types can provide information on an arable land area and its changes over time. The classified information is also useful as a base dataset for various geospatial projects to retrieve crop growth and production processes for a wide area. Convolutional neural network (CNN) algorithms based on a deep neural network technique have been frequently applied for land cover classification using satellite images with a high spatial resolution, producing consistent classification outcomes. However, it is still challenging to adopt the coarse resolution images such as Moderate Resolution Imaging Spectroradiometer (MODIS) for classification purposes mainly because of uncertainty from mixed pixels, which can cause difficulty in collecting and labeling actual land cover data. Nevertheless, using coarse images is a very efficient approach for obtaining high temporal and continuous land spectral information for comparatively extensive areas (e.g., those at national and continental scales). In this study, we will classify paddy fields applying a CNN algorithm to MODIS images in Northeast Asia. Time series features of vegetation indices that appear only in paddy fields will be created as 2-dimensional images to use inputs for the classification algorithm. We will use reference land cover maps with a high spatial resolution in Korea and Japan as training and test datasets, employing identified data in person for validation. The current research effort would propose that the CNN-based classification approach using coarse spatial resolution images could have its applicability and reliability for the land cover classification process at a continental scale, providing a direction of its solution for the cause of errors in satellite images with a low spatial resolution.
How to cite: Jeong, S., Ko, J., Jeong, G., and Choi, M.: Classification of Paddy Fields using Convolutional Neural Network with MODIS imagery in Northeast Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13335, https://doi.org/10.5194/egusphere-egu2020-13335, 2020.
A satellite image-based classification for crop types can provide information on an arable land area and its changes over time. The classified information is also useful as a base dataset for various geospatial projects to retrieve crop growth and production processes for a wide area. Convolutional neural network (CNN) algorithms based on a deep neural network technique have been frequently applied for land cover classification using satellite images with a high spatial resolution, producing consistent classification outcomes. However, it is still challenging to adopt the coarse resolution images such as Moderate Resolution Imaging Spectroradiometer (MODIS) for classification purposes mainly because of uncertainty from mixed pixels, which can cause difficulty in collecting and labeling actual land cover data. Nevertheless, using coarse images is a very efficient approach for obtaining high temporal and continuous land spectral information for comparatively extensive areas (e.g., those at national and continental scales). In this study, we will classify paddy fields applying a CNN algorithm to MODIS images in Northeast Asia. Time series features of vegetation indices that appear only in paddy fields will be created as 2-dimensional images to use inputs for the classification algorithm. We will use reference land cover maps with a high spatial resolution in Korea and Japan as training and test datasets, employing identified data in person for validation. The current research effort would propose that the CNN-based classification approach using coarse spatial resolution images could have its applicability and reliability for the land cover classification process at a continental scale, providing a direction of its solution for the cause of errors in satellite images with a low spatial resolution.
How to cite: Jeong, S., Ko, J., Jeong, G., and Choi, M.: Classification of Paddy Fields using Convolutional Neural Network with MODIS imagery in Northeast Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13335, https://doi.org/10.5194/egusphere-egu2020-13335, 2020.
EGU2020-18406 | Displays | BG2.3
Optimizing hybrid retrieval strategies for crop attribute retrieval using hyperspectral UAV dataAsmaa Abdelbaki, Martin schlerf, Jochem Verrelst, and Thomas Udelhoven
Unmanned aerial vehicle-based (UAV) hyperspectral imagery is of great significance to estimate crop attributes at a landscape scale, which is required for many environmental and agricultural applications. Multiple methods have been proposed such as empirical regression, radiative transfer, and hybrid models to derive target information (leaf area index (LAI), canopy chlorophyll content (CCC), and fractional vegetation cover (fCover)). Yet, it remains a challenge to select the most suitable method, since each method has its respective advantages and disadvantages. In this study, a hybrid strategy is proposed, as it combines the flexibility of regression with the universality of radiative transfer models (RTM) compared to other retrieval methods concerning model accuracy, computational efficiency under varying sample sizes and different levels of artificial noise. Two datasets of canopy spectra were simulated from two types of Look-up-tables (LUTs) for simulating a range of canopy reflectance-based on a set of input parameters from a Soil-Leaf-canopy RTM. The first type (LUTstd) was derived from a set of independent input parameters, while the other type (LUTreg) relied on the variable correlations by using the Cholesky algorithm. The LUTs were used for training linear and non-linear nonparametric regression algorithms for estimating the relevant parameters for characterizing 27 potato plots. Subsequently, the best approach of non-parametric regression methods was applied to UAV-based hyperspectral data for mapping of crop properties.
Results showed for LAI and fCover estimates that the principal component regression, partial least square regression, and least squares regression line (PCR, PLSR and LSLR) outperformed any of machine learning regression algorithms (MLRAs) and LUT inversion approaches. Besides, analysis of multiple LUT sizes ranging from 1000 to 17280 revealed that the 1000 simulations were sufficient for training LUTs. Also, adding 1% of noise to the simulations was adequate to imitate the uncertainty of UAV data. By using the independent ground data for validation, the PCR and PLSR methods yielded the lowest errors (R²= 0.81, NRMSE=11.47% for LUTreg than LUTstd (R²= 0.51, NRMSE= 22.61%). Regarding fCover, the accuracy of linear non-parametric and LUT-inversion approaches in LUTreg (R²=0.75 and NRMSE=14.53% for PLSR and R²= 0.78 and NRMSE=14.37% for LUT inversion based) was increased slightly rather than the results obtained from MLRAs (R²= 0.76 and NRMSE= 14.74% for kernel ridge regression (KRR)). Regarding CCC, the best result was obtained using Random forest of tree bagger (RFTB) and fit ensemble (RFFE) for both LUTs. The accuracy of LUTreg did not improve as much as LUTstd through changing sample sizes (R²= 0.80, NRMSE= 14.71% for LUTreg and R²= 0.81, NRMSE= 13.93% for LUTstd). In terms of processing speed, the linear non-parametric methods were the fastest one as compared to MLRAs (PCR=0.0097 and PLSR=0.013 seconds). In conclusion, compared to the two analyzed hybrid strategies (Linear and non-linear non-parametric regression), the use of LUT-inversion is not recommended for large images because of low prediction accuracy and slow processing speed.
Keywords: SLC model, LUT inversion based, linear non-parametric regression, machine learning, hybrid model, Leaf area index, fractional vegetation cover, leaf and canopy chlorophyll content.
How to cite: Abdelbaki, A., schlerf, M., Verrelst, J., and Udelhoven, T.: Optimizing hybrid retrieval strategies for crop attribute retrieval using hyperspectral UAV data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18406, https://doi.org/10.5194/egusphere-egu2020-18406, 2020.
Unmanned aerial vehicle-based (UAV) hyperspectral imagery is of great significance to estimate crop attributes at a landscape scale, which is required for many environmental and agricultural applications. Multiple methods have been proposed such as empirical regression, radiative transfer, and hybrid models to derive target information (leaf area index (LAI), canopy chlorophyll content (CCC), and fractional vegetation cover (fCover)). Yet, it remains a challenge to select the most suitable method, since each method has its respective advantages and disadvantages. In this study, a hybrid strategy is proposed, as it combines the flexibility of regression with the universality of radiative transfer models (RTM) compared to other retrieval methods concerning model accuracy, computational efficiency under varying sample sizes and different levels of artificial noise. Two datasets of canopy spectra were simulated from two types of Look-up-tables (LUTs) for simulating a range of canopy reflectance-based on a set of input parameters from a Soil-Leaf-canopy RTM. The first type (LUTstd) was derived from a set of independent input parameters, while the other type (LUTreg) relied on the variable correlations by using the Cholesky algorithm. The LUTs were used for training linear and non-linear nonparametric regression algorithms for estimating the relevant parameters for characterizing 27 potato plots. Subsequently, the best approach of non-parametric regression methods was applied to UAV-based hyperspectral data for mapping of crop properties.
Results showed for LAI and fCover estimates that the principal component regression, partial least square regression, and least squares regression line (PCR, PLSR and LSLR) outperformed any of machine learning regression algorithms (MLRAs) and LUT inversion approaches. Besides, analysis of multiple LUT sizes ranging from 1000 to 17280 revealed that the 1000 simulations were sufficient for training LUTs. Also, adding 1% of noise to the simulations was adequate to imitate the uncertainty of UAV data. By using the independent ground data for validation, the PCR and PLSR methods yielded the lowest errors (R²= 0.81, NRMSE=11.47% for LUTreg than LUTstd (R²= 0.51, NRMSE= 22.61%). Regarding fCover, the accuracy of linear non-parametric and LUT-inversion approaches in LUTreg (R²=0.75 and NRMSE=14.53% for PLSR and R²= 0.78 and NRMSE=14.37% for LUT inversion based) was increased slightly rather than the results obtained from MLRAs (R²= 0.76 and NRMSE= 14.74% for kernel ridge regression (KRR)). Regarding CCC, the best result was obtained using Random forest of tree bagger (RFTB) and fit ensemble (RFFE) for both LUTs. The accuracy of LUTreg did not improve as much as LUTstd through changing sample sizes (R²= 0.80, NRMSE= 14.71% for LUTreg and R²= 0.81, NRMSE= 13.93% for LUTstd). In terms of processing speed, the linear non-parametric methods were the fastest one as compared to MLRAs (PCR=0.0097 and PLSR=0.013 seconds). In conclusion, compared to the two analyzed hybrid strategies (Linear and non-linear non-parametric regression), the use of LUT-inversion is not recommended for large images because of low prediction accuracy and slow processing speed.
Keywords: SLC model, LUT inversion based, linear non-parametric regression, machine learning, hybrid model, Leaf area index, fractional vegetation cover, leaf and canopy chlorophyll content.
How to cite: Abdelbaki, A., schlerf, M., Verrelst, J., and Udelhoven, T.: Optimizing hybrid retrieval strategies for crop attribute retrieval using hyperspectral UAV data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18406, https://doi.org/10.5194/egusphere-egu2020-18406, 2020.
EGU2020-20286 | Displays | BG2.3
Cropland expansion and productivity reduction in Malawi monitored by using Satellite dataChengxiu Li and Jadu Dash
With rising demand for food in Sub-Saharan Africa (SSA), cropland expansion represents the main strategy to boost agricultural production. However, cropland expansion is not a sustainable form of agricultural development as there is limited arable land and increasing soil degradation in SSA. Cropland expansion needs to be monitored in order to focus intervention and propose alternatives. In this study, we monitor agriculture expansion over the past decades across Malawi using Landsat satellite data and explore factors that can explain expansion using Malawi integrated household survey data. The preliminary results showed that cropland expansion has widely occurred across the country, and the newly expanded croplands have higher productivity compared to the croplands with long cultivation history. We also found that estate agricultural land contributes to 40% of the expanded area and the level of irrigation is negatively correlated to expansion, being the dominant factors that are associated with expansion in Malawi. The results will further help to offer localized information for policy making and to develop strategies for conserving land.
How to cite: Li, C. and Dash, J.: Cropland expansion and productivity reduction in Malawi monitored by using Satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20286, https://doi.org/10.5194/egusphere-egu2020-20286, 2020.
With rising demand for food in Sub-Saharan Africa (SSA), cropland expansion represents the main strategy to boost agricultural production. However, cropland expansion is not a sustainable form of agricultural development as there is limited arable land and increasing soil degradation in SSA. Cropland expansion needs to be monitored in order to focus intervention and propose alternatives. In this study, we monitor agriculture expansion over the past decades across Malawi using Landsat satellite data and explore factors that can explain expansion using Malawi integrated household survey data. The preliminary results showed that cropland expansion has widely occurred across the country, and the newly expanded croplands have higher productivity compared to the croplands with long cultivation history. We also found that estate agricultural land contributes to 40% of the expanded area and the level of irrigation is negatively correlated to expansion, being the dominant factors that are associated with expansion in Malawi. The results will further help to offer localized information for policy making and to develop strategies for conserving land.
How to cite: Li, C. and Dash, J.: Cropland expansion and productivity reduction in Malawi monitored by using Satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20286, https://doi.org/10.5194/egusphere-egu2020-20286, 2020.
EGU2020-20800 | Displays | BG2.3
Winter wheat growth dynamics and their relationship with the field productivity using Sentinel-1 SAR polarimetryNikolaos-Christos Vavlas, Toby Waine, Jeroen Meersmans, and Goetz Richter
Synthetic Aperture Radar (SAR) is sensitive to the surface structure as well as dielectric properties, so can be used to quantify the canopy characteristics and surface moisture. High temporal frequency SAR backscatter data are useful in terms of quantifying crop phenological development, growth and yield formation. The aim of this research is to identify the growth dynamics of winter wheat from SAR at field scale, validated using farm sites with different productivity between two years (2018-2019). We identify and explore the parameters which characterize crop performance from SAR temporal curves and use these to improve and automate the monitoring of wheat fields. Our novel methodology includes the extraction of crop indicators using the VH/VV ratio temporal curve from Sentinel-1. Sigmoid curve fitting is used to simulate the VH/VV response and the extracted parameters are related to the field development. The results show that specific indicators, such as the duration of the high vegetation (stem elongation to dough development) as well as the timing of the booting stage of wheat significantly correlate with the final yield. Other indicators can provide information about the canopy characteristics of wheat (e.g. above ground biomass and plant water content). The combination of selected indicators can provide a more robust analysis of the fields. These results demonstrate the potential of SAR to remotely quantify yield without using any management data from the farm.
How to cite: Vavlas, N.-C., Waine, T., Meersmans, J., and Richter, G.: Winter wheat growth dynamics and their relationship with the field productivity using Sentinel-1 SAR polarimetry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20800, https://doi.org/10.5194/egusphere-egu2020-20800, 2020.
Synthetic Aperture Radar (SAR) is sensitive to the surface structure as well as dielectric properties, so can be used to quantify the canopy characteristics and surface moisture. High temporal frequency SAR backscatter data are useful in terms of quantifying crop phenological development, growth and yield formation. The aim of this research is to identify the growth dynamics of winter wheat from SAR at field scale, validated using farm sites with different productivity between two years (2018-2019). We identify and explore the parameters which characterize crop performance from SAR temporal curves and use these to improve and automate the monitoring of wheat fields. Our novel methodology includes the extraction of crop indicators using the VH/VV ratio temporal curve from Sentinel-1. Sigmoid curve fitting is used to simulate the VH/VV response and the extracted parameters are related to the field development. The results show that specific indicators, such as the duration of the high vegetation (stem elongation to dough development) as well as the timing of the booting stage of wheat significantly correlate with the final yield. Other indicators can provide information about the canopy characteristics of wheat (e.g. above ground biomass and plant water content). The combination of selected indicators can provide a more robust analysis of the fields. These results demonstrate the potential of SAR to remotely quantify yield without using any management data from the farm.
How to cite: Vavlas, N.-C., Waine, T., Meersmans, J., and Richter, G.: Winter wheat growth dynamics and their relationship with the field productivity using Sentinel-1 SAR polarimetry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20800, https://doi.org/10.5194/egusphere-egu2020-20800, 2020.
BG2.5 – Quality of stable isotope data - Methods and tools for producing high quality data.
EGU2020-9674 | Displays | BG2.5
A global compilation of known-origin keratin hydrogen and oxygen isotope data for wildlife and forensic researchSarah Magozzi, Andrea Contina, Michael Wunder, Hannah Vander Zanden, and Gabriel Bowen
Variations in stable hydrogen (δ2H) and oxygen (δ18O) isotope ratios have been used in wildlife and forensic applications to infer the provenance of biological tissues by comparing isotopic measurements for unknown samples to geographically indexed measurements or predictions. Tissues composed of the structural protein keratin have been targeted in many systems, leading to a legacy of published data for known-origin samples. An open synthesis of these data would be useful to support broader analysis of keratin isotope patterns across biological systems and as a reference data collection for future studies.
Significant differences in sample preparation and analysis protocols and calibration and normalization approaches among laboratories have created substantial challenges in the integration of these data, however. Here we identify and assess factors that might be limiting comparability of δ2H and δ18O data among laboratories. These include sample type and sampling method, procedure for lipid extraction, whether and how partial exchange of keratin H with atmospheric moisture has been addressed, which laboratory reference materials have been used, drying and handling protocols, analysis method, and quality of chromatography for O isotopic analyses. We compile a list of reference materials (including Utah, USGS, and Saskatoon standards) and their established values, and develop a set of ‘rules’ and corrections to account for differences in processing methods and standards as well as the associated uncertainty. We apply these corrections to more than 2500 known-origin data from the literature and demonstrate that the comparability of isotopic data among laboratories is greatly improved by linking all measurements to the same scales. We highlight both the potential of the harmonized dataset for use in wildlife and forensic research as well as substantial challenges and limitations that remain.
How to cite: Magozzi, S., Contina, A., Wunder, M., Vander Zanden, H., and Bowen, G.: A global compilation of known-origin keratin hydrogen and oxygen isotope data for wildlife and forensic research, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9674, https://doi.org/10.5194/egusphere-egu2020-9674, 2020.
Variations in stable hydrogen (δ2H) and oxygen (δ18O) isotope ratios have been used in wildlife and forensic applications to infer the provenance of biological tissues by comparing isotopic measurements for unknown samples to geographically indexed measurements or predictions. Tissues composed of the structural protein keratin have been targeted in many systems, leading to a legacy of published data for known-origin samples. An open synthesis of these data would be useful to support broader analysis of keratin isotope patterns across biological systems and as a reference data collection for future studies.
Significant differences in sample preparation and analysis protocols and calibration and normalization approaches among laboratories have created substantial challenges in the integration of these data, however. Here we identify and assess factors that might be limiting comparability of δ2H and δ18O data among laboratories. These include sample type and sampling method, procedure for lipid extraction, whether and how partial exchange of keratin H with atmospheric moisture has been addressed, which laboratory reference materials have been used, drying and handling protocols, analysis method, and quality of chromatography for O isotopic analyses. We compile a list of reference materials (including Utah, USGS, and Saskatoon standards) and their established values, and develop a set of ‘rules’ and corrections to account for differences in processing methods and standards as well as the associated uncertainty. We apply these corrections to more than 2500 known-origin data from the literature and demonstrate that the comparability of isotopic data among laboratories is greatly improved by linking all measurements to the same scales. We highlight both the potential of the harmonized dataset for use in wildlife and forensic research as well as substantial challenges and limitations that remain.
How to cite: Magozzi, S., Contina, A., Wunder, M., Vander Zanden, H., and Bowen, G.: A global compilation of known-origin keratin hydrogen and oxygen isotope data for wildlife and forensic research, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9674, https://doi.org/10.5194/egusphere-egu2020-9674, 2020.
EGU2020-11630 | Displays | BG2.5
A novel method to quantify exchangeable hydrogen fraction in organic matterCristian Gudasz, David X. Soto, Tobias Sparrman, and Jan Karlsson
Stable isotope measurements of nonexchangeable hydrogen (δ2Hn) of bulk organic matter has emerged as a tool, with a wide range of applications in biology, biogeochemistry and forensics. However, reproducible and precise measurements of δ2Hn between laboratories and methods are still challenging. One of the largest impediments to obtain accurate isotope ratios is to use reference materials of similar exchangeable hydrogen fraction (fx) to the matrix of interest. The organic matter has typically three pools of hydrogen (H): (i) the adsorbed water, which can be minimized by extensive drying, (ii) the carbon bound H (the fraction of interest), which is non-exchangeable and cannot be removed and (iii) the non-carbon bound H, (i.e. N-, COO-, O-, and S-bound H) that cannot be removed but can be readily exchanged with the environmental moisture. Quantification of fx based on dual water vapor isotope exchange and Isotope Ratio Mass Spectrometry (IRMS) have shown large variability in fx between studies for the same organic matter type such as keratin. High variability in fx between samples and standards can translate into a large impact on the measured isotopic values. Here we used a novel approach to independently quantify fx in 21 natural organic material sources with minimal sample manipulation based on 1H-2H exchange experiments and quantified through proton based liquid-state nuclear magnetic resonance (1H-NMR) spectroscopy. The experiments were carried out at room temperature by immersing separate solid powdered samples in deuterated dimethylsulfoxide (background) and deuterium oxide (2H source) followed by the quantification of the water generated in the supernatant fraction through 1H-NMR using glucose as reference. At the same time, samples were analyzed through the most recent procedure of dual water vapor isotope equilibration method using online drying and equilibration in a UniPrep carousel. We discuss these findings and suggest that the proposed 1H-NMR method of quantifying fx is an independent and novel approach that can contribute to a better understanding of H exchangeability in a wider range of organic materials, critical for accurate measurement of the δ2Hn.
How to cite: Gudasz, C., Soto, D. X., Sparrman, T., and Karlsson, J.: A novel method to quantify exchangeable hydrogen fraction in organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11630, https://doi.org/10.5194/egusphere-egu2020-11630, 2020.
Stable isotope measurements of nonexchangeable hydrogen (δ2Hn) of bulk organic matter has emerged as a tool, with a wide range of applications in biology, biogeochemistry and forensics. However, reproducible and precise measurements of δ2Hn between laboratories and methods are still challenging. One of the largest impediments to obtain accurate isotope ratios is to use reference materials of similar exchangeable hydrogen fraction (fx) to the matrix of interest. The organic matter has typically three pools of hydrogen (H): (i) the adsorbed water, which can be minimized by extensive drying, (ii) the carbon bound H (the fraction of interest), which is non-exchangeable and cannot be removed and (iii) the non-carbon bound H, (i.e. N-, COO-, O-, and S-bound H) that cannot be removed but can be readily exchanged with the environmental moisture. Quantification of fx based on dual water vapor isotope exchange and Isotope Ratio Mass Spectrometry (IRMS) have shown large variability in fx between studies for the same organic matter type such as keratin. High variability in fx between samples and standards can translate into a large impact on the measured isotopic values. Here we used a novel approach to independently quantify fx in 21 natural organic material sources with minimal sample manipulation based on 1H-2H exchange experiments and quantified through proton based liquid-state nuclear magnetic resonance (1H-NMR) spectroscopy. The experiments were carried out at room temperature by immersing separate solid powdered samples in deuterated dimethylsulfoxide (background) and deuterium oxide (2H source) followed by the quantification of the water generated in the supernatant fraction through 1H-NMR using glucose as reference. At the same time, samples were analyzed through the most recent procedure of dual water vapor isotope equilibration method using online drying and equilibration in a UniPrep carousel. We discuss these findings and suggest that the proposed 1H-NMR method of quantifying fx is an independent and novel approach that can contribute to a better understanding of H exchangeability in a wider range of organic materials, critical for accurate measurement of the δ2Hn.
How to cite: Gudasz, C., Soto, D. X., Sparrman, T., and Karlsson, J.: A novel method to quantify exchangeable hydrogen fraction in organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11630, https://doi.org/10.5194/egusphere-egu2020-11630, 2020.
EGU2020-18841 | Displays | BG2.5
SIMS- and IRMS-based study of apatite reference materials reveals new analytical challenges for oxygen isotope analysisAlicja Wudarska, Michael Wiedenbeck, Ewa Słaby, Chris Harris, Michael M. Joachimski, Christophe Lécuyer, Kenneth G. MacLeod, Andreas Pack, Torsten Vennemann, Frédéric Couffignal, Johannes Glodny, Christof Kusebauch, Małgorzata Lempart, Yadong Sun, and Franziska Wilke
Minerals of the apatite group, especially hydroxylapatite Ca5(PO4)3OH, are valuable archives for reconstructing environmental conditions occurring throughout the Earth’s history (e.g., Joachimski et al. 2009). Apatite oxygen isotope compositions have proved useful in studies of conodonts as well as fish and mammalian teeth and bones. Secondary ion mass spectrometry (SIMS) is a rapid and precise technique that enables the investigation of small and heterogeneous samples. However, this method is constrained by the availability of matrix-matched reference materials (RMs). The most commonly used RM for calibrating δ18O phosphate SIMS measurements – Durango apatite – has been found to be heterogeneous (Sun et al. 2016); therefore, we have undertaken this study, in which we have characterized a new suite of RMs for oxygen isotope analyses of apatite. Four potential apatite RMs obtained from various sources were assessed for 18O/16O homogeneity using SIMS. The major and trace element compositions were determined by electron probe microanalyses (FE-EPMA), while the contents of OH- and CO32- were assessed using thermogravimetric analysis (TG) and infrared spectroscopy (IR). The δ18O reference values have now been determined in six independent laboratories using isotope ratio mass spectrometry (IRMS) and applying different analytical protocols, which fall into two groups: laser fluorination and high-temperature reduction of Ag3PO4. The first method provides the information on “bulk” oxygen compositions, while the second determines the composition of phosphate-bound oxygen. The repeatability of SIMS measurements on random crystal fragments was better than 0.25‰ (1 standard deviation, 1s) for the different RMs, confirming good homogeneity at the nanogram scale. The IRMS-determined δ18OSMOW values, which fall between ~5 and ~22‰ for the different samples, cover almost the full range of compositions found in igneous, metamorphic and biogenic apatite samples. However, the IRMS data collected using different techniques show offsets of ~1-2‰. The δ18O values obtained using laser fluorination are, in most cases, lower than those acquired by high-temperature reduction. Furthermore, the data collected within each group of IRMS methods reveal differences between laboratories, which do not correlate with the chemical composition of the apatite crystals. This suggests a more complex behavior of apatite during sample processing for conventional δ18O analyses as compared to other minerals such as tourmaline, and highlights the importance of the characterization of RMs with the support of multiple laboratories applying different protocols.
This research was partially funded by the Polish NCN grant no. 2013/11/B/ST10/04753 and the IGS PAS grant for the early career researchers as well as supported by the COST Action TD 1308 “ORIGINS” and the German Academic Exchange Service (DAAD).
References
Joachimski et al. 2009. Earth and Planetary Science Letters, 284, 599-609. doi: 10.1016/j.epsl.2009.05.028
Sun et al. 2016. Chemical Geology, 440, 164-178. doi: 10.1016/j.chemgeo.2016.07.013
How to cite: Wudarska, A., Wiedenbeck, M., Słaby, E., Harris, C., Joachimski, M. M., Lécuyer, C., MacLeod, K. G., Pack, A., Vennemann, T., Couffignal, F., Glodny, J., Kusebauch, C., Lempart, M., Sun, Y., and Wilke, F.: SIMS- and IRMS-based study of apatite reference materials reveals new analytical challenges for oxygen isotope analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18841, https://doi.org/10.5194/egusphere-egu2020-18841, 2020.
Minerals of the apatite group, especially hydroxylapatite Ca5(PO4)3OH, are valuable archives for reconstructing environmental conditions occurring throughout the Earth’s history (e.g., Joachimski et al. 2009). Apatite oxygen isotope compositions have proved useful in studies of conodonts as well as fish and mammalian teeth and bones. Secondary ion mass spectrometry (SIMS) is a rapid and precise technique that enables the investigation of small and heterogeneous samples. However, this method is constrained by the availability of matrix-matched reference materials (RMs). The most commonly used RM for calibrating δ18O phosphate SIMS measurements – Durango apatite – has been found to be heterogeneous (Sun et al. 2016); therefore, we have undertaken this study, in which we have characterized a new suite of RMs for oxygen isotope analyses of apatite. Four potential apatite RMs obtained from various sources were assessed for 18O/16O homogeneity using SIMS. The major and trace element compositions were determined by electron probe microanalyses (FE-EPMA), while the contents of OH- and CO32- were assessed using thermogravimetric analysis (TG) and infrared spectroscopy (IR). The δ18O reference values have now been determined in six independent laboratories using isotope ratio mass spectrometry (IRMS) and applying different analytical protocols, which fall into two groups: laser fluorination and high-temperature reduction of Ag3PO4. The first method provides the information on “bulk” oxygen compositions, while the second determines the composition of phosphate-bound oxygen. The repeatability of SIMS measurements on random crystal fragments was better than 0.25‰ (1 standard deviation, 1s) for the different RMs, confirming good homogeneity at the nanogram scale. The IRMS-determined δ18OSMOW values, which fall between ~5 and ~22‰ for the different samples, cover almost the full range of compositions found in igneous, metamorphic and biogenic apatite samples. However, the IRMS data collected using different techniques show offsets of ~1-2‰. The δ18O values obtained using laser fluorination are, in most cases, lower than those acquired by high-temperature reduction. Furthermore, the data collected within each group of IRMS methods reveal differences between laboratories, which do not correlate with the chemical composition of the apatite crystals. This suggests a more complex behavior of apatite during sample processing for conventional δ18O analyses as compared to other minerals such as tourmaline, and highlights the importance of the characterization of RMs with the support of multiple laboratories applying different protocols.
This research was partially funded by the Polish NCN grant no. 2013/11/B/ST10/04753 and the IGS PAS grant for the early career researchers as well as supported by the COST Action TD 1308 “ORIGINS” and the German Academic Exchange Service (DAAD).
References
Joachimski et al. 2009. Earth and Planetary Science Letters, 284, 599-609. doi: 10.1016/j.epsl.2009.05.028
Sun et al. 2016. Chemical Geology, 440, 164-178. doi: 10.1016/j.chemgeo.2016.07.013
How to cite: Wudarska, A., Wiedenbeck, M., Słaby, E., Harris, C., Joachimski, M. M., Lécuyer, C., MacLeod, K. G., Pack, A., Vennemann, T., Couffignal, F., Glodny, J., Kusebauch, C., Lempart, M., Sun, Y., and Wilke, F.: SIMS- and IRMS-based study of apatite reference materials reveals new analytical challenges for oxygen isotope analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18841, https://doi.org/10.5194/egusphere-egu2020-18841, 2020.
EGU2020-22332 | Displays | BG2.5
Upcoming food matrix stable isotope reference materials from the USGS: honeys, vegetable oils, flours, and collagensNives Ogrinc, Arndt Schimmelmann, Haiping Qi, Federica Camin, Luana Bontempo, Doris Potočnik, Aiman Abrahim, Andrew Cannavan, James F. Carter, Philip J.H. Dunn, Lauren T. Reid, and Tyler B. Coplen
An international project developed, quality-tested, and measured isotope−delta values of 10 new food matrix reference materials (RMs) for hydrogen, carbon, nitrogen, oxygen, and sulfur stable isotope-ratio measurements to support food authenticity testing and food provenance verification. These new RMs will enable users to normalize measurements of samples to isotope−delta scales. The RMs span a range of δ2HVSMOW values from −207.4 to −43.3 mUr or ‰, for δ13CVPDB from −30.60 to −13.72 mUr, for δ15Nair from +1.78 to +14.96 mUr, for δ18OVSMOW from +18.20 to +26.33 mUr, and for δ34SVCDT from −20.25 to +17.49 mUr. The RMs include (i) a pair of honeys from Canada and tropical Vietnam, (ii) flours from C3 (rice) and C4 (millet) plants, (iii) four vegetable oils from C3 (olive, peanut) and C4 (corn) plants, and (iv) collagen powders from marine fish and terrestrial mammal origins. After thorough homogenization of the bulk materials, multiple aliquots were sealed in glass under vacuum or noble gas to exclude oxygen and to potentially extend the shelf life to decades when stored at –18 °C in the dark. A total of six laboratories from five countries used various analytical approaches and instrumentation for two- or multiple-point isotopic normalization against international RMs. The use of reference waters and organic liquids in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment, minimizing interference from atmospheric moisture. An errors-in-variables regression model that included the uncertainty associated with the measured and assigned values of the RMs was applied centrally to normalize results and obtain consensus values and measurement uncertainties reported here for new RMs USGS82 to USGS91. Because of exchangeable hydrogen and H2O in some RMs (especially in honeys, collagens, and flours), sample loading in contact with laboratory air and different types of pre-treatment can result in significant bulk δ2H variance. Utilization of these new RMs should foster mutual compatibility of δ2H values if harmonized technical/analytical approaches are followed and documented in data reports.
How to cite: Ogrinc, N., Schimmelmann, A., Qi, H., Camin, F., Bontempo, L., Potočnik, D., Abrahim, A., Cannavan, A., Carter, J. F., Dunn, P. J. H., Reid, L. T., and Coplen, T. B.: Upcoming food matrix stable isotope reference materials from the USGS: honeys, vegetable oils, flours, and collagens, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22332, https://doi.org/10.5194/egusphere-egu2020-22332, 2020.
An international project developed, quality-tested, and measured isotope−delta values of 10 new food matrix reference materials (RMs) for hydrogen, carbon, nitrogen, oxygen, and sulfur stable isotope-ratio measurements to support food authenticity testing and food provenance verification. These new RMs will enable users to normalize measurements of samples to isotope−delta scales. The RMs span a range of δ2HVSMOW values from −207.4 to −43.3 mUr or ‰, for δ13CVPDB from −30.60 to −13.72 mUr, for δ15Nair from +1.78 to +14.96 mUr, for δ18OVSMOW from +18.20 to +26.33 mUr, and for δ34SVCDT from −20.25 to +17.49 mUr. The RMs include (i) a pair of honeys from Canada and tropical Vietnam, (ii) flours from C3 (rice) and C4 (millet) plants, (iii) four vegetable oils from C3 (olive, peanut) and C4 (corn) plants, and (iv) collagen powders from marine fish and terrestrial mammal origins. After thorough homogenization of the bulk materials, multiple aliquots were sealed in glass under vacuum or noble gas to exclude oxygen and to potentially extend the shelf life to decades when stored at –18 °C in the dark. A total of six laboratories from five countries used various analytical approaches and instrumentation for two- or multiple-point isotopic normalization against international RMs. The use of reference waters and organic liquids in silver tubes allowed direct normalization of δ2H values of organic materials against isotopic reference waters following the principle of identical treatment, minimizing interference from atmospheric moisture. An errors-in-variables regression model that included the uncertainty associated with the measured and assigned values of the RMs was applied centrally to normalize results and obtain consensus values and measurement uncertainties reported here for new RMs USGS82 to USGS91. Because of exchangeable hydrogen and H2O in some RMs (especially in honeys, collagens, and flours), sample loading in contact with laboratory air and different types of pre-treatment can result in significant bulk δ2H variance. Utilization of these new RMs should foster mutual compatibility of δ2H values if harmonized technical/analytical approaches are followed and documented in data reports.
How to cite: Ogrinc, N., Schimmelmann, A., Qi, H., Camin, F., Bontempo, L., Potočnik, D., Abrahim, A., Cannavan, A., Carter, J. F., Dunn, P. J. H., Reid, L. T., and Coplen, T. B.: Upcoming food matrix stable isotope reference materials from the USGS: honeys, vegetable oils, flours, and collagens, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22332, https://doi.org/10.5194/egusphere-egu2020-22332, 2020.
EGU2020-22653 | Displays | BG2.5
LAC-IC 2018: Evaluation of the first IAEA regional water δ¹⁸O/δ²H interlaboratory comparison exerciseStefan Terzer-Wassmuth, Lucia Ortega, Luis Araguas-Araguas, and Leonard I. Wassenaar
Throughout the past decades, δ¹⁸O and δ²H of the water molecule have been widely used as tracers in the hydrological and climatological sciences. Until the late 2000s, isotope-ratio mass spectrometry was the only available analytical technology, with associated capital investments, operating expenditures and human resource and infrastructure requirements. The advent of laser spectrometric techniques during the last decade has reduced most of these requirements and enabled a great number of research groups to conduct their own analyses rather than contracting these out. This is a crucial advance especially for countries where resources to operate mass spectrometry laboratories are limited and has resulted in a boost of the usage of δ¹⁸O and δ²H in research and applied water management. However, the rapid proliferation of laser spectrometers has raised occasional QA/QC concerns about the data resulting from such laboratories, which is not only to the detriment of the research groups concerned, but also to the science and analytical technology as such.
To address these concerns, we organized a geographically constrained laboratory intercomparison exercise involving 25 laboratories with δ¹⁸O and δ²H analytical capabilities in the Latin American and Caribbean (LAC) region. The exercise was preceded by a survey questionnaire which provided information on the instrumentation, reference materials, data processing techniques and QA/QC approaches, as well as a self-assessment of the available human resources for δ¹⁸O and δ²H analysis. Consecutively, three test samples were provided to the laboratories, and results collected in a template form. We used z-scores to assess performance per sample and aggregated to laboratory level, with a fairly tight standard deviation of the proficiency test of 0.1 ‰ for δ¹⁸O and 0.8 ‰ for δ²H, which we deemed fit for purpose in hydrological investigations. Laboratory performance was ranked as satisfactory if z<2, questionable if 2≤z<3 and unsatisfactory if z≥3. After the deadline, all laboratories received an individual performance report.
Our results show that: (i) that 90% of the submissions were measured by laser spectrometry; (ii) for δ²H, 80% of the laboratories submitted satisfactory results (10% questionable) and (iii) for δ¹⁸O the results were more variable resulting in 50% satisfactory and 35% questionable submissions. We therefore conclude that most laboratories in the region can provide δ²H results that are fit for purpose, however with quite some margin for improvement in δ¹⁸O. This may be explainable in part by the technical challenges of δ¹⁸O assays on laser spectrometers compared to δ²H (e.g. dependency of δ¹⁸O on the H₂O concentration). We attempted to identify key factors of good and poor performance; however, on the fairly small number of participants, no obvious causes could be identified. There are indications that commonly known questionable practices may negatively influence performance, with the reasons for that (lack of resources or access thereto, inadequate training or awareness) to be determined.
How to cite: Terzer-Wassmuth, S., Ortega, L., Araguas-Araguas, L., and Wassenaar, L. I.: LAC-IC 2018: Evaluation of the first IAEA regional water δ¹⁸O/δ²H interlaboratory comparison exercise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22653, https://doi.org/10.5194/egusphere-egu2020-22653, 2020.
Throughout the past decades, δ¹⁸O and δ²H of the water molecule have been widely used as tracers in the hydrological and climatological sciences. Until the late 2000s, isotope-ratio mass spectrometry was the only available analytical technology, with associated capital investments, operating expenditures and human resource and infrastructure requirements. The advent of laser spectrometric techniques during the last decade has reduced most of these requirements and enabled a great number of research groups to conduct their own analyses rather than contracting these out. This is a crucial advance especially for countries where resources to operate mass spectrometry laboratories are limited and has resulted in a boost of the usage of δ¹⁸O and δ²H in research and applied water management. However, the rapid proliferation of laser spectrometers has raised occasional QA/QC concerns about the data resulting from such laboratories, which is not only to the detriment of the research groups concerned, but also to the science and analytical technology as such.
To address these concerns, we organized a geographically constrained laboratory intercomparison exercise involving 25 laboratories with δ¹⁸O and δ²H analytical capabilities in the Latin American and Caribbean (LAC) region. The exercise was preceded by a survey questionnaire which provided information on the instrumentation, reference materials, data processing techniques and QA/QC approaches, as well as a self-assessment of the available human resources for δ¹⁸O and δ²H analysis. Consecutively, three test samples were provided to the laboratories, and results collected in a template form. We used z-scores to assess performance per sample and aggregated to laboratory level, with a fairly tight standard deviation of the proficiency test of 0.1 ‰ for δ¹⁸O and 0.8 ‰ for δ²H, which we deemed fit for purpose in hydrological investigations. Laboratory performance was ranked as satisfactory if z<2, questionable if 2≤z<3 and unsatisfactory if z≥3. After the deadline, all laboratories received an individual performance report.
Our results show that: (i) that 90% of the submissions were measured by laser spectrometry; (ii) for δ²H, 80% of the laboratories submitted satisfactory results (10% questionable) and (iii) for δ¹⁸O the results were more variable resulting in 50% satisfactory and 35% questionable submissions. We therefore conclude that most laboratories in the region can provide δ²H results that are fit for purpose, however with quite some margin for improvement in δ¹⁸O. This may be explainable in part by the technical challenges of δ¹⁸O assays on laser spectrometers compared to δ²H (e.g. dependency of δ¹⁸O on the H₂O concentration). We attempted to identify key factors of good and poor performance; however, on the fairly small number of participants, no obvious causes could be identified. There are indications that commonly known questionable practices may negatively influence performance, with the reasons for that (lack of resources or access thereto, inadequate training or awareness) to be determined.
How to cite: Terzer-Wassmuth, S., Ortega, L., Araguas-Araguas, L., and Wassenaar, L. I.: LAC-IC 2018: Evaluation of the first IAEA regional water δ¹⁸O/δ²H interlaboratory comparison exercise, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22653, https://doi.org/10.5194/egusphere-egu2020-22653, 2020.
EGU2020-22506 | Displays | BG2.5
Consistent data compilation and error propagation for stable isotope data to compile meaningful reference values and uncertaintiesManfred Groening
Nowadays stable isotope data need to be accompanied by meaningful uncertainty statements for their full utilisation, whether to evaluate their isotopic composition as evidence for origin of samples, for observation and proper evaluation of small isotopic trends due to transient effects, or to their use as laboratory standards. The Guide of Expression of Uncertainty in Measurements (GUM) provides a general framework to perform the task to calculate data with combined standard uncertainties. However, combining several such measurement data in a proper way is not straightforward without consideration of the correlation matrix and mathematical complicated elaborations. An Excel based tool provides means for any laboratory to calculate individual data with their associated combined standard uncertainties, including all major sources of uncertainty like the repeatability and long-term reproducibility of measurements, the possible bias of quality controls, the assigned uncertainty of used reference materials and their measurement data scatter. The tool further allows to calculate and correct memory effects and drifts as occurring in measurements. Standardised correction means allow the merging of data from different instruments with varying performance. This provides ultimately the means to combine such data without compromising the validity of the calculated combined standard uncertainty of the average value. This constitutes the possibility to produce a meaningful reference value with associated combined standard uncertainty from heterogeneous data, e.g. for the purpose to characterize a laboratory reference material by use of independent methods. The tool (SICalib) is available free of charge, is based on Excel macros as a standalone tool for measured rawdata files without the requirement of any particular database or other tool, and is still under further development. Its intention is complementary to available data management systems with a focus of proper uncertainty propagation.
How to cite: Groening, M.: Consistent data compilation and error propagation for stable isotope data to compile meaningful reference values and uncertainties , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22506, https://doi.org/10.5194/egusphere-egu2020-22506, 2020.
Nowadays stable isotope data need to be accompanied by meaningful uncertainty statements for their full utilisation, whether to evaluate their isotopic composition as evidence for origin of samples, for observation and proper evaluation of small isotopic trends due to transient effects, or to their use as laboratory standards. The Guide of Expression of Uncertainty in Measurements (GUM) provides a general framework to perform the task to calculate data with combined standard uncertainties. However, combining several such measurement data in a proper way is not straightforward without consideration of the correlation matrix and mathematical complicated elaborations. An Excel based tool provides means for any laboratory to calculate individual data with their associated combined standard uncertainties, including all major sources of uncertainty like the repeatability and long-term reproducibility of measurements, the possible bias of quality controls, the assigned uncertainty of used reference materials and their measurement data scatter. The tool further allows to calculate and correct memory effects and drifts as occurring in measurements. Standardised correction means allow the merging of data from different instruments with varying performance. This provides ultimately the means to combine such data without compromising the validity of the calculated combined standard uncertainty of the average value. This constitutes the possibility to produce a meaningful reference value with associated combined standard uncertainty from heterogeneous data, e.g. for the purpose to characterize a laboratory reference material by use of independent methods. The tool (SICalib) is available free of charge, is based on Excel macros as a standalone tool for measured rawdata files without the requirement of any particular database or other tool, and is still under further development. Its intention is complementary to available data management systems with a focus of proper uncertainty propagation.
How to cite: Groening, M.: Consistent data compilation and error propagation for stable isotope data to compile meaningful reference values and uncertainties , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22506, https://doi.org/10.5194/egusphere-egu2020-22506, 2020.
EGU2020-22382 | Displays | BG2.5
Traceability in isotope ratio measurements: the role of data analysisJuris Meija
Isotope ratios offer countless applications but almost as a rule precision measurements are required. Making use of such measurements involves comparison of the results between the laboratories which, in turn, requires international primary standards. Much less appreciated is the role of data analysis and measurement models. This presentation will feature a variety of examples of stable isotope ratio measurements, including light and heavy elements with examples from the redefinition of the kilogram, lead-lead dating, and carbon isotope delta reference scales, showing that choices on how we interpret and model our measurements can affect the traceability and comparability of isotope ratio measurements. The challenge is therefore for the analysts to recognize data analysis practices as a natural part of the measurement.
How to cite: Meija, J.: Traceability in isotope ratio measurements: the role of data analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22382, https://doi.org/10.5194/egusphere-egu2020-22382, 2020.
Isotope ratios offer countless applications but almost as a rule precision measurements are required. Making use of such measurements involves comparison of the results between the laboratories which, in turn, requires international primary standards. Much less appreciated is the role of data analysis and measurement models. This presentation will feature a variety of examples of stable isotope ratio measurements, including light and heavy elements with examples from the redefinition of the kilogram, lead-lead dating, and carbon isotope delta reference scales, showing that choices on how we interpret and model our measurements can affect the traceability and comparability of isotope ratio measurements. The challenge is therefore for the analysts to recognize data analysis practices as a natural part of the measurement.
How to cite: Meija, J.: Traceability in isotope ratio measurements: the role of data analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22382, https://doi.org/10.5194/egusphere-egu2020-22382, 2020.
EGU2020-20490 | Displays | BG2.5
Pitfalls, questions and solutions when sampling water for stable isotope analyses along complex riverine systemsTraian Brad, Aurel Persoiu, and Artur Ionescu
The second largest city in Romania (Cluj-Napoca) is supplied with drinking water originating from the upper basin of Somesul Mic river (SMR). As part of an ongoing project, we aim to investigate the origin, flow and quality of water consumed in the city by collecting monthly river, lake, tap and groundwater and performing physical, chemical and stable isotope analyses (d18O and d2H in water, and d13C in DIC). However, owing to the different types of water bodies to be sampled and the local climate, with freezing conditions for up to six months in the upper basin, the results of the analyses might indicate time and space specific conditions, rather than the general hydrologic conditions we were targeting. Thus, we have modified our approach, and have devised a secondary sampling strategy in order to address these issues.
We present here a sampling strategy that aims to disentangle between different factors controlling the stable isotope composition of surface waters under different geomorphologic and climatic conditions and minimize the risk of introducing unwanted biases. Briefly, we have sampled water under both freezing and non-freezing conditions from the rivers and lakes along the main trunk of SMR and measured d18O (and d2H) in water, as well as d13C in DIC. Our data shows that the presence of ice strongly affects that stable isotope composition of river and lake water (as a result of strong kinetic processes resulting from the specifics of water solidification) and the results of these measurements are meaningless when trying to understand the connections between the various water bodies. Contrary, d13C in DIC was less affected by the freezing processes, a finding mirrored by the chemical values of the water. However, the later were strongly influenced by local geomorphologic conditions, both in summer and winter. In lakes, sampling at different locations on the surface and at different depths resulted in a wide range of stable isotope ratios for O and H, unrelated to values measured in the inflowing and outflowing streams. Overall, our data suggest that monthly stable isotope values of river and lake water along a flow path are difficult to interpret in terms of residence and transit times and mixing of sources. Thus, in regions where freezing is recurrent, kinetic fractionation processes have a contribution to the “final” stable isotope composition of water that is higher than that resulting from other (hydrological) processes. Contrary, more valuable data was obtained when the stable isotope composition of surface waters was compared with that of precipitation water, allowing for possible identification of moisture sources and pathways feeding the local water bodies. We conclude that in order to generate valuable data, quality control must first start with designing site-specific protocols for sampling and stable isotope analyses of water and factors altering the “sought-for” values should be considered first before interpreting the results.
The IAEA partly supported this study through contract numbers 23870 and 23550. The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract 4/2019 (GROUNDWATERISK).
How to cite: Brad, T., Persoiu, A., and Ionescu, A.: Pitfalls, questions and solutions when sampling water for stable isotope analyses along complex riverine systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20490, https://doi.org/10.5194/egusphere-egu2020-20490, 2020.
The second largest city in Romania (Cluj-Napoca) is supplied with drinking water originating from the upper basin of Somesul Mic river (SMR). As part of an ongoing project, we aim to investigate the origin, flow and quality of water consumed in the city by collecting monthly river, lake, tap and groundwater and performing physical, chemical and stable isotope analyses (d18O and d2H in water, and d13C in DIC). However, owing to the different types of water bodies to be sampled and the local climate, with freezing conditions for up to six months in the upper basin, the results of the analyses might indicate time and space specific conditions, rather than the general hydrologic conditions we were targeting. Thus, we have modified our approach, and have devised a secondary sampling strategy in order to address these issues.
We present here a sampling strategy that aims to disentangle between different factors controlling the stable isotope composition of surface waters under different geomorphologic and climatic conditions and minimize the risk of introducing unwanted biases. Briefly, we have sampled water under both freezing and non-freezing conditions from the rivers and lakes along the main trunk of SMR and measured d18O (and d2H) in water, as well as d13C in DIC. Our data shows that the presence of ice strongly affects that stable isotope composition of river and lake water (as a result of strong kinetic processes resulting from the specifics of water solidification) and the results of these measurements are meaningless when trying to understand the connections between the various water bodies. Contrary, d13C in DIC was less affected by the freezing processes, a finding mirrored by the chemical values of the water. However, the later were strongly influenced by local geomorphologic conditions, both in summer and winter. In lakes, sampling at different locations on the surface and at different depths resulted in a wide range of stable isotope ratios for O and H, unrelated to values measured in the inflowing and outflowing streams. Overall, our data suggest that monthly stable isotope values of river and lake water along a flow path are difficult to interpret in terms of residence and transit times and mixing of sources. Thus, in regions where freezing is recurrent, kinetic fractionation processes have a contribution to the “final” stable isotope composition of water that is higher than that resulting from other (hydrological) processes. Contrary, more valuable data was obtained when the stable isotope composition of surface waters was compared with that of precipitation water, allowing for possible identification of moisture sources and pathways feeding the local water bodies. We conclude that in order to generate valuable data, quality control must first start with designing site-specific protocols for sampling and stable isotope analyses of water and factors altering the “sought-for” values should be considered first before interpreting the results.
The IAEA partly supported this study through contract numbers 23870 and 23550. The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract 4/2019 (GROUNDWATERISK).
How to cite: Brad, T., Persoiu, A., and Ionescu, A.: Pitfalls, questions and solutions when sampling water for stable isotope analyses along complex riverine systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20490, https://doi.org/10.5194/egusphere-egu2020-20490, 2020.
EGU2020-1601 | Displays | BG2.5
High-precision compound-specific carbon isotopic analysis of underivatized amino acids using a multi-dimensional-HPLC and nano-EA/IRMSYuchen Sun, Naoto F. Ishikawa, Nanako O. Ogawa, Hodaka Kawahata, Yoshinori Takano, and Naohiko Ohkouchi
We have developed an analytical method for the precise δ13C measurement of individual amino acid using a multi-dimensional high-performance liquid chromatography (HPLC) and a nano-scale elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). Although this method is time-consuming, it can offer higher precision and accuracy than does the conventional analytical method such as GC/C/IRMS, because the derivatization of amino acids is not required. A reversed-phase column (CAPCELL PAK C18, Shiseido, Japan) and a mixed-mode column (Primesep A, SIELC Technologies, U.S.A.) were applied for the HPLC (Agilent Technologies, U.S.A.) with a charged aerosol detector (Thermo Fisher Scientific, U.S.A.) (Ishikawa et al., 2018). We conducted the isolation of underivatized amino acids in a standard mixture containing 15 proteinogenic amino acids (Gly, Ala, Glu, Arg, Val, Pro, Met, Tyr, Ile, Leu, Phe, Thr, His, Asp, Ser), and confirmed that all these amino acids were successfully isolated. Each collected amino acid was filtered through a 0.45 μm membrane filter (Pall, U.S.A.) and washed with diethyl ether to remove hydrophobic impurities. The δ13C values of these amino acids before and after the separation and purification were consistent, which proved that the whole experimental procedure did not change the δ13C values of amino acids. We applied this method to several aquatic organisms. The results show that the δ13C values of amino acids vary as large as 30‰ with Gly being most enriched in 13C.
Reference
Ishikawa et al., (2018) Anal. Chem., 90, 20, 12035-12041.
How to cite: Sun, Y., Ishikawa, N. F., Ogawa, N. O., Kawahata, H., Takano, Y., and Ohkouchi, N.: High-precision compound-specific carbon isotopic analysis of underivatized amino acids using a multi-dimensional-HPLC and nano-EA/IRMS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1601, https://doi.org/10.5194/egusphere-egu2020-1601, 2020.
We have developed an analytical method for the precise δ13C measurement of individual amino acid using a multi-dimensional high-performance liquid chromatography (HPLC) and a nano-scale elemental analyzer/isotope ratio mass spectrometry (EA/IRMS). Although this method is time-consuming, it can offer higher precision and accuracy than does the conventional analytical method such as GC/C/IRMS, because the derivatization of amino acids is not required. A reversed-phase column (CAPCELL PAK C18, Shiseido, Japan) and a mixed-mode column (Primesep A, SIELC Technologies, U.S.A.) were applied for the HPLC (Agilent Technologies, U.S.A.) with a charged aerosol detector (Thermo Fisher Scientific, U.S.A.) (Ishikawa et al., 2018). We conducted the isolation of underivatized amino acids in a standard mixture containing 15 proteinogenic amino acids (Gly, Ala, Glu, Arg, Val, Pro, Met, Tyr, Ile, Leu, Phe, Thr, His, Asp, Ser), and confirmed that all these amino acids were successfully isolated. Each collected amino acid was filtered through a 0.45 μm membrane filter (Pall, U.S.A.) and washed with diethyl ether to remove hydrophobic impurities. The δ13C values of these amino acids before and after the separation and purification were consistent, which proved that the whole experimental procedure did not change the δ13C values of amino acids. We applied this method to several aquatic organisms. The results show that the δ13C values of amino acids vary as large as 30‰ with Gly being most enriched in 13C.
Reference
Ishikawa et al., (2018) Anal. Chem., 90, 20, 12035-12041.
How to cite: Sun, Y., Ishikawa, N. F., Ogawa, N. O., Kawahata, H., Takano, Y., and Ohkouchi, N.: High-precision compound-specific carbon isotopic analysis of underivatized amino acids using a multi-dimensional-HPLC and nano-EA/IRMS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1601, https://doi.org/10.5194/egusphere-egu2020-1601, 2020.
EGU2020-20624 | Displays | BG2.5
New insights for studying phosphate stable oxygen isotopes in bioapatites interpreted from their geochemistryZoneibe Luz, Marc Leu, Lukas P. Baumgartner, Hugo Bucher, and Torsten Vennemann
Fossil bioapatite is widely used as a proxy to estimate paleoclimatic and/or – environmental conditions. However, the scarcity of well–preserved specimens in some samples mingled with their small sizes frequently compromise the application of notable geochemical techniques (e. g., laser fluorination). While some in–situ and non–destructive methods allow studies of single specimens, it is important to understand the specimens’ microstructure and the elemental– and isotopic variations between structurally different parts. These parameters may vary as a function of the environmental conditions during the formation of biogenic tissue. To better understand the nature of bioapatites, different geochemical techniques were applied to apparently well–preserved samples of distinct age: conodonts (Early Triassic, CAI 1 to 2), fossil (Paleogene) and modern shark teeth. The microstructure and element distribution of the samples were investigated using scanning electron microscopy (SEM) and an electron microprobe (EMPA), respectively. Paleoenvironmental conditions and relative sea water temperatures in which bioapatites were formed is grounded in stable oxygen isotope analyses (δ18OPO4). Two methods were used for measurements of the δ18OPO4 values: a classical method using bulk sampling and high temperature reduction (HTR) analysis, and in–situ measurements by secondary ion mass spectrometry (SIMS). Quantitative analyses and chemical maps of segminiplanate conodont P1–elements are often found to be heterogeneous in terms of their element concentrations. The reason for this heterogeneous element distribution may be related to conodonts retracting their teeth during growth, suggested notably by variations in Mg, S and Na concentrations. Stable oxygen isotope measurements by HTR reproduced better than ±0.3 ‰ of standard deviations for most bioapatites. Conodonts from Timor analyzed by SIMS could be separated into three distinct groups (TMbase, TMpost, TMinner), based on differences in their δ18OPO4 values. In the analyzed samples where the hyaline crown is mixed with the albid crown, variations in δ18OPO4 values are larger (TMpost: 16±1 ‰, n = 13; TMinner: 15.7±1.9 ‰, n = 11) than samples where only the hyaline crown was analyzed (TMbase: 17.1±0.2 ‰, n = 12). Moreover, the δ18OPO4 values from the latter dataset overlap with those from Timor samples analyzed by HTR (17.3±0.4 ‰, n = 7). Shark teeth had a larger variation in their δ18OPO4 values as well when analyzed by the in–situ technique. The inter–tissue δ18OPO4 variation between enameloid zones in the same tooth is up to 5.5 ‰. The heterogeneity in the elemental concentrations of the studied bioapatites apparently do not result in significantly machine fractionation for the in–situ (SIMS) stable oxygen isotopic measurements. Instead, variation of δ18OPO4 values appears to be sensitive to remains of organic matter/carbonate in phosphate, analytical artefacts related to sample topography (for sharks) or vital effects. Based on these results, the conodont sample set from Timor (Scythogondolella ex. gr. milleri) was chosen as an internal standard for stable isotope analyses in bioapatite of the SwissSIMS laboratory. This new in–house standard could be used to normalize the oxygen isotope values and consequently help interpret variations in paleoclimate and/or – environmental conditions for bioapatite.
How to cite: Luz, Z., Leu, M., Baumgartner, L. P., Bucher, H., and Vennemann, T.: New insights for studying phosphate stable oxygen isotopes in bioapatites interpreted from their geochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20624, https://doi.org/10.5194/egusphere-egu2020-20624, 2020.
Fossil bioapatite is widely used as a proxy to estimate paleoclimatic and/or – environmental conditions. However, the scarcity of well–preserved specimens in some samples mingled with their small sizes frequently compromise the application of notable geochemical techniques (e. g., laser fluorination). While some in–situ and non–destructive methods allow studies of single specimens, it is important to understand the specimens’ microstructure and the elemental– and isotopic variations between structurally different parts. These parameters may vary as a function of the environmental conditions during the formation of biogenic tissue. To better understand the nature of bioapatites, different geochemical techniques were applied to apparently well–preserved samples of distinct age: conodonts (Early Triassic, CAI 1 to 2), fossil (Paleogene) and modern shark teeth. The microstructure and element distribution of the samples were investigated using scanning electron microscopy (SEM) and an electron microprobe (EMPA), respectively. Paleoenvironmental conditions and relative sea water temperatures in which bioapatites were formed is grounded in stable oxygen isotope analyses (δ18OPO4). Two methods were used for measurements of the δ18OPO4 values: a classical method using bulk sampling and high temperature reduction (HTR) analysis, and in–situ measurements by secondary ion mass spectrometry (SIMS). Quantitative analyses and chemical maps of segminiplanate conodont P1–elements are often found to be heterogeneous in terms of their element concentrations. The reason for this heterogeneous element distribution may be related to conodonts retracting their teeth during growth, suggested notably by variations in Mg, S and Na concentrations. Stable oxygen isotope measurements by HTR reproduced better than ±0.3 ‰ of standard deviations for most bioapatites. Conodonts from Timor analyzed by SIMS could be separated into three distinct groups (TMbase, TMpost, TMinner), based on differences in their δ18OPO4 values. In the analyzed samples where the hyaline crown is mixed with the albid crown, variations in δ18OPO4 values are larger (TMpost: 16±1 ‰, n = 13; TMinner: 15.7±1.9 ‰, n = 11) than samples where only the hyaline crown was analyzed (TMbase: 17.1±0.2 ‰, n = 12). Moreover, the δ18OPO4 values from the latter dataset overlap with those from Timor samples analyzed by HTR (17.3±0.4 ‰, n = 7). Shark teeth had a larger variation in their δ18OPO4 values as well when analyzed by the in–situ technique. The inter–tissue δ18OPO4 variation between enameloid zones in the same tooth is up to 5.5 ‰. The heterogeneity in the elemental concentrations of the studied bioapatites apparently do not result in significantly machine fractionation for the in–situ (SIMS) stable oxygen isotopic measurements. Instead, variation of δ18OPO4 values appears to be sensitive to remains of organic matter/carbonate in phosphate, analytical artefacts related to sample topography (for sharks) or vital effects. Based on these results, the conodont sample set from Timor (Scythogondolella ex. gr. milleri) was chosen as an internal standard for stable isotope analyses in bioapatite of the SwissSIMS laboratory. This new in–house standard could be used to normalize the oxygen isotope values and consequently help interpret variations in paleoclimate and/or – environmental conditions for bioapatite.
How to cite: Luz, Z., Leu, M., Baumgartner, L. P., Bucher, H., and Vennemann, T.: New insights for studying phosphate stable oxygen isotopes in bioapatites interpreted from their geochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20624, https://doi.org/10.5194/egusphere-egu2020-20624, 2020.
EGU2020-17571 | Displays | BG2.5
Concentration dependence and scale linearity of the carbon isotope ratio measurement systems based on CRDSIan Chubchenko and Leonid Konopelko
Isotope ratio measurement systems based on optical spectrometers becomes widely used because of several important advantages. First is fundamental possibility to distinguish the isotopologues with the same molecular weight but different isotopic composition like 16O13C16O and 16O12C17O. Second is fundamental possibility to perform calibration free absolute measurement of different isotopologues based on ab initio calculations of line intensities [1]. Third is experimental usability, field deployability and low cost of the optical instruments.
The disadvantage of the optical isotope ratio spectrometers available on the market compared to the isotope ratio mass spectrometers is still low accuracy associated not only with the capabilities of optical instruments as such, but also with the lack of high-precision measurement procedures. To improve the accuracy of the optical measurement system, the main factors affecting the measurement result should be investigated and eliminated.
In this study, we used CM-CRDS carbon isotope ratio measurement system consisted of Picarro G2131i analyzer, Picarro combustion module, Picarro Caddy Universal interface, homemade system of solenoid valves Camozzi. The calibration of the measurement system was made by combustion of certified reference materials from the International Atomic Energy Agency as recommended in [2]. The linearity of the delta scale was evaluated. Non-linearity of the delta scale leads to a bias if just one or two certified reference materials are used for calibration.
The measurement procedure of carbon isotope ratios in solid sample on CM-CRDS is as follows. A sample is broken down into elemental components in the combustion module. After the cleaning from interfering components, CO2 is diluted with nitrogen and analyzed by CRDS instrument. The similar procedure is performed with reference material. The issue is that even if the mass of sample and reference material are the same, the concentration of CO2 in the analyzed mixture is different. Mismatch of concentrations leads to bias in measured isotope ratios. The magnitude of concentration dependence is estimated in this study.
The obtained results are discussed and ways to eliminate the abovementioned issues are proposed.
[1] Polyansky, Oleg & Bielska, Katarzyna & Ghysels, Mélanie & Lodi, Lorenzo & Zobov, Nikolai & Hodges, Joseph & Tennyson, Jonathan. (2015). High-Accuracy CO2 Line Intensities Determined from Theory and Experiment. Physical Review Letters. 114. 10.1103/PhysRevLett.114.243001.
[2] Willi A. Brand et al. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem., 2014, 86(3), Pages 425–467
How to cite: Chubchenko, I. and Konopelko, L.: Concentration dependence and scale linearity of the carbon isotope ratio measurement systems based on CRDS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17571, https://doi.org/10.5194/egusphere-egu2020-17571, 2020.
Isotope ratio measurement systems based on optical spectrometers becomes widely used because of several important advantages. First is fundamental possibility to distinguish the isotopologues with the same molecular weight but different isotopic composition like 16O13C16O and 16O12C17O. Second is fundamental possibility to perform calibration free absolute measurement of different isotopologues based on ab initio calculations of line intensities [1]. Third is experimental usability, field deployability and low cost of the optical instruments.
The disadvantage of the optical isotope ratio spectrometers available on the market compared to the isotope ratio mass spectrometers is still low accuracy associated not only with the capabilities of optical instruments as such, but also with the lack of high-precision measurement procedures. To improve the accuracy of the optical measurement system, the main factors affecting the measurement result should be investigated and eliminated.
In this study, we used CM-CRDS carbon isotope ratio measurement system consisted of Picarro G2131i analyzer, Picarro combustion module, Picarro Caddy Universal interface, homemade system of solenoid valves Camozzi. The calibration of the measurement system was made by combustion of certified reference materials from the International Atomic Energy Agency as recommended in [2]. The linearity of the delta scale was evaluated. Non-linearity of the delta scale leads to a bias if just one or two certified reference materials are used for calibration.
The measurement procedure of carbon isotope ratios in solid sample on CM-CRDS is as follows. A sample is broken down into elemental components in the combustion module. After the cleaning from interfering components, CO2 is diluted with nitrogen and analyzed by CRDS instrument. The similar procedure is performed with reference material. The issue is that even if the mass of sample and reference material are the same, the concentration of CO2 in the analyzed mixture is different. Mismatch of concentrations leads to bias in measured isotope ratios. The magnitude of concentration dependence is estimated in this study.
The obtained results are discussed and ways to eliminate the abovementioned issues are proposed.
[1] Polyansky, Oleg & Bielska, Katarzyna & Ghysels, Mélanie & Lodi, Lorenzo & Zobov, Nikolai & Hodges, Joseph & Tennyson, Jonathan. (2015). High-Accuracy CO2 Line Intensities Determined from Theory and Experiment. Physical Review Letters. 114. 10.1103/PhysRevLett.114.243001.
[2] Willi A. Brand et al. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem., 2014, 86(3), Pages 425–467
How to cite: Chubchenko, I. and Konopelko, L.: Concentration dependence and scale linearity of the carbon isotope ratio measurement systems based on CRDS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17571, https://doi.org/10.5194/egusphere-egu2020-17571, 2020.
EGU2020-21968 | Displays | BG2.5
Determination of n(13C)/n(12C) isotope ratios by MC-ICPMS and IRMS for providing improved R(13C/12C) value of the zero-point of the VPDB isotope delta scaleDmitriy Malinovskiy, Philip Dunn, and Heidi Goenaga-Infante
Carbon isotope ratios are typically expressed as isotope delta values d(13C/12C), often shortened to d13C. These are isotope ratios expressed relative to an international measurement standard, which for more than 30 years has been the virtual carbonate Vienna Peedee Belemnite (VPDB). While carbon isotope delta values relative to VPDB can be obtained with very small uncertainties, maintenance of the VPDB scale itself is challenging as it is based upon artefacts with exactly assigned isotope delta values. Linking the VPDB isotope delta scale to the SI would alleviate some of the issues inherent to artefact-based scales and aid long-term comparability of measurement results. Such a link is provided by determination of absolute isotope ratios, i.e., R(13C/12C).
New and improved methods for SI-traceable measurements of R(13C/12C) by both gas source isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) have been developed at LGC. These methods are based on the calibration approach using synthetic isotopologue mixtures. The developed methodology has been successfully applied to producing glycine reference materials, ERM-AE672a and LGC171-KT, with certified SI-traceable n(13C)/n(12C) isotope amount ratios under ISO 17025 and 17034 accreditations together with indicative d(13C/12C)VPDB values traceable to VPDB.
These new reference materials realise an absolute isotope ratio for VPDB itself R(13C/12C)VPDB through regression of the n(13C)/n(12C) against d(13C/12C)VPDB values. Examining all published values for R(13C/12C)VPDB, including our most recent results, allows a better estimation of this quantity than has previously been achievable and points the way towards linking the VPDB isotope delta scale more firmly to the SI.
How to cite: Malinovskiy, D., Dunn, P., and Goenaga-Infante, H.: Determination of n(13C)/n(12C) isotope ratios by MC-ICPMS and IRMS for providing improved R(13C/12C) value of the zero-point of the VPDB isotope delta scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21968, https://doi.org/10.5194/egusphere-egu2020-21968, 2020.
Carbon isotope ratios are typically expressed as isotope delta values d(13C/12C), often shortened to d13C. These are isotope ratios expressed relative to an international measurement standard, which for more than 30 years has been the virtual carbonate Vienna Peedee Belemnite (VPDB). While carbon isotope delta values relative to VPDB can be obtained with very small uncertainties, maintenance of the VPDB scale itself is challenging as it is based upon artefacts with exactly assigned isotope delta values. Linking the VPDB isotope delta scale to the SI would alleviate some of the issues inherent to artefact-based scales and aid long-term comparability of measurement results. Such a link is provided by determination of absolute isotope ratios, i.e., R(13C/12C).
New and improved methods for SI-traceable measurements of R(13C/12C) by both gas source isotope ratio mass spectrometry (IRMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) have been developed at LGC. These methods are based on the calibration approach using synthetic isotopologue mixtures. The developed methodology has been successfully applied to producing glycine reference materials, ERM-AE672a and LGC171-KT, with certified SI-traceable n(13C)/n(12C) isotope amount ratios under ISO 17025 and 17034 accreditations together with indicative d(13C/12C)VPDB values traceable to VPDB.
These new reference materials realise an absolute isotope ratio for VPDB itself R(13C/12C)VPDB through regression of the n(13C)/n(12C) against d(13C/12C)VPDB values. Examining all published values for R(13C/12C)VPDB, including our most recent results, allows a better estimation of this quantity than has previously been achievable and points the way towards linking the VPDB isotope delta scale more firmly to the SI.
How to cite: Malinovskiy, D., Dunn, P., and Goenaga-Infante, H.: Determination of n(13C)/n(12C) isotope ratios by MC-ICPMS and IRMS for providing improved R(13C/12C) value of the zero-point of the VPDB isotope delta scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21968, https://doi.org/10.5194/egusphere-egu2020-21968, 2020.
EGU2020-9055 | Displays | BG2.5
How good are my stable isotope data? Implications on using an in-house Quality Control system for stable isotope measurementsDavid X. Soto, Sergey Assonov, Helen Grant, M. Glória Pereira, and Ales Fajgelj
Stable isotopes are widely used with applications in forensics, ecology, biogeochemistry, atmospheric sciences, and hydrology. Isotope data are frequently compared and combined, which requires data of high quality. This brings to the attention how comparable the data is and the need for an internal Quality System in research and service laboratories to support data quality. Since the amount of isotope data produced in the recent years has increased considerably, a plea for high-quality isotope data is required. Estimations of data quality including uncertainty calculations may be complicated by various and not well-controlled factors, including sample matrix effects, incomplete reactions and byproducts formed etc. The use of data scatter (e.g. Standard deviation of certified reference materials and in-house working standards) as a measure of uncertainty is obviously insufficient. Instead, one may consider other or combined data quality indexes. The use of a simplified uncertainty estimation together with z-scores calculation enhances the assessment of lab performance and quality and increases the likelihood to accept the target performance chosen by any isotope laboratory. However, uncertainties associated to unknown samples also reduces the probability of obtaining significant differences between sample groups, which the purpose of the analysis could not fit. Here we discuss the criteria to revise limits of QC materials (e.g. lab standards) in an objective manner including the removal of outliers. Warning and action limits depend on the stable isotopic composition of the material (enriched vs. natural abundance), the homogeneity of the material, and the statistical approach utilized. We will report data of 1-2 years of QC tools of a soil standard material obtained at the laboratory in UKCEH-Lancaster and we will discuss how to deal with internal QC system including outlier removal, sample preparation issues, etc. Implementation of these or similar QC protocols are of great relevance for a well-based decision making when using isotope results.
How to cite: Soto, D. X., Assonov, S., Grant, H., Pereira, M. G., and Fajgelj, A.: How good are my stable isotope data? Implications on using an in-house Quality Control system for stable isotope measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9055, https://doi.org/10.5194/egusphere-egu2020-9055, 2020.
Stable isotopes are widely used with applications in forensics, ecology, biogeochemistry, atmospheric sciences, and hydrology. Isotope data are frequently compared and combined, which requires data of high quality. This brings to the attention how comparable the data is and the need for an internal Quality System in research and service laboratories to support data quality. Since the amount of isotope data produced in the recent years has increased considerably, a plea for high-quality isotope data is required. Estimations of data quality including uncertainty calculations may be complicated by various and not well-controlled factors, including sample matrix effects, incomplete reactions and byproducts formed etc. The use of data scatter (e.g. Standard deviation of certified reference materials and in-house working standards) as a measure of uncertainty is obviously insufficient. Instead, one may consider other or combined data quality indexes. The use of a simplified uncertainty estimation together with z-scores calculation enhances the assessment of lab performance and quality and increases the likelihood to accept the target performance chosen by any isotope laboratory. However, uncertainties associated to unknown samples also reduces the probability of obtaining significant differences between sample groups, which the purpose of the analysis could not fit. Here we discuss the criteria to revise limits of QC materials (e.g. lab standards) in an objective manner including the removal of outliers. Warning and action limits depend on the stable isotopic composition of the material (enriched vs. natural abundance), the homogeneity of the material, and the statistical approach utilized. We will report data of 1-2 years of QC tools of a soil standard material obtained at the laboratory in UKCEH-Lancaster and we will discuss how to deal with internal QC system including outlier removal, sample preparation issues, etc. Implementation of these or similar QC protocols are of great relevance for a well-based decision making when using isotope results.
How to cite: Soto, D. X., Assonov, S., Grant, H., Pereira, M. G., and Fajgelj, A.: How good are my stable isotope data? Implications on using an in-house Quality Control system for stable isotope measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9055, https://doi.org/10.5194/egusphere-egu2020-9055, 2020.
EGU2020-11525 | Displays | BG2.5
The IAEA carbonate reference materials aimed at the VPDB scale realization with low uncertainty.Sergey Assonov, Ales Fajgelj, and Manfred Gröning
The stable isotope scales of the light elements (H, C, O, S) are artefact-based (related to a primary reference material) and their practical realisation is based on several refence materials (RMs) traceable to the primary RM on a respective delta-scale. NBS19 carbonate, the primary RM for the VPDB scale introduced in 1987, exhausted in 2012, and its replacement was not available for several years. In 2016, IAEA-603 carbonate (replacement for NBS19) was released as the new primary RM having been carefully calibrated versus the remaining NBS19. The IAEA-603 uncertainty in δ13C and δ18O for the first batch (5200 ampoules produced) is ±0.010 ‰ and ±0.040 ‰ respectively (1-sigma level); the homogeneity assessment is the major component of total uncertainty which is limited by the best mass-spectrometer performance and the method (carbonate-acid reaction) reproducibility.
In 2015, monitoring of LSVEC (formerly the second scale-anchor on the VPDB scale) detected variable drifts in its δ13C value and therefore the use of LSVEC as RM for δ13C was discontinued. It was recognised that a replacement for LSVEC is needed for normalization of the δ13C measurement results, also to address the strict uncertainty requirements for δ13C observations in atmospheric CO2 and methane (≤0.01 ‰ and ≤0.02 ‰ correspondingly). Similar to IAEA-603, any new RMs will address the technical requirements for RMs laid out by ISO Guide 35: 2017 including (i) RM batch production and batch characterisation; (ii) homogeneity and stability assessment of the final product (RMs sealed off in 0.5 g ampoules) and (iii) value and uncertainty assignment based on the metrological traceability. Three new carbonate RMs are in preparation at the IAEA; the uncertainty in δ13C for all three materials due to RM’ homogeneity is already confirmed at ≤0.01 ‰ (on 10 mg aliquots), which is at the limit of the best modern mass-spectrometers. The isotopic characterisation of these new carbonate RMs is in progress; they should be released in 2020.
Together with IAEA-603, the three new RMs will provide a reliable realization of the VPDB scale with the lowest possible uncertainty. With these RMs users can (i) select RMs in a suitable δ13C range, (ii) detect any potential drift of RMs including the behaviour of daily lab-standards and (iii) detect any potential problem in applying the 17O correction at end-user laboratories. In conclusion, these new reference materials will allow laboratories worldwide to establish metrological comparability for decades.
How to cite: Assonov, S., Fajgelj, A., and Gröning, M.: The IAEA carbonate reference materials aimed at the VPDB scale realization with low uncertainty. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11525, https://doi.org/10.5194/egusphere-egu2020-11525, 2020.
The stable isotope scales of the light elements (H, C, O, S) are artefact-based (related to a primary reference material) and their practical realisation is based on several refence materials (RMs) traceable to the primary RM on a respective delta-scale. NBS19 carbonate, the primary RM for the VPDB scale introduced in 1987, exhausted in 2012, and its replacement was not available for several years. In 2016, IAEA-603 carbonate (replacement for NBS19) was released as the new primary RM having been carefully calibrated versus the remaining NBS19. The IAEA-603 uncertainty in δ13C and δ18O for the first batch (5200 ampoules produced) is ±0.010 ‰ and ±0.040 ‰ respectively (1-sigma level); the homogeneity assessment is the major component of total uncertainty which is limited by the best mass-spectrometer performance and the method (carbonate-acid reaction) reproducibility.
In 2015, monitoring of LSVEC (formerly the second scale-anchor on the VPDB scale) detected variable drifts in its δ13C value and therefore the use of LSVEC as RM for δ13C was discontinued. It was recognised that a replacement for LSVEC is needed for normalization of the δ13C measurement results, also to address the strict uncertainty requirements for δ13C observations in atmospheric CO2 and methane (≤0.01 ‰ and ≤0.02 ‰ correspondingly). Similar to IAEA-603, any new RMs will address the technical requirements for RMs laid out by ISO Guide 35: 2017 including (i) RM batch production and batch characterisation; (ii) homogeneity and stability assessment of the final product (RMs sealed off in 0.5 g ampoules) and (iii) value and uncertainty assignment based on the metrological traceability. Three new carbonate RMs are in preparation at the IAEA; the uncertainty in δ13C for all three materials due to RM’ homogeneity is already confirmed at ≤0.01 ‰ (on 10 mg aliquots), which is at the limit of the best modern mass-spectrometers. The isotopic characterisation of these new carbonate RMs is in progress; they should be released in 2020.
Together with IAEA-603, the three new RMs will provide a reliable realization of the VPDB scale with the lowest possible uncertainty. With these RMs users can (i) select RMs in a suitable δ13C range, (ii) detect any potential drift of RMs including the behaviour of daily lab-standards and (iii) detect any potential problem in applying the 17O correction at end-user laboratories. In conclusion, these new reference materials will allow laboratories worldwide to establish metrological comparability for decades.
How to cite: Assonov, S., Fajgelj, A., and Gröning, M.: The IAEA carbonate reference materials aimed at the VPDB scale realization with low uncertainty. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11525, https://doi.org/10.5194/egusphere-egu2020-11525, 2020.
EGU2020-22611 | Displays | BG2.5
Application of lead isotope ratios for pollution source investigation in the marine environmentEmiliya Vassileva, Anna Maria Orani, and Sergey Assonov
Lead is a non-essential toxic element that at high levels of human exposure causes damage to many organs of the human body. This element naturally occurs in the Earth crust, but its biogeochemical cycle has been altered by anthropogenic activities, which have introduced high amount of this element from different sources. Among inorganic contaminants, Pb is perhaps the most studied, but the determination of its total concentration only is not sufficient for a proper evaluation of contamination sources. Discrimination of anthropogenic and geogenic lead sources requires both precise and accurate isotope ratio determination as well as high versatility due to the complexity of environmental matrices, such as sediments, biota and seawater. This element has a partially radiogenic isotopic composition with 208Pb, 206Pb and 207Pb originating from the radioactive decay of 238U, 235U and 232Th respectively and 204Pb representing the only natural stable isotope. This characteristic isotopic composition represents a powerful analytical tool as it allows to trace the sources, fate and effects of possible Pb contamination. The most common way to express the Pb isotopic composition is using the ratio 206Pb/207Pb, because of the easy interference-free determination and isotopes’ abundance. The determination of 204Pb by ICP-MS is quite challenging as this is also the least abundant among Pb isotopes (about 1.4%) and it is also affected by isobaric interference from 204Hg. The latter derives from both sample matrices and from plasma/sweep gas supplies and it represents a big analytical challenge, especially for marine biota samples, where the amount of Hg can be up to 100 times higher than Pb.
In this work we present the development and the application of analytical methodology for the accurate and precise determination of Pb isotope ratios by HR-ICP-MS in different marine environmental matrices (sediments, seawater and biota). Analytical procedures are involving a separation of Pb from the sample matrix and mercury, present in the sample. For seawater samples, the use of the SeaFAST automated system allowed simultaneous matrix separation and analyte pre-concentration before ICP-MS analysis. A comparison of results for lead isotope ratios obtained with MC-ICP-MS and HR ICP-MS in the same samples, in all cases, showed very good agreement . The total uncertainty associated to each result was estimated and all major contributions to the combined uncertainty of the obtained results were identified. As all such studies involve companions of different datasets, the uncertainty estimation is critical to ensure correct companions. The developed methodology was applied to different marine samples, namely sediments from Caribbean, Baltic and Namibian coasts, biota samples from French Polynesia, seawater samples from Mediterranean and Arctic seas.
How to cite: Vassileva, E., Orani, A. M., and Assonov, S.: Application of lead isotope ratios for pollution source investigation in the marine environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22611, https://doi.org/10.5194/egusphere-egu2020-22611, 2020.
Lead is a non-essential toxic element that at high levels of human exposure causes damage to many organs of the human body. This element naturally occurs in the Earth crust, but its biogeochemical cycle has been altered by anthropogenic activities, which have introduced high amount of this element from different sources. Among inorganic contaminants, Pb is perhaps the most studied, but the determination of its total concentration only is not sufficient for a proper evaluation of contamination sources. Discrimination of anthropogenic and geogenic lead sources requires both precise and accurate isotope ratio determination as well as high versatility due to the complexity of environmental matrices, such as sediments, biota and seawater. This element has a partially radiogenic isotopic composition with 208Pb, 206Pb and 207Pb originating from the radioactive decay of 238U, 235U and 232Th respectively and 204Pb representing the only natural stable isotope. This characteristic isotopic composition represents a powerful analytical tool as it allows to trace the sources, fate and effects of possible Pb contamination. The most common way to express the Pb isotopic composition is using the ratio 206Pb/207Pb, because of the easy interference-free determination and isotopes’ abundance. The determination of 204Pb by ICP-MS is quite challenging as this is also the least abundant among Pb isotopes (about 1.4%) and it is also affected by isobaric interference from 204Hg. The latter derives from both sample matrices and from plasma/sweep gas supplies and it represents a big analytical challenge, especially for marine biota samples, where the amount of Hg can be up to 100 times higher than Pb.
In this work we present the development and the application of analytical methodology for the accurate and precise determination of Pb isotope ratios by HR-ICP-MS in different marine environmental matrices (sediments, seawater and biota). Analytical procedures are involving a separation of Pb from the sample matrix and mercury, present in the sample. For seawater samples, the use of the SeaFAST automated system allowed simultaneous matrix separation and analyte pre-concentration before ICP-MS analysis. A comparison of results for lead isotope ratios obtained with MC-ICP-MS and HR ICP-MS in the same samples, in all cases, showed very good agreement . The total uncertainty associated to each result was estimated and all major contributions to the combined uncertainty of the obtained results were identified. As all such studies involve companions of different datasets, the uncertainty estimation is critical to ensure correct companions. The developed methodology was applied to different marine samples, namely sediments from Caribbean, Baltic and Namibian coasts, biota samples from French Polynesia, seawater samples from Mediterranean and Arctic seas.
How to cite: Vassileva, E., Orani, A. M., and Assonov, S.: Application of lead isotope ratios for pollution source investigation in the marine environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22611, https://doi.org/10.5194/egusphere-egu2020-22611, 2020.
EGU2020-22474 | Displays | BG2.5
A novel method for stable isotope measurement of gaseous elemental mercurySatoshi Irei
Here, we introduce a new methodology developed for highly precise stable mercury isotope ratio (δHg) analysis: the sampling method collecting sufficient amount of gaseous elemental mercury (GEM) from air within 24 h or less and the extraction method effectively converting the collected GEM to Hg2+ in less than 10 mL of acidified solution.
A big gold-amalgam trap (BAuT), which has approximately 11 times larger inner diameter of the tube and more gold-amalgam granular than a conventional gold-amalgam trap, was designed for quick and effective sampling of GEM in a short time period. A 24-h sampling demonstrated that the collection efficiency was higher than 99.9% under the flow rate of 55 LPM. Prior to the extraction the collected GEM by BAuT was pre-concentrated to a conventional gold-amalgam trap to reduce the dead volume.
The GEM pre-concentrated was transferred into a four side sealed 2L Tedler bag with a PTFE stopcock by heating the gold-amalgam trap to 600 ºC for ~ 4 min under the 0.5 LPM flow of Hg-free air. Prior to this transfer 5mL of 0.5~40% (v/v) reversed aqua resia or RAR (hydrochloric acid: nitric acid = 1:2) was pre-introduced into the bag. The bag with GEM and RAR was left for the conversion of GEM into the stable state in the solution (i.e., Hg2+). The solution recovered was then analyzed by multi collector-ICP-MS for the Hg concentration and δHg.
Results with a standard reference material showed that the recovery from the test with 10% RAR and the extraction duration of 8 days was the highest, 97%, with the 5% of recovery for the residual GEM in the gas-phase. The δHg analysis for five isotope ratios exhibited that the accuracy was between 0.01 and 0.3 ‰. Results from the analytical tests of ambient GEM using this methodology will be discussed.
How to cite: Irei, S.: A novel method for stable isotope measurement of gaseous elemental mercury, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22474, https://doi.org/10.5194/egusphere-egu2020-22474, 2020.
Here, we introduce a new methodology developed for highly precise stable mercury isotope ratio (δHg) analysis: the sampling method collecting sufficient amount of gaseous elemental mercury (GEM) from air within 24 h or less and the extraction method effectively converting the collected GEM to Hg2+ in less than 10 mL of acidified solution.
A big gold-amalgam trap (BAuT), which has approximately 11 times larger inner diameter of the tube and more gold-amalgam granular than a conventional gold-amalgam trap, was designed for quick and effective sampling of GEM in a short time period. A 24-h sampling demonstrated that the collection efficiency was higher than 99.9% under the flow rate of 55 LPM. Prior to the extraction the collected GEM by BAuT was pre-concentrated to a conventional gold-amalgam trap to reduce the dead volume.
The GEM pre-concentrated was transferred into a four side sealed 2L Tedler bag with a PTFE stopcock by heating the gold-amalgam trap to 600 ºC for ~ 4 min under the 0.5 LPM flow of Hg-free air. Prior to this transfer 5mL of 0.5~40% (v/v) reversed aqua resia or RAR (hydrochloric acid: nitric acid = 1:2) was pre-introduced into the bag. The bag with GEM and RAR was left for the conversion of GEM into the stable state in the solution (i.e., Hg2+). The solution recovered was then analyzed by multi collector-ICP-MS for the Hg concentration and δHg.
Results with a standard reference material showed that the recovery from the test with 10% RAR and the extraction duration of 8 days was the highest, 97%, with the 5% of recovery for the residual GEM in the gas-phase. The δHg analysis for five isotope ratios exhibited that the accuracy was between 0.01 and 0.3 ‰. Results from the analytical tests of ambient GEM using this methodology will be discussed.
How to cite: Irei, S.: A novel method for stable isotope measurement of gaseous elemental mercury, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22474, https://doi.org/10.5194/egusphere-egu2020-22474, 2020.
EGU2020-4248 | Displays | BG2.5
Determination of the Ni isotope fractionation in microfossils embedded in the aragonite phaseMarek Tulej, Anna Neubeck, Rustam Lukmanov, Valentine Grimaudo, Andreas Riedo, Alena Cedeño López, Coenraad, Pieter de Koning, Niels, Frank, Willem Ligterink, Magnus Ivarsson, and Peter Wurz
Stable nickel isotopes are known to fractionate by biological processes and their measurements can be important biomarker. In searches for ancient fossilised materials such as microbial cells, the Ni isotope fractionation record can be preserved after death and fossilization of microstructures. Typically, transition metal isotopes in microfossils are difficult to measure accurately because of their low concentration in the fossil. Furthermore, microsized fossil structures are difficult to isolate from the host phase. Thus, the measurement of their chemical composition can be conducted only by a few analytical methods. We have applied femtosecond-laser ablation/ionisation time-of-flight mass spectrometry (LIMS) to measure chemical composition of the fossilised material embedded in the aragonite phase and accurately derive the Ni isotopic fractionation pattern. High resolution depth profiling method was applied to isolate fossilised material composition from the host phase. The mass peak intensity correlation and peak integration methods were subsequently applied to derive isotope concentrations. The accuracies and precision in permill level or better of the isotope values were achieved. For comparison the studies of Ni isotopes were conducted on inorganic samples. The instrument used in the studies is a miniature mass analyser developed for space research holding promisses that differentiation between abiotic and biogenic microstructures in rocks can be studied also in situ on the surfaces of Solar System bodies.
References
1. U. Rohner et al., Meas. Sci. Technol. 14 (2003) 2159–2164
2. A. Riedo et al., JAAS, 28:1256–1269, 2013
3. A. Neubeck et al., Int. J. Astrobiology, 15, 133-146, 2016
4. M. Tulej et al., Astrobiology, 2015, DOI: 10.1089/ast.2015.1304;JAAS,33(8):1292-1303, 2018
5. S. Meyer et al., J. Mass Spectrom. 2017, DOI: org/10.1002/jms.3964
6. R. Wisendanger et al., J. Chemometrics, 2018, DOI: 10.1002/cem.3081
7. V. Grimaudo et al., Anal. Chem., 2018, DOI: 10.1021/acs.analchem.7b05313
How to cite: Tulej, M., Neubeck, A., Lukmanov, R., Grimaudo, V., Riedo, A., Cedeño López, A., de Koning, C. P., Ligterink, N. F. W., Ivarsson, M., and Wurz, P.: Determination of the Ni isotope fractionation in microfossils embedded in the aragonite phase, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4248, https://doi.org/10.5194/egusphere-egu2020-4248, 2020.
Stable nickel isotopes are known to fractionate by biological processes and their measurements can be important biomarker. In searches for ancient fossilised materials such as microbial cells, the Ni isotope fractionation record can be preserved after death and fossilization of microstructures. Typically, transition metal isotopes in microfossils are difficult to measure accurately because of their low concentration in the fossil. Furthermore, microsized fossil structures are difficult to isolate from the host phase. Thus, the measurement of their chemical composition can be conducted only by a few analytical methods. We have applied femtosecond-laser ablation/ionisation time-of-flight mass spectrometry (LIMS) to measure chemical composition of the fossilised material embedded in the aragonite phase and accurately derive the Ni isotopic fractionation pattern. High resolution depth profiling method was applied to isolate fossilised material composition from the host phase. The mass peak intensity correlation and peak integration methods were subsequently applied to derive isotope concentrations. The accuracies and precision in permill level or better of the isotope values were achieved. For comparison the studies of Ni isotopes were conducted on inorganic samples. The instrument used in the studies is a miniature mass analyser developed for space research holding promisses that differentiation between abiotic and biogenic microstructures in rocks can be studied also in situ on the surfaces of Solar System bodies.
References
1. U. Rohner et al., Meas. Sci. Technol. 14 (2003) 2159–2164
2. A. Riedo et al., JAAS, 28:1256–1269, 2013
3. A. Neubeck et al., Int. J. Astrobiology, 15, 133-146, 2016
4. M. Tulej et al., Astrobiology, 2015, DOI: 10.1089/ast.2015.1304;JAAS,33(8):1292-1303, 2018
5. S. Meyer et al., J. Mass Spectrom. 2017, DOI: org/10.1002/jms.3964
6. R. Wisendanger et al., J. Chemometrics, 2018, DOI: 10.1002/cem.3081
7. V. Grimaudo et al., Anal. Chem., 2018, DOI: 10.1021/acs.analchem.7b05313
How to cite: Tulej, M., Neubeck, A., Lukmanov, R., Grimaudo, V., Riedo, A., Cedeño López, A., de Koning, C. P., Ligterink, N. F. W., Ivarsson, M., and Wurz, P.: Determination of the Ni isotope fractionation in microfossils embedded in the aragonite phase, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4248, https://doi.org/10.5194/egusphere-egu2020-4248, 2020.
EGU2020-21941 | Displays | BG2.5
Determination of the Isotopic Composition of Iridium Using Multicollector-ICPMSZuhao Zhu
Like many other elements, iridium is lacking a calibrated, SI traceable isotope ratio measurement. In this study, we
have undertaken absolute isotope amount ratio measurements of iridium by multicollector inductively coupled plasma mass
spectrometry (MC-ICPMS) using a state-of-the-art regression model to correct for the instrumental fractionation (mass bias) of
isotope ratios using both NIST SRM 997 isotopic thallium and NIST SRM 989 isotopic rhenium as primary calibrators. The
optimized regression mass bias correction model is based on incrementally increasing plasma power and short (10−30 min)
measurement sessions. This experimental design allows fast implementation of the regression method which would normally
require hours-long measurement sessions when executed under constant plasma power. Measurements of four commercial
iridium materials provide a calibrated iridium isotope ratio R193/191 = 1.6866(6)k=1 which corresponds to isotopic abundance x191
= 0.372 21(8)k=1 and an atomic weight of Ar(Ir) = 192.217 63(17)k=1. In addition, we present data on a new Certified Reference
Material from NRC Canada IRIS-1 which fulfills the requirements of a delta zero reference for iridium isotope ratio
measurements.
How to cite: Zhu, Z.: Determination of the Isotopic Composition of Iridium Using Multicollector-ICPMS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21941, https://doi.org/10.5194/egusphere-egu2020-21941, 2020.
Like many other elements, iridium is lacking a calibrated, SI traceable isotope ratio measurement. In this study, we
have undertaken absolute isotope amount ratio measurements of iridium by multicollector inductively coupled plasma mass
spectrometry (MC-ICPMS) using a state-of-the-art regression model to correct for the instrumental fractionation (mass bias) of
isotope ratios using both NIST SRM 997 isotopic thallium and NIST SRM 989 isotopic rhenium as primary calibrators. The
optimized regression mass bias correction model is based on incrementally increasing plasma power and short (10−30 min)
measurement sessions. This experimental design allows fast implementation of the regression method which would normally
require hours-long measurement sessions when executed under constant plasma power. Measurements of four commercial
iridium materials provide a calibrated iridium isotope ratio R193/191 = 1.6866(6)k=1 which corresponds to isotopic abundance x191
= 0.372 21(8)k=1 and an atomic weight of Ar(Ir) = 192.217 63(17)k=1. In addition, we present data on a new Certified Reference
Material from NRC Canada IRIS-1 which fulfills the requirements of a delta zero reference for iridium isotope ratio
measurements.
How to cite: Zhu, Z.: Determination of the Isotopic Composition of Iridium Using Multicollector-ICPMS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21941, https://doi.org/10.5194/egusphere-egu2020-21941, 2020.
BG2.7 – Remote Sensing applications in the Biogeosciences
EGU2020-54 | Displays | BG2.7
An empirical cross sensor model for high-resolution multispectral imageryManivasagam Vellalapalayam Subramanian, Gregoriy Kaplan, and Offer Rozenstein
EGU2020-288 | Displays | BG2.7 | Highlight
Understanding wetland dynamics using geostatistics of multi-temporal Earth Observation datasetsManudeo Narayan Singh and Rajiv Sinha
Wetlands are important but fragile ecosystems. Half of the world’s wetlands are already lost and most of the remaining ones are in a degraded state. Such wetlands warrant immediate management and restoration works. Further, with changing land-use patterns and climate, it is essential to monitor the dynamics of such wetlands, which is in turn driven by hydrology, vegetation pattern, and geomorphology. All biogeochemical processes in the wetlands are influenced by hydropattern and water level. Understanding vegetation-hydrology nexus is an important challenge in wetland management and restoration activities. In addition, the spatial characterization of the fragmentation and shrinkage is essential to manage the wetlands.
A geostatistics-based assessment of a large floodplain wetland namely the Kaabar Tal in eastern India has been performed using multi-temporal Landsat datasets in a GIS (Geographical Information System) framework by applying linear regression method and Mann-Kendall Trend Tests. With an area of 51 km2 and a total catchment size of 250 km2, the Kaabar Tal is the largest wetland of the north Bihar in the East Ganga Plains of India. A historical assessment of the wetland spanning over four decades (1976-2016) has been performed by formulating a novel framework which encompasses the following six indicators: (a) pixel-wise net trend assessment of wetness and vegetation, (b) seasonal hydropattern, (c) average drying rates, (d) seasonal and annual patch dynamics (fragmentation assessment), (e) annual shoreline shrinkage rates, and (f) multi-temporal geomorphic mapping. To understand the influence of these indicators in different parts of the wetland, a sectorial approach has been followed by dividing the wetland in nine zones, and each zone was ranked from least to most degraded based on the six indicators. A linear combination of these ranks was used to decide the overall degradation rank of the zones. The different zones of Kaabar Tal were ranked in terms of increasing order of degradation. The western zone W, the most degraded zone, has suffered the highest quantum of encroachments coupled with the highest rates of shoreline shrinkage. The central zone C ranked least on the degradation scale; however, it is still degrading, and the wetness trend is ‘very severely decreasing’ while the vegetation (or eutrophication) trend is ‘severely increasing.’
The framework developed in the current work is based on the freely available satellite datasets, easily implementable remote sensing and GIS approaches, and well-known geostatistical methods. Further, the method can be adapted to analyze the hydrogeomorphic dynamics and degradation scenarios of any wetland systems, irrespective of their geographical and climatic settings.
How to cite: Singh, M. N. and Sinha, R.: Understanding wetland dynamics using geostatistics of multi-temporal Earth Observation datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-288, https://doi.org/10.5194/egusphere-egu2020-288, 2020.
Wetlands are important but fragile ecosystems. Half of the world’s wetlands are already lost and most of the remaining ones are in a degraded state. Such wetlands warrant immediate management and restoration works. Further, with changing land-use patterns and climate, it is essential to monitor the dynamics of such wetlands, which is in turn driven by hydrology, vegetation pattern, and geomorphology. All biogeochemical processes in the wetlands are influenced by hydropattern and water level. Understanding vegetation-hydrology nexus is an important challenge in wetland management and restoration activities. In addition, the spatial characterization of the fragmentation and shrinkage is essential to manage the wetlands.
A geostatistics-based assessment of a large floodplain wetland namely the Kaabar Tal in eastern India has been performed using multi-temporal Landsat datasets in a GIS (Geographical Information System) framework by applying linear regression method and Mann-Kendall Trend Tests. With an area of 51 km2 and a total catchment size of 250 km2, the Kaabar Tal is the largest wetland of the north Bihar in the East Ganga Plains of India. A historical assessment of the wetland spanning over four decades (1976-2016) has been performed by formulating a novel framework which encompasses the following six indicators: (a) pixel-wise net trend assessment of wetness and vegetation, (b) seasonal hydropattern, (c) average drying rates, (d) seasonal and annual patch dynamics (fragmentation assessment), (e) annual shoreline shrinkage rates, and (f) multi-temporal geomorphic mapping. To understand the influence of these indicators in different parts of the wetland, a sectorial approach has been followed by dividing the wetland in nine zones, and each zone was ranked from least to most degraded based on the six indicators. A linear combination of these ranks was used to decide the overall degradation rank of the zones. The different zones of Kaabar Tal were ranked in terms of increasing order of degradation. The western zone W, the most degraded zone, has suffered the highest quantum of encroachments coupled with the highest rates of shoreline shrinkage. The central zone C ranked least on the degradation scale; however, it is still degrading, and the wetness trend is ‘very severely decreasing’ while the vegetation (or eutrophication) trend is ‘severely increasing.’
The framework developed in the current work is based on the freely available satellite datasets, easily implementable remote sensing and GIS approaches, and well-known geostatistical methods. Further, the method can be adapted to analyze the hydrogeomorphic dynamics and degradation scenarios of any wetland systems, irrespective of their geographical and climatic settings.
How to cite: Singh, M. N. and Sinha, R.: Understanding wetland dynamics using geostatistics of multi-temporal Earth Observation datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-288, https://doi.org/10.5194/egusphere-egu2020-288, 2020.
EGU2020-401 | Displays | BG2.7
Spectroscopic retrieval of above-ground crop nitrogen content with a hybrid machine learning regression methodKatja Berger, Gustau Camps-Valls, Jochem Verrelst, Jean-Baptiste Féret, Matthias Wocher, and Tobias Hank
Proteins are the major nitrogen-containing biochemical constituents of plants. Since nitrogen (N) cannot be measured directly using remote sensing data, leaf protein content constitutes a valid proxy for this main limiting plant nutrient. In the past, mainly linear parametric algorithms, such as vegetation indices, have been employed to retrieve this non-state variable from optical reflectance data. Moreover, most studies solely relied on the relationship of chlorophyll content with nitrogen. In contrast, our study presents a hybrid model inversion scheme of a physically-based approach via protein retrieval combined with advanced machine learning regression. The leaf optical properties PROSPECT-PRO model, including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. A generic synthetic database of model input parameters with corresponding reflectance was simulated and used for training two different machine learning regression methods: a standard homoscedastic Gaussian Process (GP) and a variational heteroscedastic GP regression that accounts for signal-to-noise correlations. Both GP methods have the interesting feature of providing confidence intervals for the estimates. As part of multiple field campaigns, carried out in the scientific preparation framework of the Environmental Mapping and Analysis Program (EnMAP), spectra of maize and winter wheat were acquired to simulate EnMAP data and plant-organ-specific nitrogen measurements were destructively collected for validation. Both GP models yielded excellent performance in learning the nonlinear relationship between specific protein absorption bands and area-based above-ground N. They also performed similar or even outperformed other nonlinear nonparametric approaches. Physical validation of the estimates against in situ nitrogen measurements from leaves plus stalks yielded a root mean square error (RMSE) of 2.5 g/m². The variational heteroscedastic GP provided a more differentiated pattern of uncertainty with tighter confidence intervals within low-value regimes compared to the standard GP. The inclusion of fruit nitrogen content for validation deteriorated the results of all models, which can be explained by the inability of radiation in the optical domain to penetrate the thick tissues of maize cobs and wheat ears. Following some further validation exercises, we aim to implement GP-based algorithms for global agricultural monitoring of above-ground N derived from future satellite imaging spectroscopy data.
How to cite: Berger, K., Camps-Valls, G., Verrelst, J., Féret, J.-B., Wocher, M., and Hank, T.: Spectroscopic retrieval of above-ground crop nitrogen content with a hybrid machine learning regression method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-401, https://doi.org/10.5194/egusphere-egu2020-401, 2020.
Proteins are the major nitrogen-containing biochemical constituents of plants. Since nitrogen (N) cannot be measured directly using remote sensing data, leaf protein content constitutes a valid proxy for this main limiting plant nutrient. In the past, mainly linear parametric algorithms, such as vegetation indices, have been employed to retrieve this non-state variable from optical reflectance data. Moreover, most studies solely relied on the relationship of chlorophyll content with nitrogen. In contrast, our study presents a hybrid model inversion scheme of a physically-based approach via protein retrieval combined with advanced machine learning regression. The leaf optical properties PROSPECT-PRO model, including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. A generic synthetic database of model input parameters with corresponding reflectance was simulated and used for training two different machine learning regression methods: a standard homoscedastic Gaussian Process (GP) and a variational heteroscedastic GP regression that accounts for signal-to-noise correlations. Both GP methods have the interesting feature of providing confidence intervals for the estimates. As part of multiple field campaigns, carried out in the scientific preparation framework of the Environmental Mapping and Analysis Program (EnMAP), spectra of maize and winter wheat were acquired to simulate EnMAP data and plant-organ-specific nitrogen measurements were destructively collected for validation. Both GP models yielded excellent performance in learning the nonlinear relationship between specific protein absorption bands and area-based above-ground N. They also performed similar or even outperformed other nonlinear nonparametric approaches. Physical validation of the estimates against in situ nitrogen measurements from leaves plus stalks yielded a root mean square error (RMSE) of 2.5 g/m². The variational heteroscedastic GP provided a more differentiated pattern of uncertainty with tighter confidence intervals within low-value regimes compared to the standard GP. The inclusion of fruit nitrogen content for validation deteriorated the results of all models, which can be explained by the inability of radiation in the optical domain to penetrate the thick tissues of maize cobs and wheat ears. Following some further validation exercises, we aim to implement GP-based algorithms for global agricultural monitoring of above-ground N derived from future satellite imaging spectroscopy data.
How to cite: Berger, K., Camps-Valls, G., Verrelst, J., Féret, J.-B., Wocher, M., and Hank, T.: Spectroscopic retrieval of above-ground crop nitrogen content with a hybrid machine learning regression method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-401, https://doi.org/10.5194/egusphere-egu2020-401, 2020.
EGU2020-4147 | Displays | BG2.7
Evaluation and Refinement of the Beer-Lambert Extinction Law in the Discontinuous Vegetation CanopyKai Yan, Yiman Zhang, Xu Xu, Jiabin Pu, and Zhao Liu
The classical Beer-Lambert (BL) law of exponential decay in direct transmission is widely used for modeling the photon propagation in optical media and has been employed for retrieving vegetation structure parameters (e.g. leaf area index, LAI). However, BL law assumes that these absorbing obstacles are distributed in the space independently, which is the main reason of model-observation-inconsistency and arises many studies of so-called sub- and super-exponential extinction for spatially correlated media. Discontinuous vegetation canopy is the typical case of the extinction field with spatial correlations. Because of many practical difficulties, the uncertainty of the BL law used in vegetation canopy still lacks quantitive assessment. In this paper, we carry out this task by utilizing a ray-tracing-based 3-Dimensional radiative transfer model (3D RT) to simulate the photo propagation process in real vegetation canopy scenes. We confirm that the classical BL law is only suitable for both horizontally and vertically homogenous canopy (e.g. dense grasses) and shows increasing discrepancy with the decrease of the fraction of vegetation cover (FVC). When canopy clumping occurs (FVC<1), absorbing obstacles (i.e. leaves) become to be spatially correlated and lead to a slower-than-exponential (sub-exponential) extinction with propagation distance, which will result in an underestimation of LAI when classic BL law is employed. To solve this problem, we propose a new 1st order scattering extinction model by modifying the classic BL law by introducing a pair-correlation-function. This attempt is based on the stochastic radiative transfer theory and shows good performance when compared with the reference from computer 3D simulation.
How to cite: Yan, K., Zhang, Y., Xu, X., Pu, J., and Liu, Z.: Evaluation and Refinement of the Beer-Lambert Extinction Law in the Discontinuous Vegetation Canopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4147, https://doi.org/10.5194/egusphere-egu2020-4147, 2020.
The classical Beer-Lambert (BL) law of exponential decay in direct transmission is widely used for modeling the photon propagation in optical media and has been employed for retrieving vegetation structure parameters (e.g. leaf area index, LAI). However, BL law assumes that these absorbing obstacles are distributed in the space independently, which is the main reason of model-observation-inconsistency and arises many studies of so-called sub- and super-exponential extinction for spatially correlated media. Discontinuous vegetation canopy is the typical case of the extinction field with spatial correlations. Because of many practical difficulties, the uncertainty of the BL law used in vegetation canopy still lacks quantitive assessment. In this paper, we carry out this task by utilizing a ray-tracing-based 3-Dimensional radiative transfer model (3D RT) to simulate the photo propagation process in real vegetation canopy scenes. We confirm that the classical BL law is only suitable for both horizontally and vertically homogenous canopy (e.g. dense grasses) and shows increasing discrepancy with the decrease of the fraction of vegetation cover (FVC). When canopy clumping occurs (FVC<1), absorbing obstacles (i.e. leaves) become to be spatially correlated and lead to a slower-than-exponential (sub-exponential) extinction with propagation distance, which will result in an underestimation of LAI when classic BL law is employed. To solve this problem, we propose a new 1st order scattering extinction model by modifying the classic BL law by introducing a pair-correlation-function. This attempt is based on the stochastic radiative transfer theory and shows good performance when compared with the reference from computer 3D simulation.
How to cite: Yan, K., Zhang, Y., Xu, X., Pu, J., and Liu, Z.: Evaluation and Refinement of the Beer-Lambert Extinction Law in the Discontinuous Vegetation Canopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4147, https://doi.org/10.5194/egusphere-egu2020-4147, 2020.
EGU2020-5421 | Displays | BG2.7
Twelve years of SIFTER Sun-Induced Fluorescence retrievals from GOME-2 as an independent constraint on photosynthesis across continents and biomesMaurits L. Kooreman, K. Folkert Boersma, Erik van Schaik, Anteneh G. Mengistu, Olaf N. E. Tuinder, Piet Stammes, Gerbrand Koren, and Wouter Peters
Solar-Induced Fluorescence (SIF) data from satellites are increasingly used as a proxy for photosynthetic activity by vegetation, and as a constraint on gross primary production. The Royal Netherlands Meteorological Institute has developed an improved retrieval algorithm called SIFTER, to retrieve mid-morning (09:30 hrs local time) SIF estimates on the global scale from GOME-2 sensors on the Metop satellite series. The product is developed within the ACSAF network of EUMETSAT and a beta version is publicly available on www.temis.nl. The SIFTER algorithm improves over a previous version by using a narrower spectral window that avoids strong oxygen absorption and is less sensitive to water vapor absorption, by constructing stable reference spectra from a 6-year period (2007-2012) of atmospheric spectra over the Sahara, and by applying a latitude-dependent zero-level adjustment that accounts for biases in the product data. With SIFTER, we generate stable, good-quality SIF retrievals also in tropical regions that are known to suffer from high noise in other SIF products. Uncertainty estimates are included for individual observations, and the product is best used for mostly clear-sky scenes, and when spectral residuals remain below a certain threshold. The strength of SIFTER in the tropical regions was exploited to quantify the 2015/2016 drought in the Amazon, related to El Niño. We found that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of soil moisture. SIF went below its climatological range starting from the end of the 2015 dry season and returned to normal levels by February 2016. A validation study is performed to assess the SIFTER quality against independent SIF and GPP products from other platforms, including SIF from OCO-2 and GOSAT, modeled GPP from MPI-BGC and eddy covariance derived, in-situ GPP measurements. SIFTER shows strong correlations (0.70 – 0.94) in the zonal distribution for each continent and in capturing seasonal patterns of SIF and GPP over different regions across the globe (0.62-0.99) when comparing to OCO-2 SIF and GPP from MPI-BGC. At ecosystem level, SIFTER was evaluated against OCO-2 SIF and EC GPP for five flux tower sites with varying biomes and geolocations. Regions with a homogeneous vegetation distribution show a higher correlation than heterogeneous regions. Overall, the results support the use of SIFTER data to be used as an independent constraint on photosynthetic activity on global and regional scales.
How to cite: Kooreman, M. L., Boersma, K. F., van Schaik, E., Mengistu, A. G., Tuinder, O. N. E., Stammes, P., Koren, G., and Peters, W.: Twelve years of SIFTER Sun-Induced Fluorescence retrievals from GOME-2 as an independent constraint on photosynthesis across continents and biomes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5421, https://doi.org/10.5194/egusphere-egu2020-5421, 2020.
Solar-Induced Fluorescence (SIF) data from satellites are increasingly used as a proxy for photosynthetic activity by vegetation, and as a constraint on gross primary production. The Royal Netherlands Meteorological Institute has developed an improved retrieval algorithm called SIFTER, to retrieve mid-morning (09:30 hrs local time) SIF estimates on the global scale from GOME-2 sensors on the Metop satellite series. The product is developed within the ACSAF network of EUMETSAT and a beta version is publicly available on www.temis.nl. The SIFTER algorithm improves over a previous version by using a narrower spectral window that avoids strong oxygen absorption and is less sensitive to water vapor absorption, by constructing stable reference spectra from a 6-year period (2007-2012) of atmospheric spectra over the Sahara, and by applying a latitude-dependent zero-level adjustment that accounts for biases in the product data. With SIFTER, we generate stable, good-quality SIF retrievals also in tropical regions that are known to suffer from high noise in other SIF products. Uncertainty estimates are included for individual observations, and the product is best used for mostly clear-sky scenes, and when spectral residuals remain below a certain threshold. The strength of SIFTER in the tropical regions was exploited to quantify the 2015/2016 drought in the Amazon, related to El Niño. We found that SIF was strongly suppressed over areas with anomalously high temperatures and decreased levels of soil moisture. SIF went below its climatological range starting from the end of the 2015 dry season and returned to normal levels by February 2016. A validation study is performed to assess the SIFTER quality against independent SIF and GPP products from other platforms, including SIF from OCO-2 and GOSAT, modeled GPP from MPI-BGC and eddy covariance derived, in-situ GPP measurements. SIFTER shows strong correlations (0.70 – 0.94) in the zonal distribution for each continent and in capturing seasonal patterns of SIF and GPP over different regions across the globe (0.62-0.99) when comparing to OCO-2 SIF and GPP from MPI-BGC. At ecosystem level, SIFTER was evaluated against OCO-2 SIF and EC GPP for five flux tower sites with varying biomes and geolocations. Regions with a homogeneous vegetation distribution show a higher correlation than heterogeneous regions. Overall, the results support the use of SIFTER data to be used as an independent constraint on photosynthetic activity on global and regional scales.
How to cite: Kooreman, M. L., Boersma, K. F., van Schaik, E., Mengistu, A. G., Tuinder, O. N. E., Stammes, P., Koren, G., and Peters, W.: Twelve years of SIFTER Sun-Induced Fluorescence retrievals from GOME-2 as an independent constraint on photosynthesis across continents and biomes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5421, https://doi.org/10.5194/egusphere-egu2020-5421, 2020.
EGU2020-6674 | Displays | BG2.7
Evaluation of understory LAI estimation methodologies over forest ecosystem ICOS sites across EuropeJan-Peter George and Jan Pisek and the Tobias Biermann (2), Arnaud Carrara (3), Edoardo Cremonese (4), Matthias Cuntz (5), Silvano Fares (6), Giacomo Gerosa (7), Thomas Grünwald (8), Niklas Hase (9), Michal Heliasz (2), Andreas Ibrom (10), Alexander Knohl (11), Bart Kruijt (12), Hikdeki Kobaya
Leaf area index (i.e. one-half the total green leaf area per unit of horizontal ground surface area) is a crucial parameter in carbon balancing and modeling. Forest overstory and understory layers differ in carbon and water cycle regimes and phenology, as well as in ecosystem functions. Separate retrievals of leaf area index (LAI) for these two layers would help to improve modeling forest biogeochemical cycles, evaluating forest ecosystem functions and also remote sensing of forest canopies by inversion of canopy reflectance models. The aim of this study is to compare currently available understory LAI assessment methodologies over a diverse set of greenhouse gas measurement sites distributed along a wide latitudinal and elevational gradient across Europe. This will help to quantify the fraction of the canopy LAI which is represented by understory, since this is still the major source of uncertainty in global LAI products derived from remote sensing data. For this, we took ground photos as well as in-situ reflectance measurements of the understory vegetation at 30 ICOS (Integration Carbon Observation System) sites distributed across 10 countries in Europe. The data were analyzed by means of three conceptually different methods for LAI estimation and comprised purely empirical (fractional cover), semi-empirical (in-situ NDVI linked to the radiative transfer model FLiES), and purely deterministic (Four-scale geometrical optical model) approaches. Finally, our results are compared with global forest understory LAI maps derived from remote sensing data at 1 km resolution (Liu et al. 2017). While we found some agreement among the three methods (e.g. Pearson-correlation between empirical and semi-empirical = 0.63), we also identified sources that are particularly prone to error inclusion such as inaccurate assessment of fractional cover from ground photos. Relationships between understory LAI and long-term climate variables were weak and suggested that understory LAI at the ICOS sites is probably more strongly determined by microclimatic conditions.
Liu Y. et al. (2017): Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data. Biogeosciences 14: 1093-1110.
How to cite: George, J.-P. and Pisek, J. and the Tobias Biermann (2), Arnaud Carrara (3), Edoardo Cremonese (4), Matthias Cuntz (5), Silvano Fares (6), Giacomo Gerosa (7), Thomas Grünwald (8), Niklas Hase (9), Michal Heliasz (2), Andreas Ibrom (10), Alexander Knohl (11), Bart Kruijt (12), Hikdeki Kobaya: Evaluation of understory LAI estimation methodologies over forest ecosystem ICOS sites across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6674, https://doi.org/10.5194/egusphere-egu2020-6674, 2020.
Leaf area index (i.e. one-half the total green leaf area per unit of horizontal ground surface area) is a crucial parameter in carbon balancing and modeling. Forest overstory and understory layers differ in carbon and water cycle regimes and phenology, as well as in ecosystem functions. Separate retrievals of leaf area index (LAI) for these two layers would help to improve modeling forest biogeochemical cycles, evaluating forest ecosystem functions and also remote sensing of forest canopies by inversion of canopy reflectance models. The aim of this study is to compare currently available understory LAI assessment methodologies over a diverse set of greenhouse gas measurement sites distributed along a wide latitudinal and elevational gradient across Europe. This will help to quantify the fraction of the canopy LAI which is represented by understory, since this is still the major source of uncertainty in global LAI products derived from remote sensing data. For this, we took ground photos as well as in-situ reflectance measurements of the understory vegetation at 30 ICOS (Integration Carbon Observation System) sites distributed across 10 countries in Europe. The data were analyzed by means of three conceptually different methods for LAI estimation and comprised purely empirical (fractional cover), semi-empirical (in-situ NDVI linked to the radiative transfer model FLiES), and purely deterministic (Four-scale geometrical optical model) approaches. Finally, our results are compared with global forest understory LAI maps derived from remote sensing data at 1 km resolution (Liu et al. 2017). While we found some agreement among the three methods (e.g. Pearson-correlation between empirical and semi-empirical = 0.63), we also identified sources that are particularly prone to error inclusion such as inaccurate assessment of fractional cover from ground photos. Relationships between understory LAI and long-term climate variables were weak and suggested that understory LAI at the ICOS sites is probably more strongly determined by microclimatic conditions.
Liu Y. et al. (2017): Separating overstory and understory leaf area indices for global needleleaf and deciduous broadleaf forests by fusion of MODIS and MISR data. Biogeosciences 14: 1093-1110.
How to cite: George, J.-P. and Pisek, J. and the Tobias Biermann (2), Arnaud Carrara (3), Edoardo Cremonese (4), Matthias Cuntz (5), Silvano Fares (6), Giacomo Gerosa (7), Thomas Grünwald (8), Niklas Hase (9), Michal Heliasz (2), Andreas Ibrom (10), Alexander Knohl (11), Bart Kruijt (12), Hikdeki Kobaya: Evaluation of understory LAI estimation methodologies over forest ecosystem ICOS sites across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6674, https://doi.org/10.5194/egusphere-egu2020-6674, 2020.
EGU2020-8263 | Displays | BG2.7
Probing the relationship between formaldehyde column concentrations and soil moisture using mixed models and attribution analysisSusanna Strada, Josep Penuelas, Marcos Fernández Martinez, Iolanda Filella, Ana Maria Yanez-Serrano, Andrea Pozzer, Maite Bauwens, Trissevgeni Stavrakou, and Filippo Giorgi
In response to changes in environmental factors (e.g., temperature, radiation, soil moisture), plants emit biogenic volatile organic compounds (BVOCs). Once released in the atmosphere, BVOCs influence levels of greenhouse gases and air pollutants (e.g., methane, ozone and aerosols), thus affecting both climate and air quality. In turn, climate change may alter BVOC emissions by modifying the driving environmental conditions and by increasing the occurrence and intensity of severe stresses that alter plant functioning. To understand and better constrain the evolution of BVOC emissions under future climates, it is important to reduce the uncertainties in global and regional estimates of BVOC emissions under present climate. Part of the uncertainty in the estimates of BVOC emissions is related to the impact that water stress might have on BVOC emissions. Field campaign, in-situ and laboratory experiments investigated the effect of different regimes of water stress (short- vs. long-term) on BVOC emissions. However, these studies provide geographically scattered and uneven results. To explore the relationship between BVOC emissions and water stress globally, we use remotely sensed soil moisture and formaldehyde, a proxy of BVOC emissions. As BVOCs include a multitude of gas tracers with lifetime ranging from few hours to days, a fully characterisation of these components is virtually impossible. Nevertheless, in the continental boundary layer, formaldehyde is an intermediate by-product of the oxidation of BVOCs, it thus provides a proxy for probing local BVOC emissions, and in particular isoprene, which accounts for about 50% of the total BVOC emissions.
In the present study, retrievals of formaldehyde from the Ozone Monitoring Instrument (OMI) are combined with observations of soil moisture, biomass, aerosols, evapotranspiration, drought index, temperature and precipitation. Firstly, we look into the linear annual trend of the selected fields. Secondly, assuming formaldehyde as the dependent variable, we apply a linear mixed model analysis that extends the application of a simple linear regression model by accounting for both fixed (i.e., explained by the independent variables) and random (i.e., due to dependence in the data) effects. The analysis of the linear trend of formaldehyde concentrations shows a positive trend over the Amazon and Central Africa and a negative trend over South Africa and Australia. Over the Amazon, formaldehyde is negatively correlated with the Standardised Precipitation-Evapotranspiration Index (SPEI), a drought index that accounts for both changes in temperature and precipitation, with positive and negative values identifying wet and dry events, respectively. The outcomes of this analysis might provide new insights in the relationship between BVOC emissions and water stress and might help in improving parameterizations that link soil moisture to BVOC emissions in numerical models.
How to cite: Strada, S., Penuelas, J., Martinez, M. F., Filella, I., Yanez-Serrano, A. M., Pozzer, A., Bauwens, M., Stavrakou, T., and Giorgi, F.: Probing the relationship between formaldehyde column concentrations and soil moisture using mixed models and attribution analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8263, https://doi.org/10.5194/egusphere-egu2020-8263, 2020.
In response to changes in environmental factors (e.g., temperature, radiation, soil moisture), plants emit biogenic volatile organic compounds (BVOCs). Once released in the atmosphere, BVOCs influence levels of greenhouse gases and air pollutants (e.g., methane, ozone and aerosols), thus affecting both climate and air quality. In turn, climate change may alter BVOC emissions by modifying the driving environmental conditions and by increasing the occurrence and intensity of severe stresses that alter plant functioning. To understand and better constrain the evolution of BVOC emissions under future climates, it is important to reduce the uncertainties in global and regional estimates of BVOC emissions under present climate. Part of the uncertainty in the estimates of BVOC emissions is related to the impact that water stress might have on BVOC emissions. Field campaign, in-situ and laboratory experiments investigated the effect of different regimes of water stress (short- vs. long-term) on BVOC emissions. However, these studies provide geographically scattered and uneven results. To explore the relationship between BVOC emissions and water stress globally, we use remotely sensed soil moisture and formaldehyde, a proxy of BVOC emissions. As BVOCs include a multitude of gas tracers with lifetime ranging from few hours to days, a fully characterisation of these components is virtually impossible. Nevertheless, in the continental boundary layer, formaldehyde is an intermediate by-product of the oxidation of BVOCs, it thus provides a proxy for probing local BVOC emissions, and in particular isoprene, which accounts for about 50% of the total BVOC emissions.
In the present study, retrievals of formaldehyde from the Ozone Monitoring Instrument (OMI) are combined with observations of soil moisture, biomass, aerosols, evapotranspiration, drought index, temperature and precipitation. Firstly, we look into the linear annual trend of the selected fields. Secondly, assuming formaldehyde as the dependent variable, we apply a linear mixed model analysis that extends the application of a simple linear regression model by accounting for both fixed (i.e., explained by the independent variables) and random (i.e., due to dependence in the data) effects. The analysis of the linear trend of formaldehyde concentrations shows a positive trend over the Amazon and Central Africa and a negative trend over South Africa and Australia. Over the Amazon, formaldehyde is negatively correlated with the Standardised Precipitation-Evapotranspiration Index (SPEI), a drought index that accounts for both changes in temperature and precipitation, with positive and negative values identifying wet and dry events, respectively. The outcomes of this analysis might provide new insights in the relationship between BVOC emissions and water stress and might help in improving parameterizations that link soil moisture to BVOC emissions in numerical models.
How to cite: Strada, S., Penuelas, J., Martinez, M. F., Filella, I., Yanez-Serrano, A. M., Pozzer, A., Bauwens, M., Stavrakou, T., and Giorgi, F.: Probing the relationship between formaldehyde column concentrations and soil moisture using mixed models and attribution analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8263, https://doi.org/10.5194/egusphere-egu2020-8263, 2020.
EGU2020-9071 | Displays | BG2.7
Validation of seasonal time series of remote sensing derived LAI for hydrological modellingCharlotte Wirion, Boud Verbeiren, and Sindy Sterckx
In urban environments, due to climate change urban heat waves are predicted to occur more frequently. Urban vegetation and the linked evapotranspiration rate can play a mitigating role. However, a major challenge in urban hydrological modelling remains the mapping of vegetation dynamics and its role in hydrological processes in particular interception storage and evapotranspiration. Conventional mapping of vegetation usually implies intensive labor and time consuming field work. We explore the potential of different remote sensing sensors (Proba-V, Landsat, Sentinel2, Apex) to characterize the urban vegetation dynamics for hydrological modelling. The here proposed remote sensing sensors show differences in the spectral and spatial resolutions as well as in their revisit time. However, in the urban environment we need a high spatial and spectral resolution to distinguish the urban landcover and a frequent revisit time to capture seasonal vegetation dynamics. Therefore, we propose a combination of different remote sensing sensors to derive leaf area index (LAI) timeseries in the urban environment. To improve the consistency in time series generated from different remote sensing sources a harmonization of the multi-sensor time series is proposed and validated with a multi-resolution validation approach using ground-truthing LAI (BELHARMONY project). The LAI timeseries, derived from the different remote sensing sensors, are then introduced into the hydrological modelling framework for a location- and time- specific assessment of the interception storage and evapotranspiration component. The effect of the sensor differences to the LAI timeseries on the hydrological response is analyzed.
How to cite: Wirion, C., Verbeiren, B., and Sterckx, S.: Validation of seasonal time series of remote sensing derived LAI for hydrological modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9071, https://doi.org/10.5194/egusphere-egu2020-9071, 2020.
In urban environments, due to climate change urban heat waves are predicted to occur more frequently. Urban vegetation and the linked evapotranspiration rate can play a mitigating role. However, a major challenge in urban hydrological modelling remains the mapping of vegetation dynamics and its role in hydrological processes in particular interception storage and evapotranspiration. Conventional mapping of vegetation usually implies intensive labor and time consuming field work. We explore the potential of different remote sensing sensors (Proba-V, Landsat, Sentinel2, Apex) to characterize the urban vegetation dynamics for hydrological modelling. The here proposed remote sensing sensors show differences in the spectral and spatial resolutions as well as in their revisit time. However, in the urban environment we need a high spatial and spectral resolution to distinguish the urban landcover and a frequent revisit time to capture seasonal vegetation dynamics. Therefore, we propose a combination of different remote sensing sensors to derive leaf area index (LAI) timeseries in the urban environment. To improve the consistency in time series generated from different remote sensing sources a harmonization of the multi-sensor time series is proposed and validated with a multi-resolution validation approach using ground-truthing LAI (BELHARMONY project). The LAI timeseries, derived from the different remote sensing sensors, are then introduced into the hydrological modelling framework for a location- and time- specific assessment of the interception storage and evapotranspiration component. The effect of the sensor differences to the LAI timeseries on the hydrological response is analyzed.
How to cite: Wirion, C., Verbeiren, B., and Sterckx, S.: Validation of seasonal time series of remote sensing derived LAI for hydrological modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9071, https://doi.org/10.5194/egusphere-egu2020-9071, 2020.
EGU2020-12000 | Displays | BG2.7
Potassium estimation of cotton leaves based on hyperspectral reflectanceAdunias dos Santos Teixeira, Marcio Regys Rabelo Oliveira, Luis Clenio Jario Moreira, Francisca Ligia de Castro Machado, Fernando Bezerra Lopes, and Isabel Cristina da Silva Araújo
Potassium estimation on plant leaves can help monitor metabolic processes and plant health. The detailed study of hyperspectral data on leaves can therefore be a strong ally in the nutritional diagnosis of plants and can be applied to an on the go systems for precision farming application. In this study, reflectance spectra of cotton leaves were analysed for an assessment of potassium deficiency in cotton plants (Gossypium hirsutum L. ‘BRS 293’). The crop was planted in a greenhouse in the experimental area of the Federal University of Ceara (UFC), Fortaleza, Brazil. Irrigated cotton plants were submitted to four different doses of potassium with twenty replications (n= 80) over 119 days. The following treatments were applied: 50%, 75%, 100% and 125% of the recommended potassium dose. Hyperspectral reflectance spectra data were collected using a Fieldspec ProFR 3 during full flowering, the phenological stage most demanding of potassium. Multivariate statistical techniques were applied to the raw data, the transformed data by derivative analysis, and by the technique of continuum removal. Band selection was carried out by the stepwise method in order to fit a PLSR model focused on identifying bands that are most sensitive to variations in potassium leaf concentrations. Model performance was evaluated by adjusted correlation coefficients – R2adj, root mean square error - RMSE, and residual prediction deviation - RPD. Validation results indicated that the PLSR model accounted for 82.0% of the variation in leaf potassium concentration, with a RMSE of 3.74 and RPD of 1.61. Therefore, the discrimination of potassium deficiencies in cotton using hyperspectral data was satisfactorily performed by a PLSR model composed of 13 wavelengths, of which most are commonly associated with moisture, lignin, cellulose, sugar and protein concentrations in cotton leaves.
How to cite: Teixeira, A. D. S., Oliveira, M. R. R., Moreira, L. C. J., Machado, F. L. D. C., Lopes, F. B., and Araújo, I. C. D. S.: Potassium estimation of cotton leaves based on hyperspectral reflectance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12000, https://doi.org/10.5194/egusphere-egu2020-12000, 2020.
Potassium estimation on plant leaves can help monitor metabolic processes and plant health. The detailed study of hyperspectral data on leaves can therefore be a strong ally in the nutritional diagnosis of plants and can be applied to an on the go systems for precision farming application. In this study, reflectance spectra of cotton leaves were analysed for an assessment of potassium deficiency in cotton plants (Gossypium hirsutum L. ‘BRS 293’). The crop was planted in a greenhouse in the experimental area of the Federal University of Ceara (UFC), Fortaleza, Brazil. Irrigated cotton plants were submitted to four different doses of potassium with twenty replications (n= 80) over 119 days. The following treatments were applied: 50%, 75%, 100% and 125% of the recommended potassium dose. Hyperspectral reflectance spectra data were collected using a Fieldspec ProFR 3 during full flowering, the phenological stage most demanding of potassium. Multivariate statistical techniques were applied to the raw data, the transformed data by derivative analysis, and by the technique of continuum removal. Band selection was carried out by the stepwise method in order to fit a PLSR model focused on identifying bands that are most sensitive to variations in potassium leaf concentrations. Model performance was evaluated by adjusted correlation coefficients – R2adj, root mean square error - RMSE, and residual prediction deviation - RPD. Validation results indicated that the PLSR model accounted for 82.0% of the variation in leaf potassium concentration, with a RMSE of 3.74 and RPD of 1.61. Therefore, the discrimination of potassium deficiencies in cotton using hyperspectral data was satisfactorily performed by a PLSR model composed of 13 wavelengths, of which most are commonly associated with moisture, lignin, cellulose, sugar and protein concentrations in cotton leaves.
How to cite: Teixeira, A. D. S., Oliveira, M. R. R., Moreira, L. C. J., Machado, F. L. D. C., Lopes, F. B., and Araújo, I. C. D. S.: Potassium estimation of cotton leaves based on hyperspectral reflectance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12000, https://doi.org/10.5194/egusphere-egu2020-12000, 2020.
EGU2020-13399 | Displays | BG2.7
Remote sensing of grassland communities in Mongolian Steppe combining multi-source data and machine learning classification algorithmsThanh Noi Phan, Yun Jäschke, Oyundari Chuluunkhuyag, Munkhzul Oyunbileg, Karsten Wesche, and Lukas Lehnert
In this study, we investigate the performance of machine learning classification approaches and different remotely sensed data sources for identifying and mapping three types of grassland communities found in the Mongolian Steppe region (Artemisia, Caragana and grass dominated steppes). The Mongolian steppe is intensively used as pasture and provides the economic basis for approximately 1 million herders. The grassland types differ in their forage values, which is why a spatially-explicit estimation of their occurrence is of high importance. We compared different sensors, classifiers, and training-sample strategies to identify the most effective approaches for mapping these communities. Ten datasets were used: Landsat 8 OLI (30 m), pan-sharpened Landsat 8 (15 m), Landsat 8 Surface Reflectance (30 m), Sentinel 2 (10 m), Sentinel 2 (20 m), Worldview 3 (0.5 m and 1.2 m), integrated Landsat 8 and Sentinel 2 (30 m), temporal Landsat 8, and temporal Sentinel 2. The two foremost classifiers at producing high accuracy of land cover classification, SVM and RF, were applied with the same training datasets. The training samples were collected in a manner so that they could be used for different spatial resolutions (i.e., ranging from 0.5 to 30 m) with the least effect from mixed training samples and spatial autocorrelation. The results of this study indicate that remote sensing is a viable method for the identification of different grassland communities in the Mongolian Steppe region.
How to cite: Phan, T. N., Jäschke, Y., Chuluunkhuyag, O., Oyunbileg, M., Wesche, K., and Lehnert, L.: Remote sensing of grassland communities in Mongolian Steppe combining multi-source data and machine learning classification algorithms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13399, https://doi.org/10.5194/egusphere-egu2020-13399, 2020.
In this study, we investigate the performance of machine learning classification approaches and different remotely sensed data sources for identifying and mapping three types of grassland communities found in the Mongolian Steppe region (Artemisia, Caragana and grass dominated steppes). The Mongolian steppe is intensively used as pasture and provides the economic basis for approximately 1 million herders. The grassland types differ in their forage values, which is why a spatially-explicit estimation of their occurrence is of high importance. We compared different sensors, classifiers, and training-sample strategies to identify the most effective approaches for mapping these communities. Ten datasets were used: Landsat 8 OLI (30 m), pan-sharpened Landsat 8 (15 m), Landsat 8 Surface Reflectance (30 m), Sentinel 2 (10 m), Sentinel 2 (20 m), Worldview 3 (0.5 m and 1.2 m), integrated Landsat 8 and Sentinel 2 (30 m), temporal Landsat 8, and temporal Sentinel 2. The two foremost classifiers at producing high accuracy of land cover classification, SVM and RF, were applied with the same training datasets. The training samples were collected in a manner so that they could be used for different spatial resolutions (i.e., ranging from 0.5 to 30 m) with the least effect from mixed training samples and spatial autocorrelation. The results of this study indicate that remote sensing is a viable method for the identification of different grassland communities in the Mongolian Steppe region.
How to cite: Phan, T. N., Jäschke, Y., Chuluunkhuyag, O., Oyunbileg, M., Wesche, K., and Lehnert, L.: Remote sensing of grassland communities in Mongolian Steppe combining multi-source data and machine learning classification algorithms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13399, https://doi.org/10.5194/egusphere-egu2020-13399, 2020.
EGU2020-19665 | Displays | BG2.7
A software framework for optimizing the design of spaceborne hyperspectral imager architecturesAdam Erickson, Benjamin Poulter, David Thompson, Gregory Okin, Shawn Serbin, Weile Wang, and David Schimel
Quantifying the capacity, and uncertainty, of proposed spaceborne hyperspectral imagers to retrieve atmospheric and surface state information is necessary to optimize future satellite architectures for their science value. Given the vast potential joint trade-and-environment-space, modeling key ‘globally representative’ points in this n-dimensional space is a practical solution for improving computational tractability. Given guidance from policy instruments such as the NASA Decadal Survey and the recommended Designated Target Observables, or DOs, the downselect process can be viewed as a constrained multi-objective optimization. The need to simulate imager architecture performance to achieve downselect goals has motivated the development of new mathematical models for estimating radiometric and retrieval uncertainties provided conditions analogous to real-world environments. The goals can be met with recent advances that integrate mature atmospheric inversion approaches such as Optimal Estimation (OE) that includes joint atmospheric-surface state estimation (Thompson et al. 2018) and the EnMAP end-to-end simulation tool, EeteS (Segl et al. 2012), which utilizes OE for inversions. While surface-reflectance and retrieval simulation models are normally run in isolation on local computing environments, we extend tools to enable uncertainty quantification into new representative environments and thereby increase robustness of the downselect process by providing an advanced simulation model to the broader hyperspectral imaging community in software-as-a-service (SaaS). Here, we describe and demonstrate our instrument modeling web service and corresponding hyperspectral traceability analysis (HyperTrace) library for Python. The modeling service and underlying HyperTrace OE library are deployed on the NASA DISCOVER high-performance computing (HPC) infrastructure. An intermediate HTTP server communicates between FTP and HTTP servers, providing persistent archival of model inputs and outputs for subsequent meta-analyses. To facilitate enhanced community participation, users may simply transfer a folder containing ENVI format hyperspectral imagery and a corresponding JSON metadata file to the FTP server, from which it is pulled to a NASA DISCOVER server for processing, with statistical, graphical, and ENVI-formatted results subsequently returned to the FTP server where it is available for users to download. This activity provides an expanded capability for estimating the various science values of architectures under consideration for NASA’s Surface Biology and Geology Designated Observable.
How to cite: Erickson, A., Poulter, B., Thompson, D., Okin, G., Serbin, S., Wang, W., and Schimel, D.: A software framework for optimizing the design of spaceborne hyperspectral imager architectures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19665, https://doi.org/10.5194/egusphere-egu2020-19665, 2020.
Quantifying the capacity, and uncertainty, of proposed spaceborne hyperspectral imagers to retrieve atmospheric and surface state information is necessary to optimize future satellite architectures for their science value. Given the vast potential joint trade-and-environment-space, modeling key ‘globally representative’ points in this n-dimensional space is a practical solution for improving computational tractability. Given guidance from policy instruments such as the NASA Decadal Survey and the recommended Designated Target Observables, or DOs, the downselect process can be viewed as a constrained multi-objective optimization. The need to simulate imager architecture performance to achieve downselect goals has motivated the development of new mathematical models for estimating radiometric and retrieval uncertainties provided conditions analogous to real-world environments. The goals can be met with recent advances that integrate mature atmospheric inversion approaches such as Optimal Estimation (OE) that includes joint atmospheric-surface state estimation (Thompson et al. 2018) and the EnMAP end-to-end simulation tool, EeteS (Segl et al. 2012), which utilizes OE for inversions. While surface-reflectance and retrieval simulation models are normally run in isolation on local computing environments, we extend tools to enable uncertainty quantification into new representative environments and thereby increase robustness of the downselect process by providing an advanced simulation model to the broader hyperspectral imaging community in software-as-a-service (SaaS). Here, we describe and demonstrate our instrument modeling web service and corresponding hyperspectral traceability analysis (HyperTrace) library for Python. The modeling service and underlying HyperTrace OE library are deployed on the NASA DISCOVER high-performance computing (HPC) infrastructure. An intermediate HTTP server communicates between FTP and HTTP servers, providing persistent archival of model inputs and outputs for subsequent meta-analyses. To facilitate enhanced community participation, users may simply transfer a folder containing ENVI format hyperspectral imagery and a corresponding JSON metadata file to the FTP server, from which it is pulled to a NASA DISCOVER server for processing, with statistical, graphical, and ENVI-formatted results subsequently returned to the FTP server where it is available for users to download. This activity provides an expanded capability for estimating the various science values of architectures under consideration for NASA’s Surface Biology and Geology Designated Observable.
How to cite: Erickson, A., Poulter, B., Thompson, D., Okin, G., Serbin, S., Wang, W., and Schimel, D.: A software framework for optimizing the design of spaceborne hyperspectral imager architectures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19665, https://doi.org/10.5194/egusphere-egu2020-19665, 2020.
We increasingly recognize the diversity of biological systems, in terms of taxonomy, phylogeny and function, as well as the importance of biotic interactions in shaping them. However, the diversity of abiotic factors and interactions between biotic and abiotic diversity are still understudied, despite of Alexander from Humboldt’s advocacy over 200 years ago (Schrodt et al. 2019a). As such, we have lost sight of one of fundamental concepts of Biogeosciences: holistic integrative studies of patterns and processes across the Earth’s spheres.
In the face of accelerated anthropogenic and natural change of biotic and abiotic aspects, appreciation of the interaction diversity between all spheres of the Earth is urgently needed. Yet, to date, the vast majority of studies only account for the effect of climate and, potentially, soils on biodiversity, ignoring interactions (e.g. the effect of biodiversity on soils) and other aspects of geodiversity (the range, value and dynamics of geological, geomorphological, pedological and hydrological aspects and features of the Earth’s surface and subsurface). This applies to both, primary science and the science-policy interface.
I will give a brief introduction on the state-of-the-art in geodiversity – biodiversity interaction research, discuss the importance of incorporating the diversity of abiotic factors in biodiversity and conservation studies and indicate promising avenues for further research. This includes theoretical advancements, such as the recently introduced Essential Geodiversity Variables framework (Schrodt et al. 2019b), as well as practical matters, including remote sensing (Lausch et al. 2019) and modelling approaches suitable for expanding the geo- biodiversity interaction approach across the relevant spatial and temporal scales.
F Schrodt et al. (2019a) Challenges and opportunities for biogeography—What can we still learn from von Humboldt? Journal of Biogeography
F Schrodt et al. (2019b) To advance sustainable stewardship, we must document not only biodiversity but geodiversity. PNAS 116 (33): 16155 – 16158
A Lausch et al. (2019) Linking remote sensing and geodiversity and their traits relevant to biodiversity—part I: soil characteristics. Remote sensing 11 (20): 2356-2407
How to cite: Schrodt, F.: Putting the geo back into Biogeosciences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20369, https://doi.org/10.5194/egusphere-egu2020-20369, 2020.
We increasingly recognize the diversity of biological systems, in terms of taxonomy, phylogeny and function, as well as the importance of biotic interactions in shaping them. However, the diversity of abiotic factors and interactions between biotic and abiotic diversity are still understudied, despite of Alexander from Humboldt’s advocacy over 200 years ago (Schrodt et al. 2019a). As such, we have lost sight of one of fundamental concepts of Biogeosciences: holistic integrative studies of patterns and processes across the Earth’s spheres.
In the face of accelerated anthropogenic and natural change of biotic and abiotic aspects, appreciation of the interaction diversity between all spheres of the Earth is urgently needed. Yet, to date, the vast majority of studies only account for the effect of climate and, potentially, soils on biodiversity, ignoring interactions (e.g. the effect of biodiversity on soils) and other aspects of geodiversity (the range, value and dynamics of geological, geomorphological, pedological and hydrological aspects and features of the Earth’s surface and subsurface). This applies to both, primary science and the science-policy interface.
I will give a brief introduction on the state-of-the-art in geodiversity – biodiversity interaction research, discuss the importance of incorporating the diversity of abiotic factors in biodiversity and conservation studies and indicate promising avenues for further research. This includes theoretical advancements, such as the recently introduced Essential Geodiversity Variables framework (Schrodt et al. 2019b), as well as practical matters, including remote sensing (Lausch et al. 2019) and modelling approaches suitable for expanding the geo- biodiversity interaction approach across the relevant spatial and temporal scales.
F Schrodt et al. (2019a) Challenges and opportunities for biogeography—What can we still learn from von Humboldt? Journal of Biogeography
F Schrodt et al. (2019b) To advance sustainable stewardship, we must document not only biodiversity but geodiversity. PNAS 116 (33): 16155 – 16158
A Lausch et al. (2019) Linking remote sensing and geodiversity and their traits relevant to biodiversity—part I: soil characteristics. Remote sensing 11 (20): 2356-2407
How to cite: Schrodt, F.: Putting the geo back into Biogeosciences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20369, https://doi.org/10.5194/egusphere-egu2020-20369, 2020.
EGU2020-21674 | Displays | BG2.7
Mapping crop distribution in China between 2000 and 2015 by fusing remote-sensing derived cropping seasons and knowledge-based crop phenologyYue Wang, Lijun Zuo, and Zengxiang zhang
Crop mapping is necessary for a variety of application in food security and agricultural monitoring. An innovative phenology-based crop mapping method was developed to map 14 crops between 2000 and 2015. Unlike traditional mapping methods mainly based on remote-sensing data and statistic data, our method takes crop phenology as the input. Phenological metrics represent crop characteristics related to crop calendar and progress such as the timing of emergence, maturity, harvest, etc. Phenological characteristics of each crop are relatively consistent for a long period of time. Combing crop phenology, we allocated the statistical harvest areas on cropland through matching different crops to different cropping seasons in each agroecological regions, which were extracted from 16-day composite MODIS EVI (MOD13Q1) time series data in 250m spatial resolution. Here we obtained the distribution of 14 crops at the spatial resolution of 1km by 1km in 2000, 2010 and 2015, which had higher spatial resolution and higher accuracy when compared with other products. By comparing the data recorded crop types in each meteorological station, we found our method achieved higher accuracies than other methods at the same resolution. As for winter crops, the relevance between total statistical crop area and the area of different cropping seasons that extracted by remote sensing in each agroecological region was higher than 70%. Obviously, the use of crop phenology as the mapping method input improve the accuracy of crop mapping, which are convenient for analyzing the spatial and temporal change of our crops. We found that the center of gravity migration of all crops fell into three directions when analyzing the center of gravity distribution change. In addition, declining Shannon diversity index reflected that the crop richness of the same plot was decreasing.
How to cite: Wang, Y., Zuo, L., and zhang, Z.: Mapping crop distribution in China between 2000 and 2015 by fusing remote-sensing derived cropping seasons and knowledge-based crop phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21674, https://doi.org/10.5194/egusphere-egu2020-21674, 2020.
Crop mapping is necessary for a variety of application in food security and agricultural monitoring. An innovative phenology-based crop mapping method was developed to map 14 crops between 2000 and 2015. Unlike traditional mapping methods mainly based on remote-sensing data and statistic data, our method takes crop phenology as the input. Phenological metrics represent crop characteristics related to crop calendar and progress such as the timing of emergence, maturity, harvest, etc. Phenological characteristics of each crop are relatively consistent for a long period of time. Combing crop phenology, we allocated the statistical harvest areas on cropland through matching different crops to different cropping seasons in each agroecological regions, which were extracted from 16-day composite MODIS EVI (MOD13Q1) time series data in 250m spatial resolution. Here we obtained the distribution of 14 crops at the spatial resolution of 1km by 1km in 2000, 2010 and 2015, which had higher spatial resolution and higher accuracy when compared with other products. By comparing the data recorded crop types in each meteorological station, we found our method achieved higher accuracies than other methods at the same resolution. As for winter crops, the relevance between total statistical crop area and the area of different cropping seasons that extracted by remote sensing in each agroecological region was higher than 70%. Obviously, the use of crop phenology as the mapping method input improve the accuracy of crop mapping, which are convenient for analyzing the spatial and temporal change of our crops. We found that the center of gravity migration of all crops fell into three directions when analyzing the center of gravity distribution change. In addition, declining Shannon diversity index reflected that the crop richness of the same plot was decreasing.
How to cite: Wang, Y., Zuo, L., and zhang, Z.: Mapping crop distribution in China between 2000 and 2015 by fusing remote-sensing derived cropping seasons and knowledge-based crop phenology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21674, https://doi.org/10.5194/egusphere-egu2020-21674, 2020.
EGU2020-21907 | Displays | BG2.7
GBOV (Ground-Based Observation for Validation): A Copernicus service for validation of Land ProductsGabriele Bai, Christophe Lerebourg, Marco Clerici, Nadine Gobron, Jan-Peter Muller, Rui Song, Jadu Dash, Luke Brown, Harry Morris, Ernesto Lopez-Baeza, Erika Albero, Darren Ghent, and Emma Dodd
Copernicus is a European Union Earth Observation program, dedicated to monitor our planet and its environment, giving free access to remote sensing data and derived Earth Observation products. For proper use in environmental monitoring and scientific applications, it is fundamental to guarantee high quality and consistency of these satellite derived products. One of the possibilities to ensure product quality is to perform quantitative comparisons of satellite derived products with the corresponding in situ observation. Two options can then be considered for ground data sources: through intensive field campaigns or making use of permanent ground stations deployed and maintained on the long term. In the first case, a large variety of variable can be assessed, but logistical challenges and financial resources limit in time and space the products validation. More over meteorological constrains often limit the number of data that can actually be used for Earth Observation products. The second option is from far the most cost effective although it is not yet possible to cover all ground variables with permanent field deployment.
To achieve these objectives of systematic and long-term data validation, the Ground-Based Observations for Validation (GBOV) service has been implemented, facilitating the use of observations from operational ground-based monitoring networks and their comparison to EO products. The service is guaranteed through 3 different components:
- Collection of multi-year ground-based observations (Reference Measurements - RMs) of high relevance for the understanding of land surface processes from more than 50 existing sites. These RMs are then upscaled to generate Land Products (LPs), in order to validate the Copernicus products. In particular, the LPs distributed through the GBOV portal are: Top of Canopy Reflectance (ToC-R), surface albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Available Radiation (FAPAR), Fraction of Covered ground (FCover), Surface Soil Moisture (SSM) and Land Surface Temperature (LST).
- Upgrade of existing sites with new instrumentation or establishing entirely new monitoring sites to close thematic or geographical gaps. In 2019 new instrumentation has been installed in three different sites: Hainich (Germany), Valencia (Spain) and Tumbarumba (Australia). Litchfield (Australia), Dahra (Senegal) and Skukuza (South Africa) will be equipped with new instrumentation in the course of 2020.
- Implementation and maintenance of a database for the distribution of the Reference Measurements and the corresponding Land Products, available through the website https://land.copernicus.eu/global/gbov. GBOV data access is completely free, after registration and acceptation of the terms of use and the data policy.
How to cite: Bai, G., Lerebourg, C., Clerici, M., Gobron, N., Muller, J.-P., Song, R., Dash, J., Brown, L., Morris, H., Lopez-Baeza, E., Albero, E., Ghent, D., and Dodd, E.: GBOV (Ground-Based Observation for Validation): A Copernicus service for validation of Land Products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21907, https://doi.org/10.5194/egusphere-egu2020-21907, 2020.
Copernicus is a European Union Earth Observation program, dedicated to monitor our planet and its environment, giving free access to remote sensing data and derived Earth Observation products. For proper use in environmental monitoring and scientific applications, it is fundamental to guarantee high quality and consistency of these satellite derived products. One of the possibilities to ensure product quality is to perform quantitative comparisons of satellite derived products with the corresponding in situ observation. Two options can then be considered for ground data sources: through intensive field campaigns or making use of permanent ground stations deployed and maintained on the long term. In the first case, a large variety of variable can be assessed, but logistical challenges and financial resources limit in time and space the products validation. More over meteorological constrains often limit the number of data that can actually be used for Earth Observation products. The second option is from far the most cost effective although it is not yet possible to cover all ground variables with permanent field deployment.
To achieve these objectives of systematic and long-term data validation, the Ground-Based Observations for Validation (GBOV) service has been implemented, facilitating the use of observations from operational ground-based monitoring networks and their comparison to EO products. The service is guaranteed through 3 different components:
- Collection of multi-year ground-based observations (Reference Measurements - RMs) of high relevance for the understanding of land surface processes from more than 50 existing sites. These RMs are then upscaled to generate Land Products (LPs), in order to validate the Copernicus products. In particular, the LPs distributed through the GBOV portal are: Top of Canopy Reflectance (ToC-R), surface albedo, Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Available Radiation (FAPAR), Fraction of Covered ground (FCover), Surface Soil Moisture (SSM) and Land Surface Temperature (LST).
- Upgrade of existing sites with new instrumentation or establishing entirely new monitoring sites to close thematic or geographical gaps. In 2019 new instrumentation has been installed in three different sites: Hainich (Germany), Valencia (Spain) and Tumbarumba (Australia). Litchfield (Australia), Dahra (Senegal) and Skukuza (South Africa) will be equipped with new instrumentation in the course of 2020.
- Implementation and maintenance of a database for the distribution of the Reference Measurements and the corresponding Land Products, available through the website https://land.copernicus.eu/global/gbov. GBOV data access is completely free, after registration and acceptation of the terms of use and the data policy.
How to cite: Bai, G., Lerebourg, C., Clerici, M., Gobron, N., Muller, J.-P., Song, R., Dash, J., Brown, L., Morris, H., Lopez-Baeza, E., Albero, E., Ghent, D., and Dodd, E.: GBOV (Ground-Based Observation for Validation): A Copernicus service for validation of Land Products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21907, https://doi.org/10.5194/egusphere-egu2020-21907, 2020.
EGU2020-363 | Displays | BG2.7
Discrimination of forest species by remote sensing in the national park "Smolenskoe Poozerie"Anna Narykova
Forests cover about 40 percent of the Earth surface and they are very important for the ecosystems. For instance, forest land highly impacts carbon dynamics, provides habitats for organisms, conserves soil and water resources, and supports human demand for timber and recreation.
This study will discuss the method of determining the deciduous and coniferous tree species in forests by using Unmanned Aerial System (UAS) or drones for distinction of old-growth and second-growth forests. The key area of research is the national park in Smolensk region in the west of Russia, it is called «Smolenskoe Poozerie».The original forests (old-growth) in this area are Pine-Spruce and Oak-Linden forests but the main part were cut down for agriculture and to fuel both industry and farms. The second-growth tree species, such as Poplar-Birch forests, have a tendency to spread to disturbed habitats and replace native tree species.
This theme is relevant because it is one of the modern methods of distinction of old-growth and second-growth forests. Drones are able to cover a relatively large area in a single flight. They operate on user demand and deliver very high resolution images. They have a huge advantage of mapping in order to analyze and monitor forest ecosystems on a tree-level, instead of on a stand-level.
How to cite: Narykova, A.: Discrimination of forest species by remote sensing in the national park "Smolenskoe Poozerie", EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-363, https://doi.org/10.5194/egusphere-egu2020-363, 2020.
Forests cover about 40 percent of the Earth surface and they are very important for the ecosystems. For instance, forest land highly impacts carbon dynamics, provides habitats for organisms, conserves soil and water resources, and supports human demand for timber and recreation.
This study will discuss the method of determining the deciduous and coniferous tree species in forests by using Unmanned Aerial System (UAS) or drones for distinction of old-growth and second-growth forests. The key area of research is the national park in Smolensk region in the west of Russia, it is called «Smolenskoe Poozerie».The original forests (old-growth) in this area are Pine-Spruce and Oak-Linden forests but the main part were cut down for agriculture and to fuel both industry and farms. The second-growth tree species, such as Poplar-Birch forests, have a tendency to spread to disturbed habitats and replace native tree species.
This theme is relevant because it is one of the modern methods of distinction of old-growth and second-growth forests. Drones are able to cover a relatively large area in a single flight. They operate on user demand and deliver very high resolution images. They have a huge advantage of mapping in order to analyze and monitor forest ecosystems on a tree-level, instead of on a stand-level.
How to cite: Narykova, A.: Discrimination of forest species by remote sensing in the national park "Smolenskoe Poozerie", EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-363, https://doi.org/10.5194/egusphere-egu2020-363, 2020.
EGU2020-1223 | Displays | BG2.7
Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigmentsShuren Chou, Bin Chen, Jing Chen, Miaomiao Wang, Shaoqiang Wang, Holly Croft, and Qin Shi
Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments
Shuren Chou1#, Bin Chen2*#, Jing Chen3,4*, Miaomiao Wang2,5, Shaoqiang Wang2,5,6, Holly Croft7, Qin Shi8
1Space Security Center, Space Engineering University, Beijing 101416, China;
2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
3School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
4Department of Geography and Planning, University of Toronto, Toronto, Canada
5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
6College of Geography and Information Engineering, China University of Geosciences, Wuhan, China
7Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
8Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
Abstract: Leaf chlorophyll content has recently been found to be a better proxy than leaf nitrogen content for leaf photosynthetic capacity in a mixed deciduous broadleaf forest. A key concept underlying the relationship between leaf photosynthetic capacity and leaf chlorophyll content was the coordinate regulation of photosynthetic components (i.e. light harvesting, photochemical, and biochemical components). In order to test this hypothesis, we measured seasonal variations in leaf nitrogen content (Nleaf), leaf photosynthetic pigments (i.e. chlorophyll (ChlLeaf), carotenoids (CarLeaf) and xanthophyll (XanLeaf)) and leaf photosynthetic capacity (i.e. the maximum rate at which ribulose bisphosphate (RuBP) is carboxylated (Vcmax25) and regenerated (Jmax25) at 25 oC) at a paddy rice site during the growing season in 2016. We investigated the effectiveness of (Nleaf), leaf photosynthetic pigments, leaf-level photochemical reflectance index at sunny noon (PRILeaf_noon) and their possible combinations for estimating leaf photosynthetic capacities (i.e. Vcmax25 and Jmax25) at a paddy rice site. ChlLeaf was highly correlated to Vcmax25 and Jmax25 (R2 = 0.89 and 0.87, respectively), which were better than Nleaf (R2 = 0.80 and 0.85, respectively). The products of PRILeaf_noon with leaf pigments (i.e. ChlLeaf, CarLeaf and XanLeaf) were also found to be highly correlated with Vcmax25 (R2 = 0.95 to 0.96). Also, the product of leaf chlorophyll a and CarLeaf was a good proxy for Vcmax25 (R2 = 0.93). In sum, this study supported the previously findings that leaf chlorophyll content was better correlated with Vcmax25 than leaf nitrogen content. Also, combining PRILeaf_noon with leaf pigments (i.e. ChlLeaf, CarLeaf and XanLeaf) offered an additional way to estimate leaf photosynthetic capacity (i.e. Vcmax25). These findings supported the hypothesis of coordinate regulation of photosynthetic components and they would be helpful to estimation of leaf photosynthetic capacity using remote sensing data.
Keywords: seasonal variations; leaf nitrogen content; photosynthetic pigments; leaf maximum carboxylation rate
How to cite: Chou, S., Chen, B., Chen, J., Wang, M., Wang, S., Croft, H., and Shi, Q.: Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1223, https://doi.org/10.5194/egusphere-egu2020-1223, 2020.
Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments
Shuren Chou1#, Bin Chen2*#, Jing Chen3,4*, Miaomiao Wang2,5, Shaoqiang Wang2,5,6, Holly Croft7, Qin Shi8
1Space Security Center, Space Engineering University, Beijing 101416, China;
2Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
3School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China
4Department of Geography and Planning, University of Toronto, Toronto, Canada
5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
6College of Geography and Information Engineering, China University of Geosciences, Wuhan, China
7Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, U.K.
8Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
Abstract: Leaf chlorophyll content has recently been found to be a better proxy than leaf nitrogen content for leaf photosynthetic capacity in a mixed deciduous broadleaf forest. A key concept underlying the relationship between leaf photosynthetic capacity and leaf chlorophyll content was the coordinate regulation of photosynthetic components (i.e. light harvesting, photochemical, and biochemical components). In order to test this hypothesis, we measured seasonal variations in leaf nitrogen content (Nleaf), leaf photosynthetic pigments (i.e. chlorophyll (ChlLeaf), carotenoids (CarLeaf) and xanthophyll (XanLeaf)) and leaf photosynthetic capacity (i.e. the maximum rate at which ribulose bisphosphate (RuBP) is carboxylated (Vcmax25) and regenerated (Jmax25) at 25 oC) at a paddy rice site during the growing season in 2016. We investigated the effectiveness of (Nleaf), leaf photosynthetic pigments, leaf-level photochemical reflectance index at sunny noon (PRILeaf_noon) and their possible combinations for estimating leaf photosynthetic capacities (i.e. Vcmax25 and Jmax25) at a paddy rice site. ChlLeaf was highly correlated to Vcmax25 and Jmax25 (R2 = 0.89 and 0.87, respectively), which were better than Nleaf (R2 = 0.80 and 0.85, respectively). The products of PRILeaf_noon with leaf pigments (i.e. ChlLeaf, CarLeaf and XanLeaf) were also found to be highly correlated with Vcmax25 (R2 = 0.95 to 0.96). Also, the product of leaf chlorophyll a and CarLeaf was a good proxy for Vcmax25 (R2 = 0.93). In sum, this study supported the previously findings that leaf chlorophyll content was better correlated with Vcmax25 than leaf nitrogen content. Also, combining PRILeaf_noon with leaf pigments (i.e. ChlLeaf, CarLeaf and XanLeaf) offered an additional way to estimate leaf photosynthetic capacity (i.e. Vcmax25). These findings supported the hypothesis of coordinate regulation of photosynthetic components and they would be helpful to estimation of leaf photosynthetic capacity using remote sensing data.
Keywords: seasonal variations; leaf nitrogen content; photosynthetic pigments; leaf maximum carboxylation rate
How to cite: Chou, S., Chen, B., Chen, J., Wang, M., Wang, S., Croft, H., and Shi, Q.: Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1223, https://doi.org/10.5194/egusphere-egu2020-1223, 2020.
EGU2020-2463 | Displays | BG2.7 | Highlight
GeoNEX: Earth observations from operational geostationary satellite systemsRama Nemani, Tsengdar Lee, Satya Kalluri, Kazuhito Ichii, and Jong-Min Yeom
The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort involving scientists from NASA, NOAA, JAXA/JMA, KMA/KARI exploring the feasibility of producing EOS-quality research products from operational geostationary satellite systems for climate monitoring. The latest generation of geostationary satellites (Himawari 8/9, GOES-16/17, Fengyun-4, GeoKompsat-2A) carry sensors that closely mimic the spatial and spectral characteristics of widely used polar-orbiting, global monitoring sensors such as MODIS and VIIRS. More importantly, they provide observations as frequently as 5-15 minutes. Data from various currently operating geostationary platforms provide a geo-ring of hyper-temporal, multispectral observations. Such high frequency observations, particularly when combined with data from polar orbiters, offer exciting possibilities for improving the retrieval of geophysical variables by overcoming cloud cover, enable studies of diurnally varying phenomena over land, in the atmosphere and the oceans, and help in operational decision-making in agriculture, hydrology and disaster management. Beyond the weather-focused geo-sensors, a number of new spectrometers are scheduled to be launched in the next five years in geostationary orbit to study atmospheric pollution (GEMS, TEMPO), ocean color (GOCI) and carbon cycling (GeoCARB). This talk will highlight new research, data sets, algorithms and computational platforms that utilize data from geostationary satellites to advance our ability to monitor the environment and create climate resiliency.
How to cite: Nemani, R., Lee, T., Kalluri, S., Ichii, K., and Yeom, J.-M.: GeoNEX: Earth observations from operational geostationary satellite systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2463, https://doi.org/10.5194/egusphere-egu2020-2463, 2020.
The NASA Earth Exchange (NEX) team at Ames Research Center has embarked on a collaborative effort involving scientists from NASA, NOAA, JAXA/JMA, KMA/KARI exploring the feasibility of producing EOS-quality research products from operational geostationary satellite systems for climate monitoring. The latest generation of geostationary satellites (Himawari 8/9, GOES-16/17, Fengyun-4, GeoKompsat-2A) carry sensors that closely mimic the spatial and spectral characteristics of widely used polar-orbiting, global monitoring sensors such as MODIS and VIIRS. More importantly, they provide observations as frequently as 5-15 minutes. Data from various currently operating geostationary platforms provide a geo-ring of hyper-temporal, multispectral observations. Such high frequency observations, particularly when combined with data from polar orbiters, offer exciting possibilities for improving the retrieval of geophysical variables by overcoming cloud cover, enable studies of diurnally varying phenomena over land, in the atmosphere and the oceans, and help in operational decision-making in agriculture, hydrology and disaster management. Beyond the weather-focused geo-sensors, a number of new spectrometers are scheduled to be launched in the next five years in geostationary orbit to study atmospheric pollution (GEMS, TEMPO), ocean color (GOCI) and carbon cycling (GeoCARB). This talk will highlight new research, data sets, algorithms and computational platforms that utilize data from geostationary satellites to advance our ability to monitor the environment and create climate resiliency.
How to cite: Nemani, R., Lee, T., Kalluri, S., Ichii, K., and Yeom, J.-M.: GeoNEX: Earth observations from operational geostationary satellite systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2463, https://doi.org/10.5194/egusphere-egu2020-2463, 2020.
EGU2020-4418 | Displays | BG2.7
Comparison of the Photochemical Reflectance Index and Solar-induced Fluorescence for Estimating Gross Primary ProductivityQian Zhang and Jinghua Chen
Photochemical reflectance index (PRI) as a proxy for light use efficiency (LUE) has the potential to improve the estimates of vegetation gross primary productivity (GPP) using LUE model. Solar-induced fluorescence (SIF) has increasingly been shown to be a promising approach for directly estimating GPP. However, a number of factors including the view-geometry and environmental variables, which may disassociate PRI and SIF products from photosynthesis, are important for the estimation of GPP, but rarely investigated. In this study, we observed multi-angle SIF and PRI in a maize field during the 2018 growing season, and compared the PRI-based LUE model and SIF-based linear model in estimating GPP. Our results showed that the averaged PRI and SIF using the multi-angle observations performed better than the single angle observed PRI and SIF in estimating LUE and, GPP respectively. We also found that the seasonal GPP dynamics were better captured by the SIF-based linear model (R2=0.50) than the PRI-based LUE model (R2=0.45), while the PRI-based LUE model performed better in estimating the diurnal variations of GPP (R2=0.71). Random forest analysis demonstrated that PAR and RH were of the most importance in the estimation of diurnal GPP variations using the SIF-based and the PRI-based models, respectively. The PRI-based LUE model performed better than the SIF-based model under most environmental conditions, while SIF should be a preference under clear days (Q>2). Thus, our study confirmed the importance of multi-angle observation of SIF and PRI in estimating GPP and LUE, and suggested that the environmental effects should be considered for accurately estimating GPP using SIF and PRI.
How to cite: Zhang, Q. and Chen, J.: Comparison of the Photochemical Reflectance Index and Solar-induced Fluorescence for Estimating Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4418, https://doi.org/10.5194/egusphere-egu2020-4418, 2020.
Photochemical reflectance index (PRI) as a proxy for light use efficiency (LUE) has the potential to improve the estimates of vegetation gross primary productivity (GPP) using LUE model. Solar-induced fluorescence (SIF) has increasingly been shown to be a promising approach for directly estimating GPP. However, a number of factors including the view-geometry and environmental variables, which may disassociate PRI and SIF products from photosynthesis, are important for the estimation of GPP, but rarely investigated. In this study, we observed multi-angle SIF and PRI in a maize field during the 2018 growing season, and compared the PRI-based LUE model and SIF-based linear model in estimating GPP. Our results showed that the averaged PRI and SIF using the multi-angle observations performed better than the single angle observed PRI and SIF in estimating LUE and, GPP respectively. We also found that the seasonal GPP dynamics were better captured by the SIF-based linear model (R2=0.50) than the PRI-based LUE model (R2=0.45), while the PRI-based LUE model performed better in estimating the diurnal variations of GPP (R2=0.71). Random forest analysis demonstrated that PAR and RH were of the most importance in the estimation of diurnal GPP variations using the SIF-based and the PRI-based models, respectively. The PRI-based LUE model performed better than the SIF-based model under most environmental conditions, while SIF should be a preference under clear days (Q>2). Thus, our study confirmed the importance of multi-angle observation of SIF and PRI in estimating GPP and LUE, and suggested that the environmental effects should be considered for accurately estimating GPP using SIF and PRI.
How to cite: Zhang, Q. and Chen, J.: Comparison of the Photochemical Reflectance Index and Solar-induced Fluorescence for Estimating Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4418, https://doi.org/10.5194/egusphere-egu2020-4418, 2020.
EGU2020-4582 | Displays | BG2.7
Weed-crop competition and the effect on spectral reflectance and physiological processes as demonstrated in maizeInbal Ronay, Shimrit Maman, Jhonathan E. Ephrath, Hanan Eizenberg, and Dan G. Blumberg
Weed-crop competition is a problem affecting food production leading to significant yield losses in various crops. The use of remote sensing technologies in agriculture enables rapid, non-destructive measurements that can be used for research and agronomical management. Previous research has been conducted characterizing the spectral response of crops to the stress caused by weeds but not much progress has been achieved nor has this been fully connected to physiological processes. Understanding the spectral characteristics of this type of stress is a basic step in advancing precision agricultural technologies for managing weeds in the field. This research focuses on corn (Zea mays) with variable densities of redroot pigweed (Amaranthus retroflexus), a common weed that is known to reduce corn yields. The primary research goal is to characterize the physiological changes that occur in the corn during early growth stages in the presence of weeds of different densities. A secondary goal, is to examine the ability to detect those changes by means of proximal and remote sensing.
During June to August 2019, a field experiment was conducted in Sede – Boker, Israel. Hyperspectral reflectance measurements using an ASD spectrometer,
IR images acquired with a thermal camera and multispectral VIS-NIR images from a mounted UAV were taken. We combined the spectral measurements with physiological measurements (photosynthesis, stomatal conductance and transpiration). The data and results were integrated and analyzed to determine whether physiological differences between variable treatments can be detected by the sensing methods. Results show that these can be observed, detected and we will provide new explanations associating the competition, spectral response and physiological processes.
How to cite: Ronay, I., Maman, S., Ephrath, J. E., Eizenberg, H., and Blumberg, D. G.: Weed-crop competition and the effect on spectral reflectance and physiological processes as demonstrated in maize, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4582, https://doi.org/10.5194/egusphere-egu2020-4582, 2020.
Weed-crop competition is a problem affecting food production leading to significant yield losses in various crops. The use of remote sensing technologies in agriculture enables rapid, non-destructive measurements that can be used for research and agronomical management. Previous research has been conducted characterizing the spectral response of crops to the stress caused by weeds but not much progress has been achieved nor has this been fully connected to physiological processes. Understanding the spectral characteristics of this type of stress is a basic step in advancing precision agricultural technologies for managing weeds in the field. This research focuses on corn (Zea mays) with variable densities of redroot pigweed (Amaranthus retroflexus), a common weed that is known to reduce corn yields. The primary research goal is to characterize the physiological changes that occur in the corn during early growth stages in the presence of weeds of different densities. A secondary goal, is to examine the ability to detect those changes by means of proximal and remote sensing.
During June to August 2019, a field experiment was conducted in Sede – Boker, Israel. Hyperspectral reflectance measurements using an ASD spectrometer,
IR images acquired with a thermal camera and multispectral VIS-NIR images from a mounted UAV were taken. We combined the spectral measurements with physiological measurements (photosynthesis, stomatal conductance and transpiration). The data and results were integrated and analyzed to determine whether physiological differences between variable treatments can be detected by the sensing methods. Results show that these can be observed, detected and we will provide new explanations associating the competition, spectral response and physiological processes.
How to cite: Ronay, I., Maman, S., Ephrath, J. E., Eizenberg, H., and Blumberg, D. G.: Weed-crop competition and the effect on spectral reflectance and physiological processes as demonstrated in maize, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4582, https://doi.org/10.5194/egusphere-egu2020-4582, 2020.
EGU2020-5174 | Displays | BG2.7 | Highlight
Potential of LiDAR for species richness prediction at Mount KilimanjaroAlice Ziegler and the Research Group at the Kilimanjaro
To mitigate the negative effects of biodiversity loss, monitoring of species and functional diversity is an important prerequisite for focused management plans. However, sampling of biodiversity during field campaigns is labor- and cost-intensive. Therefore, researchers often use proxies extracted from three-dimensional and high-resolution airborne LiDAR (Light Detection and Ranging) data of the vegetation for predicting biodiversity measures (e.g. species richness or diversity).
This study aims at (i) assessing the suitability of LiDAR observations to map species richness across 17 taxonomic groups and four trophic levels at Mount Kilimanjaro and (ii) differentiating the predictive power of LiDAR-derived structural information from what is already explained by elevation, thereby comparing the prediction potential across taxa and trophic levels.
The field data for this study were collected across 59 plots along an elevation gradient of about 4000 meters at the southern slopes of Mount Kilimanjaro using established methods to sample the selected groups of organisms. The prediction is accomplished with three consecutive steps: (1) Species richness of each taxon is estimated using Partial Least Square Regression (PLSR) with only elevation and its square as independent variables. (2) The residuals of this model are then predicted using the LiDAR-derived variables and PLSR. (3) This third model is subsequently compared to a model that uses the same LiDAR-derived variables and PLSR to predict species richness directly rather than its residuals. This procedure allows to analyze the impact of elevation versus structure on each taxon. Furthermore, the standardized study design allows to compare the predictability of species richness across the selected groups of organisms.
Results of this study show that most taxa can be best predicted by elevation, even though in most cases the structural models perform almost equally. As expected, results of the model performances of trophic levels indicate, that herbivores are influenced more by structure than decomposers and generalists.
How to cite: Ziegler, A. and the Research Group at the Kilimanjaro: Potential of LiDAR for species richness prediction at Mount Kilimanjaro , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5174, https://doi.org/10.5194/egusphere-egu2020-5174, 2020.
To mitigate the negative effects of biodiversity loss, monitoring of species and functional diversity is an important prerequisite for focused management plans. However, sampling of biodiversity during field campaigns is labor- and cost-intensive. Therefore, researchers often use proxies extracted from three-dimensional and high-resolution airborne LiDAR (Light Detection and Ranging) data of the vegetation for predicting biodiversity measures (e.g. species richness or diversity).
This study aims at (i) assessing the suitability of LiDAR observations to map species richness across 17 taxonomic groups and four trophic levels at Mount Kilimanjaro and (ii) differentiating the predictive power of LiDAR-derived structural information from what is already explained by elevation, thereby comparing the prediction potential across taxa and trophic levels.
The field data for this study were collected across 59 plots along an elevation gradient of about 4000 meters at the southern slopes of Mount Kilimanjaro using established methods to sample the selected groups of organisms. The prediction is accomplished with three consecutive steps: (1) Species richness of each taxon is estimated using Partial Least Square Regression (PLSR) with only elevation and its square as independent variables. (2) The residuals of this model are then predicted using the LiDAR-derived variables and PLSR. (3) This third model is subsequently compared to a model that uses the same LiDAR-derived variables and PLSR to predict species richness directly rather than its residuals. This procedure allows to analyze the impact of elevation versus structure on each taxon. Furthermore, the standardized study design allows to compare the predictability of species richness across the selected groups of organisms.
Results of this study show that most taxa can be best predicted by elevation, even though in most cases the structural models perform almost equally. As expected, results of the model performances of trophic levels indicate, that herbivores are influenced more by structure than decomposers and generalists.
How to cite: Ziegler, A. and the Research Group at the Kilimanjaro: Potential of LiDAR for species richness prediction at Mount Kilimanjaro , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5174, https://doi.org/10.5194/egusphere-egu2020-5174, 2020.
EGU2020-6059 | Displays | BG2.7
Remote sensing-aid assessment of wetlands in central MalawiEmmanuel Ogunyomi, Byongjun Hwang, and Adrian Wood
Many areas in Malawi undergo extreme seasonality: floods in the wet season and drought in the dry season. Each year, this extreme seasonality poses formidable challenges for local farmers to sustain their crops. Often in the dry season, farmers use the water in the surrounding seasonal wetlands (dambos) for small-scale irrigation to supplement their rainy season harvest. In Malawi, the agricultural use of wetland is growing year by year and these areas play significant roles in regulating food price shocks and price. Such intensive use of wetlands can negatively affect the sustainability of wetland eco-system and their crop production, with communities even affected by the drying up of wells. Farmers, especially small-scale farmers, will face even more challenges for sustaining wetland production, as climate changes cause more frequent occurrence of droughts as Malawi has experienced in recent years. With the increasingly intensive use of these seasonal wetlands for agricultural purpose and the expansion of wetland degradation generally across the country, more attention is required toward effective management of these wetlands through identification, mapping, monitoring and data analysis. To achieve the sustainable use of these seasonal wetlands, it is essential to establish systematic monitoring and assessment procedures. Widely used assessment protocols (i.e., WET-Health) which evaluate the wetlands based on physical indicators such as land cover, hydrology, geomorphology, soil organic matter and natural vegetation have been successfully implemented in South Africa. However, obtaining those indicators across the full length of an individual wetland, let alone all wetlands in one district in Malawi, is labour intensive and time-consuming and difficult to complete. In this research, we utilise both unmanned aerial vehicle (UAV) and satellite imageries. These data sources are being tested in nine different seasonal wetlands in central Malawi to provide an accurate derivation of key indicators such as gully formation, sedimentation, water extent, changes in land use and natural vegetation. Additionally, using satellite imageries and GIS, the condition of each individual wetland has been quantified, with land cover and the extent of inundation determined through multi-temporal data analysis. Our results can be applied across a larger area, i.e. several districts to help identify where more detailed ground assessment is needed and technical support required to improve wetland management, feeding into both policy and technical guidance which can help sustain the range of ecosystems services of these important areas.
How to cite: Ogunyomi, E., Hwang, B., and Wood, A.: Remote sensing-aid assessment of wetlands in central Malawi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6059, https://doi.org/10.5194/egusphere-egu2020-6059, 2020.
Many areas in Malawi undergo extreme seasonality: floods in the wet season and drought in the dry season. Each year, this extreme seasonality poses formidable challenges for local farmers to sustain their crops. Often in the dry season, farmers use the water in the surrounding seasonal wetlands (dambos) for small-scale irrigation to supplement their rainy season harvest. In Malawi, the agricultural use of wetland is growing year by year and these areas play significant roles in regulating food price shocks and price. Such intensive use of wetlands can negatively affect the sustainability of wetland eco-system and their crop production, with communities even affected by the drying up of wells. Farmers, especially small-scale farmers, will face even more challenges for sustaining wetland production, as climate changes cause more frequent occurrence of droughts as Malawi has experienced in recent years. With the increasingly intensive use of these seasonal wetlands for agricultural purpose and the expansion of wetland degradation generally across the country, more attention is required toward effective management of these wetlands through identification, mapping, monitoring and data analysis. To achieve the sustainable use of these seasonal wetlands, it is essential to establish systematic monitoring and assessment procedures. Widely used assessment protocols (i.e., WET-Health) which evaluate the wetlands based on physical indicators such as land cover, hydrology, geomorphology, soil organic matter and natural vegetation have been successfully implemented in South Africa. However, obtaining those indicators across the full length of an individual wetland, let alone all wetlands in one district in Malawi, is labour intensive and time-consuming and difficult to complete. In this research, we utilise both unmanned aerial vehicle (UAV) and satellite imageries. These data sources are being tested in nine different seasonal wetlands in central Malawi to provide an accurate derivation of key indicators such as gully formation, sedimentation, water extent, changes in land use and natural vegetation. Additionally, using satellite imageries and GIS, the condition of each individual wetland has been quantified, with land cover and the extent of inundation determined through multi-temporal data analysis. Our results can be applied across a larger area, i.e. several districts to help identify where more detailed ground assessment is needed and technical support required to improve wetland management, feeding into both policy and technical guidance which can help sustain the range of ecosystems services of these important areas.
How to cite: Ogunyomi, E., Hwang, B., and Wood, A.: Remote sensing-aid assessment of wetlands in central Malawi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6059, https://doi.org/10.5194/egusphere-egu2020-6059, 2020.
EGU2020-6673 | Displays | BG2.7
Estimation and Analysis of Regional Evapotranspiration in the eastern province of China with Remote Sensing dataWenyu Wu
Evapotranspiration(ET) is a critical component of the land surface energy balance system and hydrologic processes. Analysis of spatiotemporal variations and influencing factors of ET is of great importance to evaluate the growing environment for crops and to effectively use water resources, a critical base for production in research region. The traditional methods are based on point measurement, while the remote sensing provides extensive surface information. The development of remote sensing has promoted the study of regional ET.SEBAL model is based on Surface Energy Balance Algorithm for Land and its physical meaning is clear. This model was developed to show the spatial variability of surface evapotranspiration. SEBAL model was capable of being applied to large regional areas in conjunction with Moderate-resolution Imaging Spectroradiometer (MODIS) data products.According to the shortcomings of the traditional method of calculating ET, based on SEBAL model, the daily regional evapotranspiration of Anhui Province was estimated with 1km spatial resolution by using MODIS products and a few of meteorological data(temperature, wind speed) collected in meteorological stations distributed over the study area.Because of lacking observed data from the lysimeter, the results of P-M were compared with the estimation results based on SEBAL model in this research.The comparison of the evapotranspiration estimated with MODIS products and field observation showed that the former results were lower than the latter results on the whole, and demonstrated that there existed certain trend in correlation between the two results, the average relative error was different at different land surface.The ET computation method based on Remote Sensing proves that this model has strong practicality in Anhui, and it will show great potential in this field with more optimizing the model parameters.
How to cite: Wu, W.: Estimation and Analysis of Regional Evapotranspiration in the eastern province of China with Remote Sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6673, https://doi.org/10.5194/egusphere-egu2020-6673, 2020.
Evapotranspiration(ET) is a critical component of the land surface energy balance system and hydrologic processes. Analysis of spatiotemporal variations and influencing factors of ET is of great importance to evaluate the growing environment for crops and to effectively use water resources, a critical base for production in research region. The traditional methods are based on point measurement, while the remote sensing provides extensive surface information. The development of remote sensing has promoted the study of regional ET.SEBAL model is based on Surface Energy Balance Algorithm for Land and its physical meaning is clear. This model was developed to show the spatial variability of surface evapotranspiration. SEBAL model was capable of being applied to large regional areas in conjunction with Moderate-resolution Imaging Spectroradiometer (MODIS) data products.According to the shortcomings of the traditional method of calculating ET, based on SEBAL model, the daily regional evapotranspiration of Anhui Province was estimated with 1km spatial resolution by using MODIS products and a few of meteorological data(temperature, wind speed) collected in meteorological stations distributed over the study area.Because of lacking observed data from the lysimeter, the results of P-M were compared with the estimation results based on SEBAL model in this research.The comparison of the evapotranspiration estimated with MODIS products and field observation showed that the former results were lower than the latter results on the whole, and demonstrated that there existed certain trend in correlation between the two results, the average relative error was different at different land surface.The ET computation method based on Remote Sensing proves that this model has strong practicality in Anhui, and it will show great potential in this field with more optimizing the model parameters.
How to cite: Wu, W.: Estimation and Analysis of Regional Evapotranspiration in the eastern province of China with Remote Sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6673, https://doi.org/10.5194/egusphere-egu2020-6673, 2020.
EGU2020-9039 | Displays | BG2.7
Spatio-temporal variation in NPP and correlation analysis with aerosol loading and PAR in China during 2001-2017Xin Li and Weiming Cheng
The net primary productivity (NPP) reflects the growth or production of terrestrial vegetation and plays an important role in the carbon cycle on the earth. It quantifies the difference between the organic matter produced by photosynthesis and the loss of maintenance and growth respiration. The investigation of the spatio-temporal variation in NPP is significant for monitoring plant photosynthesis and carbon uptake in terrestrial ecosystems. In this study, the variability and trend of NPP in China during 2001-2017 are analysed using level 4 MODIS product (MOD17A2H). Additionally, to explore whether the NPP change in recent decades are related with the photosynthetically active radiation (PAR) variation caused by increasing aerosol loading, the correlation between NPP, PAR and aerosol optical depth (AOD) are analysed at national, regional, and pixel scales. The results show that the annual mean NPP shows higher values in the southeast than in the northwest. The highest NPP level above 2.5 gCm-2day-1 is mainly distributed in tropical humid regions, including Zhejiang, Fujian, Guangdong and western Yunnan. The NPP increases with an amplitude of 0.131 gCm-2day-1 during the study period. The forests have higher mean levels of NPP (1.808 gCm-2day-1) and larger increasing magnitudes (0.35 gCm-2day-1) than those of croplands and grasslands. The NPP and AOD show a negative correlation (-0.6<R<-0.2) at a significance level of 0.05 over the middle area of China. The PAR direct and diffuse components generally have positive (0<RPARdir_NPP<0.6) and negative correlations (-0.6<RPARdif_NPP<0) with NPP, respectively, in most of China except the northeast and Tibetan Plateau. The NPP have stronger correlations (0.215 and -0.218) with the direct and diffuse PAR in forests than in croplands and grasslands, implying that NPP is more sensitive to the change in PAR in forests than in other vegetation cover types.
How to cite: Li, X. and Cheng, W.: Spatio-temporal variation in NPP and correlation analysis with aerosol loading and PAR in China during 2001-2017, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9039, https://doi.org/10.5194/egusphere-egu2020-9039, 2020.
The net primary productivity (NPP) reflects the growth or production of terrestrial vegetation and plays an important role in the carbon cycle on the earth. It quantifies the difference between the organic matter produced by photosynthesis and the loss of maintenance and growth respiration. The investigation of the spatio-temporal variation in NPP is significant for monitoring plant photosynthesis and carbon uptake in terrestrial ecosystems. In this study, the variability and trend of NPP in China during 2001-2017 are analysed using level 4 MODIS product (MOD17A2H). Additionally, to explore whether the NPP change in recent decades are related with the photosynthetically active radiation (PAR) variation caused by increasing aerosol loading, the correlation between NPP, PAR and aerosol optical depth (AOD) are analysed at national, regional, and pixel scales. The results show that the annual mean NPP shows higher values in the southeast than in the northwest. The highest NPP level above 2.5 gCm-2day-1 is mainly distributed in tropical humid regions, including Zhejiang, Fujian, Guangdong and western Yunnan. The NPP increases with an amplitude of 0.131 gCm-2day-1 during the study period. The forests have higher mean levels of NPP (1.808 gCm-2day-1) and larger increasing magnitudes (0.35 gCm-2day-1) than those of croplands and grasslands. The NPP and AOD show a negative correlation (-0.6<R<-0.2) at a significance level of 0.05 over the middle area of China. The PAR direct and diffuse components generally have positive (0<RPARdir_NPP<0.6) and negative correlations (-0.6<RPARdif_NPP<0) with NPP, respectively, in most of China except the northeast and Tibetan Plateau. The NPP have stronger correlations (0.215 and -0.218) with the direct and diffuse PAR in forests than in croplands and grasslands, implying that NPP is more sensitive to the change in PAR in forests than in other vegetation cover types.
How to cite: Li, X. and Cheng, W.: Spatio-temporal variation in NPP and correlation analysis with aerosol loading and PAR in China during 2001-2017, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9039, https://doi.org/10.5194/egusphere-egu2020-9039, 2020.
EGU2020-10014 | Displays | BG2.7
On the surface apparent reflectance exploitation: Entangled Solar Induced Fluorescence emission and aerosol scattering effects at oxygen absorption regionsNeus Sabater, Pekka Kolmonen, Luis Alonso, Jorge Vicent, José Moreno, and Antti Arola
Monitoring vegetation photosynthetic activity and its link with the carbon cycle at a global scale is a leading breakthrough that the scientific community has been seeking in recent years. Pursuing this goal, one of the most important advances in the last decade has been the measurement of the Solar Induced Fluorescence (SIF) at a satellite scale. Current satellite-derived SIF estimations provide SIF measured at certain specific wavelengths depending on the retrieval strategy and the instrument capabilities. However, for the time being, no global observations of the total spectrally resolved and integrated SIF signal have been yet achieved. In a near-future context, spectrally resolved SIF estimations will be provided by missions such as the FLuorescence EXplorer (FLEX) from the European Space Agency.
When disentangling the total SIF contribution, emitted between 650-800 nm, from the acquired satellite signal, molecular and aerosol absorption and scattering effects must be carefully accounted for. Particularly, within the oxygen absorption features, the characterization of the aerosol scattering effects represents the most critical step prior to the SIF estimation.
In the context of the FLEX/Sentinel-3 tandem mission concept, this work presents a novel technique that refines any a priori aerosol characterization process through the exploitation of the high spectral resolution surface apparent reflectance signal at the oxygen absorption regions. Within the absorption features, SIF contribution on satellite-derived surface apparent reflectance generates a characteristic peaky spectrum. However, the shape of these peaks can be simultaneously distorted through the atmospheric correction process due to inaccuracies in the aerosol characterization among other secondary sources. Inaccuracies in the estimation of aerosol optical thickness, Angstrom exponent, asymmetry of the scattering or single scattering albedo translate into characteristic distortions in the shape of the peaks in the apparent reflectance. This particular behaviour allows inferring the magnitude of the errors and correcting them. The presented technique improves the accuracy of any a priori aerosol retrieval.
Authors expect this study to be also of interest to other hyperspectral missions when exploiting, at high spectral resolution, information from oxygen absorption regions.
How to cite: Sabater, N., Kolmonen, P., Alonso, L., Vicent, J., Moreno, J., and Arola, A.: On the surface apparent reflectance exploitation: Entangled Solar Induced Fluorescence emission and aerosol scattering effects at oxygen absorption regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10014, https://doi.org/10.5194/egusphere-egu2020-10014, 2020.
Monitoring vegetation photosynthetic activity and its link with the carbon cycle at a global scale is a leading breakthrough that the scientific community has been seeking in recent years. Pursuing this goal, one of the most important advances in the last decade has been the measurement of the Solar Induced Fluorescence (SIF) at a satellite scale. Current satellite-derived SIF estimations provide SIF measured at certain specific wavelengths depending on the retrieval strategy and the instrument capabilities. However, for the time being, no global observations of the total spectrally resolved and integrated SIF signal have been yet achieved. In a near-future context, spectrally resolved SIF estimations will be provided by missions such as the FLuorescence EXplorer (FLEX) from the European Space Agency.
When disentangling the total SIF contribution, emitted between 650-800 nm, from the acquired satellite signal, molecular and aerosol absorption and scattering effects must be carefully accounted for. Particularly, within the oxygen absorption features, the characterization of the aerosol scattering effects represents the most critical step prior to the SIF estimation.
In the context of the FLEX/Sentinel-3 tandem mission concept, this work presents a novel technique that refines any a priori aerosol characterization process through the exploitation of the high spectral resolution surface apparent reflectance signal at the oxygen absorption regions. Within the absorption features, SIF contribution on satellite-derived surface apparent reflectance generates a characteristic peaky spectrum. However, the shape of these peaks can be simultaneously distorted through the atmospheric correction process due to inaccuracies in the aerosol characterization among other secondary sources. Inaccuracies in the estimation of aerosol optical thickness, Angstrom exponent, asymmetry of the scattering or single scattering albedo translate into characteristic distortions in the shape of the peaks in the apparent reflectance. This particular behaviour allows inferring the magnitude of the errors and correcting them. The presented technique improves the accuracy of any a priori aerosol retrieval.
Authors expect this study to be also of interest to other hyperspectral missions when exploiting, at high spectral resolution, information from oxygen absorption regions.
How to cite: Sabater, N., Kolmonen, P., Alonso, L., Vicent, J., Moreno, J., and Arola, A.: On the surface apparent reflectance exploitation: Entangled Solar Induced Fluorescence emission and aerosol scattering effects at oxygen absorption regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10014, https://doi.org/10.5194/egusphere-egu2020-10014, 2020.
EGU2020-12577 | Displays | BG2.7
Time series 30m resolution leaf area index estimation and vegetation change monitoring in Saihanba, ChinaHongmin Zhou, Guodong Zhang, Changjing Wang, and Jindi Wang
Leaf area index (LAI) is one of the most important biophysical variables for regulating the physiological processes of vegetation canopy. Time series high-resolution LAI data is critical for vegetation growth monitoring, surface process simulation and global change research. However, there are no high-resolution LAI data products that are continuous in time and space. In this paper, we use MODIS LAI products and Landsat surface reflectance data to generate time series high-resolution LAI datasets from 2000 to 2018 in Saihanba based on the ensemble kalman filter, and uses time-series LAI data to monitor surface vegetation changes according to the Prophet model. Firstly, the multi-step Savitzky–Golay filtering algorithm is used to smooth the MODIS LAI data, and the upper envelope of time series LAI is generated. A dynamic model is constructed according to the trend of LAI upper envelope to provide the short-range forecast of LAI. Then the ground measured LAI data and the corresponding Landsat reflectance data are used to train a Back Propagation neural network. High-resolution LAI data from BP model is used to update the dynamic model in real time to generate high-resolution time series LAI data based on EnKF. Finally, the time series LAI data is used as the input of Prophet deep learning model to obtain the LAI time series prediction values of a certain year. Comparing the prediction results with the LAI of current year, the correlation coefficient and the root mean square error distribution maps can be obtained, a support vector machine method is used to classify the disturbed pixels and the normal pixels. The LAI time series estimation has a high accuracy of R²larger than 0.90, and RMSE less than 0.54. The disturbance monitoring results indicate that vegetation in 2009, 2010, 2013, 2014, 2015, 2017 is seriously disturbed, Variation of meteorological conditions and deforest contributes heavily to the disturbance.
How to cite: Zhou, H., Zhang, G., Wang, C., and Wang, J.: Time series 30m resolution leaf area index estimation and vegetation change monitoring in Saihanba, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12577, https://doi.org/10.5194/egusphere-egu2020-12577, 2020.
Leaf area index (LAI) is one of the most important biophysical variables for regulating the physiological processes of vegetation canopy. Time series high-resolution LAI data is critical for vegetation growth monitoring, surface process simulation and global change research. However, there are no high-resolution LAI data products that are continuous in time and space. In this paper, we use MODIS LAI products and Landsat surface reflectance data to generate time series high-resolution LAI datasets from 2000 to 2018 in Saihanba based on the ensemble kalman filter, and uses time-series LAI data to monitor surface vegetation changes according to the Prophet model. Firstly, the multi-step Savitzky–Golay filtering algorithm is used to smooth the MODIS LAI data, and the upper envelope of time series LAI is generated. A dynamic model is constructed according to the trend of LAI upper envelope to provide the short-range forecast of LAI. Then the ground measured LAI data and the corresponding Landsat reflectance data are used to train a Back Propagation neural network. High-resolution LAI data from BP model is used to update the dynamic model in real time to generate high-resolution time series LAI data based on EnKF. Finally, the time series LAI data is used as the input of Prophet deep learning model to obtain the LAI time series prediction values of a certain year. Comparing the prediction results with the LAI of current year, the correlation coefficient and the root mean square error distribution maps can be obtained, a support vector machine method is used to classify the disturbed pixels and the normal pixels. The LAI time series estimation has a high accuracy of R²larger than 0.90, and RMSE less than 0.54. The disturbance monitoring results indicate that vegetation in 2009, 2010, 2013, 2014, 2015, 2017 is seriously disturbed, Variation of meteorological conditions and deforest contributes heavily to the disturbance.
How to cite: Zhou, H., Zhang, G., Wang, C., and Wang, J.: Time series 30m resolution leaf area index estimation and vegetation change monitoring in Saihanba, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12577, https://doi.org/10.5194/egusphere-egu2020-12577, 2020.
EGU2020-15832 | Displays | BG2.7
Evaluating the impact of different spaceborne land cover distributions on isoprene emissions and their trends using the MEGAN model.Beata Opacka, Jean-François Müller, Jenny Stavrakou, Maite Bauwens, and Alex B. Guenther
The biogenic volatile organic compounds (BVOCs) are emitted globally at about 1100 Tg per year of which almost half of the share is entailed by isoprene. Isoprene is highly reactive in the atmosphere, and its degradation products impact the atmospheric composition through the generation of ozone (in presence of NOx typical of polluted areas) and secondary organic aerosols, and may pose a risk to human health. Isoprene is mainly emitted by plant foliage, with trees being the major contributors due to their relatively high emission factors.
In the modelling framework of biosphere-atmosphere interactions, the representation of land cover and vegetation distributions is a key aspect. We use the state-of-the-art biogenic emission model MEGAN (Guenther et al. 2012) coupled with a multi-layer canopy model MOHYCAN (Müller et al. 2008) to estimate isoprene emissions on the global scale. In its current standard version, the model uses a static plant functional type (PFT) distribution obtained from the Community Land Model (CLM4) for 2000. Our objective is to replace the static map by time-dependent PFT distributions based on satellite global land cover maps, and estimate the resulting biogenic emissions over 2001-2018. To this purpose, we use either the MODIS land cover dataset (Friedl and Sulla-Menashe, 2019), or the MODIS dataset modified to account for tree cover changes from Hansen et al. (2013). Comparisons with the ESA-CCI dataset (Poulter et al. 2015) and the FAOSTAT (www.fao.org) database are performed and the trends over large forested regions are discussed. The comparisons show a large variability in the representation of the tree cover by the available remotely-sensed datasets, leading to different spatial distributions and temporal variability in the estimated isoprene emissions. This gives a measure of the uncertainty associated to this input parameter. This work is conducted in the frame of the ALBERI project that aims at assessing links between biogenic emissions and remotely-sensed photosynthesis indicators, funded by BELSPO through the STEREO III programme.
How to cite: Opacka, B., Müller, J.-F., Stavrakou, J., Bauwens, M., and Guenther, A. B.: Evaluating the impact of different spaceborne land cover distributions on isoprene emissions and their trends using the MEGAN model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15832, https://doi.org/10.5194/egusphere-egu2020-15832, 2020.
The biogenic volatile organic compounds (BVOCs) are emitted globally at about 1100 Tg per year of which almost half of the share is entailed by isoprene. Isoprene is highly reactive in the atmosphere, and its degradation products impact the atmospheric composition through the generation of ozone (in presence of NOx typical of polluted areas) and secondary organic aerosols, and may pose a risk to human health. Isoprene is mainly emitted by plant foliage, with trees being the major contributors due to their relatively high emission factors.
In the modelling framework of biosphere-atmosphere interactions, the representation of land cover and vegetation distributions is a key aspect. We use the state-of-the-art biogenic emission model MEGAN (Guenther et al. 2012) coupled with a multi-layer canopy model MOHYCAN (Müller et al. 2008) to estimate isoprene emissions on the global scale. In its current standard version, the model uses a static plant functional type (PFT) distribution obtained from the Community Land Model (CLM4) for 2000. Our objective is to replace the static map by time-dependent PFT distributions based on satellite global land cover maps, and estimate the resulting biogenic emissions over 2001-2018. To this purpose, we use either the MODIS land cover dataset (Friedl and Sulla-Menashe, 2019), or the MODIS dataset modified to account for tree cover changes from Hansen et al. (2013). Comparisons with the ESA-CCI dataset (Poulter et al. 2015) and the FAOSTAT (www.fao.org) database are performed and the trends over large forested regions are discussed. The comparisons show a large variability in the representation of the tree cover by the available remotely-sensed datasets, leading to different spatial distributions and temporal variability in the estimated isoprene emissions. This gives a measure of the uncertainty associated to this input parameter. This work is conducted in the frame of the ALBERI project that aims at assessing links between biogenic emissions and remotely-sensed photosynthesis indicators, funded by BELSPO through the STEREO III programme.
How to cite: Opacka, B., Müller, J.-F., Stavrakou, J., Bauwens, M., and Guenther, A. B.: Evaluating the impact of different spaceborne land cover distributions on isoprene emissions and their trends using the MEGAN model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15832, https://doi.org/10.5194/egusphere-egu2020-15832, 2020.
EGU2020-10633 | Displays | BG2.7
Application of Copernicus Global Land Service vegetation parameters and ESA soil moisture data to analyze changes in vegetation with respect to the CORINE databaseHajnalka Breuer and Amanda Imola Szabó
Vegetation and soil moisture monitoring are complicated and expensive with in-situ measurements thus remote sensing is a favorable tool to monitor changes in the land surface. Under the supervision of the European Environment Agency and the Joint Research Centre the Copernicus Global Land Service (GLS) became a prominent service providing satellite data for climatological purposes. In this study the Copernicus GLS provided leaf area index (LAI) and dry matter productivity (DMP) data are used at 1 km resolution over Europe. Based on the LAI, growing season start and length is also determined. Around 18 years of data (2000-2018) is analyzed to look for changes in vegetation. Using the CORINE land cover categories changes in vegetation parameters are also analyzed by differentiating between land cover categories. Furthermore, the ESA (European Space Agency) Climate Change Initiative soil moisture data is coupled with the changes in vegetation parameters. In the case of soil moisture, the data is available at a 0.25° resolution, therefore vegetation parameters are interpolated accordingly.
Initial results show, that the maximum value of LAI increases the most in North Europe, the increase is almost linear. Changes in LAI derived start of growing season shows an earlier start in Central Europe and a later start in North Europe. The connection between vegetation parameters and soil moisture varies based on land cover and location. The strongest correlation is found for summer soil moisture and autumn LAI for arable lands and a negative correlation is found for shrublands.
How to cite: Breuer, H. and Szabó, A. I.: Application of Copernicus Global Land Service vegetation parameters and ESA soil moisture data to analyze changes in vegetation with respect to the CORINE database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10633, https://doi.org/10.5194/egusphere-egu2020-10633, 2020.
Vegetation and soil moisture monitoring are complicated and expensive with in-situ measurements thus remote sensing is a favorable tool to monitor changes in the land surface. Under the supervision of the European Environment Agency and the Joint Research Centre the Copernicus Global Land Service (GLS) became a prominent service providing satellite data for climatological purposes. In this study the Copernicus GLS provided leaf area index (LAI) and dry matter productivity (DMP) data are used at 1 km resolution over Europe. Based on the LAI, growing season start and length is also determined. Around 18 years of data (2000-2018) is analyzed to look for changes in vegetation. Using the CORINE land cover categories changes in vegetation parameters are also analyzed by differentiating between land cover categories. Furthermore, the ESA (European Space Agency) Climate Change Initiative soil moisture data is coupled with the changes in vegetation parameters. In the case of soil moisture, the data is available at a 0.25° resolution, therefore vegetation parameters are interpolated accordingly.
Initial results show, that the maximum value of LAI increases the most in North Europe, the increase is almost linear. Changes in LAI derived start of growing season shows an earlier start in Central Europe and a later start in North Europe. The connection between vegetation parameters and soil moisture varies based on land cover and location. The strongest correlation is found for summer soil moisture and autumn LAI for arable lands and a negative correlation is found for shrublands.
How to cite: Breuer, H. and Szabó, A. I.: Application of Copernicus Global Land Service vegetation parameters and ESA soil moisture data to analyze changes in vegetation with respect to the CORINE database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10633, https://doi.org/10.5194/egusphere-egu2020-10633, 2020.
EGU2020-13332 | Displays | BG2.7
How valuable are citizen science data for a space-borne crop growth monitoring? – The reliability of self-appraisalsSina C. Truckenbrodt, Friederike Klan, Erik Borg, Klaus-Dieter Missling, and Christiane C. Schmullius
Space-borne Earth Observation (EO) data depicting vegetation covered land surfaces contain insufficient information for an unambiguous interpretation of the spectral signal in terms of variables that characterize the vegetation state (e.g., leaf area index, leaf chlorophyll content and proportion of senescent material). For the retrieval of vegetation properties from EO data, an optimal estimate of the state variables needs to be found. The uncertainty of such an estimate can be reduced by combining EO data and in situ data. Information provided by citizens represents a valuable and mostly inexpensive source for in situ data. Since the quality of such data can be diverse, the consideration of uncertainties is of great importance.
In this contribution, we present a concept for the elicitation of local knowledge from citizens with respect to the application of management practices (e.g., sowing and harvesting date, irrigation) and the instantaneous state of crops. The concept includes the acquisition of in situ data as well as an uncertainty assessment (precision and/or accuracy). The latter involves a profiling in which inherent uncertainties are quantified for individual citizens. This concept was tested for agricultural fields of the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site in Northeast Germany. Within the frame of several field seminars, students were requested to assess management practices and the instantaneous state of crops. Furthermore, they assessed their own ability to create valid data. They filled in pseudonymized questionnaires from which we created corresponding datasets. At the same day, field data were collected with appropriate equipment and can be used as reference against which student estimates can be compared. The level of compliance between estimated and measured data was determined on an individual basis.
The results of this analysis will be presented. Conclusions will be drawn regarding the ability of the students to evaluate their own skills. In addition, we will demonstrate an approach for a digital ascertainment of in situ data. In the future, this approach will be used to collect in situ data for the setup of refined prior information within the frame of the Earth Observation Land Data Assimilation System (EO-LDAS).
How to cite: Truckenbrodt, S. C., Klan, F., Borg, E., Missling, K.-D., and Schmullius, C. C.: How valuable are citizen science data for a space-borne crop growth monitoring? – The reliability of self-appraisals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13332, https://doi.org/10.5194/egusphere-egu2020-13332, 2020.
Space-borne Earth Observation (EO) data depicting vegetation covered land surfaces contain insufficient information for an unambiguous interpretation of the spectral signal in terms of variables that characterize the vegetation state (e.g., leaf area index, leaf chlorophyll content and proportion of senescent material). For the retrieval of vegetation properties from EO data, an optimal estimate of the state variables needs to be found. The uncertainty of such an estimate can be reduced by combining EO data and in situ data. Information provided by citizens represents a valuable and mostly inexpensive source for in situ data. Since the quality of such data can be diverse, the consideration of uncertainties is of great importance.
In this contribution, we present a concept for the elicitation of local knowledge from citizens with respect to the application of management practices (e.g., sowing and harvesting date, irrigation) and the instantaneous state of crops. The concept includes the acquisition of in situ data as well as an uncertainty assessment (precision and/or accuracy). The latter involves a profiling in which inherent uncertainties are quantified for individual citizens. This concept was tested for agricultural fields of the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site in Northeast Germany. Within the frame of several field seminars, students were requested to assess management practices and the instantaneous state of crops. Furthermore, they assessed their own ability to create valid data. They filled in pseudonymized questionnaires from which we created corresponding datasets. At the same day, field data were collected with appropriate equipment and can be used as reference against which student estimates can be compared. The level of compliance between estimated and measured data was determined on an individual basis.
The results of this analysis will be presented. Conclusions will be drawn regarding the ability of the students to evaluate their own skills. In addition, we will demonstrate an approach for a digital ascertainment of in situ data. In the future, this approach will be used to collect in situ data for the setup of refined prior information within the frame of the Earth Observation Land Data Assimilation System (EO-LDAS).
How to cite: Truckenbrodt, S. C., Klan, F., Borg, E., Missling, K.-D., and Schmullius, C. C.: How valuable are citizen science data for a space-borne crop growth monitoring? – The reliability of self-appraisals, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13332, https://doi.org/10.5194/egusphere-egu2020-13332, 2020.
EGU2020-18493 | Displays | BG2.7
Learning main drivers of crop dynamics and production in EuropeAnna Mateo Sanchis, Maria Piles, Julia Amorós López, Jordi Muñoz Marí, and Gustau Camps Valls
An expanding world population combined with challenges brought by climate change pose totally new scenarios for managing agricultural fields and crop production. In the last decades, a variety of ground-based, modeled, and Earth observation (EO) data have been used to characterize crop dynamics and, ultimately, estimate yield. Typically, optical vegetation indices and, in particular, metrics like their maximum peak or integral during the growing season are exploited to estimated crop yield. Also, most studies are focused on large areas with homogeneous agricultural landscapes in which cultivation/production is centred in a unique main crop (e.g. the U.S. Corn Belt or the Indian Wheat Belt).
In this study, we study the transportability of machine learning models for crop yield estimation across different regions and the relative relevance of agro-ecological drivers (input features). We use a previous methodology presented in [1] that synergistically combined optical and microwave vegetation data for crop yield prediction. We apply this methodology, which was trained in the homogeneous area of the US Corn Belt, to the highly heterogeneous agricultural landscapes across Europe. The fragmented and diverse European agro-ecosystems poses a greater challenge for the combination of multi-sensor data, and we need to establish first which is the set of variables providing the best skill for yield estimation of the main crops grown in Europe (corn, barley and wheat) under this new scenario. Subsequently, we study whether these variables are also able to capture potential disruptions on crop dynamics deriving from extreme events and their influence in final crop production.
[1] Synergistic Integration of Optical and Microwave Satellite Data for Crop Yield Estimation. Anna Mateo-Sanchis, Maria Piles, Jordi Muñoz-Marí, Jose E. Adsuara, Adrián Pérez-Suay and Gustau Camps-Valls. Remote Sensing of Environment 234:111460, 2019.
How to cite: Mateo Sanchis, A., Piles, M., Amorós López, J., Muñoz Marí, J., and Camps Valls, G.: Learning main drivers of crop dynamics and production in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18493, https://doi.org/10.5194/egusphere-egu2020-18493, 2020.
An expanding world population combined with challenges brought by climate change pose totally new scenarios for managing agricultural fields and crop production. In the last decades, a variety of ground-based, modeled, and Earth observation (EO) data have been used to characterize crop dynamics and, ultimately, estimate yield. Typically, optical vegetation indices and, in particular, metrics like their maximum peak or integral during the growing season are exploited to estimated crop yield. Also, most studies are focused on large areas with homogeneous agricultural landscapes in which cultivation/production is centred in a unique main crop (e.g. the U.S. Corn Belt or the Indian Wheat Belt).
In this study, we study the transportability of machine learning models for crop yield estimation across different regions and the relative relevance of agro-ecological drivers (input features). We use a previous methodology presented in [1] that synergistically combined optical and microwave vegetation data for crop yield prediction. We apply this methodology, which was trained in the homogeneous area of the US Corn Belt, to the highly heterogeneous agricultural landscapes across Europe. The fragmented and diverse European agro-ecosystems poses a greater challenge for the combination of multi-sensor data, and we need to establish first which is the set of variables providing the best skill for yield estimation of the main crops grown in Europe (corn, barley and wheat) under this new scenario. Subsequently, we study whether these variables are also able to capture potential disruptions on crop dynamics deriving from extreme events and their influence in final crop production.
[1] Synergistic Integration of Optical and Microwave Satellite Data for Crop Yield Estimation. Anna Mateo-Sanchis, Maria Piles, Jordi Muñoz-Marí, Jose E. Adsuara, Adrián Pérez-Suay and Gustau Camps-Valls. Remote Sensing of Environment 234:111460, 2019.
How to cite: Mateo Sanchis, A., Piles, M., Amorós López, J., Muñoz Marí, J., and Camps Valls, G.: Learning main drivers of crop dynamics and production in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18493, https://doi.org/10.5194/egusphere-egu2020-18493, 2020.
EGU2020-19003 | Displays | BG2.7
Modelling understory light availability in a heterogeneous landscape using drone-derived structural parameters and a 3D radiative transfer modelDominic Fawcett, Jonathan Bennie, and Karen Anderson
The light environment within vegetated landscapes is a key driver of microclimate, creating varied habitats over small spatial extents and controls the distribution of understory plant species. Modelling spatial variations of light at these scales requires finely resolved (< 1 m) information on topography and canopy properties. We demonstrate an approach to modelling spatial distributions and temporal progression of understory photosynthetically active radiation (PAR) utilising a three dimensional radiative transfer model (discrete anisotropic radiative transfer model: DART) where the scene is parameterised by drone-based data.
The study site, located in west Cornwall, UK, includes a small mixed woodland as well as isolated free-standing trees. Data were acquired from March to August 2019. Vegetation height and distribution were derived from point clouds generated from drone image data using structure-from-motion (SfM) photogrammetry. These data were supplemented by multi-temporal multispectral imagery (Parrot Sequoia camera) which were used to generate an empirical model by relating a vegetation index to plant area index derived from hemispherical photography taken over the same time period. Simulations of the 3D radiative budget were performed for the PAR wavelength interval (400 – 700 nm) using DART.
Besides maps of instantaneous above and below canopy irradiance, we provide models of daily light integrals (DLI) which are assessed against field validation measurements with PAR quantum sensors. We find relatively good agreement for simulated PAR in the woodland. The impact of simplifying assumptions regarding leaf angular distributions and optical properties are discussed. Finally, further opportunities which fine-grained drone data can provide in a radiative transfer context are highlighted.
How to cite: Fawcett, D., Bennie, J., and Anderson, K.: Modelling understory light availability in a heterogeneous landscape using drone-derived structural parameters and a 3D radiative transfer model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19003, https://doi.org/10.5194/egusphere-egu2020-19003, 2020.
The light environment within vegetated landscapes is a key driver of microclimate, creating varied habitats over small spatial extents and controls the distribution of understory plant species. Modelling spatial variations of light at these scales requires finely resolved (< 1 m) information on topography and canopy properties. We demonstrate an approach to modelling spatial distributions and temporal progression of understory photosynthetically active radiation (PAR) utilising a three dimensional radiative transfer model (discrete anisotropic radiative transfer model: DART) where the scene is parameterised by drone-based data.
The study site, located in west Cornwall, UK, includes a small mixed woodland as well as isolated free-standing trees. Data were acquired from March to August 2019. Vegetation height and distribution were derived from point clouds generated from drone image data using structure-from-motion (SfM) photogrammetry. These data were supplemented by multi-temporal multispectral imagery (Parrot Sequoia camera) which were used to generate an empirical model by relating a vegetation index to plant area index derived from hemispherical photography taken over the same time period. Simulations of the 3D radiative budget were performed for the PAR wavelength interval (400 – 700 nm) using DART.
Besides maps of instantaneous above and below canopy irradiance, we provide models of daily light integrals (DLI) which are assessed against field validation measurements with PAR quantum sensors. We find relatively good agreement for simulated PAR in the woodland. The impact of simplifying assumptions regarding leaf angular distributions and optical properties are discussed. Finally, further opportunities which fine-grained drone data can provide in a radiative transfer context are highlighted.
How to cite: Fawcett, D., Bennie, J., and Anderson, K.: Modelling understory light availability in a heterogeneous landscape using drone-derived structural parameters and a 3D radiative transfer model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19003, https://doi.org/10.5194/egusphere-egu2020-19003, 2020.
EGU2020-4217 | Displays | BG2.7
Forward-inverse modeling based on scalar and vector radiative transfer models for coupled atmosphere-surface systems and machine learning toolsKnut Stamnes, Børge Hamre, Snorre Stamnes, Nan Chen, Yongzhen Fan, Wei Li, Zhenyi Lin, and Jakob Stamnes
Reliable retrieval of atmospheric and surface properties from sensors deployed on satellite platforms rely on accurate simulations of the electromagnetic (EM) signal measured by such sensors. A forward radiative transfer (RT) model of the coupled atmosphere-surface system can be used to simulate how the EM signal responds to changes in atmospheric and surface properties. Realistic RT modeling is a prerequisite for solving the inverse problem, i.e. to infer atmospheric and surface parameters from the EM signals measured at the top of the atmosphere. The surface may consist of a soil-plant canopy, a snow/ice covered surface or an open water body (ocean, lake, river system). An overview will be provided of forward and inverse RT in such coupled atmosphere-surface systems. A coupled system consisting of two adjacent slabs separated by an interface across which the refractive index changes abruptly from its value in air to that in water /ice [1] will be used as an example. Several examples of how to formulate and solve inverse problems involving coupled atmosphere-water systems [2] will be provided to illustrate how solutions to the RT equation can be used as a forward model to solve practical inverse problems. Cloud screening [3], atmospheric correction [4], treatment of two-dimensional surface roughness, Earth curvature effects, and ocean bottom reflection for shallow water in coastal areas will be discussed, and the advantage of using powerful machine learning techniques to solve the inverse problem will be emphasized.
References
[1] Stamnes, K., and J. J. Stamnes, Radiative Transfer in Coupled Environmental Systems, , 2015.
[2] Stamnes, K., B. Hamre, S. Stamnes, N. Chen, Y. Fan, W. Li, Z. Lin, and J. J. Stamnes, Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: A review and description of the AccuRT model, , 8, 2682, 2018.
[3] Chen N., W. Li, C. Gatebe, T. Tanikawa, M. Hori, R. Shimada; T. Aoki, and K. Stamnes, New cloud mask algorithm based on machine learning methods and radiative transfer simulations, , 219, 62-71, 2018.
[4] Fan, Y., W. Li, C. K. Gatebe, C. Jamet, G. Zibordi, T. Schroeder, and K. Stamnes, Atmospheric correction and aerosol retrieval over coastal waters using multilayer neural networks, , 199, 218-240, 2017.
How to cite: Stamnes, K., Hamre, B., Stamnes, S., Chen, N., Fan, Y., Li, W., Lin, Z., and Stamnes, J.: Forward-inverse modeling based on scalar and vector radiative transfer models for coupled atmosphere-surface systems and machine learning tools, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4217, https://doi.org/10.5194/egusphere-egu2020-4217, 2020.
Reliable retrieval of atmospheric and surface properties from sensors deployed on satellite platforms rely on accurate simulations of the electromagnetic (EM) signal measured by such sensors. A forward radiative transfer (RT) model of the coupled atmosphere-surface system can be used to simulate how the EM signal responds to changes in atmospheric and surface properties. Realistic RT modeling is a prerequisite for solving the inverse problem, i.e. to infer atmospheric and surface parameters from the EM signals measured at the top of the atmosphere. The surface may consist of a soil-plant canopy, a snow/ice covered surface or an open water body (ocean, lake, river system). An overview will be provided of forward and inverse RT in such coupled atmosphere-surface systems. A coupled system consisting of two adjacent slabs separated by an interface across which the refractive index changes abruptly from its value in air to that in water /ice [1] will be used as an example. Several examples of how to formulate and solve inverse problems involving coupled atmosphere-water systems [2] will be provided to illustrate how solutions to the RT equation can be used as a forward model to solve practical inverse problems. Cloud screening [3], atmospheric correction [4], treatment of two-dimensional surface roughness, Earth curvature effects, and ocean bottom reflection for shallow water in coastal areas will be discussed, and the advantage of using powerful machine learning techniques to solve the inverse problem will be emphasized.
References
[1] Stamnes, K., and J. J. Stamnes, Radiative Transfer in Coupled Environmental Systems, , 2015.
[2] Stamnes, K., B. Hamre, S. Stamnes, N. Chen, Y. Fan, W. Li, Z. Lin, and J. J. Stamnes, Progress in forward-inverse modeling based on radiative transfer tools for coupled atmosphere-snow/ice-ocean systems: A review and description of the AccuRT model, , 8, 2682, 2018.
[3] Chen N., W. Li, C. Gatebe, T. Tanikawa, M. Hori, R. Shimada; T. Aoki, and K. Stamnes, New cloud mask algorithm based on machine learning methods and radiative transfer simulations, , 219, 62-71, 2018.
[4] Fan, Y., W. Li, C. K. Gatebe, C. Jamet, G. Zibordi, T. Schroeder, and K. Stamnes, Atmospheric correction and aerosol retrieval over coastal waters using multilayer neural networks, , 199, 218-240, 2017.
How to cite: Stamnes, K., Hamre, B., Stamnes, S., Chen, N., Fan, Y., Li, W., Lin, Z., and Stamnes, J.: Forward-inverse modeling based on scalar and vector radiative transfer models for coupled atmosphere-surface systems and machine learning tools, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4217, https://doi.org/10.5194/egusphere-egu2020-4217, 2020.
EGU2020-4773 | Displays | BG2.7
Deciphering Optical Water Types of Wetlands using multispectral Earth observation datasetsSatyasri Allaka, Manudeo Singh, and Rajiv Sinha
Wetlands are important and highly productive ecosystems in a variety of geomorphic settings ranging from inland to coastal environments. Wetlands are very dynamic in nature and are driven by the water and sediment fluxes carried by the streamlets throughout the year. Wetlands are under tremendous pressure all over the world due to various natural and anthropogenic factors, and therefore, require an immediate attention for their conservation. The available studies on wetland have given much less importance to the internal dynamics of the wetlands, which is primarily driven by hydrology and Land Use Land Cover (LULC) changes. Here, we propose to use the Optical Water Types (OWTs) concept to understand the hydrodynamics within the wetland.
The OWTs are the aquatic counterpart of terrestrial LULC classification and can be created by clustering of optically sensitive parameters like chlorophyll content, turbidity, suspended organic and inorganic matter using remote sensing reflectance, absorption, and scattering parameters. The Forel Ule (FU) color index, a visual color comparison scale of water bodies ranging from blue to cola brown (1-21), used a similar idea but is fairly limited in scope. The hyperspectral datasets have distinct absorption and reflection spectrum for various optically sensitive parameters, and therefore, they are particularly suited for this work. However, the availability of the high-resolution hyperspectral data is very limited and hence this research explores the possibility of deciphering the OWTs using multispectral datasets.
A possible approach to create OWTs is using the spectral indices of the multispectral datasets which are sensitive to the optical parameters instead of using the FU color index as a single parameter. In this work, various spectral indices which are independent and highly sensitivity to chlorophyll content, turbidity, suspended organic and inorganic matter are identified using the principal component analysis. The OWT clusters are created using the iso-cluster unsupervised classification similar to the LULC classification but the spectral indices are taken into account instead of directly using the spectral bands of satellite datasets. In this work, the Sentinel – 2A and 2B datasets are used to create independent OWT clusters of the Chilika (a Coastal wetland, along the east coast of India covering an area of 1,165 km2) and Kaabar Tal (an inland wetland in north Bihar plains, India covering an area of 51 km2) using the supervised classification method. The developed framework is very simple and robust in nature but the only disadvantage is that the clusters are variable in the temporal context. However, the temporal variations can be integrated with the spatial analysis to understand the wetland dynamics in the context of both space and time.
How to cite: Allaka, S., Singh, M., and Sinha, R.: Deciphering Optical Water Types of Wetlands using multispectral Earth observation datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4773, https://doi.org/10.5194/egusphere-egu2020-4773, 2020.
Wetlands are important and highly productive ecosystems in a variety of geomorphic settings ranging from inland to coastal environments. Wetlands are very dynamic in nature and are driven by the water and sediment fluxes carried by the streamlets throughout the year. Wetlands are under tremendous pressure all over the world due to various natural and anthropogenic factors, and therefore, require an immediate attention for their conservation. The available studies on wetland have given much less importance to the internal dynamics of the wetlands, which is primarily driven by hydrology and Land Use Land Cover (LULC) changes. Here, we propose to use the Optical Water Types (OWTs) concept to understand the hydrodynamics within the wetland.
The OWTs are the aquatic counterpart of terrestrial LULC classification and can be created by clustering of optically sensitive parameters like chlorophyll content, turbidity, suspended organic and inorganic matter using remote sensing reflectance, absorption, and scattering parameters. The Forel Ule (FU) color index, a visual color comparison scale of water bodies ranging from blue to cola brown (1-21), used a similar idea but is fairly limited in scope. The hyperspectral datasets have distinct absorption and reflection spectrum for various optically sensitive parameters, and therefore, they are particularly suited for this work. However, the availability of the high-resolution hyperspectral data is very limited and hence this research explores the possibility of deciphering the OWTs using multispectral datasets.
A possible approach to create OWTs is using the spectral indices of the multispectral datasets which are sensitive to the optical parameters instead of using the FU color index as a single parameter. In this work, various spectral indices which are independent and highly sensitivity to chlorophyll content, turbidity, suspended organic and inorganic matter are identified using the principal component analysis. The OWT clusters are created using the iso-cluster unsupervised classification similar to the LULC classification but the spectral indices are taken into account instead of directly using the spectral bands of satellite datasets. In this work, the Sentinel – 2A and 2B datasets are used to create independent OWT clusters of the Chilika (a Coastal wetland, along the east coast of India covering an area of 1,165 km2) and Kaabar Tal (an inland wetland in north Bihar plains, India covering an area of 51 km2) using the supervised classification method. The developed framework is very simple and robust in nature but the only disadvantage is that the clusters are variable in the temporal context. However, the temporal variations can be integrated with the spatial analysis to understand the wetland dynamics in the context of both space and time.
How to cite: Allaka, S., Singh, M., and Sinha, R.: Deciphering Optical Water Types of Wetlands using multispectral Earth observation datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4773, https://doi.org/10.5194/egusphere-egu2020-4773, 2020.
EGU2020-5151 | Displays | BG2.7 | Highlight
Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasetsLars Nerger, Himansu Pradhan, Christoph Völker, Svetlana Losa, and Astrid Bracher
Satellite phytoplankton functional type (PFT) data is assimilated into the global coupled ocean-ecosystem model MITgcm-REcoM2 for two years using a local ensemble Kalman filter. The ecosystem model has two PFTs: small phytoplankton (SP) and diatoms. Three different sets of satellite PFT data are assimilated: OC-PFT, PhytoDOAS, and SynSenPFT, which is a synergistic product combining the independent PFT products OC-PFT and PhytoDOAS. The effect of assimilating PFT data is compared with the assimilation of total chlorophyll data (TChla). This constrains both PFTs through multivariate assimilation using ensemble-estimate cross-covariances. While the assimilation of TChla already improves both PFTs individually, the assimilation of PFT data further improves the representation of the phytoplankton community. The effect is particularly large for diatoms where, compared to the assimilation of TChla, the SynSenPFT assimilation results in 57% and 67% reduction of root-mean square error (RMSE) and bias, respectively, while the correlation is increased from 0.45 to 0.54. For SP the assimilation of SynSenPFT data reduces the RMSE and bias by 14% each and increases the correlation by 30%. This shows that satellite data products beyond total chlorophyll are relevant for biogeochemical data assimilation. The separate assimilation of the PFT data products OC-PFT, SynSenPFT, and joint assimilation of OC-PFT and PhytoDOAS data lead to similar results while the assimilation of PhytoDOAS data alone leads to deteriorated SP but improved diatoms. When both OC-PFT and PhytoDOAS data are jointly assimilated, the representation of diatoms is improved compared to the assimilation of only OC-PFT. The results show slightly lower errors than when the synergistic SynSenPFT data is assimilated, which shows that the assimilation successfully combines the separate data sources.
How to cite: Nerger, L., Pradhan, H., Völker, C., Losa, S., and Bracher, A.: Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5151, https://doi.org/10.5194/egusphere-egu2020-5151, 2020.
Satellite phytoplankton functional type (PFT) data is assimilated into the global coupled ocean-ecosystem model MITgcm-REcoM2 for two years using a local ensemble Kalman filter. The ecosystem model has two PFTs: small phytoplankton (SP) and diatoms. Three different sets of satellite PFT data are assimilated: OC-PFT, PhytoDOAS, and SynSenPFT, which is a synergistic product combining the independent PFT products OC-PFT and PhytoDOAS. The effect of assimilating PFT data is compared with the assimilation of total chlorophyll data (TChla). This constrains both PFTs through multivariate assimilation using ensemble-estimate cross-covariances. While the assimilation of TChla already improves both PFTs individually, the assimilation of PFT data further improves the representation of the phytoplankton community. The effect is particularly large for diatoms where, compared to the assimilation of TChla, the SynSenPFT assimilation results in 57% and 67% reduction of root-mean square error (RMSE) and bias, respectively, while the correlation is increased from 0.45 to 0.54. For SP the assimilation of SynSenPFT data reduces the RMSE and bias by 14% each and increases the correlation by 30%. This shows that satellite data products beyond total chlorophyll are relevant for biogeochemical data assimilation. The separate assimilation of the PFT data products OC-PFT, SynSenPFT, and joint assimilation of OC-PFT and PhytoDOAS data lead to similar results while the assimilation of PhytoDOAS data alone leads to deteriorated SP but improved diatoms. When both OC-PFT and PhytoDOAS data are jointly assimilated, the representation of diatoms is improved compared to the assimilation of only OC-PFT. The results show slightly lower errors than when the synergistic SynSenPFT data is assimilated, which shows that the assimilation successfully combines the separate data sources.
How to cite: Nerger, L., Pradhan, H., Völker, C., Losa, S., and Bracher, A.: Global assimilation of ocean-color data of phytoplankton functional types: Impact of different datasets , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5151, https://doi.org/10.5194/egusphere-egu2020-5151, 2020.
EGU2020-5251 | Displays | BG2.7
PROSPECT-PRO: a leaf radiative transfer model for estimation of leaf protein content and carbon-based constituentsJean-Baptiste Féret, Katja Berger, Florian de Boissieu, and Zbyněk Malenovský
Leaf nitrogen content is key information for ecological and agronomic processes. A number of studies aiming at estimation of leaf nitrogen content used chlorophyll content as a proxy due to a moderate to strong correlation between chlorophyll and nitrogen content during vegetative growth stages. Since leaf nitrogen content is directly linked to leaf protein content, the capacity to accurately estimate leaf protein content may improve robustness of an operational nitrogen monitoring. In the past, the introduction of proteins - as an absorbing input constituent of the PROSPECT leaf model - has been attempted numerous times. Yet, the attempts suffered from a certain number of shortcomings, including limited applicability to both fresh and dry vegetation, inaccurate definition of the specific absorption coefficients, or incomplete accounting for different constituents of leaf dry matter.
Here, we introduce PROSPECT-PRO, a new version of the PROSPECT model simulating leaf optical properties based on their biochemical properties and including protein and carbon-based constituents (CBC) as new input variables. These two additional chemical constituents correspond to two complementary constituents of LMA. Specific absorption coefficients for proteins and CBC were produced splitting LOPEX dataset into 50% for calibration and 50%for validation. Both data sets included fresh and dry samples. Our objective is to keep compatibility between PROSPECT-PRO and PROSPECT-D, the previous version of the model, and to ensure the same performances for the estimation of LMA even through its decomposition into two constituents. Therefore, the full validation consisted of two steps:
1) PROSPECT-PRO inversion using an iterative optimization approach to retrieve proteins and CBC from LOPEX data
2) Testing the compatibility with PROSPECT-D by estimating LMA as the sum of protein and CBC content from independent datasets
The capacity of PROSPECT-PRO for the accurate estimation of leaf proteins and CBC on LOPEX could be evidenced, with slightly higher performances for the estimation of fresh leaf proteins (NRMSE = 17.3%, R2 = 0.75) than of dry leaf proteins (NRMSE =24.0%, R2 = 0.62). Good overall performances were obtained for the estimation of CBC (NRMSE<15%, R2>0.90). Based on these results, the carbon/nitrogen ratio of leaves could be modelled accurately.
The indirect estimation of LMA through PROSPECT-PRO inversion led to similar or slightly improved results when compared to the estimation of LMA with PROSPECT-D. Hence, PROSPECT-PRO might be of particular interest for precision agriculture applications in the context of nitrogen sensing using observations of current and forthcoming satellite imaging spectroscopy missions.
How to cite: Féret, J.-B., Berger, K., de Boissieu, F., and Malenovský, Z.: PROSPECT-PRO: a leaf radiative transfer model for estimation of leaf protein content and carbon-based constituents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5251, https://doi.org/10.5194/egusphere-egu2020-5251, 2020.
Leaf nitrogen content is key information for ecological and agronomic processes. A number of studies aiming at estimation of leaf nitrogen content used chlorophyll content as a proxy due to a moderate to strong correlation between chlorophyll and nitrogen content during vegetative growth stages. Since leaf nitrogen content is directly linked to leaf protein content, the capacity to accurately estimate leaf protein content may improve robustness of an operational nitrogen monitoring. In the past, the introduction of proteins - as an absorbing input constituent of the PROSPECT leaf model - has been attempted numerous times. Yet, the attempts suffered from a certain number of shortcomings, including limited applicability to both fresh and dry vegetation, inaccurate definition of the specific absorption coefficients, or incomplete accounting for different constituents of leaf dry matter.
Here, we introduce PROSPECT-PRO, a new version of the PROSPECT model simulating leaf optical properties based on their biochemical properties and including protein and carbon-based constituents (CBC) as new input variables. These two additional chemical constituents correspond to two complementary constituents of LMA. Specific absorption coefficients for proteins and CBC were produced splitting LOPEX dataset into 50% for calibration and 50%for validation. Both data sets included fresh and dry samples. Our objective is to keep compatibility between PROSPECT-PRO and PROSPECT-D, the previous version of the model, and to ensure the same performances for the estimation of LMA even through its decomposition into two constituents. Therefore, the full validation consisted of two steps:
1) PROSPECT-PRO inversion using an iterative optimization approach to retrieve proteins and CBC from LOPEX data
2) Testing the compatibility with PROSPECT-D by estimating LMA as the sum of protein and CBC content from independent datasets
The capacity of PROSPECT-PRO for the accurate estimation of leaf proteins and CBC on LOPEX could be evidenced, with slightly higher performances for the estimation of fresh leaf proteins (NRMSE = 17.3%, R2 = 0.75) than of dry leaf proteins (NRMSE =24.0%, R2 = 0.62). Good overall performances were obtained for the estimation of CBC (NRMSE<15%, R2>0.90). Based on these results, the carbon/nitrogen ratio of leaves could be modelled accurately.
The indirect estimation of LMA through PROSPECT-PRO inversion led to similar or slightly improved results when compared to the estimation of LMA with PROSPECT-D. Hence, PROSPECT-PRO might be of particular interest for precision agriculture applications in the context of nitrogen sensing using observations of current and forthcoming satellite imaging spectroscopy missions.
How to cite: Féret, J.-B., Berger, K., de Boissieu, F., and Malenovský, Z.: PROSPECT-PRO: a leaf radiative transfer model for estimation of leaf protein content and carbon-based constituents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5251, https://doi.org/10.5194/egusphere-egu2020-5251, 2020.
EGU2020-6333 | Displays | BG2.7
Evaluating ecological vulnerability over Qinghai-Tibetan Plateau based on remote sensing and geographic information systemsMu Xia and Kun Jia
Qinghai-Tibetan Plateau (QTP), known as “the Third Pole”, has one of the most fragile ecosystems in the world. QTP is suffering from external pressures of climate change, human activities, and natural hazards. This study provides a subjective framework in assessing ecological vulnerability (EV) in QTP from 2000 to 2015 based on remote sensing and geographic information system techniques. An ecological vulnerability index (EVI) was established based on 17 indicators mainly acquired from satellite data. Principle component analysis and entropy method were used in determining indicator weights. Annual EVI were calculated based on the weighted sum of all indicators. Five vulnerability levels of potential, light, moderate, heavy and very heavy were graded to describe the spatial and temporal patterns of EVIs. Mann-Kendall trend analysis was performed over QTP during the 16 years. Results indicates QTP is suffering from an overall increasing EVI from eastern to western areas. About 10.43% of QTP has experienced significant EVI decrease, while 7.38% experienced significant increase in EVI.
How to cite: Xia, M. and Jia, K.: Evaluating ecological vulnerability over Qinghai-Tibetan Plateau based on remote sensing and geographic information systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6333, https://doi.org/10.5194/egusphere-egu2020-6333, 2020.
Qinghai-Tibetan Plateau (QTP), known as “the Third Pole”, has one of the most fragile ecosystems in the world. QTP is suffering from external pressures of climate change, human activities, and natural hazards. This study provides a subjective framework in assessing ecological vulnerability (EV) in QTP from 2000 to 2015 based on remote sensing and geographic information system techniques. An ecological vulnerability index (EVI) was established based on 17 indicators mainly acquired from satellite data. Principle component analysis and entropy method were used in determining indicator weights. Annual EVI were calculated based on the weighted sum of all indicators. Five vulnerability levels of potential, light, moderate, heavy and very heavy were graded to describe the spatial and temporal patterns of EVIs. Mann-Kendall trend analysis was performed over QTP during the 16 years. Results indicates QTP is suffering from an overall increasing EVI from eastern to western areas. About 10.43% of QTP has experienced significant EVI decrease, while 7.38% experienced significant increase in EVI.
How to cite: Xia, M. and Jia, K.: Evaluating ecological vulnerability over Qinghai-Tibetan Plateau based on remote sensing and geographic information systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6333, https://doi.org/10.5194/egusphere-egu2020-6333, 2020.
EGU2020-11175 | Displays | BG2.7
Towers, Chambers & UAVs: Exploring the drivers of carbon sink strength at a temperate peatlandGillian Simpson, Carole Helfter, Caroline Nichol, and Tom Wade
Peatlands are terrestrial carbon sinks of global significance, storing an estimated one-third of global soil carbon. Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) can however vary substantially on seasonal and inter-annual timescales, with some peatlands switching from a sink to a source of CO2. Complex and sometimes competing processes, such as meteorology and phenology, regulate a peatland’s net carbon sink strength. Understanding seasonal and inter-annual variability in NEE requires studying these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE can be particularly difficult to ascertain at the finer timescales (e.g. seasonal) and at sites with abundant plant diversity, non-uniform distribution and complex micro-topography, such as peatlands. Vegetation surveys are traditionally conducted every few years and, because of this, they might not capture the shorter-term variations that can result from meteorological anomalies such as drought. New technologies, such as Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs are a more flexible, often cheaper alternative to satellite products, which can be used to collect data at the sub-centimetre scale. Such high resolution is particularly valuable in peatland environments, which typically display strong heterogeneity at the micro-site level (< 0.5 m). We employ UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at a temperate Scottish peatland. By combining this multispectral data with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, this project aims to quantify the impact of weather and phenology on carbon balance at the site. An improved understanding of these two drivers of peatland carbon cycling will allow for better prediction of the impact of climate change at the site.
How to cite: Simpson, G., Helfter, C., Nichol, C., and Wade, T.: Towers, Chambers & UAVs: Exploring the drivers of carbon sink strength at a temperate peatland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11175, https://doi.org/10.5194/egusphere-egu2020-11175, 2020.
Peatlands are terrestrial carbon sinks of global significance, storing an estimated one-third of global soil carbon. Net Ecosystem Exchange (NEE) of carbon dioxide (CO2) can however vary substantially on seasonal and inter-annual timescales, with some peatlands switching from a sink to a source of CO2. Complex and sometimes competing processes, such as meteorology and phenology, regulate a peatland’s net carbon sink strength. Understanding seasonal and inter-annual variability in NEE requires studying these environmental controls at multiple spatial and temporal scales. The role of vegetation in regulating NEE can be particularly difficult to ascertain at the finer timescales (e.g. seasonal) and at sites with abundant plant diversity, non-uniform distribution and complex micro-topography, such as peatlands. Vegetation surveys are traditionally conducted every few years and, because of this, they might not capture the shorter-term variations that can result from meteorological anomalies such as drought. New technologies, such as Unmanned Aerial Vehicles (UAVs), offer novel opportunities to improve the temporal resolution and spatial coverage of traditional vegetation survey approaches. UAVs are a more flexible, often cheaper alternative to satellite products, which can be used to collect data at the sub-centimetre scale. Such high resolution is particularly valuable in peatland environments, which typically display strong heterogeneity at the micro-site level (< 0.5 m). We employ UAV surveys with a Parrot Sequoia multispectral camera to map vegetation and track its phenology using vegetation indices such as the Normalised Difference Vegetation Index (NDVI) over the course of two growing seasons at a temperate Scottish peatland. By combining this multispectral data with in-situ NEE measurements (closed chambers and eddy-covariance) and meteorological data, this project aims to quantify the impact of weather and phenology on carbon balance at the site. An improved understanding of these two drivers of peatland carbon cycling will allow for better prediction of the impact of climate change at the site.
How to cite: Simpson, G., Helfter, C., Nichol, C., and Wade, T.: Towers, Chambers & UAVs: Exploring the drivers of carbon sink strength at a temperate peatland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11175, https://doi.org/10.5194/egusphere-egu2020-11175, 2020.
EGU2020-13447 | Displays | BG2.7
Inverting a comprehensive crop model in parsimonious data context using Sentinel 2 images and yield map to infer soil water storage capacity.André Chanzy and Karen Lammoglia
Soil Water storage Capacity (SWSC) is an important quantity in the field of hydrology and agronomy to represent the hydrological functioning of a territory and/or the dynamics of a crop. SWSC spatial variability is often strong resulting from heterogeneity in texture and structure as well as soil depth. In situ measurement of SWSC is expensive, destructive and cannot be considered over a large area. Therefore, the characterization of SWSC by non-destructive methods is a mean of addressing the mapping issue. In this study we took profit of the new capacities offered by the Sentinel 2 mission, which allows characterizing relevant features in vegetation dynamic linked to stresses. In addition, yield map offers an additional source of information. Both yield and vegetation development are sensitive to several factors as the water and nitrogen supply, crop installation or pest. To isolate the influence of water supply, and therefore access parameters involved in the SWSC, an option is to delineate the effect of such factors by inverting a crop model able to simulate the observation together with the representation of most of influencing factors. The STICS crop model implemented in this study is suitable to consider interactions between carbon, nitrogen and water cycles, plant development and farming practices. The issue is then to demonstrate that parsimony in field characterization can be overcome by using satellite and yield observations to implement and invert comprehensive model such as STICS. A sensitivity analysis (Lammoglia et al. 2019) indicates that once plant variety parameters are calibrated, the parameters linked to crop installation, as the sowing depth and the sowing density, the initial soil mineral nitrogen and the SWSC are the main quantities to consider in an inversion procedure. The GLUE Bayesian method was used to retrieve the different parameters. The procedure was tested on non-irrigated winter durum wheat in a Mediterranean context in south-eastern France. The approach was evaluated in farm context 20 on heterogeneous fields over three years (2016-2018). Evaluation was made either by comparing inverted SWSC to observations and/or assessing the crop model performances on subsequent years. Soil heterogeneities are well captured by the method, but some heterogeneities interpreted as soil heterogeneities might be artefacts. A multi-year analysis is then necessary to get the permanent features that are most likely linked to soil properties. Discussion on the adding value of combining both soil vegetation dynamic (FAPAR, LAI) and yield, on the inversion strategy (calibration steps, data being considering, initialisation) and on the cost function (to reduce the impact of uncertainties on crop parameters) was made. The study has shown that LAI/FAPAR and yield observations make the use of complex model in data parsimonious context possible. In particular, the study highlights the importance of having frequent image acquisition, as it allows to capture short feature as the senescence rate which appears as an important proxy of the availability of water in the soil.
Lammoglia, A. Chanzy & M. Guerif, “Characterizing soil hydraulic properties from Sentinel 2 and STICS crop model” doi:10.1109/MetroAgriFor.2019.8909266, pp 312-316
How to cite: Chanzy, A. and Lammoglia, K.: Inverting a comprehensive crop model in parsimonious data context using Sentinel 2 images and yield map to infer soil water storage capacity., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13447, https://doi.org/10.5194/egusphere-egu2020-13447, 2020.
Soil Water storage Capacity (SWSC) is an important quantity in the field of hydrology and agronomy to represent the hydrological functioning of a territory and/or the dynamics of a crop. SWSC spatial variability is often strong resulting from heterogeneity in texture and structure as well as soil depth. In situ measurement of SWSC is expensive, destructive and cannot be considered over a large area. Therefore, the characterization of SWSC by non-destructive methods is a mean of addressing the mapping issue. In this study we took profit of the new capacities offered by the Sentinel 2 mission, which allows characterizing relevant features in vegetation dynamic linked to stresses. In addition, yield map offers an additional source of information. Both yield and vegetation development are sensitive to several factors as the water and nitrogen supply, crop installation or pest. To isolate the influence of water supply, and therefore access parameters involved in the SWSC, an option is to delineate the effect of such factors by inverting a crop model able to simulate the observation together with the representation of most of influencing factors. The STICS crop model implemented in this study is suitable to consider interactions between carbon, nitrogen and water cycles, plant development and farming practices. The issue is then to demonstrate that parsimony in field characterization can be overcome by using satellite and yield observations to implement and invert comprehensive model such as STICS. A sensitivity analysis (Lammoglia et al. 2019) indicates that once plant variety parameters are calibrated, the parameters linked to crop installation, as the sowing depth and the sowing density, the initial soil mineral nitrogen and the SWSC are the main quantities to consider in an inversion procedure. The GLUE Bayesian method was used to retrieve the different parameters. The procedure was tested on non-irrigated winter durum wheat in a Mediterranean context in south-eastern France. The approach was evaluated in farm context 20 on heterogeneous fields over three years (2016-2018). Evaluation was made either by comparing inverted SWSC to observations and/or assessing the crop model performances on subsequent years. Soil heterogeneities are well captured by the method, but some heterogeneities interpreted as soil heterogeneities might be artefacts. A multi-year analysis is then necessary to get the permanent features that are most likely linked to soil properties. Discussion on the adding value of combining both soil vegetation dynamic (FAPAR, LAI) and yield, on the inversion strategy (calibration steps, data being considering, initialisation) and on the cost function (to reduce the impact of uncertainties on crop parameters) was made. The study has shown that LAI/FAPAR and yield observations make the use of complex model in data parsimonious context possible. In particular, the study highlights the importance of having frequent image acquisition, as it allows to capture short feature as the senescence rate which appears as an important proxy of the availability of water in the soil.
Lammoglia, A. Chanzy & M. Guerif, “Characterizing soil hydraulic properties from Sentinel 2 and STICS crop model” doi:10.1109/MetroAgriFor.2019.8909266, pp 312-316
How to cite: Chanzy, A. and Lammoglia, K.: Inverting a comprehensive crop model in parsimonious data context using Sentinel 2 images and yield map to infer soil water storage capacity., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13447, https://doi.org/10.5194/egusphere-egu2020-13447, 2020.
EGU2020-14904 | Displays | BG2.7
Exploring continuous time series of vegetation hyperspectral reflectance and solar-induced fluorescence through radiative transfer model inversionMarco Celesti, Khelvi Biriukova, Petya K. E. Campbell, Ilaria Cesana, Sergio Cogliati, Alexander Damm, Matthias Drusch, Tommaso Julitta, Elizabeth Middleton, Mirco Migliavacca, Franco Miglietta, Cinzia Panigada, Uwe Rascher, Micol Rossini, Dirk Schuettemeyer, Giulia Tagliabue, Christiaan van der Tol, Jochem Verrelst, Peiqi Yang, and Roberto Colombo
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is of growing interest for the scientific community due to the inherent link of SIF with vegetation photosynthetic activity. An increasing number of in situ and airborne fluorescence spectrometers has been deployed worldwide to advance the understanding and usage of SIF for ecosystem studies. Particularly, a number of sites has been instrumented with the FloX (J&B Hyperspectral Devices, Germany), an automated instrument that houses two high resolution spectrometers covering the visible and near infrared spectral regions, one specifically optimized for fluorescence retrieval, the other for plant trait estimation.
In this contribution we explore the feasibility to consistently retrieve plant traits and SIF from canopy level FloX measurements through the numerical inversion of a light version of the SCOPE model. The optimization approach was specifically adapted to work with the high- frequency time series produced by the FloX. In this context, a strategy for optimal retrieval of plant traits at daily scale is discussed, together with the implementation of an emulator of the radiative transfer model in the retrieval scheme. The retrieval strategy was applied to site measurements across Europe and the US that span a variety of natural and agricultural ecosystems.
The full spectrum of canopy SIF, the fluorescence quantum efficiency, and main plant traits controlling light absorption and reabsorption were retrieved concurrently and evaluated over the growing season in comparison with site-specific ancillary data. Improvements and challenges of this method compared to other retrievals are discussed, together with the potential of applying a similar retrieval scheme to airborne datasets acquired with e.g. the HyPlant sensor, or the reconfigured “FLEX mode” data acquired with the recently launched Sentinel-3B during its commissioning phase.
How to cite: Celesti, M., Biriukova, K., Campbell, P. K. E., Cesana, I., Cogliati, S., Damm, A., Drusch, M., Julitta, T., Middleton, E., Migliavacca, M., Miglietta, F., Panigada, C., Rascher, U., Rossini, M., Schuettemeyer, D., Tagliabue, G., van der Tol, C., Verrelst, J., Yang, P., and Colombo, R.: Exploring continuous time series of vegetation hyperspectral reflectance and solar-induced fluorescence through radiative transfer model inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14904, https://doi.org/10.5194/egusphere-egu2020-14904, 2020.
Remote sensing of solar-induced chlorophyll fluorescence (SIF) is of growing interest for the scientific community due to the inherent link of SIF with vegetation photosynthetic activity. An increasing number of in situ and airborne fluorescence spectrometers has been deployed worldwide to advance the understanding and usage of SIF for ecosystem studies. Particularly, a number of sites has been instrumented with the FloX (J&B Hyperspectral Devices, Germany), an automated instrument that houses two high resolution spectrometers covering the visible and near infrared spectral regions, one specifically optimized for fluorescence retrieval, the other for plant trait estimation.
In this contribution we explore the feasibility to consistently retrieve plant traits and SIF from canopy level FloX measurements through the numerical inversion of a light version of the SCOPE model. The optimization approach was specifically adapted to work with the high- frequency time series produced by the FloX. In this context, a strategy for optimal retrieval of plant traits at daily scale is discussed, together with the implementation of an emulator of the radiative transfer model in the retrieval scheme. The retrieval strategy was applied to site measurements across Europe and the US that span a variety of natural and agricultural ecosystems.
The full spectrum of canopy SIF, the fluorescence quantum efficiency, and main plant traits controlling light absorption and reabsorption were retrieved concurrently and evaluated over the growing season in comparison with site-specific ancillary data. Improvements and challenges of this method compared to other retrievals are discussed, together with the potential of applying a similar retrieval scheme to airborne datasets acquired with e.g. the HyPlant sensor, or the reconfigured “FLEX mode” data acquired with the recently launched Sentinel-3B during its commissioning phase.
How to cite: Celesti, M., Biriukova, K., Campbell, P. K. E., Cesana, I., Cogliati, S., Damm, A., Drusch, M., Julitta, T., Middleton, E., Migliavacca, M., Miglietta, F., Panigada, C., Rascher, U., Rossini, M., Schuettemeyer, D., Tagliabue, G., van der Tol, C., Verrelst, J., Yang, P., and Colombo, R.: Exploring continuous time series of vegetation hyperspectral reflectance and solar-induced fluorescence through radiative transfer model inversion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14904, https://doi.org/10.5194/egusphere-egu2020-14904, 2020.
EGU2020-18442 | Displays | BG2.7
EO Satellite Based system for monitoring Bracken Fern in ScotlandPablo Marzialetti, Lorenzo Fusilli, Giovanni Laneve, and Enrico Cadau
Bracken fern (Pteridium) is ranked among the most invasive species of the world (Holland & Aplin 2013). The fern’s intrusion has caused great reduction in the quantity and quality of land accessible for grazing (Birnie & Miller 1986). In some cases, farmers permanently abandon agricultural land severely invaded by bracken fern (Schneider & Geoghegan 2006).
Literature has shown that the fern also obstructs secondary forest reestablishment, and does not deliver adequate quality biomass, which improves soil nutrients regeneration (Schneider & Geoghegan 2006; Oldham et al. 2013). In some cases, bracken fern patches have excluded conifer seedlings despite several post-harvest planting efforts (Ferguson and Adams 1994), and even when seedlings do survive, bracken fern can retard seedling growth (Dimock 1964). Bracken fern spread is also a strong obstacle for re-introducing the autochthone fauna.
Empirical evidence from literature has demonstrated that spatial data on bracken fern’s spread, its life cycle and fern status cannot be accurately mapped using field surveys in the remote and inaccessible mountainous environments in many parts of the world (Mehner et al. 2004; Ngubane 2014; Odindi et al. 2014). Several studies have used available remote sensing platforms for detection and mapping bracken fern spatial distribution at various scales (e.g. Miller et al. 1990; Holland & Aplin 2013; Ngubane 2014; Singh et al. 2014).
This work concerns the feasibility of developing an EO satellite-based system capable of mapping the presence of bracken fern vegetation and monitoring its distribution in a predefined area of western highlands in Scotland.
The study considers also the impact of clouds, often present in the area of interest, and assesses the suitability of different available satellite sensors and their products (in terms of spatial, spectral and temporal resolution) as a means for achieving the objective.
The challenges encountered include problems of similarity in the spectral signatures of bracken and other vegetation species, leading to low classification accuracy. This aspect has been minimized by using an approach which considers the specific phenology of the behaviour of the vegetation of interest. Preliminary results shown summer months (June, July) as the best period during the year to monitor this area of interest, due to the minimum presence of clouds and shadow areas. Regarding the use of SAR imagery, also foreshortening and layover effects caused in this mountainous area limit the possibility to monitor the evolution of these plants.
How to cite: Marzialetti, P., Fusilli, L., Laneve, G., and Cadau, E.: EO Satellite Based system for monitoring Bracken Fern in Scotland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18442, https://doi.org/10.5194/egusphere-egu2020-18442, 2020.
Bracken fern (Pteridium) is ranked among the most invasive species of the world (Holland & Aplin 2013). The fern’s intrusion has caused great reduction in the quantity and quality of land accessible for grazing (Birnie & Miller 1986). In some cases, farmers permanently abandon agricultural land severely invaded by bracken fern (Schneider & Geoghegan 2006).
Literature has shown that the fern also obstructs secondary forest reestablishment, and does not deliver adequate quality biomass, which improves soil nutrients regeneration (Schneider & Geoghegan 2006; Oldham et al. 2013). In some cases, bracken fern patches have excluded conifer seedlings despite several post-harvest planting efforts (Ferguson and Adams 1994), and even when seedlings do survive, bracken fern can retard seedling growth (Dimock 1964). Bracken fern spread is also a strong obstacle for re-introducing the autochthone fauna.
Empirical evidence from literature has demonstrated that spatial data on bracken fern’s spread, its life cycle and fern status cannot be accurately mapped using field surveys in the remote and inaccessible mountainous environments in many parts of the world (Mehner et al. 2004; Ngubane 2014; Odindi et al. 2014). Several studies have used available remote sensing platforms for detection and mapping bracken fern spatial distribution at various scales (e.g. Miller et al. 1990; Holland & Aplin 2013; Ngubane 2014; Singh et al. 2014).
This work concerns the feasibility of developing an EO satellite-based system capable of mapping the presence of bracken fern vegetation and monitoring its distribution in a predefined area of western highlands in Scotland.
The study considers also the impact of clouds, often present in the area of interest, and assesses the suitability of different available satellite sensors and their products (in terms of spatial, spectral and temporal resolution) as a means for achieving the objective.
The challenges encountered include problems of similarity in the spectral signatures of bracken and other vegetation species, leading to low classification accuracy. This aspect has been minimized by using an approach which considers the specific phenology of the behaviour of the vegetation of interest. Preliminary results shown summer months (June, July) as the best period during the year to monitor this area of interest, due to the minimum presence of clouds and shadow areas. Regarding the use of SAR imagery, also foreshortening and layover effects caused in this mountainous area limit the possibility to monitor the evolution of these plants.
How to cite: Marzialetti, P., Fusilli, L., Laneve, G., and Cadau, E.: EO Satellite Based system for monitoring Bracken Fern in Scotland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18442, https://doi.org/10.5194/egusphere-egu2020-18442, 2020.
EGU2020-18798 | Displays | BG2.7
Study on The Extraction Method and Spatial-temporal Characteristics of Irrigated Land in Zhangjiakou CityZijuan Zhu, Lijun Zuo, Zengxiang Zhang, Xiaoli Zhao, Feifei Sun, and TianShi Pan
In order to balance the economic and ecological interests, suitable farmland structures in different regions need be established which require understanding the current distribution pattern of irrigated and dry croplands, as well as the evolution rules and reasons of that. In this paper, irrigated croplands in 1985, 2000 and 2015 in Zhangjiakou city which is in the northwest from Beijing were extracted. The study area was divided into Bashang and Bxia aeras depending climate, terrain and agrotype. NDVIs and NDWIs from May to August reflecting vegetation growth and water indexes reflecting vegetation water content were adopted and decision tree classification method was employed. As a result, classification accuracies were high and meet the replying demand with 80.05% and 93.00% in Bashang and Baxia areas respectively. The classification results show that the area of irrigated lands was extended lightly, increasing about 12.73%, reached to 686127 km2. Among them, there was 331438 km2 converted from dryland with the proportions as 54.45%. By contrast, about 272419 km2 irrigated croplands were transformed to drylands. But the plots areas of irrigated croplands were larger, showing a group development trend which is related to the large-scale development of the local vegetable industry in Bashang area. The total area of irrigated croplands was become bigger in intermontane plain around the rivers, while decreased in mountainous areas in Baxia area.
How to cite: Zhu, Z., Zuo, L., Zhang, Z., Zhao, X., Sun, F., and Pan, T.: Study on The Extraction Method and Spatial-temporal Characteristics of Irrigated Land in Zhangjiakou City, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18798, https://doi.org/10.5194/egusphere-egu2020-18798, 2020.
In order to balance the economic and ecological interests, suitable farmland structures in different regions need be established which require understanding the current distribution pattern of irrigated and dry croplands, as well as the evolution rules and reasons of that. In this paper, irrigated croplands in 1985, 2000 and 2015 in Zhangjiakou city which is in the northwest from Beijing were extracted. The study area was divided into Bashang and Bxia aeras depending climate, terrain and agrotype. NDVIs and NDWIs from May to August reflecting vegetation growth and water indexes reflecting vegetation water content were adopted and decision tree classification method was employed. As a result, classification accuracies were high and meet the replying demand with 80.05% and 93.00% in Bashang and Baxia areas respectively. The classification results show that the area of irrigated lands was extended lightly, increasing about 12.73%, reached to 686127 km2. Among them, there was 331438 km2 converted from dryland with the proportions as 54.45%. By contrast, about 272419 km2 irrigated croplands were transformed to drylands. But the plots areas of irrigated croplands were larger, showing a group development trend which is related to the large-scale development of the local vegetable industry in Bashang area. The total area of irrigated croplands was become bigger in intermontane plain around the rivers, while decreased in mountainous areas in Baxia area.
How to cite: Zhu, Z., Zuo, L., Zhang, Z., Zhao, X., Sun, F., and Pan, T.: Study on The Extraction Method and Spatial-temporal Characteristics of Irrigated Land in Zhangjiakou City, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18798, https://doi.org/10.5194/egusphere-egu2020-18798, 2020.
EGU2020-19953 | Displays | BG2.7
Remote sensing and GIS based ecological modelling of potential red deer habitats in the test site region DEMMIN (TERENO)Amelie McKenna, Alfred Schultz, Erik Borg, Matthias Neumann, and Jan-Peter Mund
Introduction: The destruction of habitats has not only reduced biological diversity but also affected essential ecosystem services of the Central European cultural landscape. Therefore, in the further development of the cultural landscape and in the management of natural resources, special importance must be attached to the habitat demands of species and the preservation of ecosystem services. The study of ecosystem services has extended its influence into spatial planning and landscape ecology, the integration of which can offer an opportunity to enhance the saliency, credibility, and legitimacy of landscape ecology in spatial planning issues.
Objective: This paper proposes a methodology to detect red deer habitats for e.g. huntable game. The model is established on remote sensing based value-added information products, the derived landscape structure information and the use of spatially and temporally imprecise in-situ data (e.g. available hunting statistics). In order to realize this, four statistical model approaches were developed and their predictive performance assessed.
Methods: Altogether, our results indicate that based on the data mentioned above, modeling of habitats is possible using a coherent statistical model approach. All four models showed an overall classification of > 60% and in the best case 71,4%. The models based on logistic regression using preference data derived from 5-year hunting statistics, which has been interpreted as habitat suitability. The landscape metrics (LSM) will be calculated on the basis of the Global Forest Change dataset (HANSEN et al. 2013b ). The interpolation of landcover data into landscape-level was made with the software FRAGSTAT and the moving window approach. Correlation analysis is used to identify relevant LSM serving as inputs; logistic regression was used to derive a final binary classifier for habitat suitability values. Three model variations with different sets of LSM are tested using the unstandardized regression coefficient. Results lead to an insight of the effect of each LSM but not on the strength of the effect. Furthermore, the predicted outcome is rather difficult to interpret as different units and scales for each LSM are used. Hence, we calculated the fourth model using the standardized regression coefficient. It harmonized the measurement units of the LSM and thus allowed a better comparison, interpretation, and evaluation.
Conclusion: Our research reveals that applying a statistical model using coarse data is effective to identify potential red deer habitats in a significant qualitative manner. The presented approach can be analogously applied to other mammals if the relevant structural requirements and empirical habitat suitability data (e.g. home range, biotopes, and food resources) are known. The habitat preferences of red deer are best described by LSM concerning area-relation and wildlife-edge relations. Most important are edges between meadows, pastures or agricultural field and forest, as well as short paths between those elements for food resources. A large proportion of forest is important for species survival and positively influences the occurrence of red deer. Outcomes help to understand species –habitat relation and on which scale wildlife perceives the landscape. In addition, they support the practical habitat management and thus the overall species diversity.
How to cite: McKenna, A., Schultz, A., Borg, E., Neumann, M., and Mund, J.-P.: Remote sensing and GIS based ecological modelling of potential red deer habitats in the test site region DEMMIN (TERENO), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19953, https://doi.org/10.5194/egusphere-egu2020-19953, 2020.
Introduction: The destruction of habitats has not only reduced biological diversity but also affected essential ecosystem services of the Central European cultural landscape. Therefore, in the further development of the cultural landscape and in the management of natural resources, special importance must be attached to the habitat demands of species and the preservation of ecosystem services. The study of ecosystem services has extended its influence into spatial planning and landscape ecology, the integration of which can offer an opportunity to enhance the saliency, credibility, and legitimacy of landscape ecology in spatial planning issues.
Objective: This paper proposes a methodology to detect red deer habitats for e.g. huntable game. The model is established on remote sensing based value-added information products, the derived landscape structure information and the use of spatially and temporally imprecise in-situ data (e.g. available hunting statistics). In order to realize this, four statistical model approaches were developed and their predictive performance assessed.
Methods: Altogether, our results indicate that based on the data mentioned above, modeling of habitats is possible using a coherent statistical model approach. All four models showed an overall classification of > 60% and in the best case 71,4%. The models based on logistic regression using preference data derived from 5-year hunting statistics, which has been interpreted as habitat suitability. The landscape metrics (LSM) will be calculated on the basis of the Global Forest Change dataset (HANSEN et al. 2013b ). The interpolation of landcover data into landscape-level was made with the software FRAGSTAT and the moving window approach. Correlation analysis is used to identify relevant LSM serving as inputs; logistic regression was used to derive a final binary classifier for habitat suitability values. Three model variations with different sets of LSM are tested using the unstandardized regression coefficient. Results lead to an insight of the effect of each LSM but not on the strength of the effect. Furthermore, the predicted outcome is rather difficult to interpret as different units and scales for each LSM are used. Hence, we calculated the fourth model using the standardized regression coefficient. It harmonized the measurement units of the LSM and thus allowed a better comparison, interpretation, and evaluation.
Conclusion: Our research reveals that applying a statistical model using coarse data is effective to identify potential red deer habitats in a significant qualitative manner. The presented approach can be analogously applied to other mammals if the relevant structural requirements and empirical habitat suitability data (e.g. home range, biotopes, and food resources) are known. The habitat preferences of red deer are best described by LSM concerning area-relation and wildlife-edge relations. Most important are edges between meadows, pastures or agricultural field and forest, as well as short paths between those elements for food resources. A large proportion of forest is important for species survival and positively influences the occurrence of red deer. Outcomes help to understand species –habitat relation and on which scale wildlife perceives the landscape. In addition, they support the practical habitat management and thus the overall species diversity.
How to cite: McKenna, A., Schultz, A., Borg, E., Neumann, M., and Mund, J.-P.: Remote sensing and GIS based ecological modelling of potential red deer habitats in the test site region DEMMIN (TERENO), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19953, https://doi.org/10.5194/egusphere-egu2020-19953, 2020.
EGU2020-21306 | Displays | BG2.7
Sun-Induced chlorophyll Fluorescence full spectrum retrieval and analysis of long-term time seriesIlaria Cesana, Sergio Cogliati, Marco Celesti, Tommaso Julitta, and Roberto Colombo
Remote sensing of Sun-Induced chlorophyll Fluorescence (SIF) represents a growing and promising area of research in support of the upcoming ESA’s FLEX (FLuorescence EXplorer) satellite mission. For this reason, the link between SIF and photosynthetic activity has been widely explored in the recent years, as tool to characterize and monitoring terrestrial ecosystems functioning.
The SIF detection is challenging because this faint signal (which represents only few percent of the total radiance) is over imposed on the light reflected from the Earth’s surface. Decoupling these two contributions is not trivial and dedicated algorithms are needed. For this reason, a novel SIF retrieval algorithm, named SpecFit, has been developed in order to retrieve the entire SIF spectrum in the entire wavelength interval in which chlorophyll fluorescence emission occurs (670-768 nm). This novel approach is able to disentangle SIF and reflectance contributions from the total radiance spectrum emerging from the top of canopy. Nevertheless, the further interpretation of the SIF spectrum in relation to plant photosynthesis is complicated by the fact that the SIF signal is strongly influenced by several biophysical parameters, such as canopy structure and chlorophyll content that affect the leaves/canopy radiation transfer and therefore the overall remote sensed signal.
The proposed work aims to verify first the SpecFit algorithm robustness on both simulated and field data and, second to investigate the potential of novel fluorescence indexes defined from the SIF full spectrum.
The algorithm accuracy has been tested on a set of simulated data, obtained by coupling MODTRAN (atmosphere) and SCOPE (canopy) radiative transfer models. Scatterplots between forward simulations and retrieved SIF showed R2 close to 0.98 considering all the evaluated metrics, namely: maximum of the peaks in the red and far-red and SIF spectrum integral.
The temporal series acquired during the ESA’s ATMOFlex and FLEXSense campaigns organised in an agricultural area in Braccagni (Tuscany, Italy) were, instead, used to test the algorithm on experimental measures acquired with FLOX spectrometers, from February to August on different crops (forage, alfalfa and corn). For the first time, SIF spectra observed on different vegetation species at different growing stages are presented in this work and their consistency with SIF values estimated by the more consolidated and widely used Spectral Fitting retrieval Method (SFM) are presented. The relationship found shows a linear regression slopes close to 1, intercepts approximately equal to 0 and R2 higher than 0.92 are all evidences of the SpecFit accuracy.
The final step consists in analysing the temporal evolution of novel fluorescence indexes derived from the SIF spectrum. Specifically, SpecFit SIF evaluated at 760 nm and 687 nm and normalized by the retrieved spectrum integral (SIFSpecFit/SIFINT) were compared to the index SIF760/SIF687, the latter is a proxy of the chlorophyll content. SIF760/SIF687 and SIF760/SIFINT increase linearly during the growing season due to re-absorption processes that affect both the indexes. Conversely, an inverse relationship is found between SIF760/SIF687and SIF687/SIFINT because the contribute in the visible red wavelengths to the integral become weaker at increasing biomass content.
How to cite: Cesana, I., Cogliati, S., Celesti, M., Julitta, T., and Colombo, R.: Sun-Induced chlorophyll Fluorescence full spectrum retrieval and analysis of long-term time series , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21306, https://doi.org/10.5194/egusphere-egu2020-21306, 2020.
Remote sensing of Sun-Induced chlorophyll Fluorescence (SIF) represents a growing and promising area of research in support of the upcoming ESA’s FLEX (FLuorescence EXplorer) satellite mission. For this reason, the link between SIF and photosynthetic activity has been widely explored in the recent years, as tool to characterize and monitoring terrestrial ecosystems functioning.
The SIF detection is challenging because this faint signal (which represents only few percent of the total radiance) is over imposed on the light reflected from the Earth’s surface. Decoupling these two contributions is not trivial and dedicated algorithms are needed. For this reason, a novel SIF retrieval algorithm, named SpecFit, has been developed in order to retrieve the entire SIF spectrum in the entire wavelength interval in which chlorophyll fluorescence emission occurs (670-768 nm). This novel approach is able to disentangle SIF and reflectance contributions from the total radiance spectrum emerging from the top of canopy. Nevertheless, the further interpretation of the SIF spectrum in relation to plant photosynthesis is complicated by the fact that the SIF signal is strongly influenced by several biophysical parameters, such as canopy structure and chlorophyll content that affect the leaves/canopy radiation transfer and therefore the overall remote sensed signal.
The proposed work aims to verify first the SpecFit algorithm robustness on both simulated and field data and, second to investigate the potential of novel fluorescence indexes defined from the SIF full spectrum.
The algorithm accuracy has been tested on a set of simulated data, obtained by coupling MODTRAN (atmosphere) and SCOPE (canopy) radiative transfer models. Scatterplots between forward simulations and retrieved SIF showed R2 close to 0.98 considering all the evaluated metrics, namely: maximum of the peaks in the red and far-red and SIF spectrum integral.
The temporal series acquired during the ESA’s ATMOFlex and FLEXSense campaigns organised in an agricultural area in Braccagni (Tuscany, Italy) were, instead, used to test the algorithm on experimental measures acquired with FLOX spectrometers, from February to August on different crops (forage, alfalfa and corn). For the first time, SIF spectra observed on different vegetation species at different growing stages are presented in this work and their consistency with SIF values estimated by the more consolidated and widely used Spectral Fitting retrieval Method (SFM) are presented. The relationship found shows a linear regression slopes close to 1, intercepts approximately equal to 0 and R2 higher than 0.92 are all evidences of the SpecFit accuracy.
The final step consists in analysing the temporal evolution of novel fluorescence indexes derived from the SIF spectrum. Specifically, SpecFit SIF evaluated at 760 nm and 687 nm and normalized by the retrieved spectrum integral (SIFSpecFit/SIFINT) were compared to the index SIF760/SIF687, the latter is a proxy of the chlorophyll content. SIF760/SIF687 and SIF760/SIFINT increase linearly during the growing season due to re-absorption processes that affect both the indexes. Conversely, an inverse relationship is found between SIF760/SIF687and SIF687/SIFINT because the contribute in the visible red wavelengths to the integral become weaker at increasing biomass content.
How to cite: Cesana, I., Cogliati, S., Celesti, M., Julitta, T., and Colombo, R.: Sun-Induced chlorophyll Fluorescence full spectrum retrieval and analysis of long-term time series , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21306, https://doi.org/10.5194/egusphere-egu2020-21306, 2020.
EGU2020-21412 | Displays | BG2.7
LESS: Large-scale remote sensing data and image simulation framework over Vegetated AreasJianbo Qi and Donghui Xie
Three-dimensional (3D) radiative transfer (RT) modeling and simulation of the transport of radiation through earth surfaces is a challenging and difficult task. The difficulties lie in the complexity of the landscapes and also the intensive computational cost of 3D RT simulations. Current models usually work with abstract landscape elements to reduce complexity or only consider relatively small realistic scenes. In this study, a new 3D RT modeling framework (called LESS) is proposed. It employs a forward photon tracing method to simulate bidirectional reflectance factor (BRF) or flux-related data (e.g., downwelling radiation) and a backward path tracing method to generate sensor images (e.g., fisheye images) or large-scale (e.g. 1 km2) spectral images from visible to thermal infrared band. In this framework, a graphic user interface (GUI) and a set of tools are also provided to help to construct the landscape and set parameters, e.g., extracting tree crowns from airborne LiDAR data, which makes it more accessible to common users. The accuracy of LESS is evaluated with other models and field measurements in terms of directional BRF and pixel-wise comparisons. It shows that the accuracy of LESS is consistent with the reference models from RAMI model inter-comparison website (http://rami-benchmark.jrc.ec.europa.eu/HTML/Home.php) as well as field measurements. LESS has also been extended to simulate atmosphere, LiDAR and in-situ sensors. It provides as a useful tool for studying the radiative transfer process over complex forest canopies from leaf to canopy scales. The simulated datasets can be used as benchmarks for validating other physical remote sensing inversion algorithm and developing parameterized models for retrieving bio-geophysical variables of canopy. LESS can be accessed from http://lessrt.org.
How to cite: Qi, J. and Xie, D.: LESS: Large-scale remote sensing data and image simulation framework over Vegetated Areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21412, https://doi.org/10.5194/egusphere-egu2020-21412, 2020.
Three-dimensional (3D) radiative transfer (RT) modeling and simulation of the transport of radiation through earth surfaces is a challenging and difficult task. The difficulties lie in the complexity of the landscapes and also the intensive computational cost of 3D RT simulations. Current models usually work with abstract landscape elements to reduce complexity or only consider relatively small realistic scenes. In this study, a new 3D RT modeling framework (called LESS) is proposed. It employs a forward photon tracing method to simulate bidirectional reflectance factor (BRF) or flux-related data (e.g., downwelling radiation) and a backward path tracing method to generate sensor images (e.g., fisheye images) or large-scale (e.g. 1 km2) spectral images from visible to thermal infrared band. In this framework, a graphic user interface (GUI) and a set of tools are also provided to help to construct the landscape and set parameters, e.g., extracting tree crowns from airborne LiDAR data, which makes it more accessible to common users. The accuracy of LESS is evaluated with other models and field measurements in terms of directional BRF and pixel-wise comparisons. It shows that the accuracy of LESS is consistent with the reference models from RAMI model inter-comparison website (http://rami-benchmark.jrc.ec.europa.eu/HTML/Home.php) as well as field measurements. LESS has also been extended to simulate atmosphere, LiDAR and in-situ sensors. It provides as a useful tool for studying the radiative transfer process over complex forest canopies from leaf to canopy scales. The simulated datasets can be used as benchmarks for validating other physical remote sensing inversion algorithm and developing parameterized models for retrieving bio-geophysical variables of canopy. LESS can be accessed from http://lessrt.org.
How to cite: Qi, J. and Xie, D.: LESS: Large-scale remote sensing data and image simulation framework over Vegetated Areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21412, https://doi.org/10.5194/egusphere-egu2020-21412, 2020.
BG2.8 – Application of Stable Isotopes in Biogeosciences
EGU2020-9273 | Displays | BG2.8
Stable iron isotope signals as indicators for iron reduction pathways in deep methanic sedimentsSusann Henkel, Bo Liu, Michael Staubwasser, Simone Kasemann, Anette Meixner, and Sabine Kasten
A number of studies have shown that iron reduction in marine sediments is not confined to sulfate- or sulfide-containing depths but may also affect deep methanic intervals. In particular dynamic depositional settings often show the release of dissolved iron below the sulphate-methane transition (SMT). The specific process behind this deep iron release is not well understood. It has been suggested that anaerobic oxidation of methane (AOM) mediated by Fe oxide reduction plays an important role. So there might be a close, so far unaccounted link between the Fe and C cycles in deep marine sediments.
Here we present a compilation of inorganic geochemical data including δ56Fe values of pore water and reactive Fe fractions for sediments of the Helgoland mud area (North Sea) for which a coupling between deep iron reduction and AOM has been proposed [1]. The sediments show a shallow SMT and increasing dissolved Fe concentrations of up to 400 µM further below. High sedimentation rates led to a fast burial and preservation of reactive Fe (oxyhydr)oxides, enabling deep iron reduction as we observe it today.
Isotopic fractionation of Fe has been demonstrated for DIR in culture experiments and in shallow marine sediments. Such studies build upon the principle that microbes preferentially utilize light Fe isotopes (54Fe) causing a fractionation between solid ferric and dissolved ferrous iron. For alternative biotic Fe reduction pathways in methanic environments, there are practically no data. We hypothesized that any microbially mediated iron reduction process would result in a similar preferential release of 54Fe and, thus, shift pore water δ56Fe towards negative values. Furthermore we hypothesized that the microbial utilization of a specific Fe (oxyhydr)oxide pool would result in a relative enrichment of 56Fe in the residual ferric substrate.
Close to the sediment-water interface pore water δ56Fe in the mud area is generally negative and shows a downward trend towards positive values as it can be expected for in-situ dissimilatory iron reduction (DIR) [2]. The Fe isotope signal close to the sulfidic interval is ~1‰ heavier than above and below as Fe sulfide precipitation preferentially removes 54Fe from pore water. A pronounced downward shift of pore-water δ56Fe to more negative values within the methanic zone is a clear indication for microbial Fe reduction coupled to organic matter degradation. However, this shift does not coincide with the main interval of Fe release for which potential for Fe-AOM had been demonstrated [1]. In this deeper interval, the released Fe has an isotopic composition that matches that of the ferric substrates. We conclude that either 1) Fe-AOM plays a subordinate role for Fe release at depth or 2) does not go along with significant Fe isotope fractionation, which might be explained by different ways of electron transfer between microbe and the iron oxide compared to DIR.
[1] Aromokeye, D. et al., 2019. Frontiers in Microbiology, doi: 10.3389/fmicb.2019.03041.
[2] Henkel, S. et al., 2016. Chemical Geology 421: 93-102.
How to cite: Henkel, S., Liu, B., Staubwasser, M., Kasemann, S., Meixner, A., and Kasten, S.: Stable iron isotope signals as indicators for iron reduction pathways in deep methanic sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9273, https://doi.org/10.5194/egusphere-egu2020-9273, 2020.
A number of studies have shown that iron reduction in marine sediments is not confined to sulfate- or sulfide-containing depths but may also affect deep methanic intervals. In particular dynamic depositional settings often show the release of dissolved iron below the sulphate-methane transition (SMT). The specific process behind this deep iron release is not well understood. It has been suggested that anaerobic oxidation of methane (AOM) mediated by Fe oxide reduction plays an important role. So there might be a close, so far unaccounted link between the Fe and C cycles in deep marine sediments.
Here we present a compilation of inorganic geochemical data including δ56Fe values of pore water and reactive Fe fractions for sediments of the Helgoland mud area (North Sea) for which a coupling between deep iron reduction and AOM has been proposed [1]. The sediments show a shallow SMT and increasing dissolved Fe concentrations of up to 400 µM further below. High sedimentation rates led to a fast burial and preservation of reactive Fe (oxyhydr)oxides, enabling deep iron reduction as we observe it today.
Isotopic fractionation of Fe has been demonstrated for DIR in culture experiments and in shallow marine sediments. Such studies build upon the principle that microbes preferentially utilize light Fe isotopes (54Fe) causing a fractionation between solid ferric and dissolved ferrous iron. For alternative biotic Fe reduction pathways in methanic environments, there are practically no data. We hypothesized that any microbially mediated iron reduction process would result in a similar preferential release of 54Fe and, thus, shift pore water δ56Fe towards negative values. Furthermore we hypothesized that the microbial utilization of a specific Fe (oxyhydr)oxide pool would result in a relative enrichment of 56Fe in the residual ferric substrate.
Close to the sediment-water interface pore water δ56Fe in the mud area is generally negative and shows a downward trend towards positive values as it can be expected for in-situ dissimilatory iron reduction (DIR) [2]. The Fe isotope signal close to the sulfidic interval is ~1‰ heavier than above and below as Fe sulfide precipitation preferentially removes 54Fe from pore water. A pronounced downward shift of pore-water δ56Fe to more negative values within the methanic zone is a clear indication for microbial Fe reduction coupled to organic matter degradation. However, this shift does not coincide with the main interval of Fe release for which potential for Fe-AOM had been demonstrated [1]. In this deeper interval, the released Fe has an isotopic composition that matches that of the ferric substrates. We conclude that either 1) Fe-AOM plays a subordinate role for Fe release at depth or 2) does not go along with significant Fe isotope fractionation, which might be explained by different ways of electron transfer between microbe and the iron oxide compared to DIR.
[1] Aromokeye, D. et al., 2019. Frontiers in Microbiology, doi: 10.3389/fmicb.2019.03041.
[2] Henkel, S. et al., 2016. Chemical Geology 421: 93-102.
How to cite: Henkel, S., Liu, B., Staubwasser, M., Kasemann, S., Meixner, A., and Kasten, S.: Stable iron isotope signals as indicators for iron reduction pathways in deep methanic sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9273, https://doi.org/10.5194/egusphere-egu2020-9273, 2020.
EGU2020-3343 | Displays | BG2.8
The dominant environmental driver of leaf water stable isotope enrichment differs for H-2 compared to O-18Matthias Cuntz and Lucas A Cernusak and the Isotopists
Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ2H, cellulose δ2H and δ18O, lignin δ18O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water 2H concentration could differ from that of 18O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ2H (R2=0.86, p<0.001) and δ18O (R2=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ2H and δ18O are predominantly driven by different environmental variables: leaf water δ2H correlated most strongly with the δ2H of source water (R2=0.68, p<0.001) and atmospheric vapour (R2=0.63, p<0.001), whereas leaf water δ18O correlated most strongly with air relative humidity (R2=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.
How to cite: Cuntz, M. and Cernusak, L. A. and the Isotopists: The dominant environmental driver of leaf water stable isotope enrichment differs for H-2 compared to O-18, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3343, https://doi.org/10.5194/egusphere-egu2020-3343, 2020.
Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ2H, cellulose δ2H and δ18O, lignin δ18O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water 2H concentration could differ from that of 18O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ2H (R2=0.86, p<0.001) and δ18O (R2=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ2H and δ18O are predominantly driven by different environmental variables: leaf water δ2H correlated most strongly with the δ2H of source water (R2=0.68, p<0.001) and atmospheric vapour (R2=0.63, p<0.001), whereas leaf water δ18O correlated most strongly with air relative humidity (R2=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.
How to cite: Cuntz, M. and Cernusak, L. A. and the Isotopists: The dominant environmental driver of leaf water stable isotope enrichment differs for H-2 compared to O-18, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3343, https://doi.org/10.5194/egusphere-egu2020-3343, 2020.
EGU2020-15250 | Displays | BG2.8 | Highlight
Regional characterization of N2O isotopic composition emitted from soils in view of land cover, agricultural management and annual cycles based on measurements and modelingBenjamin Wolf, Edwin Haas, David Kraus, Ralf Kiese, and Klaus Butterbach-Bahl
While the global budget of nitrous oxide (N2O) is rather well constrained from a “top-down” perspective considering the change in the atmospheric burden and stratospheric N2O destruction, estimates of the various sources such as natural/agricultural soils, coastal areas or fossil fuel burning and industry remain uncertain. The isotopic composition of N2O, i.e., the relative abundances of the four most abundant isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) have been identified as instrumental tools for attributing emissions to the corresponding production-consumption processes and to estimate the global budget. During the past two decades, N2O isotopic composition of individual sources has been investigated, and temporal trends in the isotopic composition of atmospheric N2O have been studied using and firn air and archived air samples collected in Antarctica. With regard to 15N and 18O in atmospheric N2O, a decreasing trend was consistently observed across studies, but contradictory results have been obtained for site preference (SP), i.e., the difference in the abundances of 15N14N16O and 14N15N16O relative to 14N14N16O. In addition, N2O isotopic composition for natural or agricultural soils rely on a limited amount of studies and usually cover only parts of the annual cycle.
Since instruments used for optical isotope ratio spectroscopy (OIRS) can be deployed in the field, OIRS offers the opportunity to better characterize individual sources through long-term data in high temporal resolution. However, application of OIRS is challenging and, thus, remains scarce with regard to spatial resolution. For this reason, model-based regional estimates are pertinent to overcome the lack of regional estimates of N2O isotopic composition, to analyze trends, and to provide data for a refinement of the global budget.
To obtain regional-scale (Switzerland) model-based estimates of N2O isotopic composition, we used data sets of measured N2O isotopic composition of two sites that are based on OIRS, and applied the Stable Isotope MOdel for Nutrient cyclEs, SIMONE in conjunction with the biogeochemical model LandscapeDNDC. Our results show that SIMONE/LandscapeDNDC was capable of reflecting especially SP, but also 15N-N2O at sites with different soil properties. For agricultural soils, our simulations revealed an annual cycle in SP, with higher values during the growing season, but not for 15N-N2O. We will also discuss effects of agricultural management on N2O emissions as well as temporal trends.
How to cite: Wolf, B., Haas, E., Kraus, D., Kiese, R., and Butterbach-Bahl, K.: Regional characterization of N2O isotopic composition emitted from soils in view of land cover, agricultural management and annual cycles based on measurements and modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15250, https://doi.org/10.5194/egusphere-egu2020-15250, 2020.
While the global budget of nitrous oxide (N2O) is rather well constrained from a “top-down” perspective considering the change in the atmospheric burden and stratospheric N2O destruction, estimates of the various sources such as natural/agricultural soils, coastal areas or fossil fuel burning and industry remain uncertain. The isotopic composition of N2O, i.e., the relative abundances of the four most abundant isotopic species (14N14N16O, 15N14N16O, 14N15N16O, and 14N14N18O) have been identified as instrumental tools for attributing emissions to the corresponding production-consumption processes and to estimate the global budget. During the past two decades, N2O isotopic composition of individual sources has been investigated, and temporal trends in the isotopic composition of atmospheric N2O have been studied using and firn air and archived air samples collected in Antarctica. With regard to 15N and 18O in atmospheric N2O, a decreasing trend was consistently observed across studies, but contradictory results have been obtained for site preference (SP), i.e., the difference in the abundances of 15N14N16O and 14N15N16O relative to 14N14N16O. In addition, N2O isotopic composition for natural or agricultural soils rely on a limited amount of studies and usually cover only parts of the annual cycle.
Since instruments used for optical isotope ratio spectroscopy (OIRS) can be deployed in the field, OIRS offers the opportunity to better characterize individual sources through long-term data in high temporal resolution. However, application of OIRS is challenging and, thus, remains scarce with regard to spatial resolution. For this reason, model-based regional estimates are pertinent to overcome the lack of regional estimates of N2O isotopic composition, to analyze trends, and to provide data for a refinement of the global budget.
To obtain regional-scale (Switzerland) model-based estimates of N2O isotopic composition, we used data sets of measured N2O isotopic composition of two sites that are based on OIRS, and applied the Stable Isotope MOdel for Nutrient cyclEs, SIMONE in conjunction with the biogeochemical model LandscapeDNDC. Our results show that SIMONE/LandscapeDNDC was capable of reflecting especially SP, but also 15N-N2O at sites with different soil properties. For agricultural soils, our simulations revealed an annual cycle in SP, with higher values during the growing season, but not for 15N-N2O. We will also discuss effects of agricultural management on N2O emissions as well as temporal trends.
How to cite: Wolf, B., Haas, E., Kraus, D., Kiese, R., and Butterbach-Bahl, K.: Regional characterization of N2O isotopic composition emitted from soils in view of land cover, agricultural management and annual cycles based on measurements and modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15250, https://doi.org/10.5194/egusphere-egu2020-15250, 2020.
EGU2020-15179 | Displays | BG2.8
The recovery of the Shuram anomaly and paleoproductivity balanceFuencisla Cañadas Blasco, Dominic Papineau, Graham Shields, Maoyan Zhu, Chao Li, and Melanie J. Leng
The global Shuram anomaly records the longest and most negative carbonate carbon isotopic excursion in Earth history. It took place during the late Ediacaran (c. 570 – c. 551 Ma) with δ13Ccarbvalues down to −12‰. In South China, Doushantuo Formation Member IV (c. 555-551 Ma) consists mainly of organic-rich black shales and records the recovery of this anomaly, with values going from –6‰ to +0.5‰. The origin of this anomaly is thought to be related to the existence of a vast pool of dissolve organic carbon (DOC) in the ocean that was episodically oxidized thereby providing a source of 13C-depleted inorganic carbon. However, the main processes that ultimately drove to its recovery remain elusive. Here, we present new δ13Corgand δ15N dataset along a shelf-to-basin transect of the Nanhua basin (South China) as robust organic proxies to reconstruct the spatial and temporal evolution of paleoproductivity at basin scale. In addition, Raman spectroscopy is used to assess the thermal maturity of the samples. These new results define areas of high primary productivity and suggest the existence of an oxygen minimum zone (OMZ) together with other reduced oxic areas. From base to top of Member IV, the observed increasing and covariant trends in δ13Ccarb and δ13Corgdata together with a decreasing drift in δ15N values in platform and mid-lower slope environments are interpreted as areas where primary productivity became the main source of organic matter. Conversely, decreasing trends in δ13Ccarb and δ13Corg data together with invariant δ15N values in the upper slope and deep basin environments are interpreted as areas where reduced DOC dominated as the principal source or organic carbon. Based on that, we propose that a new balance was established between primary and secondary paleoproductivity, whereby the former succeeded to the latter as one of the principal contributors that led to the carbon isotope recovery in carbonates. This new model represents a plausible solution to the enigmatic negative δ13Ccarbisotopic excursion of the late Ediacaran.
How to cite: Cañadas Blasco, F., Papineau, D., Shields, G., Zhu, M., Li, C., and Leng, M. J.: The recovery of the Shuram anomaly and paleoproductivity balance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15179, https://doi.org/10.5194/egusphere-egu2020-15179, 2020.
The global Shuram anomaly records the longest and most negative carbonate carbon isotopic excursion in Earth history. It took place during the late Ediacaran (c. 570 – c. 551 Ma) with δ13Ccarbvalues down to −12‰. In South China, Doushantuo Formation Member IV (c. 555-551 Ma) consists mainly of organic-rich black shales and records the recovery of this anomaly, with values going from –6‰ to +0.5‰. The origin of this anomaly is thought to be related to the existence of a vast pool of dissolve organic carbon (DOC) in the ocean that was episodically oxidized thereby providing a source of 13C-depleted inorganic carbon. However, the main processes that ultimately drove to its recovery remain elusive. Here, we present new δ13Corgand δ15N dataset along a shelf-to-basin transect of the Nanhua basin (South China) as robust organic proxies to reconstruct the spatial and temporal evolution of paleoproductivity at basin scale. In addition, Raman spectroscopy is used to assess the thermal maturity of the samples. These new results define areas of high primary productivity and suggest the existence of an oxygen minimum zone (OMZ) together with other reduced oxic areas. From base to top of Member IV, the observed increasing and covariant trends in δ13Ccarb and δ13Corgdata together with a decreasing drift in δ15N values in platform and mid-lower slope environments are interpreted as areas where primary productivity became the main source of organic matter. Conversely, decreasing trends in δ13Ccarb and δ13Corg data together with invariant δ15N values in the upper slope and deep basin environments are interpreted as areas where reduced DOC dominated as the principal source or organic carbon. Based on that, we propose that a new balance was established between primary and secondary paleoproductivity, whereby the former succeeded to the latter as one of the principal contributors that led to the carbon isotope recovery in carbonates. This new model represents a plausible solution to the enigmatic negative δ13Ccarbisotopic excursion of the late Ediacaran.
How to cite: Cañadas Blasco, F., Papineau, D., Shields, G., Zhu, M., Li, C., and Leng, M. J.: The recovery of the Shuram anomaly and paleoproductivity balance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15179, https://doi.org/10.5194/egusphere-egu2020-15179, 2020.
EGU2020-8122 | Displays | BG2.8
Sediment mobilisation in Lake Alaotra catchment, MadagascarVao Fenotiana Razanamahandry, Liesa Brosens, Marjolein Dewaele, Liesbet Jacobs, Campforts Benjamin, Nils Broothaerts, Gert Verstraeten, Tantely Razafimbelo, Tovonarivo Rafolisy, Gerard Govers, and Steven Bouillon
Madagascar shows very high erosion rates and, in some regions, the landscape is dotted by major gullies called “lavaka”. Lavaka are also very frequent in the surroundings of Lake Alaotra, a large, shallow lake in the Malagasy highlands. A central question with respect to landscape evolution in Madagascar is to what extent human impact has triggered environmental change in terms of vegetation, erosion rates (lavaka formation) and sediment dynamics. Sedimentary archives in lakes such as lake Alaotra can be of great help to resolve this question provided that we understand how sediment and carbon are mobilised and transported through the landscape.
In this study, we traced pathways of sediment and carbon fluxes through this eroding landscape, from the eroded hillslopes over various sediment deposition zones (floodplains, reservoirs, marshes..) to Lake Alaotra. Detailed profiles taken along convex hillslope transects (grasslands and primary forest), in the marsh peat, floodplains and lake were analyzed for carbon and nitrogen content, texture, and stable carbon isotope ratios (δ13C). Along the grassland hillslopes, soil OC content is extremely low, from 0.4 to 1.8% in the top layer and rapidly decreasing to <0.2 % below 100 cm depth. The current vegetation predominantly consists of C4 grasses (δ13C ~-13 ‰), yet soil δ13C ranges between -24 and -18‰, and most profiles show a decrease in δ13C with the depth – in contrast to observations in most C3-dominated systems. Contrary to our expectations, Lake Alaotra was found not to be a major sink of hillslope-derived sediments and/or carbon. Sediment cores from different parts of the lake have high OC contents (5 to 18%) and contain only minor amounts of sand, the dominant grain size class on the hillslopes. The high OC content of the lake sediments, in combination with data on C/N ratios and δ13C indicate that the OC in the lake sediments is mainly derived from the surrounding marshes and in situ primary production rather than from terrestrial C eroded from the catchment. Floodplains are likely a key sink for soil-derived sediments: similar to hillslope soils, sediment profiles in the floodplains show a low %OC and relatively high δ13C values ranging between -21 and -14‰.
We conclude that most of the detritic sediments and carbon mobilised on the hillslopes through erosion do not reach lake Alaotra, even though erosion rates in the landscape are extremely high. Studying sedimentary profiles in the lake may provide information on environmental change (e.g. through changes in carbon contents and/or characteristics) but is insufficient to understand the entire sediment and carbon cascades in the Malagasy landscape.
How to cite: Razanamahandry, V. F., Brosens, L., Dewaele, M., Jacobs, L., Benjamin, C., Broothaerts, N., Verstraeten, G., Razafimbelo, T., Rafolisy, T., Govers, G., and Bouillon, S.: Sediment mobilisation in Lake Alaotra catchment, Madagascar , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8122, https://doi.org/10.5194/egusphere-egu2020-8122, 2020.
Madagascar shows very high erosion rates and, in some regions, the landscape is dotted by major gullies called “lavaka”. Lavaka are also very frequent in the surroundings of Lake Alaotra, a large, shallow lake in the Malagasy highlands. A central question with respect to landscape evolution in Madagascar is to what extent human impact has triggered environmental change in terms of vegetation, erosion rates (lavaka formation) and sediment dynamics. Sedimentary archives in lakes such as lake Alaotra can be of great help to resolve this question provided that we understand how sediment and carbon are mobilised and transported through the landscape.
In this study, we traced pathways of sediment and carbon fluxes through this eroding landscape, from the eroded hillslopes over various sediment deposition zones (floodplains, reservoirs, marshes..) to Lake Alaotra. Detailed profiles taken along convex hillslope transects (grasslands and primary forest), in the marsh peat, floodplains and lake were analyzed for carbon and nitrogen content, texture, and stable carbon isotope ratios (δ13C). Along the grassland hillslopes, soil OC content is extremely low, from 0.4 to 1.8% in the top layer and rapidly decreasing to <0.2 % below 100 cm depth. The current vegetation predominantly consists of C4 grasses (δ13C ~-13 ‰), yet soil δ13C ranges between -24 and -18‰, and most profiles show a decrease in δ13C with the depth – in contrast to observations in most C3-dominated systems. Contrary to our expectations, Lake Alaotra was found not to be a major sink of hillslope-derived sediments and/or carbon. Sediment cores from different parts of the lake have high OC contents (5 to 18%) and contain only minor amounts of sand, the dominant grain size class on the hillslopes. The high OC content of the lake sediments, in combination with data on C/N ratios and δ13C indicate that the OC in the lake sediments is mainly derived from the surrounding marshes and in situ primary production rather than from terrestrial C eroded from the catchment. Floodplains are likely a key sink for soil-derived sediments: similar to hillslope soils, sediment profiles in the floodplains show a low %OC and relatively high δ13C values ranging between -21 and -14‰.
We conclude that most of the detritic sediments and carbon mobilised on the hillslopes through erosion do not reach lake Alaotra, even though erosion rates in the landscape are extremely high. Studying sedimentary profiles in the lake may provide information on environmental change (e.g. through changes in carbon contents and/or characteristics) but is insufficient to understand the entire sediment and carbon cascades in the Malagasy landscape.
How to cite: Razanamahandry, V. F., Brosens, L., Dewaele, M., Jacobs, L., Benjamin, C., Broothaerts, N., Verstraeten, G., Razafimbelo, T., Rafolisy, T., Govers, G., and Bouillon, S.: Sediment mobilisation in Lake Alaotra catchment, Madagascar , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8122, https://doi.org/10.5194/egusphere-egu2020-8122, 2020.
EGU2020-13835 | Displays | BG2.8
Compound Specific Stable Sulfur Isotope Analysis (δ34S and δ33S) of Organic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry (GC-MC-ICPMS)Kümmel Steffen, Gelman Faina, Horst Axel, Strauß Harald, and Gehre Matthias
Stable sulfur isotope analysis is potentially applicable in various fields in forensics and environmental analytics to investigate the sources and degradation of organic compounds, many of them being priority pollutants in groundwater and the atmosphere. A broader use of sulfur isotopes of organic compounds in environmental studies is still hampered by the availability of precise and easy-to-use techniques. Here we present a method for the determination of stable sulfur isotope ratios using gas chromatography coupled with multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS) which can be used for both δ34S and δ33S analysis. The method was evaluated using the reference materials IAEA-S-1, IAEA-S-2 and IAEA-S-3 which were converted offline to SF6 prior to analysis. Standardization was carried out by using a two-point calibration approach. The δ34S values obtained by our method are in good agreement (within analytical uncertainty) with the results obtained by the conventional dual inlet method. Additionally, the impact of the used mass resolution (low and medium), the influence of auto-protonation of sulfur isotopes and the effect of isobaric interferences of O2+ on the obtained isotopic ratios was investigated. The analytical precision (1σ) for δ34S and δ33S values was usually better than ±0.1 ‰ for analytes containing >0.1 nmol S. Thus, the presented compound-specific online method should be sufficiently precise to address a wide variety of research questions involving mass independent isotope effects of sulfur-containing organic compounds to discriminate sources or biological and chemical reactions in the environment.
How to cite: Steffen, K., Faina, G., Axel, H., Harald, S., and Matthias, G.: Compound Specific Stable Sulfur Isotope Analysis (δ34S and δ33S) of Organic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry (GC-MC-ICPMS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13835, https://doi.org/10.5194/egusphere-egu2020-13835, 2020.
Stable sulfur isotope analysis is potentially applicable in various fields in forensics and environmental analytics to investigate the sources and degradation of organic compounds, many of them being priority pollutants in groundwater and the atmosphere. A broader use of sulfur isotopes of organic compounds in environmental studies is still hampered by the availability of precise and easy-to-use techniques. Here we present a method for the determination of stable sulfur isotope ratios using gas chromatography coupled with multiple-collector inductively coupled plasma mass spectrometry (GC-MC-ICPMS) which can be used for both δ34S and δ33S analysis. The method was evaluated using the reference materials IAEA-S-1, IAEA-S-2 and IAEA-S-3 which were converted offline to SF6 prior to analysis. Standardization was carried out by using a two-point calibration approach. The δ34S values obtained by our method are in good agreement (within analytical uncertainty) with the results obtained by the conventional dual inlet method. Additionally, the impact of the used mass resolution (low and medium), the influence of auto-protonation of sulfur isotopes and the effect of isobaric interferences of O2+ on the obtained isotopic ratios was investigated. The analytical precision (1σ) for δ34S and δ33S values was usually better than ±0.1 ‰ for analytes containing >0.1 nmol S. Thus, the presented compound-specific online method should be sufficiently precise to address a wide variety of research questions involving mass independent isotope effects of sulfur-containing organic compounds to discriminate sources or biological and chemical reactions in the environment.
How to cite: Steffen, K., Faina, G., Axel, H., Harald, S., and Matthias, G.: Compound Specific Stable Sulfur Isotope Analysis (δ34S and δ33S) of Organic Compounds Using Gas Chromatography Hyphenated with Multiple Collector Inductively Coupled Plasma Mass Spectrometry (GC-MC-ICPMS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13835, https://doi.org/10.5194/egusphere-egu2020-13835, 2020.
EGU2020-14997 | Displays | BG2.8
Isotope insights into sulfate loads and sulfur cycling in a heavily polluted river networkTobias Goldhammer and Juliane Lenz
Sulfate isotopes in a heavily polluted river network
Tobias Goldhammer1, Juliane Lenz2
1Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry, Berlin, Germany
2University of Bremen, Department of Geosciences, Germany
The Spree is the major river system in NE Germany, with about 380km in length and a catchment of more than 10,000 km2. While intensive open pit lignite mining in the upper catchment has significantly altered the hydrology and hydrochemistry over the last century, River Spree is at the same time a critical supplier of drinking water to the city of Berlin. Acid mine drainage is the major contributor to the river water sulfate load, which frequently exceeds the drinking water limit of 250mg L-1. Increasing summer drought and low-flow regimes are projected to intensify this situation in the future. The sulfate pollution in River Spree has induced a significant shift in biogeochemical regimes, in particular in those compartments of the river network where low flow velocity is supportive to sediment accumulation and bacterial sulfate reduction. Secondary effects include the mobility of iron and phosphorus, and entail critical consequences for the aquatic ecosystem.
In this contribution, we discuss the results of an integrated study of hydrochemistry and sulfate and water isotopes in the Spree river network. We put particular emphasis on
(1) Differentiating major geographic and functional sulfate sources and sinks in the Spree river network based on sulfur and oxygen isotopes in river sulfate
(2) Quantifying these sources and sinks by simple endmember models, and identifying limitations of this approach
(3) The role of biogeochemical sulfur cycling (reduction/reoxidation cycles and intermediates) in retention spaces of the river network and the consequence for prevailing isotope signatures.
How to cite: Goldhammer, T. and Lenz, J.: Isotope insights into sulfate loads and sulfur cycling in a heavily polluted river network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14997, https://doi.org/10.5194/egusphere-egu2020-14997, 2020.
Sulfate isotopes in a heavily polluted river network
Tobias Goldhammer1, Juliane Lenz2
1Leibniz-Institute for Freshwater Ecology and Inland Fisheries, Department of Chemical Analytics and Biogeochemistry, Berlin, Germany
2University of Bremen, Department of Geosciences, Germany
The Spree is the major river system in NE Germany, with about 380km in length and a catchment of more than 10,000 km2. While intensive open pit lignite mining in the upper catchment has significantly altered the hydrology and hydrochemistry over the last century, River Spree is at the same time a critical supplier of drinking water to the city of Berlin. Acid mine drainage is the major contributor to the river water sulfate load, which frequently exceeds the drinking water limit of 250mg L-1. Increasing summer drought and low-flow regimes are projected to intensify this situation in the future. The sulfate pollution in River Spree has induced a significant shift in biogeochemical regimes, in particular in those compartments of the river network where low flow velocity is supportive to sediment accumulation and bacterial sulfate reduction. Secondary effects include the mobility of iron and phosphorus, and entail critical consequences for the aquatic ecosystem.
In this contribution, we discuss the results of an integrated study of hydrochemistry and sulfate and water isotopes in the Spree river network. We put particular emphasis on
(1) Differentiating major geographic and functional sulfate sources and sinks in the Spree river network based on sulfur and oxygen isotopes in river sulfate
(2) Quantifying these sources and sinks by simple endmember models, and identifying limitations of this approach
(3) The role of biogeochemical sulfur cycling (reduction/reoxidation cycles and intermediates) in retention spaces of the river network and the consequence for prevailing isotope signatures.
How to cite: Goldhammer, T. and Lenz, J.: Isotope insights into sulfate loads and sulfur cycling in a heavily polluted river network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14997, https://doi.org/10.5194/egusphere-egu2020-14997, 2020.
EGU2020-19889 | Displays | BG2.8
High-precision stable isotope analysis of less than 5 microgram carbonate samples by continuous-flow mass spectrometryHubert Vonhof, Stefan de Graaf, Howard Spero, Ralf Schiebel, Suzan Verdegaal-Warmerdam, Brett Metcalfe, and Gerald Haug
Stable isotope analysis of biogenic carbonates has remained one of the most important tools in paleoceanography since Emiliani (1955) first described the fluctuation of oxygen isotopes in planktic foraminifers over the Pleistocene. Many laboratories now possess equipment with the capability to analyse foraminifer specimens singularly, at least for larger planktic forms.
Being able to run single specimens of planktic foraminifers is significant, because it yields entirely different information than when one would analyse multiple specimens from the same species. Planktic foraminifers have an average life span of about one month, so analysing single specimens, makes paleoceanographic data at seasonal resolution available (e.g. Ganssen et al., 2011; Metcalfe et al 2019, and references therein).
Most modern equipment for stable isotope analysis of CaCO3 samples yields good precision down to 10 microgram sample size. The smallest samples are generally measured with a dual inlet technique, because that quantitatively collects the CO2 gas sample in a cold trap before analysis, leading to a more efficient use of the sample gas. Modern dual inlet equipment has a sample size limit somewhere between 10 and 6 microgram CaCO3 sample weight, and in that range usually operates at increased analytical uncertainty when compared to larger samples (e.g. Ganssen et al., 2011). Smaller samples are problematic, because at small amounts of sample gas, the dual inlet system is not able to maintain viscous flow conditions required for precise isotope analysis. To circumvent that barrier, one can use continuous-flow (CF) mass spectrometry because in CF systems the carrier gas ensures proper flow conditions even if there is (virtually) no sample gas produced. Doing so has previously allowed for the isotope analysis of CaCO3 samples in the 10 – 6 microgram range at an external precision (1SD) of ~0.12‰ for both δ18O and δ13C (e.g. Metcalfe et al 2019).
To further improve the performance of CF mass spectrometry for small CaCO3 samples, we ran experiments on a Thermo GASBENCH system, equipped with a cold trap (cf. Fiebig et al 2005) and interfaced with a Delta-V mass spectrometer. The experiments consisted of replicate analysis of CaCO3 standards between 10 and 3 micrograms in weight, which is the weight range of many of the smaller specimens of planktic foraminifers.
Several hardware modifications were implemented to improve system stability and remove observed effects of contribution of blank CO2 building up in the sample vials. With these modifications, external reproducibility of the set-up for carbonate standard aliquots between 10 and 4 microgram reached a precision of ~0.10 ‰ for both δ18O and δ13C (1SD). This is similar to precisions typically attained for routine analysis of much larger samples in standard operation on the same equipment, and demonstrates that precise stable isotope analysis of smaller single-specimen planktic foraminifers than we could achieve so far is within reach of CF mass spectrometry.
References:
Emiliani, C. 1955, DOI: 10.1086/626295
Fiebig, J., et al. 2005, DOI: 10.1002/rcm.2060
Ganssen, G.M., et al., 2011, DOI:10.5194/cp-7-1337-2011
Metcalfe, B., et al., 2019, DOI: 10.1029/2018PA003475
How to cite: Vonhof, H., de Graaf, S., Spero, H., Schiebel, R., Verdegaal-Warmerdam, S., Metcalfe, B., and Haug, G.: High-precision stable isotope analysis of less than 5 microgram carbonate samples by continuous-flow mass spectrometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19889, https://doi.org/10.5194/egusphere-egu2020-19889, 2020.
Stable isotope analysis of biogenic carbonates has remained one of the most important tools in paleoceanography since Emiliani (1955) first described the fluctuation of oxygen isotopes in planktic foraminifers over the Pleistocene. Many laboratories now possess equipment with the capability to analyse foraminifer specimens singularly, at least for larger planktic forms.
Being able to run single specimens of planktic foraminifers is significant, because it yields entirely different information than when one would analyse multiple specimens from the same species. Planktic foraminifers have an average life span of about one month, so analysing single specimens, makes paleoceanographic data at seasonal resolution available (e.g. Ganssen et al., 2011; Metcalfe et al 2019, and references therein).
Most modern equipment for stable isotope analysis of CaCO3 samples yields good precision down to 10 microgram sample size. The smallest samples are generally measured with a dual inlet technique, because that quantitatively collects the CO2 gas sample in a cold trap before analysis, leading to a more efficient use of the sample gas. Modern dual inlet equipment has a sample size limit somewhere between 10 and 6 microgram CaCO3 sample weight, and in that range usually operates at increased analytical uncertainty when compared to larger samples (e.g. Ganssen et al., 2011). Smaller samples are problematic, because at small amounts of sample gas, the dual inlet system is not able to maintain viscous flow conditions required for precise isotope analysis. To circumvent that barrier, one can use continuous-flow (CF) mass spectrometry because in CF systems the carrier gas ensures proper flow conditions even if there is (virtually) no sample gas produced. Doing so has previously allowed for the isotope analysis of CaCO3 samples in the 10 – 6 microgram range at an external precision (1SD) of ~0.12‰ for both δ18O and δ13C (e.g. Metcalfe et al 2019).
To further improve the performance of CF mass spectrometry for small CaCO3 samples, we ran experiments on a Thermo GASBENCH system, equipped with a cold trap (cf. Fiebig et al 2005) and interfaced with a Delta-V mass spectrometer. The experiments consisted of replicate analysis of CaCO3 standards between 10 and 3 micrograms in weight, which is the weight range of many of the smaller specimens of planktic foraminifers.
Several hardware modifications were implemented to improve system stability and remove observed effects of contribution of blank CO2 building up in the sample vials. With these modifications, external reproducibility of the set-up for carbonate standard aliquots between 10 and 4 microgram reached a precision of ~0.10 ‰ for both δ18O and δ13C (1SD). This is similar to precisions typically attained for routine analysis of much larger samples in standard operation on the same equipment, and demonstrates that precise stable isotope analysis of smaller single-specimen planktic foraminifers than we could achieve so far is within reach of CF mass spectrometry.
References:
Emiliani, C. 1955, DOI: 10.1086/626295
Fiebig, J., et al. 2005, DOI: 10.1002/rcm.2060
Ganssen, G.M., et al., 2011, DOI:10.5194/cp-7-1337-2011
Metcalfe, B., et al., 2019, DOI: 10.1029/2018PA003475
How to cite: Vonhof, H., de Graaf, S., Spero, H., Schiebel, R., Verdegaal-Warmerdam, S., Metcalfe, B., and Haug, G.: High-precision stable isotope analysis of less than 5 microgram carbonate samples by continuous-flow mass spectrometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19889, https://doi.org/10.5194/egusphere-egu2020-19889, 2020.
EGU2020-20095 | Displays | BG2.8
Stable isotope analysis for control of declared geographic origin of Austrian and Slovak apricots: The IDARPO-Interreg-Project (AT-SK)Micha Horacek
Food products of certain geographic origin are more valued by consumers than the same commodities from other regions. Therefore, there is the risk and fear that incorrect labelling and declaration of geographic origin can occur to increase profit. Thus, a control of declared geographic origin is required to ensure correct labelling and to identify fraud.
For this purpose, apricot samples of the recent vintage (2019) are investigated to differentiate samples from different apricot-producing regions in Austria, Slovakia and other countries. The isotope composition of the elements hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) of fruit pulp (H, C, N, O), fruit stone (H, C, O) and fruit juice (O) is analysed to find appropriate parameters for the differentiation of geographic origin. The investigation of different sample tissues (pulp, stone, juice) supports a better differentiation of geographic origin due to different seasonal intervals influencing the respective commodities.
Within the frame of the project 3 vintages will be investigated and analysed for stable isotopes as well as other analytical techniques (molecular markers). The combination of all sample data (including previously accumulated data, e.g. Horacek 2017, Horacek 2019) will lead to an improved differentiation and identification of geographic origin.
This work is a contribution to the Interreg project IDARPO partially funded by the EU-Interreg program.
References:
Horacek, M., 2017, Isotope investigation of apricots from the Wachau-area/Lower Austria („Wachauer Marille“) to control the declared geographic origin: A pilot study – first results. Mitteilungen Klosterneuburg. 67, p. 219-228.
Horacek, M., 2019, Stable isotope analysis for control of declared geographic origin of Austrian apricots. EGU 2019, Vienna.
How to cite: Horacek, M.: Stable isotope analysis for control of declared geographic origin of Austrian and Slovak apricots: The IDARPO-Interreg-Project (AT-SK) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20095, https://doi.org/10.5194/egusphere-egu2020-20095, 2020.
Food products of certain geographic origin are more valued by consumers than the same commodities from other regions. Therefore, there is the risk and fear that incorrect labelling and declaration of geographic origin can occur to increase profit. Thus, a control of declared geographic origin is required to ensure correct labelling and to identify fraud.
For this purpose, apricot samples of the recent vintage (2019) are investigated to differentiate samples from different apricot-producing regions in Austria, Slovakia and other countries. The isotope composition of the elements hydrogen (H), carbon (C), nitrogen (N) and oxygen (O) of fruit pulp (H, C, N, O), fruit stone (H, C, O) and fruit juice (O) is analysed to find appropriate parameters for the differentiation of geographic origin. The investigation of different sample tissues (pulp, stone, juice) supports a better differentiation of geographic origin due to different seasonal intervals influencing the respective commodities.
Within the frame of the project 3 vintages will be investigated and analysed for stable isotopes as well as other analytical techniques (molecular markers). The combination of all sample data (including previously accumulated data, e.g. Horacek 2017, Horacek 2019) will lead to an improved differentiation and identification of geographic origin.
This work is a contribution to the Interreg project IDARPO partially funded by the EU-Interreg program.
References:
Horacek, M., 2017, Isotope investigation of apricots from the Wachau-area/Lower Austria („Wachauer Marille“) to control the declared geographic origin: A pilot study – first results. Mitteilungen Klosterneuburg. 67, p. 219-228.
Horacek, M., 2019, Stable isotope analysis for control of declared geographic origin of Austrian apricots. EGU 2019, Vienna.
How to cite: Horacek, M.: Stable isotope analysis for control of declared geographic origin of Austrian and Slovak apricots: The IDARPO-Interreg-Project (AT-SK) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20095, https://doi.org/10.5194/egusphere-egu2020-20095, 2020.
EGU2020-8056 | Displays | BG2.8
Stable carbon and oxygen isotope variability of modern pollen from nine abundant European tree species.Carolina Müller, Manja Hethke, Frank Riedel, and Gerhard Helle
A detailed understanding of the carbon and oxygen isotope ratios of modern pollen is crucial for the interpretation of fossil δ13Cpollen and δ18Opollen values. To broaden our knowledge of pollen-isotope ratios we investigated the isotope ranges of nine abundant tree species from central and northern Europe (vegetation periods 2015 and 2016).
In general, the isotope values of modern pollen are highly species-specific and yield site-specific patterns. Trees of different locations revealed distinct δ13Cpollen and δ18Opollen patterns for maritime and continental growing conditions and for high and low altitudes. Furthermore, pollen-isotope ratios reflect the time of blossoming. δ13Cpollen values of broad-leaved species flowering before leaf proliferation (Janurary to March; Alnus glutinosa and Corylus avellana) are on average 2.6‰ lower in comparison to broad-leaved and coniferous trees flowering during late spring and early summer (April to June; Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). δ18Opollen values yielded similar results, which are on average 3.1‰ lower for species flowering early in the year. An intra-annual analysis of Betula pendula and Pinus sylvestris pollen revealed increased δ18Opollen values during the last stages of pollen-maturation, whereas δ13Cpollen values of both species remain consistent during late pollen development. Additionally, pollen-isotope values vary markedly within individual trees. Circumferential and height-dependent variations within single trees can be as high as 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen.
Our results suggest that local environmental conditions are generally reflected in the carbon and oxygen pollen-isotopes, but some species seem to reflect the conditions more closely than others. The data indicate that it may even be feasible to reconstruct intra-annual climate conditions by analysing isotopes of species whose pollen develop during different seasons throughout the year.
How to cite: Müller, C., Hethke, M., Riedel, F., and Helle, G.: Stable carbon and oxygen isotope variability of modern pollen from nine abundant European tree species., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8056, https://doi.org/10.5194/egusphere-egu2020-8056, 2020.
A detailed understanding of the carbon and oxygen isotope ratios of modern pollen is crucial for the interpretation of fossil δ13Cpollen and δ18Opollen values. To broaden our knowledge of pollen-isotope ratios we investigated the isotope ranges of nine abundant tree species from central and northern Europe (vegetation periods 2015 and 2016).
In general, the isotope values of modern pollen are highly species-specific and yield site-specific patterns. Trees of different locations revealed distinct δ13Cpollen and δ18Opollen patterns for maritime and continental growing conditions and for high and low altitudes. Furthermore, pollen-isotope ratios reflect the time of blossoming. δ13Cpollen values of broad-leaved species flowering before leaf proliferation (Janurary to March; Alnus glutinosa and Corylus avellana) are on average 2.6‰ lower in comparison to broad-leaved and coniferous trees flowering during late spring and early summer (April to June; Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Picea abies, Pinus sylvestris and Quercus robur). δ18Opollen values yielded similar results, which are on average 3.1‰ lower for species flowering early in the year. An intra-annual analysis of Betula pendula and Pinus sylvestris pollen revealed increased δ18Opollen values during the last stages of pollen-maturation, whereas δ13Cpollen values of both species remain consistent during late pollen development. Additionally, pollen-isotope values vary markedly within individual trees. Circumferential and height-dependent variations within single trees can be as high as 3.5‰ for δ13Cpollen and 2.1‰ for δ18Opollen.
Our results suggest that local environmental conditions are generally reflected in the carbon and oxygen pollen-isotopes, but some species seem to reflect the conditions more closely than others. The data indicate that it may even be feasible to reconstruct intra-annual climate conditions by analysing isotopes of species whose pollen develop during different seasons throughout the year.
How to cite: Müller, C., Hethke, M., Riedel, F., and Helle, G.: Stable carbon and oxygen isotope variability of modern pollen from nine abundant European tree species., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8056, https://doi.org/10.5194/egusphere-egu2020-8056, 2020.
EGU2020-13976 | Displays | BG2.8
Tracing leaf litter-derived 15N to mineral soil organic matter in forests of different agesColin Fuss, Gary Lovett, Christine Goodale, Scott Ollinger, Ashley Lang, and Andrew Ouimette
Forest soils are important for retaining nitrogen (N), especially in areas where anthropogenic activities have led to historically high inputs of N. As forests age and their N demands for biomass accumulation decline, the capacity for N retention of soils may change as well, although little work has been done to further our understanding of this process. We conducted a mineral soil reciprocal transplant study in three northern hardwood forests of different ages (young, recently mature, and old growth) in New Hampshire, USA to determine how the retention of isotopically labeled nitrogen from leaf litter would differ depending on characteristics of the incubated soil’s origin and destination. After 18 months of incubating the soil bags below the 15N-labeled litter, we did not find retention of litter-derived N to be related to the age of the incubation site forest, but rather that it differed based on the origin of the incubated soil. We found that the soil C content was the strongest predictor of how much of the tracer was recovered in the transplanted soil bags. Furthermore, the C content of soils changed during incubation and tended to change in the direction of equilibrating with the soil C concentration of the incubation site. This finding suggests that site characteristics are important in determining soil C concentrations and consequently N retention capacities.
How to cite: Fuss, C., Lovett, G., Goodale, C., Ollinger, S., Lang, A., and Ouimette, A.: Tracing leaf litter-derived 15N to mineral soil organic matter in forests of different ages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13976, https://doi.org/10.5194/egusphere-egu2020-13976, 2020.
Forest soils are important for retaining nitrogen (N), especially in areas where anthropogenic activities have led to historically high inputs of N. As forests age and their N demands for biomass accumulation decline, the capacity for N retention of soils may change as well, although little work has been done to further our understanding of this process. We conducted a mineral soil reciprocal transplant study in three northern hardwood forests of different ages (young, recently mature, and old growth) in New Hampshire, USA to determine how the retention of isotopically labeled nitrogen from leaf litter would differ depending on characteristics of the incubated soil’s origin and destination. After 18 months of incubating the soil bags below the 15N-labeled litter, we did not find retention of litter-derived N to be related to the age of the incubation site forest, but rather that it differed based on the origin of the incubated soil. We found that the soil C content was the strongest predictor of how much of the tracer was recovered in the transplanted soil bags. Furthermore, the C content of soils changed during incubation and tended to change in the direction of equilibrating with the soil C concentration of the incubation site. This finding suggests that site characteristics are important in determining soil C concentrations and consequently N retention capacities.
How to cite: Fuss, C., Lovett, G., Goodale, C., Ollinger, S., Lang, A., and Ouimette, A.: Tracing leaf litter-derived 15N to mineral soil organic matter in forests of different ages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13976, https://doi.org/10.5194/egusphere-egu2020-13976, 2020.
EGU2020-2399 | Displays | BG2.8
Stable thallium isotope fractionation in soils as affected by pedogenesisAles Vanek, Andreas Voegelin, Martin Mihaljevic, Vojtech Ettler, Jakub Trubac, Petr Drahota, Maria Vankova, Vendula Oborna, Vit Penizek, Lenka Pavlu, Ondrej Drabek, Petra Vokurkova, Tereza Zadorova, and Ondrej Holubik
In this study, we investigated if variations in the stable Tl isotope ratios in soil samples from different profiles can be linked to data on the extractability and speciation of soil Tl and whether the isotopic data allow drawing conclusions on the geochemical processes linked with soil formation/rock weathering. We observed a significant accumulation of the heavy 205Tl isotope in the B horizons, with ε205Tl values that were up to 7 higher than in the underlying bedrock. This 205Tl enrichment, however, was neither reflected in the speciation of Tl nor its chemical fractionation. Furthermore, exchangeable soil Tl in the B horizons was found to be much isotopically lighter than the bulk soil Tl. Our findings suggest that the observed isotopic shift may be linked to cyclic Tl mobilization and immobilization processes over the period of rock weathering and soil formation. Oxidative Tl uptake by Mn-oxides associated with a 205Tl enrichment, continuous weathering of the Tl(III)-containing phases, followed by a Tl(I) remobilization (leading to enrichment in 205Tl) are suggested to be responsible for the binding of the heavy Tl isotope fraction into other phases, mainly illite (a dominant Tl host), which is not normally expected. We therefore conclude that the use of the Tl isotopic data for phase or sorption mechanism identification in a dynamic multi-phase (soil) system can be very complicated, but, in contrast, suggesting their efficient use as a proxy for redox-controlled processes.
How to cite: Vanek, A., Voegelin, A., Mihaljevic, M., Ettler, V., Trubac, J., Drahota, P., Vankova, M., Oborna, V., Penizek, V., Pavlu, L., Drabek, O., Vokurkova, P., Zadorova, T., and Holubik, O.: Stable thallium isotope fractionation in soils as affected by pedogenesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2399, https://doi.org/10.5194/egusphere-egu2020-2399, 2020.
In this study, we investigated if variations in the stable Tl isotope ratios in soil samples from different profiles can be linked to data on the extractability and speciation of soil Tl and whether the isotopic data allow drawing conclusions on the geochemical processes linked with soil formation/rock weathering. We observed a significant accumulation of the heavy 205Tl isotope in the B horizons, with ε205Tl values that were up to 7 higher than in the underlying bedrock. This 205Tl enrichment, however, was neither reflected in the speciation of Tl nor its chemical fractionation. Furthermore, exchangeable soil Tl in the B horizons was found to be much isotopically lighter than the bulk soil Tl. Our findings suggest that the observed isotopic shift may be linked to cyclic Tl mobilization and immobilization processes over the period of rock weathering and soil formation. Oxidative Tl uptake by Mn-oxides associated with a 205Tl enrichment, continuous weathering of the Tl(III)-containing phases, followed by a Tl(I) remobilization (leading to enrichment in 205Tl) are suggested to be responsible for the binding of the heavy Tl isotope fraction into other phases, mainly illite (a dominant Tl host), which is not normally expected. We therefore conclude that the use of the Tl isotopic data for phase or sorption mechanism identification in a dynamic multi-phase (soil) system can be very complicated, but, in contrast, suggesting their efficient use as a proxy for redox-controlled processes.
How to cite: Vanek, A., Voegelin, A., Mihaljevic, M., Ettler, V., Trubac, J., Drahota, P., Vankova, M., Oborna, V., Penizek, V., Pavlu, L., Drabek, O., Vokurkova, P., Zadorova, T., and Holubik, O.: Stable thallium isotope fractionation in soils as affected by pedogenesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2399, https://doi.org/10.5194/egusphere-egu2020-2399, 2020.
EGU2020-8211 | Displays | BG2.8
Environmental impact assessment of a Pb, Zn smelter using soil, slag and tree ring elemental and isotopic geochemistry in Kabwe, ZambiaRafael Baieta, Martin Mihaljevič, Vojtěch Ettler, and Aleš Vaněk
Due to its historical Pb, Zn, Ag, Cd and Cu mines and associated smelter, Kabwe in Zambia is known to be one of the most polluted cities in the world.
Contamination by Pb, Zn and Cu was assessed in four soil profiles around the smelter and remote locations, using Q-ICPMS for trace metal elemental and Pb isotopic measurements. A sequential extraction procedure (SEP) approach was used to obtain a detailed understanding of the vertical behaviour of the contaminants and its availability for plant uptake. Slags Pb isotopic ratios were also determined. Furthermore, tree rings of local pine trees (Pinus Montezumae) were collected and analysed for the same contaminants and Pb isotopes coupled with C isotopes. Results were compared to the smelter production historical records to assess the viability of these trees as environmental archive.
Results show that contamination is exclusive to the top layers of soil and is greater in soils closer to the smelter, which are highly contaminated (max: 16000 mg/kg Pb; 140000 mg/kg Zn; 600 mg/kg Cu). Remote soils have much lower topsoil concentrations (min: 61 mg/kg Pb; 351 mg/kg Zn; 21 mg/kg Cu). Interestingly, the greatest contaminant concentrations were found in the tree furthest from the source of pollution (max.: Pb, 6.48 mg/kg; Zn, 10.6 mg/kg; Cu, 10.2 mg/kg). Particle size of wind-blown dump dust decreases with distance. A hypothesis is considering that these would be more easily adsorbed and absorbed by tree bark and leaves. This suggests that above-ground tree uptake is more important than soil uptake for the selected elements.
Slag Pb isotopic ratios average at 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.15; for tree rings; both sites: 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.13; and in top soils, close to smelter: 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.12; and in remote location: 206Pb/207Pb =1.14; 208Pb/206Pb = 2.15. Isotopic ratios confirm the mine and smelter to be the main source of contamination.
Smelter production records show three major shifts in production amount; increase from the late 1950s to early 1970s and a subsequent decrease till the closure of the smelter in 1994 with a peak in production in the early 1980s. There seems to be a correlation between Pb production and Pb uptake and Pb and C isotopic ratio variations within a 5 to 10 years delay.
This study was supported by the Czech Science Foundation project (GAČR 19-18513S) and received institutional funding from the Center for Geosphere Dynamics (UNCE/SCI/006). Part of the equipment used for this study was purchased from the Operational Program Prague - Competitiveness (Project CZ.2.16/3.1.00/21516).
How to cite: Baieta, R., Mihaljevič, M., Ettler, V., and Vaněk, A.: Environmental impact assessment of a Pb, Zn smelter using soil, slag and tree ring elemental and isotopic geochemistry in Kabwe, Zambia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8211, https://doi.org/10.5194/egusphere-egu2020-8211, 2020.
Due to its historical Pb, Zn, Ag, Cd and Cu mines and associated smelter, Kabwe in Zambia is known to be one of the most polluted cities in the world.
Contamination by Pb, Zn and Cu was assessed in four soil profiles around the smelter and remote locations, using Q-ICPMS for trace metal elemental and Pb isotopic measurements. A sequential extraction procedure (SEP) approach was used to obtain a detailed understanding of the vertical behaviour of the contaminants and its availability for plant uptake. Slags Pb isotopic ratios were also determined. Furthermore, tree rings of local pine trees (Pinus Montezumae) were collected and analysed for the same contaminants and Pb isotopes coupled with C isotopes. Results were compared to the smelter production historical records to assess the viability of these trees as environmental archive.
Results show that contamination is exclusive to the top layers of soil and is greater in soils closer to the smelter, which are highly contaminated (max: 16000 mg/kg Pb; 140000 mg/kg Zn; 600 mg/kg Cu). Remote soils have much lower topsoil concentrations (min: 61 mg/kg Pb; 351 mg/kg Zn; 21 mg/kg Cu). Interestingly, the greatest contaminant concentrations were found in the tree furthest from the source of pollution (max.: Pb, 6.48 mg/kg; Zn, 10.6 mg/kg; Cu, 10.2 mg/kg). Particle size of wind-blown dump dust decreases with distance. A hypothesis is considering that these would be more easily adsorbed and absorbed by tree bark and leaves. This suggests that above-ground tree uptake is more important than soil uptake for the selected elements.
Slag Pb isotopic ratios average at 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.15; for tree rings; both sites: 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.13; and in top soils, close to smelter: 206Pb/207Pb = 1.15; 208Pb/206Pb = 2.12; and in remote location: 206Pb/207Pb =1.14; 208Pb/206Pb = 2.15. Isotopic ratios confirm the mine and smelter to be the main source of contamination.
Smelter production records show three major shifts in production amount; increase from the late 1950s to early 1970s and a subsequent decrease till the closure of the smelter in 1994 with a peak in production in the early 1980s. There seems to be a correlation between Pb production and Pb uptake and Pb and C isotopic ratio variations within a 5 to 10 years delay.
This study was supported by the Czech Science Foundation project (GAČR 19-18513S) and received institutional funding from the Center for Geosphere Dynamics (UNCE/SCI/006). Part of the equipment used for this study was purchased from the Operational Program Prague - Competitiveness (Project CZ.2.16/3.1.00/21516).
How to cite: Baieta, R., Mihaljevič, M., Ettler, V., and Vaněk, A.: Environmental impact assessment of a Pb, Zn smelter using soil, slag and tree ring elemental and isotopic geochemistry in Kabwe, Zambia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8211, https://doi.org/10.5194/egusphere-egu2020-8211, 2020.
EGU2020-4864 | Displays | BG2.8
Applying the denitrification method to 15N and 18O analysis of nitrate in natural groundwater samplesPatricia Stock, Susanne Roder, and Diana Burghardt
This study aims to develop a simplified denitrification method for the δ15N and δ18O analysis of nitrate (NO3–) in natural groundwater samples following Zhu et al. (Sci Total Environ. 2018; 633: 1370–1378) and Sigman et al. (Anal Chem. 2001; 73: 4145–4153). With the help of Pseudomonas aureofaciens bacteria, the simplified method induced denitrification of the sample and completely converted the NO3– into measurable N2O while avoiding sample fractionation. In contrast to the classic denitrification method (Sigman et al., 2001), which is based on anaerobic cultivation, the bacteria are cultivated aerobically in the simplified method (Zhu et al., 2014). In this study, aerobic cultivation was performed in a nitrate-free medium. Unlike the other two methods, aerobic cultivation was performed without the addition or removal of nitrate in the liquid medium. This eliminates the need for another preparation step, saving time. There was no contamination with external NO3–. After further optimising the influencing factors, the method yielded high accuracy and precision (standard deviations were generally ≤ 0.7‰ for δ18O and ≤ 0.3‰ for δ15N), confirming the suitability of this procedure. Finally, the potential applicability of the method was demonstrated by measuring the isotopic composition of NO3– in natural groundwater samples.
How to cite: Stock, P., Roder, S., and Burghardt, D.: Applying the denitrification method to 15N and 18O analysis of nitrate in natural groundwater samples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4864, https://doi.org/10.5194/egusphere-egu2020-4864, 2020.
This study aims to develop a simplified denitrification method for the δ15N and δ18O analysis of nitrate (NO3–) in natural groundwater samples following Zhu et al. (Sci Total Environ. 2018; 633: 1370–1378) and Sigman et al. (Anal Chem. 2001; 73: 4145–4153). With the help of Pseudomonas aureofaciens bacteria, the simplified method induced denitrification of the sample and completely converted the NO3– into measurable N2O while avoiding sample fractionation. In contrast to the classic denitrification method (Sigman et al., 2001), which is based on anaerobic cultivation, the bacteria are cultivated aerobically in the simplified method (Zhu et al., 2014). In this study, aerobic cultivation was performed in a nitrate-free medium. Unlike the other two methods, aerobic cultivation was performed without the addition or removal of nitrate in the liquid medium. This eliminates the need for another preparation step, saving time. There was no contamination with external NO3–. After further optimising the influencing factors, the method yielded high accuracy and precision (standard deviations were generally ≤ 0.7‰ for δ18O and ≤ 0.3‰ for δ15N), confirming the suitability of this procedure. Finally, the potential applicability of the method was demonstrated by measuring the isotopic composition of NO3– in natural groundwater samples.
How to cite: Stock, P., Roder, S., and Burghardt, D.: Applying the denitrification method to 15N and 18O analysis of nitrate in natural groundwater samples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4864, https://doi.org/10.5194/egusphere-egu2020-4864, 2020.
EGU2020-18220 | Displays | BG2.8
An application of stable isotope techniques for the investigation of geographic origin of water–investigation of the Mareza Spring near Podgorica (Montenegro)Milan Radulovic, Micha Horacek, Goran Sekulic, Ivana Ćipranić, Slobodan Živaljević, Christine Stumpp, and Stefan Wyhlidal
Mareza Spring is used for the water supply of Podgorica (capital of Montenegro) since over 70 years. It is located in the central part of Montenegro in the north-western part of Podgorica Valley. The recharge area and origin of groundwater of this karstic source are not known well. This is primarily due to the fact that drainage divides in karst terrains are the unknown and insufficiently examined segments. There are a few hypotheses about the origin of water: 1. from the Zeta River which flows few kilometres north-east from Mareza Spring, 2. from the Morača River which partly sinks at the exit of the canyon (around 10 km east from Mareza Spring), and 3. from the Prekornica Mountain recharge area that is located 10-20 km north-east from the spring (that is a karst plateau with average altitude around 1,000 m asl). Therefore, the isotopic techniques (altitude effect, comparison) could be useful for testing these assumptions. In the present study monitoring of stable isotopes (2H, 18O) in precipitation, surface water and groundwater of this area is carried out to determine the origin of water and adequate protection of Mareza Spring.
How to cite: Radulovic, M., Horacek, M., Sekulic, G., Ćipranić, I., Živaljević, S., Stumpp, C., and Wyhlidal, S.: An application of stable isotope techniques for the investigation of geographic origin of water–investigation of the Mareza Spring near Podgorica (Montenegro), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18220, https://doi.org/10.5194/egusphere-egu2020-18220, 2020.
Mareza Spring is used for the water supply of Podgorica (capital of Montenegro) since over 70 years. It is located in the central part of Montenegro in the north-western part of Podgorica Valley. The recharge area and origin of groundwater of this karstic source are not known well. This is primarily due to the fact that drainage divides in karst terrains are the unknown and insufficiently examined segments. There are a few hypotheses about the origin of water: 1. from the Zeta River which flows few kilometres north-east from Mareza Spring, 2. from the Morača River which partly sinks at the exit of the canyon (around 10 km east from Mareza Spring), and 3. from the Prekornica Mountain recharge area that is located 10-20 km north-east from the spring (that is a karst plateau with average altitude around 1,000 m asl). Therefore, the isotopic techniques (altitude effect, comparison) could be useful for testing these assumptions. In the present study monitoring of stable isotopes (2H, 18O) in precipitation, surface water and groundwater of this area is carried out to determine the origin of water and adequate protection of Mareza Spring.
How to cite: Radulovic, M., Horacek, M., Sekulic, G., Ćipranić, I., Živaljević, S., Stumpp, C., and Wyhlidal, S.: An application of stable isotope techniques for the investigation of geographic origin of water–investigation of the Mareza Spring near Podgorica (Montenegro), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18220, https://doi.org/10.5194/egusphere-egu2020-18220, 2020.
EGU2020-15863 | Displays | BG2.8 | Highlight
Nutrient regeneration and benthic fluxes in the Coastal Baltic and North SeaKirstin Dähnke, Andreas Neumann, and Tina Sanders
Sediments in the coastal ocean can play an important role in nutrient regeneration and in recharging the water column with dissolved inorganic nutrients. This function, however, depends on various variables, such as physical characteristics, but also on biological traits like fauna composition and activity. To unravel and quantify these effects, we investigated nutrient fluxes and nitrate stable isotope composition in water samples along a North Sea – Skagerrak – Baltic Sea gradient during the Maria S. Merian cruise MSM 50 in January 2016.
Especially in the North Sea and the Skagerrak region, d15N values of nitrate were unexpectedly high, suggesting that underlying sediments with relatively enriched isotope signatures were a source of nitrate. This nitrification signal, however, resembled an autumn situation rather than the expected winter values. Parallel sediment incubations confirm that the benthic rates of oxygen consumption and nutrient turnover were indeed very similar to respective rates in autumn and that the sediment was a source of recycled nitrate. From the North Sea towards the Baltic Sea, we found, in accordance with previous studies, a depletion in nitrate stable isotope values. This is indicative of different nitrate sources in the respective basins: in the North Sea region, N of anthropogenic origin leads to high N values in surface sediments and in newly generated nitrate. Due to a higher share of nitrogen fixation, the nitrogen stable isotope signal of surface sediments in the Baltic Sea was depleted, which in turn was mirrored in lower nitrate isotope values in the water column above the sediment.
Overall, the data highlight the importance of nitrate regeneration. Parallel flux measurements reveal that faunal activity shifts the nutrient balance from sequestration to regeneration. Seasonal differences enable us to unravel seasonal effects of fauna and microbiota on nutrient budgets.
How to cite: Dähnke, K., Neumann, A., and Sanders, T.: Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15863, https://doi.org/10.5194/egusphere-egu2020-15863, 2020.
Sediments in the coastal ocean can play an important role in nutrient regeneration and in recharging the water column with dissolved inorganic nutrients. This function, however, depends on various variables, such as physical characteristics, but also on biological traits like fauna composition and activity. To unravel and quantify these effects, we investigated nutrient fluxes and nitrate stable isotope composition in water samples along a North Sea – Skagerrak – Baltic Sea gradient during the Maria S. Merian cruise MSM 50 in January 2016.
Especially in the North Sea and the Skagerrak region, d15N values of nitrate were unexpectedly high, suggesting that underlying sediments with relatively enriched isotope signatures were a source of nitrate. This nitrification signal, however, resembled an autumn situation rather than the expected winter values. Parallel sediment incubations confirm that the benthic rates of oxygen consumption and nutrient turnover were indeed very similar to respective rates in autumn and that the sediment was a source of recycled nitrate. From the North Sea towards the Baltic Sea, we found, in accordance with previous studies, a depletion in nitrate stable isotope values. This is indicative of different nitrate sources in the respective basins: in the North Sea region, N of anthropogenic origin leads to high N values in surface sediments and in newly generated nitrate. Due to a higher share of nitrogen fixation, the nitrogen stable isotope signal of surface sediments in the Baltic Sea was depleted, which in turn was mirrored in lower nitrate isotope values in the water column above the sediment.
Overall, the data highlight the importance of nitrate regeneration. Parallel flux measurements reveal that faunal activity shifts the nutrient balance from sequestration to regeneration. Seasonal differences enable us to unravel seasonal effects of fauna and microbiota on nutrient budgets.
How to cite: Dähnke, K., Neumann, A., and Sanders, T.: Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15863, https://doi.org/10.5194/egusphere-egu2020-15863, 2020.
EGU2020-8574 | Displays | BG2.8
Environmental and climate dynamics in northeastern Siberia according to diatom oxygen isotopesSvetlana Kostrova, Hanno Meyer, Luidmila Pestryakova, Boris Biskaborn, Francisco Fernandoy, and Marlene Baumer
The sedimentary sequence from Lake Emanda (65°17′N; 135°45′E; 675 m a.s.l), one large freshwater body (33.1 km2) in the continuous permafrost of the Verkhoyansk Mountains, has been investigated within the German-Russian ‘Paleolimnological Transect’ (PLOT) project. It provided important insight into the environmental and climate dynamics in northeastern Siberia.
Well preserved diatoms occur only in the upper 125-cm interval of a 6.1-m sediment core (Co1412) covering the last ca. 13.4 cal. ka BP, and are mostly dominated by Cyclotella iris (up to 84%). The diatom succession is enriched by fragilarioid assemblages in the interval from ca. 11.0 to 13.0 cal. ka BP, while Aulacoseira ambigua is more frequent between 8.5 and 6.5 cal. ka BP. Diatoms were purified to > 98% SiO2 and < 0.8% Al2O3 suitable for oxygen isotope (δ18Odiatom) analysis. The δ18Odiatom values were corrected for contamination and range between +22.5‰ and +27.3‰. Maximum δ18Odiatom values (+26.7 to +27.3‰) are registered between 9.0 and 9.9 cal. ka BP and probably reflect a thermal maximum and/or very dry conditions in Early Holocene. The absolute minimum (+22.5‰) in the δ18Odiatom record is marked at 0.4 cal. ka BP and likely corresponds to the Little Ice Age. In general, a gradual depletion of 4.8‰ in δ18Odiatom is observed within the last 10 cal. ka, in line with an overall Holocene temperature decrease.
Our conclusions are based on a comprehensive investigation of both the modern hydrological system and diatom species analyses. The most recent δ18Odiatom = +24.2‰ combined with the present day lake water isotope composition (mean δ18Olake = −16.5‰), indicates a reasonable water−silica isotope fractionation (α = 1.0414) yielding a water temperature of 12 °C. The data demonstrate that the δ18Odiatom variability is associated with changes in the lake water isotopic composition rather than with lake temperature. The present water isotopic composition of Lake Emanda displays substantial evaporation effects, likely further influenced by air temperature and atmospheric circulation.
How to cite: Kostrova, S., Meyer, H., Pestryakova, L., Biskaborn, B., Fernandoy, F., and Baumer, M.: Environmental and climate dynamics in northeastern Siberia according to diatom oxygen isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8574, https://doi.org/10.5194/egusphere-egu2020-8574, 2020.
The sedimentary sequence from Lake Emanda (65°17′N; 135°45′E; 675 m a.s.l), one large freshwater body (33.1 km2) in the continuous permafrost of the Verkhoyansk Mountains, has been investigated within the German-Russian ‘Paleolimnological Transect’ (PLOT) project. It provided important insight into the environmental and climate dynamics in northeastern Siberia.
Well preserved diatoms occur only in the upper 125-cm interval of a 6.1-m sediment core (Co1412) covering the last ca. 13.4 cal. ka BP, and are mostly dominated by Cyclotella iris (up to 84%). The diatom succession is enriched by fragilarioid assemblages in the interval from ca. 11.0 to 13.0 cal. ka BP, while Aulacoseira ambigua is more frequent between 8.5 and 6.5 cal. ka BP. Diatoms were purified to > 98% SiO2 and < 0.8% Al2O3 suitable for oxygen isotope (δ18Odiatom) analysis. The δ18Odiatom values were corrected for contamination and range between +22.5‰ and +27.3‰. Maximum δ18Odiatom values (+26.7 to +27.3‰) are registered between 9.0 and 9.9 cal. ka BP and probably reflect a thermal maximum and/or very dry conditions in Early Holocene. The absolute minimum (+22.5‰) in the δ18Odiatom record is marked at 0.4 cal. ka BP and likely corresponds to the Little Ice Age. In general, a gradual depletion of 4.8‰ in δ18Odiatom is observed within the last 10 cal. ka, in line with an overall Holocene temperature decrease.
Our conclusions are based on a comprehensive investigation of both the modern hydrological system and diatom species analyses. The most recent δ18Odiatom = +24.2‰ combined with the present day lake water isotope composition (mean δ18Olake = −16.5‰), indicates a reasonable water−silica isotope fractionation (α = 1.0414) yielding a water temperature of 12 °C. The data demonstrate that the δ18Odiatom variability is associated with changes in the lake water isotopic composition rather than with lake temperature. The present water isotopic composition of Lake Emanda displays substantial evaporation effects, likely further influenced by air temperature and atmospheric circulation.
How to cite: Kostrova, S., Meyer, H., Pestryakova, L., Biskaborn, B., Fernandoy, F., and Baumer, M.: Environmental and climate dynamics in northeastern Siberia according to diatom oxygen isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8574, https://doi.org/10.5194/egusphere-egu2020-8574, 2020.
EGU2020-7563 | Displays | BG2.8
Dynamics in the isotope biogeochemistry of a SGD-impacted coastal aquifer after a storm eventAnna-Kathrina Jenner, Julia Westphal, Bo Liu, Iris Schmiedinger, and Michael Böttcher
The interface of land and sea is of particular interest regarding the exchange of elements, like nutrients, carbon and sulfur. Submarine groundwater discharge (SGD) is an important pathway for element exchange from the terrestrial to the marine environment and vice versa. The discharging water can not only consist of fresh ground water but also of a considerable proportion of recirculated often brackish seawater.
Here, we followed the water and element exchange and associated biogeochemical transformation processes in front of a rewetted peatland at the southern Baltic Sea. Vertical pore water profiles were retrieved via up to 5 m long multi-port pore water samplers on a seasonal base. An extrodinary storm event in early 2019 not only led to the partial flooding of an associated coastal peatland with brackish water but also pushed Baltic Sea water into the coastal aquifers allowing to investigate the time-dependent return to previous subterrestrial ‚normal‘ conditions via SGD-induced freshening. Weekly sampling was carried out to follow the changes after the storm event in the sediments in front of a coastal peatland. Here we present new results of the pre- and after storm event pore water profiles. A focus was set on the investigation of tracers for concentration gradients of major and redox-sensitive trace elements, nutrients and the stable isotope composition (H, C, S, O) of water, dissolved inorganic carbon (DIC) and sulfate to understand the mixing processes and superimposing biogeochemical transformation reactions.
We found evidence for a strong control of the bottom-pore water exchange by lithology and a high activity of dissimilatory sulfate-reducing microorganisms in the coastal sediments leading to the accumulation of substantial DIC superimposed by corrosion of sedimentary carbonates.
Acknowledgement: This study is supported by the DFG research training group Baltic TRANSCOAST and the Leibniz IOW.
How to cite: Jenner, A.-K., Westphal, J., Liu, B., Schmiedinger, I., and Böttcher, M.: Dynamics in the isotope biogeochemistry of a SGD-impacted coastal aquifer after a storm event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7563, https://doi.org/10.5194/egusphere-egu2020-7563, 2020.
The interface of land and sea is of particular interest regarding the exchange of elements, like nutrients, carbon and sulfur. Submarine groundwater discharge (SGD) is an important pathway for element exchange from the terrestrial to the marine environment and vice versa. The discharging water can not only consist of fresh ground water but also of a considerable proportion of recirculated often brackish seawater.
Here, we followed the water and element exchange and associated biogeochemical transformation processes in front of a rewetted peatland at the southern Baltic Sea. Vertical pore water profiles were retrieved via up to 5 m long multi-port pore water samplers on a seasonal base. An extrodinary storm event in early 2019 not only led to the partial flooding of an associated coastal peatland with brackish water but also pushed Baltic Sea water into the coastal aquifers allowing to investigate the time-dependent return to previous subterrestrial ‚normal‘ conditions via SGD-induced freshening. Weekly sampling was carried out to follow the changes after the storm event in the sediments in front of a coastal peatland. Here we present new results of the pre- and after storm event pore water profiles. A focus was set on the investigation of tracers for concentration gradients of major and redox-sensitive trace elements, nutrients and the stable isotope composition (H, C, S, O) of water, dissolved inorganic carbon (DIC) and sulfate to understand the mixing processes and superimposing biogeochemical transformation reactions.
We found evidence for a strong control of the bottom-pore water exchange by lithology and a high activity of dissimilatory sulfate-reducing microorganisms in the coastal sediments leading to the accumulation of substantial DIC superimposed by corrosion of sedimentary carbonates.
Acknowledgement: This study is supported by the DFG research training group Baltic TRANSCOAST and the Leibniz IOW.
How to cite: Jenner, A.-K., Westphal, J., Liu, B., Schmiedinger, I., and Böttcher, M.: Dynamics in the isotope biogeochemistry of a SGD-impacted coastal aquifer after a storm event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7563, https://doi.org/10.5194/egusphere-egu2020-7563, 2020.
EGU2020-5931 | Displays | BG2.8
Detection of Crude Oil Contamination in St-Lawrence Estuary Sediments Using n-Alkanes and PAHs Diagnostic and Isotopic RatiosLéticia Dupont, Anic Imfeld, Alexandre Ouellet, and Yves Gélinas
Excessive consumption of petroleum and crude oil for energy purposes has resulted in the contamination of many natural systems and waterways. However, determining the presence and level of contamination has been difficult due to the presence of naturally occurring hydrocarbons and to the complexity of the molecular fingerprint of petroleum and crude oils. Naturally occurring straight-chain n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in sediments are both commonly used to determine organic matter sources through diagnostic and isotope ratios, and these ratios are affected by the presence of petroleum and crude oil. As such, they offer a potential avenue for determining whether crude oil contaminants are present in natural systems. The purpose of this project was to determine whether diagnostic ratios of n-alkanes and of PAHs as well as compound-specific isotope ratios of n-alkanes (∂2Halk and ∂13Calk) could be used to detect crude oil or petroleum contamination, and at what level of contamination the difference becomes significant. This was accomplished by separating the aliphatic and aromatic fractions of the natural and crude oil hydrocarbons by column chromatography, spiking natural sediment hydrocarbons with crude oil hydrocarbons at different levels, and analyzing the samples by GC-MS (Gas Chromatography-Mass Spectrometry) and by GC-IRMS (Isotope-Ratio Mass Spectrometry). The isotopic ratios and the hydrocarbon concentrations were determined by external standard calibration, and the diagnostic ratios were then calculated from the concentrations. Both ratios were then evaluated for their efficiency in detecting the presence of crude oil contamination.
How to cite: Dupont, L., Imfeld, A., Ouellet, A., and Gélinas, Y.: Detection of Crude Oil Contamination in St-Lawrence Estuary Sediments Using n-Alkanes and PAHs Diagnostic and Isotopic Ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5931, https://doi.org/10.5194/egusphere-egu2020-5931, 2020.
Excessive consumption of petroleum and crude oil for energy purposes has resulted in the contamination of many natural systems and waterways. However, determining the presence and level of contamination has been difficult due to the presence of naturally occurring hydrocarbons and to the complexity of the molecular fingerprint of petroleum and crude oils. Naturally occurring straight-chain n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in sediments are both commonly used to determine organic matter sources through diagnostic and isotope ratios, and these ratios are affected by the presence of petroleum and crude oil. As such, they offer a potential avenue for determining whether crude oil contaminants are present in natural systems. The purpose of this project was to determine whether diagnostic ratios of n-alkanes and of PAHs as well as compound-specific isotope ratios of n-alkanes (∂2Halk and ∂13Calk) could be used to detect crude oil or petroleum contamination, and at what level of contamination the difference becomes significant. This was accomplished by separating the aliphatic and aromatic fractions of the natural and crude oil hydrocarbons by column chromatography, spiking natural sediment hydrocarbons with crude oil hydrocarbons at different levels, and analyzing the samples by GC-MS (Gas Chromatography-Mass Spectrometry) and by GC-IRMS (Isotope-Ratio Mass Spectrometry). The isotopic ratios and the hydrocarbon concentrations were determined by external standard calibration, and the diagnostic ratios were then calculated from the concentrations. Both ratios were then evaluated for their efficiency in detecting the presence of crude oil contamination.
How to cite: Dupont, L., Imfeld, A., Ouellet, A., and Gélinas, Y.: Detection of Crude Oil Contamination in St-Lawrence Estuary Sediments Using n-Alkanes and PAHs Diagnostic and Isotopic Ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5931, https://doi.org/10.5194/egusphere-egu2020-5931, 2020.
EGU2020-13867 | Displays | BG2.8
Stable isotopes evidencing microbial activity, mineral authigenesis and fluid mixing in deep interstitial fluids off South-Western Australia (IODP Leg 369)Michael Ernst Böttcher, Hans-Jürgen Brumsack, Iris Schmiedinger, and Tracy Quan
Interstitial waters extracted from long sediment cores retrieved during expedition 369 (Sites U1512-U1516) of the International Ocean Drilling Program (IODP) were analysed for the stable water isotopic (O and H isotopes) composition to constrain hydrographic changes in this region prior to modern time and possible changes due to water-rock interaction and fluid mixing. Dissolved sulfate (S and O isotopes), and sulfide (S isotopes) were analyzed to characterize, in concert with concentration measurements, diagenetic microbial and water-rock interaction processes in the sulfur cycles. The measurements demonstrate substantial downcore variations in the water oxygen isotope composition. Net microbial sulfate reduction with depth was observed at all sites, but sulfate was only found to be consumed completely, within the investigated core lengths at Site U1512, that is located off southern Australia. Whereas associated sulfur isotope fractionation is characteristic for medium range fractionation factors, the oxygen isotope composition provides evidence for a much more complex story of sulfur diagenesis at the investigated sites: At Site U1516, for instance, the oxygen isotope composition of dissolved sulfate is equilibrated with pore water, although sulfate concentrations remain above 20 mM. This indicates an intense re-oxidative sulfur cycle. At Site U1513, on the other hand, the oxygen isotope composition remains out of isotope exchange equilibrium although sulfate concentrations fall below 20 mM, indicating that the net decrease in dissolved sulfate is dominantly caused by authigenic gypsum precipitation at depth, which is further confirmed by the dissolved Ca concentration.
How to cite: Böttcher, M. E., Brumsack, H.-J., Schmiedinger, I., and Quan, T.: Stable isotopes evidencing microbial activity, mineral authigenesis and fluid mixing in deep interstitial fluids off South-Western Australia (IODP Leg 369), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13867, https://doi.org/10.5194/egusphere-egu2020-13867, 2020.
Interstitial waters extracted from long sediment cores retrieved during expedition 369 (Sites U1512-U1516) of the International Ocean Drilling Program (IODP) were analysed for the stable water isotopic (O and H isotopes) composition to constrain hydrographic changes in this region prior to modern time and possible changes due to water-rock interaction and fluid mixing. Dissolved sulfate (S and O isotopes), and sulfide (S isotopes) were analyzed to characterize, in concert with concentration measurements, diagenetic microbial and water-rock interaction processes in the sulfur cycles. The measurements demonstrate substantial downcore variations in the water oxygen isotope composition. Net microbial sulfate reduction with depth was observed at all sites, but sulfate was only found to be consumed completely, within the investigated core lengths at Site U1512, that is located off southern Australia. Whereas associated sulfur isotope fractionation is characteristic for medium range fractionation factors, the oxygen isotope composition provides evidence for a much more complex story of sulfur diagenesis at the investigated sites: At Site U1516, for instance, the oxygen isotope composition of dissolved sulfate is equilibrated with pore water, although sulfate concentrations remain above 20 mM. This indicates an intense re-oxidative sulfur cycle. At Site U1513, on the other hand, the oxygen isotope composition remains out of isotope exchange equilibrium although sulfate concentrations fall below 20 mM, indicating that the net decrease in dissolved sulfate is dominantly caused by authigenic gypsum precipitation at depth, which is further confirmed by the dissolved Ca concentration.
How to cite: Böttcher, M. E., Brumsack, H.-J., Schmiedinger, I., and Quan, T.: Stable isotopes evidencing microbial activity, mineral authigenesis and fluid mixing in deep interstitial fluids off South-Western Australia (IODP Leg 369), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13867, https://doi.org/10.5194/egusphere-egu2020-13867, 2020.
EGU2020-9160 | Displays | BG2.8
Tracing Fe reaction pathways in tephra-rich deep subseafloor sediments from the Nankai Trough offshore Japan by using sequential extractions and stable Fe isotopesMale Köster, Hayley R. Manners, Verena B. Heuer, Yuki Morono, Fumio Inagaki, Sabine Kasten, and Susann Henkel
The deep subseafloor biosphere represents one of the Earth’s largest, but also least understood ecosystems with diverse species and mostly uncharacterized microbial communities. International Ocean Discovery Program (IODP) Expedition 370 (Temperature Limit of the Deep Biosphere off Muroto) established Site C0023 down to 1180 mbsf in the Nankai Trough off Japan to explore the upper temperature limit of microbial life in the deep sedimentary biosphere [1]. Site C0023 is characterized by a complex lithostratigraphic and depositional history with strongly changing sedimentation rates. Volcanic ash layers are ubiquitous in all lithological units. However, the highest abundance of ash layers could be observed between 400 and 700 mbsf. Previous studies have shown that volcanic ashes represent hotspots for microbial life [2] and are commonly characterized by high Fe(III) and Mn(IV) contents [3]. Onboard measurements show a release of dissolved Fe in the depth interval associated with the highest abundance of ash layers [1]. Therefore, we hypothesized that the release is related to microbial Fe reduction fueled by the mineralogy of the volcanic ash. In order to identify the source and reaction pathway of the liberated Fe, we applied sequential extractions of differently reactive Fe oxide pools on mud rock and ash layer samples as well as stable iron isotope (δ56Fe) analyses on pore-water and solid-phase samples. Microbial Fe reduction leads to Fe isotope fractionation with an enrichment of light isotopes in the released Fe and a respective enrichment of heavy isotopes in the residual ferric substrate. Therefore, the δ56Fe signals of different reactive Fe pools and the pore water are used to identify the pools actually involved in microbial respiration processes. Our results show that the total Fe content in mud rock of Site C0023 is relatively constant at ~4.2 wt%. Reactive Fe oxides represent 25% of the total Fe. The bulk Fe content in the ash layers varies between 1.4 and 6.8 wt%. Surprisingly, most ash samples contain less total Fe (3.35 wt% on average) compared to the surrounding mud rock. Similarly, the contents of the reactive Fe oxides are significantly lower. This indicates that either (1) ash layers do not represent the energy substrate for microbial Fe reduction, or (2) reactive Fe in ash samples has already been used up by microbes. The bulk Fe content in recent volcanic material from an active volcano on the Japanese island arc is ~4.4 wt% [4]. The higher Fe content in fresh volcanic material compared to ash samples at Site C0023 might suggest that reactive Fe in ash layers is already reduced. Alternatively, the dissolved Fe release might be related to microbial reduction of structural Fe(III) in smectite promoting the smectite-to-illite transition, which has previously been proposed for Site C0023 [5].
References:
[1] Heuer, V.B. et al., 2017. In Proc. IODP Volume 370.
[2] Inagaki, F. et al., 2003. AEM 69: 7224-7235.
[3] Torres, M.E. et al., 2015. Geobiology 13: 562-580.
[4] Vogel, A. et al., 2017. J. Geophys. Res. Atmos. 122: 9485-9514.
[5] Kim, J. et al., 2019. Geology 47: 535-539.
How to cite: Köster, M., Manners, H. R., Heuer, V. B., Morono, Y., Inagaki, F., Kasten, S., and Henkel, S.: Tracing Fe reaction pathways in tephra-rich deep subseafloor sediments from the Nankai Trough offshore Japan by using sequential extractions and stable Fe isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9160, https://doi.org/10.5194/egusphere-egu2020-9160, 2020.
The deep subseafloor biosphere represents one of the Earth’s largest, but also least understood ecosystems with diverse species and mostly uncharacterized microbial communities. International Ocean Discovery Program (IODP) Expedition 370 (Temperature Limit of the Deep Biosphere off Muroto) established Site C0023 down to 1180 mbsf in the Nankai Trough off Japan to explore the upper temperature limit of microbial life in the deep sedimentary biosphere [1]. Site C0023 is characterized by a complex lithostratigraphic and depositional history with strongly changing sedimentation rates. Volcanic ash layers are ubiquitous in all lithological units. However, the highest abundance of ash layers could be observed between 400 and 700 mbsf. Previous studies have shown that volcanic ashes represent hotspots for microbial life [2] and are commonly characterized by high Fe(III) and Mn(IV) contents [3]. Onboard measurements show a release of dissolved Fe in the depth interval associated with the highest abundance of ash layers [1]. Therefore, we hypothesized that the release is related to microbial Fe reduction fueled by the mineralogy of the volcanic ash. In order to identify the source and reaction pathway of the liberated Fe, we applied sequential extractions of differently reactive Fe oxide pools on mud rock and ash layer samples as well as stable iron isotope (δ56Fe) analyses on pore-water and solid-phase samples. Microbial Fe reduction leads to Fe isotope fractionation with an enrichment of light isotopes in the released Fe and a respective enrichment of heavy isotopes in the residual ferric substrate. Therefore, the δ56Fe signals of different reactive Fe pools and the pore water are used to identify the pools actually involved in microbial respiration processes. Our results show that the total Fe content in mud rock of Site C0023 is relatively constant at ~4.2 wt%. Reactive Fe oxides represent 25% of the total Fe. The bulk Fe content in the ash layers varies between 1.4 and 6.8 wt%. Surprisingly, most ash samples contain less total Fe (3.35 wt% on average) compared to the surrounding mud rock. Similarly, the contents of the reactive Fe oxides are significantly lower. This indicates that either (1) ash layers do not represent the energy substrate for microbial Fe reduction, or (2) reactive Fe in ash samples has already been used up by microbes. The bulk Fe content in recent volcanic material from an active volcano on the Japanese island arc is ~4.4 wt% [4]. The higher Fe content in fresh volcanic material compared to ash samples at Site C0023 might suggest that reactive Fe in ash layers is already reduced. Alternatively, the dissolved Fe release might be related to microbial reduction of structural Fe(III) in smectite promoting the smectite-to-illite transition, which has previously been proposed for Site C0023 [5].
References:
[1] Heuer, V.B. et al., 2017. In Proc. IODP Volume 370.
[2] Inagaki, F. et al., 2003. AEM 69: 7224-7235.
[3] Torres, M.E. et al., 2015. Geobiology 13: 562-580.
[4] Vogel, A. et al., 2017. J. Geophys. Res. Atmos. 122: 9485-9514.
[5] Kim, J. et al., 2019. Geology 47: 535-539.
How to cite: Köster, M., Manners, H. R., Heuer, V. B., Morono, Y., Inagaki, F., Kasten, S., and Henkel, S.: Tracing Fe reaction pathways in tephra-rich deep subseafloor sediments from the Nankai Trough offshore Japan by using sequential extractions and stable Fe isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9160, https://doi.org/10.5194/egusphere-egu2020-9160, 2020.
BG2.22 – Mercury cycling in the environment – sources, processes, impacts, and archives from local to global scales
EGU2020-19867 | Displays | BG2.22
Determination of gaseous elemental mercury air-sea exchange in the Baltic SeaStefan Osterwalder, Michelle Nerentorp, Wei Zhu, Erik Nilsson, Mats Nilsson, Anna Rutgersson, Anne Soerensen, Jonas Sommar, Marcus Wallin, Ingvar Wängberg, and Kevin Bishop
Ocean waters store approximately 400 Gg of mercury (Hg) and exchange it with the atmosphere at a high rate. Air-sea exchange of gaseous elemental mercury (Hg0) is a key process in global Hg cycling because evasion lowers the reservoir of Hg(II) available for methylation and subsequent bioaccumulation in marine fish and prolongs the atmospheric lifetime and subsequently global cycling of Hg. However, global estimates on the air-sea flux are not well constrained (1.9 to 4.2 Gg a-1) mainly because high-resolution measurements of Hg0 in seawater are largely lacking and parameterization of the Hg0 transfer velocity introduces uncertainties in Hg0 flux modelling. We present estimates of the net Hg0 flux for the Baltic Sea derived from land-based marine measurements of Hg0 in air and seawater as well as micrometeorological techniques. We found that coastal waters at the ICOS field station Östergarnsholm, located east of Gotland, Sweden, were typically supersaturated with seawater Hg0 (mean ± SD = 13.5 ± 3.5 ng m-3; ca. 10 % of total Hg) compared to ambient Hg0 (1.3 ± 0.2 ng m-3). The Hg0 flux calculated using gas-transfer wind speed relationships ranged from 0.1 to 1.3 ng m-2 h-1 over the course of the campaign (May 10 – June 20, 2017). The modeled Hg0 flux showed a distinct diel pattern with an average daytime flux of 0.6 ng m-2 h-1 and nighttime flux of 0.4 ng m-2 h-1, indicating that temperature and light induced production of seawater Hg0 was of significance in shallow waters. Preliminary calculations of the average coastal Hg0 flux simultaneously measured using direct, non-intrusive gradient-based, aerodynamic gradient and relaxed eddy accumulation techniques were 0.5 ± 1, 0.6 ± 3.8 and 0.6 ± 37 ng m-2 h-1, respectively. Although, these flux estimates were in good agreement, there were indications in the temporal patters of the observations, which suggest that there is a need to reconsider the modeled flux with the support of more direct flux measurements. Direct flux measurements revealed not only Hg0 evasion but also periods of Hg0 dry deposition. In addition, direct measurements indicated a stronger wind speed dependence of the Hg0 transfer velocity compared to CO2 which appears to coincide with whitecap formation in the open sea flux footprint (wind speed > 5 m s-1). Hence, we anticipate this study as a starting point for more land-based, marine, continuous measurements of seawater Hg0 concentration in combination with micrometeorological fluxes in order to improve Hg0 flux estimates in regional and global scale models. In this context, directly measured Hg0 fluxes will be pivotal to improve transfer velocity estimates of Hg0 especially during periods of high wind speed.
How to cite: Osterwalder, S., Nerentorp, M., Zhu, W., Nilsson, E., Nilsson, M., Rutgersson, A., Soerensen, A., Sommar, J., Wallin, M., Wängberg, I., and Bishop, K.: Determination of gaseous elemental mercury air-sea exchange in the Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19867, https://doi.org/10.5194/egusphere-egu2020-19867, 2020.
Ocean waters store approximately 400 Gg of mercury (Hg) and exchange it with the atmosphere at a high rate. Air-sea exchange of gaseous elemental mercury (Hg0) is a key process in global Hg cycling because evasion lowers the reservoir of Hg(II) available for methylation and subsequent bioaccumulation in marine fish and prolongs the atmospheric lifetime and subsequently global cycling of Hg. However, global estimates on the air-sea flux are not well constrained (1.9 to 4.2 Gg a-1) mainly because high-resolution measurements of Hg0 in seawater are largely lacking and parameterization of the Hg0 transfer velocity introduces uncertainties in Hg0 flux modelling. We present estimates of the net Hg0 flux for the Baltic Sea derived from land-based marine measurements of Hg0 in air and seawater as well as micrometeorological techniques. We found that coastal waters at the ICOS field station Östergarnsholm, located east of Gotland, Sweden, were typically supersaturated with seawater Hg0 (mean ± SD = 13.5 ± 3.5 ng m-3; ca. 10 % of total Hg) compared to ambient Hg0 (1.3 ± 0.2 ng m-3). The Hg0 flux calculated using gas-transfer wind speed relationships ranged from 0.1 to 1.3 ng m-2 h-1 over the course of the campaign (May 10 – June 20, 2017). The modeled Hg0 flux showed a distinct diel pattern with an average daytime flux of 0.6 ng m-2 h-1 and nighttime flux of 0.4 ng m-2 h-1, indicating that temperature and light induced production of seawater Hg0 was of significance in shallow waters. Preliminary calculations of the average coastal Hg0 flux simultaneously measured using direct, non-intrusive gradient-based, aerodynamic gradient and relaxed eddy accumulation techniques were 0.5 ± 1, 0.6 ± 3.8 and 0.6 ± 37 ng m-2 h-1, respectively. Although, these flux estimates were in good agreement, there were indications in the temporal patters of the observations, which suggest that there is a need to reconsider the modeled flux with the support of more direct flux measurements. Direct flux measurements revealed not only Hg0 evasion but also periods of Hg0 dry deposition. In addition, direct measurements indicated a stronger wind speed dependence of the Hg0 transfer velocity compared to CO2 which appears to coincide with whitecap formation in the open sea flux footprint (wind speed > 5 m s-1). Hence, we anticipate this study as a starting point for more land-based, marine, continuous measurements of seawater Hg0 concentration in combination with micrometeorological fluxes in order to improve Hg0 flux estimates in regional and global scale models. In this context, directly measured Hg0 fluxes will be pivotal to improve transfer velocity estimates of Hg0 especially during periods of high wind speed.
How to cite: Osterwalder, S., Nerentorp, M., Zhu, W., Nilsson, E., Nilsson, M., Rutgersson, A., Soerensen, A., Sommar, J., Wallin, M., Wängberg, I., and Bishop, K.: Determination of gaseous elemental mercury air-sea exchange in the Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19867, https://doi.org/10.5194/egusphere-egu2020-19867, 2020.
EGU2020-11905 | Displays | BG2.22
Assessing the atmosphere-surface exchange of gaseous elemental mercury using passive air samplersMeng Si, Michelle Feigis, Isabel Quant, Shreya Mistry, Melanie Snow, Knut Breivik, Melissa Lafreniere, Scott Lamoureux, Derek Muir, Alexandra Steffen, Geoff Stupple, Ying Duan Lei, Carl Mitchell, and Frank Wania
The specific properties of gaseous elemental mercury (GEM) allow it to undergo bidirectional exchange between the atmosphere and the Earth’s surface. Determining the direction and the magnitude of GEM’s atmosphere-surface flux is possible and has been accomplished using micrometeorological and chamber techniques, but (i) is complex and labor-intensive, and (ii) often only yields fluxes over relatively short time scales. A recently developed passive air sampler for GEM has the precision required for identifying and quantifying vertical concentration gradients above the Earth’s surface. The feasibility and performance of this approach is currently being tested in a number of field studies aimed at the: (i) measurement of GEM concentration gradients above both mercury-contaminated and background forest soils, (ii) quantification of vertical concentration gradients on a tower through a temperate deciduous forest canopy, and (iii) measurement of mercury concentration gradients over stable and thawing permafrost to determine the effect of permafrost degradation on GEM evasion. Contrasting with earlier flux studies, these investigations cover long time periods (up to 1.5 years) and have coarse temporal resolution (monthly to seasonally). Significant gradients of GEM air concentrations, both increasing and decreasing with height above ground, were observed, implying that at a minimum, the method is able to identify the flux direction of GEM. Under the right circumstances, this method can also be used to estimate the approximate magnitude of the GEM air-surface exchange flux. The measured gradients also reveal the impact of factors such as temperature, solar irradiance, and snow cover on air-surface exchange. The method holds promise for establishing the direction and size of exchange fluxes at long time scales of months to a year, especially in study areas where access, effort and cost are prohibitive to longer duration studies with existing approaches.
How to cite: Si, M., Feigis, M., Quant, I., Mistry, S., Snow, M., Breivik, K., Lafreniere, M., Lamoureux, S., Muir, D., Steffen, A., Stupple, G., Lei, Y. D., Mitchell, C., and Wania, F.: Assessing the atmosphere-surface exchange of gaseous elemental mercury using passive air samplers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11905, https://doi.org/10.5194/egusphere-egu2020-11905, 2020.
The specific properties of gaseous elemental mercury (GEM) allow it to undergo bidirectional exchange between the atmosphere and the Earth’s surface. Determining the direction and the magnitude of GEM’s atmosphere-surface flux is possible and has been accomplished using micrometeorological and chamber techniques, but (i) is complex and labor-intensive, and (ii) often only yields fluxes over relatively short time scales. A recently developed passive air sampler for GEM has the precision required for identifying and quantifying vertical concentration gradients above the Earth’s surface. The feasibility and performance of this approach is currently being tested in a number of field studies aimed at the: (i) measurement of GEM concentration gradients above both mercury-contaminated and background forest soils, (ii) quantification of vertical concentration gradients on a tower through a temperate deciduous forest canopy, and (iii) measurement of mercury concentration gradients over stable and thawing permafrost to determine the effect of permafrost degradation on GEM evasion. Contrasting with earlier flux studies, these investigations cover long time periods (up to 1.5 years) and have coarse temporal resolution (monthly to seasonally). Significant gradients of GEM air concentrations, both increasing and decreasing with height above ground, were observed, implying that at a minimum, the method is able to identify the flux direction of GEM. Under the right circumstances, this method can also be used to estimate the approximate magnitude of the GEM air-surface exchange flux. The measured gradients also reveal the impact of factors such as temperature, solar irradiance, and snow cover on air-surface exchange. The method holds promise for establishing the direction and size of exchange fluxes at long time scales of months to a year, especially in study areas where access, effort and cost are prohibitive to longer duration studies with existing approaches.
How to cite: Si, M., Feigis, M., Quant, I., Mistry, S., Snow, M., Breivik, K., Lafreniere, M., Lamoureux, S., Muir, D., Steffen, A., Stupple, G., Lei, Y. D., Mitchell, C., and Wania, F.: Assessing the atmosphere-surface exchange of gaseous elemental mercury using passive air samplers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11905, https://doi.org/10.5194/egusphere-egu2020-11905, 2020.
EGU2020-12156 | Displays | BG2.22
Long-term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018Xinrong Ren, Winston Luke, Paul Kelley, Mark Cohen, Mark Olson, Michael Archer, and Ariel Stein
Atmospheric mercury species (including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM)), trace pollutants (including O3, SO2, CO, NO, NOY and black carbon), and meteorological parameters have been continuously monitored since 2007 at an Atmospheric Mercury Network (AMNet) site located on the northern coast of the Gulf of Mexico at the Grand Bay National Estuarine Research Reserve (NERR) in Moss Point, Mississippi. For the data collected between 2007 and 2018, the average concentrations and standard deviations were 1.39 ± 0.22 ng m-3 for GEM, 5.1 ± 10.2 pg m-3 for GOM, 5.9 ± 13.0 pg m-3 for PBM, and 309 ± 407 ng m-2 wk-1 for mercury wet deposition, with interannual trends of -0.009 ng m-3 yr-1 for GEM, -0.36 pg m-3 yr-1 for GOM, 0.18 pg m-3 yr-1 for PBM, and 2.8 ng m-2 wk-1 yr-1 for mercury wet deposition. The trends are statistically significant for GEM and GOM, but not statistically significant for PBM and mercury wet deposition. Diurnal variation of GEM shows lower concentrations in the early morning due to GEM depletion likely due to plant uptake in high humidity events and slight elevation during the day likely due to downward mixing of higher concentrations of GEM in the air aloft to the surface. Seasonal variation of GEM shows higher levels in winter and spring and lower levels in summer and fall. Diurnal variations of both GOM and PBM show broad peaks in the afternoon likely due to photochemical oxidation of GEM. Seasonally, PBM measurements exhibit higher levels in winter and early spring and lower levels in summer, while GOM measurements show high levels in late spring/early summer and late fall and low levels in winter. The seasonal variation of mercury wet deposition shows higher values in summer and lower values in winter due to higher precipitation amounts in summer than in winter. As expected, anticorrelation between Hg wet deposition and the sum of GOM and PBM but positive correlation between Hg wet deposition and rainfall were observed. Correlation among GOM, ozone, and SO2 suggests two possible GOM sources: direct emissions and photochemical oxidation of GEM with the possible influence of boundary dynamics and seasonal variability. This study indicates that the monitoring site, which is located in a coastal environment of the Gulf of Mexico, might experience impacts from mercury sources that are both local and regional in nature.
How to cite: Ren, X., Luke, W., Kelley, P., Cohen, M., Olson, M., Archer, M., and Stein, A.: Long-term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12156, https://doi.org/10.5194/egusphere-egu2020-12156, 2020.
Atmospheric mercury species (including gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM) and particulate-bound mercury (PBM)), trace pollutants (including O3, SO2, CO, NO, NOY and black carbon), and meteorological parameters have been continuously monitored since 2007 at an Atmospheric Mercury Network (AMNet) site located on the northern coast of the Gulf of Mexico at the Grand Bay National Estuarine Research Reserve (NERR) in Moss Point, Mississippi. For the data collected between 2007 and 2018, the average concentrations and standard deviations were 1.39 ± 0.22 ng m-3 for GEM, 5.1 ± 10.2 pg m-3 for GOM, 5.9 ± 13.0 pg m-3 for PBM, and 309 ± 407 ng m-2 wk-1 for mercury wet deposition, with interannual trends of -0.009 ng m-3 yr-1 for GEM, -0.36 pg m-3 yr-1 for GOM, 0.18 pg m-3 yr-1 for PBM, and 2.8 ng m-2 wk-1 yr-1 for mercury wet deposition. The trends are statistically significant for GEM and GOM, but not statistically significant for PBM and mercury wet deposition. Diurnal variation of GEM shows lower concentrations in the early morning due to GEM depletion likely due to plant uptake in high humidity events and slight elevation during the day likely due to downward mixing of higher concentrations of GEM in the air aloft to the surface. Seasonal variation of GEM shows higher levels in winter and spring and lower levels in summer and fall. Diurnal variations of both GOM and PBM show broad peaks in the afternoon likely due to photochemical oxidation of GEM. Seasonally, PBM measurements exhibit higher levels in winter and early spring and lower levels in summer, while GOM measurements show high levels in late spring/early summer and late fall and low levels in winter. The seasonal variation of mercury wet deposition shows higher values in summer and lower values in winter due to higher precipitation amounts in summer than in winter. As expected, anticorrelation between Hg wet deposition and the sum of GOM and PBM but positive correlation between Hg wet deposition and rainfall were observed. Correlation among GOM, ozone, and SO2 suggests two possible GOM sources: direct emissions and photochemical oxidation of GEM with the possible influence of boundary dynamics and seasonal variability. This study indicates that the monitoring site, which is located in a coastal environment of the Gulf of Mexico, might experience impacts from mercury sources that are both local and regional in nature.
How to cite: Ren, X., Luke, W., Kelley, P., Cohen, M., Olson, M., Archer, M., and Stein, A.: Long-term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12156, https://doi.org/10.5194/egusphere-egu2020-12156, 2020.
EGU2020-19103 | Displays | BG2.22
Mercury isotope fractionation during the exchange of Hg between the atmosphere and land surfaces: implications for atmospheric Hg cyclesWei Zhu, Xuewu Fu, Hui Zhang, Chen Liu, Ben Yu, and Xinbin Feng
Mercury (Hg) is a neurotoxic pollutant distributed globally via atmospheric transportation of elemental Hg (Hg(0)). Both anthropogenic and natural processes emit Hg to the atmosphere, where the later contributes up to approximately two thirds of the total emissions. Hg(II) in the Earth’s surface can be reduced chemically and biologically, resulted subsequent re-emission of Hg(0) back to the atmosphere. The Hg(0) exhibits bi-directional exchange (i.e., deposition and/or emission) between the land surface and atmosphere. Soil is the largest terrestrial Hg reservoir and its interaction with the atmosphere influences the atmospheric Hg cycling largely. Hg(0) emission from the terrestrial surfaces soil has been postulated to carry a negative MDF and positive MIF in the global Hg biogeochemical models. However, to date, no experimental evidence support that the complex terrestrial soil Hg(0) emission in accordance with this hypothetical simplification.
We coupled the in-situ Hg(0) dynamic flux chamber measurement and stable Hg isotope analysis to report a first dataset on the Hg isotope fractionation during the exchange of Hg(0) between the atmosphere and 8 soils and 1 cinnabar surfaces. The effect of air-soil/cinnabar exchange shifted Hg(0) concentrations in the flux chamber [i.e., (Hg(0)chamber-Hg(0)ambient)/Hg(0)chamber] by a factor of -0.29 – 0.90, corresponding to Hg(0) exchange fluxes ranging from -773 – 14457 ng m-2 h-1. Our results showed that the exchange of Hg(0) between the atmosphere and soil/cinnabar could lead to an enrichment of both light and heavy isotopes (δ202Hg signatures) in Hg(0), as well as depletion or enrichment of odd isotopes (Δ199Hg signatures). This highlighted that multiple processes controlled the land-atmosphere exchange of Hg(0) and affected Hg isotope fractionation. Using a conservative isotope mass balance model, we found urban soils Hg(0) emission exhibited large variations in both δ202Hg (-3.04 to -0.34‰) and Δ199Hg (-0.60 to 0.38‰), which might be controlled by the Hg isotopic signatures in soils and environmental factors. The isotope signatures of Hg(0) emitted from agricultural background soils (δ202Hg = -1.31 ± 1.09‰, Δ199Hg = -0.26 ± 0.16‰, 1σ, n=15) and Hg-enriched agricultural soils in Hg mining area (δ202Hg = 0.51 ± 1.09‰, Δ199Hg = -0.10 ± 0.11‰, 1σ, n=12) exhibited contrasting mass dependent fractionation (MDF). Photo-reduction of soil Hg(II) coordinated to sulfurless ligands likely dominated the MIF of Hg isotope during the exchange of Hg between the atmosphere and both urban and agricultural soils. While the positive shift of δ202Hg in mining area suggested that other processes including sorption and oxidation were also important in controlling MDF of Hg isotope during air/soil exchange. In a line with Hg-enriched agricultural soils, the forest soil emitted Hg(0) in Hg mining area enriched in heavy isotopes relative to the soil but depleted in odd isotopes. Hg(0) emission from cinnabar ore waste exhibited significant negative δ202Hg (-2.21 to -1.67‰) but positive Δ199Hg (0.17 to 0.38‰). Our results demonstrate complex Hg isotope fractionation during air-soil/cinnabar Hg(0) exchange resulted contrasting enrichment or depletion effects on the atmospheric Hg isotope compositions, thus have important implications for understanding the atmospheric Hg isotope signatures and modeling the global Hg cycling.
How to cite: Zhu, W., Fu, X., Zhang, H., Liu, C., Yu, B., and Feng, X.: Mercury isotope fractionation during the exchange of Hg between the atmosphere and land surfaces: implications for atmospheric Hg cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19103, https://doi.org/10.5194/egusphere-egu2020-19103, 2020.
Mercury (Hg) is a neurotoxic pollutant distributed globally via atmospheric transportation of elemental Hg (Hg(0)). Both anthropogenic and natural processes emit Hg to the atmosphere, where the later contributes up to approximately two thirds of the total emissions. Hg(II) in the Earth’s surface can be reduced chemically and biologically, resulted subsequent re-emission of Hg(0) back to the atmosphere. The Hg(0) exhibits bi-directional exchange (i.e., deposition and/or emission) between the land surface and atmosphere. Soil is the largest terrestrial Hg reservoir and its interaction with the atmosphere influences the atmospheric Hg cycling largely. Hg(0) emission from the terrestrial surfaces soil has been postulated to carry a negative MDF and positive MIF in the global Hg biogeochemical models. However, to date, no experimental evidence support that the complex terrestrial soil Hg(0) emission in accordance with this hypothetical simplification.
We coupled the in-situ Hg(0) dynamic flux chamber measurement and stable Hg isotope analysis to report a first dataset on the Hg isotope fractionation during the exchange of Hg(0) between the atmosphere and 8 soils and 1 cinnabar surfaces. The effect of air-soil/cinnabar exchange shifted Hg(0) concentrations in the flux chamber [i.e., (Hg(0)chamber-Hg(0)ambient)/Hg(0)chamber] by a factor of -0.29 – 0.90, corresponding to Hg(0) exchange fluxes ranging from -773 – 14457 ng m-2 h-1. Our results showed that the exchange of Hg(0) between the atmosphere and soil/cinnabar could lead to an enrichment of both light and heavy isotopes (δ202Hg signatures) in Hg(0), as well as depletion or enrichment of odd isotopes (Δ199Hg signatures). This highlighted that multiple processes controlled the land-atmosphere exchange of Hg(0) and affected Hg isotope fractionation. Using a conservative isotope mass balance model, we found urban soils Hg(0) emission exhibited large variations in both δ202Hg (-3.04 to -0.34‰) and Δ199Hg (-0.60 to 0.38‰), which might be controlled by the Hg isotopic signatures in soils and environmental factors. The isotope signatures of Hg(0) emitted from agricultural background soils (δ202Hg = -1.31 ± 1.09‰, Δ199Hg = -0.26 ± 0.16‰, 1σ, n=15) and Hg-enriched agricultural soils in Hg mining area (δ202Hg = 0.51 ± 1.09‰, Δ199Hg = -0.10 ± 0.11‰, 1σ, n=12) exhibited contrasting mass dependent fractionation (MDF). Photo-reduction of soil Hg(II) coordinated to sulfurless ligands likely dominated the MIF of Hg isotope during the exchange of Hg between the atmosphere and both urban and agricultural soils. While the positive shift of δ202Hg in mining area suggested that other processes including sorption and oxidation were also important in controlling MDF of Hg isotope during air/soil exchange. In a line with Hg-enriched agricultural soils, the forest soil emitted Hg(0) in Hg mining area enriched in heavy isotopes relative to the soil but depleted in odd isotopes. Hg(0) emission from cinnabar ore waste exhibited significant negative δ202Hg (-2.21 to -1.67‰) but positive Δ199Hg (0.17 to 0.38‰). Our results demonstrate complex Hg isotope fractionation during air-soil/cinnabar Hg(0) exchange resulted contrasting enrichment or depletion effects on the atmospheric Hg isotope compositions, thus have important implications for understanding the atmospheric Hg isotope signatures and modeling the global Hg cycling.
How to cite: Zhu, W., Fu, X., Zhang, H., Liu, C., Yu, B., and Feng, X.: Mercury isotope fractionation during the exchange of Hg between the atmosphere and land surfaces: implications for atmospheric Hg cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19103, https://doi.org/10.5194/egusphere-egu2020-19103, 2020.
EGU2020-17656 | Displays | BG2.22
Dimethylmercury demethylation in the presence of sulfideJohannes West, Andrew Graham, Liem Nguyen, and Sofi Jonsson
In marine systems, the methylated mercury pool is approximately evenly distributed between monomethylmercury (MMHg) and dimethylmercury (DMHg). While MMHg is well-studied due to its direct link with Hg accumulation in aquatic food webs, there is a general lack of knowledge of processes controlling DMHg formation or degradation. By acting as a net sink or source for MMHg, DMHg may exert control over marine MMHg concentrations and subsequent Hg bioaccumulation in fish and seafood in ways currently not understood.
At present, recognized degradation pathways of DMHg in marine systems include photochemical demethylation (although this pathway has been debated). Degradation through protonolysis of the Hg-C bond by dissolved sulfide has also been suggested and supported by density function theory calculations (Ni et al, J. Phys. Chem. A, 2006). However, experimental support for this pathway is currently missing. Here, we present data from a series of experiments for the stability of DMHg in the presence of dissolved sulfide or sulfide minerals (e.g. FeS (s)). Our results show that degradation rates are dependent on the sulfide phase and DMHg:sulfide ratios. For dissolved sulfide, we observed a non-linear response between DMHg degradation and sulfide concentrations. Our results indicate that DMHg can be demethylated by sulfide at concentration ratios viable under natural marine conditions. As we found MMHg to be the first product of demethylation, this process could also constitute a significant MMHg source in marine systems.
How to cite: West, J., Graham, A., Nguyen, L., and Jonsson, S.: Dimethylmercury demethylation in the presence of sulfide, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17656, https://doi.org/10.5194/egusphere-egu2020-17656, 2020.
In marine systems, the methylated mercury pool is approximately evenly distributed between monomethylmercury (MMHg) and dimethylmercury (DMHg). While MMHg is well-studied due to its direct link with Hg accumulation in aquatic food webs, there is a general lack of knowledge of processes controlling DMHg formation or degradation. By acting as a net sink or source for MMHg, DMHg may exert control over marine MMHg concentrations and subsequent Hg bioaccumulation in fish and seafood in ways currently not understood.
At present, recognized degradation pathways of DMHg in marine systems include photochemical demethylation (although this pathway has been debated). Degradation through protonolysis of the Hg-C bond by dissolved sulfide has also been suggested and supported by density function theory calculations (Ni et al, J. Phys. Chem. A, 2006). However, experimental support for this pathway is currently missing. Here, we present data from a series of experiments for the stability of DMHg in the presence of dissolved sulfide or sulfide minerals (e.g. FeS (s)). Our results show that degradation rates are dependent on the sulfide phase and DMHg:sulfide ratios. For dissolved sulfide, we observed a non-linear response between DMHg degradation and sulfide concentrations. Our results indicate that DMHg can be demethylated by sulfide at concentration ratios viable under natural marine conditions. As we found MMHg to be the first product of demethylation, this process could also constitute a significant MMHg source in marine systems.
How to cite: West, J., Graham, A., Nguyen, L., and Jonsson, S.: Dimethylmercury demethylation in the presence of sulfide, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17656, https://doi.org/10.5194/egusphere-egu2020-17656, 2020.
EGU2020-9642 | Displays | BG2.22
Microbial formation of thiols control the chemical speciation and methylation of Hg(II)Mareike Franziska Gutensohn, Jeffra K. Schaefer, Ulf Skyllberg, and Erik Björn
The formation of the neurotoxin methylmercury (MeHg) is a biotic process where anaerobic bacteria methylate inorganic divalent Hg (Hg(II)) intracellularly. The cellular uptake mechanisms are still not identified, but low molecular mass (LMM) thiols play an important role together with thiol groups on the outer membrane in controlling the chemical speciation of Hg(II). For example, increased concentration of specific LMM thiols, especially cysteine, is known to enhance the formation of MeHg. A recent study showed that metabolically active anaerobic microorganisms produced LMM thiols in vivo and exported them to concentrations up to 100 nM in the assay medium. The concentration range was sufficient to significantly affect the chemical speciation, uptake and methylation of Hg(II) without any external addition of LMM thiols.
In this study we investigate the kinetics of microbial formation and cellular export of LMM thiols by the iron-reducing bacterium Geobacter sulfurreducens and the sulfate-reducing bacterium Desulfovibrio sp. ND132 in high time resolution and the impact on the chemical speciation and methylation of Hg(II).
LMM thiols were separated by liquid chromatography and determined by electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Hg(LMM-RS)2 complexes were determined by thermodynamic modeling and by direct measurements using LC-Inductively coupled plasma MS (LC-ICPMS).
Results will be presented for the production of LMM thiol compounds, formation of Hg(LMM-RS)2 complexes and how this change in Hg speciation impacts the Hg(II) methylation rate in short-term washed cell assays. Characterizing the time-dependent molecular composition of LMM thiols associated with methylating microbes are important to further understand their multiple roles on Hg(II) uptake and MeHg formation in bacteria assays and in the environment.
How to cite: Gutensohn, M. F., Schaefer, J. K., Skyllberg, U., and Björn, E.: Microbial formation of thiols control the chemical speciation and methylation of Hg(II), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9642, https://doi.org/10.5194/egusphere-egu2020-9642, 2020.
The formation of the neurotoxin methylmercury (MeHg) is a biotic process where anaerobic bacteria methylate inorganic divalent Hg (Hg(II)) intracellularly. The cellular uptake mechanisms are still not identified, but low molecular mass (LMM) thiols play an important role together with thiol groups on the outer membrane in controlling the chemical speciation of Hg(II). For example, increased concentration of specific LMM thiols, especially cysteine, is known to enhance the formation of MeHg. A recent study showed that metabolically active anaerobic microorganisms produced LMM thiols in vivo and exported them to concentrations up to 100 nM in the assay medium. The concentration range was sufficient to significantly affect the chemical speciation, uptake and methylation of Hg(II) without any external addition of LMM thiols.
In this study we investigate the kinetics of microbial formation and cellular export of LMM thiols by the iron-reducing bacterium Geobacter sulfurreducens and the sulfate-reducing bacterium Desulfovibrio sp. ND132 in high time resolution and the impact on the chemical speciation and methylation of Hg(II).
LMM thiols were separated by liquid chromatography and determined by electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Hg(LMM-RS)2 complexes were determined by thermodynamic modeling and by direct measurements using LC-Inductively coupled plasma MS (LC-ICPMS).
Results will be presented for the production of LMM thiol compounds, formation of Hg(LMM-RS)2 complexes and how this change in Hg speciation impacts the Hg(II) methylation rate in short-term washed cell assays. Characterizing the time-dependent molecular composition of LMM thiols associated with methylating microbes are important to further understand their multiple roles on Hg(II) uptake and MeHg formation in bacteria assays and in the environment.
How to cite: Gutensohn, M. F., Schaefer, J. K., Skyllberg, U., and Björn, E.: Microbial formation of thiols control the chemical speciation and methylation of Hg(II), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9642, https://doi.org/10.5194/egusphere-egu2020-9642, 2020.
EGU2020-6441 | Displays | BG2.22
Methylmercury production and degradation by soil microbial communitiesYu-Rong Liu and Qiaoyun Huang
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of microbial communities associated with MeHg production and degradation in paddy soils remain unclear. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA+ sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Our structure equation modeling suggested a much stronger link between bacterial community composition and %MeHg, compared to the abundance of methylating gene (hgcA) and edaphic properties. More importantly, random forest models suggested a more important role of non-Hg methylators than Hg methylators in predicting variations of soil %MeHg.
Microbial demethylation was demonstrated by significantly more degradation of MeHg in the unsterilized soils than the sterilized controls, although more degradation was observed in water-saturated soils than the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing These findings provide new insights into microbial communities associated with MeHg accumulation in paddy soils, with important implications in mitigating the net production and bioaccumulation of MeHg in rice worldwide.
How to cite: Liu, Y.-R. and Huang, Q.: Methylmercury production and degradation by soil microbial communities , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6441, https://doi.org/10.5194/egusphere-egu2020-6441, 2020.
Rice consumption is now recognized as an important pathway of human exposure to the neurotoxin methylmercury (MeHg), particularly in countries where rice is a staple food. Although the discovery of a two-gene cluster hgcAB has linked Hg methylation to several phylogenetically diverse groups of anaerobic microorganisms converting inorganic mercury (Hg) to MeHg, the prevalence and diversity of microbial communities associated with MeHg production and degradation in paddy soils remain unclear. Both Illumina and PacBio sequencing analyses revealed that Hg methylating communities were dominated by iron-reducing bacteria (i.e., Geobacter) and methanogens, with a relatively low abundance of hgcA+ sulfate-reducing bacteria in the soil. A positive correlation was observed between the MeHg content in soil and the relative abundance of Geobacter carrying the hgcA gene. Our structure equation modeling suggested a much stronger link between bacterial community composition and %MeHg, compared to the abundance of methylating gene (hgcA) and edaphic properties. More importantly, random forest models suggested a more important role of non-Hg methylators than Hg methylators in predicting variations of soil %MeHg.
Microbial demethylation was demonstrated by significantly more degradation of MeHg in the unsterilized soils than the sterilized controls, although more degradation was observed in water-saturated soils than the unsaturated soil. 16S rRNA Illumina sequencing and metatranscriptomic analyses consistently revealed that Catenulisporaceae, Frankiaceae, Mycobacteriaceae, and Thermomonosporaceae were among the most likely microbial taxa in influencing These findings provide new insights into microbial communities associated with MeHg accumulation in paddy soils, with important implications in mitigating the net production and bioaccumulation of MeHg in rice worldwide.
How to cite: Liu, Y.-R. and Huang, Q.: Methylmercury production and degradation by soil microbial communities , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6441, https://doi.org/10.5194/egusphere-egu2020-6441, 2020.
EGU2020-9626 | Displays | BG2.22
A bottom up approach to quantify foliar uptake of gaseous elemental mercury by European forests during the 2018 growing seasonLena Wohlgemuth, Stefan Osterwalder, Günter Hoch, Christine Alewell, and Martin Jiskra
The deposition of gaseous elemental mercury, Hg(0), from the atmosphere to terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. However, there is emerging evidence that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. We will present a novel bottom up approach to calculate Hg(0) deposition fluxes to aboveground foliage by combining foliar Hg accumulation rates on the basis of leaf area with species-specific leaf area indices. We analyzed Hg content in 583 foliage samples from major tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to Northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all tree species at all sites. We found that foliar Hg accumulation rates normalized to leaf area increased with crown height and decreased with the age of multi-year old needles. We did not detect a clear latitudinal gradient in foliar Hg accumulation rates.
On an ecosystem scale we developed a simple bottom up approach for foliar Hg(0) uptake considering the systematic variations in crown height, needle age and tree species. We calculated species-specific average foliar Hg(0) dry deposition rates for the 2018 growing season of 22 ± 4 µg Hg m-2 for beech, 16 ± 8 µg Hg m-2 for oak, 3 ± 0.4 µg Hg m-2 for birch, 18 ± 10 µg Hg m-2 for spruce and 8 ± 4 µg Hg m-2 for pine. For comparison, the average Hg wet deposition flux measured at 4 of our 10 research sites during the same time period was 2.5 ± 0.2 µg Hg m-2.
Scaling up site-specific deposition rates to the forested area of Europe (EU28) resulted in a total aboveground Hg(0) deposition to foliage of approximately 20 Mg during the 2018 growing season. Our results confirm that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. The bottom up approach we used is a promising method to quantify Hg(0) deposition fluxes based on easy-to-do Hg concentration measurements in foliage.
How to cite: Wohlgemuth, L., Osterwalder, S., Hoch, G., Alewell, C., and Jiskra, M.: A bottom up approach to quantify foliar uptake of gaseous elemental mercury by European forests during the 2018 growing season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9626, https://doi.org/10.5194/egusphere-egu2020-9626, 2020.
The deposition of gaseous elemental mercury, Hg(0), from the atmosphere to terrestrial surfaces remains poorly understood mainly due to difficulties in measuring net Hg(0) fluxes on the ecosystem scale. However, there is emerging evidence that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. We will present a novel bottom up approach to calculate Hg(0) deposition fluxes to aboveground foliage by combining foliar Hg accumulation rates on the basis of leaf area with species-specific leaf area indices. We analyzed Hg content in 583 foliage samples from major tree species at 10 European forested research sites along a latitudinal gradient from Switzerland to Northern Finland over the course of the 2018 growing season. Foliar Hg concentrations increased over time in all tree species at all sites. We found that foliar Hg accumulation rates normalized to leaf area increased with crown height and decreased with the age of multi-year old needles. We did not detect a clear latitudinal gradient in foliar Hg accumulation rates.
On an ecosystem scale we developed a simple bottom up approach for foliar Hg(0) uptake considering the systematic variations in crown height, needle age and tree species. We calculated species-specific average foliar Hg(0) dry deposition rates for the 2018 growing season of 22 ± 4 µg Hg m-2 for beech, 16 ± 8 µg Hg m-2 for oak, 3 ± 0.4 µg Hg m-2 for birch, 18 ± 10 µg Hg m-2 for spruce and 8 ± 4 µg Hg m-2 for pine. For comparison, the average Hg wet deposition flux measured at 4 of our 10 research sites during the same time period was 2.5 ± 0.2 µg Hg m-2.
Scaling up site-specific deposition rates to the forested area of Europe (EU28) resulted in a total aboveground Hg(0) deposition to foliage of approximately 20 Mg during the 2018 growing season. Our results confirm that vegetation uptake of atmospheric Hg(0) represents a major deposition pathway to terrestrial surfaces. The bottom up approach we used is a promising method to quantify Hg(0) deposition fluxes based on easy-to-do Hg concentration measurements in foliage.
How to cite: Wohlgemuth, L., Osterwalder, S., Hoch, G., Alewell, C., and Jiskra, M.: A bottom up approach to quantify foliar uptake of gaseous elemental mercury by European forests during the 2018 growing season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9626, https://doi.org/10.5194/egusphere-egu2020-9626, 2020.
EGU2020-13936 | Displays | BG2.22
Hg release and Hg nanoparticle formation upon flooding of an agriculturally used fluvisol.Lorenz Gfeller, Andrea Weber, Isabelle Worms, Vera Slaveykova, and Adrien Mestrot
Soils in legacy sites of chlor-alkali and acetaldehyde production are point sources of mercury (Hg) to downstream eco-systems. Flooding and agricultural activities may influence the fate of Hg by altering redox conditions, microbial activity and carbon budgets. However, the complex interplay between these parameters is still not well understood. The aim of this work was to better understand the effect of flooding and fertilisation on the release/sequestration of Hg in a polluted floodplain soil.
We conducted a flooding-draining incubation experiment on two Hg polluted fluvisols (2.4 ± 0.1 and 44.8 ± 0.5 mg.kg-1 Hg). The soils originated from an agriculturally used floodplain situated in the Rhone Valley (Valais, Switzerland) and were exposed to Hg pollution by an acetaldehyde producing plant until the 1970’s. They were incubated in triplicates for each treatment. During 56 days the soils were alternately flooded and drained in intervals of 14 days. For flooding, we used an artificial rain water and a 1:1.5 soil:water ratio. The influence of agricultural activites was studied by adding 0.6% (w/w) of liquid manure in a separate treatment. We monitored pore water Hgtotal, Eh, pH, DOC and relevant metals in daily time intervals. Further, the sampled pore water was filtered in distinct intervals (10µm / 5µm / 0.45µm / 0.020µm) at specific time points and analyzed for Hgtotal. Additionally, the 0.45µm fraction was sampled to study the evolution of colloidal Hg with AF4-ICP-MS.
We observed differences between soil treated with or without manure. In the microcosms (MCs) treated with manure, we observed a Hgtotal release along with reductive disolution of Mn-oxides peaking (Hgtotal: 20.8 µg.L-1) after 5 days of flooding. Subsequently, pore water Hgtotal decreased with a simultanous decrease in pore water SO42-. This is likely due to the onset of sulfate reduction. Additionally, we observed the increase of inorganic colloidal Hg in the range of 10nm hydro dynamic diameter in manure treated MCs with higher contaminated soil during the first 2 and 10 days of incubation.
In the MCs without manure addition, the onset of reductive dissolution of Mn oxides was 2 days later. Pore water Hgtotal peaked only after 7 days of flooding (19.76 µg.L-1 Hg) and remained at the same levels until the end of the first flooding period. This is likely due to a lower microbial activity and a lower labile carbon pool in the untreated compared to the treated soils.
Flooding of our polluted fluvisol releases Hg after few days. The additional manuring accelerates this process. However, it as well accelerates the subsequent decrease of Hgtotal in the pore water. This is among others due to the formation of Hg nanoparticles. We plan to use electron microscopy in order to draw conclusions about the nature of these Hg nanoparticles.
How to cite: Gfeller, L., Weber, A., Worms, I., Slaveykova, V., and Mestrot, A.: Hg release and Hg nanoparticle formation upon flooding of an agriculturally used fluvisol., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13936, https://doi.org/10.5194/egusphere-egu2020-13936, 2020.
Soils in legacy sites of chlor-alkali and acetaldehyde production are point sources of mercury (Hg) to downstream eco-systems. Flooding and agricultural activities may influence the fate of Hg by altering redox conditions, microbial activity and carbon budgets. However, the complex interplay between these parameters is still not well understood. The aim of this work was to better understand the effect of flooding and fertilisation on the release/sequestration of Hg in a polluted floodplain soil.
We conducted a flooding-draining incubation experiment on two Hg polluted fluvisols (2.4 ± 0.1 and 44.8 ± 0.5 mg.kg-1 Hg). The soils originated from an agriculturally used floodplain situated in the Rhone Valley (Valais, Switzerland) and were exposed to Hg pollution by an acetaldehyde producing plant until the 1970’s. They were incubated in triplicates for each treatment. During 56 days the soils were alternately flooded and drained in intervals of 14 days. For flooding, we used an artificial rain water and a 1:1.5 soil:water ratio. The influence of agricultural activites was studied by adding 0.6% (w/w) of liquid manure in a separate treatment. We monitored pore water Hgtotal, Eh, pH, DOC and relevant metals in daily time intervals. Further, the sampled pore water was filtered in distinct intervals (10µm / 5µm / 0.45µm / 0.020µm) at specific time points and analyzed for Hgtotal. Additionally, the 0.45µm fraction was sampled to study the evolution of colloidal Hg with AF4-ICP-MS.
We observed differences between soil treated with or without manure. In the microcosms (MCs) treated with manure, we observed a Hgtotal release along with reductive disolution of Mn-oxides peaking (Hgtotal: 20.8 µg.L-1) after 5 days of flooding. Subsequently, pore water Hgtotal decreased with a simultanous decrease in pore water SO42-. This is likely due to the onset of sulfate reduction. Additionally, we observed the increase of inorganic colloidal Hg in the range of 10nm hydro dynamic diameter in manure treated MCs with higher contaminated soil during the first 2 and 10 days of incubation.
In the MCs without manure addition, the onset of reductive dissolution of Mn oxides was 2 days later. Pore water Hgtotal peaked only after 7 days of flooding (19.76 µg.L-1 Hg) and remained at the same levels until the end of the first flooding period. This is likely due to a lower microbial activity and a lower labile carbon pool in the untreated compared to the treated soils.
Flooding of our polluted fluvisol releases Hg after few days. The additional manuring accelerates this process. However, it as well accelerates the subsequent decrease of Hgtotal in the pore water. This is among others due to the formation of Hg nanoparticles. We plan to use electron microscopy in order to draw conclusions about the nature of these Hg nanoparticles.
How to cite: Gfeller, L., Weber, A., Worms, I., Slaveykova, V., and Mestrot, A.: Hg release and Hg nanoparticle formation upon flooding of an agriculturally used fluvisol., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13936, https://doi.org/10.5194/egusphere-egu2020-13936, 2020.
EGU2020-9083 | Displays | BG2.22
Dependence of Total Mercury in Superficial Peat With Nutrient Status: Implications for Stability of Peat as an Archive of Hg DepositionJacob Smeds
Dependence of Total Mercury in Superficial Peat With Nutrient Status: Implications for Stability of Peat as an Archive of Hg Deposition
Jacob Smeds1, Mats B. Nilsson2, Wei Zhu2, Kevin Bishop3
[1]Department of Earth Sciences, Uppsala University, Uppsala, Sweden
[2]Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeå, Sweden
[3]Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Although Mercury (Hg) has decreased considerably in the atmosphere during recent decades, this potent neurotoxin still constitutes a threat to ecosystems globally through the Hg stored in soils. The mitigation of the risks related to this legacy Hg was a reason to implement the Minamata Convention. Subsequent work under the convention is dependent on assessments of the Hg stored in the environment. A way of doing this is to study environmental archives of atmospheric deposition such as ice cores, lake sediments, and peatlands. A previous study along a chronosequence of mires along the northern coast of Sweden showed Hg content differing by a factor of 2 and correlating strongly with mire age. This was hypothesized to indicate that differences in minerogenic water supply along the chronosequence influenced the stability of Hg after deposition from the atmosphere to the mire surface. Declining access of minerogenic elements with increasing peatland age results in a less nutrient demanding plant species composition as well as decreasing access to microbial electron acceptors. But that study looked at just one 10 cm layer at a depth with peat ca 50 years old. Here we present a more rigorous test of that hypothesis by presenting the total amount and vertical pattern of Hg accumulation during the last 200 years in the superficial peat along that peatland chronosequence.
Eleven peatlands along the northern coast of Sweden near Umeå were sampled. This is an area where isostatic rebound continues to raise the land above the sea level. Triplicate peat cores were collected from both lawns and hummocks, when present. A total of 54 peat cores, each 50 cm deep, were collected and frozen immediately. The cores were then sliced into 2 cm layers, and each slice was analysed for total Hg. Due to the land rising out of the sea, the different peatlands have ages ranging from 100-2000 years since establishment, despite being located within a distance of <10 km. The peatland age correlates with availability of mineral elements and pH. This is due to the fact that the underlying postglacial mineral soil is a source of elements. The distance to the mineral soil increases as peat accumulates with peatland age. Certain elements also leach from the peatlands over time. This documentation of the vertical distribution of Hg in all the peat laid down during the past 200 years in each mire tests the hypothesis that the propensity of Hg to evade back to the atmosphere in this area is related to the amount and composition of inorganic elements.
How to cite: Smeds, J.: Dependence of Total Mercury in Superficial Peat With Nutrient Status: Implications for Stability of Peat as an Archive of Hg Deposition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9083, https://doi.org/10.5194/egusphere-egu2020-9083, 2020.
Dependence of Total Mercury in Superficial Peat With Nutrient Status: Implications for Stability of Peat as an Archive of Hg Deposition
Jacob Smeds1, Mats B. Nilsson2, Wei Zhu2, Kevin Bishop3
[1]Department of Earth Sciences, Uppsala University, Uppsala, Sweden
[2]Department of Forest Ecology, Swedish University of Agricultural Sciences, Umeå, Sweden
[3]Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Although Mercury (Hg) has decreased considerably in the atmosphere during recent decades, this potent neurotoxin still constitutes a threat to ecosystems globally through the Hg stored in soils. The mitigation of the risks related to this legacy Hg was a reason to implement the Minamata Convention. Subsequent work under the convention is dependent on assessments of the Hg stored in the environment. A way of doing this is to study environmental archives of atmospheric deposition such as ice cores, lake sediments, and peatlands. A previous study along a chronosequence of mires along the northern coast of Sweden showed Hg content differing by a factor of 2 and correlating strongly with mire age. This was hypothesized to indicate that differences in minerogenic water supply along the chronosequence influenced the stability of Hg after deposition from the atmosphere to the mire surface. Declining access of minerogenic elements with increasing peatland age results in a less nutrient demanding plant species composition as well as decreasing access to microbial electron acceptors. But that study looked at just one 10 cm layer at a depth with peat ca 50 years old. Here we present a more rigorous test of that hypothesis by presenting the total amount and vertical pattern of Hg accumulation during the last 200 years in the superficial peat along that peatland chronosequence.
Eleven peatlands along the northern coast of Sweden near Umeå were sampled. This is an area where isostatic rebound continues to raise the land above the sea level. Triplicate peat cores were collected from both lawns and hummocks, when present. A total of 54 peat cores, each 50 cm deep, were collected and frozen immediately. The cores were then sliced into 2 cm layers, and each slice was analysed for total Hg. Due to the land rising out of the sea, the different peatlands have ages ranging from 100-2000 years since establishment, despite being located within a distance of <10 km. The peatland age correlates with availability of mineral elements and pH. This is due to the fact that the underlying postglacial mineral soil is a source of elements. The distance to the mineral soil increases as peat accumulates with peatland age. Certain elements also leach from the peatlands over time. This documentation of the vertical distribution of Hg in all the peat laid down during the past 200 years in each mire tests the hypothesis that the propensity of Hg to evade back to the atmosphere in this area is related to the amount and composition of inorganic elements.
How to cite: Smeds, J.: Dependence of Total Mercury in Superficial Peat With Nutrient Status: Implications for Stability of Peat as an Archive of Hg Deposition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9083, https://doi.org/10.5194/egusphere-egu2020-9083, 2020.
EGU2020-18536 | Displays | BG2.22
Permafrost thaw increases methylmercury formation in sub-arctic FennoscandiaBrittany Tarbier, Sofi Jonsson, Carluvy Baptista-Salazar, A. Britta K. Sannel, and Gustaf Hugelius
With ongoing climate change, temperatures in the northern latitudes are increasing more than twice as fast as the global mean. This causes thawing of permafrost and the release of carbon and contaminants, including mercury (Hg), which have thus far been immobilized in the frozen soil. The potential release of Hg, and microbial transformation of mobilized inorganic Hg to monomethylmercury (MeHg), presents a risk to ecosystems and human health. MeHg is a neurotoxic substance that is readily taken up and biomagnified in aquatic food webs to dangerous concentrations. Arctic communities are particularly vulnerable to Hg pollution as a result of a diet that often includes high trophic level fish and marine mammals. Despite the ecological and societal consequences of elevated Hg levels and the potential for increased Hg conversion to MeHg in post-thaw wetland environments, much of the Hg cycle in the high North is poorly understood.
While global and northern latitude Hg budgets have been estimated, the effect of permafrost thaw on MeHg formation has not yet been fully investigated. Here, we compared concentrations of total Hg (HgT) and MeHg in intact permafrost samples from palsas and peat plateaus with samples from recently thawed collapse fens and from peatlands unaffected by permafrost dynamics in order to investigate whether permafrost thaw impacts net MeHg formation in peatlands. Our study includes five subarctic permafrost peatland sites located in northern Sweden and Norway. Concentrations of HgT and MeHg in the soil cores ranges from 1.1 to 210 and 0.005 to 28 ng g-1 dry weight, respectively, with higher concentrations in the upper soil horizons. No differences were observed in average HgT and MeHg concentrations between the five sites, including both coastal and inland locations. Interestingly, we observe higher concentrations of MeHg and MeHg:HgT ratios in the collapse fens as compared to the permafrost cores, showing increased net methylation of Hg upon permafrost thaw.
How to cite: Tarbier, B., Jonsson, S., Baptista-Salazar, C., Sannel, A. B. K., and Hugelius, G.: Permafrost thaw increases methylmercury formation in sub-arctic Fennoscandia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18536, https://doi.org/10.5194/egusphere-egu2020-18536, 2020.
With ongoing climate change, temperatures in the northern latitudes are increasing more than twice as fast as the global mean. This causes thawing of permafrost and the release of carbon and contaminants, including mercury (Hg), which have thus far been immobilized in the frozen soil. The potential release of Hg, and microbial transformation of mobilized inorganic Hg to monomethylmercury (MeHg), presents a risk to ecosystems and human health. MeHg is a neurotoxic substance that is readily taken up and biomagnified in aquatic food webs to dangerous concentrations. Arctic communities are particularly vulnerable to Hg pollution as a result of a diet that often includes high trophic level fish and marine mammals. Despite the ecological and societal consequences of elevated Hg levels and the potential for increased Hg conversion to MeHg in post-thaw wetland environments, much of the Hg cycle in the high North is poorly understood.
While global and northern latitude Hg budgets have been estimated, the effect of permafrost thaw on MeHg formation has not yet been fully investigated. Here, we compared concentrations of total Hg (HgT) and MeHg in intact permafrost samples from palsas and peat plateaus with samples from recently thawed collapse fens and from peatlands unaffected by permafrost dynamics in order to investigate whether permafrost thaw impacts net MeHg formation in peatlands. Our study includes five subarctic permafrost peatland sites located in northern Sweden and Norway. Concentrations of HgT and MeHg in the soil cores ranges from 1.1 to 210 and 0.005 to 28 ng g-1 dry weight, respectively, with higher concentrations in the upper soil horizons. No differences were observed in average HgT and MeHg concentrations between the five sites, including both coastal and inland locations. Interestingly, we observe higher concentrations of MeHg and MeHg:HgT ratios in the collapse fens as compared to the permafrost cores, showing increased net methylation of Hg upon permafrost thaw.
How to cite: Tarbier, B., Jonsson, S., Baptista-Salazar, C., Sannel, A. B. K., and Hugelius, G.: Permafrost thaw increases methylmercury formation in sub-arctic Fennoscandia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18536, https://doi.org/10.5194/egusphere-egu2020-18536, 2020.
EGU2020-10691 | Displays | BG2.22
Total and methylmercury concentrations in Canadian alpine proglacial freshwater rivers (Banff and Jasper National Parks)Jessica A. Serbu, Vincent L. St.Louis, and Sydney J. A. Enns
Anthropogenic activities have resulted in increased mercury (Hg) emissions, and the deposition of inorganic and methyl Hg to watersheds, including those that are glaciated. Alpine glaciers are melting at unprecedented rates due to climate change, with glacier-fed rivers potentially transporting contaminants such as mercury historically archived in glacial ice to downstream proglacial environments. Hg in glacial rivers can also be derived from natural sources such as the erosion of subglacial and proglacial geologic material as glaciers melt and retreat. Furthermore, as inorganic Hg moves downstream, methylation can occur in regions of the watershed that contain wetlands, for example, transforming into it into toxic methyl Hg (MeHg) that can biomagnify in the watershed’s food web.
We conducted detailed monthly water quality surveys along three major glacial river transects (the Athabasca, North Saskatchewan, and Bow) in the Canadian Rocky Mountains (Banff and Jasper National Parks, Alberta), that included sampling for total and dissolved concentrations of total Hg (THg; all forms of Hg in a sample) and MeHg up to 100 km downstream of glacial termini. The resultant inter-seasonal data, spanning from May to December in this mid-latitude region, will be used to assess the amount of Hg originating from glacial melt in these systems and how it is transformed as it moves downstream. We will also examine contributions of Hg from the erosion of subglacial and proglacial bedrock material. Preliminary results show that THg and MeHg concentrations are very low in these rivers, consistently measuring at less that 3 ng/L. Additionally, as one moves downstream a larger proportion of THg is in the dissolved fraction. MeHg always measured around or below our laboratory’s detection limit (0.01 ng/L) regardless of the sampling location on our river transects.
The presence of contaminants such as Hg can have negative impacts on freshwater quality, organisms within the watershed, and downstream human populations. Quantifying the amount and speciation of Hg in the headwaters of three primary watersheds in Canada could have important implications for future research and the ongoing challenge of properly planning for drastic climate change effects in glaciated alpine regions despite concentrations of THg and MeHg being so low.
How to cite: Serbu, J. A., St.Louis, V. L., and Enns, S. J. A.: Total and methylmercury concentrations in Canadian alpine proglacial freshwater rivers (Banff and Jasper National Parks), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10691, https://doi.org/10.5194/egusphere-egu2020-10691, 2020.
Anthropogenic activities have resulted in increased mercury (Hg) emissions, and the deposition of inorganic and methyl Hg to watersheds, including those that are glaciated. Alpine glaciers are melting at unprecedented rates due to climate change, with glacier-fed rivers potentially transporting contaminants such as mercury historically archived in glacial ice to downstream proglacial environments. Hg in glacial rivers can also be derived from natural sources such as the erosion of subglacial and proglacial geologic material as glaciers melt and retreat. Furthermore, as inorganic Hg moves downstream, methylation can occur in regions of the watershed that contain wetlands, for example, transforming into it into toxic methyl Hg (MeHg) that can biomagnify in the watershed’s food web.
We conducted detailed monthly water quality surveys along three major glacial river transects (the Athabasca, North Saskatchewan, and Bow) in the Canadian Rocky Mountains (Banff and Jasper National Parks, Alberta), that included sampling for total and dissolved concentrations of total Hg (THg; all forms of Hg in a sample) and MeHg up to 100 km downstream of glacial termini. The resultant inter-seasonal data, spanning from May to December in this mid-latitude region, will be used to assess the amount of Hg originating from glacial melt in these systems and how it is transformed as it moves downstream. We will also examine contributions of Hg from the erosion of subglacial and proglacial bedrock material. Preliminary results show that THg and MeHg concentrations are very low in these rivers, consistently measuring at less that 3 ng/L. Additionally, as one moves downstream a larger proportion of THg is in the dissolved fraction. MeHg always measured around or below our laboratory’s detection limit (0.01 ng/L) regardless of the sampling location on our river transects.
The presence of contaminants such as Hg can have negative impacts on freshwater quality, organisms within the watershed, and downstream human populations. Quantifying the amount and speciation of Hg in the headwaters of three primary watersheds in Canada could have important implications for future research and the ongoing challenge of properly planning for drastic climate change effects in glaciated alpine regions despite concentrations of THg and MeHg being so low.
How to cite: Serbu, J. A., St.Louis, V. L., and Enns, S. J. A.: Total and methylmercury concentrations in Canadian alpine proglacial freshwater rivers (Banff and Jasper National Parks), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10691, https://doi.org/10.5194/egusphere-egu2020-10691, 2020.
EGU2020-19089 | Displays | BG2.22
Polar microbes and their implications in the aquatic mercury cycleCéline Lavergne, Lars-Eric Heimburger, Patricia Bovio-Winkler, Rolando Chamy, and Léa Cabrol
The methylmercury has the feature, in addition to its high toxicity for living organisms, to be easily incorporated, bioaccumulated and biomagnified through the food web in aquatic systems. Recently, the microorganisms implicated in the transformation of mercury to methylmercury have been found much more diverse than previously thought. Among them, 9 methanogenic Archaea strains are able to methylate the mercury in pure culture. However, few proofs exist in situ in polar aquatic systems. Antarctic polar regions receive atmospheric mercury through long-range transport of foreign emissions. In a context of increasing releases of heavy metals in aquatic environments and atmosphere, it is a crucial objective to elucidate the fate of mercury in Antarctic polar aquatic ecosystems and the role Archaea could play in mercury transformations. Hence, microbial diversity was investigated in pristine Antarctic lakes (South Shetland Islands, Antarctic, Chile) and continental sub-Antarctic beaver ponds (Tierra del Fuego, Chile) where benthic total mercury concentration was 14 ±6.5 and 89 ±13 ppm, respectively. Until 6.3% of the active community could be constituted by putative methylators and a positive significant correlation was found between total mercury concentration and putative methylator relative abundance (linear model, p-value=0.001). Putative methylator Archaea Methanoregula and Methanosphaerula have been detected but did not seem active in the studied ecosystems (RNA metabarcoding VS DNA metabarcoding).
Combined with these molecular data, mercury methylation and methylmercury demethylation activities were performed by addition of enriched stables isotopes of inorganic mercury and methylmercury, respectively and we expect to find highest methylation rates in the rich-organic matter ecosystems such as sub-Antarctic beaver ponds.
How to cite: Lavergne, C., Heimburger, L.-E., Bovio-Winkler, P., Chamy, R., and Cabrol, L.: Polar microbes and their implications in the aquatic mercury cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19089, https://doi.org/10.5194/egusphere-egu2020-19089, 2020.
The methylmercury has the feature, in addition to its high toxicity for living organisms, to be easily incorporated, bioaccumulated and biomagnified through the food web in aquatic systems. Recently, the microorganisms implicated in the transformation of mercury to methylmercury have been found much more diverse than previously thought. Among them, 9 methanogenic Archaea strains are able to methylate the mercury in pure culture. However, few proofs exist in situ in polar aquatic systems. Antarctic polar regions receive atmospheric mercury through long-range transport of foreign emissions. In a context of increasing releases of heavy metals in aquatic environments and atmosphere, it is a crucial objective to elucidate the fate of mercury in Antarctic polar aquatic ecosystems and the role Archaea could play in mercury transformations. Hence, microbial diversity was investigated in pristine Antarctic lakes (South Shetland Islands, Antarctic, Chile) and continental sub-Antarctic beaver ponds (Tierra del Fuego, Chile) where benthic total mercury concentration was 14 ±6.5 and 89 ±13 ppm, respectively. Until 6.3% of the active community could be constituted by putative methylators and a positive significant correlation was found between total mercury concentration and putative methylator relative abundance (linear model, p-value=0.001). Putative methylator Archaea Methanoregula and Methanosphaerula have been detected but did not seem active in the studied ecosystems (RNA metabarcoding VS DNA metabarcoding).
Combined with these molecular data, mercury methylation and methylmercury demethylation activities were performed by addition of enriched stables isotopes of inorganic mercury and methylmercury, respectively and we expect to find highest methylation rates in the rich-organic matter ecosystems such as sub-Antarctic beaver ponds.
How to cite: Lavergne, C., Heimburger, L.-E., Bovio-Winkler, P., Chamy, R., and Cabrol, L.: Polar microbes and their implications in the aquatic mercury cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19089, https://doi.org/10.5194/egusphere-egu2020-19089, 2020.
EGU2020-6320 | Displays | BG2.22
Human Health Benefits of the Minamata Convention on MercuryYanxu Zhang
The Minamata Convention is a legally-binding international treaty aimed at reducing the anthropogenic release of mercury, a potent neurotoxin. However, its human health benefit has not been quantified at a global scale. Here we evaluate the Convention’s benefit by a coupled climate-atmosphere-land-ocean-ecosystem model and a human mercury exposure component that considers all food categories. We find the mercury health risk decreases nonlinearly with emission reduction, and the most optimistic scenario leads to mercury level in marine biota half of the present-day level. Our results show that the accumulated benefits of the Convention are 660 billion USD avoided earn loss (3% discount rate, realized in 2010) and 1.2 million avoided deaths from fatal heart attacks over the period 2010-2100, with substantial global human health cost if delaying emission reduction actions. Such a comprehensive modelling approach helps parties to evaluate the effectiveness of implementation as required by the Convention.
How to cite: Zhang, Y.: Human Health Benefits of the Minamata Convention on Mercury, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6320, https://doi.org/10.5194/egusphere-egu2020-6320, 2020.
The Minamata Convention is a legally-binding international treaty aimed at reducing the anthropogenic release of mercury, a potent neurotoxin. However, its human health benefit has not been quantified at a global scale. Here we evaluate the Convention’s benefit by a coupled climate-atmosphere-land-ocean-ecosystem model and a human mercury exposure component that considers all food categories. We find the mercury health risk decreases nonlinearly with emission reduction, and the most optimistic scenario leads to mercury level in marine biota half of the present-day level. Our results show that the accumulated benefits of the Convention are 660 billion USD avoided earn loss (3% discount rate, realized in 2010) and 1.2 million avoided deaths from fatal heart attacks over the period 2010-2100, with substantial global human health cost if delaying emission reduction actions. Such a comprehensive modelling approach helps parties to evaluate the effectiveness of implementation as required by the Convention.
How to cite: Zhang, Y.: Human Health Benefits of the Minamata Convention on Mercury, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6320, https://doi.org/10.5194/egusphere-egu2020-6320, 2020.
EGU2020-12394 | Displays | BG2.22
Measurements of atmospheric gaseous elemental mercury (GEM) and GEM fluxes in the seas of Southeast Asia in October-December 2019Viktor Kalinchuk, Evgeny Lopatnikov, Anatoly Astakhov, Maksim Ivanov, Renat Shakirov, and Do Huy Cuong
Measurements of gaseous elemental mercury (GEM) in the marine boundary layer (MBL) and GEM evasion fluxes were carried out during the Russian-Vietnam cruise conducted from the Sea of Japan to the South China Sea from October 25 to December 7, 2019. All GEM measurements were performed using two RA-915M mercury analysers (Lumex LLC, Russia). Atmospheric GEM concentrations were measured at two levels (about 2 m and 20 m above the sea surface) with a time resolution of 30 minutes. GEM fluxes were measured in the South China Sea using a dynamic flux chamber.
GEM concentrations ranged between 0.56 ng/m3 and 25.47 ng/m3, and between 0.39 ng/m3 and 23.95 ng/m3 with medians of 1.38 ng/m3 and 1.45 ng/m3 for 2 m and 20 m measurements, respectively. GEM concentrations were significantly affected by air transport of GEM. Concentration Weighted Trajectory (CWT) analysis showed several source regions potentially influencing GEM concentrations in the ambient air during the cruise: the south of the South China Sea, Vietnam, the southeastern China, the south of Japan and the Korean peninsula. Maximum concentrations (up to 25 ng/m3) were registered in Haiphong (Vietnam).
Hg(0) fluxes measured at 7 stations in the South China Sea ranged from 1.1 ng/m2/h to 2.5 ng/m2/h, with median value of 2.07 ng/m2/h. These values were 1,5 times higher than those that were measured by the same method in the Sea of Japan and the Sea of Okhotsk a month earlier.
This work was supported by the Russian Science Foundation (RSF) (Project № 19-77-10011).
How to cite: Kalinchuk, V., Lopatnikov, E., Astakhov, A., Ivanov, M., Shakirov, R., and Cuong, D. H.: Measurements of atmospheric gaseous elemental mercury (GEM) and GEM fluxes in the seas of Southeast Asia in October-December 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12394, https://doi.org/10.5194/egusphere-egu2020-12394, 2020.
Measurements of gaseous elemental mercury (GEM) in the marine boundary layer (MBL) and GEM evasion fluxes were carried out during the Russian-Vietnam cruise conducted from the Sea of Japan to the South China Sea from October 25 to December 7, 2019. All GEM measurements were performed using two RA-915M mercury analysers (Lumex LLC, Russia). Atmospheric GEM concentrations were measured at two levels (about 2 m and 20 m above the sea surface) with a time resolution of 30 minutes. GEM fluxes were measured in the South China Sea using a dynamic flux chamber.
GEM concentrations ranged between 0.56 ng/m3 and 25.47 ng/m3, and between 0.39 ng/m3 and 23.95 ng/m3 with medians of 1.38 ng/m3 and 1.45 ng/m3 for 2 m and 20 m measurements, respectively. GEM concentrations were significantly affected by air transport of GEM. Concentration Weighted Trajectory (CWT) analysis showed several source regions potentially influencing GEM concentrations in the ambient air during the cruise: the south of the South China Sea, Vietnam, the southeastern China, the south of Japan and the Korean peninsula. Maximum concentrations (up to 25 ng/m3) were registered in Haiphong (Vietnam).
Hg(0) fluxes measured at 7 stations in the South China Sea ranged from 1.1 ng/m2/h to 2.5 ng/m2/h, with median value of 2.07 ng/m2/h. These values were 1,5 times higher than those that were measured by the same method in the Sea of Japan and the Sea of Okhotsk a month earlier.
This work was supported by the Russian Science Foundation (RSF) (Project № 19-77-10011).
How to cite: Kalinchuk, V., Lopatnikov, E., Astakhov, A., Ivanov, M., Shakirov, R., and Cuong, D. H.: Measurements of atmospheric gaseous elemental mercury (GEM) and GEM fluxes in the seas of Southeast Asia in October-December 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12394, https://doi.org/10.5194/egusphere-egu2020-12394, 2020.
EGU2020-12677 | Displays | BG2.22
Atmospheric mercury (Hg(0)) concentrations and Hg(0) fluxes in the Sea of Japan and the Okhotsk Sea in fall 2019Evgeny Lopatnikov, Viktor Kalinchuk, Anatoly Astakhov, Yang Gang, and Jianjun Zou
Continuous measurements of gaseous elemental mercury (Hg(0)) in the marine boundary layer (MBL) and Hg(0) fluxes were conducted in the Sea of Japan and the Sea of Okhotsk from September 7 to October 17, 2019. All Hg(0) measurements were carried out using two RA-915M mercury analysers (Lumex LLC, Russia). Hg(0) concentrations in the air were measured at two levels (about 2 m and 20 m above the sea surface) with a time resolution of 30 minutes. Hg(0) fluxes were measured at five sample stations using a dynamic flux chamber.
During the cruise Hg(0) concentrations varied in the range from 0,47 ng/m3 to 1,55 ng/m3, and from 0,31 ng/m3 to 2,71 ng/m3 with medians of 0,92 ng/m3 for 2 m and 20 m, respectively. Atmospheric Hg(0) concentrations in measurements sites were strongly depended on the regions from where air masses came to the study areas. As a result of the Concentration Weighted Trajectory (CWT) analysis we established 2 regions that influenced the Hg(0) concentrations during the cruise: the Northeast China with the Yellow Sea region and the Kurile Islands sector of the Pacific Ocean. The arrival of air masses from China and the Yellow Sea region caused an increase in Hg(0) concentrations in the air in the Sea of Japan and the Sea of Okhotsk. Elevated concentrations were also observed In the Sea of Okhotsk during the periods air masses came from the Kurile Islands sector of the Pacific Ocean.
Hg(0) fluxes were measured at 3 stations in the Sea of Japan and at 2 stations in the Sea of Okhotsk. The values ranged from 0,57 ng/m2/h to 1,55 ng/m2/h, with median value of 1,32 ng/m2/h. A positive relationships between Hg(0) flux and air and water temperature were observed.
This work was supported by the Russian Science Foundation (RSF) (Project № 19-77-10011) and by the National Natural Science Foundation of China (Projects №: 41876065, 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (Project № GASI-GEOGE-04).
How to cite: Lopatnikov, E., Kalinchuk, V., Astakhov, A., Gang, Y., and Zou, J.: Atmospheric mercury (Hg(0)) concentrations and Hg(0) fluxes in the Sea of Japan and the Okhotsk Sea in fall 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12677, https://doi.org/10.5194/egusphere-egu2020-12677, 2020.
Continuous measurements of gaseous elemental mercury (Hg(0)) in the marine boundary layer (MBL) and Hg(0) fluxes were conducted in the Sea of Japan and the Sea of Okhotsk from September 7 to October 17, 2019. All Hg(0) measurements were carried out using two RA-915M mercury analysers (Lumex LLC, Russia). Hg(0) concentrations in the air were measured at two levels (about 2 m and 20 m above the sea surface) with a time resolution of 30 minutes. Hg(0) fluxes were measured at five sample stations using a dynamic flux chamber.
During the cruise Hg(0) concentrations varied in the range from 0,47 ng/m3 to 1,55 ng/m3, and from 0,31 ng/m3 to 2,71 ng/m3 with medians of 0,92 ng/m3 for 2 m and 20 m, respectively. Atmospheric Hg(0) concentrations in measurements sites were strongly depended on the regions from where air masses came to the study areas. As a result of the Concentration Weighted Trajectory (CWT) analysis we established 2 regions that influenced the Hg(0) concentrations during the cruise: the Northeast China with the Yellow Sea region and the Kurile Islands sector of the Pacific Ocean. The arrival of air masses from China and the Yellow Sea region caused an increase in Hg(0) concentrations in the air in the Sea of Japan and the Sea of Okhotsk. Elevated concentrations were also observed In the Sea of Okhotsk during the periods air masses came from the Kurile Islands sector of the Pacific Ocean.
Hg(0) fluxes were measured at 3 stations in the Sea of Japan and at 2 stations in the Sea of Okhotsk. The values ranged from 0,57 ng/m2/h to 1,55 ng/m2/h, with median value of 1,32 ng/m2/h. A positive relationships between Hg(0) flux and air and water temperature were observed.
This work was supported by the Russian Science Foundation (RSF) (Project № 19-77-10011) and by the National Natural Science Foundation of China (Projects №: 41876065, 41420104005, U1606401) and National Program on Global Change and Air-Sea Interaction (Project № GASI-GEOGE-04).
How to cite: Lopatnikov, E., Kalinchuk, V., Astakhov, A., Gang, Y., and Zou, J.: Atmospheric mercury (Hg(0)) concentrations and Hg(0) fluxes in the Sea of Japan and the Okhotsk Sea in fall 2019, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12677, https://doi.org/10.5194/egusphere-egu2020-12677, 2020.
EGU2020-12787 | Displays | BG2.22
A Diagnosis Analysis to inter-annual variation of air-sea Hg flux in global ocean and the “seesaw” effect in equatorial PacificShaojian huang and Yanxu Zhang
The inter-annual variation of mercury(Hg) was spotted in monitoring stations, like the Alert and Mace Head. Nevertheless, the potential reason still lacks of studying. With periodic disturbance like ENSO, air-sea exchange flux, the largest flux between Earth system reservoirs, might greatly contribute to the inter-annual variation of Hg. Therefore, this study intended to explore the inter-annual variation of Hg0, a dominant evasion form of Hg, driven by MITgcm (ocean model). In general, the inter-annual variation of Hg evasion from global ocean was relatively stable in mid and high latitude, but a violent fluctuation was found in the tropical sea areas, especially equatorial Pacific. A distinct latitudinal difference was spotted that the fluctuation of Hg0 evasion was mainly attributed to wind speed in tropical sea areas, while in temperate zones were correlated with precipitation. Besides, air temperature variation seems to control the Hg0 evasion in the sea areas of South Temperate Zone (STZ) as well as South Frigid Zone (SFZ). Furthermore, an evident “seesaw” effect of Hg0 evasion anomaly was observed in equatorial Pacific, especially within Nino 3.4 and Nino 4, between El Niño(EN) and La Niña(LN) events. The increasing (decreasing) evasion anomaly in Nino 3.4 during the LN(EN) mainly attributed to the increase (decrease) of wind speed induced by stronger Walker circulation. While the increasing (decreasing) evasion anomaly in Nino 4 during EN(LN) was likely accounted for the rising (reducing) precipitation caused by the collapse of Walker circulation as well as the eastward shifting upward motion. Subsequently, the increasing anomaly of Hg0 evasion was simulated by GEOS-Chem model to further explore the potential impact. Results showed that countries, like American, China, India and Brazil. have occupied a large proportion of crops farming, but there spotted a relatively higher THg deposition anomalies, which might increase the human exposure to Hg. Finally, based on limited information, a hypothesis was put forward that there might be an indirect impact of ENSO-driven MeHg variation on the mass mortality of marine mammals.
How to cite: huang, S. and Zhang, Y.: A Diagnosis Analysis to inter-annual variation of air-sea Hg flux in global ocean and the “seesaw” effect in equatorial Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12787, https://doi.org/10.5194/egusphere-egu2020-12787, 2020.
The inter-annual variation of mercury(Hg) was spotted in monitoring stations, like the Alert and Mace Head. Nevertheless, the potential reason still lacks of studying. With periodic disturbance like ENSO, air-sea exchange flux, the largest flux between Earth system reservoirs, might greatly contribute to the inter-annual variation of Hg. Therefore, this study intended to explore the inter-annual variation of Hg0, a dominant evasion form of Hg, driven by MITgcm (ocean model). In general, the inter-annual variation of Hg evasion from global ocean was relatively stable in mid and high latitude, but a violent fluctuation was found in the tropical sea areas, especially equatorial Pacific. A distinct latitudinal difference was spotted that the fluctuation of Hg0 evasion was mainly attributed to wind speed in tropical sea areas, while in temperate zones were correlated with precipitation. Besides, air temperature variation seems to control the Hg0 evasion in the sea areas of South Temperate Zone (STZ) as well as South Frigid Zone (SFZ). Furthermore, an evident “seesaw” effect of Hg0 evasion anomaly was observed in equatorial Pacific, especially within Nino 3.4 and Nino 4, between El Niño(EN) and La Niña(LN) events. The increasing (decreasing) evasion anomaly in Nino 3.4 during the LN(EN) mainly attributed to the increase (decrease) of wind speed induced by stronger Walker circulation. While the increasing (decreasing) evasion anomaly in Nino 4 during EN(LN) was likely accounted for the rising (reducing) precipitation caused by the collapse of Walker circulation as well as the eastward shifting upward motion. Subsequently, the increasing anomaly of Hg0 evasion was simulated by GEOS-Chem model to further explore the potential impact. Results showed that countries, like American, China, India and Brazil. have occupied a large proportion of crops farming, but there spotted a relatively higher THg deposition anomalies, which might increase the human exposure to Hg. Finally, based on limited information, a hypothesis was put forward that there might be an indirect impact of ENSO-driven MeHg variation on the mass mortality of marine mammals.
How to cite: huang, S. and Zhang, Y.: A Diagnosis Analysis to inter-annual variation of air-sea Hg flux in global ocean and the “seesaw” effect in equatorial Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12787, https://doi.org/10.5194/egusphere-egu2020-12787, 2020.
EGU2020-13103 | Displays | BG2.22
Investigation of long-term fate of mercury in the ocean using a new global modelToru Kawai, Takeo Sakurai, and Noriyuki Suzuki
Numerical modeling is useful for evaluating the international efforts, such as the Minamata Convention on Mercury, that are directed towards the reduction of anthropogenic emissions. We have developed a new global model for mercury, denoted FATE-Hg, which is based on a fully coupled atmosphere-ocean chemical transport model and low and high-order marine ecosystem models. The model considers methylated mercury production in the open ocean seawater, bioconcentration, and food-web biomagnification from particle organic matter to fish. In this study, we performed a long-term simulation over three centuries with changes in anthropogenic emission since the Industrial Revolution, and investigated the long-term evolution of total mercury (THg) in the ocean. The simulated oceanic THg showed a phase lag of 5–10 years from the anthropogenic emission in the surface-intermediate oceans. As of 2010, oceanic THg was 410 Gg, which is 1.6–16.9 times higher than that estimated by the previous model. The estimated overall turnover time of oceanic THg determined by our model was 320 years, which is significantly shorter than those estimated by previous model-based studies. Additionally, we estimated geographic THg sources in the upper ocean. The results showed that North America (NA), Europe (EU), and East Asia are the dominant source regions in most ocean sections in the Northern Hemisphere, though the emissions from NA and EU have fall considerably since the 1970s. This result indicated that a significant amount of mercury that had been emitted from NA and EU in the past persists in present-day seawater.
How to cite: Kawai, T., Sakurai, T., and Suzuki, N.: Investigation of long-term fate of mercury in the ocean using a new global model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13103, https://doi.org/10.5194/egusphere-egu2020-13103, 2020.
Numerical modeling is useful for evaluating the international efforts, such as the Minamata Convention on Mercury, that are directed towards the reduction of anthropogenic emissions. We have developed a new global model for mercury, denoted FATE-Hg, which is based on a fully coupled atmosphere-ocean chemical transport model and low and high-order marine ecosystem models. The model considers methylated mercury production in the open ocean seawater, bioconcentration, and food-web biomagnification from particle organic matter to fish. In this study, we performed a long-term simulation over three centuries with changes in anthropogenic emission since the Industrial Revolution, and investigated the long-term evolution of total mercury (THg) in the ocean. The simulated oceanic THg showed a phase lag of 5–10 years from the anthropogenic emission in the surface-intermediate oceans. As of 2010, oceanic THg was 410 Gg, which is 1.6–16.9 times higher than that estimated by the previous model. The estimated overall turnover time of oceanic THg determined by our model was 320 years, which is significantly shorter than those estimated by previous model-based studies. Additionally, we estimated geographic THg sources in the upper ocean. The results showed that North America (NA), Europe (EU), and East Asia are the dominant source regions in most ocean sections in the Northern Hemisphere, though the emissions from NA and EU have fall considerably since the 1970s. This result indicated that a significant amount of mercury that had been emitted from NA and EU in the past persists in present-day seawater.
How to cite: Kawai, T., Sakurai, T., and Suzuki, N.: Investigation of long-term fate of mercury in the ocean using a new global model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13103, https://doi.org/10.5194/egusphere-egu2020-13103, 2020.
EGU2020-19753 | Displays | BG2.22
First eddy covariance flux measurements of gaseous elemental mercury over a grasslandStefan Osterwalder, Werner Eugster, Iris Feigenwinter, and Martin Jiskra
Direct measurements of the net ecosystem exchange (NEE) of gaseous elemental mercury (Hg0) are crucial to improve our understanding of global Hg cycling and ultimately Hg exposure in humans and wildlife. The lack of long-term, ecosystem-scale measurements causes large uncertainties in Hg0 flux estimates. Today it remains unclear whether terrestrial ecosystems are net sinks or sources of atmospheric Hg0. Here, we present the first successful eddy covariance NEE measurements of Hg0 over natural, low-Hg soils (41 - 75 ng Hg g-1 topsoil [0-10 cm]) at a managed grassland site in Chamau, Switzerland. We present a detailed validation of the eddy covariance technique for Hg0 based on a Lumex mercury monitor RA-915AM. The flux detection limit derived from a zero-flux experiment in the laboratory was 0.22 ng m-2 h-1 (maximum) with a 50 % cut-off at 0.074 ng m-2 h-1. The statistical estimate of the Hg0 flux detection limit under real-world outdoor conditions at the site was 5.9 ng m-2 h-1 (50 % cut-off). Based on our analysis we give suggestions to further improve the precision of the system and pinpoint challenges and interferences that occurred during the 34-day pilot campaign in summer 2018. The data were obtained during extremely hot and dry meteorological conditions. We estimated a net summertime grassland-atmosphere Hg0 flux from -0.6 to 7.4 ng m-2 h-1 (range between 25th and 75th percentiles). The measurements revealed a distinct diel pattern with lower nighttime fluxes (1.0 ng m-2 h-1) compared to daytime fluxes (8.4 ng m-2 h-1). Drought stress during the campaign induced partial stomata closure of vegetation leading to a midday depression in CO2 uptake, which did not recover during the afternoon. We suggest that partial stomata closure dampened Hg0 uptake by vegetation as well, resulting in a NEE of Hg0 dominated by soil emission. The new Eddy Mercury system seems suitable to complement existing research infrastructures such as ICOS RI in Europe or NOAA Observing Systems in the US built to calculate greenhouse gas balances with direct Hg0 deposition and emission measurements. We anticipate our Eddy Mercury system to improve knowledge about Hg cycling between ecosystems and the atmosphere and to challenge model simulations on a regional and global scale.
How to cite: Osterwalder, S., Eugster, W., Feigenwinter, I., and Jiskra, M.: First eddy covariance flux measurements of gaseous elemental mercury over a grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19753, https://doi.org/10.5194/egusphere-egu2020-19753, 2020.
Direct measurements of the net ecosystem exchange (NEE) of gaseous elemental mercury (Hg0) are crucial to improve our understanding of global Hg cycling and ultimately Hg exposure in humans and wildlife. The lack of long-term, ecosystem-scale measurements causes large uncertainties in Hg0 flux estimates. Today it remains unclear whether terrestrial ecosystems are net sinks or sources of atmospheric Hg0. Here, we present the first successful eddy covariance NEE measurements of Hg0 over natural, low-Hg soils (41 - 75 ng Hg g-1 topsoil [0-10 cm]) at a managed grassland site in Chamau, Switzerland. We present a detailed validation of the eddy covariance technique for Hg0 based on a Lumex mercury monitor RA-915AM. The flux detection limit derived from a zero-flux experiment in the laboratory was 0.22 ng m-2 h-1 (maximum) with a 50 % cut-off at 0.074 ng m-2 h-1. The statistical estimate of the Hg0 flux detection limit under real-world outdoor conditions at the site was 5.9 ng m-2 h-1 (50 % cut-off). Based on our analysis we give suggestions to further improve the precision of the system and pinpoint challenges and interferences that occurred during the 34-day pilot campaign in summer 2018. The data were obtained during extremely hot and dry meteorological conditions. We estimated a net summertime grassland-atmosphere Hg0 flux from -0.6 to 7.4 ng m-2 h-1 (range between 25th and 75th percentiles). The measurements revealed a distinct diel pattern with lower nighttime fluxes (1.0 ng m-2 h-1) compared to daytime fluxes (8.4 ng m-2 h-1). Drought stress during the campaign induced partial stomata closure of vegetation leading to a midday depression in CO2 uptake, which did not recover during the afternoon. We suggest that partial stomata closure dampened Hg0 uptake by vegetation as well, resulting in a NEE of Hg0 dominated by soil emission. The new Eddy Mercury system seems suitable to complement existing research infrastructures such as ICOS RI in Europe or NOAA Observing Systems in the US built to calculate greenhouse gas balances with direct Hg0 deposition and emission measurements. We anticipate our Eddy Mercury system to improve knowledge about Hg cycling between ecosystems and the atmosphere and to challenge model simulations on a regional and global scale.
How to cite: Osterwalder, S., Eugster, W., Feigenwinter, I., and Jiskra, M.: First eddy covariance flux measurements of gaseous elemental mercury over a grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19753, https://doi.org/10.5194/egusphere-egu2020-19753, 2020.
EGU2020-1598 | Displays | BG2.22
The storage and influencing factors of mercury in the permafrost of the Tibetan PlateauJing Gu, Qiaotong Pang, Jinzhi Ding, Runsheng Yin, Yuanhe Yang, and Yanxu Zhang
Soil is one of the largest reservoir of mercury in the environment. Globally, most of the mercury in the soil is stored in permafrost, such as the Arctic and the Tibetan Plateau. Mercury in the soil is mainly derived from atmospheric deposition and tightly bound to the organic carbon. The mercury level in the permafrost over the Tibetan Plateau and its influencing factors have been less studied. This study analyzes soil total mercury (STHg) concentrations and its vertical distribution in meadow soil samples collected from the Tibetan Plateau. We adopt a nested-grid high-resolution GEOS-Chem model to simulate atmospheric mercury deposition. The relationship between STHg and soil organic carbon(OCD) as well as atmospheric deposition are explored. We also extend our analysis to data in the Tibetan Plateau and other regions of China in the literature. Our results show that the STHg concentrations in the Tibetan Plateau are 19.9±12.4 ng/g. The concentrations are higher in the south/east and lower in the north/west in the Tibetan Plateau, consistent with the previous results. Our model shows that the average deposition flux of Hg is 3.3 ug m-2 yr-1 with 57% contributed by dry deposition of Hg0, followed by dry deposition of HgII and HgP (19%) and wet deposition (24%). We calculate the Hg to carbon ratio (RHgC) of 5.52 ± 5.11 μg Hg/g C and the estimated STHg is 67.45 Gg in alpine grasslands in the Tibetan Plateau, contributing about 2.7% globally. We find a positive correlation between OCD and STHg in the Tibetan Plateau(Log(STHg) = 0.35log(OCD) + 0.99, R2 = 0.24) and a weak relationship between model residual (defined as the difference between model fitting values and observations) and atmospheric total Hg deposition. We conclude that soil organic carbon(SOC) and atmospheric deposition work simultaneously for STHg. Atmospheric deposition determines the potential levels of STHg in large spatial scales, while SOC and its characteristics modulate STHg locally by influencing the fate and transport of Hg.
How to cite: Gu, J., Pang, Q., Ding, J., Yin, R., Yang, Y., and Zhang, Y.: The storage and influencing factors of mercury in the permafrost of the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1598, https://doi.org/10.5194/egusphere-egu2020-1598, 2020.
Soil is one of the largest reservoir of mercury in the environment. Globally, most of the mercury in the soil is stored in permafrost, such as the Arctic and the Tibetan Plateau. Mercury in the soil is mainly derived from atmospheric deposition and tightly bound to the organic carbon. The mercury level in the permafrost over the Tibetan Plateau and its influencing factors have been less studied. This study analyzes soil total mercury (STHg) concentrations and its vertical distribution in meadow soil samples collected from the Tibetan Plateau. We adopt a nested-grid high-resolution GEOS-Chem model to simulate atmospheric mercury deposition. The relationship between STHg and soil organic carbon(OCD) as well as atmospheric deposition are explored. We also extend our analysis to data in the Tibetan Plateau and other regions of China in the literature. Our results show that the STHg concentrations in the Tibetan Plateau are 19.9±12.4 ng/g. The concentrations are higher in the south/east and lower in the north/west in the Tibetan Plateau, consistent with the previous results. Our model shows that the average deposition flux of Hg is 3.3 ug m-2 yr-1 with 57% contributed by dry deposition of Hg0, followed by dry deposition of HgII and HgP (19%) and wet deposition (24%). We calculate the Hg to carbon ratio (RHgC) of 5.52 ± 5.11 μg Hg/g C and the estimated STHg is 67.45 Gg in alpine grasslands in the Tibetan Plateau, contributing about 2.7% globally. We find a positive correlation between OCD and STHg in the Tibetan Plateau(Log(STHg) = 0.35log(OCD) + 0.99, R2 = 0.24) and a weak relationship between model residual (defined as the difference between model fitting values and observations) and atmospheric total Hg deposition. We conclude that soil organic carbon(SOC) and atmospheric deposition work simultaneously for STHg. Atmospheric deposition determines the potential levels of STHg in large spatial scales, while SOC and its characteristics modulate STHg locally by influencing the fate and transport of Hg.
How to cite: Gu, J., Pang, Q., Ding, J., Yin, R., Yang, Y., and Zhang, Y.: The storage and influencing factors of mercury in the permafrost of the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1598, https://doi.org/10.5194/egusphere-egu2020-1598, 2020.
EGU2020-11718 | Displays | BG2.22
Bottom Sediments of Arctic Lakes as Indicators of Mercury Biogeochemical MigrationYury Tatsiy
Studies of dated cores of bottom sediments from Arctic lakes to determine flows and the history of sedimentation of heavy metals have been carried out since the beginning of the 90s. This is largely due to the need to understand the spatial and temporal trends of pollution in the Arctic and the ways of influencing wildlife and people, especially in a changing climate. Arctic lakes are sensitive indicators of global changes in the environment and climate, as well as the effects of regional and transboundary transport of pollutants. Bottom sediments of Arctic lakes that are not subject to direct anthropogenic influences are a kind of paleoclimatic and paleogeochemical archives that contain information about biogeochemical processes on the catchment and in the reservoir itself, informatively reflect environmental changes.
Arctic mercury is of particular interest. Besides the fact that this metal is an element of the first hazard class, it is a global pollutant. Unfortunately, the published data on mercury in the bottom sediments of Arctic lakes are much less than for other heavy metals. To some extent, this is due to analytical problems in determining low mercury levels.
The aim of the research is to assess the dynamics of sedimentation of mercury and identify a possible anthropogenic contribution to the period of industrial activity.
The results of research of mercury distribution in sediments are presented for cores from five Arctic lakes – NARY_1-2 (Malozemelskaya tundra), NARY_2-4 and 9-1 (Lovetsky Island, the mouth of the Pechora River), Langtibejto (Yamal Peninsula) and Gol’tsovoe (Gydan Peninsula). Sedimentation rates were estimated using 210Pb and 137Cs geochronology. Chemical composition, granulometry and loss on ignition were determined layer by layer for all sediment cores.
The layer-by-layer analysis of all cores of bottom sediments showed that the distribution of mercury differs significantly from the distribution of other elements by a significantly stronger enrichment of the surface layers. The nature of this distribution in column NARY1_2 coincides with both the beginning of the industrial period (end of the 19th century) and the beginning of the work of the Norilsk industrial complex.
Enrichment of the surface layer of sediments can be caused not only by transboundary transport of mercury, but also by an increased content of organic matter in the upper horizons of sediments.
The nature of the distribution of mercury along the length of the columns and the distribution over fractions with different particle sizes showed that the finest fraction does not always determine the total concentration in the slice. At the same time, large particles (> 0.2 mm) with a high mercury concentration are present in the columns.
The data obtained show that, unlike other elements, the studied lakes are conditionally background for mercury.
This work was supported by the Russian Science Foundation (project 18-17-00184)
How to cite: Tatsiy, Y.: Bottom Sediments of Arctic Lakes as Indicators of Mercury Biogeochemical Migration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11718, https://doi.org/10.5194/egusphere-egu2020-11718, 2020.
Studies of dated cores of bottom sediments from Arctic lakes to determine flows and the history of sedimentation of heavy metals have been carried out since the beginning of the 90s. This is largely due to the need to understand the spatial and temporal trends of pollution in the Arctic and the ways of influencing wildlife and people, especially in a changing climate. Arctic lakes are sensitive indicators of global changes in the environment and climate, as well as the effects of regional and transboundary transport of pollutants. Bottom sediments of Arctic lakes that are not subject to direct anthropogenic influences are a kind of paleoclimatic and paleogeochemical archives that contain information about biogeochemical processes on the catchment and in the reservoir itself, informatively reflect environmental changes.
Arctic mercury is of particular interest. Besides the fact that this metal is an element of the first hazard class, it is a global pollutant. Unfortunately, the published data on mercury in the bottom sediments of Arctic lakes are much less than for other heavy metals. To some extent, this is due to analytical problems in determining low mercury levels.
The aim of the research is to assess the dynamics of sedimentation of mercury and identify a possible anthropogenic contribution to the period of industrial activity.
The results of research of mercury distribution in sediments are presented for cores from five Arctic lakes – NARY_1-2 (Malozemelskaya tundra), NARY_2-4 and 9-1 (Lovetsky Island, the mouth of the Pechora River), Langtibejto (Yamal Peninsula) and Gol’tsovoe (Gydan Peninsula). Sedimentation rates were estimated using 210Pb and 137Cs geochronology. Chemical composition, granulometry and loss on ignition were determined layer by layer for all sediment cores.
The layer-by-layer analysis of all cores of bottom sediments showed that the distribution of mercury differs significantly from the distribution of other elements by a significantly stronger enrichment of the surface layers. The nature of this distribution in column NARY1_2 coincides with both the beginning of the industrial period (end of the 19th century) and the beginning of the work of the Norilsk industrial complex.
Enrichment of the surface layer of sediments can be caused not only by transboundary transport of mercury, but also by an increased content of organic matter in the upper horizons of sediments.
The nature of the distribution of mercury along the length of the columns and the distribution over fractions with different particle sizes showed that the finest fraction does not always determine the total concentration in the slice. At the same time, large particles (> 0.2 mm) with a high mercury concentration are present in the columns.
The data obtained show that, unlike other elements, the studied lakes are conditionally background for mercury.
This work was supported by the Russian Science Foundation (project 18-17-00184)
How to cite: Tatsiy, Y.: Bottom Sediments of Arctic Lakes as Indicators of Mercury Biogeochemical Migration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11718, https://doi.org/10.5194/egusphere-egu2020-11718, 2020.
EGU2020-5634 | Displays | BG2.22
Mercury dynamics from pan-Canadian survey of lakes: analyses of sediment coresIrene Gregory-Eaves, Marieke Beaulieu, Marc Amyot, Katherine Griffiths, and Alexandre Poulain
Strong measures have been taken since the 1970s to reduce mercury emissions in Canada. However, long-range transport of emissions continues and constitutes a large percentage of the total anthropogenic deposition of mercury in Canada. Natural sources of mercury are also heterogeneously distributed across the Canadian landscape. As part of the LakePulse network (www.lakepulse.ca), we are quantifying mercury concentration in hundreds of lake sediment cores across 13 Canadian ecozones. Analyses from eastern Canada lakes showed that total mercury is significantly different among ecozones, and many ecozones showed higher total mercury concentrations in contemporary sediments. Contemporary methyl mercury concentrations also differed among ecozones. Our overarching goals are to map the heterogeneity in mercury concentrations across the country and to identify the most parsimonious set of predictors considering a suite of physico-chemical and land-use variables from lakes and their watersheds set across the temperate to subarctic landscape.
How to cite: Gregory-Eaves, I., Beaulieu, M., Amyot, M., Griffiths, K., and Poulain, A.: Mercury dynamics from pan-Canadian survey of lakes: analyses of sediment cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5634, https://doi.org/10.5194/egusphere-egu2020-5634, 2020.
Strong measures have been taken since the 1970s to reduce mercury emissions in Canada. However, long-range transport of emissions continues and constitutes a large percentage of the total anthropogenic deposition of mercury in Canada. Natural sources of mercury are also heterogeneously distributed across the Canadian landscape. As part of the LakePulse network (www.lakepulse.ca), we are quantifying mercury concentration in hundreds of lake sediment cores across 13 Canadian ecozones. Analyses from eastern Canada lakes showed that total mercury is significantly different among ecozones, and many ecozones showed higher total mercury concentrations in contemporary sediments. Contemporary methyl mercury concentrations also differed among ecozones. Our overarching goals are to map the heterogeneity in mercury concentrations across the country and to identify the most parsimonious set of predictors considering a suite of physico-chemical and land-use variables from lakes and their watersheds set across the temperate to subarctic landscape.
How to cite: Gregory-Eaves, I., Beaulieu, M., Amyot, M., Griffiths, K., and Poulain, A.: Mercury dynamics from pan-Canadian survey of lakes: analyses of sediment cores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5634, https://doi.org/10.5194/egusphere-egu2020-5634, 2020.
EGU2020-7712 | Displays | BG2.22
Spatial variations of mercury in sediments of Aviles Harbour and its implications on dredgingEfrén García Ordiales, Mario Mangas, Lorena Sanz-Prada, Elena Pavoni, Stefano Covelli, Nieves Roqueñí, Jorge Loredo, and Pablo Cienfuegos
Aviles estuary is one of the most impacted estuaries of the north of Spain. In its margins, there are several heavy industries such as steel, zinc and aluminium factories together with other little factories dedicated to secondary metallurgical products. Because of the intense metallurgical activities developed in the area, sediments of the estuary show an important metal load. Among the different heavy metals present in the estuary, Hg in one of the most important due to its toxicity and potential transference to biota. To study the Hg concentrations present in the estuary, 52 scattered samples were collected. Samples were analysed for total Hg, and other parameters such as grain size, organic matter and sulphur have been determined. Total Hg concentration in the estuary sediments ranged between 0.1 to 18.3µg g-1 with an average of 4.3 µg g-1. The particle size of the sediment governed the mercury dispersion in the estuary. In the inner part where silt and clay fraction are predominant, Hg showed the highest values while in areas where sands predominate Hg concentrations decrease. The Hg concentration in a total of 36 samples exceed the probable effect level established by NOAA, which suggest that Hg may be transferred to the biota of the estuary and could be a problem for the health status of the area. On the other hand, concentrations of 26 samples were above the C level of the Spanish dredging regulations, limiting its management to encapsulation in non-vulnerable areas or its management as waste by an authorized manager.
How to cite: García Ordiales, E., Mangas, M., Sanz-Prada, L., Pavoni, E., Covelli, S., Roqueñí, N., Loredo, J., and Cienfuegos, P.: Spatial variations of mercury in sediments of Aviles Harbour and its implications on dredging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7712, https://doi.org/10.5194/egusphere-egu2020-7712, 2020.
Aviles estuary is one of the most impacted estuaries of the north of Spain. In its margins, there are several heavy industries such as steel, zinc and aluminium factories together with other little factories dedicated to secondary metallurgical products. Because of the intense metallurgical activities developed in the area, sediments of the estuary show an important metal load. Among the different heavy metals present in the estuary, Hg in one of the most important due to its toxicity and potential transference to biota. To study the Hg concentrations present in the estuary, 52 scattered samples were collected. Samples were analysed for total Hg, and other parameters such as grain size, organic matter and sulphur have been determined. Total Hg concentration in the estuary sediments ranged between 0.1 to 18.3µg g-1 with an average of 4.3 µg g-1. The particle size of the sediment governed the mercury dispersion in the estuary. In the inner part where silt and clay fraction are predominant, Hg showed the highest values while in areas where sands predominate Hg concentrations decrease. The Hg concentration in a total of 36 samples exceed the probable effect level established by NOAA, which suggest that Hg may be transferred to the biota of the estuary and could be a problem for the health status of the area. On the other hand, concentrations of 26 samples were above the C level of the Spanish dredging regulations, limiting its management to encapsulation in non-vulnerable areas or its management as waste by an authorized manager.
How to cite: García Ordiales, E., Mangas, M., Sanz-Prada, L., Pavoni, E., Covelli, S., Roqueñí, N., Loredo, J., and Cienfuegos, P.: Spatial variations of mercury in sediments of Aviles Harbour and its implications on dredging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7712, https://doi.org/10.5194/egusphere-egu2020-7712, 2020.
EGU2020-18549 | Displays | BG2.22
Recycling of mercury pollution in the fluvial system - revitalize or not?Michal Hošek, Tomáš Matys Grygar, Jiří Štojdl, Jitka Elznicová, and Jan Svoboda
The catchments of the Kössein and the Röslau rivers (north-eastern Bavaria, Germany) was impacted by pollution from Chemical Factory Marktredwitz (CFM). The CFM produced Hg compounds for almost 200 years until the severe pollution of the factory surroundings and the Kössein River was revealed in the 1980s. The channel belt of the Kössein-Röslau rivers downstream the CFM is now one of the most severe Hg pollution hotspots in Central Europe. At the present days, more than 30 years after the factory abandonment, the Hg concentrations in fish muscles reach up to 6 mg/kg in the Skalka Reservoir, which acts as a sedimentary trap for that pollution.
The main vector for the actual fluvial recycling of Hg is suspended particulate matter (SPM) formed by the fluvial erosion of the channel belt. In previous work we found out that the Hg inventory in the Kössein-Röslau river system is approximately 20 t Hg deposited in a 22 km long channel belt, mainly as easily thermodesorbed form, perhaps natural organic matter bound Hg (NOM-Hg). Because the Kössein and the Röslau rivers still export SPM with mean concentrations of approximately 20 mg Hg/kg, revitalization options to stop Hg pollution recycling should be considered. We studied the Röslau River floodplain upstream the confluence with the Eger River, situated just upstream the inlet to the Skalka Reservoir. This locality is used for cattle grazing although Hg concentration up to 122 mg/kg can be found in some sediment strata and approximately 45 mg/kg is in topsoils. The locality has been investigated by geophysical methods ERT (electrical resistivity tomography) and DEMP (dipole electromagnetic profiling) to reveal the floodplain subsurface sedimentary architecture, because it is a key to find recent geomorphic traps for the polluted sediment. The floodplain was then sampled after drill coring, Hg analysis was performed by AMA-254 and element analysis by XRF. We found a close correlation between Zn and Hg concentrations, which facilitated the study of the pollution hotspot. We found three facies types of polluted sediments: channel belt (up to 122 mg Hg/kg), fills of shallow flood channels in floodplain (up to 73 mg Hg/kg), and top strata of overbank fines (up to 56 mg Hg/kg). The knowledge on the pollution distribution is essential for the future revitalization and protection measures.
How to cite: Hošek, M., Matys Grygar, T., Štojdl, J., Elznicová, J., and Svoboda, J.: Recycling of mercury pollution in the fluvial system - revitalize or not?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18549, https://doi.org/10.5194/egusphere-egu2020-18549, 2020.
The catchments of the Kössein and the Röslau rivers (north-eastern Bavaria, Germany) was impacted by pollution from Chemical Factory Marktredwitz (CFM). The CFM produced Hg compounds for almost 200 years until the severe pollution of the factory surroundings and the Kössein River was revealed in the 1980s. The channel belt of the Kössein-Röslau rivers downstream the CFM is now one of the most severe Hg pollution hotspots in Central Europe. At the present days, more than 30 years after the factory abandonment, the Hg concentrations in fish muscles reach up to 6 mg/kg in the Skalka Reservoir, which acts as a sedimentary trap for that pollution.
The main vector for the actual fluvial recycling of Hg is suspended particulate matter (SPM) formed by the fluvial erosion of the channel belt. In previous work we found out that the Hg inventory in the Kössein-Röslau river system is approximately 20 t Hg deposited in a 22 km long channel belt, mainly as easily thermodesorbed form, perhaps natural organic matter bound Hg (NOM-Hg). Because the Kössein and the Röslau rivers still export SPM with mean concentrations of approximately 20 mg Hg/kg, revitalization options to stop Hg pollution recycling should be considered. We studied the Röslau River floodplain upstream the confluence with the Eger River, situated just upstream the inlet to the Skalka Reservoir. This locality is used for cattle grazing although Hg concentration up to 122 mg/kg can be found in some sediment strata and approximately 45 mg/kg is in topsoils. The locality has been investigated by geophysical methods ERT (electrical resistivity tomography) and DEMP (dipole electromagnetic profiling) to reveal the floodplain subsurface sedimentary architecture, because it is a key to find recent geomorphic traps for the polluted sediment. The floodplain was then sampled after drill coring, Hg analysis was performed by AMA-254 and element analysis by XRF. We found a close correlation between Zn and Hg concentrations, which facilitated the study of the pollution hotspot. We found three facies types of polluted sediments: channel belt (up to 122 mg Hg/kg), fills of shallow flood channels in floodplain (up to 73 mg Hg/kg), and top strata of overbank fines (up to 56 mg Hg/kg). The knowledge on the pollution distribution is essential for the future revitalization and protection measures.
How to cite: Hošek, M., Matys Grygar, T., Štojdl, J., Elznicová, J., and Svoboda, J.: Recycling of mercury pollution in the fluvial system - revitalize or not?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18549, https://doi.org/10.5194/egusphere-egu2020-18549, 2020.
EGU2020-9735 | Displays | BG2.22
Mercury contamination in German rivers: Historical trends and current situationJan G. Wiederhold, Harald Biester, Anna-Lena Gerloff, Jens Hahn, and Lars Duester
Mercury (Hg) is a priority pollutant in aquatic ecosystems. In Germany, the chemical status of all large rivers is classified as “not good” due to the exceedance of at least one environmental quality standard (EQS) of the EU Water Framework Directive [1], mostly due to the failure to meet the EQS for Hg in fish of 20 μg kg-1. Mercury has been introduced to rivers in Germany for more than a century from a variety of anthropogenic sources (e.g., industrial effluents, waste water treatment plants). Transport of Hg in river water occurs dominantly associated with suspended particulate matter, while dissolved Hg concentrations are low. Direct Hg releases to surface waters have been greatly reduced over the last decades and today inputs are dominated by diffuse sources (e.g., atmospheric deposition, soil erosion) and the remobilization of Hg previously deposited in bottom sediments. A key factor in controlling the remobilization and transfer of legacy Hg from sediments to water and ultimately into biota is the chemical form in which Hg is present in sediments and suspended particulate matter.
Here, we present (i) historical trends of Hg concentrations in suspended particulate matter in German rivers (e.g., Rhine, Elbe) over several decades compiled from public databases [2] and (ii) first results of a study aiming to characterize the chemical form of Hg in recently collected suspended particulate matter and contaminated sediment samples from German rivers using pyrolytic thermodesorption analysis [3]. The Hg release curves of samples during continuous heating up to 650°C were compared with those of reference compounds. Total Hg concentrations were determined by a direct Hg analyzer (Nippon MA-3000).
The historical records reveal that Hg concentrations in suspended particulate matter have decreased in the large German rivers from the beginning of the 1990s until today. For example, while yearly average values of 500-800 μg kg-1 Hg were still common in the lower reaches of the Rhine river in the early 1990s, most values in the last five years have been below 300 μg kg-1 Hg. However, the Elbe river, one of the most polluted rivers in Germany, still exhibits Hg values above 1000 μg kg-1 in some areas, despite a decreasing trend from even higher historical values. First results from pyrolytic thermodesorption analyses reveal that Hg in suspended particulate matter from Rhine and Elbe is released at temperatures around 300°C, suggesting a dominance of organically-bound and/or sulfide-bound Hg(II) species. Interestingly, a shift to lower Hg release temperatures was observed after aging of wet sample material and for freeze-dried compared with wet sediments, highlighting the importance of sample preparation and the dynamic nature of Hg binding forms in natural samples.
[1] European Environment Agency (2018) European waters - Assessment of status and pressures 2018.
[2] e.g., http://undine.bafg.de, http://fgg-rhein.bafg.de, https://www.umweltprobenbank.de
[3] Biester H., Scholz C. (1997) Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environ. Sci. Technol. 31, 233-239.
How to cite: Wiederhold, J. G., Biester, H., Gerloff, A.-L., Hahn, J., and Duester, L.: Mercury contamination in German rivers: Historical trends and current situation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9735, https://doi.org/10.5194/egusphere-egu2020-9735, 2020.
Mercury (Hg) is a priority pollutant in aquatic ecosystems. In Germany, the chemical status of all large rivers is classified as “not good” due to the exceedance of at least one environmental quality standard (EQS) of the EU Water Framework Directive [1], mostly due to the failure to meet the EQS for Hg in fish of 20 μg kg-1. Mercury has been introduced to rivers in Germany for more than a century from a variety of anthropogenic sources (e.g., industrial effluents, waste water treatment plants). Transport of Hg in river water occurs dominantly associated with suspended particulate matter, while dissolved Hg concentrations are low. Direct Hg releases to surface waters have been greatly reduced over the last decades and today inputs are dominated by diffuse sources (e.g., atmospheric deposition, soil erosion) and the remobilization of Hg previously deposited in bottom sediments. A key factor in controlling the remobilization and transfer of legacy Hg from sediments to water and ultimately into biota is the chemical form in which Hg is present in sediments and suspended particulate matter.
Here, we present (i) historical trends of Hg concentrations in suspended particulate matter in German rivers (e.g., Rhine, Elbe) over several decades compiled from public databases [2] and (ii) first results of a study aiming to characterize the chemical form of Hg in recently collected suspended particulate matter and contaminated sediment samples from German rivers using pyrolytic thermodesorption analysis [3]. The Hg release curves of samples during continuous heating up to 650°C were compared with those of reference compounds. Total Hg concentrations were determined by a direct Hg analyzer (Nippon MA-3000).
The historical records reveal that Hg concentrations in suspended particulate matter have decreased in the large German rivers from the beginning of the 1990s until today. For example, while yearly average values of 500-800 μg kg-1 Hg were still common in the lower reaches of the Rhine river in the early 1990s, most values in the last five years have been below 300 μg kg-1 Hg. However, the Elbe river, one of the most polluted rivers in Germany, still exhibits Hg values above 1000 μg kg-1 in some areas, despite a decreasing trend from even higher historical values. First results from pyrolytic thermodesorption analyses reveal that Hg in suspended particulate matter from Rhine and Elbe is released at temperatures around 300°C, suggesting a dominance of organically-bound and/or sulfide-bound Hg(II) species. Interestingly, a shift to lower Hg release temperatures was observed after aging of wet sample material and for freeze-dried compared with wet sediments, highlighting the importance of sample preparation and the dynamic nature of Hg binding forms in natural samples.
[1] European Environment Agency (2018) European waters - Assessment of status and pressures 2018.
[2] e.g., http://undine.bafg.de, http://fgg-rhein.bafg.de, https://www.umweltprobenbank.de
[3] Biester H., Scholz C. (1997) Determination of mercury binding forms in contaminated soils: Mercury pyrolysis versus sequential extractions. Environ. Sci. Technol. 31, 233-239.
How to cite: Wiederhold, J. G., Biester, H., Gerloff, A.-L., Hahn, J., and Duester, L.: Mercury contamination in German rivers: Historical trends and current situation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9735, https://doi.org/10.5194/egusphere-egu2020-9735, 2020.
EGU2020-10564 | Displays | BG2.22
Mercury concentrations, redox state, and isotope ratios in consecutive water extracts of Hg(II)-chloride contaminated soilsAlina Kleindienst, Lorenz Schwab, David McLagan, Stephan M. Krämer, Harald Biester, and Jan G. Wiederhold
Mercury (Hg) leaching from contaminated soils into groundwater or surface waters represents a serious environmental problem at industrial legacy sites, whereby Hg mobility strongly depends on its chemical form. For example, the water solubility of potentially relevant Hg compounds ranges over several orders of magnitude (HgCl2>HgO>Hg2Cl2>Hg(0)>>HgS). Water leaching experiments may provide important information on Hg mobility and help assess its fate at contaminated sites. However, single extraction steps are often not sufficient to extract the entire water-soluble Hg pool. Performing multiple consecutive water extracts on the same sample allows investigating the relative importance of kinetic and thermodynamic controls on Hg mobilization. Moreover, differences between the Hg isotope composition of water extracts and the bulk soil may offer novel insights into the transformation dynamics of Hg species as well as the evolution of Hg isotope signatures at contaminated sites [1].
Here, we present results of consecutive water extractions performed on three soil samples and one artificially-contaminated aquifer material from former industrial sites in Germany contaminated with highly soluble HgCl2 using three extraction solutions (oxygenated water, oxygen-depleted water, 2 mM CaCl2). Batch extractions were conducted with up to nine consecutive steps over timescales of up to three months. Aliquots of selected extracts were purged with argon to remove Hg(0) and to quantify the Hg(0)/Hg(II) ratio by comparison with unpurged extracts. Hg concentrations were measured by CV-AAS/AFS and Hg isotope ratios were determined using CV-MC-ICP-MS. Pyrolytic thermodesorption analysis was used on selected samples to investigate changes in the solid phase speciation.
Total Hg concentrations in extracts decreased after the first step (range: 17 to 1270 μg L−1) but remained surprisingly high until the ninth step (range: 3 to 263 μg L−1) illustrating continuous slow Hg release from the contaminated soils in contact with water. The fraction of total soil Hg mobilized at the end of the experiments ranged from 5.6% to 30%. The extracts exhibited large δ202Hg variations from –0.75‰ to +0.94‰ relative to bulk soil indicating preferential mobilization of either light or heavy Hg isotopes for different samples and extraction conditions. Lower Hg concentrations in the purged extracts provided evidence for the presence of Hg(0) approaching its solubility in some extracts, particularly under oxygen-depleted conditions with up to 85% of total dissolved Hg, which is produced by reduction from Hg(II) in our HgCl2-contaminated samples. The isotopic mass balance between purged and unpurged extracts revealed an important control of the Hg(0)/Hg(II) ratio on δ202Hg extract values of some samples with Hg(0) being about 2‰ lighter than Hg(II), consistent with theoretical predictions for equilibrium isotope fractionation. Our results demonstrate that consecutive water extracts can leach large amounts of Hg from contaminated soils accompanied by significant Hg isotope fractionation during the mobilization from solid to solution phase, which is at least partly controlled by equilibrium isotope effects between Hg redox states in solution.
[1] Brocza FM, Biester H, Richard J-H, Kraemer SM, Wiederhold, JG (2019) Mercury isotope fractionation in the subsurface of a Hg(II) chloride-contaminated industrial legacy site. Environ. Sci. Technol. 53, 7296-7305.
How to cite: Kleindienst, A., Schwab, L., McLagan, D., Krämer, S. M., Biester, H., and Wiederhold, J. G.: Mercury concentrations, redox state, and isotope ratios in consecutive water extracts of Hg(II)-chloride contaminated soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10564, https://doi.org/10.5194/egusphere-egu2020-10564, 2020.
Mercury (Hg) leaching from contaminated soils into groundwater or surface waters represents a serious environmental problem at industrial legacy sites, whereby Hg mobility strongly depends on its chemical form. For example, the water solubility of potentially relevant Hg compounds ranges over several orders of magnitude (HgCl2>HgO>Hg2Cl2>Hg(0)>>HgS). Water leaching experiments may provide important information on Hg mobility and help assess its fate at contaminated sites. However, single extraction steps are often not sufficient to extract the entire water-soluble Hg pool. Performing multiple consecutive water extracts on the same sample allows investigating the relative importance of kinetic and thermodynamic controls on Hg mobilization. Moreover, differences between the Hg isotope composition of water extracts and the bulk soil may offer novel insights into the transformation dynamics of Hg species as well as the evolution of Hg isotope signatures at contaminated sites [1].
Here, we present results of consecutive water extractions performed on three soil samples and one artificially-contaminated aquifer material from former industrial sites in Germany contaminated with highly soluble HgCl2 using three extraction solutions (oxygenated water, oxygen-depleted water, 2 mM CaCl2). Batch extractions were conducted with up to nine consecutive steps over timescales of up to three months. Aliquots of selected extracts were purged with argon to remove Hg(0) and to quantify the Hg(0)/Hg(II) ratio by comparison with unpurged extracts. Hg concentrations were measured by CV-AAS/AFS and Hg isotope ratios were determined using CV-MC-ICP-MS. Pyrolytic thermodesorption analysis was used on selected samples to investigate changes in the solid phase speciation.
Total Hg concentrations in extracts decreased after the first step (range: 17 to 1270 μg L−1) but remained surprisingly high until the ninth step (range: 3 to 263 μg L−1) illustrating continuous slow Hg release from the contaminated soils in contact with water. The fraction of total soil Hg mobilized at the end of the experiments ranged from 5.6% to 30%. The extracts exhibited large δ202Hg variations from –0.75‰ to +0.94‰ relative to bulk soil indicating preferential mobilization of either light or heavy Hg isotopes for different samples and extraction conditions. Lower Hg concentrations in the purged extracts provided evidence for the presence of Hg(0) approaching its solubility in some extracts, particularly under oxygen-depleted conditions with up to 85% of total dissolved Hg, which is produced by reduction from Hg(II) in our HgCl2-contaminated samples. The isotopic mass balance between purged and unpurged extracts revealed an important control of the Hg(0)/Hg(II) ratio on δ202Hg extract values of some samples with Hg(0) being about 2‰ lighter than Hg(II), consistent with theoretical predictions for equilibrium isotope fractionation. Our results demonstrate that consecutive water extracts can leach large amounts of Hg from contaminated soils accompanied by significant Hg isotope fractionation during the mobilization from solid to solution phase, which is at least partly controlled by equilibrium isotope effects between Hg redox states in solution.
[1] Brocza FM, Biester H, Richard J-H, Kraemer SM, Wiederhold, JG (2019) Mercury isotope fractionation in the subsurface of a Hg(II) chloride-contaminated industrial legacy site. Environ. Sci. Technol. 53, 7296-7305.
How to cite: Kleindienst, A., Schwab, L., McLagan, D., Krämer, S. M., Biester, H., and Wiederhold, J. G.: Mercury concentrations, redox state, and isotope ratios in consecutive water extracts of Hg(II)-chloride contaminated soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10564, https://doi.org/10.5194/egusphere-egu2020-10564, 2020.
EGU2020-16024 | Displays | BG2.22
Mercury isotope fractionation during dark abiotic reduction of Hg(II) by dissolved and surface-bound Fe(II) speciesLorenz Schwab, David S. McLagan, Stephan M. Kraemer, Harald Biester, and Jan G. Wiederhold
For many metals, including mercury (Hg), the transformation between different redox states is an important process for stable isotope fractionation. Identifying fractionation factors for specific Hg redox transformations therefore enables stable Hg isotope techniques to be used as a tool to trace biogeochemical processes and improve our understanding of the transport and fate of Hg in the environment. Previous studies demonstrated that reduced iron (Fe) species and Fe(II)-bearing minerals such as magnetite, green rust, siderite or vivianite are capable of reducing Hg(II) to Hg(I) and Hg(0). These processes may be important in environments with low organic matter concentration and changing redox conditions such as groundwater aquifers or temporarily flooded soils.
In this study homogeneous and heterogeneous redox reactions of Hg(II) with dissolved Fe(II) and Fe(II)-bearing minerals are investigated in batch experiments under oxygen-free conditions in a glove bag. Mercury stock solutions prepared from NIST-3133 in a glass batch reactor are continuously stirred to minimize local reducing zones and wrapped in aluminum foil to prevent photoreduction. The reducing agents are added stepwise to reduce fractions of Hg until complete reduction is achieved. The produced Hg(0) is continuously purged into an oxidizing trap solution (40% inverse aqua regia with BrCl) with nitrogen gas at a low flow rate. After each reduction step solution aliquots are taken from the reactor and the trap is exchanged. Total Hg concentrations in reactor and trap samples are then measured with CV-AAS/AFS and isotopic compositions determined with CV-MC-ICP-MS.
Initially, different amounts of SnCl2 were used as reducing agent to test the experimental setup similar to [1]. For this experiment we observed consistent isotopic trends which could be described by a Rayleigh model fit with mass dependent fractionation (ε202Hg = -2.75 ± 0.07‰) as well as mass independent fractionation of odd-mass Hg isotopes (Ε199Hg = 0.32 ± 0.04‰). The slope of the linear regression of Δ199Hg/Δ201Hg of 1.52 ± 0.1 indicates that the MIF was likely caused by the nuclear volume effect. In subsequent experiments different amounts of a Fe(II) stock solution prepared from Fe(II)Cl2 are used as reducing agent. Additionally, experiments are carried out with Fe(II)-bearing minerals and Fe(II) adsorbed to mineral surfaces.
The results produced from this study will be very useful for the interpretation of field data from temporarily anoxic groundwater bodies at contaminated sites (e.g. [2]). The insights from the experiments will further contribute to the understanding of the interplay between Hg and Fe biogeochemical cycles and redox transformations. Most importantly, it will add much needed fractionation factors to the toolbox of Hg stable isotope fractionation as a tracer for biogeochemical transformations.
[1] Zheng, W., Hintelmann, H. (2010) Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J. Phys. Chem. A, 114(12), 4238–4245.
[2] Richard, J.-H., Bischoff, C., Ahrens, C.G.M., Biester, H. (2016) Mercury(II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater. Sci. Tot. Environ. 539, 36–44.
How to cite: Schwab, L., McLagan, D. S., Kraemer, S. M., Biester, H., and Wiederhold, J. G.: Mercury isotope fractionation during dark abiotic reduction of Hg(II) by dissolved and surface-bound Fe(II) species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16024, https://doi.org/10.5194/egusphere-egu2020-16024, 2020.
For many metals, including mercury (Hg), the transformation between different redox states is an important process for stable isotope fractionation. Identifying fractionation factors for specific Hg redox transformations therefore enables stable Hg isotope techniques to be used as a tool to trace biogeochemical processes and improve our understanding of the transport and fate of Hg in the environment. Previous studies demonstrated that reduced iron (Fe) species and Fe(II)-bearing minerals such as magnetite, green rust, siderite or vivianite are capable of reducing Hg(II) to Hg(I) and Hg(0). These processes may be important in environments with low organic matter concentration and changing redox conditions such as groundwater aquifers or temporarily flooded soils.
In this study homogeneous and heterogeneous redox reactions of Hg(II) with dissolved Fe(II) and Fe(II)-bearing minerals are investigated in batch experiments under oxygen-free conditions in a glove bag. Mercury stock solutions prepared from NIST-3133 in a glass batch reactor are continuously stirred to minimize local reducing zones and wrapped in aluminum foil to prevent photoreduction. The reducing agents are added stepwise to reduce fractions of Hg until complete reduction is achieved. The produced Hg(0) is continuously purged into an oxidizing trap solution (40% inverse aqua regia with BrCl) with nitrogen gas at a low flow rate. After each reduction step solution aliquots are taken from the reactor and the trap is exchanged. Total Hg concentrations in reactor and trap samples are then measured with CV-AAS/AFS and isotopic compositions determined with CV-MC-ICP-MS.
Initially, different amounts of SnCl2 were used as reducing agent to test the experimental setup similar to [1]. For this experiment we observed consistent isotopic trends which could be described by a Rayleigh model fit with mass dependent fractionation (ε202Hg = -2.75 ± 0.07‰) as well as mass independent fractionation of odd-mass Hg isotopes (Ε199Hg = 0.32 ± 0.04‰). The slope of the linear regression of Δ199Hg/Δ201Hg of 1.52 ± 0.1 indicates that the MIF was likely caused by the nuclear volume effect. In subsequent experiments different amounts of a Fe(II) stock solution prepared from Fe(II)Cl2 are used as reducing agent. Additionally, experiments are carried out with Fe(II)-bearing minerals and Fe(II) adsorbed to mineral surfaces.
The results produced from this study will be very useful for the interpretation of field data from temporarily anoxic groundwater bodies at contaminated sites (e.g. [2]). The insights from the experiments will further contribute to the understanding of the interplay between Hg and Fe biogeochemical cycles and redox transformations. Most importantly, it will add much needed fractionation factors to the toolbox of Hg stable isotope fractionation as a tracer for biogeochemical transformations.
[1] Zheng, W., Hintelmann, H. (2010) Nuclear field shift effect in isotope fractionation of mercury during abiotic reduction in the absence of light. J. Phys. Chem. A, 114(12), 4238–4245.
[2] Richard, J.-H., Bischoff, C., Ahrens, C.G.M., Biester, H. (2016) Mercury(II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater. Sci. Tot. Environ. 539, 36–44.
How to cite: Schwab, L., McLagan, D. S., Kraemer, S. M., Biester, H., and Wiederhold, J. G.: Mercury isotope fractionation during dark abiotic reduction of Hg(II) by dissolved and surface-bound Fe(II) species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16024, https://doi.org/10.5194/egusphere-egu2020-16024, 2020.
EGU2020-18225 | Displays | BG2.22
Long-term incubations experiments: Insights about demethylation and role of methylmercury refractory poolsCarluvy Baptista-Salazar, Van Liem-Nguyen, and Sofi Jonsson
Methylation and demethylation of mercury (Hg) control the concentrations of monomethylmercury (MeHg) in natural environments, and thus the pool of Hg available for biological uptake and food web biomagnification. Typically, Hg methylation and demethylation are studied in short-term incubation experiments (< 24 h) using isotopically enriched Hg tracers. This approach has been successfully used to e.g. identify environmental hotspots of both of these processes. However, as the tracers are typically added as dissolved Hg complexes, while most ambient inorganic Hg and MeHg in e.g. sediments and soils are adsorbed onto particles, rates are recognised to not reflect true methylation and demethylation rates of ambient Hg. The traditional approach also overlooks the potential existence of refractory MeHg pools, i.e. pools of MeHg not readily available for demethylation. Previous work has, however, indicated the potential role of refractory MeHg concentrations. Jonsson et al. (Nature Com., 2014), for example, suggest up to 70% of the MeHg pool in a brackish sediment system to be in a refractory form. The occurrence of this fraction is also suggested as a key factor mediating MeHg availability in sediments by DiPasquale et al. (Environ. Sci. Technol., 2000).
We have conducted long-term incubation experiments aiming to quantify refractory MeHg pools. In short, isotopically enriched Hg tracers (Me201Hg and 198Hg, pre-equilibrated with natural waters) were incubated with lake, marsh and brackish sea water sediments and forest soils at a temperature of 10 °C for up to 6 weeks. These samples represent contrasting environments with initial MeHg concentrations ranging from 0.01 to 3.9 ng g-1 dry weight, and MeHg:Hg ratios of 0.01 to 31%. To quantify refractory pools of MeHg, we will compare steady state concentrations of MeHg:Hg ratios for added MeHg tracer with the MeHg:Hg ratio of ambient Hg. In this presentation, we will discuss the results from this study, as well as the role of refractory MeHg pools.
How to cite: Baptista-Salazar, C., Liem-Nguyen, V., and Jonsson, S.: Long-term incubations experiments: Insights about demethylation and role of methylmercury refractory pools , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18225, https://doi.org/10.5194/egusphere-egu2020-18225, 2020.
Methylation and demethylation of mercury (Hg) control the concentrations of monomethylmercury (MeHg) in natural environments, and thus the pool of Hg available for biological uptake and food web biomagnification. Typically, Hg methylation and demethylation are studied in short-term incubation experiments (< 24 h) using isotopically enriched Hg tracers. This approach has been successfully used to e.g. identify environmental hotspots of both of these processes. However, as the tracers are typically added as dissolved Hg complexes, while most ambient inorganic Hg and MeHg in e.g. sediments and soils are adsorbed onto particles, rates are recognised to not reflect true methylation and demethylation rates of ambient Hg. The traditional approach also overlooks the potential existence of refractory MeHg pools, i.e. pools of MeHg not readily available for demethylation. Previous work has, however, indicated the potential role of refractory MeHg concentrations. Jonsson et al. (Nature Com., 2014), for example, suggest up to 70% of the MeHg pool in a brackish sediment system to be in a refractory form. The occurrence of this fraction is also suggested as a key factor mediating MeHg availability in sediments by DiPasquale et al. (Environ. Sci. Technol., 2000).
We have conducted long-term incubation experiments aiming to quantify refractory MeHg pools. In short, isotopically enriched Hg tracers (Me201Hg and 198Hg, pre-equilibrated with natural waters) were incubated with lake, marsh and brackish sea water sediments and forest soils at a temperature of 10 °C for up to 6 weeks. These samples represent contrasting environments with initial MeHg concentrations ranging from 0.01 to 3.9 ng g-1 dry weight, and MeHg:Hg ratios of 0.01 to 31%. To quantify refractory pools of MeHg, we will compare steady state concentrations of MeHg:Hg ratios for added MeHg tracer with the MeHg:Hg ratio of ambient Hg. In this presentation, we will discuss the results from this study, as well as the role of refractory MeHg pools.
How to cite: Baptista-Salazar, C., Liem-Nguyen, V., and Jonsson, S.: Long-term incubations experiments: Insights about demethylation and role of methylmercury refractory pools , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18225, https://doi.org/10.5194/egusphere-egu2020-18225, 2020.
EGU2020-18587 | Displays | BG2.22
Mercury and other potentially toxic elements in the Sierra Gorda (Queretaro area, Mexico): affection to enzymatic activity in soils.Pablo Higueras, Karen Arroyo, JuanAntonio Campos, Jesus Peco, JoseMaria Esbrí, and Gilberto Hernández
Cinnabar mining, to obtain mercury, is still an important activity for the residents of the Sierra Gorda in Mexico, so this activity is currently source of mercury emission and possibly of other potentially toxic elements (PTE). In this work, seven study sites, located in areas with presence of exploitations of active or decommissioned mercury mines, have been studies with the aim of characterizing its occurrence and their effects on soil health.
Biogeochemical analyses have been carried out with the purpose of identifying the key factors related with nutritional and toxicological status of these soils, looking for possible relationships between mercury, PTEs and their impact on the enzymatic activity of the soil.
The values obtained for total mercury ranged from 5 to 159 ppm; comparing these values with those from an uncontaminated area, we observe that all zones are above reference range (0.01 to 0.03 mg/kg) and that four of them exceed the maximum permissible limits (23 mg/kg), according to Mexican regulations. Other measured PTE elements were Pb, with a range between 18.7 to 814.1 mg/kg; Cu between 45.4 to 94.2 mg/kg; Zn between 145.1 to 555.8 mg/kg; As between 30.5 to 1590 mg/kg; and Sb between 18.3 to 169.6 mg/kg. Comparing with other areas, anomalous concentrations of trace elements in soils with the following values are considered: Pb up to 10,000 mg/kg, Cu up to 2,000 mg/kg, Zn up to 10,000 mg/kg and As up to 2500 mg/kg; none of the determined elements exceeds these reference values. In the case of enzymatic activities, a range between 111.36 and 332.38 µgTPF g-1day-1 was obtained with dehydrogenase. These values are slightly higher compared to other Hg contaminated soils (110 µgTPF g-1day-1) described by this team. For the acid phosphatase, a range between 516.72 to 1606.34 µgPNF g-1h-1; and for alkaline phosphatase a range between 1624.92 to 4070.82 µgPNF g-1h-1. These values correspond to those measured in Sokolov, Czech Republic, ranging from 381 to 1510 µgPNF g-1h-1 for acid phosphatase and 455 to 4820 µgPNF g-1h-1 for alkaline phosphatase measured in topsoil layer from spoil heaps after brown coal mining.
Our results show that the soil has contents of PTE elements indicating low pollution degree, except for Hg, registering concentrations above the maximum permissible limits for non-industrial soils; however, the results of the enzymatic activity reflect a "good" activity. Therefore, the incidence of the presence of these metals in the soil health, as measured through enzymatic activity, does not have a significant impact and the studied soils can be considered as suitable for commercial, residential or agricultural uses.
How to cite: Higueras, P., Arroyo, K., Campos, J., Peco, J., Esbrí, J., and Hernández, G.: Mercury and other potentially toxic elements in the Sierra Gorda (Queretaro area, Mexico): affection to enzymatic activity in soils. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18587, https://doi.org/10.5194/egusphere-egu2020-18587, 2020.
Cinnabar mining, to obtain mercury, is still an important activity for the residents of the Sierra Gorda in Mexico, so this activity is currently source of mercury emission and possibly of other potentially toxic elements (PTE). In this work, seven study sites, located in areas with presence of exploitations of active or decommissioned mercury mines, have been studies with the aim of characterizing its occurrence and their effects on soil health.
Biogeochemical analyses have been carried out with the purpose of identifying the key factors related with nutritional and toxicological status of these soils, looking for possible relationships between mercury, PTEs and their impact on the enzymatic activity of the soil.
The values obtained for total mercury ranged from 5 to 159 ppm; comparing these values with those from an uncontaminated area, we observe that all zones are above reference range (0.01 to 0.03 mg/kg) and that four of them exceed the maximum permissible limits (23 mg/kg), according to Mexican regulations. Other measured PTE elements were Pb, with a range between 18.7 to 814.1 mg/kg; Cu between 45.4 to 94.2 mg/kg; Zn between 145.1 to 555.8 mg/kg; As between 30.5 to 1590 mg/kg; and Sb between 18.3 to 169.6 mg/kg. Comparing with other areas, anomalous concentrations of trace elements in soils with the following values are considered: Pb up to 10,000 mg/kg, Cu up to 2,000 mg/kg, Zn up to 10,000 mg/kg and As up to 2500 mg/kg; none of the determined elements exceeds these reference values. In the case of enzymatic activities, a range between 111.36 and 332.38 µgTPF g-1day-1 was obtained with dehydrogenase. These values are slightly higher compared to other Hg contaminated soils (110 µgTPF g-1day-1) described by this team. For the acid phosphatase, a range between 516.72 to 1606.34 µgPNF g-1h-1; and for alkaline phosphatase a range between 1624.92 to 4070.82 µgPNF g-1h-1. These values correspond to those measured in Sokolov, Czech Republic, ranging from 381 to 1510 µgPNF g-1h-1 for acid phosphatase and 455 to 4820 µgPNF g-1h-1 for alkaline phosphatase measured in topsoil layer from spoil heaps after brown coal mining.
Our results show that the soil has contents of PTE elements indicating low pollution degree, except for Hg, registering concentrations above the maximum permissible limits for non-industrial soils; however, the results of the enzymatic activity reflect a "good" activity. Therefore, the incidence of the presence of these metals in the soil health, as measured through enzymatic activity, does not have a significant impact and the studied soils can be considered as suitable for commercial, residential or agricultural uses.
How to cite: Higueras, P., Arroyo, K., Campos, J., Peco, J., Esbrí, J., and Hernández, G.: Mercury and other potentially toxic elements in the Sierra Gorda (Queretaro area, Mexico): affection to enzymatic activity in soils. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18587, https://doi.org/10.5194/egusphere-egu2020-18587, 2020.
EGU2020-19583 | Displays | BG2.22
Myco-phytoremediation of mercury polluted soils in Ghana and Burkina FasoSergey Blagodatsky, Miriam Ehret, Frank Rasche, Imke Hutter, Regina Birner, Beloved Dzomeku, Oble Neya, Georg Cadisch, and Jens Wünsche
Unregulated surface gold mining contributes to deforestation and land degradation in Ghana and Burkina Faso (West Africa). In addition, small-scale gold mining uses a technology for gold amalgamation that pollutes the environment with mercury (Hg) and adversely affects human health. In the framework of the recently started Mercury-AMF-project we aim to reduce the environmental damage caused by mercury used in gold mining in Ghana and Burkina Faso. This will be achieved by developing and implementing novel arbuscular mycorrhizal fungi (AMF) - plant systems as a strategy to reclaim mercury-contaminated sites. The cultivation of pioneer plants on contaminated soils can reduce the mercury pollution. Symbiotic mycorrhizal associations of those plants may strengthen the potential to remediate Hg-contaminated soils.
The implementation of the project is based on the following specific activities:
- Characterization of the arbuscular mycorrhizal fungus (AMF) candidates in the soils of Ghana and Burkina Faso;
- Development of prototype AMF plant systems as an innovative strategy for the remediation of Hg-contaminated sites;
- Testing of mycophytoextraction methods to reduce the Hg soil concentration below threshold values;
- Examination of the return of Hg-contaminated sites to agricultural use and the promotion of sustainable land management in gold mining regions;
- Set-up of modelling approaches for the efficiency of mycophytoextraction methods and Hg plant uptake;
- Exploration and communication of institutional and socio-economic framework conditions for the introduction of AMF plant systems.
During the first year of the project soil and plant sampling campaigns in Ghana and Burkina Faso were organised for screening the AMF-candidates capable for symbiosis with local plant species and tolerant to the mercury pollution. Clarification of possible mechanisms of phytoremediation is the next essential component of the research: several pathways of decontamination are possible including phytostabilization, phytovolatilization and phytoextraction. Based on the first results, field experimental trials with new AMF-plant systems will be established.
How to cite: Blagodatsky, S., Ehret, M., Rasche, F., Hutter, I., Birner, R., Dzomeku, B., Neya, O., Cadisch, G., and Wünsche, J.: Myco-phytoremediation of mercury polluted soils in Ghana and Burkina Faso, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19583, https://doi.org/10.5194/egusphere-egu2020-19583, 2020.
Unregulated surface gold mining contributes to deforestation and land degradation in Ghana and Burkina Faso (West Africa). In addition, small-scale gold mining uses a technology for gold amalgamation that pollutes the environment with mercury (Hg) and adversely affects human health. In the framework of the recently started Mercury-AMF-project we aim to reduce the environmental damage caused by mercury used in gold mining in Ghana and Burkina Faso. This will be achieved by developing and implementing novel arbuscular mycorrhizal fungi (AMF) - plant systems as a strategy to reclaim mercury-contaminated sites. The cultivation of pioneer plants on contaminated soils can reduce the mercury pollution. Symbiotic mycorrhizal associations of those plants may strengthen the potential to remediate Hg-contaminated soils.
The implementation of the project is based on the following specific activities:
- Characterization of the arbuscular mycorrhizal fungus (AMF) candidates in the soils of Ghana and Burkina Faso;
- Development of prototype AMF plant systems as an innovative strategy for the remediation of Hg-contaminated sites;
- Testing of mycophytoextraction methods to reduce the Hg soil concentration below threshold values;
- Examination of the return of Hg-contaminated sites to agricultural use and the promotion of sustainable land management in gold mining regions;
- Set-up of modelling approaches for the efficiency of mycophytoextraction methods and Hg plant uptake;
- Exploration and communication of institutional and socio-economic framework conditions for the introduction of AMF plant systems.
During the first year of the project soil and plant sampling campaigns in Ghana and Burkina Faso were organised for screening the AMF-candidates capable for symbiosis with local plant species and tolerant to the mercury pollution. Clarification of possible mechanisms of phytoremediation is the next essential component of the research: several pathways of decontamination are possible including phytostabilization, phytovolatilization and phytoextraction. Based on the first results, field experimental trials with new AMF-plant systems will be established.
How to cite: Blagodatsky, S., Ehret, M., Rasche, F., Hutter, I., Birner, R., Dzomeku, B., Neya, O., Cadisch, G., and Wünsche, J.: Myco-phytoremediation of mercury polluted soils in Ghana and Burkina Faso, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19583, https://doi.org/10.5194/egusphere-egu2020-19583, 2020.
EGU2020-5488 | Displays | BG2.22
Mercury occurrence in shungite and coalNikolay Mashyanov, Sergey Pogarev, Vladimir Ryzhov, and Elena Panova
Shungite is a mineraloid consisting of up to 99 % of carbon. The first deposit was found near Shunga village (Karelia, Russia) within the Paleoproterozoic host rocks. Karelian shungites represent the greatest accumulations of carbon with reserves of up to one billion ton. Shungite matter is considered as a specific allotrope of carbon having complex globular supramolecular structure with the globules size of 5-10 nm and including 0.0001 – 0.001 % of natural fullerenes. There are two opposite opinions on the shungite origin: the deep metamorphism of the organic-rich sedimentary rocks and the pyrolysis of the mantle methane jets. In its properties, shungite occupies an intermediate position between anthracite and graphite. Mercury in coals is quite fairly studied: according to hundreds thousand analyses, the average mercury content varies in a range from ppb to few hundred ppm with a world average of 100 ppb. In contrast to coal, so far almost no data on mercury in shungites are available.
Zeeman AAS was used for determination of the total mercury concentration in shungites from Karelian shungite deposits. Surprisingly high concentration up to 12,000 ppb with an average of 2200 and median of 1100 ppb was found in all samples. That is much higher than world average value and even three times higher as compared with the mercury concentration in studied coals of the Donetsk basin (450 ppb) located within the mercury belt. The thermoscanning technique revealed a high-temperature form of mercury in shungites releasing at a temperature above 650 OC and comprising 40-45% of the total mercury. That drastically differs from the thermospectra of anthracite with the main portion of mercury being released at a temperature below 480 OC. The loss of mass for anthracite and shungite during heating to 900 OC is practically identical, whereas the loss of mercury from anthracite is much faster. As both substances consist mainly of carbon, the difference in mercury binding energy can be explained by a specific globular structure of the shungite matrix. Additional experiments on the shungite exposure to mercury in the liquid and gaseous phases showed the increased mercury release at a low temperature and no increase in the high temperature species. The occurrence of a significant portion of the uncommon high temperature species suggests that this mercury can be transported with the mantle methane jets and captured inside the stable carbon globules of the shungite.
Preliminary assessment of the mercury resources only for three proven deposits (54 million ton of shungite, Filippov, 2002) gives the value of 55 t Hg. Shungite is widely used in ferrous metallurgy, for water purification, in cosmetology, etc. Shungites have to be considered as a potential source of the mercury emissions in metallurgy. Also, shungite mercury behavior in other industrial, ecological, medical, and cosmetology applications should be studied.
How to cite: Mashyanov, N., Pogarev, S., Ryzhov, V., and Panova, E.: Mercury occurrence in shungite and coal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5488, https://doi.org/10.5194/egusphere-egu2020-5488, 2020.
Shungite is a mineraloid consisting of up to 99 % of carbon. The first deposit was found near Shunga village (Karelia, Russia) within the Paleoproterozoic host rocks. Karelian shungites represent the greatest accumulations of carbon with reserves of up to one billion ton. Shungite matter is considered as a specific allotrope of carbon having complex globular supramolecular structure with the globules size of 5-10 nm and including 0.0001 – 0.001 % of natural fullerenes. There are two opposite opinions on the shungite origin: the deep metamorphism of the organic-rich sedimentary rocks and the pyrolysis of the mantle methane jets. In its properties, shungite occupies an intermediate position between anthracite and graphite. Mercury in coals is quite fairly studied: according to hundreds thousand analyses, the average mercury content varies in a range from ppb to few hundred ppm with a world average of 100 ppb. In contrast to coal, so far almost no data on mercury in shungites are available.
Zeeman AAS was used for determination of the total mercury concentration in shungites from Karelian shungite deposits. Surprisingly high concentration up to 12,000 ppb with an average of 2200 and median of 1100 ppb was found in all samples. That is much higher than world average value and even three times higher as compared with the mercury concentration in studied coals of the Donetsk basin (450 ppb) located within the mercury belt. The thermoscanning technique revealed a high-temperature form of mercury in shungites releasing at a temperature above 650 OC and comprising 40-45% of the total mercury. That drastically differs from the thermospectra of anthracite with the main portion of mercury being released at a temperature below 480 OC. The loss of mass for anthracite and shungite during heating to 900 OC is practically identical, whereas the loss of mercury from anthracite is much faster. As both substances consist mainly of carbon, the difference in mercury binding energy can be explained by a specific globular structure of the shungite matrix. Additional experiments on the shungite exposure to mercury in the liquid and gaseous phases showed the increased mercury release at a low temperature and no increase in the high temperature species. The occurrence of a significant portion of the uncommon high temperature species suggests that this mercury can be transported with the mantle methane jets and captured inside the stable carbon globules of the shungite.
Preliminary assessment of the mercury resources only for three proven deposits (54 million ton of shungite, Filippov, 2002) gives the value of 55 t Hg. Shungite is widely used in ferrous metallurgy, for water purification, in cosmetology, etc. Shungites have to be considered as a potential source of the mercury emissions in metallurgy. Also, shungite mercury behavior in other industrial, ecological, medical, and cosmetology applications should be studied.
How to cite: Mashyanov, N., Pogarev, S., Ryzhov, V., and Panova, E.: Mercury occurrence in shungite and coal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5488, https://doi.org/10.5194/egusphere-egu2020-5488, 2020.
EGU2020-1702 | Displays | BG2.22
Mercury concentrations in diverse lean fish species of the western MediterraneanJoan grimalt, Marco Capodiferro, Eva Junque, and Esther Marco
The Mediterranean Sea is a water body in which the concentration of mercury is much higher than in the other world seas and oceans. Most inputs of this metal originate from the general atmospheric fallout. However, in this semi-enclosed environment there are specific sources that should be identified to understand the causes of the high toxicity by this metal. A significant proportion of Mediterranean fish devoted to human consumption is above the mercury threshold set by the European Community as suitable for human consumption. The proportion is even much larger if the recommended World Health Organization threshold is considered.
Oily fish is known for containing mercury concentrations above these thresholds. Lean fish has been investigated in much fewer cases. The present study is devoted to this second fish type that constitutes a substantial component of human diet. Thus, the study of mercury and methylmercury in fish from local fishermen marketed in diverse Mediterranean sites has provided information on the exposure of diverse populations to this metal and has afforded a description of the Mediterranean areas that have received highest mercury spills.
1350 commercial seafood samples from the Western Mediterranean Sea were collected (Feb 2014-July 2019) in several sites such as Mallorca, Menorca, Eivissa, Alacant (Spain), Marseille (France), Genoa, Alguer, Civitavecchia (Italy). Samples from Egypt and the Atlantic Ocean (Senegal, Mauritania coasts) were also taken for comparison. Fish species were selected considering the most consumed by the population.
Comparison of the mercury concentrations in the specimens of the same fish species collected at different sites revealed where are the hot spots of introduction of the excess of this metal in comparison to the atmospheric fallout and allowed the identification of the source processes.
The fish species were grouped in three trophic levels, those feeding on plankton (first), on small fish and crustaceans (second) and on fish and cephalopods (third).
A considerable number of the analyzed fish species exceeded the maximum levels proposed by the European legislation, such as dusky grouper (100% of the examined specimens), common dentex (65%), conger (45%), common sole (38%), hake (26%) and angler (15%), among others. Representation of the Hg concentrations vs. weight of each specimen from the third trophic level showed a significant positive correlation, r = 0.78 (p < 0.01).
The average THg intake due to fish consumption, 0.61 µg/g ww, involved Hg estimated weekly intakes of 5.7 µg/kg bw for children aged 7-12 years and 4.4 µg/kg bw for adults. These values were higher than the provisional tolerable weekly intakes for total Hg intake recommended by FAO/WHO, 4 µg/kg bw, 140% and 110%, respectively.
How to cite: grimalt, J., Capodiferro, M., Junque, E., and Marco, E.: Mercury concentrations in diverse lean fish species of the western Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1702, https://doi.org/10.5194/egusphere-egu2020-1702, 2020.
The Mediterranean Sea is a water body in which the concentration of mercury is much higher than in the other world seas and oceans. Most inputs of this metal originate from the general atmospheric fallout. However, in this semi-enclosed environment there are specific sources that should be identified to understand the causes of the high toxicity by this metal. A significant proportion of Mediterranean fish devoted to human consumption is above the mercury threshold set by the European Community as suitable for human consumption. The proportion is even much larger if the recommended World Health Organization threshold is considered.
Oily fish is known for containing mercury concentrations above these thresholds. Lean fish has been investigated in much fewer cases. The present study is devoted to this second fish type that constitutes a substantial component of human diet. Thus, the study of mercury and methylmercury in fish from local fishermen marketed in diverse Mediterranean sites has provided information on the exposure of diverse populations to this metal and has afforded a description of the Mediterranean areas that have received highest mercury spills.
1350 commercial seafood samples from the Western Mediterranean Sea were collected (Feb 2014-July 2019) in several sites such as Mallorca, Menorca, Eivissa, Alacant (Spain), Marseille (France), Genoa, Alguer, Civitavecchia (Italy). Samples from Egypt and the Atlantic Ocean (Senegal, Mauritania coasts) were also taken for comparison. Fish species were selected considering the most consumed by the population.
Comparison of the mercury concentrations in the specimens of the same fish species collected at different sites revealed where are the hot spots of introduction of the excess of this metal in comparison to the atmospheric fallout and allowed the identification of the source processes.
The fish species were grouped in three trophic levels, those feeding on plankton (first), on small fish and crustaceans (second) and on fish and cephalopods (third).
A considerable number of the analyzed fish species exceeded the maximum levels proposed by the European legislation, such as dusky grouper (100% of the examined specimens), common dentex (65%), conger (45%), common sole (38%), hake (26%) and angler (15%), among others. Representation of the Hg concentrations vs. weight of each specimen from the third trophic level showed a significant positive correlation, r = 0.78 (p < 0.01).
The average THg intake due to fish consumption, 0.61 µg/g ww, involved Hg estimated weekly intakes of 5.7 µg/kg bw for children aged 7-12 years and 4.4 µg/kg bw for adults. These values were higher than the provisional tolerable weekly intakes for total Hg intake recommended by FAO/WHO, 4 µg/kg bw, 140% and 110%, respectively.
How to cite: grimalt, J., Capodiferro, M., Junque, E., and Marco, E.: Mercury concentrations in diverse lean fish species of the western Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1702, https://doi.org/10.5194/egusphere-egu2020-1702, 2020.
EGU2020-3069 | Displays | BG2.22
Amalgam and Dissolved Mercury Removal A system not just a SeparatorWilliam Purves
Abstract
Title: Amalgam and Dissolved Mercury Removal A system not just a Separator
Content
Packs Solutions LLC has developed an amalgam and dissolved mercury system that significantly reduces the mercury discharge from the dental practice. The US American Dental Association estimates that 50% of the mercury entering the waste treatment facility is from dental practices. The system consists of an innovative chairside trap, use of pH neutral vacuum line cleaners and disinfectants, and advanced technology separator that removes the dissolved mercury from the office discharge. The system is currently in use in the United States and is rapidly gaining popularity with wastewater treatment authorities.
The presentation provides data taken from dental offices and the affect of pH on the dissolving of amalgam in water. The average dental office generates over 14,000 ng/L of dissolved mercury that can not be removed by traditional waste treatment processes. The system has proven to reduce the discharge to <1,000 ng/L on average. The system requires no changes in office routine or equipment. The separator is maintenance free and the chairside trap is custom made to fit in any brand of trap. The average annual cost in the United States is as low as $420 for one chair practice to $1300 for a 6 chair practice.
Bill Purves
Packs Solutions LLC
How to cite: Purves, W.: Amalgam and Dissolved Mercury Removal A system not just a Separator, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3069, https://doi.org/10.5194/egusphere-egu2020-3069, 2020.
Abstract
Title: Amalgam and Dissolved Mercury Removal A system not just a Separator
Content
Packs Solutions LLC has developed an amalgam and dissolved mercury system that significantly reduces the mercury discharge from the dental practice. The US American Dental Association estimates that 50% of the mercury entering the waste treatment facility is from dental practices. The system consists of an innovative chairside trap, use of pH neutral vacuum line cleaners and disinfectants, and advanced technology separator that removes the dissolved mercury from the office discharge. The system is currently in use in the United States and is rapidly gaining popularity with wastewater treatment authorities.
The presentation provides data taken from dental offices and the affect of pH on the dissolving of amalgam in water. The average dental office generates over 14,000 ng/L of dissolved mercury that can not be removed by traditional waste treatment processes. The system has proven to reduce the discharge to <1,000 ng/L on average. The system requires no changes in office routine or equipment. The separator is maintenance free and the chairside trap is custom made to fit in any brand of trap. The average annual cost in the United States is as low as $420 for one chair practice to $1300 for a 6 chair practice.
Bill Purves
Packs Solutions LLC
How to cite: Purves, W.: Amalgam and Dissolved Mercury Removal A system not just a Separator, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3069, https://doi.org/10.5194/egusphere-egu2020-3069, 2020.
BG2.23 – Whole system approaches in addressing processes and long-term changes in terrestrial and aquatic ecosystems
EGU2020-2651 | Displays | BG2.23 | Highlight
ECOPOTENTIAL Storylines: a whole system approach to Protected Area ecosystemsAntonello Provenzale, Carl Beierkuhnlein, Silvia Giamberini, Simona Imperio, Carmela Marangi, and Ramona Viterbi
The EU H2020 ECOPOTENTIAL project was devoted to make best use of Earth observations to improve ecosystem benefits and support conservation strategies. The project followed a whole-ecosystem approach, with special attention to geosphere-biosphere interactions. The project, started in 2015 and ended in 2019, focused its activities on a set of more than 20 protected areas of international relevance in Europe and beyond, many of which are also eLTER and ILTER sites, covering a wide array of biogeographic regions and ecosystems (www.ecopotential-project.eu). The site/sites – specific research activities have been developed within a comprehensive framework (called the project’s “Storylines”) where real-life issues of broad conservation relevance for Protected Areas are linked with research questions. The Storylines specify the needs for remote sensing and in-situ data for ecosystem modelling, ecosystem service assessment, cross-scale interaction estimates, demands for future protections, policy and capacity building. Each storyline has been focused within at least one protected area and has sets the basis for further operational work in the field, adding specifics, defining a work plan and assigning tasks. Storylines have been conceived as iterative processes whose flow of activity and practical implementation evolved with the increase of knowledge and the demands by the users of the scientific findings. After a general introduction to the Storyline approach, here we focus on the case of the Gran Paradiso National Park, considering population dynamics of wild ungulates, biodiversity assessments and Critical Zone exploration. The Storyline concept is now left as a legacy of the ECOPOTENTIAL project to eLTER RI and to the GEO ECO community activities.
How to cite: Provenzale, A., Beierkuhnlein, C., Giamberini, S., Imperio, S., Marangi, C., and Viterbi, R.: ECOPOTENTIAL Storylines: a whole system approach to Protected Area ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2651, https://doi.org/10.5194/egusphere-egu2020-2651, 2020.
The EU H2020 ECOPOTENTIAL project was devoted to make best use of Earth observations to improve ecosystem benefits and support conservation strategies. The project followed a whole-ecosystem approach, with special attention to geosphere-biosphere interactions. The project, started in 2015 and ended in 2019, focused its activities on a set of more than 20 protected areas of international relevance in Europe and beyond, many of which are also eLTER and ILTER sites, covering a wide array of biogeographic regions and ecosystems (www.ecopotential-project.eu). The site/sites – specific research activities have been developed within a comprehensive framework (called the project’s “Storylines”) where real-life issues of broad conservation relevance for Protected Areas are linked with research questions. The Storylines specify the needs for remote sensing and in-situ data for ecosystem modelling, ecosystem service assessment, cross-scale interaction estimates, demands for future protections, policy and capacity building. Each storyline has been focused within at least one protected area and has sets the basis for further operational work in the field, adding specifics, defining a work plan and assigning tasks. Storylines have been conceived as iterative processes whose flow of activity and practical implementation evolved with the increase of knowledge and the demands by the users of the scientific findings. After a general introduction to the Storyline approach, here we focus on the case of the Gran Paradiso National Park, considering population dynamics of wild ungulates, biodiversity assessments and Critical Zone exploration. The Storyline concept is now left as a legacy of the ECOPOTENTIAL project to eLTER RI and to the GEO ECO community activities.
How to cite: Provenzale, A., Beierkuhnlein, C., Giamberini, S., Imperio, S., Marangi, C., and Viterbi, R.: ECOPOTENTIAL Storylines: a whole system approach to Protected Area ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2651, https://doi.org/10.5194/egusphere-egu2020-2651, 2020.
EGU2020-21461 | Displays | BG2.23
Monitoring bio- geodiversity and ecosystem health by traits, remote sensing and data science approachesAngela Lausch, Peter Dietrich, and Jan Bumberger
Ecosystems fulfil a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our ecosystems as well as their ecosystem functions. The relationships between drivers, stress and ecosystem functions in ecosystems are complex, multi-facetted and often non-linear and yet environmental managers, decision makers and politicians need to be able to make rapid decisions that are data-driven and based on short- and long-term monitoring information, complex modeling and analysis approaches. A huge number of long-standing and standardized ecosystem health and monitoring approaches of bio-and geodiversity exist and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. This presentation presents new concepts of monitoring of bio-and geodiversity and discusses the requirements for using Data Science as a bridge between complex and multidimensional Big Data in environmental health.
It became apparent that no existing monitoring approach, technique, model or platform is sufficient on its own to monitor, model, forecast or assess forest health and its resilience. In order to advance the development of a multi-source ecosystem health monitoring network, we argue that in order to gain a better understanding of ecosystem health in our complex world it would be conducive to implement the concepts of Data Science with the components: (i) digitalization, (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, (iii) Semantic Web, (iv) proof, trust and uncertainties, (v) tools for Data Science analysis and (vi) easy tools for scientists, data managers and stakeholders for decision-making support (Lausch et al., 2019, 2018, 2016).
Lausch, A., et al., 2019. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 11, 2356. https://doi.org/10.3390/rs11202356
Lausch, A., 2016. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 70, 317–339. https://doi.org/10.1016/j.ecolind.2016.06.022
Lausch, A., 2018. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 10, 1120. https://doi.org/10.3390/rs10071120
How to cite: Lausch, A., Dietrich, P., and Bumberger, J.: Monitoring bio- geodiversity and ecosystem health by traits, remote sensing and data science approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21461, https://doi.org/10.5194/egusphere-egu2020-21461, 2020.
Ecosystems fulfil a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our ecosystems as well as their ecosystem functions. The relationships between drivers, stress and ecosystem functions in ecosystems are complex, multi-facetted and often non-linear and yet environmental managers, decision makers and politicians need to be able to make rapid decisions that are data-driven and based on short- and long-term monitoring information, complex modeling and analysis approaches. A huge number of long-standing and standardized ecosystem health and monitoring approaches of bio-and geodiversity exist and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. This presentation presents new concepts of monitoring of bio-and geodiversity and discusses the requirements for using Data Science as a bridge between complex and multidimensional Big Data in environmental health.
It became apparent that no existing monitoring approach, technique, model or platform is sufficient on its own to monitor, model, forecast or assess forest health and its resilience. In order to advance the development of a multi-source ecosystem health monitoring network, we argue that in order to gain a better understanding of ecosystem health in our complex world it would be conducive to implement the concepts of Data Science with the components: (i) digitalization, (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, (iii) Semantic Web, (iv) proof, trust and uncertainties, (v) tools for Data Science analysis and (vi) easy tools for scientists, data managers and stakeholders for decision-making support (Lausch et al., 2019, 2018, 2016).
Lausch, A., et al., 2019. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote Sens. 11, 2356. https://doi.org/10.3390/rs11202356
Lausch, A., 2016. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 70, 317–339. https://doi.org/10.1016/j.ecolind.2016.06.022
Lausch, A., 2018. Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches. Remote Sens. 10, 1120. https://doi.org/10.3390/rs10071120
How to cite: Lausch, A., Dietrich, P., and Bumberger, J.: Monitoring bio- geodiversity and ecosystem health by traits, remote sensing and data science approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21461, https://doi.org/10.5194/egusphere-egu2020-21461, 2020.
EGU2020-19266 | Displays | BG2.23
Heat waves and droughts strongly impact productivity and ecosystem functioning in an abandoned subalpine grasslandLudovica Oddi, Marta Galvagno, Edoardo Cremonese, Gianluca Filippa, Mirco Migliavacca, Mauro Bassignana, Umberto Morra di Cella, and Consolata Siniscalco
Climate and land-use changes have major impacts on global biodiversity and carbon cycle of ecosystems. Severe heat waves and droughts, already experienced by the European Alps, e.g. in 2015 and 2018, are expected to further increase in the near future.
In the last decades, land-use changes have led to the abandonment of several mountain grasslands and pastures, so that in Europe a net conversion of grasslands to forest is currently occurring. However, the consequences of alpine grassland abandonment on the ecosystem responses to climate extremes are still largely unknown. Understanding climate change impacts and feedbacks of alpine and subalpine grasslands is essential, because they are ecologically sensitive ecosystems, and they constitute an important C sink and hotspots of biodiversity.
In this work we aim at understanding the effects of heat waves and drought on the relative productivity of grasses and forbs and consequently on ecosystem functioning in an abandoned subalpine grassland located in the Western Italian Alps (Aosta Valley) at 2100 m asl. We took advantage of a 10-years natural experiment in which we analysed biomass production, LAI and Net Ecosystem CO2 Exchange. Vegetation of the study area is characterized by a dominance of the grass Nardus stricta, and by Arnica montana, Trifolium alpinum, Geum montanum and several other forb species typical of alpine and subalpine grasslands.
In the period 2009-2019, primary production as represented by biomass and leaf area index (LAI) gradually decreased with important drops in 2015 and 2018, which were characterised by extreme climatic conditions.
Considering the functional type response to extremes, the LAI peak of grasses, which appeared always the dominant portion of the total LAI, showed significantly lower values in 2015 and 2018 compared to long-term. On the other hand, LAI peak values of forbs showed higher variability among plots and years. The clear decrease of the LAI of grasses (mainly represented by Nardus stricta) contributed significantly to the decrease of the total biomass production and to the NEE reduction. The response of Nardus stricta to heat waves and drought is very clear and influences ecosystem functioning and consequently vegetation dynamics, modifying the relative productivity of grasses and forbs. As an example, in the years 2015 and 2018 an evident phenological response was observed in Arnica montana, with an exceptional number of inflorescences.
In conclusion, we found that heat waves and droughts have the potential to influence the natural vegetation dynamics following abandonment and contribute to the reduction of plant biomass production with consequences on the net ecosystem C exchange and species competition in mountain grasslands.
How to cite: Oddi, L., Galvagno, M., Cremonese, E., Filippa, G., Migliavacca, M., Bassignana, M., Morra di Cella, U., and Siniscalco, C.: Heat waves and droughts strongly impact productivity and ecosystem functioning in an abandoned subalpine grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19266, https://doi.org/10.5194/egusphere-egu2020-19266, 2020.
Climate and land-use changes have major impacts on global biodiversity and carbon cycle of ecosystems. Severe heat waves and droughts, already experienced by the European Alps, e.g. in 2015 and 2018, are expected to further increase in the near future.
In the last decades, land-use changes have led to the abandonment of several mountain grasslands and pastures, so that in Europe a net conversion of grasslands to forest is currently occurring. However, the consequences of alpine grassland abandonment on the ecosystem responses to climate extremes are still largely unknown. Understanding climate change impacts and feedbacks of alpine and subalpine grasslands is essential, because they are ecologically sensitive ecosystems, and they constitute an important C sink and hotspots of biodiversity.
In this work we aim at understanding the effects of heat waves and drought on the relative productivity of grasses and forbs and consequently on ecosystem functioning in an abandoned subalpine grassland located in the Western Italian Alps (Aosta Valley) at 2100 m asl. We took advantage of a 10-years natural experiment in which we analysed biomass production, LAI and Net Ecosystem CO2 Exchange. Vegetation of the study area is characterized by a dominance of the grass Nardus stricta, and by Arnica montana, Trifolium alpinum, Geum montanum and several other forb species typical of alpine and subalpine grasslands.
In the period 2009-2019, primary production as represented by biomass and leaf area index (LAI) gradually decreased with important drops in 2015 and 2018, which were characterised by extreme climatic conditions.
Considering the functional type response to extremes, the LAI peak of grasses, which appeared always the dominant portion of the total LAI, showed significantly lower values in 2015 and 2018 compared to long-term. On the other hand, LAI peak values of forbs showed higher variability among plots and years. The clear decrease of the LAI of grasses (mainly represented by Nardus stricta) contributed significantly to the decrease of the total biomass production and to the NEE reduction. The response of Nardus stricta to heat waves and drought is very clear and influences ecosystem functioning and consequently vegetation dynamics, modifying the relative productivity of grasses and forbs. As an example, in the years 2015 and 2018 an evident phenological response was observed in Arnica montana, with an exceptional number of inflorescences.
In conclusion, we found that heat waves and droughts have the potential to influence the natural vegetation dynamics following abandonment and contribute to the reduction of plant biomass production with consequences on the net ecosystem C exchange and species competition in mountain grasslands.
How to cite: Oddi, L., Galvagno, M., Cremonese, E., Filippa, G., Migliavacca, M., Bassignana, M., Morra di Cella, U., and Siniscalco, C.: Heat waves and droughts strongly impact productivity and ecosystem functioning in an abandoned subalpine grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19266, https://doi.org/10.5194/egusphere-egu2020-19266, 2020.
EGU2020-22096 | Displays | BG2.23 | Highlight
Benthic investigations at the Arctic long-term deep-sea observatory HAUSGARTENChristiane Hasemann, Ingo Schewe, and Thomas Soltwedel
The past decades have seen remarkable changes in key arctic variables, including a decrease in sea-ice extent and sea-ice thickness, changes in temperature and salinity of arctic waters, and associated shifts in nutrient distributions. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, the Alfred Wegener Institute for Polar and Marine Research (AWI) established in 1999 about 150 km west of Svalbard the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. 21 permanent sampling sites along a depth transect between 1000 – 5500 m, and along a latitudinal transect following the 2500 m water depth isobath are revisited yearly. The central HAUSGARTEN station serves as an experimental area for biological short- and long-term experiments at the deep seafloor, simulating various scenarios in changing environmental settings. Multidisciplinary research activities at HAUSGARTEN comprise biochemical analyses to estimate the input of organic matter from phytodetritus sedimentation and activities and biomasses of the small sediment-inhabiting biota as well as assessments of distribution patterns of benthic organisms (covering size classes from bacteria to meiofauna as well as megafauna).The past decades have seen remarkable changes in key arctic variables, including a decrease in sea-ice extent and sea-ice thickness, changes in temperature and salinity of arctic waters, and associated shifts in nutrient distributions. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, the Alfred Wegener Institute for Polar and Marine Research (AWI) established in 1999 about 150 km west of Svalbard the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. 21 permanent sampling sites along a depth transect between 1000 – 5500 m, and along a latitudinal transect following the 2500 m water depth isobath are revisited yearly. The central HAUSGARTEN station serves as an experimental area for biological short- and long-term experiments at the deep seafloor, simulating various scenarios in changing environmental settings. Multidisciplinary research activities at HAUSGARTEN comprise biochemical analyses to estimate the input of organic matter from phytodetritus sedimentation and activities and biomasses of the small sediment-inhabiting biota as well as assessments of distribution patterns of benthic organisms (covering size classes from bacteria to meiofauna as well as megafauna).
How to cite: Hasemann, C., Schewe, I., and Soltwedel, T.: Benthic investigations at the Arctic long-term deep-sea observatory HAUSGARTEN, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22096, https://doi.org/10.5194/egusphere-egu2020-22096, 2020.
The past decades have seen remarkable changes in key arctic variables, including a decrease in sea-ice extent and sea-ice thickness, changes in temperature and salinity of arctic waters, and associated shifts in nutrient distributions. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, the Alfred Wegener Institute for Polar and Marine Research (AWI) established in 1999 about 150 km west of Svalbard the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. 21 permanent sampling sites along a depth transect between 1000 – 5500 m, and along a latitudinal transect following the 2500 m water depth isobath are revisited yearly. The central HAUSGARTEN station serves as an experimental area for biological short- and long-term experiments at the deep seafloor, simulating various scenarios in changing environmental settings. Multidisciplinary research activities at HAUSGARTEN comprise biochemical analyses to estimate the input of organic matter from phytodetritus sedimentation and activities and biomasses of the small sediment-inhabiting biota as well as assessments of distribution patterns of benthic organisms (covering size classes from bacteria to meiofauna as well as megafauna).The past decades have seen remarkable changes in key arctic variables, including a decrease in sea-ice extent and sea-ice thickness, changes in temperature and salinity of arctic waters, and associated shifts in nutrient distributions. To detect and track the impact of large-scale environmental changes in the transition zone between the northern North Atlantic and the central Arctic Ocean, the Alfred Wegener Institute for Polar and Marine Research (AWI) established in 1999 about 150 km west of Svalbard the deep-sea long-term observatory HAUSGARTEN, which constitutes the first, and until now only open-ocean long-term station in a polar region. 21 permanent sampling sites along a depth transect between 1000 – 5500 m, and along a latitudinal transect following the 2500 m water depth isobath are revisited yearly. The central HAUSGARTEN station serves as an experimental area for biological short- and long-term experiments at the deep seafloor, simulating various scenarios in changing environmental settings. Multidisciplinary research activities at HAUSGARTEN comprise biochemical analyses to estimate the input of organic matter from phytodetritus sedimentation and activities and biomasses of the small sediment-inhabiting biota as well as assessments of distribution patterns of benthic organisms (covering size classes from bacteria to meiofauna as well as megafauna).
How to cite: Hasemann, C., Schewe, I., and Soltwedel, T.: Benthic investigations at the Arctic long-term deep-sea observatory HAUSGARTEN, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22096, https://doi.org/10.5194/egusphere-egu2020-22096, 2020.
EGU2020-4901 | Displays | BG2.23
Mediterranean cork oak woodlands and global changes: Synergistic and negative effects of recurrent droughts and shrub encroachmentSimon Haberstroh, Maria C. Caldeira, Raquel Lobo-do-Vale, Joana Martins, Maren Dubbert, Joaquim G. Pinto, Matthias Cuntz, Miguel N. Bugalho, and Christiane Werner
Mediterranean type ecosystems such as cork oak (Quercus suber) woodlands are currently threatened by extreme drought events and shrub encroachment in the Iberian Peninsula. Recently, the frequency of extreme droughts has increased with negative effects on many ecosystems. Decreasing soil water availability reduces growth and fitness of trees, and may eventually induce tree mortality. Shrub encroachment may further increase the competition for soil water, impacting tree vulnerability and resilience negatively. Yet, the synergistic effects of extreme droughts and shrub encroachment on ecosystems have rarely been investigated.
We established a precipitation manipulation and shrub encroachment experiment in a cork oak stand to study the combined effects of the two environmental pressures. The cork oak woodland is located in Southeast Portugal and partially invaded by the native shrub gum rockrose (Cistus ladanifer). In December 2017, we installed rainout shelters (30 to 45% of precipitation reduction) in replicated cork oak stands invaded and uninvaded by gum rockrose, complemented by control plots with natural precipitation. In each treatment, the trees (n = 9) and shrubs (n = 9) were measured for water and carbon fluxes to reveal species-specific responses and competition effects under recurrent extreme drought.
The hydrological year 2018 was characterised by above-average precipitation mainly caused by large spring rainfall events. Probably due to sufficient water supply, no clear treatment effects were evident. For example, minimum leaf water potentials (ΨPD) of the cork oak trees did not drop below −1.5 ± 0.1 MPa and maximum sap flux density was 2.1 ± 0.2 m3 m−2 day−1. Minimum ΨPD of the shrubs was three times lower (−3.5 ± 0.1 MPa) and maximum sap flux density over four-fold higher (8.8 ± 0.8 m3 m−2 day−1) than those of the trees, suggesting distinct species-specific behaviour. Reduced winter and spring precipitation, combined with a late onset of autumn rainfalls in 2019, led to a decrease in water input down to 66% (control) and 44% (drought) compared to the long-term average of 585 mm. In this dry year, negative synergistic effects of drought and shrub encroachment were expressed during the dry-down and drought period by a lower minimum ΨPD and an average sap flux density reduced by 50% (0.4 ± 0.1 m3 m−2 day−1) of invaded trees exposed to the experimental drought, compared to control trees (0.8 ± 0.1 m3 m−2 day−1). In sum, this resulted in a reduction of sap flux densities of the cork oaks by 25% (invaded), 23% (drought) and 34% (drought and invaded) over the course of the hydrological year 2019. The ongoing investigations aim to further determine the stress tolerance and critical physiological thresholds for both species and the entire ecosystem.
How to cite: Haberstroh, S., Caldeira, M. C., Lobo-do-Vale, R., Martins, J., Dubbert, M., Pinto, J. G., Cuntz, M., Bugalho, M. N., and Werner, C.: Mediterranean cork oak woodlands and global changes: Synergistic and negative effects of recurrent droughts and shrub encroachment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4901, https://doi.org/10.5194/egusphere-egu2020-4901, 2020.
Mediterranean type ecosystems such as cork oak (Quercus suber) woodlands are currently threatened by extreme drought events and shrub encroachment in the Iberian Peninsula. Recently, the frequency of extreme droughts has increased with negative effects on many ecosystems. Decreasing soil water availability reduces growth and fitness of trees, and may eventually induce tree mortality. Shrub encroachment may further increase the competition for soil water, impacting tree vulnerability and resilience negatively. Yet, the synergistic effects of extreme droughts and shrub encroachment on ecosystems have rarely been investigated.
We established a precipitation manipulation and shrub encroachment experiment in a cork oak stand to study the combined effects of the two environmental pressures. The cork oak woodland is located in Southeast Portugal and partially invaded by the native shrub gum rockrose (Cistus ladanifer). In December 2017, we installed rainout shelters (30 to 45% of precipitation reduction) in replicated cork oak stands invaded and uninvaded by gum rockrose, complemented by control plots with natural precipitation. In each treatment, the trees (n = 9) and shrubs (n = 9) were measured for water and carbon fluxes to reveal species-specific responses and competition effects under recurrent extreme drought.
The hydrological year 2018 was characterised by above-average precipitation mainly caused by large spring rainfall events. Probably due to sufficient water supply, no clear treatment effects were evident. For example, minimum leaf water potentials (ΨPD) of the cork oak trees did not drop below −1.5 ± 0.1 MPa and maximum sap flux density was 2.1 ± 0.2 m3 m−2 day−1. Minimum ΨPD of the shrubs was three times lower (−3.5 ± 0.1 MPa) and maximum sap flux density over four-fold higher (8.8 ± 0.8 m3 m−2 day−1) than those of the trees, suggesting distinct species-specific behaviour. Reduced winter and spring precipitation, combined with a late onset of autumn rainfalls in 2019, led to a decrease in water input down to 66% (control) and 44% (drought) compared to the long-term average of 585 mm. In this dry year, negative synergistic effects of drought and shrub encroachment were expressed during the dry-down and drought period by a lower minimum ΨPD and an average sap flux density reduced by 50% (0.4 ± 0.1 m3 m−2 day−1) of invaded trees exposed to the experimental drought, compared to control trees (0.8 ± 0.1 m3 m−2 day−1). In sum, this resulted in a reduction of sap flux densities of the cork oaks by 25% (invaded), 23% (drought) and 34% (drought and invaded) over the course of the hydrological year 2019. The ongoing investigations aim to further determine the stress tolerance and critical physiological thresholds for both species and the entire ecosystem.
How to cite: Haberstroh, S., Caldeira, M. C., Lobo-do-Vale, R., Martins, J., Dubbert, M., Pinto, J. G., Cuntz, M., Bugalho, M. N., and Werner, C.: Mediterranean cork oak woodlands and global changes: Synergistic and negative effects of recurrent droughts and shrub encroachment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4901, https://doi.org/10.5194/egusphere-egu2020-4901, 2020.
EGU2020-10945 | Displays | BG2.23
Transition pathways of the Greek island Samothraki from an agrarian sociometabolic regime to modern tourism and beyond: a real world lab in sustainabilityMarina Fischer-Kowalski
Transition pathways of the Greek island Samothraki from an agrarian sociometabolic regime to modern tourism and beyond: a real world lab in sustainability
Marina Fischer-Kowalski[1], Nikos Skoulikidis[2], Georg Gratzer[3]
We reconstruct the developmental course of a small mountainous Greek island during the past decades in qualitative and quantitative terms. Conceptually, these efforts are integrated by a socio-metabolic system model (Fischer-Kowalski & Petridis 2016). The approaches from the angle of various disciplines (social ecology, land-use science, aquatic science, forest ecology) as well as the transdisciplinary collaborative approaches sought to compensate for the lack of long-term environmental monitoring data. Ultimate goal of this interdisciplinary and transdisciplinary research was (and is) giving scientific support to a local sustainability transition. We briefly describe the following sociometabolic stages of this process.
stage 1: traditional agrarian / foraging (fishing) socio-metabolic regime
Its features dominated up into the 1960s; the island sustained a population of 3-4000 people on livestock herding (sheep and goats), subsistence agriculture and fishing. Technical energy source: wood and charcoal from mountain forests (Quercus petraea). Grazing was the dominant land-use. Livestock breeding (mainly goats and sheep) was exclusively based on human manpower: free roaming animals, land management practices like regular burning of weeds on pastures.
stage 2: gradual transition to a modern industrial / touristic regime
Beginning with electrification (local diesel aggregate) and state services (schools, health care, road building, legal institutions, expansion of harbour and ferry services) in the 1960s, the island gradually turns into a (modest, national) tourist destination. Income for farmers/herders lags behind, and is supported by state, and later, EU subsidies. The coupling of subsidies to animal numbers leads to a substantial rise in small ruminants, serious overgrazing and decline in vegetation cover (Fetzel et al. 2018) and biodiversity (Biel and Tan 2014), lack of forest regrowth (Heiling 2019), increase in soil erosion (Panagopoulos et al. 2019) as well as rising demand for freshwater and a rising generation of wastewater (Skoulikidis et al. 2019a,b).
stage 3: designing a real-world experiment towards a sustainable future for the island
In the face of the Greek financial crisis, with support from Unesco, a team of scientists from various countries engaged in finding pathways to secure a sustainable course for the island’s future. Upon their advice, the municipality and the relevant Greek authorities in 2013 signed an application for the island to become a Man-and-Biosphere Reserve by Unesco standards, the municipality granted a local LTER-observatory, the regional authority rejected an industrial wind farm proposal, and Unesco welcomed these efforts. The municipality and grass roots actors use the support from international scientists to find sustainable solutions for problems that have been accumulating.
[2] Hellenic Centre for Marine Research, Athens
[3] Institute for Forest Ecology, University of Natural Resources and Life Sciences Vienna
How to cite: Fischer-Kowalski, M.: Transition pathways of the Greek island Samothraki from an agrarian sociometabolic regime to modern tourism and beyond: a real world lab in sustainability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10945, https://doi.org/10.5194/egusphere-egu2020-10945, 2020.
Transition pathways of the Greek island Samothraki from an agrarian sociometabolic regime to modern tourism and beyond: a real world lab in sustainability
Marina Fischer-Kowalski[1], Nikos Skoulikidis[2], Georg Gratzer[3]
We reconstruct the developmental course of a small mountainous Greek island during the past decades in qualitative and quantitative terms. Conceptually, these efforts are integrated by a socio-metabolic system model (Fischer-Kowalski & Petridis 2016). The approaches from the angle of various disciplines (social ecology, land-use science, aquatic science, forest ecology) as well as the transdisciplinary collaborative approaches sought to compensate for the lack of long-term environmental monitoring data. Ultimate goal of this interdisciplinary and transdisciplinary research was (and is) giving scientific support to a local sustainability transition. We briefly describe the following sociometabolic stages of this process.
stage 1: traditional agrarian / foraging (fishing) socio-metabolic regime
Its features dominated up into the 1960s; the island sustained a population of 3-4000 people on livestock herding (sheep and goats), subsistence agriculture and fishing. Technical energy source: wood and charcoal from mountain forests (Quercus petraea). Grazing was the dominant land-use. Livestock breeding (mainly goats and sheep) was exclusively based on human manpower: free roaming animals, land management practices like regular burning of weeds on pastures.
stage 2: gradual transition to a modern industrial / touristic regime
Beginning with electrification (local diesel aggregate) and state services (schools, health care, road building, legal institutions, expansion of harbour and ferry services) in the 1960s, the island gradually turns into a (modest, national) tourist destination. Income for farmers/herders lags behind, and is supported by state, and later, EU subsidies. The coupling of subsidies to animal numbers leads to a substantial rise in small ruminants, serious overgrazing and decline in vegetation cover (Fetzel et al. 2018) and biodiversity (Biel and Tan 2014), lack of forest regrowth (Heiling 2019), increase in soil erosion (Panagopoulos et al. 2019) as well as rising demand for freshwater and a rising generation of wastewater (Skoulikidis et al. 2019a,b).
stage 3: designing a real-world experiment towards a sustainable future for the island
In the face of the Greek financial crisis, with support from Unesco, a team of scientists from various countries engaged in finding pathways to secure a sustainable course for the island’s future. Upon their advice, the municipality and the relevant Greek authorities in 2013 signed an application for the island to become a Man-and-Biosphere Reserve by Unesco standards, the municipality granted a local LTER-observatory, the regional authority rejected an industrial wind farm proposal, and Unesco welcomed these efforts. The municipality and grass roots actors use the support from international scientists to find sustainable solutions for problems that have been accumulating.
[2] Hellenic Centre for Marine Research, Athens
[3] Institute for Forest Ecology, University of Natural Resources and Life Sciences Vienna
How to cite: Fischer-Kowalski, M.: Transition pathways of the Greek island Samothraki from an agrarian sociometabolic regime to modern tourism and beyond: a real world lab in sustainability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10945, https://doi.org/10.5194/egusphere-egu2020-10945, 2020.
EGU2020-20249 | Displays | BG2.23 | Highlight
Understanding interacting dynamics of hydrology, carbon cycle, and greenhouse gas fluxes in Arctic watershedsKaisa-Riikka Mustonen, Hannu Marttila, Kaisa Lehosmaa, Iina Koivunen, Jeffrey Welker, Annalea Lohila, and Jussi Jyväsjärvi
Carbon -water interactions are critical components of Arctic freshwater ecosystems. Dissolved organic matter (DOM) is the basis for in stream biological processes and is the foundation of biogeochemical linkages between terrestrial and aquatic landscapes, and also between the river bodies and the atmosphere via outgassing. Quantity and quality of DOM is further affecting the biochemical processes of aquatic ecosystems, as it is strongly related to the abundance, activity and composition of microbial communities. Microbes are an important part of the freshwaters biochemical cycle as they convert DOM into nutrients. They also play a vital role in carbon mineralization into carbon dioxide (CO2) and methane (CH4), which can further be released to the atmosphere resulting substantial greenhouse gas (GHG) emissions. Thus, streams play an important role in global carbon processing, storage and release. However, small Arctic streams and ecologically important interfaces between aquatic and terrestrial ecosystems, in particular, are under-represented in global atmospheric GHG emission estimates owing to a lack of spatial and temporal flux measurements in Arctic conditions.
The objective of our study was to improve understanding of the connections between hydrology, carbon cycle and GHG flux dynamics in Arctic watersheds. We used combination of multiscale measurements to quantify carbon availability (DOC/DIC concentrations) and quality (water absorbance, SUVA254 index), water sources (stable H2O isotope proxies), microbial community structure (rRNA sequencing), and CO2 and CH4 fluxes and stream water concentrations. Our study site is typical groundwater influenced peatland dominated second order watershed located at Pallas-Yllästunturi National Park in northern Finland. Sampling was conducted three times during summer 2019 at 20 locations along the stream gradient.
Preliminary results indicate this stream to be a significant contributor of CO2 and CH4. GHG fluxes increased from headwaters towards the stream outlet. However, the groundwater hotspots decreased, while runoff from peatland sections increased the fluxes. One particular groundwater hotspot was an exception, as its emission rates of CH4 were exceptionally high in June, probably due to increased anaerobic microbial activity within the groundwater system. Microbial contribution to carbon dynamics was evident during our study period as increased DOC loads due to late spring snowmelt dominated runoff from surrounding peatland was mineralized and DIC amount increased towards midsummer. This will be further supported by results from microbial community analysis. Same was evident also in spatial scale, as higher DOC values of headwater sites was reduced downstream and DIC values were increasing respectively. SUVA254 index, which correlates positively with higher DOC aromaticity and molecular weight, was lower at groundwater hotspots. This indicates that groundwater hotspots were producing better quality C for microbes, as microbes tend to prefer compounds with lower aromaticity and molecular weight.
Our study addresses the urgent need for catchment level studies on carbon and GHG cycling that focuses on terrestrial-aquatic linkages, and on the mechanistic processes involved, such as microbe-mediated mineralization. Catchment wide studies conducted in Arctic and Boreal regions including interactions between ecosystems are especially needed today as northern areas are experiencing unprecedented extreme warming, precipitation changes and shifting snow depths.
How to cite: Mustonen, K.-R., Marttila, H., Lehosmaa, K., Koivunen, I., Welker, J., Lohila, A., and Jyväsjärvi, J.: Understanding interacting dynamics of hydrology, carbon cycle, and greenhouse gas fluxes in Arctic watersheds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20249, https://doi.org/10.5194/egusphere-egu2020-20249, 2020.
Carbon -water interactions are critical components of Arctic freshwater ecosystems. Dissolved organic matter (DOM) is the basis for in stream biological processes and is the foundation of biogeochemical linkages between terrestrial and aquatic landscapes, and also between the river bodies and the atmosphere via outgassing. Quantity and quality of DOM is further affecting the biochemical processes of aquatic ecosystems, as it is strongly related to the abundance, activity and composition of microbial communities. Microbes are an important part of the freshwaters biochemical cycle as they convert DOM into nutrients. They also play a vital role in carbon mineralization into carbon dioxide (CO2) and methane (CH4), which can further be released to the atmosphere resulting substantial greenhouse gas (GHG) emissions. Thus, streams play an important role in global carbon processing, storage and release. However, small Arctic streams and ecologically important interfaces between aquatic and terrestrial ecosystems, in particular, are under-represented in global atmospheric GHG emission estimates owing to a lack of spatial and temporal flux measurements in Arctic conditions.
The objective of our study was to improve understanding of the connections between hydrology, carbon cycle and GHG flux dynamics in Arctic watersheds. We used combination of multiscale measurements to quantify carbon availability (DOC/DIC concentrations) and quality (water absorbance, SUVA254 index), water sources (stable H2O isotope proxies), microbial community structure (rRNA sequencing), and CO2 and CH4 fluxes and stream water concentrations. Our study site is typical groundwater influenced peatland dominated second order watershed located at Pallas-Yllästunturi National Park in northern Finland. Sampling was conducted three times during summer 2019 at 20 locations along the stream gradient.
Preliminary results indicate this stream to be a significant contributor of CO2 and CH4. GHG fluxes increased from headwaters towards the stream outlet. However, the groundwater hotspots decreased, while runoff from peatland sections increased the fluxes. One particular groundwater hotspot was an exception, as its emission rates of CH4 were exceptionally high in June, probably due to increased anaerobic microbial activity within the groundwater system. Microbial contribution to carbon dynamics was evident during our study period as increased DOC loads due to late spring snowmelt dominated runoff from surrounding peatland was mineralized and DIC amount increased towards midsummer. This will be further supported by results from microbial community analysis. Same was evident also in spatial scale, as higher DOC values of headwater sites was reduced downstream and DIC values were increasing respectively. SUVA254 index, which correlates positively with higher DOC aromaticity and molecular weight, was lower at groundwater hotspots. This indicates that groundwater hotspots were producing better quality C for microbes, as microbes tend to prefer compounds with lower aromaticity and molecular weight.
Our study addresses the urgent need for catchment level studies on carbon and GHG cycling that focuses on terrestrial-aquatic linkages, and on the mechanistic processes involved, such as microbe-mediated mineralization. Catchment wide studies conducted in Arctic and Boreal regions including interactions between ecosystems are especially needed today as northern areas are experiencing unprecedented extreme warming, precipitation changes and shifting snow depths.
How to cite: Mustonen, K.-R., Marttila, H., Lehosmaa, K., Koivunen, I., Welker, J., Lohila, A., and Jyväsjärvi, J.: Understanding interacting dynamics of hydrology, carbon cycle, and greenhouse gas fluxes in Arctic watersheds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20249, https://doi.org/10.5194/egusphere-egu2020-20249, 2020.
EGU2020-22466 | Displays | BG2.23
AQUACOSM-plus: an International Network for Experimental Mesocosm Studies Supporting Experimental Studies of Aquatic-Terrestrial CouplingJens C Nejstgaard, Stella Berger, Katharina Makower, and Iordanis Magiopoulos
Although processes in aquatic systems are closely connected to the terrestrial environment, these environments are often studied separately. We argue that for a better understanding of both aquatic and terrestrial ecosystems a combination of long-term data from connected environments, coupled with experimental ecosystem-scale experiments, have a greater potential for successful model testing and development of predictive concepts, than using only long-term data (without experiments) from separate systems. This talk will present the new EU-funded RI-project AQUACOSM-plus (www.aquacosm.eu, 2020-2024) that offers access to >50 research facilities across the EU and is linked to world-wide cooperation through the MESOCOSM.EU portal, a virtual network of >100 research facilities. Both networks include mesocosm facilities in all aquatic systems, including rivers, ponds, lakes, estuaries and marine systems – offering unique opportunities to conduct ecosystem-scale experimental studies of relevance to aquatic-terrestrial coupling. This network of research facilities can be used for large-scale process-based studies to test models based on trend or response observations from long-term-data, in order to understand underlying mechanisms of ecosystem functioning relating to the present global Grand Challenges (climate change, biodiversity loss, eutrophication, emerging pollutants, etc.). Interested parties are also welcome to suggest other uses of these research facilities, such as conducting ecosystem solution-based experiments to enable effective management in aquatic ecosystems. The network will fund access to >10.000 days for a wide range of external users, including scientists, students, industry and developers, from the whole world.
How to cite: Nejstgaard, J. C., Berger, S., Makower, K., and Magiopoulos, I.: AQUACOSM-plus: an International Network for Experimental Mesocosm Studies Supporting Experimental Studies of Aquatic-Terrestrial Coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22466, https://doi.org/10.5194/egusphere-egu2020-22466, 2020.
Although processes in aquatic systems are closely connected to the terrestrial environment, these environments are often studied separately. We argue that for a better understanding of both aquatic and terrestrial ecosystems a combination of long-term data from connected environments, coupled with experimental ecosystem-scale experiments, have a greater potential for successful model testing and development of predictive concepts, than using only long-term data (without experiments) from separate systems. This talk will present the new EU-funded RI-project AQUACOSM-plus (www.aquacosm.eu, 2020-2024) that offers access to >50 research facilities across the EU and is linked to world-wide cooperation through the MESOCOSM.EU portal, a virtual network of >100 research facilities. Both networks include mesocosm facilities in all aquatic systems, including rivers, ponds, lakes, estuaries and marine systems – offering unique opportunities to conduct ecosystem-scale experimental studies of relevance to aquatic-terrestrial coupling. This network of research facilities can be used for large-scale process-based studies to test models based on trend or response observations from long-term-data, in order to understand underlying mechanisms of ecosystem functioning relating to the present global Grand Challenges (climate change, biodiversity loss, eutrophication, emerging pollutants, etc.). Interested parties are also welcome to suggest other uses of these research facilities, such as conducting ecosystem solution-based experiments to enable effective management in aquatic ecosystems. The network will fund access to >10.000 days for a wide range of external users, including scientists, students, industry and developers, from the whole world.
How to cite: Nejstgaard, J. C., Berger, S., Makower, K., and Magiopoulos, I.: AQUACOSM-plus: an International Network for Experimental Mesocosm Studies Supporting Experimental Studies of Aquatic-Terrestrial Coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22466, https://doi.org/10.5194/egusphere-egu2020-22466, 2020.
EGU2020-4463 | Displays | BG2.23
Drivers of long-term and short-term Nitrogen concentrations and runoff dynamics in a forested karst catchmentThomas Dirnböck, Heike Brielmann, Johannes Kobler, and Andreas Hartmann
Excess Nitrogen (N) deposition from industrial, domestic and agricultural sources has led to increased nitrate leaching, increased gaseous N emissions, the loss of biological diversity, and has affected C sequestration in forest ecosystems. Nitrate leaching affects the purity of karst water resources, which contribute around 50 % to Austria’s drinking water supply. Here we present the first comprehensive evaluation of a 26 years record of dissolved inorganic N (DIN) concentrations and fluxes from a karst catchment in the Austrian Alps (LTER Zöbelboden), which was not affected by local N sources but solely by long-range N deposition (20-25 kg N ha-1 y-1 total N deposition). We inferred from soil chemical and microbial data as well as nitrate leaching, that the forest ecosystems in the catchment are likely saturated with respect to nitrogen. Consequently, 60-70% of the atmospheric N input was lost via leaching of NO3- to the karst aquifer or emission of N2O to the atmosphere. However, due to high dilution DIN concentrations in the runoff rarely exceed 2 mg N l-1. An exception were periods of forest disturbances. A number of strong storms (2007-2008) caused some major windthrows as well as single tree damages (5-10% of the catchment). Runoff concentrations of DIN showed clear responses to the disturbances with an increase (~ 1 mg N l-1) until 2008/09 and a decreased again in 2010/11 to pre-disturbance levels. Apart from disturbances, drought years led to an increase in NO3- in the soil water in the following years. We observed the subsequent changes of the dynamics of DIN in runoff with a high-resolution water probe during 2018 and 2019. This data shows that the severity of the drought and the magnitude of the first rewetting event after a period of drought drives the size of the flush of DIN. It is likely that N deposition will lower with legislated emission reductions and that the currently N leaky ecosystems may immobilize more N when climate is becoming warmer in the future. However, we hypothesize that the karst aquifer will still receive DIN rich runoff water due to long-term lags in the recovery of a closed N cycle and because of expected climate events such as storms and droughts.
How to cite: Dirnböck, T., Brielmann, H., Kobler, J., and Hartmann, A.: Drivers of long-term and short-term Nitrogen concentrations and runoff dynamics in a forested karst catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4463, https://doi.org/10.5194/egusphere-egu2020-4463, 2020.
Excess Nitrogen (N) deposition from industrial, domestic and agricultural sources has led to increased nitrate leaching, increased gaseous N emissions, the loss of biological diversity, and has affected C sequestration in forest ecosystems. Nitrate leaching affects the purity of karst water resources, which contribute around 50 % to Austria’s drinking water supply. Here we present the first comprehensive evaluation of a 26 years record of dissolved inorganic N (DIN) concentrations and fluxes from a karst catchment in the Austrian Alps (LTER Zöbelboden), which was not affected by local N sources but solely by long-range N deposition (20-25 kg N ha-1 y-1 total N deposition). We inferred from soil chemical and microbial data as well as nitrate leaching, that the forest ecosystems in the catchment are likely saturated with respect to nitrogen. Consequently, 60-70% of the atmospheric N input was lost via leaching of NO3- to the karst aquifer or emission of N2O to the atmosphere. However, due to high dilution DIN concentrations in the runoff rarely exceed 2 mg N l-1. An exception were periods of forest disturbances. A number of strong storms (2007-2008) caused some major windthrows as well as single tree damages (5-10% of the catchment). Runoff concentrations of DIN showed clear responses to the disturbances with an increase (~ 1 mg N l-1) until 2008/09 and a decreased again in 2010/11 to pre-disturbance levels. Apart from disturbances, drought years led to an increase in NO3- in the soil water in the following years. We observed the subsequent changes of the dynamics of DIN in runoff with a high-resolution water probe during 2018 and 2019. This data shows that the severity of the drought and the magnitude of the first rewetting event after a period of drought drives the size of the flush of DIN. It is likely that N deposition will lower with legislated emission reductions and that the currently N leaky ecosystems may immobilize more N when climate is becoming warmer in the future. However, we hypothesize that the karst aquifer will still receive DIN rich runoff water due to long-term lags in the recovery of a closed N cycle and because of expected climate events such as storms and droughts.
How to cite: Dirnböck, T., Brielmann, H., Kobler, J., and Hartmann, A.: Drivers of long-term and short-term Nitrogen concentrations and runoff dynamics in a forested karst catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4463, https://doi.org/10.5194/egusphere-egu2020-4463, 2020.
EGU2020-22465 | Displays | BG2.23 | Highlight
Modeling Farmer’s Decision-Making to integrate climate, land use and ecosystem functionsVeronica Gaube, Claudine Egger, Christoph Plutzar, Andreas Mayer, and Helmut Haberl
Land use and climate change are important drivers of environmental change and pose a major threat to ecosystems. Although systemic feedbacks between climate and land use changes are expected to have important impacts, research has rarely focused on the interaction between the two drivers. One reason for this could be that forecasts of land use are hardly available on suitable spatial and thematic scales. Agent-based models (ABMs) represent a potentially powerful tool for creating thematic and spatially fine-grained land use scenarios. In order to derive such scenarios, the complex interaction between land users (e.g. farmers) and the broader socio-economic context in which they operate must be taken into account. On landscape to regional scales, agent-based modelling (ABM) is one way to adequately consider these intricacies. ABMs simulate human decisions, and with individual land owners/users as agents, they can simulate usage paths for individual plots of land in thematically fine resolution. Ideally, these simulations are based on an understanding of how farmers make decisions, including anticipated strategies, adaptive behavior and social interactions. In order to develop such an understanding, participatory approaches are useful because they incorporate stakeholders' perspectives into the model calibration, thereby taking into account culture and traditions that often play an important role in land use decisions. A greater proximity to stakeholder perspectives also increases the political relevance of such land use models. Here we present an example where we developed an ABM (SECLAND) parameterised for 1,329 stakeholders, mostly farmers, in the LTSER region Eisenwurzen (Austria) and simulate the changes in land use patterns resulting from their response to three scenarios of changing socio-economic conditions. Summarized in broad categories, the study region currently consists of 67% deciduous and coniferous forests (including logging), 19% grassland, 9% agricultural land and 6% alpine areas. SECLAND simulated small to moderate changes in these percentages until 2050, with little difference between the scenarios. In general, an increase in forests is predicted at the expense of grasslands. The size of agricultural land remains approximately constant. At the level of the 22 land use classes, the trends between the land use change scenarios differ more strongly. This ABM at the individual or farm level is combined with biodiversity and biogeochemical models that analyse how landowners' decision-making affects various ecosystem parameters. We conclude that agent-based modelling is a powerful tool for integrating land use and climate effects into ecosystem projections, especially at regional level.
How to cite: Gaube, V., Egger, C., Plutzar, C., Mayer, A., and Haberl, H.: Modeling Farmer’s Decision-Making to integrate climate, land use and ecosystem functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22465, https://doi.org/10.5194/egusphere-egu2020-22465, 2020.
Land use and climate change are important drivers of environmental change and pose a major threat to ecosystems. Although systemic feedbacks between climate and land use changes are expected to have important impacts, research has rarely focused on the interaction between the two drivers. One reason for this could be that forecasts of land use are hardly available on suitable spatial and thematic scales. Agent-based models (ABMs) represent a potentially powerful tool for creating thematic and spatially fine-grained land use scenarios. In order to derive such scenarios, the complex interaction between land users (e.g. farmers) and the broader socio-economic context in which they operate must be taken into account. On landscape to regional scales, agent-based modelling (ABM) is one way to adequately consider these intricacies. ABMs simulate human decisions, and with individual land owners/users as agents, they can simulate usage paths for individual plots of land in thematically fine resolution. Ideally, these simulations are based on an understanding of how farmers make decisions, including anticipated strategies, adaptive behavior and social interactions. In order to develop such an understanding, participatory approaches are useful because they incorporate stakeholders' perspectives into the model calibration, thereby taking into account culture and traditions that often play an important role in land use decisions. A greater proximity to stakeholder perspectives also increases the political relevance of such land use models. Here we present an example where we developed an ABM (SECLAND) parameterised for 1,329 stakeholders, mostly farmers, in the LTSER region Eisenwurzen (Austria) and simulate the changes in land use patterns resulting from their response to three scenarios of changing socio-economic conditions. Summarized in broad categories, the study region currently consists of 67% deciduous and coniferous forests (including logging), 19% grassland, 9% agricultural land and 6% alpine areas. SECLAND simulated small to moderate changes in these percentages until 2050, with little difference between the scenarios. In general, an increase in forests is predicted at the expense of grasslands. The size of agricultural land remains approximately constant. At the level of the 22 land use classes, the trends between the land use change scenarios differ more strongly. This ABM at the individual or farm level is combined with biodiversity and biogeochemical models that analyse how landowners' decision-making affects various ecosystem parameters. We conclude that agent-based modelling is a powerful tool for integrating land use and climate effects into ecosystem projections, especially at regional level.
How to cite: Gaube, V., Egger, C., Plutzar, C., Mayer, A., and Haberl, H.: Modeling Farmer’s Decision-Making to integrate climate, land use and ecosystem functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22465, https://doi.org/10.5194/egusphere-egu2020-22465, 2020.
EGU2020-13698 | Displays | BG2.23
Regional greenhouse gas (GHG) budget of Kokemäenjoki river basin, SW FinlandTerhi Rasilo, Maria Holmberg, Anu Akujärvi, Saku Anttila, Iida Autio, Niko Karvosenoja, Pirkko Kortelainen, Aleksi Lehtonen, Annikki Mäkelä, Francesco Minunno, Paavo Ojanen, Ville-Veikko Paunu, Mikko Peltoniemi, Katri Rankinen, Tapani Sallantaus, Mikko Savolahti, Sakari Tuominen, Seppo Tuominen, Pekka Vanhala, and Martin Forsius
Natural ecosystems play an important role in regulating greenhouse gas (GHG) fluxes between land and water surfaces and the atmosphere. To evaluate the full GHG balance of a region, fluxes from natural ecosystems such as undrained mires, lakes and rivers, should be included in the GHG accounting together with fluxes from forestry, agricultural and anthropogenic activities. We present a method for collating regional GHG balances including natural ecosystem processes, to support strategies for climate change mitigation and adaptation. Our study area is Kokemäenjoki river basin (SW Finland), which includes two eLTER sites (Lammi and Hyytiälä/SMEAR). Empirical data of these sites are used for model developments and calibrations as well as regional extrapolation. We report spatially explicit estimates on sources and sinks of GHG such as carbon dioxide and methane, and nitrous oxide for some ecosystems, and aggregate the regional balance from vertical fluxes of these elements. Spatial data sources include CORINE land use data, soil map, lake and rivers shorelines, national forest inventory data, as well as statistical data on anthropogenic activities. The regionally aggregated vertical balance will be compared to observed total lateral flux to the Bothnian Sea. We quantify the fluxes on the basis of empirical evidence from eLTER site information, literature, as well as on calculations with a forest growth and gas exchange model (PREBAS).
Acknowledgements and funding:
Irina Bergström, Markus Haakana, Antti Ihalainen and Kari Minkkinen
eLTER H2020 GA 654359
IBC-Carbon Academy of Finland SRC 2017/312559
SOMPA Academy of Finland SRC 2017/312912
oGIIR
Freshabit LIFE IP LIFE14/IPE/FI/023
How to cite: Rasilo, T., Holmberg, M., Akujärvi, A., Anttila, S., Autio, I., Karvosenoja, N., Kortelainen, P., Lehtonen, A., Mäkelä, A., Minunno, F., Ojanen, P., Paunu, V.-V., Peltoniemi, M., Rankinen, K., Sallantaus, T., Savolahti, M., Tuominen, S., Tuominen, S., Vanhala, P., and Forsius, M.: Regional greenhouse gas (GHG) budget of Kokemäenjoki river basin, SW Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13698, https://doi.org/10.5194/egusphere-egu2020-13698, 2020.
Natural ecosystems play an important role in regulating greenhouse gas (GHG) fluxes between land and water surfaces and the atmosphere. To evaluate the full GHG balance of a region, fluxes from natural ecosystems such as undrained mires, lakes and rivers, should be included in the GHG accounting together with fluxes from forestry, agricultural and anthropogenic activities. We present a method for collating regional GHG balances including natural ecosystem processes, to support strategies for climate change mitigation and adaptation. Our study area is Kokemäenjoki river basin (SW Finland), which includes two eLTER sites (Lammi and Hyytiälä/SMEAR). Empirical data of these sites are used for model developments and calibrations as well as regional extrapolation. We report spatially explicit estimates on sources and sinks of GHG such as carbon dioxide and methane, and nitrous oxide for some ecosystems, and aggregate the regional balance from vertical fluxes of these elements. Spatial data sources include CORINE land use data, soil map, lake and rivers shorelines, national forest inventory data, as well as statistical data on anthropogenic activities. The regionally aggregated vertical balance will be compared to observed total lateral flux to the Bothnian Sea. We quantify the fluxes on the basis of empirical evidence from eLTER site information, literature, as well as on calculations with a forest growth and gas exchange model (PREBAS).
Acknowledgements and funding:
Irina Bergström, Markus Haakana, Antti Ihalainen and Kari Minkkinen
eLTER H2020 GA 654359
IBC-Carbon Academy of Finland SRC 2017/312559
SOMPA Academy of Finland SRC 2017/312912
oGIIR
Freshabit LIFE IP LIFE14/IPE/FI/023
How to cite: Rasilo, T., Holmberg, M., Akujärvi, A., Anttila, S., Autio, I., Karvosenoja, N., Kortelainen, P., Lehtonen, A., Mäkelä, A., Minunno, F., Ojanen, P., Paunu, V.-V., Peltoniemi, M., Rankinen, K., Sallantaus, T., Savolahti, M., Tuominen, S., Tuominen, S., Vanhala, P., and Forsius, M.: Regional greenhouse gas (GHG) budget of Kokemäenjoki river basin, SW Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13698, https://doi.org/10.5194/egusphere-egu2020-13698, 2020.
EGU2020-5190 | Displays | BG2.23
Long term brownification process at the Lammi LTER area in FinlandKatri Rankinen, Maria Holmberg, Seppo Hellsten, Lauri Arvola, Ninni Liukko, and Juha Riihimäki
Browning of surface waters due to increased terrestrial loading of organic carbon is observed in boreal regions. It is explained by large scale changes in ecosystems, including decrease in sulphur deposition that affects soil organic matter solubility, increase in temperature that stimulates export of dissolved organic carbon (DOC) from organic soils, and increase in precipitation and thus runoff. Land use changes and forestry measures are also observed to be one reason for increased transport of DOC. The effects of brownification extend to ecosystem services like water purification, but also freshwater productivity through limiting light penetration and creating more stable thermal stratification. The research question at the Lammi LTER area (Southern Boreal Aquatic and Terrestrial Long-Term Ecological Research Area) was brownification of the lake Pääjärvi. We studied both past trends of organic carbon loading from catchments and water colour in the lake based on observations since early 1990’s. We also made simulations of loading for future climate by the physical Persist and INCA models. DOC concentration in the lake was simulated by the physical MyLake model. Simulated DOC concentration was transformed to water colour and light climate of the lake by empirical equations to study the influence on macrophytes (as an indicator of the ecosystem state). In future growing depths might decrease from 2 m to 1.2 m corresponding to observed shift from reference lakes to impacted lakes. Brownification was driven mainly by the change in climate and decay of organic matter in soil, with smaller impact of land use change on organic soil types. Decrease in sulphur deposition had only minor effect on brownification.
How to cite: Rankinen, K., Holmberg, M., Hellsten, S., Arvola, L., Liukko, N., and Riihimäki, J.: Long term brownification process at the Lammi LTER area in Finland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5190, https://doi.org/10.5194/egusphere-egu2020-5190, 2020.
Browning of surface waters due to increased terrestrial loading of organic carbon is observed in boreal regions. It is explained by large scale changes in ecosystems, including decrease in sulphur deposition that affects soil organic matter solubility, increase in temperature that stimulates export of dissolved organic carbon (DOC) from organic soils, and increase in precipitation and thus runoff. Land use changes and forestry measures are also observed to be one reason for increased transport of DOC. The effects of brownification extend to ecosystem services like water purification, but also freshwater productivity through limiting light penetration and creating more stable thermal stratification. The research question at the Lammi LTER area (Southern Boreal Aquatic and Terrestrial Long-Term Ecological Research Area) was brownification of the lake Pääjärvi. We studied both past trends of organic carbon loading from catchments and water colour in the lake based on observations since early 1990’s. We also made simulations of loading for future climate by the physical Persist and INCA models. DOC concentration in the lake was simulated by the physical MyLake model. Simulated DOC concentration was transformed to water colour and light climate of the lake by empirical equations to study the influence on macrophytes (as an indicator of the ecosystem state). In future growing depths might decrease from 2 m to 1.2 m corresponding to observed shift from reference lakes to impacted lakes. Brownification was driven mainly by the change in climate and decay of organic matter in soil, with smaller impact of land use change on organic soil types. Decrease in sulphur deposition had only minor effect on brownification.
How to cite: Rankinen, K., Holmberg, M., Hellsten, S., Arvola, L., Liukko, N., and Riihimäki, J.: Long term brownification process at the Lammi LTER area in Finland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5190, https://doi.org/10.5194/egusphere-egu2020-5190, 2020.
EGU2020-11251 | Displays | BG2.23
The contribution of Web of Interactions framework to the whole system approachShayli Dor Haim, Daniel Orenstein, and Moshe Shachak
The concept of whole system approach offers a foundation for ecosystem studies. Identification of the components and interaction demonstrate the challenges in the field of ecology, due to the lack of a conceptual and applied framework. we attend to present a theoretical foundation and a methodology for identifying components and interactions of the whole system approach linking biodiversity and geodiversity processes into ecosystem diversity as a web of interactions (WoI).
The web of interactions model combines the geodiversity components that include climate, geology, geomorphology, and hydrology processes and their interactions and the biodiversity components that include population, community, ecosystem, and landscape levels of organization and their interactions. Linking biodiversity and geodiversity produces ecosystem diversity, which is represented as a web of diversity interactions that include climate, rock, soil, species, genetic, and functional diversities
In the talk we will present examples from our long term study in the Negev Highland, an arid water limited environment. The system is characterized by high geodiversity (topographic, geologic, geomorphic, and pedologic diversity) and high biodiversity with many unique and endemic species.
Our study presents the whole system approach of the Negev Highlands ecosystem as a web of interactions (WoI) among and between the diversity of components that links biotic and abiotic diversities. All the components and their interactions vary in time and space and together determine ecosystem diversity.
Long term study in the Negev Highland site revealed various of diversities of the ecosystem that can be linked by hydro-geo-ecological components, drivers, and feedbacks that control geodiversity and biodiversity. The main feedbacks are: the hydrological feedback that controlled by rainfall pattern and affects the pedological feedback by runoff generation that accumulates dust and regulates rock-to-soil ratio. These two feedbacks control soil moisture, which links geodiversity with biodiversity components. In addition, an energy and material feedback which is characterized by the producer–consumer and decomposer relationships supports ecosystem engineers that link geo and biodiversity. The functional interactions among the biodiversity and geodiversity components create ecosystem diversity that is the driver of whole system properties.
We suggest that the web of interaction approach can potentially be applied to understand whole system emergent properties of terrestrial ecosystem.
How to cite: Dor Haim, S., Orenstein, D., and Shachak, M.: The contribution of Web of Interactions framework to the whole system approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11251, https://doi.org/10.5194/egusphere-egu2020-11251, 2020.
The concept of whole system approach offers a foundation for ecosystem studies. Identification of the components and interaction demonstrate the challenges in the field of ecology, due to the lack of a conceptual and applied framework. we attend to present a theoretical foundation and a methodology for identifying components and interactions of the whole system approach linking biodiversity and geodiversity processes into ecosystem diversity as a web of interactions (WoI).
The web of interactions model combines the geodiversity components that include climate, geology, geomorphology, and hydrology processes and their interactions and the biodiversity components that include population, community, ecosystem, and landscape levels of organization and their interactions. Linking biodiversity and geodiversity produces ecosystem diversity, which is represented as a web of diversity interactions that include climate, rock, soil, species, genetic, and functional diversities
In the talk we will present examples from our long term study in the Negev Highland, an arid water limited environment. The system is characterized by high geodiversity (topographic, geologic, geomorphic, and pedologic diversity) and high biodiversity with many unique and endemic species.
Our study presents the whole system approach of the Negev Highlands ecosystem as a web of interactions (WoI) among and between the diversity of components that links biotic and abiotic diversities. All the components and their interactions vary in time and space and together determine ecosystem diversity.
Long term study in the Negev Highland site revealed various of diversities of the ecosystem that can be linked by hydro-geo-ecological components, drivers, and feedbacks that control geodiversity and biodiversity. The main feedbacks are: the hydrological feedback that controlled by rainfall pattern and affects the pedological feedback by runoff generation that accumulates dust and regulates rock-to-soil ratio. These two feedbacks control soil moisture, which links geodiversity with biodiversity components. In addition, an energy and material feedback which is characterized by the producer–consumer and decomposer relationships supports ecosystem engineers that link geo and biodiversity. The functional interactions among the biodiversity and geodiversity components create ecosystem diversity that is the driver of whole system properties.
We suggest that the web of interaction approach can potentially be applied to understand whole system emergent properties of terrestrial ecosystem.
How to cite: Dor Haim, S., Orenstein, D., and Shachak, M.: The contribution of Web of Interactions framework to the whole system approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11251, https://doi.org/10.5194/egusphere-egu2020-11251, 2020.
EGU2020-4613 | Displays | BG2.23
State tagging for improved earth and environmental data quality assuranceMichael Tso, Peter Henrys, Susannah Rennie, and John Watkins
Long-term monitoring data that considers a wide array of environmental variables provides key insights to environmental change because responses of ecosystem functions and services to environmental drivers are inherently long-term and strongly interlinked. To ensure that the data are reliable for analysis and interpretation, they must undergo quality assurance procedures. However, the expected or acceptable range of data values vary greatly as the state of the ecosystem changes. Current quality assurance procedures for environmental data take no consideration of the system state at which each measurement is made, and provide the user with little contextual information on the probable cause for a measurement to be flagged out of range. We propose the use of data science techniques to tag each measurement with an identified system state. The term “state” here is defined loosely and they are identified using k-means clustering, an unsupervised machine learning method. The meaning of the states is open to specialist interpretation. Once the states are identified, state-dependent prediction intervals can be calculated for each observational variable. This approach provides the user with more contextual information to resolve out-of-range flags and derive prediction intervals for observational variables that considers the changes in system states. Our highly flexible and efficient approach is applicable to any point data time series in earth and environmental sciences, regardless of their sub-discipline. Such advantage is particularly relevant when conducting simultaneous analysis of multiple processes and feedbacks, where a wide variety of data is used.
We illustrate our approach using the moth and butterfly data from the UK Environmental Change Network (ECN), where meteorological variables are used to define system states. A web application is publicly available to allow users to explore the method on various ECN site, while a generic is also available for users to upload their own data files. Our work contributes to the ongoing development of a better data science framework that allows researchers and other stakeholders to find and use the data they need more readily and reliably.
How to cite: Tso, M., Henrys, P., Rennie, S., and Watkins, J.: State tagging for improved earth and environmental data quality assurance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4613, https://doi.org/10.5194/egusphere-egu2020-4613, 2020.
Long-term monitoring data that considers a wide array of environmental variables provides key insights to environmental change because responses of ecosystem functions and services to environmental drivers are inherently long-term and strongly interlinked. To ensure that the data are reliable for analysis and interpretation, they must undergo quality assurance procedures. However, the expected or acceptable range of data values vary greatly as the state of the ecosystem changes. Current quality assurance procedures for environmental data take no consideration of the system state at which each measurement is made, and provide the user with little contextual information on the probable cause for a measurement to be flagged out of range. We propose the use of data science techniques to tag each measurement with an identified system state. The term “state” here is defined loosely and they are identified using k-means clustering, an unsupervised machine learning method. The meaning of the states is open to specialist interpretation. Once the states are identified, state-dependent prediction intervals can be calculated for each observational variable. This approach provides the user with more contextual information to resolve out-of-range flags and derive prediction intervals for observational variables that considers the changes in system states. Our highly flexible and efficient approach is applicable to any point data time series in earth and environmental sciences, regardless of their sub-discipline. Such advantage is particularly relevant when conducting simultaneous analysis of multiple processes and feedbacks, where a wide variety of data is used.
We illustrate our approach using the moth and butterfly data from the UK Environmental Change Network (ECN), where meteorological variables are used to define system states. A web application is publicly available to allow users to explore the method on various ECN site, while a generic is also available for users to upload their own data files. Our work contributes to the ongoing development of a better data science framework that allows researchers and other stakeholders to find and use the data they need more readily and reliably.
How to cite: Tso, M., Henrys, P., Rennie, S., and Watkins, J.: State tagging for improved earth and environmental data quality assurance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4613, https://doi.org/10.5194/egusphere-egu2020-4613, 2020.
EGU2020-984 | Displays | BG2.23
From burned vegetation to streams water: fire effects on vegetation resilience and nutrient fluxesNubia Marques, Fabio Miranda, Leticia Gomes, Felipe Lenti, and Mercedes Bustamante
Wildfire effects on riparian zones and stream water can be significant, particularly in the vegetation recovery and flow of nutrients between the terrestrial and aquatic ecosystem. However, the integrated knowledge about the impacts of fire on terrestrial and aquatic ecosystems in the Brazilian Cerrado is poorly known. In Brazilian Cerrado, wildfire is one of the main vectors of degradation of riparian vegetation, because the forest formation in riparian zones can be more sensitive to fire than the other savanna formation due to a less evident vegetation fire-adaptations. Our main objective was to understand the effects of fire on the resilience of riparian vegetation and their consequences to nutrient fluxes between terrestrial and aquatic ecosystem. This study was conducted in the Environmental Protection Area (APA) located in the Federal District - Brazil, which is one of Brazil’s Long-Term Ecological Research Site, after a wildfire (September 2011) that burned an area of about 140 km2. We analyzed the riparian vegetation resilience (for forests and surrounding savannas formations) and nutrients fluxes (in surface runoff and stream water) in five streams. We estimated the fire severity with Delta Normalized Burn Ratio index and the riparian vegetation resilience with the Normalized Vegetation Index and evaluated the changes in nutrient concentrations for nitrite + nitrate ([NO2- + NO3-]), ammonium (NH4+), and phosphate (PO43-) during 16 months on stream water and surface runoff solution in burned and unburned areas using the Generalized Linear Models. Our results show that fire severity was similar between forests and savannas formations, but in savannas we observed higher vegetation resilience, with faster vegetation regrowth and recovery after three weeks. The concentration of nutrients on both surface runoff and inside the stream have changed in burned areas regarding unburned areas, with an increase of PO43- and [NO2- + NO3-] and a decreased of NH4+. After 16 months of the fire event, the concentration of PO43-, [NO2- + NO3-] and NH4+ increased in surface runoff, while [NO2- + NO3-] decreased inside the streams in burned areas. Precipitation was a factor that caused the increase of concentrations of [NO2- + NO3-] and NH4+ and, the high precipitation on rainy season (October – March), that started after the fire, could have contributed to the input of these nutrients and particulate materials from ashes to streams. Our results showed that the occurrence of fire in riparian environments reduces the biomass of riparian forests and increases the concentration of nutrients on streams. These elevated postfire nitrogen and phosphate loading can influence streams ecosystem health, especially in oligotrophic streams like those found in Brazilian Cerrado. It is known that phosphorus and nitrogen are limited nutrients for algal and cyanobacterial growth in freshwater ecosystem and an increase of these organisms can disrupt the ecosystem integrity. Fire is a pulsed disturbance and its effect on freshwater ecosystem depends on terrestrial ecosystem recovery, in this way, it is necessary to integrate the knowledge about the impacts of fire on terrestrial and aquatic ecosystems to better understand the effects on the entire ecosystem.
How to cite: Marques, N., Miranda, F., Gomes, L., Lenti, F., and Bustamante, M.: From burned vegetation to streams water: fire effects on vegetation resilience and nutrient fluxes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-984, https://doi.org/10.5194/egusphere-egu2020-984, 2020.
Wildfire effects on riparian zones and stream water can be significant, particularly in the vegetation recovery and flow of nutrients between the terrestrial and aquatic ecosystem. However, the integrated knowledge about the impacts of fire on terrestrial and aquatic ecosystems in the Brazilian Cerrado is poorly known. In Brazilian Cerrado, wildfire is one of the main vectors of degradation of riparian vegetation, because the forest formation in riparian zones can be more sensitive to fire than the other savanna formation due to a less evident vegetation fire-adaptations. Our main objective was to understand the effects of fire on the resilience of riparian vegetation and their consequences to nutrient fluxes between terrestrial and aquatic ecosystem. This study was conducted in the Environmental Protection Area (APA) located in the Federal District - Brazil, which is one of Brazil’s Long-Term Ecological Research Site, after a wildfire (September 2011) that burned an area of about 140 km2. We analyzed the riparian vegetation resilience (for forests and surrounding savannas formations) and nutrients fluxes (in surface runoff and stream water) in five streams. We estimated the fire severity with Delta Normalized Burn Ratio index and the riparian vegetation resilience with the Normalized Vegetation Index and evaluated the changes in nutrient concentrations for nitrite + nitrate ([NO2- + NO3-]), ammonium (NH4+), and phosphate (PO43-) during 16 months on stream water and surface runoff solution in burned and unburned areas using the Generalized Linear Models. Our results show that fire severity was similar between forests and savannas formations, but in savannas we observed higher vegetation resilience, with faster vegetation regrowth and recovery after three weeks. The concentration of nutrients on both surface runoff and inside the stream have changed in burned areas regarding unburned areas, with an increase of PO43- and [NO2- + NO3-] and a decreased of NH4+. After 16 months of the fire event, the concentration of PO43-, [NO2- + NO3-] and NH4+ increased in surface runoff, while [NO2- + NO3-] decreased inside the streams in burned areas. Precipitation was a factor that caused the increase of concentrations of [NO2- + NO3-] and NH4+ and, the high precipitation on rainy season (October – March), that started after the fire, could have contributed to the input of these nutrients and particulate materials from ashes to streams. Our results showed that the occurrence of fire in riparian environments reduces the biomass of riparian forests and increases the concentration of nutrients on streams. These elevated postfire nitrogen and phosphate loading can influence streams ecosystem health, especially in oligotrophic streams like those found in Brazilian Cerrado. It is known that phosphorus and nitrogen are limited nutrients for algal and cyanobacterial growth in freshwater ecosystem and an increase of these organisms can disrupt the ecosystem integrity. Fire is a pulsed disturbance and its effect on freshwater ecosystem depends on terrestrial ecosystem recovery, in this way, it is necessary to integrate the knowledge about the impacts of fire on terrestrial and aquatic ecosystems to better understand the effects on the entire ecosystem.
How to cite: Marques, N., Miranda, F., Gomes, L., Lenti, F., and Bustamante, M.: From burned vegetation to streams water: fire effects on vegetation resilience and nutrient fluxes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-984, https://doi.org/10.5194/egusphere-egu2020-984, 2020.
EGU2020-3923 | Displays | BG2.23
An integrated research infrastructure concept with multidisciplinary observations on climate changeJaana Bäck, Tuukka Petäjä, Mari Pihlatie, Janne Levula, Timo Vesala, and Markku Kulmala
The observations on global warming or elements relevant to climate change are frequently performed in isolation, which results in insufficient understanding of the whole Earth system functioning and feedbacks. Frequently CO2 emissions, atmospheric concentrations of greenhouse gases and the global air temperature records are pooled together to obtain statistical relationships and correlations between them. However, forecasting future changes and designing tools for mitigating their deleterious effects would require a more holistic and comprehensive observation scheme. We propose a concept of an integrated research infrastructure, where the feedbacks can be analysed with multidisciplinary and comprehensive observations. The SMEAR concept (Station for Measuring Earth system-Atmosphere Relations) has been developing into a powerful tool, allowing detection of trends in key climate, atmosphere and ecosystem parameters, providing detailed process understanding of atmosphere and ecosystem structure and functions, and facilitating deep insights on feedbacks between the ecosystems and atmosphere. The presentation gives examples of recent novel results, especially in the perspective of climate change feedbacks and mitigation in forest ecosystems.
How to cite: Bäck, J., Petäjä, T., Pihlatie, M., Levula, J., Vesala, T., and Kulmala, M.: An integrated research infrastructure concept with multidisciplinary observations on climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3923, https://doi.org/10.5194/egusphere-egu2020-3923, 2020.
The observations on global warming or elements relevant to climate change are frequently performed in isolation, which results in insufficient understanding of the whole Earth system functioning and feedbacks. Frequently CO2 emissions, atmospheric concentrations of greenhouse gases and the global air temperature records are pooled together to obtain statistical relationships and correlations between them. However, forecasting future changes and designing tools for mitigating their deleterious effects would require a more holistic and comprehensive observation scheme. We propose a concept of an integrated research infrastructure, where the feedbacks can be analysed with multidisciplinary and comprehensive observations. The SMEAR concept (Station for Measuring Earth system-Atmosphere Relations) has been developing into a powerful tool, allowing detection of trends in key climate, atmosphere and ecosystem parameters, providing detailed process understanding of atmosphere and ecosystem structure and functions, and facilitating deep insights on feedbacks between the ecosystems and atmosphere. The presentation gives examples of recent novel results, especially in the perspective of climate change feedbacks and mitigation in forest ecosystems.
How to cite: Bäck, J., Petäjä, T., Pihlatie, M., Levula, J., Vesala, T., and Kulmala, M.: An integrated research infrastructure concept with multidisciplinary observations on climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3923, https://doi.org/10.5194/egusphere-egu2020-3923, 2020.
EGU2020-5558 | Displays | BG2.23
Spatial variability in terrestrial and aquatic carbon stocks and fluxes in boreal forested catchmentsNora Casson, Adrienne Ducharme, Geethani Amarawansha, Geoff Gunn, Scott Higgins, Darshani Kumaragamage, and Udayakantha Vitharana
Canada’s boreal zone is a complex mosaic of forests, wetlands, streams and lakes. The pool of carbon (C) stored in each of these ecosystem components is vast, and significant to the global C balance. However, C pools and fluxes are heterogeneous in time and space, which contributes to uncertainty in predicting how a changing climate will affect the fate of C in these sensitive ecosystems. The objective of this study was to investigate factors controlling spatial variability in soil C stocks and stream C export and assess the sensitivity of these stocks and fluxes to climatic factors. We conducted a detailed examination of soil C stocks and stream dissolved organic C (DOC) export from a 320 ha boreal forested catchment located in northwestern Ontario, Canada. High-frequency stream chemistry and discharge samples were collected from three inflow streams during snowmelt and rain events from 2016-2017. An intensive soil C sampling campaign resulting in 47 surface (0 – 30 cm) samples were collected during the summer of 2019. Stream hysteresis analysis revealed marked differences in flowpaths among sub-catchments during snowmelt and rain events. In the wetland-dominated catchment, near-stream sources contributed most of the DOC export during both rainstorms and snowmelt events, but in upland-dominated catchments, the sources of DOC depended on antecedent moisture conditions. Rainstorms in these catchments following prolonged droughts resulted in DOC flushing from distal regions of the catchment. Soil C stocks were also highly spatially variable, with much of the variability being explained by local-scale factors (e.g. gravel content, soil depth, distance to the nearest ridge). Taken together, these two findings emphasize the need to consider sub-catchment scale variability when calculating C pools and fluxes in boreal catchments. This is also important when predicting how C dynamics will shift in the future as a result of shorter winters, longer droughts and more intense rainstorms.
How to cite: Casson, N., Ducharme, A., Amarawansha, G., Gunn, G., Higgins, S., Kumaragamage, D., and Vitharana, U.: Spatial variability in terrestrial and aquatic carbon stocks and fluxes in boreal forested catchments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5558, https://doi.org/10.5194/egusphere-egu2020-5558, 2020.
Canada’s boreal zone is a complex mosaic of forests, wetlands, streams and lakes. The pool of carbon (C) stored in each of these ecosystem components is vast, and significant to the global C balance. However, C pools and fluxes are heterogeneous in time and space, which contributes to uncertainty in predicting how a changing climate will affect the fate of C in these sensitive ecosystems. The objective of this study was to investigate factors controlling spatial variability in soil C stocks and stream C export and assess the sensitivity of these stocks and fluxes to climatic factors. We conducted a detailed examination of soil C stocks and stream dissolved organic C (DOC) export from a 320 ha boreal forested catchment located in northwestern Ontario, Canada. High-frequency stream chemistry and discharge samples were collected from three inflow streams during snowmelt and rain events from 2016-2017. An intensive soil C sampling campaign resulting in 47 surface (0 – 30 cm) samples were collected during the summer of 2019. Stream hysteresis analysis revealed marked differences in flowpaths among sub-catchments during snowmelt and rain events. In the wetland-dominated catchment, near-stream sources contributed most of the DOC export during both rainstorms and snowmelt events, but in upland-dominated catchments, the sources of DOC depended on antecedent moisture conditions. Rainstorms in these catchments following prolonged droughts resulted in DOC flushing from distal regions of the catchment. Soil C stocks were also highly spatially variable, with much of the variability being explained by local-scale factors (e.g. gravel content, soil depth, distance to the nearest ridge). Taken together, these two findings emphasize the need to consider sub-catchment scale variability when calculating C pools and fluxes in boreal catchments. This is also important when predicting how C dynamics will shift in the future as a result of shorter winters, longer droughts and more intense rainstorms.
How to cite: Casson, N., Ducharme, A., Amarawansha, G., Gunn, G., Higgins, S., Kumaragamage, D., and Vitharana, U.: Spatial variability in terrestrial and aquatic carbon stocks and fluxes in boreal forested catchments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5558, https://doi.org/10.5194/egusphere-egu2020-5558, 2020.
EGU2020-6850 | Displays | BG2.23
The decadal decline of CO2 emissions from a large ephemeral lake in ChinaXiaosong Zhao
The influence of natural hydrological factors on CO2 evasion from lakes has been widely studied. However, the long-term effects of man-made hydraulic infrastructures are not yet well understood. Here, we examined the multi-year (1961 - 2016) trend of the CO2 budget for Poyang Lake, a large ephemeral lake in China. Poyang Lake is situated downstream of the Three Gorges Dam (TGD), the world’s largest human-made hydraulic infrastructure. Using a combination of eddy covariance observations and artificial neural network modeling, we show that following the development of TGD in 2003, CO2 emissions of Poyang Lake significantly decreased by 77% (0.18 Tg C) compared with the pre-TGD period. The TGD can explained 21% of the CO2 flux decrease during impoundment period. The results imply that the TGD and other hydropower infrastructures potentially decrease the CO2 emission of lakes naturally connected or surrounded with Yangtze River in the middle and lower reaches.
How to cite: Zhao, X.: The decadal decline of CO2 emissions from a large ephemeral lake in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6850, https://doi.org/10.5194/egusphere-egu2020-6850, 2020.
The influence of natural hydrological factors on CO2 evasion from lakes has been widely studied. However, the long-term effects of man-made hydraulic infrastructures are not yet well understood. Here, we examined the multi-year (1961 - 2016) trend of the CO2 budget for Poyang Lake, a large ephemeral lake in China. Poyang Lake is situated downstream of the Three Gorges Dam (TGD), the world’s largest human-made hydraulic infrastructure. Using a combination of eddy covariance observations and artificial neural network modeling, we show that following the development of TGD in 2003, CO2 emissions of Poyang Lake significantly decreased by 77% (0.18 Tg C) compared with the pre-TGD period. The TGD can explained 21% of the CO2 flux decrease during impoundment period. The results imply that the TGD and other hydropower infrastructures potentially decrease the CO2 emission of lakes naturally connected or surrounded with Yangtze River in the middle and lower reaches.
How to cite: Zhao, X.: The decadal decline of CO2 emissions from a large ephemeral lake in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6850, https://doi.org/10.5194/egusphere-egu2020-6850, 2020.
EGU2020-7684 | Displays | BG2.23
The missing pieces for better future predictions in subarctic ecosystemsDidac Pascual Descarrega and the Expert Assessment participants
Arctic and subarctic ecosystems are undergoing substantial changes in response to climatic and other anthropogenic drivers, and these changes are likely to continue over this Century. Due to the strong linkages between the biotic (vegetation and carbon cycle) and abiotic (permafrost, hydrology and local climate) ecosystem components, the total magnitude of these changes result from multiple interacting effects that can enhance or counter the direct effects. In some cases, short-lived extreme events can override climate-driven long-term trends. The field measurements can mostly tackle individual drivers rather than the interactions between them. Currently, a comprehensive assessment of the drivers of different changes and the magnitude of their impact on subarctic ecosystems is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years and encompasses the 12% of all published papers and the 19% of all study citations across the Arctic. In this study, we summarize and rank the direct and indirect drivers of ecosystem change in the Torneträsk area, and propose future research priorities identified to improve future predictions of ecosystem change. First, we identified the direct and indirect changing drivers and the multiple related processes and feedbacks impacting the local climate, permafrost, hydrology, vegetation, and the carbon cycle based on the existing literature. Subsequently, an Expert Elicitation with the participation of 27 leading scientists was used to rank the short- (2020-2040) and long-term (2040-2100) future impact of these drivers according to their opinions on the relative importance and novelty. These two key evaluation matrices form the basis for identifying the current research priorities for subarctic regions. The relatively small size of the Torneträsk area, its great biological and geomorphological complexity, and its unique datasets is a microcosm of the subarctic and the rapidly transforming Arctic ecosystems that can help understand the ongoing processes and future ecosystem changes at a larger circumpolar-scale. This in turn will provide the basis for future mitigation and adaptation plans needed in a changing climate.
How to cite: Pascual Descarrega, D. and the Expert Assessment participants: The missing pieces for better future predictions in subarctic ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7684, https://doi.org/10.5194/egusphere-egu2020-7684, 2020.
Arctic and subarctic ecosystems are undergoing substantial changes in response to climatic and other anthropogenic drivers, and these changes are likely to continue over this Century. Due to the strong linkages between the biotic (vegetation and carbon cycle) and abiotic (permafrost, hydrology and local climate) ecosystem components, the total magnitude of these changes result from multiple interacting effects that can enhance or counter the direct effects. In some cases, short-lived extreme events can override climate-driven long-term trends. The field measurements can mostly tackle individual drivers rather than the interactions between them. Currently, a comprehensive assessment of the drivers of different changes and the magnitude of their impact on subarctic ecosystems is missing. The Torneträsk area, in the Swedish subarctic, has an unrivalled history of environmental observation over 100 years and encompasses the 12% of all published papers and the 19% of all study citations across the Arctic. In this study, we summarize and rank the direct and indirect drivers of ecosystem change in the Torneträsk area, and propose future research priorities identified to improve future predictions of ecosystem change. First, we identified the direct and indirect changing drivers and the multiple related processes and feedbacks impacting the local climate, permafrost, hydrology, vegetation, and the carbon cycle based on the existing literature. Subsequently, an Expert Elicitation with the participation of 27 leading scientists was used to rank the short- (2020-2040) and long-term (2040-2100) future impact of these drivers according to their opinions on the relative importance and novelty. These two key evaluation matrices form the basis for identifying the current research priorities for subarctic regions. The relatively small size of the Torneträsk area, its great biological and geomorphological complexity, and its unique datasets is a microcosm of the subarctic and the rapidly transforming Arctic ecosystems that can help understand the ongoing processes and future ecosystem changes at a larger circumpolar-scale. This in turn will provide the basis for future mitigation and adaptation plans needed in a changing climate.
How to cite: Pascual Descarrega, D. and the Expert Assessment participants: The missing pieces for better future predictions in subarctic ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7684, https://doi.org/10.5194/egusphere-egu2020-7684, 2020.
EGU2020-8444 | Displays | BG2.23
Penguin Life Observatories to monitor the health of the Southern Ocean ecosystemsCéline Le Bohec, Victor Planas-Bielsa, Emiliano Trucchi, Aymeric Houstin, Robin Cristofari, Norith Eckbo, Ben Fabry, Yvon Le Maho, Alexander Winterl, Sebastian Richter, Olaf Eisen, and Daniel Zitterbart
Long-term time series are essential to detect, understand and predict the impacts of anthropogenic pressures on ecosystems. This applies to both physical and biological data collections. However, systematic data collections on the biological component of the ecosystems are still scarce compared to Earth sciences, and biological time series are usually not sufficiently long to draw unambiguous inferences concerning trends. To fill this gap and assess the vulnerability of Antarctic and subantarctic ecosystems, but also develop tools for action plans to protect Southern Ocean, we aim (and already started) to setup a circumpolar network of Penguin Life Observatories. These upper-trophic-level seabirds can be considered as adequate bio-indicators of changes (due to e.g. climate change, overexploitation or pollution) occurring in the Southern Ocean food webs and ecosystems globally. Implementing cutting-edge technological innovations (e.g. automatic radiofrequency identification (RFID), weighing and camera-tracking systems, mobile RFID antennas deployable on site or mounted on remote-operated vehicles and biologgers), electronic Penguin Life Observatories gather information on land to assess population dynamics/trends, and at sea to explore their seasonal and inter-annual distribution and foraging strategies according to the environmental variability. In addition to increasing our knowledge on fundamental characteristics of these sentinel species, penguins play an important role as umbrella species, which offer us precious tools to map marine biological hotspots and design Marine Protected Areas (MPAs).
How to cite: Le Bohec, C., Planas-Bielsa, V., Trucchi, E., Houstin, A., Cristofari, R., Eckbo, N., Fabry, B., Le Maho, Y., Winterl, A., Richter, S., Eisen, O., and Zitterbart, D.: Penguin Life Observatories to monitor the health of the Southern Ocean ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8444, https://doi.org/10.5194/egusphere-egu2020-8444, 2020.
Long-term time series are essential to detect, understand and predict the impacts of anthropogenic pressures on ecosystems. This applies to both physical and biological data collections. However, systematic data collections on the biological component of the ecosystems are still scarce compared to Earth sciences, and biological time series are usually not sufficiently long to draw unambiguous inferences concerning trends. To fill this gap and assess the vulnerability of Antarctic and subantarctic ecosystems, but also develop tools for action plans to protect Southern Ocean, we aim (and already started) to setup a circumpolar network of Penguin Life Observatories. These upper-trophic-level seabirds can be considered as adequate bio-indicators of changes (due to e.g. climate change, overexploitation or pollution) occurring in the Southern Ocean food webs and ecosystems globally. Implementing cutting-edge technological innovations (e.g. automatic radiofrequency identification (RFID), weighing and camera-tracking systems, mobile RFID antennas deployable on site or mounted on remote-operated vehicles and biologgers), electronic Penguin Life Observatories gather information on land to assess population dynamics/trends, and at sea to explore their seasonal and inter-annual distribution and foraging strategies according to the environmental variability. In addition to increasing our knowledge on fundamental characteristics of these sentinel species, penguins play an important role as umbrella species, which offer us precious tools to map marine biological hotspots and design Marine Protected Areas (MPAs).
How to cite: Le Bohec, C., Planas-Bielsa, V., Trucchi, E., Houstin, A., Cristofari, R., Eckbo, N., Fabry, B., Le Maho, Y., Winterl, A., Richter, S., Eisen, O., and Zitterbart, D.: Penguin Life Observatories to monitor the health of the Southern Ocean ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8444, https://doi.org/10.5194/egusphere-egu2020-8444, 2020.
EGU2020-8737 | Displays | BG2.23
Links between spring snow cover and long-term alpine vegetation changeShengwei Zong and Christian Rixen
Snow is an important environmental factor determining distributions of plant species in alpine ecosystems. During the past decades, climate warming has resulted in significant reduction of snow cover extent globally, which led to remarkable alpine vegetation change. Alpine vegetation change is often caused by the combined effects of increasing air temperature and snow cover change, yet the relationship between snow cover and vegetation change is currently not fully understood. To detect changes in both snow cover and alpine vegetation, a relatively fine spatial scales over long temporal spans is necessary. In this study in alpine tundra of the Changbai Mountains, Northeast China, we (1) quantified spatiotemporal changes of spring snow cover area (SCA) during half a century by using multi-source remote sensing datasets; (2) detected long-term vegetation greening and browning trends at pixel level using Landsat archives of 30 m resolution, and (3) analyzed the relationship between spring SCA change and vegetation change. Results showed that spring SCA has decreased significantly during the last 50 years in line with climate warming. Changes in vegetation greening and browning trend were related to distributional range dynamics of a dominant indigenous evergreen shrub Rhododendron aureum, which extended at the leading edge and retracted at the trailing edge. Changes in R. aureum distribution were probably related to spring snow cover changes. Areas with decreasing R. aureum cover were often located in snow patches where probably herbs and grasses encroached from low elevations and adjacent communities. Our study highlights that spring SCA derived from multi-source remote sensing imagery can be used as a proxy to explore relationship between snow cover and vegetation change in alpine ecosystems. Alpine indigenous plant species may migrate upward following the reduction of snow-dominated environments in the context of climate warming and could be threatened by encroaching plants within snow bed habitats.
How to cite: Zong, S. and Rixen, C.: Links between spring snow cover and long-term alpine vegetation change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8737, https://doi.org/10.5194/egusphere-egu2020-8737, 2020.
Snow is an important environmental factor determining distributions of plant species in alpine ecosystems. During the past decades, climate warming has resulted in significant reduction of snow cover extent globally, which led to remarkable alpine vegetation change. Alpine vegetation change is often caused by the combined effects of increasing air temperature and snow cover change, yet the relationship between snow cover and vegetation change is currently not fully understood. To detect changes in both snow cover and alpine vegetation, a relatively fine spatial scales over long temporal spans is necessary. In this study in alpine tundra of the Changbai Mountains, Northeast China, we (1) quantified spatiotemporal changes of spring snow cover area (SCA) during half a century by using multi-source remote sensing datasets; (2) detected long-term vegetation greening and browning trends at pixel level using Landsat archives of 30 m resolution, and (3) analyzed the relationship between spring SCA change and vegetation change. Results showed that spring SCA has decreased significantly during the last 50 years in line with climate warming. Changes in vegetation greening and browning trend were related to distributional range dynamics of a dominant indigenous evergreen shrub Rhododendron aureum, which extended at the leading edge and retracted at the trailing edge. Changes in R. aureum distribution were probably related to spring snow cover changes. Areas with decreasing R. aureum cover were often located in snow patches where probably herbs and grasses encroached from low elevations and adjacent communities. Our study highlights that spring SCA derived from multi-source remote sensing imagery can be used as a proxy to explore relationship between snow cover and vegetation change in alpine ecosystems. Alpine indigenous plant species may migrate upward following the reduction of snow-dominated environments in the context of climate warming and could be threatened by encroaching plants within snow bed habitats.
How to cite: Zong, S. and Rixen, C.: Links between spring snow cover and long-term alpine vegetation change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8737, https://doi.org/10.5194/egusphere-egu2020-8737, 2020.
EGU2020-9839 | Displays | BG2.23
SYSTEMLINK - a new project on the effects of stressors across ecosystem barriersJohanna Girardi, Ralf Schulz, Mirco Bundschuh, Martin H. Entling, Eva Kröner, Andreas Lorke, Ralf B. Schäfer, Gabriele E. Schaumann, Klaus Schwenk, and Hermann F. Jungkunst
The propagation of environmental stressors from water (source) to land (sink) in aquatic-terrestrial meta-ecosystems, has not been intensively investigated. The other way around has been in the focus of linking terrestrial and aquatic domains. To start bridging that gap, SYSTEMLINK, a DFG Research Training Group, addresses the bottom-up and top-down mediated interactions in terrestrial ecosystems, which origin from anthropogenic impairments on aquatic ecosystems. Micropollutants (fungicides and insecticides) as well as invasive species (riparian plants and invertebrates) are considered as crucial forms of multiple stressors in disturbed aquatic ecosystems. SYSTEMLINK will examine the general hypotheses that 1) invasive invertebrates and insecticide exposure and 2) invasive riparian plants and fungicide exposure cause top-down and bottom-up mediated responses in terrestrial ecosystems, respectively. Collaborative experiments in replicated outdoor aquatic-terrestrial mesocosms (site-scale) amended by joint pot experiments (batch-scale), field studies (landscape-scale), and modelling are used to test these general and several more specific hypotheses. The experimental setups will all represent a multi-stress environment and will be derived from the landscape scale. The regular combination of several scales will allow to overcome scale-specific limitations and to ensure both cause-effect quantification and the environmental relevance of the results. Ultimately, SYSTEMLINK thrives to increase our knowledge on effect translation across ecosystem boundaries. By combining biological subsidies and biogeochemical fluxes we will be able to quantify their relative importance. Furthermore, we will closely incorporate the often separated aquatic and terrestrial research areas.
How to cite: Girardi, J., Schulz, R., Bundschuh, M., Entling, M. H., Kröner, E., Lorke, A., Schäfer, R. B., Schaumann, G. E., Schwenk, K., and Jungkunst, H. F.: SYSTEMLINK - a new project on the effects of stressors across ecosystem barriers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9839, https://doi.org/10.5194/egusphere-egu2020-9839, 2020.
The propagation of environmental stressors from water (source) to land (sink) in aquatic-terrestrial meta-ecosystems, has not been intensively investigated. The other way around has been in the focus of linking terrestrial and aquatic domains. To start bridging that gap, SYSTEMLINK, a DFG Research Training Group, addresses the bottom-up and top-down mediated interactions in terrestrial ecosystems, which origin from anthropogenic impairments on aquatic ecosystems. Micropollutants (fungicides and insecticides) as well as invasive species (riparian plants and invertebrates) are considered as crucial forms of multiple stressors in disturbed aquatic ecosystems. SYSTEMLINK will examine the general hypotheses that 1) invasive invertebrates and insecticide exposure and 2) invasive riparian plants and fungicide exposure cause top-down and bottom-up mediated responses in terrestrial ecosystems, respectively. Collaborative experiments in replicated outdoor aquatic-terrestrial mesocosms (site-scale) amended by joint pot experiments (batch-scale), field studies (landscape-scale), and modelling are used to test these general and several more specific hypotheses. The experimental setups will all represent a multi-stress environment and will be derived from the landscape scale. The regular combination of several scales will allow to overcome scale-specific limitations and to ensure both cause-effect quantification and the environmental relevance of the results. Ultimately, SYSTEMLINK thrives to increase our knowledge on effect translation across ecosystem boundaries. By combining biological subsidies and biogeochemical fluxes we will be able to quantify their relative importance. Furthermore, we will closely incorporate the often separated aquatic and terrestrial research areas.
How to cite: Girardi, J., Schulz, R., Bundschuh, M., Entling, M. H., Kröner, E., Lorke, A., Schäfer, R. B., Schaumann, G. E., Schwenk, K., and Jungkunst, H. F.: SYSTEMLINK - a new project on the effects of stressors across ecosystem barriers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9839, https://doi.org/10.5194/egusphere-egu2020-9839, 2020.
EGU2020-16136 | Displays | BG2.23
The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)Aud Halbritter, Hans De Boeck, and Vigdis Vandvik and the Amy E. Eycott Sabine Reinsch David A. Robinson Sara Vicca Bernd Berauer Casper T. Christiansen Marc Estiarte José M. Grünzweig Ragnhild Gya Karin Hansen Anke Jentsch Hanna Lee Sune Linder John Marshall Josep Peñuelas Inger Kappel Schmidt E
Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change.
To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The protocols are also available online on the ClimEx handbook webpage (https://climexhandbook.w.uib.no/) and we encourage scientists from the climate change research community to get involved, give us feedback and make suggestions for updates to specific protocols. We hope that this is a way to amend the protocols and extend the shelf life of the ClimEx Handbook.
The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world.
How to cite: Halbritter, A., De Boeck, H., and Vandvik, V. and the Amy E. Eycott Sabine Reinsch David A. Robinson Sara Vicca Bernd Berauer Casper T. Christiansen Marc Estiarte José M. Grünzweig Ragnhild Gya Karin Hansen Anke Jentsch Hanna Lee Sune Linder John Marshall Josep Peñuelas Inger Kappel Schmidt E: The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16136, https://doi.org/10.5194/egusphere-egu2020-16136, 2020.
Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change.
To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The protocols are also available online on the ClimEx handbook webpage (https://climexhandbook.w.uib.no/) and we encourage scientists from the climate change research community to get involved, give us feedback and make suggestions for updates to specific protocols. We hope that this is a way to amend the protocols and extend the shelf life of the ClimEx Handbook.
The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world.
How to cite: Halbritter, A., De Boeck, H., and Vandvik, V. and the Amy E. Eycott Sabine Reinsch David A. Robinson Sara Vicca Bernd Berauer Casper T. Christiansen Marc Estiarte José M. Grünzweig Ragnhild Gya Karin Hansen Anke Jentsch Hanna Lee Sune Linder John Marshall Josep Peñuelas Inger Kappel Schmidt E: The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16136, https://doi.org/10.5194/egusphere-egu2020-16136, 2020.
EGU2020-16543 | Displays | BG2.23
Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusionVolodymyr Trotsiuk and the QUPFiS team
Under unprecedent climate change and increased frequency of extreme events, e.g. drought, it is important to assess and forecast forest ecosystem vulnerability and stability. Large volumes of data from observational and experimental networks, increases in computational power, advances in ecological models, and optimization methodologies are the main measures to improve quantitative forecasting in ecology. Data assimilation is a key tool to improve ecosystem state prediction and forecasting by combining model simulations and observations. We assimilated observations of carbon stocks and fluxes from 271 permanent long-term forest monitoring plots across Switzerland into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes, respectively. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018 and tested for climate-induced shifts in productivity along elevational gradient and in extreme years. Overall, we demonstrated a high potential of using data assimilation to improve predictions of forest ecosystem productivity. Furthermore, our calibrated model simulations suggest that climate extremes affect forest productivity in more complex ways than by simply shifting the response upwards in elevation.
How to cite: Trotsiuk, V. and the QUPFiS team: Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16543, https://doi.org/10.5194/egusphere-egu2020-16543, 2020.
Under unprecedent climate change and increased frequency of extreme events, e.g. drought, it is important to assess and forecast forest ecosystem vulnerability and stability. Large volumes of data from observational and experimental networks, increases in computational power, advances in ecological models, and optimization methodologies are the main measures to improve quantitative forecasting in ecology. Data assimilation is a key tool to improve ecosystem state prediction and forecasting by combining model simulations and observations. We assimilated observations of carbon stocks and fluxes from 271 permanent long-term forest monitoring plots across Switzerland into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes, respectively. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018 and tested for climate-induced shifts in productivity along elevational gradient and in extreme years. Overall, we demonstrated a high potential of using data assimilation to improve predictions of forest ecosystem productivity. Furthermore, our calibrated model simulations suggest that climate extremes affect forest productivity in more complex ways than by simply shifting the response upwards in elevation.
How to cite: Trotsiuk, V. and the QUPFiS team: Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16543, https://doi.org/10.5194/egusphere-egu2020-16543, 2020.
EGU2020-18377 | Displays | BG2.23
Copernicus Sectoral Information System for the Biodiversity SectorKoen De Ridder, Filip Lefebre, Eline Vanuytrecht, Julie Berckmans, and Hendrik Wouters
Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions. To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.
The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO’s, the International Union for Conservation of Nature and Natural Resources (IUCN),…). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.
How to cite: De Ridder, K., Lefebre, F., Vanuytrecht, E., Berckmans, J., and Wouters, H.: Copernicus Sectoral Information System for the Biodiversity Sector , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18377, https://doi.org/10.5194/egusphere-egu2020-18377, 2020.
Biodiversity is increasingly under pressure from climate change, which affects the habitat suitability for species as well as the efficiency of ecosystem services. Management of these issues, for instance through ecosystem restoration or species dispersal measures, is often hindered by a lack of appropriate information about (future) climate conditions. To address this, an operational Sectoral Information System (SIS) for the Biodiversity sector (SIS Biodiversity) is designed within the Copernicus programme Climate Change Service (C3S). This new SIS provides tailored bio-climatic indicators and applications, and delivers novel evidence regarding impacts of past, present and future climate. As such, it provides support to decision making challenges that are currently facing unmet climate data needs.
The new climate service for SIS Biodiversity will be demonstrated, including the outline, workflow and outcomes of the use cases. The service is built upon the Copernicus Data Store platform (CDS; ), and takes into account (1) the barriers in ongoing bio-climate assessments and (2) the user requirements of diverse stakeholders (e.g. researcher institutes, local NGO’s, the International Union for Conservation of Nature and Natural Resources (IUCN),…). These have been collected during workshops and bilateral meetings in 2019. A common barrier is the lack of reliable and high-resolution information about states and dynamics of the soil, sea, ice and air for the past and the future climate. Therefore, the service provides relevant bio-climatic indicators on the basis of a wealth of available variables from the latest ERA5 reanalysis datasets and the CMIP5 global climate projections available in CDS. In order to provide information at high resolution and minimize inconsistencies between observed and modelled variables, different downscaling and bias-correction techniques are applied. A common requirement is a universal and flexible interface to the bio-climatic indicators in an easy-to-use and coherent platform that is applicable for different fauna and flora species of interest. Therefore, different applications have been developed within CDS for generating bio-climate suitability envelopes from the high-resolution indicators and to evaluate climate suitability and impacts for the species under present and future climate. Finally, the service is currently tested and refined on the basis of specific use cases. Special attention is given to their transferability to other global and topical studies, hence maximizing external user uptake throughout existing research and policy networks.
How to cite: De Ridder, K., Lefebre, F., Vanuytrecht, E., Berckmans, J., and Wouters, H.: Copernicus Sectoral Information System for the Biodiversity Sector , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18377, https://doi.org/10.5194/egusphere-egu2020-18377, 2020.
EGU2020-18673 | Displays | BG2.23
Whole system Approach for In-situ & Long-term environmental System research on life supporting systems (WAILS)Michael Mirtl
Environmental research is challenged by the question, how lilfe supporting systems (ecosystems, the critical zone) and their services will develop in the next decades. However, addressing changes in structure and function requires an integrated approach from the subsurface to the vegetation and atmosphere, across scales and ecosystems, and combining observation, ecosystem theories and modelling. Such integrated approach affects most aspects of how environmental research and monitoring are shaped, comprising seamless collaborations amongst involved disciplines, the interactions of actual research with other stakeholders, research insfrastructure design and operation and – as a key factor – the structures and rulesets of related funding mechanisms.
A common conceptual framework is highly relevant for catalyzing integration efforts and implementing complementary modules of research infrastructures serving various user groups and disciplines towards a fundamental understanding and improved predictions of how structure and functions of ecosystems and ecosystem services will evolve and adapt under global change, with climate change, land use and societal change as key drivers.
Triggered by the challenge to streamline the ecoystem, critical zone and socio-ecological reasearch infrastructure at the Pan-European level in close collaboration with other ongoing European environmental RIs like ICOS and LifeWatch, the eLTER Research Infrastructure (RI) therefore strives for a Whole system Approach for In-situ & Long-term environmental System research on life supporting systems (WAILS), combining humans-environment interactions at a given scale and cross-scale interactions and feed-back loops across scales, which will be presented.
How to cite: Mirtl, M.: Whole system Approach for In-situ & Long-term environmental System research on life supporting systems (WAILS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18673, https://doi.org/10.5194/egusphere-egu2020-18673, 2020.
Environmental research is challenged by the question, how lilfe supporting systems (ecosystems, the critical zone) and their services will develop in the next decades. However, addressing changes in structure and function requires an integrated approach from the subsurface to the vegetation and atmosphere, across scales and ecosystems, and combining observation, ecosystem theories and modelling. Such integrated approach affects most aspects of how environmental research and monitoring are shaped, comprising seamless collaborations amongst involved disciplines, the interactions of actual research with other stakeholders, research insfrastructure design and operation and – as a key factor – the structures and rulesets of related funding mechanisms.
A common conceptual framework is highly relevant for catalyzing integration efforts and implementing complementary modules of research infrastructures serving various user groups and disciplines towards a fundamental understanding and improved predictions of how structure and functions of ecosystems and ecosystem services will evolve and adapt under global change, with climate change, land use and societal change as key drivers.
Triggered by the challenge to streamline the ecoystem, critical zone and socio-ecological reasearch infrastructure at the Pan-European level in close collaboration with other ongoing European environmental RIs like ICOS and LifeWatch, the eLTER Research Infrastructure (RI) therefore strives for a Whole system Approach for In-situ & Long-term environmental System research on life supporting systems (WAILS), combining humans-environment interactions at a given scale and cross-scale interactions and feed-back loops across scales, which will be presented.
How to cite: Mirtl, M.: Whole system Approach for In-situ & Long-term environmental System research on life supporting systems (WAILS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18673, https://doi.org/10.5194/egusphere-egu2020-18673, 2020.
EGU2020-19137 | Displays | BG2.23
Soil organic carbon decomposition rates in river systems: effect of experimental conditionsMan Zhao, Liesbet Jacobs, Steven Bouillon, and Gerard Govers
Rivers receive large amounts of terrestrial soil organic carbon (SOC) and transport them from land to the ocean. Mounting evidence indicates that a large fraction of the eroded SOC, which is often very old, is quickly decomposed upon entering the river and never reaches the ocean. The mechanisms explaining this rapid decomposition of previously stable SOC remain unclear. In this study, we investigated the relative importance of two mechanisms possibly explaining this rapid SOC decomposition: (i) in the river water SOC is exposed to a different microbial community which is able to metabolise SOC much more quickly than the soil microbial community and (ii) SOC decomposition in rivers is facilitated due to the hydrodynamic disturbance of sediment. We performed different series of short-term (168h) incubations quantifying the rates of SOC decomposition in an aquatic system under controlled conditions. Organic carbon decomposition was measured continuously through monitoring dissolved O2 concentration using a fiber-optic meter (FirestingO2, PyroScience). In the control treatment, bottles of 320 ml of river water sampled from Dijle river (Leuven, Belgium) were used, without headspace, under dark conditions in a temperature-controlled room (20℃). In a second treatment, soil material was added to river water filtered at 0.2 um to remove aquatic micro-organisms (MO) (SOC-MO treatment). The effect of the presence of an aquatic microbial community on SOC decomposition was simulated by adding an inoculum of unfiltered river water to a bottle containing the same soil material (SOC+MO treatment). Secondly, we investigated the effect of water motion on respiration rates by simulating the hydrodynamic disturbance of soil particles using a swing system to keep particles suspended in the water. All treatments described above were conducted under both standing- and shaking conditions. Each experiment was repeated six times and two types of soil were tested: one from arable land (sandy loam, 2.4%OC), and the other from a temperate forest site (sandy loam, 5.0%OC). Our result show that SOC indeed further mineralized in a riverine environment. Under both shaking and standing conditions, we found a significant difference between SOC-MO and SOC+MO treatments (paired t-tests, p<0.05), indicating that the presence of an aquatic microbial community enhanced the SOC decomposition process by 94%-131% depending on the soil type and shaking/standing conditions. In contrast, the effect of hydrodynamic disturbance was much less evident. When comparing SOC+MO at shaking vs. standing conditions for soil from arable land, SOC decomposition was increased by 13% at shaking condition (p<0.05) while no significant effect was found for forest soil (p>0.05). While some recent studies suggested that aquatic respiration rates may have been substantially underestimated by performing measurement under stationary conditions, our results indicate that this effect is relatively minor, at least under the temperature conditions and for the suspended matter concentration range (500 mg/L arable land soil; 200 mg/L forest soil) used in our experiments.
How to cite: Zhao, M., Jacobs, L., Bouillon, S., and Govers, G.: Soil organic carbon decomposition rates in river systems: effect of experimental conditions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19137, https://doi.org/10.5194/egusphere-egu2020-19137, 2020.
Rivers receive large amounts of terrestrial soil organic carbon (SOC) and transport them from land to the ocean. Mounting evidence indicates that a large fraction of the eroded SOC, which is often very old, is quickly decomposed upon entering the river and never reaches the ocean. The mechanisms explaining this rapid decomposition of previously stable SOC remain unclear. In this study, we investigated the relative importance of two mechanisms possibly explaining this rapid SOC decomposition: (i) in the river water SOC is exposed to a different microbial community which is able to metabolise SOC much more quickly than the soil microbial community and (ii) SOC decomposition in rivers is facilitated due to the hydrodynamic disturbance of sediment. We performed different series of short-term (168h) incubations quantifying the rates of SOC decomposition in an aquatic system under controlled conditions. Organic carbon decomposition was measured continuously through monitoring dissolved O2 concentration using a fiber-optic meter (FirestingO2, PyroScience). In the control treatment, bottles of 320 ml of river water sampled from Dijle river (Leuven, Belgium) were used, without headspace, under dark conditions in a temperature-controlled room (20℃). In a second treatment, soil material was added to river water filtered at 0.2 um to remove aquatic micro-organisms (MO) (SOC-MO treatment). The effect of the presence of an aquatic microbial community on SOC decomposition was simulated by adding an inoculum of unfiltered river water to a bottle containing the same soil material (SOC+MO treatment). Secondly, we investigated the effect of water motion on respiration rates by simulating the hydrodynamic disturbance of soil particles using a swing system to keep particles suspended in the water. All treatments described above were conducted under both standing- and shaking conditions. Each experiment was repeated six times and two types of soil were tested: one from arable land (sandy loam, 2.4%OC), and the other from a temperate forest site (sandy loam, 5.0%OC). Our result show that SOC indeed further mineralized in a riverine environment. Under both shaking and standing conditions, we found a significant difference between SOC-MO and SOC+MO treatments (paired t-tests, p<0.05), indicating that the presence of an aquatic microbial community enhanced the SOC decomposition process by 94%-131% depending on the soil type and shaking/standing conditions. In contrast, the effect of hydrodynamic disturbance was much less evident. When comparing SOC+MO at shaking vs. standing conditions for soil from arable land, SOC decomposition was increased by 13% at shaking condition (p<0.05) while no significant effect was found for forest soil (p>0.05). While some recent studies suggested that aquatic respiration rates may have been substantially underestimated by performing measurement under stationary conditions, our results indicate that this effect is relatively minor, at least under the temperature conditions and for the suspended matter concentration range (500 mg/L arable land soil; 200 mg/L forest soil) used in our experiments.
How to cite: Zhao, M., Jacobs, L., Bouillon, S., and Govers, G.: Soil organic carbon decomposition rates in river systems: effect of experimental conditions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19137, https://doi.org/10.5194/egusphere-egu2020-19137, 2020.
EGU2020-19864 | Displays | BG2.23
Towards Resolving Spatial and Temporal Greenhouse Gas Dynamics across a Heterogeneous Arctic Tundra Landscape in the Western Canadian ArcticCarolina Voigt, Gabriel Hould Gosselin, Andrew Black, Charles Chevrier-Dion, Charlotte Marquis, Zoran Nesic, Taija Saarela, Evan Wilcox, Philip Marsh, and Oliver Sonnentag
The Arctic is currently warming faster than the rest of the world. Warming and associated permafrost thaw in Arctic landscapes may mobilize large pools of carbon (C) and nitrogen (N) and ultimately increase the atmospheric burden of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Arctic GHG dynamics and their environmental and hydrological controls are poorly understood. Whether Arctic landscapes act as a net GHG source or sink depends on the complex and spatially varying interactions between hydrology, active layer thickness, topography, temperature, vegetation, substrate availability and microbial dynamics.
Our study site, Trail Valley Creek (68°44’ N, 133°29’ W), is an upland tundra site characterized by small-scale (<10 m) land cover and soil type (mineral and organic) heterogeneity consisting of different land cover types: shrub, tussock and lichen patches, polygonal tundra and thermokarst-affected areas, wetlands, lakes, and streams. To understand the large spatial and temporal variability of GHG dynamics across these terrestrial and aquatic landcover types we use a nested observational approach at plot- (<1 m2), ecosystem- (~10 m2), landscape- (~100 m2) and regional (~50 km2) scale. Existing (since 2013) ecosystem-scale eddy covariance (EC) measurements of net CO2 and CH4 exchanges are complemented with landscape-scale EC measurements and plot-scale automated and manual chamber measurements within the EC tower footprint and beyond. To increase process-based understanding we complement these multi-scale GHG flux observations with a wide array of auxiliary measurements including soil profile dynamics of CO2, CH4, N2O, and oxygen, lake and soil pore nutrient concentrations, soil temperature and moisture profiles, thaw depth, leaf area index (LAI), normalized difference vegetation index (NDVI), lake catchment characteristics, and quality and microbial degradability of aquatic dissolved organic matter.
Preliminary results from manual chamber measurements show that tussocks were the largest net CO2 sink during the growing season. While the majority of terrestrial landcover types showed small but consistent and seasonally varying CH4 uptake, lake shore and thermokarst-affected areas displayed high nutrient loads and were hotspots of CH4 emissions. Therefore, capturing the landscape heterogeneity, areal coverage and hydrological connectivity of terrestrial and aquatic landcover types is important and our study highlights the need to combine belowground, plot-, ecosystem- and landscape-scale measurements to understand biosphere-atmosphere interactions in the Arctic.
How to cite: Voigt, C., Hould Gosselin, G., Black, A., Chevrier-Dion, C., Marquis, C., Nesic, Z., Saarela, T., Wilcox, E., Marsh, P., and Sonnentag, O.: Towards Resolving Spatial and Temporal Greenhouse Gas Dynamics across a Heterogeneous Arctic Tundra Landscape in the Western Canadian Arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19864, https://doi.org/10.5194/egusphere-egu2020-19864, 2020.
The Arctic is currently warming faster than the rest of the world. Warming and associated permafrost thaw in Arctic landscapes may mobilize large pools of carbon (C) and nitrogen (N) and ultimately increase the atmospheric burden of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Arctic GHG dynamics and their environmental and hydrological controls are poorly understood. Whether Arctic landscapes act as a net GHG source or sink depends on the complex and spatially varying interactions between hydrology, active layer thickness, topography, temperature, vegetation, substrate availability and microbial dynamics.
Our study site, Trail Valley Creek (68°44’ N, 133°29’ W), is an upland tundra site characterized by small-scale (<10 m) land cover and soil type (mineral and organic) heterogeneity consisting of different land cover types: shrub, tussock and lichen patches, polygonal tundra and thermokarst-affected areas, wetlands, lakes, and streams. To understand the large spatial and temporal variability of GHG dynamics across these terrestrial and aquatic landcover types we use a nested observational approach at plot- (<1 m2), ecosystem- (~10 m2), landscape- (~100 m2) and regional (~50 km2) scale. Existing (since 2013) ecosystem-scale eddy covariance (EC) measurements of net CO2 and CH4 exchanges are complemented with landscape-scale EC measurements and plot-scale automated and manual chamber measurements within the EC tower footprint and beyond. To increase process-based understanding we complement these multi-scale GHG flux observations with a wide array of auxiliary measurements including soil profile dynamics of CO2, CH4, N2O, and oxygen, lake and soil pore nutrient concentrations, soil temperature and moisture profiles, thaw depth, leaf area index (LAI), normalized difference vegetation index (NDVI), lake catchment characteristics, and quality and microbial degradability of aquatic dissolved organic matter.
Preliminary results from manual chamber measurements show that tussocks were the largest net CO2 sink during the growing season. While the majority of terrestrial landcover types showed small but consistent and seasonally varying CH4 uptake, lake shore and thermokarst-affected areas displayed high nutrient loads and were hotspots of CH4 emissions. Therefore, capturing the landscape heterogeneity, areal coverage and hydrological connectivity of terrestrial and aquatic landcover types is important and our study highlights the need to combine belowground, plot-, ecosystem- and landscape-scale measurements to understand biosphere-atmosphere interactions in the Arctic.
How to cite: Voigt, C., Hould Gosselin, G., Black, A., Chevrier-Dion, C., Marquis, C., Nesic, Z., Saarela, T., Wilcox, E., Marsh, P., and Sonnentag, O.: Towards Resolving Spatial and Temporal Greenhouse Gas Dynamics across a Heterogeneous Arctic Tundra Landscape in the Western Canadian Arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19864, https://doi.org/10.5194/egusphere-egu2020-19864, 2020.
EGU2020-20462 | Displays | BG2.23
The effects of afforestation on Fe mobilization in soils and potential for leaking into surface watersMartin Škerlep, Ulf Johansson, Dan Berggren Kleja, Per Persson, and Emma S Kritzberg
Increasing surface water concentrations of Fe and DOC (browning), have been reported around the northern hemisphere in the last couple of decades. This increase has far-reaching ecological and societal implications, as it alters the light climate in water and decreases the quality of drinking water. One of the hypothesis behind the increase has been that afforestation and a dominance of coniferous forest have increased the availability of Fe and DOC for transport from soils into surface waters. The accumulation of organic soil layers in coniferous forests increases acidity and the amounts of organic acids in soils and may thus enhance weathering, solubility and mobilization of Fe as the forest ages. In this study we examined the effects of afforestation and growth of Norway spruce on the mobilization and potential leakage of Fe and DOC from soils to surface waters. To represent the effects of ageing forest we used plots with spruce stands of different ages (35, 61, 90 years) and unforested control plots in their immediate proximity, in Tönnersjöheden experimental forest (Sweden). Soil water collected in lysimeters (installed below the organic horizon and in the mineral soil) and analyzed for Fe, Fe speciation, using X-ray absorption spectroscopy (XAS), as well as DOC, metals, major anions and cations. Soil samples were analyzed for Fe speciation and crystallinity at different depths. Results from the soil water analysis show that more Fe was mobile in older spruce forest stands with higher DOC concentrations and lower pH. Covariation of Fe and DOC concentrations in soil waters, indicate the dependence of Fe on DOC to solubilize and stay in solution. Preliminary results from our XAS analysis also indelicate a considerable amount of Fe(II) in soil water that is likely stabilized from oxidation by organic complexation. Surprisingly Fe extracted from the organic (O) soil horizon showed the highest crystallinity and crystallinity did not vary much between soils of different stand ages. The results of this study indicate that afforestation promotes Fe and DOC availability for export into surface waters as well as strengthens the notion that the effects of afforestation are not immediate, but take time as soils develop slowly. As afforestation and dominance of coniferous forest continues in many parts of the northern hemisphere, we can expect further increase of Fe and DOC in surface waters.
How to cite: Škerlep, M., Johansson, U., Berggren Kleja, D., Persson, P., and Kritzberg, E. S.: The effects of afforestation on Fe mobilization in soils and potential for leaking into surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20462, https://doi.org/10.5194/egusphere-egu2020-20462, 2020.
Increasing surface water concentrations of Fe and DOC (browning), have been reported around the northern hemisphere in the last couple of decades. This increase has far-reaching ecological and societal implications, as it alters the light climate in water and decreases the quality of drinking water. One of the hypothesis behind the increase has been that afforestation and a dominance of coniferous forest have increased the availability of Fe and DOC for transport from soils into surface waters. The accumulation of organic soil layers in coniferous forests increases acidity and the amounts of organic acids in soils and may thus enhance weathering, solubility and mobilization of Fe as the forest ages. In this study we examined the effects of afforestation and growth of Norway spruce on the mobilization and potential leakage of Fe and DOC from soils to surface waters. To represent the effects of ageing forest we used plots with spruce stands of different ages (35, 61, 90 years) and unforested control plots in their immediate proximity, in Tönnersjöheden experimental forest (Sweden). Soil water collected in lysimeters (installed below the organic horizon and in the mineral soil) and analyzed for Fe, Fe speciation, using X-ray absorption spectroscopy (XAS), as well as DOC, metals, major anions and cations. Soil samples were analyzed for Fe speciation and crystallinity at different depths. Results from the soil water analysis show that more Fe was mobile in older spruce forest stands with higher DOC concentrations and lower pH. Covariation of Fe and DOC concentrations in soil waters, indicate the dependence of Fe on DOC to solubilize and stay in solution. Preliminary results from our XAS analysis also indelicate a considerable amount of Fe(II) in soil water that is likely stabilized from oxidation by organic complexation. Surprisingly Fe extracted from the organic (O) soil horizon showed the highest crystallinity and crystallinity did not vary much between soils of different stand ages. The results of this study indicate that afforestation promotes Fe and DOC availability for export into surface waters as well as strengthens the notion that the effects of afforestation are not immediate, but take time as soils develop slowly. As afforestation and dominance of coniferous forest continues in many parts of the northern hemisphere, we can expect further increase of Fe and DOC in surface waters.
How to cite: Škerlep, M., Johansson, U., Berggren Kleja, D., Persson, P., and Kritzberg, E. S.: The effects of afforestation on Fe mobilization in soils and potential for leaking into surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20462, https://doi.org/10.5194/egusphere-egu2020-20462, 2020.
EGU2020-20556 | Displays | BG2.23 | Highlight
Drivers and responses of ecosystem processes at the Collelongo beech forest: main results and lessons learned over 30 years of research and monitoring in a period of changesGiorgio Matteucci, Alessio Collalti, Ettore D'Andrea, Bruno De Cinti, Olga Gavrichkova, Gabriele Guidolotti, Giovanni Manca, Francesco Mazzenga, Negar Rezaei, Andrea Scartazza, Riccardo Valentini, and Giuseppe Scarascia Mugnozza
The long-term research and monitoring site of Collelongo - Selva Piana has been established in 1991 (Abruzzo Region, Central Italy, 1560 m elevation) in the framework of a project on ecology and silviculture of European beech. In 1993, the site was the first forest in Europe where canopy fluxes started to be measured with the eddy covariance technique. Since then, the site has been involved in several of the most important networks and projects, including ICP Forests, Euroflux, CarboEurope-IP, FluxNet and, in 2006, joined the Long Term Ecological Research network (LTER).
Measurements at the Collelongo site bridge two centuries, starting right at the end of the WMO and IPCC climate reference period (1961-1990) and extending, in continuous, over a period of great changes (the three warmest ever decades occurred since then), including a number of extreme events (heat waves, droughts, late frost). During these thirty years, more than 50 researchers from different parts of the world performed direct measurements at the site, flux datasets from the site (code IT-Col) had more than 1500 unique downloads and it is estimated that more than 300 people used the data for producing more than 150 ISI papers.
We will briefly present the main results on different ecosystem processes (Phenology, Net Primary Production, Carbon Allocation, Net Ecosystem Exchange, Nutrient and Water Cycling) emphasizing responses to drivers, including legacies from the past. Over these thirty years, the growing season length increased significantly (1.33 day yr-1 from 2000 to 2015), the studied beech forests absorbed between 120 and 150 tC ha-1 and showing plasticity and resilience to changing climatic conditions. However, increasing warming, drought and extreme events may impair adaptation capacity. In this respect, modelling offers a tool to evaluate long-term responses, including possible management options to increase both adaptation and resilience capacities.
How to cite: Matteucci, G., Collalti, A., D'Andrea, E., De Cinti, B., Gavrichkova, O., Guidolotti, G., Manca, G., Mazzenga, F., Rezaei, N., Scartazza, A., Valentini, R., and Scarascia Mugnozza, G.: Drivers and responses of ecosystem processes at the Collelongo beech forest: main results and lessons learned over 30 years of research and monitoring in a period of changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20556, https://doi.org/10.5194/egusphere-egu2020-20556, 2020.
The long-term research and monitoring site of Collelongo - Selva Piana has been established in 1991 (Abruzzo Region, Central Italy, 1560 m elevation) in the framework of a project on ecology and silviculture of European beech. In 1993, the site was the first forest in Europe where canopy fluxes started to be measured with the eddy covariance technique. Since then, the site has been involved in several of the most important networks and projects, including ICP Forests, Euroflux, CarboEurope-IP, FluxNet and, in 2006, joined the Long Term Ecological Research network (LTER).
Measurements at the Collelongo site bridge two centuries, starting right at the end of the WMO and IPCC climate reference period (1961-1990) and extending, in continuous, over a period of great changes (the three warmest ever decades occurred since then), including a number of extreme events (heat waves, droughts, late frost). During these thirty years, more than 50 researchers from different parts of the world performed direct measurements at the site, flux datasets from the site (code IT-Col) had more than 1500 unique downloads and it is estimated that more than 300 people used the data for producing more than 150 ISI papers.
We will briefly present the main results on different ecosystem processes (Phenology, Net Primary Production, Carbon Allocation, Net Ecosystem Exchange, Nutrient and Water Cycling) emphasizing responses to drivers, including legacies from the past. Over these thirty years, the growing season length increased significantly (1.33 day yr-1 from 2000 to 2015), the studied beech forests absorbed between 120 and 150 tC ha-1 and showing plasticity and resilience to changing climatic conditions. However, increasing warming, drought and extreme events may impair adaptation capacity. In this respect, modelling offers a tool to evaluate long-term responses, including possible management options to increase both adaptation and resilience capacities.
How to cite: Matteucci, G., Collalti, A., D'Andrea, E., De Cinti, B., Gavrichkova, O., Guidolotti, G., Manca, G., Mazzenga, F., Rezaei, N., Scartazza, A., Valentini, R., and Scarascia Mugnozza, G.: Drivers and responses of ecosystem processes at the Collelongo beech forest: main results and lessons learned over 30 years of research and monitoring in a period of changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20556, https://doi.org/10.5194/egusphere-egu2020-20556, 2020.
EGU2020-21620 | Displays | BG2.23
The role of formal institutions in forest decline: exploring institutional failureJim Yates, Laura Secco, and Francesco Carbone
Recent global efforts to reduce and abate forest declines i.e. deforestation, degradation and disturbance, forest ecosystems are extensive and well incentivised. Forests, however, remain as areas subject to competing resource objectives with complex socio-economic development paradigms and historical policy narratives. Indirect and direct causes forest decline are well cited across the literature. The concept that institutions are failing to secure positive outcomes for forest resources, however, is a somewhat new concept in resource management discourses. It is argued that formal institutions in forest management acting as developers, intermediaries, and the regulators of forest policy, having legitimized competency, are subject to meso-scale failure and in some circumstances contribute to forest decline. Adopting a mixed-method approach, application of a modified DPSIR framework, DPAESMR (Drivers-Policy-Actions-Effects-State Changes-Monitoring and Reporting) was combined with elements from the traditional policy cycle logic to develop a novel policy evaluation analysis tool or PEA. Using the PEA, analysis of classical literature and empirical experiences across four separate international and geographical case studies focused on formal institutions in forest management, their forest policy, actions and effects and are assessed against more recently reported state changes to respective forest resources, along with gaps in subsequent monitoring and reporting efforts. The analysis highlights land-use change and forest exploitation, intentional or not, demonstrates sustained losses in forest area, degradation processes and forest disturbance despite established/legitimized forest policy and robust formal intuitional direction and support. Forest policy interpreted and derived from acts, laws and norms vary across all cases naturally, although, similar themes such as gaps in institutional regulation, enforcement and information, subsequently result in weak forest administration. Evidence of robust, reasonably well covered and incentivized formal forest institutions exist irrespaective of forest administrative area and have failed to address forest decline and is highlighted as meso-scale failure or institutional failure. Understanding traditional issues such as property rights, path-dependence or re-orientation may succeed in strengthening institutional adaptation to triggers, crises and abrupt policy changes which will aid the effort in slowing forest decline.
Keywords
Forest decline, Institutional failure, DPSIR, forest management, policy analysis
How to cite: Yates, J., Secco, L., and Carbone, F.: The role of formal institutions in forest decline: exploring institutional failure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21620, https://doi.org/10.5194/egusphere-egu2020-21620, 2020.
Recent global efforts to reduce and abate forest declines i.e. deforestation, degradation and disturbance, forest ecosystems are extensive and well incentivised. Forests, however, remain as areas subject to competing resource objectives with complex socio-economic development paradigms and historical policy narratives. Indirect and direct causes forest decline are well cited across the literature. The concept that institutions are failing to secure positive outcomes for forest resources, however, is a somewhat new concept in resource management discourses. It is argued that formal institutions in forest management acting as developers, intermediaries, and the regulators of forest policy, having legitimized competency, are subject to meso-scale failure and in some circumstances contribute to forest decline. Adopting a mixed-method approach, application of a modified DPSIR framework, DPAESMR (Drivers-Policy-Actions-Effects-State Changes-Monitoring and Reporting) was combined with elements from the traditional policy cycle logic to develop a novel policy evaluation analysis tool or PEA. Using the PEA, analysis of classical literature and empirical experiences across four separate international and geographical case studies focused on formal institutions in forest management, their forest policy, actions and effects and are assessed against more recently reported state changes to respective forest resources, along with gaps in subsequent monitoring and reporting efforts. The analysis highlights land-use change and forest exploitation, intentional or not, demonstrates sustained losses in forest area, degradation processes and forest disturbance despite established/legitimized forest policy and robust formal intuitional direction and support. Forest policy interpreted and derived from acts, laws and norms vary across all cases naturally, although, similar themes such as gaps in institutional regulation, enforcement and information, subsequently result in weak forest administration. Evidence of robust, reasonably well covered and incentivized formal forest institutions exist irrespaective of forest administrative area and have failed to address forest decline and is highlighted as meso-scale failure or institutional failure. Understanding traditional issues such as property rights, path-dependence or re-orientation may succeed in strengthening institutional adaptation to triggers, crises and abrupt policy changes which will aid the effort in slowing forest decline.
Keywords
Forest decline, Institutional failure, DPSIR, forest management, policy analysis
How to cite: Yates, J., Secco, L., and Carbone, F.: The role of formal institutions in forest decline: exploring institutional failure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21620, https://doi.org/10.5194/egusphere-egu2020-21620, 2020.
EGU2020-21697 | Displays | BG2.23
Long-term change monitoring of natural grasslands ecosystem in support of SDG 15.3.1Cristina Tarantino, Maria Adamo, and Palma Blonda
Assessing and maintaining the conservation of natural and semi-natural grassland ecosystems is one of the most important actions of the Biodiversity Strategy by the European Commission.
The present study focuses on the detection of long-term changes, from 1990 to 2018, of natural grasslands ecosystem, at local scale, in the “Murgia Alta”, a National Park as well as a Natura 2000 protected area, Southern Italy. The study site represents one of the largest areas for the conservation of such ecosystem in Italy. It is under pressure and in danger of destruction due to soil graining for agricultural intensification, illegal expansion of extraction sites, fires and land abandonment with consequent biodiversity loss.
Land Cover (LC) changes and class trends are one of the measures (sub-indicator) required for the implementation of the Sustainable Development Goals (SDG) 15.3.1 Indicator (“Proportion of land that is degraded over total land area”) of the Agenda 2030 by United Nations.
Multisource/multiresolution free available satellite data (visible, near infrared and short wave infrared spectral bands) were considered. Historical images from Landsat (4 images per year, one per season) were analyzed to produce different LC multiclass maps for 1990, 2001, 2004, 2011 and 2018 at 30 m spatial resolution, with an automatic data-driven classifier (Support Vector Machine). For 2018 Sentinel-2 data, 10 m spatial resolution, were also considered.
The mean value of the Overall Accuracies obtained for the LC maps from Landsat was 95%. Similar value was obtained in the last year from Sentinel-2.
Then natural grassland layer was extracted from those maps to analyze the trend of the grasslands ecosystem over time. The findings obtained indicate a total loss in the extension of the ecosystem of about 18% from 1990 to 2018. The major decrease (26%) occurred in 1990-2001. Then a modest decrease followed up to 2004 (year of institution of the National Park). Finally a slight increase probably due to land abandonment followed to fire events was quantified after 2004.
From the comparison of the different LC maps obtained, the decrease of natural grasslands resulted mainly due to transformation into agricultural areas.
In addition, these results are consistent with those obtained using Corine Land Cover maps available for the same period although at a coarser scale.
The SDG sub-indicator was evaluated inside the protected area and in a buffer, 10 km, area around. This sub-measure, which can be evaluated from time-series of satellite free data, can support long-term monitoring of protected area and can be used not only for the resilience evaluation of the study site to climate changes but also for the evaluation of conservation policies and as input to scenario modelling.
How to cite: Tarantino, C., Adamo, M., and Blonda, P.: Long-term change monitoring of natural grasslands ecosystem in support of SDG 15.3.1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21697, https://doi.org/10.5194/egusphere-egu2020-21697, 2020.
Assessing and maintaining the conservation of natural and semi-natural grassland ecosystems is one of the most important actions of the Biodiversity Strategy by the European Commission.
The present study focuses on the detection of long-term changes, from 1990 to 2018, of natural grasslands ecosystem, at local scale, in the “Murgia Alta”, a National Park as well as a Natura 2000 protected area, Southern Italy. The study site represents one of the largest areas for the conservation of such ecosystem in Italy. It is under pressure and in danger of destruction due to soil graining for agricultural intensification, illegal expansion of extraction sites, fires and land abandonment with consequent biodiversity loss.
Land Cover (LC) changes and class trends are one of the measures (sub-indicator) required for the implementation of the Sustainable Development Goals (SDG) 15.3.1 Indicator (“Proportion of land that is degraded over total land area”) of the Agenda 2030 by United Nations.
Multisource/multiresolution free available satellite data (visible, near infrared and short wave infrared spectral bands) were considered. Historical images from Landsat (4 images per year, one per season) were analyzed to produce different LC multiclass maps for 1990, 2001, 2004, 2011 and 2018 at 30 m spatial resolution, with an automatic data-driven classifier (Support Vector Machine). For 2018 Sentinel-2 data, 10 m spatial resolution, were also considered.
The mean value of the Overall Accuracies obtained for the LC maps from Landsat was 95%. Similar value was obtained in the last year from Sentinel-2.
Then natural grassland layer was extracted from those maps to analyze the trend of the grasslands ecosystem over time. The findings obtained indicate a total loss in the extension of the ecosystem of about 18% from 1990 to 2018. The major decrease (26%) occurred in 1990-2001. Then a modest decrease followed up to 2004 (year of institution of the National Park). Finally a slight increase probably due to land abandonment followed to fire events was quantified after 2004.
From the comparison of the different LC maps obtained, the decrease of natural grasslands resulted mainly due to transformation into agricultural areas.
In addition, these results are consistent with those obtained using Corine Land Cover maps available for the same period although at a coarser scale.
The SDG sub-indicator was evaluated inside the protected area and in a buffer, 10 km, area around. This sub-measure, which can be evaluated from time-series of satellite free data, can support long-term monitoring of protected area and can be used not only for the resilience evaluation of the study site to climate changes but also for the evaluation of conservation policies and as input to scenario modelling.
How to cite: Tarantino, C., Adamo, M., and Blonda, P.: Long-term change monitoring of natural grasslands ecosystem in support of SDG 15.3.1, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21697, https://doi.org/10.5194/egusphere-egu2020-21697, 2020.
EGU2020-21904 | Displays | BG2.23
Habitat mapping and change assessment of coastal wetlands by using Sentinel-2 time series and ecological expert knowledgeMaria Adamo, Valeria Tomaselli, Francesca Mantino, Cristina Tarantino, and Palma Blonda
Coastal wetlands are one of the most threatened ecosystems worldwide. In the Mediterranean Region, wetlands are undergoing rapid changes due to the increasing of human pressures (e.g. land reclamation, water resources exploitation) and climate changes (e.g. coastal erosion), with a resulting habitat degradation, fragmentation, and biodiversity loss.
Long-term habitat mapping and change detection are essential for the management of coastal wetlands as well as for evaluating the impact of conservation policies.
Earth observation (EO) data and techniques are a valuable resource for long-term habitat mapping, thanks to the large amount of available data and their high spatial and temporal resolution. In this study, we propose an approach based on the integration of time series of Sentinel-2 images and ecological expert knowledge for land cover (LC) mapping and automatic translation to habitats in coastal wetlands. In particular, the research relies on the exploitation of ecological rules based on combined information related to plant phenology, water seasonality of aquatic species, pattern zonation, and habitat geometric properties.
The methodology is applied to two Natura2000 sites, “Zone umide della Capitanata” and “Paludi presso il Golfo di Manfredonia”, located in the northeastern part of the Puglia region. These two areas are the most extensive wetlands of the Italian peninsula and the largest components of the Mediterranean wetland system.
Land Cover classes are labelled according to the FAO-LCCS taxonomy, which offers a framework to integrate EO data with in situ and ancillary data. Output habitat classes are labelled according to EUNIS habitat classification.
How to cite: Adamo, M., Tomaselli, V., Mantino, F., Tarantino, C., and Blonda, P.: Habitat mapping and change assessment of coastal wetlands by using Sentinel-2 time series and ecological expert knowledge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21904, https://doi.org/10.5194/egusphere-egu2020-21904, 2020.
Coastal wetlands are one of the most threatened ecosystems worldwide. In the Mediterranean Region, wetlands are undergoing rapid changes due to the increasing of human pressures (e.g. land reclamation, water resources exploitation) and climate changes (e.g. coastal erosion), with a resulting habitat degradation, fragmentation, and biodiversity loss.
Long-term habitat mapping and change detection are essential for the management of coastal wetlands as well as for evaluating the impact of conservation policies.
Earth observation (EO) data and techniques are a valuable resource for long-term habitat mapping, thanks to the large amount of available data and their high spatial and temporal resolution. In this study, we propose an approach based on the integration of time series of Sentinel-2 images and ecological expert knowledge for land cover (LC) mapping and automatic translation to habitats in coastal wetlands. In particular, the research relies on the exploitation of ecological rules based on combined information related to plant phenology, water seasonality of aquatic species, pattern zonation, and habitat geometric properties.
The methodology is applied to two Natura2000 sites, “Zone umide della Capitanata” and “Paludi presso il Golfo di Manfredonia”, located in the northeastern part of the Puglia region. These two areas are the most extensive wetlands of the Italian peninsula and the largest components of the Mediterranean wetland system.
Land Cover classes are labelled according to the FAO-LCCS taxonomy, which offers a framework to integrate EO data with in situ and ancillary data. Output habitat classes are labelled according to EUNIS habitat classification.
How to cite: Adamo, M., Tomaselli, V., Mantino, F., Tarantino, C., and Blonda, P.: Habitat mapping and change assessment of coastal wetlands by using Sentinel-2 time series and ecological expert knowledge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21904, https://doi.org/10.5194/egusphere-egu2020-21904, 2020.
BG3.2 – Land imaging capabilities and application needs
EGU2020-1629 | Displays | BG3.2
Copernicus User Needs CollectionMichel Massart, Fabienne Jacq, and Hugo Zunker
Copernicus is the Earth Observation Flagship programme of the European Union. It is user driven programme. It has observation capacities with currently 7 satellites in orbit, and information production services in 6 domains: land, emergency, security, climate change, atmosphere and marine. One of the objective of the programme started in 2011 is to ensure the long-term sustainability of the observation capacities for Europe. In this context, the European Commission and the European Space Agency are now preparing the Next Generation (2030) of Sentinel satellites.
To define the specifications of this Next Generation, the European Commission has launched several user requirement surveys and studies aimed at gathering the satellite observation long-term needs across different sectors.
User requirements have been gathered based on desk studies, exchanges and interactions with existing and potential user communities. They have been collected and analysed from different sources which include dedicated studies carried out between 2015 and 2018, requirements expressed by users during task forces and expert groups, and outcomes of several users’ requirement workshops and meetings organized during the last two years. Based on this collection of User Requirements, the European Space Agency has started now to define the potential specifications of the Next Generation of Copernicus satellites.
The objective of the presentation will be to explain the process setup for collecting the User Requirements, their analysis and the outcomes.
How to cite: Massart, M., Jacq, F., and Zunker, H.: Copernicus User Needs Collection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1629, https://doi.org/10.5194/egusphere-egu2020-1629, 2020.
Copernicus is the Earth Observation Flagship programme of the European Union. It is user driven programme. It has observation capacities with currently 7 satellites in orbit, and information production services in 6 domains: land, emergency, security, climate change, atmosphere and marine. One of the objective of the programme started in 2011 is to ensure the long-term sustainability of the observation capacities for Europe. In this context, the European Commission and the European Space Agency are now preparing the Next Generation (2030) of Sentinel satellites.
To define the specifications of this Next Generation, the European Commission has launched several user requirement surveys and studies aimed at gathering the satellite observation long-term needs across different sectors.
User requirements have been gathered based on desk studies, exchanges and interactions with existing and potential user communities. They have been collected and analysed from different sources which include dedicated studies carried out between 2015 and 2018, requirements expressed by users during task forces and expert groups, and outcomes of several users’ requirement workshops and meetings organized during the last two years. Based on this collection of User Requirements, the European Space Agency has started now to define the potential specifications of the Next Generation of Copernicus satellites.
The objective of the presentation will be to explain the process setup for collecting the User Requirements, their analysis and the outcomes.
How to cite: Massart, M., Jacq, F., and Zunker, H.: Copernicus User Needs Collection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1629, https://doi.org/10.5194/egusphere-egu2020-1629, 2020.
EGU2020-2227 | Displays | BG3.2
A Land Imaging Architecture Scorecard to Support Decision-MakingCarolyn Vadnais, Erin Dale, and Zhuoting Wu
EGU2020-4185 | Displays | BG3.2
Space oddity: estimating Earth biodiversity from a satelliteDuccio Rocchini
Assessing biodiversity from field-based data is difficult for a number of practical reasons: (i) establishing the total number of sampling units to be investigated and the sampling design (e.g. systematic, random, stratified) can be difficult; (ii) the choice of the sampling design can affect the results; and (iii) defining the focal population of interest can be challenging. Satellite remote sensing is one of the most cost-effective and comprehensive approaches to identify biodiversity hotspots and predict changes in species composition. This is because, in contrast to field-based methods, it allows for complete spatial coverages of the Earth's surface under study over a short period of time. Furthermore, satellite remote sensing provides repeated measures, thus making it possible to study temporal changes in biodiversity. While taxonomic diversity measures have long been established, problems arising from abundance related measures have not been yet disentangled. Moreover, little has been done to account for functional diversity besides taxonomic diversity measures. The aim of this talk is to propose robust measures of remotely sensed heterogeneity to perform exploratory analysis for the detection of hotspots of taxonomic and functional diversity of plant species.
How to cite: Rocchini, D.: Space oddity: estimating Earth biodiversity from a satellite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4185, https://doi.org/10.5194/egusphere-egu2020-4185, 2020.
Assessing biodiversity from field-based data is difficult for a number of practical reasons: (i) establishing the total number of sampling units to be investigated and the sampling design (e.g. systematic, random, stratified) can be difficult; (ii) the choice of the sampling design can affect the results; and (iii) defining the focal population of interest can be challenging. Satellite remote sensing is one of the most cost-effective and comprehensive approaches to identify biodiversity hotspots and predict changes in species composition. This is because, in contrast to field-based methods, it allows for complete spatial coverages of the Earth's surface under study over a short period of time. Furthermore, satellite remote sensing provides repeated measures, thus making it possible to study temporal changes in biodiversity. While taxonomic diversity measures have long been established, problems arising from abundance related measures have not been yet disentangled. Moreover, little has been done to account for functional diversity besides taxonomic diversity measures. The aim of this talk is to propose robust measures of remotely sensed heterogeneity to perform exploratory analysis for the detection of hotspots of taxonomic and functional diversity of plant species.
How to cite: Rocchini, D.: Space oddity: estimating Earth biodiversity from a satellite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4185, https://doi.org/10.5194/egusphere-egu2020-4185, 2020.
EGU2020-6675 | Displays | BG3.2 | Highlight
The ESA Sentinel Next-Generation Land & Ocean Optical Imaging Architectural Study, an OverviewArmin Löscher, Philippe Martimort, Simon Jutz, Ferran Gascon, Craig Donlon, Ilias Manolis, and Umberto Del Bello
ESA initiated in 2018 an architectural design study to prepare the development of the next generation of the optical component of Sentinel 2 and Sentinel 3. This encompasses the next generation of the Multi Spectral Imager (MSI), Ocean and Land Color Imager (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR) observations. The aim of this activity was to analyse and trade-off different architectural options for the Next-Generation of the Copernicus Space Component optical imaging missions in the 2032 time horizon, considering user needs, addressing mainly the Copernicus Marine and Land services, starting from user requirements for Copernicus Next Generation derived from EC studies and related workshops. It also did draw from the experience and lessons learned regarding the current generation of Sentinel 2 and Sentinel 3, to ensure continuity of services and further enhancement as identified, necessary to meet new and emerging user needs. The study investigated also trends both in terms of other spaceborne optical missions by national agencies in Europe and worldwide, as well as commercial missions e.g. with the advent of “New Space” constellations of small satellites. Observation gaps and potential synergies were identified to avoid duplication when establishing the architecture of the next generation of the Copernicus Space Component optical imaging family for land and ocean applications. A wide range of scenarios have been analysed for possible combination of several observation capabilities within the same instrument, on the same platform or on satellites flying in formation, assessing pros and cons with respect to scenarios with free-flyer satellites for each observation capability. Based on the above analysis of user needs, gap/synergy analysis and architectural concept trade-offs, high level mission assumptions and technical requirements are being established for the continuity of the MSI, OLCI and SLSTR observations, including any additional elements, as identified, to meet user requirements in the respective Copernicus services and application areas.
How to cite: Löscher, A., Martimort, P., Jutz, S., Gascon, F., Donlon, C., Manolis, I., and Del Bello, U.: The ESA Sentinel Next-Generation Land & Ocean Optical Imaging Architectural Study, an Overview, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6675, https://doi.org/10.5194/egusphere-egu2020-6675, 2020.
ESA initiated in 2018 an architectural design study to prepare the development of the next generation of the optical component of Sentinel 2 and Sentinel 3. This encompasses the next generation of the Multi Spectral Imager (MSI), Ocean and Land Color Imager (OLCI) and Sea and Land Surface Temperature Radiometer (SLSTR) observations. The aim of this activity was to analyse and trade-off different architectural options for the Next-Generation of the Copernicus Space Component optical imaging missions in the 2032 time horizon, considering user needs, addressing mainly the Copernicus Marine and Land services, starting from user requirements for Copernicus Next Generation derived from EC studies and related workshops. It also did draw from the experience and lessons learned regarding the current generation of Sentinel 2 and Sentinel 3, to ensure continuity of services and further enhancement as identified, necessary to meet new and emerging user needs. The study investigated also trends both in terms of other spaceborne optical missions by national agencies in Europe and worldwide, as well as commercial missions e.g. with the advent of “New Space” constellations of small satellites. Observation gaps and potential synergies were identified to avoid duplication when establishing the architecture of the next generation of the Copernicus Space Component optical imaging family for land and ocean applications. A wide range of scenarios have been analysed for possible combination of several observation capabilities within the same instrument, on the same platform or on satellites flying in formation, assessing pros and cons with respect to scenarios with free-flyer satellites for each observation capability. Based on the above analysis of user needs, gap/synergy analysis and architectural concept trade-offs, high level mission assumptions and technical requirements are being established for the continuity of the MSI, OLCI and SLSTR observations, including any additional elements, as identified, to meet user requirements in the respective Copernicus services and application areas.
How to cite: Löscher, A., Martimort, P., Jutz, S., Gascon, F., Donlon, C., Manolis, I., and Del Bello, U.: The ESA Sentinel Next-Generation Land & Ocean Optical Imaging Architectural Study, an Overview, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6675, https://doi.org/10.5194/egusphere-egu2020-6675, 2020.
EGU2020-18703 | Displays | BG3.2
A Sentinel-1 based European crop parcel map using 2018 in-situ LUCAS Copernicus observationsVerhegghen Astrid, d'Andrimont Raphaël, Lemoine Guido, Strobl Peter, and van der Velde Marijn
Efficient near-real time and wall-to-wall land monitoring is now possible with unprecedented detail because of the fleet of Copernicus Sentinel satellites. This remote sensing paradigm is the consequence of the freely accessible, global, Copernicus data, combined with affordable cloud computing. However, to translate this capacity in accurate products, and to truly benefit from the high spatial detail (~10m) and temporal resolution (~5 days in constellation) of the Sentinels 1 and 2, high quality and timely in-situ data remains crucial. Robust operational monitoring systems are in need of both training and validation data.
Here, we demonstrate the potential of Sentinel 1 observations and complementary high-quality in-situ data to generate a crop type map at continental scale. In 2018, the Land Cover and Land Use Area frame Survey (LUCAS) carried out in the European Union contained a specific Copernicus module corresponding to 93.091 polygons surveyed in-situ. In contrast to the usual LUCAS point observation, the Copernicus protocol provides data on the extent of homogeneous land cover for a maximum size of 100 x 100 m, making it meaningful for remote sensing applications. After filtering the polygons to retrieve only high quality sample, a sample was selected to explore the accuracy of crop type maps at different moments of the 2018 growing season over Europe. The time series of 10 days VV and VH were classified using Random Forest models. The crops that were mapped correspond to the 13 major crops in Europe and are those that are monitored and forecast by the JRC MARS activities (soft wheat, maize, rapeseed, barley, potatoes, ...). Overall, reasonable accuracies were obtained (~80%). Although no a priori parcel delineation was used, it was encouraging to observe the relative homogeneity of pixel classification results within the same parcel. In the context of forecasting, we specifically assessed at what time in the growing season accuracies moved beyond a set threshold for the different crops. This ranged from May for winter crops such as soft wheat, and September for summer crops such as maize.
Our results contribute to the discussion regarding the usefulness, benefits, as well as weaknesses, of the newly acquired LUCAS Copernicus data. Doing so, this study demonstrates the potential of in-situ surveys such as LUCAS Copernicus module specifically targeted for Earth Observation applications. Future improvements to the LUCAS Copernicus survey methodology are suggested. Importantly, now that LUCAS has been postponed to 2022, and aligned with the Copernicus space program, we advocate for a European Union wide systematic and representative in-situ sample campaign relevant for Earth Observation applications, beyond the traditional LUCAS survey.
How to cite: Astrid, V., Raphaël, D., Guido, L., Peter, S., and Marijn, V. D. V.: A Sentinel-1 based European crop parcel map using 2018 in-situ LUCAS Copernicus observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18703, https://doi.org/10.5194/egusphere-egu2020-18703, 2020.
Efficient near-real time and wall-to-wall land monitoring is now possible with unprecedented detail because of the fleet of Copernicus Sentinel satellites. This remote sensing paradigm is the consequence of the freely accessible, global, Copernicus data, combined with affordable cloud computing. However, to translate this capacity in accurate products, and to truly benefit from the high spatial detail (~10m) and temporal resolution (~5 days in constellation) of the Sentinels 1 and 2, high quality and timely in-situ data remains crucial. Robust operational monitoring systems are in need of both training and validation data.
Here, we demonstrate the potential of Sentinel 1 observations and complementary high-quality in-situ data to generate a crop type map at continental scale. In 2018, the Land Cover and Land Use Area frame Survey (LUCAS) carried out in the European Union contained a specific Copernicus module corresponding to 93.091 polygons surveyed in-situ. In contrast to the usual LUCAS point observation, the Copernicus protocol provides data on the extent of homogeneous land cover for a maximum size of 100 x 100 m, making it meaningful for remote sensing applications. After filtering the polygons to retrieve only high quality sample, a sample was selected to explore the accuracy of crop type maps at different moments of the 2018 growing season over Europe. The time series of 10 days VV and VH were classified using Random Forest models. The crops that were mapped correspond to the 13 major crops in Europe and are those that are monitored and forecast by the JRC MARS activities (soft wheat, maize, rapeseed, barley, potatoes, ...). Overall, reasonable accuracies were obtained (~80%). Although no a priori parcel delineation was used, it was encouraging to observe the relative homogeneity of pixel classification results within the same parcel. In the context of forecasting, we specifically assessed at what time in the growing season accuracies moved beyond a set threshold for the different crops. This ranged from May for winter crops such as soft wheat, and September for summer crops such as maize.
Our results contribute to the discussion regarding the usefulness, benefits, as well as weaknesses, of the newly acquired LUCAS Copernicus data. Doing so, this study demonstrates the potential of in-situ surveys such as LUCAS Copernicus module specifically targeted for Earth Observation applications. Future improvements to the LUCAS Copernicus survey methodology are suggested. Importantly, now that LUCAS has been postponed to 2022, and aligned with the Copernicus space program, we advocate for a European Union wide systematic and representative in-situ sample campaign relevant for Earth Observation applications, beyond the traditional LUCAS survey.
How to cite: Astrid, V., Raphaël, D., Guido, L., Peter, S., and Marijn, V. D. V.: A Sentinel-1 based European crop parcel map using 2018 in-situ LUCAS Copernicus observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18703, https://doi.org/10.5194/egusphere-egu2020-18703, 2020.
EGU2020-21491 | Displays | BG3.2 | Highlight
Status of Current and Expansion Missions of the Copernicus Optical Imaging FamilyFerran Gascon, Anja Stromme, Michael Rast, Jens Nieke, Benjamin Koetz, Ana Bolea Alamañac, and Marcello Sallusti
The Copernicus EU program started in 1998 with the overarching aim to become Europe’s operational Earth Observation monitoring system providing data and information services. An essential part of the program is the Copernicus Space Component (CSC), which is managed by the European Space Agency (ESA) as responsible for the Copernicus Sentinels satellite constellations.
The presentation will include an overview of the CSC Optical Imaging Family (OIF) currently operated missions, namely Sentinel-2 and Sentinel-3, and candidate potential missions being developed, namely Copernicus Hyperspectral Imaging Mission for Environment (CHIME) and High Spatio-Temporal Resolution Land Surface Temperature Monitoring Mission (LSTM). The next generation missions are not included here.
Sentinel-2 is an Earth Observation mission developed by the European Space Agency (ESA) in the frame of the Copernicus program of the European Commission. The mission consists on a Multi-Spectral Instruments (MSI) on board a constellation of two satellites: Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017. It covers the Earth’s land surfaces and coastal waters every five days under the same viewing conditions and every three days at mid-latitudes with high spatial resolution and a wide field of view.
5 day revisit (i.e. under same viewing conditions) is met at all latitudes of observations (not only at equator), and with the swath overlap and the S2 orbit repeat pattern (14+3/10 rev/day, i.e. a 3 day sub-cycle), 3 day geometric coverage is achieved at mid latitudes.
Sentinel-3 mission is measuring sea surface topography, sea and land surface temperature, and ocean and land surface colour with high accuracy and reliability to support ocean forecasting systems, environmental monitoring and climate monitoring. The Sentinel-3 mission is jointly operated by ESA and EUMETSAT to deliver operational ocean and land observation services.
CHIME, identified as one of the Copernicus Expansion High Priority Candidate Missions (HPCM), will provide routine observations through the Copernicus Programme for managing natural resources and assets in support of EU policy, and will complement currently flying multi-spectral missions such as Sentinel-2. Compared to multi-spectral missions, CHIME will have an increased number of narrow spectral bands (spectral resolution of 10nm with no gaps between bands) in the visible-to-shortwave infrared range (400-2500nm), which will allow for a more accurate determination of biochemical and biophysical variables.
LSTM, also identified as one of the HPCM, will provide enhanced measurements of land surface temperature with a focus responding to user requirements related to agricultural monitoring. High spatio-temporal resolution thermal infrared observations are considered fundamental to sustainable management natural resources in the context of water and food security of a global society. Operational land surface temperature (LST) measurements and derived evapotranspiration (ET) are key variables in understanding and responding to climate variability, managing water resources for agricultural production, predicting droughts but also addressing land degradation, natural hazards, coastal and inland water management as well as urban heat island issues.
How to cite: Gascon, F., Stromme, A., Rast, M., Nieke, J., Koetz, B., Bolea Alamañac, A., and Sallusti, M.: Status of Current and Expansion Missions of the Copernicus Optical Imaging Family, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21491, https://doi.org/10.5194/egusphere-egu2020-21491, 2020.
The Copernicus EU program started in 1998 with the overarching aim to become Europe’s operational Earth Observation monitoring system providing data and information services. An essential part of the program is the Copernicus Space Component (CSC), which is managed by the European Space Agency (ESA) as responsible for the Copernicus Sentinels satellite constellations.
The presentation will include an overview of the CSC Optical Imaging Family (OIF) currently operated missions, namely Sentinel-2 and Sentinel-3, and candidate potential missions being developed, namely Copernicus Hyperspectral Imaging Mission for Environment (CHIME) and High Spatio-Temporal Resolution Land Surface Temperature Monitoring Mission (LSTM). The next generation missions are not included here.
Sentinel-2 is an Earth Observation mission developed by the European Space Agency (ESA) in the frame of the Copernicus program of the European Commission. The mission consists on a Multi-Spectral Instruments (MSI) on board a constellation of two satellites: Sentinel-2A launched in June 2015 and Sentinel-2B launched in March 2017. It covers the Earth’s land surfaces and coastal waters every five days under the same viewing conditions and every three days at mid-latitudes with high spatial resolution and a wide field of view.
5 day revisit (i.e. under same viewing conditions) is met at all latitudes of observations (not only at equator), and with the swath overlap and the S2 orbit repeat pattern (14+3/10 rev/day, i.e. a 3 day sub-cycle), 3 day geometric coverage is achieved at mid latitudes.
Sentinel-3 mission is measuring sea surface topography, sea and land surface temperature, and ocean and land surface colour with high accuracy and reliability to support ocean forecasting systems, environmental monitoring and climate monitoring. The Sentinel-3 mission is jointly operated by ESA and EUMETSAT to deliver operational ocean and land observation services.
CHIME, identified as one of the Copernicus Expansion High Priority Candidate Missions (HPCM), will provide routine observations through the Copernicus Programme for managing natural resources and assets in support of EU policy, and will complement currently flying multi-spectral missions such as Sentinel-2. Compared to multi-spectral missions, CHIME will have an increased number of narrow spectral bands (spectral resolution of 10nm with no gaps between bands) in the visible-to-shortwave infrared range (400-2500nm), which will allow for a more accurate determination of biochemical and biophysical variables.
LSTM, also identified as one of the HPCM, will provide enhanced measurements of land surface temperature with a focus responding to user requirements related to agricultural monitoring. High spatio-temporal resolution thermal infrared observations are considered fundamental to sustainable management natural resources in the context of water and food security of a global society. Operational land surface temperature (LST) measurements and derived evapotranspiration (ET) are key variables in understanding and responding to climate variability, managing water resources for agricultural production, predicting droughts but also addressing land degradation, natural hazards, coastal and inland water management as well as urban heat island issues.
How to cite: Gascon, F., Stromme, A., Rast, M., Nieke, J., Koetz, B., Bolea Alamañac, A., and Sallusti, M.: Status of Current and Expansion Missions of the Copernicus Optical Imaging Family, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21491, https://doi.org/10.5194/egusphere-egu2020-21491, 2020.
EGU2020-21931 | Displays | BG3.2
The Copernicus Sentinel Fleet: Health check of Planet EarthSimon L. G. Jutz
EGU2020-22369 | Displays | BG3.2
Impact of NASA’s ESTO SLI-T, IIP, and other R&D Investments on SLI programPhilip Dabney, Jeffrey Masek, Sachidananda Babu, Parminder Ghuman, and Nahal Kardan
BG3.3 – Gas exchange between soil, plants and atmosphere
EGU2020-10965 | Displays | BG3.3 | Highlight
Global soil respiration: patterns, challenges and network opportunitiesRodrigo Vargas, Daniel Warner, Emma Stell, Benjamin Bond-Lamberty, and Jinshi Jian
Soil respiration (Rs) is the soil‐to‐atmosphere CO2 efflux produced by microbes and plant roots and is a critical component for the global carbon budget. We present state-of-the-art approaches to estimate global soil respiration at 1 km spatial resolution using the global Soil Respiration Database (GSRD) and machine learning techniques. Patterns of Rs are evident at the global scale and we report an annual estimate of 87.9 Pg C/year with an associated global uncertainty of 18.6 (mean absolute error) and 40.4 (root mean square error) Pg C/year. Global heterotrophic respiration (Rh), the microbial decomposition of soil organic matter, could be derived from empirical relationships with Rs with a global estimate of 49.7 Pg C/year. We discuss how these global estimates and patterns are influenced by adding new measurements as we compared the GSRD version 3 with version 4. This comparison raises challenges about how adding new information, within a multivariate space, influence model uncertainty and regional-to-global estimates. Finally, we discuss future approaches to estimate global Rs, network opportunities for expanding the GSRD, and where new measurements are needed across the world.
How to cite: Vargas, R., Warner, D., Stell, E., Bond-Lamberty, B., and Jian, J.: Global soil respiration: patterns, challenges and network opportunities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10965, https://doi.org/10.5194/egusphere-egu2020-10965, 2020.
Soil respiration (Rs) is the soil‐to‐atmosphere CO2 efflux produced by microbes and plant roots and is a critical component for the global carbon budget. We present state-of-the-art approaches to estimate global soil respiration at 1 km spatial resolution using the global Soil Respiration Database (GSRD) and machine learning techniques. Patterns of Rs are evident at the global scale and we report an annual estimate of 87.9 Pg C/year with an associated global uncertainty of 18.6 (mean absolute error) and 40.4 (root mean square error) Pg C/year. Global heterotrophic respiration (Rh), the microbial decomposition of soil organic matter, could be derived from empirical relationships with Rs with a global estimate of 49.7 Pg C/year. We discuss how these global estimates and patterns are influenced by adding new measurements as we compared the GSRD version 3 with version 4. This comparison raises challenges about how adding new information, within a multivariate space, influence model uncertainty and regional-to-global estimates. Finally, we discuss future approaches to estimate global Rs, network opportunities for expanding the GSRD, and where new measurements are needed across the world.
How to cite: Vargas, R., Warner, D., Stell, E., Bond-Lamberty, B., and Jian, J.: Global soil respiration: patterns, challenges and network opportunities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10965, https://doi.org/10.5194/egusphere-egu2020-10965, 2020.
EGU2020-3365 | Displays | BG3.3
The influence of soil structure on heterotrophic respiration response to soil water contentMichael Herbst, Wolfgang Tappe, Sirgit Kummer, and Harry Vereecken
Soil respiration causes one of the largest terrestrial carbon fluxes and its accurate prediction is still a matter of on-going research. Understanding the functional link between soil heterotrophic respiration and soil water content is relevant for the estimation of climate change impacts on soil CO2 emissions.
In order to quantify the effect of air-drying and sieving with 2 mm meshes on the soil heterotrophic respiration response to water content we incubated intact cores and sieved samples of two loamy and two sandy agricultural topsoils for six levels of effective soil water saturation. We further measured soil textural properties and the soil water retention characteristics of the soils with the aim to identify potential correlations between soil physical parameters and moisture sensitivity functions of heterotrophic respiration.
The incubation of sieved and intact soils showed distinct differences in the response of soil heterotrophic respiration to soil water saturation. The sieved soils exposed threshold-type behaviour, whereas the undisturbed soils exposed a quadratic increase of heterotrophic respiration with increasing effective soil water content. Additionally, we found significant correlations between the moisture response functions of the undisturbed soils and soil textural properties.
From the comparison of intact and sieved soil incubations we conclude that the destruction of soil structure by sieving hampers the transferability of measured soil moisture response of heterotrophic respiration to real-world conditions. For modelling purposes we suggest the use of a quadratic function between relative respiration and effective saturation for soils with a clay fraction < 20 %.
How to cite: Herbst, M., Tappe, W., Kummer, S., and Vereecken, H.: The influence of soil structure on heterotrophic respiration response to soil water content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3365, https://doi.org/10.5194/egusphere-egu2020-3365, 2020.
Soil respiration causes one of the largest terrestrial carbon fluxes and its accurate prediction is still a matter of on-going research. Understanding the functional link between soil heterotrophic respiration and soil water content is relevant for the estimation of climate change impacts on soil CO2 emissions.
In order to quantify the effect of air-drying and sieving with 2 mm meshes on the soil heterotrophic respiration response to water content we incubated intact cores and sieved samples of two loamy and two sandy agricultural topsoils for six levels of effective soil water saturation. We further measured soil textural properties and the soil water retention characteristics of the soils with the aim to identify potential correlations between soil physical parameters and moisture sensitivity functions of heterotrophic respiration.
The incubation of sieved and intact soils showed distinct differences in the response of soil heterotrophic respiration to soil water saturation. The sieved soils exposed threshold-type behaviour, whereas the undisturbed soils exposed a quadratic increase of heterotrophic respiration with increasing effective soil water content. Additionally, we found significant correlations between the moisture response functions of the undisturbed soils and soil textural properties.
From the comparison of intact and sieved soil incubations we conclude that the destruction of soil structure by sieving hampers the transferability of measured soil moisture response of heterotrophic respiration to real-world conditions. For modelling purposes we suggest the use of a quadratic function between relative respiration and effective saturation for soils with a clay fraction < 20 %.
How to cite: Herbst, M., Tappe, W., Kummer, S., and Vereecken, H.: The influence of soil structure on heterotrophic respiration response to soil water content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3365, https://doi.org/10.5194/egusphere-egu2020-3365, 2020.
EGU2020-11994 | Displays | BG3.3
Unraveling the Molecular Mechanisms Underlying the Microbiome Response to Soil RewettingMary Lipton, Montana Smith, Karl Weitz, Sneha Couvillion, Vanessa Paurus, Thomas Metz, Janet Jansson, and Kirsten Hofmockel
Soil microbes are highly sensitive to changes in their environment, and rapidly measuring their responses is necessary to fully understand the biological processes. Drought is one of the most common environmental stresses that soil microbiomes experience, and it is important to understand the mechanisms by which the soil microbiome respond to soil dehydration. We used 13C as a tracer of nutrient fluxes in desiccated soil microbiomes after rewetting to simultaneously measure aerobic respiration and track the metabolic state of the community. Here, we describe a Real Time Mass Spectrometry (RTMS) approach for rapid gas monitoring combined with omics approaches to track 13C flow through a soil system.
The mechanism(s) behind the burst of rapid mineralization of soil organic matter and increased rate of CO2 release upon rewetting dry soil (termed the ‘Birch Effect’) are yet to be fully defined. One known mechanism used by microbes to protect against dehydration is the production of intracellular compounds known as osmolytes. We evaluated metabolic mechanisms produced upon rewetting a marginal soil testing the hypothesis that the rapid release of CO2 arises from the microbial processing of putative intracellular osmolytes that build up during desiccation. RTMS allows for the simultaneous, rapid and fine scale (every 2 sec) evaluation and deconvolution of the production and consumption of a number of gasses including 12CO2,13CO2, O2, N2 and H2O. We compared the hydration response (production of CO2 in real time) between the addition of water and 13C labeled glucose dissolved in water. The initial burst of 12CO2 followed by a leveling off was identical in both treatments with an additional larger increase in 13CO2 about 20 minutes later in the 13C labeled glucose experiment. Examination of the two minutes after the water addition revealed a rapid rate of 12CO2 (38 sec) and H2O (47 sec) production and slow rate of 13CO2 (56 sec) production followed by the consumption of O2 (67 sec) and N2 (73 sec). Evaluation of the soil metabolomes at specified time points within 3 hours after wetting revealed the immediate release of sugars from the cells into the extracellular matrix. These results provide evidence for respiration of putative intracellular osmolytes as one driving mechanism of the Birch Effect.
How to cite: Lipton, M., Smith, M., Weitz, K., Couvillion, S., Paurus, V., Metz, T., Jansson, J., and Hofmockel, K.: Unraveling the Molecular Mechanisms Underlying the Microbiome Response to Soil Rewetting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11994, https://doi.org/10.5194/egusphere-egu2020-11994, 2020.
Soil microbes are highly sensitive to changes in their environment, and rapidly measuring their responses is necessary to fully understand the biological processes. Drought is one of the most common environmental stresses that soil microbiomes experience, and it is important to understand the mechanisms by which the soil microbiome respond to soil dehydration. We used 13C as a tracer of nutrient fluxes in desiccated soil microbiomes after rewetting to simultaneously measure aerobic respiration and track the metabolic state of the community. Here, we describe a Real Time Mass Spectrometry (RTMS) approach for rapid gas monitoring combined with omics approaches to track 13C flow through a soil system.
The mechanism(s) behind the burst of rapid mineralization of soil organic matter and increased rate of CO2 release upon rewetting dry soil (termed the ‘Birch Effect’) are yet to be fully defined. One known mechanism used by microbes to protect against dehydration is the production of intracellular compounds known as osmolytes. We evaluated metabolic mechanisms produced upon rewetting a marginal soil testing the hypothesis that the rapid release of CO2 arises from the microbial processing of putative intracellular osmolytes that build up during desiccation. RTMS allows for the simultaneous, rapid and fine scale (every 2 sec) evaluation and deconvolution of the production and consumption of a number of gasses including 12CO2,13CO2, O2, N2 and H2O. We compared the hydration response (production of CO2 in real time) between the addition of water and 13C labeled glucose dissolved in water. The initial burst of 12CO2 followed by a leveling off was identical in both treatments with an additional larger increase in 13CO2 about 20 minutes later in the 13C labeled glucose experiment. Examination of the two minutes after the water addition revealed a rapid rate of 12CO2 (38 sec) and H2O (47 sec) production and slow rate of 13CO2 (56 sec) production followed by the consumption of O2 (67 sec) and N2 (73 sec). Evaluation of the soil metabolomes at specified time points within 3 hours after wetting revealed the immediate release of sugars from the cells into the extracellular matrix. These results provide evidence for respiration of putative intracellular osmolytes as one driving mechanism of the Birch Effect.
How to cite: Lipton, M., Smith, M., Weitz, K., Couvillion, S., Paurus, V., Metz, T., Jansson, J., and Hofmockel, K.: Unraveling the Molecular Mechanisms Underlying the Microbiome Response to Soil Rewetting, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11994, https://doi.org/10.5194/egusphere-egu2020-11994, 2020.
EGU2020-8447 | Displays | BG3.3
Plants possibility to control soil gas exchanges via mucilageAdrian Haupenthal, Jonas Bentz, Mathilde Brax, Klaus Schuetzenmeister, Hermann Jungkunst, and Eva Kroener
Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g. mucilage) affects soil pore tortuosity when drying. The aim of this study is to obtain a better understanding of gas diffusion processes in the rhizosphere by explaining patterns formed by drying mucilage.
We measured oxygen diffusion through a soil-mucilage mixture after drying using a diffusion chamber experiment. Therefore we mixed soil with different particle size with various amounts of mucilage. Afterwards we saturated the soil and measured the gas diffusion coefficient during drying.
We found that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicate that during drying mucilage forms filaments and interconnected structures throughout the pore space. Exudation of mucilage may be a plant possibility to actively alter gas diffusion in soil.
How to cite: Haupenthal, A., Bentz, J., Brax, M., Schuetzenmeister, K., Jungkunst, H., and Kroener, E.: Plants possibility to control soil gas exchanges via mucilage, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8447, https://doi.org/10.5194/egusphere-egu2020-8447, 2020.
Gaseous matter exchanges in soil are determined by the connectivity of the pore system which is easily clogged by fresh root exudates. However, it remains unclear how a hydrogel (e.g. mucilage) affects soil pore tortuosity when drying. The aim of this study is to obtain a better understanding of gas diffusion processes in the rhizosphere by explaining patterns formed by drying mucilage.
We measured oxygen diffusion through a soil-mucilage mixture after drying using a diffusion chamber experiment. Therefore we mixed soil with different particle size with various amounts of mucilage. Afterwards we saturated the soil and measured the gas diffusion coefficient during drying.
We found that mucilage decreases gas diffusion coefficient in dry soil without significantly altering bulk density and porosity. Electron microscopy indicate that during drying mucilage forms filaments and interconnected structures throughout the pore space. Exudation of mucilage may be a plant possibility to actively alter gas diffusion in soil.
How to cite: Haupenthal, A., Bentz, J., Brax, M., Schuetzenmeister, K., Jungkunst, H., and Kroener, E.: Plants possibility to control soil gas exchanges via mucilage, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8447, https://doi.org/10.5194/egusphere-egu2020-8447, 2020.
EGU2020-21621 | Displays | BG3.3
Greenhouse gas fluxes of Wadden Sea salt marshes strongly vary among different vegetation zonesMiriam Fuss, Norman Rueggen, Peter Mueller, Stefanie Nolte, and Lars Kutzbach
Salt marshes are highly valuable Blue Carbon ecosystems in the transition zone between marine and terrestrial environments. They play an important role in mitigating climate change due to high carbon sequestration rates through photosynthetic CO2 uptake. However, it is poorly understood when and under which conditions they act as sinks or sources for other greenhouse gases like CH4 and N2O. A complex interplay of abiotic and biotic factors characterizes the biogeochemistry of these dynamic coastal wetland ecosystems. This interplay is in turn controlled by elevation in respect to mean high water level and the resulting inundation frequency.
We measured land‑atmosphere fluxes of CH4, N2O and CO2 due to ecosystem respiration at Hamburger Hallig, North Frisia, Germany, combining a closed chamber approach with in situ‑measurements of a portable Fourier transform infrared absorption spectrometer (DX4015, Gasmet). Biweekly (Apr-Sept) and monthly (Oct-Mar) campaigns have started in December 2018 and cover the whole elevational gradient from the pioneer zone over the low marsh up to the high marsh.
While ecosystem respiration showed high variability over the seasonal course with fluxes up to +67 mmol*h-1*m-2, CH4 and N2O fluxes indicated a strong dependence on elevation and thus vegetation zone. Emissions of CH4 occurred only in the most frequently flooded pioneer zone (+0.17 to +0.35 µmol*h-1*m-2), whereas the less frequently flooded zones of the low and high marsh acted as CH4 sinks (down to -1.1 µmol*h-1*m-2). Contrastingly, N2O solely showed positive fluxes (up to +1.0 µmol*h-1*m-2) in the high marsh and the more frequently flooded zones acted as sinks for N2O (down to ‑0.21 µmol*h-1*m-2). Air temperature and tidal sea water level fluctuations could already be identified as additional environmental drivers of varying greenhouse gas fluxes. Further analysis of abiotic and biotic driver variables will elucidate their impact in detail.
Our findings show that salt marshes are not only effective in assimilating CO2. They also show the ability to take up the strong greenhouse gases CH4 and N2O in certain vegetation zones, emphasizing their important role in mitigating global warming.
How to cite: Fuss, M., Rueggen, N., Mueller, P., Nolte, S., and Kutzbach, L.: Greenhouse gas fluxes of Wadden Sea salt marshes strongly vary among different vegetation zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21621, https://doi.org/10.5194/egusphere-egu2020-21621, 2020.
Salt marshes are highly valuable Blue Carbon ecosystems in the transition zone between marine and terrestrial environments. They play an important role in mitigating climate change due to high carbon sequestration rates through photosynthetic CO2 uptake. However, it is poorly understood when and under which conditions they act as sinks or sources for other greenhouse gases like CH4 and N2O. A complex interplay of abiotic and biotic factors characterizes the biogeochemistry of these dynamic coastal wetland ecosystems. This interplay is in turn controlled by elevation in respect to mean high water level and the resulting inundation frequency.
We measured land‑atmosphere fluxes of CH4, N2O and CO2 due to ecosystem respiration at Hamburger Hallig, North Frisia, Germany, combining a closed chamber approach with in situ‑measurements of a portable Fourier transform infrared absorption spectrometer (DX4015, Gasmet). Biweekly (Apr-Sept) and monthly (Oct-Mar) campaigns have started in December 2018 and cover the whole elevational gradient from the pioneer zone over the low marsh up to the high marsh.
While ecosystem respiration showed high variability over the seasonal course with fluxes up to +67 mmol*h-1*m-2, CH4 and N2O fluxes indicated a strong dependence on elevation and thus vegetation zone. Emissions of CH4 occurred only in the most frequently flooded pioneer zone (+0.17 to +0.35 µmol*h-1*m-2), whereas the less frequently flooded zones of the low and high marsh acted as CH4 sinks (down to -1.1 µmol*h-1*m-2). Contrastingly, N2O solely showed positive fluxes (up to +1.0 µmol*h-1*m-2) in the high marsh and the more frequently flooded zones acted as sinks for N2O (down to ‑0.21 µmol*h-1*m-2). Air temperature and tidal sea water level fluctuations could already be identified as additional environmental drivers of varying greenhouse gas fluxes. Further analysis of abiotic and biotic driver variables will elucidate their impact in detail.
Our findings show that salt marshes are not only effective in assimilating CO2. They also show the ability to take up the strong greenhouse gases CH4 and N2O in certain vegetation zones, emphasizing their important role in mitigating global warming.
How to cite: Fuss, M., Rueggen, N., Mueller, P., Nolte, S., and Kutzbach, L.: Greenhouse gas fluxes of Wadden Sea salt marshes strongly vary among different vegetation zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21621, https://doi.org/10.5194/egusphere-egu2020-21621, 2020.
EGU2020-10997 | Displays | BG3.3
Rewet or not – insights on spatiotemporal patterns of greenhouse gas fluxes from soils in a rewetted Danish forested wetlandKlaus Steenberg Larsen and Jesper Riis Christiansen
Previously drained forested wetlands around the world are being restored for biodiversity, but our knowledge on the impact of restored hydrology on the total greenhouse gas (GHG) budget in these systems remains fragmented. Whereas the reduction in the net CO2 emission upon rewetting is well documented, the magnitude of the effect on the microbial production of CH4 and N2O is much more uncertain. This is partly because GHG fluxes, especially for CH4 and N2O, exhibit a highly dynamic spatiotemporal variation tied to the soil hydrological regime. To capture this variation properly a high number of flux measurements in time and space is needed, but many field studies are still highly limited in terms of their spatio-temporal coverage. This hiatus of field data is a primary source of uncertainty in model projections of impacts on the GHG budgets when restoring natural hydrology in drained wetlands.
We use a novel automatic chamber measurement system (SkyLine2D) connected to a Picarro G2508 analyzer for CO2, CH4 and N2O flux measurements in a rewetted Danish forest wetland. With this system, we wish to resolve the little known spatio-temporal patterns of these GHGs and their relationship with environmental drivers such as soil moisture, water table, temperature, and soil carbon content. A total of 30 measurement plots, each measured 5 times per day over a period approaching 1 year (> 40,000 measurements), were placed along a 30 meter transect covering a soil hydrological gradient including well-drained, waterlogged and open water conditions. The gradient also spans a soil carbon gradient increasing from well-drained mineral soils, over gleysols to waterlogged histosols.
Based on the novel, high-frequency flux data of CO2, CH4 and N2O we will present a detailed analysis of the relationship with soil hydrology and temperature over periods spanning from hours to months. The data produced by this gradient approach combined with automated measurements represents an important step towards developing improved ecosystems models that can better predict the GHG effect of rewetting previously drained wetlands.
How to cite: Larsen, K. S. and Christiansen, J. R.: Rewet or not – insights on spatiotemporal patterns of greenhouse gas fluxes from soils in a rewetted Danish forested wetland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10997, https://doi.org/10.5194/egusphere-egu2020-10997, 2020.
Previously drained forested wetlands around the world are being restored for biodiversity, but our knowledge on the impact of restored hydrology on the total greenhouse gas (GHG) budget in these systems remains fragmented. Whereas the reduction in the net CO2 emission upon rewetting is well documented, the magnitude of the effect on the microbial production of CH4 and N2O is much more uncertain. This is partly because GHG fluxes, especially for CH4 and N2O, exhibit a highly dynamic spatiotemporal variation tied to the soil hydrological regime. To capture this variation properly a high number of flux measurements in time and space is needed, but many field studies are still highly limited in terms of their spatio-temporal coverage. This hiatus of field data is a primary source of uncertainty in model projections of impacts on the GHG budgets when restoring natural hydrology in drained wetlands.
We use a novel automatic chamber measurement system (SkyLine2D) connected to a Picarro G2508 analyzer for CO2, CH4 and N2O flux measurements in a rewetted Danish forest wetland. With this system, we wish to resolve the little known spatio-temporal patterns of these GHGs and their relationship with environmental drivers such as soil moisture, water table, temperature, and soil carbon content. A total of 30 measurement plots, each measured 5 times per day over a period approaching 1 year (> 40,000 measurements), were placed along a 30 meter transect covering a soil hydrological gradient including well-drained, waterlogged and open water conditions. The gradient also spans a soil carbon gradient increasing from well-drained mineral soils, over gleysols to waterlogged histosols.
Based on the novel, high-frequency flux data of CO2, CH4 and N2O we will present a detailed analysis of the relationship with soil hydrology and temperature over periods spanning from hours to months. The data produced by this gradient approach combined with automated measurements represents an important step towards developing improved ecosystems models that can better predict the GHG effect of rewetting previously drained wetlands.
How to cite: Larsen, K. S. and Christiansen, J. R.: Rewet or not – insights on spatiotemporal patterns of greenhouse gas fluxes from soils in a rewetted Danish forested wetland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10997, https://doi.org/10.5194/egusphere-egu2020-10997, 2020.
EGU2020-1483 | Displays | BG3.3
Evaluation of two process-based models used to estimate global CH4 emissions from natural wetlandsTingting Li
Reliable models are required to estimate global wetland CH4 emissions. This study aimed to test two process-based models, CH4MODwetland and TEM, against the CH4 flux measurements of marsh, swamps, peatland and coastal wetland sites across the world; specifically, model accuracy and generality were evaluated for different wetland types and in different continents, and then the global CH4 emissions from 2000 to 2010 were estimated. Both models showed similar high correlations with the observed seasonal CH4 emissions, and the regression of the observed versus computed total seasonal CH4 emissions resulted in R2 values of 0.78 and 0.72 by CH4MODwetland and TEM, respectively. The CH4MODwetland predicted more accurately in marsh, peatland and coastal wetlands, with model efficiency (EF) values of 0.22, 0.55 and 0.72, respectively; however, the model showed poor performance in swamps (EF<0). The TEM model predicted better in peatland and swamp, with EF values of 0.77 and 0.71, respectively, but it could not accurately simulate the marsh and coastal wetland (EF<0). There was a good correlation between the simulated CH4 fluxes and the observed values on most continents. However, CH4MODwetland showed no correlation with the observed values in South America and Africa. TEM showed no correlation with the observations in Europe. The global CH4 emissions for the period 2000–2010 were estimated to be 105.31±2.72 Tg yr-1 by CH4MODwetland and 134.31±0.84 Tg yr-1 by TEM. Both models simulated a similar spatial distribution of CH4 emissions across the world and among continents. Marsh contributes 36%–39% to global CH4 emissions. Lakes and rivers and swamp are the second and third contributors, respectively. Other wetland types account for only approximately 20% of global emissions. Based on the models’ generality, if we use the more accurate model to estimate each continent/wetland type, we obtain a new assessment of 116.99–124.74 Tg yr-1 for the global CH4 emissions for the period 2000–2010.
How to cite: Li, T.: Evaluation of two process-based models used to estimate global CH4 emissions from natural wetlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1483, https://doi.org/10.5194/egusphere-egu2020-1483, 2020.
Reliable models are required to estimate global wetland CH4 emissions. This study aimed to test two process-based models, CH4MODwetland and TEM, against the CH4 flux measurements of marsh, swamps, peatland and coastal wetland sites across the world; specifically, model accuracy and generality were evaluated for different wetland types and in different continents, and then the global CH4 emissions from 2000 to 2010 were estimated. Both models showed similar high correlations with the observed seasonal CH4 emissions, and the regression of the observed versus computed total seasonal CH4 emissions resulted in R2 values of 0.78 and 0.72 by CH4MODwetland and TEM, respectively. The CH4MODwetland predicted more accurately in marsh, peatland and coastal wetlands, with model efficiency (EF) values of 0.22, 0.55 and 0.72, respectively; however, the model showed poor performance in swamps (EF<0). The TEM model predicted better in peatland and swamp, with EF values of 0.77 and 0.71, respectively, but it could not accurately simulate the marsh and coastal wetland (EF<0). There was a good correlation between the simulated CH4 fluxes and the observed values on most continents. However, CH4MODwetland showed no correlation with the observed values in South America and Africa. TEM showed no correlation with the observations in Europe. The global CH4 emissions for the period 2000–2010 were estimated to be 105.31±2.72 Tg yr-1 by CH4MODwetland and 134.31±0.84 Tg yr-1 by TEM. Both models simulated a similar spatial distribution of CH4 emissions across the world and among continents. Marsh contributes 36%–39% to global CH4 emissions. Lakes and rivers and swamp are the second and third contributors, respectively. Other wetland types account for only approximately 20% of global emissions. Based on the models’ generality, if we use the more accurate model to estimate each continent/wetland type, we obtain a new assessment of 116.99–124.74 Tg yr-1 for the global CH4 emissions for the period 2000–2010.
How to cite: Li, T.: Evaluation of two process-based models used to estimate global CH4 emissions from natural wetlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1483, https://doi.org/10.5194/egusphere-egu2020-1483, 2020.
EGU2020-11643 | Displays | BG3.3
Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agricultureBenjamin R.K. Runkle, Arlene Adviento-Borbe, Michele L. Reba, Beatriz Moreno-García, Sandhya Karki, Oluwayinka Iseyemi, Kosana Suvočarev, Colby W. Reavis, and Bennett E. Barr
Rice production contributes roughly 11% of global CH4 anthropogenic emissions while producing food for over 3 billion people. The alternate wetting and drying (AWD) irrigation practice for rice has the potential to conserve water while reducing CH4 emissions through the deliberate, periodic introduction of aerobic soil conditions. Our work in the US Mid-South rice production region has demonstrated, using the eddy covariance method on adjacent fields, that AWD can reduce field CH4 emissions by about 66% without impacting yield. In any strategy, CO2 and N2O emissions should also be monitored to take advantage of the high carbon sequestration potential of rice and low potential N2O emissions. Careful water and fertilizer management can theoretically keep N2O emissions low. All three gases should be managed together, while sustaining or improving harvest yield, to create a sustainable rice production system.
We now present 5 years of closed chamber measurements of N2O and CH4 and compare them to the eddy covariance measurements of CH4 and CO2 to derive a more thorough perspective on the net greenhouse gas (GHG) emissions or global warming potential basis of rice production from the highly productive, mechanized, humid, US Mid-South. Global warming potential of GHG emissions from rice systems was dominated by CH4 emissions (74 to 100%), hence mitigating efforts need to focus on CH4 emissions. Greater reduction of CH4 emissions can be achieved by proper AWD management practice combined with adequate N fertilization. We end with a comment on the upcoming challenge of how to sequester CO2 uptake as soil organic matter via litter incorporation without increasing CH4 emissions.
How to cite: Runkle, B. R. K., Adviento-Borbe, A., Reba, M. L., Moreno-García, B., Karki, S., Iseyemi, O., Suvočarev, K., Reavis, C. W., and Barr, B. E.: Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11643, https://doi.org/10.5194/egusphere-egu2020-11643, 2020.
Rice production contributes roughly 11% of global CH4 anthropogenic emissions while producing food for over 3 billion people. The alternate wetting and drying (AWD) irrigation practice for rice has the potential to conserve water while reducing CH4 emissions through the deliberate, periodic introduction of aerobic soil conditions. Our work in the US Mid-South rice production region has demonstrated, using the eddy covariance method on adjacent fields, that AWD can reduce field CH4 emissions by about 66% without impacting yield. In any strategy, CO2 and N2O emissions should also be monitored to take advantage of the high carbon sequestration potential of rice and low potential N2O emissions. Careful water and fertilizer management can theoretically keep N2O emissions low. All three gases should be managed together, while sustaining or improving harvest yield, to create a sustainable rice production system.
We now present 5 years of closed chamber measurements of N2O and CH4 and compare them to the eddy covariance measurements of CH4 and CO2 to derive a more thorough perspective on the net greenhouse gas (GHG) emissions or global warming potential basis of rice production from the highly productive, mechanized, humid, US Mid-South. Global warming potential of GHG emissions from rice systems was dominated by CH4 emissions (74 to 100%), hence mitigating efforts need to focus on CH4 emissions. Greater reduction of CH4 emissions can be achieved by proper AWD management practice combined with adequate N fertilization. We end with a comment on the upcoming challenge of how to sequester CO2 uptake as soil organic matter via litter incorporation without increasing CH4 emissions.
How to cite: Runkle, B. R. K., Adviento-Borbe, A., Reba, M. L., Moreno-García, B., Karki, S., Iseyemi, O., Suvočarev, K., Reavis, C. W., and Barr, B. E.: Greenhouse gas emissions mitigation with alternate wetting and drying irrigation of rice agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11643, https://doi.org/10.5194/egusphere-egu2020-11643, 2020.
EGU2020-12856 | Displays | BG3.3
Ammonia, carbon dioxide and methane in Mediterranean paddy fields along the 2019 crop seasonCarme Estruch, Roger Curcoll, Marta Borrós, Alba Àgueda, and Josep-Anton Morguí
Human activities implying land management are potential sources of greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4). In addition, agricultural management practices enhances the presence of reactive gases in the atmosphere such as ammonia (NH3). Knowing the atmospheric variability of gases in relation to the different stages of the rice culture cycle and other anthropic activities could help to improve GHGs' mitigation strategies in deltas.
A mobile survey was undertaken through 2019 in the Ebro Delta as a part of the ClimaDat Network project (DEC station, www.climadat.es), to study the effect of land management in the spatial and temporal variability of greenhouse gases and NH3 concentrations. We are broadening the scope of a survey undertaken in 2012 (Àgueda et al. 2017). In the new survey we increased the total number of transects and longitude every three weeks during a year, starting in December 2018.
Whereas atmospheric NH3 concentration links with diurnal and seasonal cycles, the distribution of CO2 and CH4 shows a combination of spatial and temporal variability. Our aim is to understand how we can use wind trajectories to find the principal sources of atmospheric variability. That is, can wind direction improve our comprehension of metabolic processes occurring in paddy lands? In this work, we use wind trajectories as means of spatial classification, to explore the spatiotemporal dynamic affecting the potential of CO2 and CH4 atmospheric concentration.
How to cite: Estruch, C., Curcoll, R., Borrós, M., Àgueda, A., and Morguí, J.-A.: Ammonia, carbon dioxide and methane in Mediterranean paddy fields along the 2019 crop season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12856, https://doi.org/10.5194/egusphere-egu2020-12856, 2020.
Human activities implying land management are potential sources of greenhouse gases (GHGs) such as carbon dioxide (CO2) and methane (CH4). In addition, agricultural management practices enhances the presence of reactive gases in the atmosphere such as ammonia (NH3). Knowing the atmospheric variability of gases in relation to the different stages of the rice culture cycle and other anthropic activities could help to improve GHGs' mitigation strategies in deltas.
A mobile survey was undertaken through 2019 in the Ebro Delta as a part of the ClimaDat Network project (DEC station, www.climadat.es), to study the effect of land management in the spatial and temporal variability of greenhouse gases and NH3 concentrations. We are broadening the scope of a survey undertaken in 2012 (Àgueda et al. 2017). In the new survey we increased the total number of transects and longitude every three weeks during a year, starting in December 2018.
Whereas atmospheric NH3 concentration links with diurnal and seasonal cycles, the distribution of CO2 and CH4 shows a combination of spatial and temporal variability. Our aim is to understand how we can use wind trajectories to find the principal sources of atmospheric variability. That is, can wind direction improve our comprehension of metabolic processes occurring in paddy lands? In this work, we use wind trajectories as means of spatial classification, to explore the spatiotemporal dynamic affecting the potential of CO2 and CH4 atmospheric concentration.
How to cite: Estruch, C., Curcoll, R., Borrós, M., Àgueda, A., and Morguí, J.-A.: Ammonia, carbon dioxide and methane in Mediterranean paddy fields along the 2019 crop season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12856, https://doi.org/10.5194/egusphere-egu2020-12856, 2020.
EGU2020-4510 | Displays | BG3.3
Land use change from an annual maize cropping systems to a perennial Silphium perfoliatum crop has unused potential to reduce GHG emission in biomass productionBjörn Kemmann, Thorsten Ruf, Andreas Kirch, Christoph Emmerling, Roland Fuß, and Reinhard Well
In the last two decades, acreage for biomass production has strongly increased in Germany due to the Renewable Energy Act. Recently, discussion about soil, climate, and biodiversity protection is receiving more and more public attention throughout broad parts of the society. The project BESTLAND focuses on the effect of land use change from the common annual maize cropping system to a perennial cropping system, as a measure against increasing environmental constraints in biomass production. A suitable perennial biomass crop as an alternative for maize is S. perfoliatum (cup plant). On one hand, the yellow flowering plant produces high biomass yields and on the other hand it provides a variety of ecosystems services. Field experiments were carried out in the Saar-Nahe mountain range in the state of Saarland on a fine textured planosol. The experimental sites are characterized by temporal waterlogging and slopes and therefore these sites are prone for soil compaction and soil erosion. Under these conditions perennial crops are assumed to have soil preserving benefits. Maize was compared to cup plant by establishing four paired sites, where each pair consisted of a maize and a cup plant field in close vicinity (< 500 meters) to each other. All sites are grower fields and were managed by the farmers according best management practices. Nitrous oxide and methane fluxes were measured weekly using the static chamber technique all year round. Besides greenhouse gas measurement, soil samples for determination of soil mineral nitrogen were taken at each gas sampling date. Furthermore, soil temperature and water content were continuously monitored using sensors. Biomass yields at each site were determined at harvest. In the first year average nitrous oxide emissions from cup plant fields were lower than from maize fields by more than 70 % on area and dry matter yield basis. These results indicate that perennial bioenergy crops not only offer a wider range of ecosystem services but can also decrease GHG emissions from bioenergy production.
How to cite: Kemmann, B., Ruf, T., Kirch, A., Emmerling, C., Fuß, R., and Well, R.: Land use change from an annual maize cropping systems to a perennial Silphium perfoliatum crop has unused potential to reduce GHG emission in biomass production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4510, https://doi.org/10.5194/egusphere-egu2020-4510, 2020.
In the last two decades, acreage for biomass production has strongly increased in Germany due to the Renewable Energy Act. Recently, discussion about soil, climate, and biodiversity protection is receiving more and more public attention throughout broad parts of the society. The project BESTLAND focuses on the effect of land use change from the common annual maize cropping system to a perennial cropping system, as a measure against increasing environmental constraints in biomass production. A suitable perennial biomass crop as an alternative for maize is S. perfoliatum (cup plant). On one hand, the yellow flowering plant produces high biomass yields and on the other hand it provides a variety of ecosystems services. Field experiments were carried out in the Saar-Nahe mountain range in the state of Saarland on a fine textured planosol. The experimental sites are characterized by temporal waterlogging and slopes and therefore these sites are prone for soil compaction and soil erosion. Under these conditions perennial crops are assumed to have soil preserving benefits. Maize was compared to cup plant by establishing four paired sites, where each pair consisted of a maize and a cup plant field in close vicinity (< 500 meters) to each other. All sites are grower fields and were managed by the farmers according best management practices. Nitrous oxide and methane fluxes were measured weekly using the static chamber technique all year round. Besides greenhouse gas measurement, soil samples for determination of soil mineral nitrogen were taken at each gas sampling date. Furthermore, soil temperature and water content were continuously monitored using sensors. Biomass yields at each site were determined at harvest. In the first year average nitrous oxide emissions from cup plant fields were lower than from maize fields by more than 70 % on area and dry matter yield basis. These results indicate that perennial bioenergy crops not only offer a wider range of ecosystem services but can also decrease GHG emissions from bioenergy production.
How to cite: Kemmann, B., Ruf, T., Kirch, A., Emmerling, C., Fuß, R., and Well, R.: Land use change from an annual maize cropping systems to a perennial Silphium perfoliatum crop has unused potential to reduce GHG emission in biomass production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4510, https://doi.org/10.5194/egusphere-egu2020-4510, 2020.
EGU2020-21299 | Displays | BG3.3
Nitrous oxide and methane emissions from cattle manure heaps in KenyaSonja Leitner, Donal Ring, George Wanyama, Daniel Korir, David Pelster, John Goopy, and Lutz Merbold
Agricultural greenhouse gas (GHG) emissions in Africa contribute 15 % to the global total agricultural emissions, which is in the same range as agricultural emissions from Europe. The majority of these agricultural GHG emissions is attributed to livestock farming (up to 80 % at national scale), of which 10-25 % originate from livestock manure. At the same time, livestock production is essential for the livelihoods of millions of people in Sub-Saharan Africa (SSA), where 45-80 % of livestock production occurs in smallholder systems. With the growing population in SSA, the demand for livestock products is expected to increase, and – without low-emission manure management – a rise in manure-borne GHG emissions will occur. However, reliable in situ measurements from SSA are scarce, leading to substantial uncertainties in agricultural GHG budgets and making assessments of potential mitigation options difficult.
Here we present results from two cattle manure incubation experiments in Kenya, using manure from Boran (Bos indicus) cattle, a breed common in East Africa that were fed with typical feeds used in SSA smallholder farms. Manure was collected and piled in heaps (solid storage), the most common form of manure storage in Kenyan smallholder systems, and CH4 and N2O emissions were measured over 140 days. In the first trial, cattle were fed a diet that either met their maintenance-energy requirements (i.e. animals received enough food to support their metabolism), or a diet at sub-maintenance energy levels to simulate common conditions in smallholder farming systems, particularly during the dry seasons. Cumulative manure N2O emissions from the sub-maintenance diet (i.e. the “hungry” cows) were lower than from cattle fed at maintenance energy levels. These lower N2O emission likely resulted from lower N concentration and a wider C:N ratio in the manure than in the “better fed” animals. Furthermore, the urine-N:faecal-N ratio in the “hungry” cows decreased, indicating a shift from urine-N (mostly inorganic N) to faecal-N (mostly organic N), which further backs the lower observed N2O emissions. Both N2O as well as CH4 emissions from manure were lower than the IPCC default emission factors for solid storage in tropical regions across all diets tested.
In the second trial, Boran cattle were fed with three different tropical forage grasses common in Kenya: Napier (Pennisetum purpureum), Rhodes (Gloris gayana), and Brachiaria (Brachiaria brizantha). Manure from the Rhodes grass diet had the lowest N concentration and also the lowest cumulative CH4 emissions, while N2O emissions did not differ between diets. Similar to the sub-maintenance feeding trial, total CH4 and N2O emissions were lower than the IPCC default factors. Taken together, these results are an important step towards reducing the uncertainties in GHG emissions from agriculture in SSA. Furthermore, if African nations use IPCC default values for their national GHG reporting on livestock, emissions are likely to be overestimated, highlighting the importance and benefits of localized data from Africa.
How to cite: Leitner, S., Ring, D., Wanyama, G., Korir, D., Pelster, D., Goopy, J., and Merbold, L.: Nitrous oxide and methane emissions from cattle manure heaps in Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21299, https://doi.org/10.5194/egusphere-egu2020-21299, 2020.
Agricultural greenhouse gas (GHG) emissions in Africa contribute 15 % to the global total agricultural emissions, which is in the same range as agricultural emissions from Europe. The majority of these agricultural GHG emissions is attributed to livestock farming (up to 80 % at national scale), of which 10-25 % originate from livestock manure. At the same time, livestock production is essential for the livelihoods of millions of people in Sub-Saharan Africa (SSA), where 45-80 % of livestock production occurs in smallholder systems. With the growing population in SSA, the demand for livestock products is expected to increase, and – without low-emission manure management – a rise in manure-borne GHG emissions will occur. However, reliable in situ measurements from SSA are scarce, leading to substantial uncertainties in agricultural GHG budgets and making assessments of potential mitigation options difficult.
Here we present results from two cattle manure incubation experiments in Kenya, using manure from Boran (Bos indicus) cattle, a breed common in East Africa that were fed with typical feeds used in SSA smallholder farms. Manure was collected and piled in heaps (solid storage), the most common form of manure storage in Kenyan smallholder systems, and CH4 and N2O emissions were measured over 140 days. In the first trial, cattle were fed a diet that either met their maintenance-energy requirements (i.e. animals received enough food to support their metabolism), or a diet at sub-maintenance energy levels to simulate common conditions in smallholder farming systems, particularly during the dry seasons. Cumulative manure N2O emissions from the sub-maintenance diet (i.e. the “hungry” cows) were lower than from cattle fed at maintenance energy levels. These lower N2O emission likely resulted from lower N concentration and a wider C:N ratio in the manure than in the “better fed” animals. Furthermore, the urine-N:faecal-N ratio in the “hungry” cows decreased, indicating a shift from urine-N (mostly inorganic N) to faecal-N (mostly organic N), which further backs the lower observed N2O emissions. Both N2O as well as CH4 emissions from manure were lower than the IPCC default emission factors for solid storage in tropical regions across all diets tested.
In the second trial, Boran cattle were fed with three different tropical forage grasses common in Kenya: Napier (Pennisetum purpureum), Rhodes (Gloris gayana), and Brachiaria (Brachiaria brizantha). Manure from the Rhodes grass diet had the lowest N concentration and also the lowest cumulative CH4 emissions, while N2O emissions did not differ between diets. Similar to the sub-maintenance feeding trial, total CH4 and N2O emissions were lower than the IPCC default factors. Taken together, these results are an important step towards reducing the uncertainties in GHG emissions from agriculture in SSA. Furthermore, if African nations use IPCC default values for their national GHG reporting on livestock, emissions are likely to be overestimated, highlighting the importance and benefits of localized data from Africa.
How to cite: Leitner, S., Ring, D., Wanyama, G., Korir, D., Pelster, D., Goopy, J., and Merbold, L.: Nitrous oxide and methane emissions from cattle manure heaps in Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21299, https://doi.org/10.5194/egusphere-egu2020-21299, 2020.
EGU2020-955 | Displays | BG3.3
Detecting small scale spatial heterogeneity and short-term temporal variability of CO2 flux dynamics in agricultural used landscapes using a robotic chamber systemShrijana Vaidya, Juergen Augustin, Michael Sommer, Marten Schmidt, Peter Rakowski, and Mathias Hoffmann
Improved agricultural practices sequestering additional atmospheric C within the soil are considered as one of the potential solution for mitigating global climate change. However, agricultural used landscapes are complex and their capacity to sequester additional atmospheric C might differ substantially in time and space. Hence, accurate and precise information on the complex spatio-temporal CO2 flux pattern is needed to evaluate the effects/benefits of new agricultural practices aiming towards increasing soil organic carbon.
To date, different approaches are used to measure and quantify CO2 flux dynamics of agricultural landscapes, such as e.g. eddy covariance, as well as manual and automatic chamber systems. However, all these methods fail to some extend in either accounting for small scale spatial heterogeneity (eddy covariance and automatic chambers) or short-term temporal variability (manual chambers). Although, automatic chambers are in principle capable to detect small-scale spatial differences of CO2 flux dynamics in a sufficient temporal resolution, these systems are usually limited to only a few spatial repetitions which is not sufficient to represent small scale soil heterogeneity such as present within the widespread hummocky ground moraine landscape of NE-Germany.
To overcome these challenges, we developed a novel robotic chamber system allowing to detect small-scale spatial heterogeneity and short-term temporal variability of CO2 (as well as CH4 and N2O) flux dynamics for a range of different fertilization and tillage management practices. The system is equipped with two canopy chambers, CR6 data logger, CDM-A116 analog multiplexer and multiple sensors to measure plant activity/biomass development in parallel. The measurements of the gaseous C exchange is performed by moving the system along the tracks with each chamber along one half of the gantry crane. Thus, each chamber measures 18 plots, out of 36 plots (2x3m; 12 per soil type) established in the study area.
Here, we present first CO2 flux measurement results (spring barley; 3 different soil types) using this novel system, to prove its overall accuracy and precision. Our results show clear small-scale/within field spatial pattern and short-term temporal dynamics regarding measured ecosystem respiration, net ecosystem exchange as well as derived gross primary productivity.
How to cite: Vaidya, S., Augustin, J., Sommer, M., Schmidt, M., Rakowski, P., and Hoffmann, M.: Detecting small scale spatial heterogeneity and short-term temporal variability of CO2 flux dynamics in agricultural used landscapes using a robotic chamber system , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-955, https://doi.org/10.5194/egusphere-egu2020-955, 2020.
Improved agricultural practices sequestering additional atmospheric C within the soil are considered as one of the potential solution for mitigating global climate change. However, agricultural used landscapes are complex and their capacity to sequester additional atmospheric C might differ substantially in time and space. Hence, accurate and precise information on the complex spatio-temporal CO2 flux pattern is needed to evaluate the effects/benefits of new agricultural practices aiming towards increasing soil organic carbon.
To date, different approaches are used to measure and quantify CO2 flux dynamics of agricultural landscapes, such as e.g. eddy covariance, as well as manual and automatic chamber systems. However, all these methods fail to some extend in either accounting for small scale spatial heterogeneity (eddy covariance and automatic chambers) or short-term temporal variability (manual chambers). Although, automatic chambers are in principle capable to detect small-scale spatial differences of CO2 flux dynamics in a sufficient temporal resolution, these systems are usually limited to only a few spatial repetitions which is not sufficient to represent small scale soil heterogeneity such as present within the widespread hummocky ground moraine landscape of NE-Germany.
To overcome these challenges, we developed a novel robotic chamber system allowing to detect small-scale spatial heterogeneity and short-term temporal variability of CO2 (as well as CH4 and N2O) flux dynamics for a range of different fertilization and tillage management practices. The system is equipped with two canopy chambers, CR6 data logger, CDM-A116 analog multiplexer and multiple sensors to measure plant activity/biomass development in parallel. The measurements of the gaseous C exchange is performed by moving the system along the tracks with each chamber along one half of the gantry crane. Thus, each chamber measures 18 plots, out of 36 plots (2x3m; 12 per soil type) established in the study area.
Here, we present first CO2 flux measurement results (spring barley; 3 different soil types) using this novel system, to prove its overall accuracy and precision. Our results show clear small-scale/within field spatial pattern and short-term temporal dynamics regarding measured ecosystem respiration, net ecosystem exchange as well as derived gross primary productivity.
How to cite: Vaidya, S., Augustin, J., Sommer, M., Schmidt, M., Rakowski, P., and Hoffmann, M.: Detecting small scale spatial heterogeneity and short-term temporal variability of CO2 flux dynamics in agricultural used landscapes using a robotic chamber system , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-955, https://doi.org/10.5194/egusphere-egu2020-955, 2020.
EGU2020-6618 | Displays | BG3.3
CO2 fluxes and carbon balance of an agricultural grassland in southern FinlandLaura Heimsch, Annalea Lohila, Liisa Kulmala, Juha-Pekka Tuovinen, Mika Korkiakoski, Tuomas Laurila, and Jari Liski
Agriculture is globally a significant source of carbon emissions to the atmosphere. Main causes for these high emissions are conventional intensive management practices which include such as frequent ploughing, monocropping and high use of agrochemicals. These practices contribute to the loss of biodiversity and soil organic matter, as well as to the CO2 emissions from land use. Recently, it has been recognised that agriculture functioning on the basis of regenerative practices is one of the most potential tools to mitigate climate change.
It is well known that topsoil layer and especially humus-rich soils can store more carbon than atmosphere and vegetation together. Therefore, increasing the amount of soil organic matter in the agroecosystems, by applying enhanced management practices such as reduced tillage, high biodiversity and cover cropping, agricultural soils would not only help to mitigate climate change but also to restore soil quality and fertility. To understand the carbon dynamics on different agricultural sites, factors affecting and comprising the carbon balance, and to verify soil carbon and ecosystem models, continuous long-term monitoring of the GHG fluxes is essential at such managed ecosystems. Here we present results from a new eddy covariance (EC) flux study site located in southern Finland.
Continuous CO2 flux measurements using the EC method have been conducted at Qvidja farm on mineral (clay) soil forage grassland in Parainen, southern Finland (60.29550°N, 22.39281°E) since the spring 2018. Based on the flux and biomass data, the annual carbon balance was estimated to be negative, i.e. the site acted as an overall sink of carbon even in the dry and hot year 2018. However, the seasonal CO2 fluxes were greatly dependent on weather conditions and management procedures. Results from 2019 show that the growing season accompanied with more mature and dense grass, a bit higher precipitation and lower temperatures, as well as higher cutting height was more favorable for carbon uptake in Qvidja as compared to year 2018.
How to cite: Heimsch, L., Lohila, A., Kulmala, L., Tuovinen, J.-P., Korkiakoski, M., Laurila, T., and Liski, J.: CO2 fluxes and carbon balance of an agricultural grassland in southern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6618, https://doi.org/10.5194/egusphere-egu2020-6618, 2020.
Agriculture is globally a significant source of carbon emissions to the atmosphere. Main causes for these high emissions are conventional intensive management practices which include such as frequent ploughing, monocropping and high use of agrochemicals. These practices contribute to the loss of biodiversity and soil organic matter, as well as to the CO2 emissions from land use. Recently, it has been recognised that agriculture functioning on the basis of regenerative practices is one of the most potential tools to mitigate climate change.
It is well known that topsoil layer and especially humus-rich soils can store more carbon than atmosphere and vegetation together. Therefore, increasing the amount of soil organic matter in the agroecosystems, by applying enhanced management practices such as reduced tillage, high biodiversity and cover cropping, agricultural soils would not only help to mitigate climate change but also to restore soil quality and fertility. To understand the carbon dynamics on different agricultural sites, factors affecting and comprising the carbon balance, and to verify soil carbon and ecosystem models, continuous long-term monitoring of the GHG fluxes is essential at such managed ecosystems. Here we present results from a new eddy covariance (EC) flux study site located in southern Finland.
Continuous CO2 flux measurements using the EC method have been conducted at Qvidja farm on mineral (clay) soil forage grassland in Parainen, southern Finland (60.29550°N, 22.39281°E) since the spring 2018. Based on the flux and biomass data, the annual carbon balance was estimated to be negative, i.e. the site acted as an overall sink of carbon even in the dry and hot year 2018. However, the seasonal CO2 fluxes were greatly dependent on weather conditions and management procedures. Results from 2019 show that the growing season accompanied with more mature and dense grass, a bit higher precipitation and lower temperatures, as well as higher cutting height was more favorable for carbon uptake in Qvidja as compared to year 2018.
How to cite: Heimsch, L., Lohila, A., Kulmala, L., Tuovinen, J.-P., Korkiakoski, M., Laurila, T., and Liski, J.: CO2 fluxes and carbon balance of an agricultural grassland in southern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6618, https://doi.org/10.5194/egusphere-egu2020-6618, 2020.
EGU2020-5181 | Displays | BG3.3
Influence of weed cover on leaf-level CO2 and H2O fluxes in an olive groveSergio Aranda-Barranco, Andrew S Kowalski, Penélope Serrano-Ortiz, and Enrique P Sánchez-Cañete
The management of olive groves has a direct impact on the environment in the Mediterranean region since it is one of the most representative crops in this area. In order to prevent erosion and improve the physical-chemical conditions of the soil in these crops, the maintenance of weed cover in the alleys is an increasingly common practice. It increases the organic carbon content in the soil, improves biodiversity indices and enhances various ecosystem services such as pollination and infiltration. Now, the role of vegetation cover in olive groves on biogeochemical cycles is being studied. Although previous studies have quantified the combined effect of weed cover and olive trees on carbon and water at ecosystem level, the role of this conservation practice at the leaf level has not yet been explored.
The aim of this study is to quantify the effect of weed cover on the net CO2 assimilation (An) and transpiration (T) rates in an irrigated olive grove. To do this, two plots of olive trees with irrigation (Olea europea L. "Arbequina") in southeast Spain were sampled. In the weed-cover one (WC), spontaneous vegetation is maintained until it is mechanically mowed and left in place. In the weed-free (WF) a glyphosate-based herbicide is applied. The data were taken with a portable gas analyzer (LI-6800, Li-Cor) controlling the following environmental variables on olive leaves: atmospheric CO2, relative humidity, photosynthetic active radiation and temperature. One campaign per month was carried out (from January-2018 to January-2019) where 10 random trees were analysed in each treatment. In addition, an eddy covariance tower provided CO2 and H2O fluxes at ecosystem level and they were compared with the fluxes obtained from leaf-level campaigns.
The results shown significant differences for T only in the period after mowing with Twc= 2.0 ± 0.7 mmol H2O m-2s-1 vs Twf = 2.5 ± 1.0 mmol H2O m-2s-1. However, in this period ET is equal in both treatments, which suggests that the alleys with mowed weed has more ET than bare soil in the other treatment. On the other hand, there are significant differences for Anet only in the period before mowing with Anet-wc = 5.5 ± 3.1 μmol CO2 m-2s-1 vs Anet-wf = 8.0 ± 3.6 μmol CO2 m-2s-1. When the weeds are mowed, Anet is matched in both treatments. However, higher values of NEEwc than NEEwf are observed in the period before mowing. This suggest that the weed-cover olive groves at ecosystem level take up more carbon when the weed-cover is established although the leaves of olive trees are capturing less CO2.
How to cite: Aranda-Barranco, S., Kowalski, A. S., Serrano-Ortiz, P., and Sánchez-Cañete, E. P.: Influence of weed cover on leaf-level CO2 and H2O fluxes in an olive grove, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5181, https://doi.org/10.5194/egusphere-egu2020-5181, 2020.
The management of olive groves has a direct impact on the environment in the Mediterranean region since it is one of the most representative crops in this area. In order to prevent erosion and improve the physical-chemical conditions of the soil in these crops, the maintenance of weed cover in the alleys is an increasingly common practice. It increases the organic carbon content in the soil, improves biodiversity indices and enhances various ecosystem services such as pollination and infiltration. Now, the role of vegetation cover in olive groves on biogeochemical cycles is being studied. Although previous studies have quantified the combined effect of weed cover and olive trees on carbon and water at ecosystem level, the role of this conservation practice at the leaf level has not yet been explored.
The aim of this study is to quantify the effect of weed cover on the net CO2 assimilation (An) and transpiration (T) rates in an irrigated olive grove. To do this, two plots of olive trees with irrigation (Olea europea L. "Arbequina") in southeast Spain were sampled. In the weed-cover one (WC), spontaneous vegetation is maintained until it is mechanically mowed and left in place. In the weed-free (WF) a glyphosate-based herbicide is applied. The data were taken with a portable gas analyzer (LI-6800, Li-Cor) controlling the following environmental variables on olive leaves: atmospheric CO2, relative humidity, photosynthetic active radiation and temperature. One campaign per month was carried out (from January-2018 to January-2019) where 10 random trees were analysed in each treatment. In addition, an eddy covariance tower provided CO2 and H2O fluxes at ecosystem level and they were compared with the fluxes obtained from leaf-level campaigns.
The results shown significant differences for T only in the period after mowing with Twc= 2.0 ± 0.7 mmol H2O m-2s-1 vs Twf = 2.5 ± 1.0 mmol H2O m-2s-1. However, in this period ET is equal in both treatments, which suggests that the alleys with mowed weed has more ET than bare soil in the other treatment. On the other hand, there are significant differences for Anet only in the period before mowing with Anet-wc = 5.5 ± 3.1 μmol CO2 m-2s-1 vs Anet-wf = 8.0 ± 3.6 μmol CO2 m-2s-1. When the weeds are mowed, Anet is matched in both treatments. However, higher values of NEEwc than NEEwf are observed in the period before mowing. This suggest that the weed-cover olive groves at ecosystem level take up more carbon when the weed-cover is established although the leaves of olive trees are capturing less CO2.
How to cite: Aranda-Barranco, S., Kowalski, A. S., Serrano-Ortiz, P., and Sánchez-Cañete, E. P.: Influence of weed cover on leaf-level CO2 and H2O fluxes in an olive grove, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5181, https://doi.org/10.5194/egusphere-egu2020-5181, 2020.
EGU2020-3559 | Displays | BG3.3
Validation of nitrogen dry deposition modelling above a mixed forest using high-frequency flux measurementsPascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Reactive nitrogen (Nr) compounds comprise essential nutrients for plants. However, a large supply of nitrogen by fertilization through atmospheric deposition may be harmful for ecosystems such as peatlands and may lead to a loss of biodiversity, soil acidification and eutrophication. In addition, nitrogen compounds may cause adverse human health impacts. Large parts of Nr emissions originate from anthropogenic activities. Emission hotspots of ΣNr, i.e. the sum of all Nr compounds, are related to crop production and livestock farming (mainly through ammonia, NH3) and fossil fuel combustion by transport and industry (mainly through nitrogen oxides, NO2 and NO). Such additional amount of Nr will enhance its biosphere-atmosphere exchange, affect plant health and can influence its photosynthetic capacity. Therefore, it is necessary to thoroughly estimate the nitrogen exchange between biosphere and atmosphere.
For measuring the nitrogen mixing ratios a converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used. The TRANC converts all reactive nitrogen compounds, except for nitrous oxide (N2O), to nitric oxide (NO) and is coupled to a fast-response chemiluminescence detector (CLD). Due to a low detection limit and a response time of about 0.3s the TRANC-CLD system can be used for flux calculation based on the eddy covariance (EC) technique. Flux losses, which are related to the experimental setup, different response characteristics and the general high reactivity of most N gases and aerosols, occur in the high frequency range. We estimated damping factors of approximately 20% with an empirical cospectral approach.
For getting a reliable prediction of ΣNr fluxes through deposition models, long-term flux measurements offer the possibility to verify the nitrogen uptake capacity and to investigate exchange characteristics of ΣNr in different ecosystems.
In this study, we compare modelled dry deposition fluxes using the deposition module DEPAC (DEPosition of Acidifying Compounds) within the chemical transport model LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) against ΣNr flux measurements of the TRANC-CLD for a remote mixed forest site with hardly any local anthropogenic emission sources. This procedure allows to determine the background load and the natural exchange characteristics of nitrogen under low atmospheric concentrations. Therefore, the broad-scale dry deposition predicted directly by LOTOS-EUROS was compared to site-specific modelling results obtained using measured meteorological input data as well as the directly measured ΣNr fluxes. In addition, the influence of land-use weighting in LOTOS-EUROS was examined. We further compare our results to ΣNr deposition estimates obtained with canopy budget techniques. Measured ΣNr dry deposition at the site was 4.5 kg N ha-1 yr-1, in close agreement with modelled estimates using DEPAC with measured drivers (5.2 kg N ha-1 yr-1) and as integrated in the chemical transport model LOTOS-EUROS (5.2 kg N ha-1 yr-1 to 6.9 kg N ha-1 yr-1 depending on the weighting of land-use classes).
Our study is the first one presenting 2.5 years flux measurements of ΣNr above a remote mixed forest. Further verifications of long-term flux measurements against deposition models are useful to improve them and result in better understanding of exchange processes of ΣNr.
How to cite: Wintjen, P., Schrader, F., Schaap, M., Beudert, B., and Brümmer, C.: Validation of nitrogen dry deposition modelling above a mixed forest using high-frequency flux measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3559, https://doi.org/10.5194/egusphere-egu2020-3559, 2020.
Reactive nitrogen (Nr) compounds comprise essential nutrients for plants. However, a large supply of nitrogen by fertilization through atmospheric deposition may be harmful for ecosystems such as peatlands and may lead to a loss of biodiversity, soil acidification and eutrophication. In addition, nitrogen compounds may cause adverse human health impacts. Large parts of Nr emissions originate from anthropogenic activities. Emission hotspots of ΣNr, i.e. the sum of all Nr compounds, are related to crop production and livestock farming (mainly through ammonia, NH3) and fossil fuel combustion by transport and industry (mainly through nitrogen oxides, NO2 and NO). Such additional amount of Nr will enhance its biosphere-atmosphere exchange, affect plant health and can influence its photosynthetic capacity. Therefore, it is necessary to thoroughly estimate the nitrogen exchange between biosphere and atmosphere.
For measuring the nitrogen mixing ratios a converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used. The TRANC converts all reactive nitrogen compounds, except for nitrous oxide (N2O), to nitric oxide (NO) and is coupled to a fast-response chemiluminescence detector (CLD). Due to a low detection limit and a response time of about 0.3s the TRANC-CLD system can be used for flux calculation based on the eddy covariance (EC) technique. Flux losses, which are related to the experimental setup, different response characteristics and the general high reactivity of most N gases and aerosols, occur in the high frequency range. We estimated damping factors of approximately 20% with an empirical cospectral approach.
For getting a reliable prediction of ΣNr fluxes through deposition models, long-term flux measurements offer the possibility to verify the nitrogen uptake capacity and to investigate exchange characteristics of ΣNr in different ecosystems.
In this study, we compare modelled dry deposition fluxes using the deposition module DEPAC (DEPosition of Acidifying Compounds) within the chemical transport model LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) against ΣNr flux measurements of the TRANC-CLD for a remote mixed forest site with hardly any local anthropogenic emission sources. This procedure allows to determine the background load and the natural exchange characteristics of nitrogen under low atmospheric concentrations. Therefore, the broad-scale dry deposition predicted directly by LOTOS-EUROS was compared to site-specific modelling results obtained using measured meteorological input data as well as the directly measured ΣNr fluxes. In addition, the influence of land-use weighting in LOTOS-EUROS was examined. We further compare our results to ΣNr deposition estimates obtained with canopy budget techniques. Measured ΣNr dry deposition at the site was 4.5 kg N ha-1 yr-1, in close agreement with modelled estimates using DEPAC with measured drivers (5.2 kg N ha-1 yr-1) and as integrated in the chemical transport model LOTOS-EUROS (5.2 kg N ha-1 yr-1 to 6.9 kg N ha-1 yr-1 depending on the weighting of land-use classes).
Our study is the first one presenting 2.5 years flux measurements of ΣNr above a remote mixed forest. Further verifications of long-term flux measurements against deposition models are useful to improve them and result in better understanding of exchange processes of ΣNr.
How to cite: Wintjen, P., Schrader, F., Schaap, M., Beudert, B., and Brümmer, C.: Validation of nitrogen dry deposition modelling above a mixed forest using high-frequency flux measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3559, https://doi.org/10.5194/egusphere-egu2020-3559, 2020.
EGU2020-4938 | Displays | BG3.3
Emissions and ambient air concentrations of isoprene, monoterpenes and sesquiterpenes at a Northern wetlandHeidi Hellén, Simon Schallhart, Arnaud P. Praplan, Toni Tykkä, Mika Aurela, Annalea Lohila, and Hannele Hakola
Wetlands cover an area of about 2% of the total land surface area of the world and are most common in the boreal and tundra zones. Northern wetlands are important sinks for carbon dioxide and sources of methane, but knowledge on their VOC emissions is very limited. Currently, we know that northern wetlands are high isoprene emitters (e.g. Holst et al., 2010), but very little is known on the emissions of other VOCs.
We have studied VOC emissions and their ambient concentrations at a sub-Arctic wetland (Lompolojänkkä) in Northern Finland, using an in situ TD-GC-MS. For the emission measurements, a dynamic flow-through FEP chamber was used.
Earlier studies have shown that isoprene is emitted from wetlands and it turned out to be the most abundant compound in the current study also. Monoterpene (MT) emissions were generally less than 10 % of the isoprene emissions, but sesquiterpenes (SQT) emissions were surprisingly high, exceeding MT emissions at all times. Both MT and SQT emissions were dependent on temperature.
Even with the higher emissions from the wetland, ambient air concentrations of isoprene were clearly lower than MT concentrations. This indicates that wetland was not the only source affecting atmospheric concentrations at the site, but surrounding coniferous forests, which are high MT emitters, contribute as well. In May concentrations of SQTs and MTs at Lompolojänkkä were higher than in earlier boreal forest measurements in southern Finland (Hellén et al., 2018). At that time, the snow cover on the ground was melting and soil thawing and VOCs produced under the snow cover, e.g. by microbes and decaying litter, can be released to the air. Daily mean MT concentrations were very highly negatively correlated with daily mean ozone concentrations indicating that vegetation emissions can be a significant chemical sink of ozone at this sub-Arctic area.
References
Hellén, H.et al. 2018, Atmos. Chem. Phys., 18, 13839-13863, https://doi.org/10.5194/acp-18-13839-2018.
Holst, T., et al. 2010, Atmos. Chem. Phys., 10, 1617-1634, https://doi.org/10.5194/acp-10-1617-2010.
How to cite: Hellén, H., Schallhart, S., Praplan, A. P., Tykkä, T., Aurela, M., Lohila, A., and Hakola, H.: Emissions and ambient air concentrations of isoprene, monoterpenes and sesquiterpenes at a Northern wetland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4938, https://doi.org/10.5194/egusphere-egu2020-4938, 2020.
Wetlands cover an area of about 2% of the total land surface area of the world and are most common in the boreal and tundra zones. Northern wetlands are important sinks for carbon dioxide and sources of methane, but knowledge on their VOC emissions is very limited. Currently, we know that northern wetlands are high isoprene emitters (e.g. Holst et al., 2010), but very little is known on the emissions of other VOCs.
We have studied VOC emissions and their ambient concentrations at a sub-Arctic wetland (Lompolojänkkä) in Northern Finland, using an in situ TD-GC-MS. For the emission measurements, a dynamic flow-through FEP chamber was used.
Earlier studies have shown that isoprene is emitted from wetlands and it turned out to be the most abundant compound in the current study also. Monoterpene (MT) emissions were generally less than 10 % of the isoprene emissions, but sesquiterpenes (SQT) emissions were surprisingly high, exceeding MT emissions at all times. Both MT and SQT emissions were dependent on temperature.
Even with the higher emissions from the wetland, ambient air concentrations of isoprene were clearly lower than MT concentrations. This indicates that wetland was not the only source affecting atmospheric concentrations at the site, but surrounding coniferous forests, which are high MT emitters, contribute as well. In May concentrations of SQTs and MTs at Lompolojänkkä were higher than in earlier boreal forest measurements in southern Finland (Hellén et al., 2018). At that time, the snow cover on the ground was melting and soil thawing and VOCs produced under the snow cover, e.g. by microbes and decaying litter, can be released to the air. Daily mean MT concentrations were very highly negatively correlated with daily mean ozone concentrations indicating that vegetation emissions can be a significant chemical sink of ozone at this sub-Arctic area.
References
Hellén, H.et al. 2018, Atmos. Chem. Phys., 18, 13839-13863, https://doi.org/10.5194/acp-18-13839-2018.
Holst, T., et al. 2010, Atmos. Chem. Phys., 10, 1617-1634, https://doi.org/10.5194/acp-10-1617-2010.
How to cite: Hellén, H., Schallhart, S., Praplan, A. P., Tykkä, T., Aurela, M., Lohila, A., and Hakola, H.: Emissions and ambient air concentrations of isoprene, monoterpenes and sesquiterpenes at a Northern wetland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4938, https://doi.org/10.5194/egusphere-egu2020-4938, 2020.
EGU2020-21151 | Displays | BG3.3
Greenhouse gas (GHG) leakage and net mitigation of typical carbon sequestration practices in China’s terrestrial ecosystemFei Lu, Guo Zhang, Weiwei Liu, Bojie Liu, Hong Zhao, Lu Zhang, Xiaoke Wang, and Yafei Yuan
Many management practices in cropland, forest and grassland ecosystems can extend forest area, increase carbon input or prevent C loss from vegetation and soil, and subsequently enhance C sinks and stocks. These management practices are considered as promising carbon sequestration measures. However, during implementation of these measures, the production, transportation and consumption of corresponding materials (such as synthetic fertilizers) and fossil fuel, the additional trace GHG emissions, and the processes taking place elsewhere as a result of the implementation activities may lead to GHG budget change other than the carbon stock, and form GHG leakage. Consequently, in order to reveal the true contribution of these practices to global warming mitigation and GHG reduction, full GHG budget need to be considered rather than the impact on soil and vegetation carbon alone. We built the frame of “Carbon Accounting and Net Mitigation (CANM)” and serious of CANM methods to investigate the GHG leakage and net mitigation of typical carbon sequestration practices in China's terrestrial ecosystem, including China’s national ecological restoration projects, and forest, cropland and grassland managements. The results showed large variations in carbon contributions, GHG leakages and their counteraction effects among different practices and ecosystems. The counteraction effects of GHG leakage from forest management and some forest-related ecological restoration projects were relatively small and could hardly exceed 25%. Meanwhile, the GHG leakage of some cropland management practice (e.g., straw return in rice paddies) could fully offset the carbon sequestration in soil. But reduction of synthetic fertilizer application in accordance with the national fertilization recommendations might own considerable net GHG mitigation potential. Grazing prohibition could sequester carbon in grassland ecosystem, but the transfer of grazing activity could offset about half of the carbon sequestration effect. Therefore, policies and technical approaches to minimize GHG leakage are necessary to enhance the GHG mitigation effect of the ecosystem carbon sequestration practices.
How to cite: Lu, F., Zhang, G., Liu, W., Liu, B., Zhao, H., Zhang, L., Wang, X., and Yuan, Y.: Greenhouse gas (GHG) leakage and net mitigation of typical carbon sequestration practices in China’s terrestrial ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21151, https://doi.org/10.5194/egusphere-egu2020-21151, 2020.
Many management practices in cropland, forest and grassland ecosystems can extend forest area, increase carbon input or prevent C loss from vegetation and soil, and subsequently enhance C sinks and stocks. These management practices are considered as promising carbon sequestration measures. However, during implementation of these measures, the production, transportation and consumption of corresponding materials (such as synthetic fertilizers) and fossil fuel, the additional trace GHG emissions, and the processes taking place elsewhere as a result of the implementation activities may lead to GHG budget change other than the carbon stock, and form GHG leakage. Consequently, in order to reveal the true contribution of these practices to global warming mitigation and GHG reduction, full GHG budget need to be considered rather than the impact on soil and vegetation carbon alone. We built the frame of “Carbon Accounting and Net Mitigation (CANM)” and serious of CANM methods to investigate the GHG leakage and net mitigation of typical carbon sequestration practices in China's terrestrial ecosystem, including China’s national ecological restoration projects, and forest, cropland and grassland managements. The results showed large variations in carbon contributions, GHG leakages and their counteraction effects among different practices and ecosystems. The counteraction effects of GHG leakage from forest management and some forest-related ecological restoration projects were relatively small and could hardly exceed 25%. Meanwhile, the GHG leakage of some cropland management practice (e.g., straw return in rice paddies) could fully offset the carbon sequestration in soil. But reduction of synthetic fertilizer application in accordance with the national fertilization recommendations might own considerable net GHG mitigation potential. Grazing prohibition could sequester carbon in grassland ecosystem, but the transfer of grazing activity could offset about half of the carbon sequestration effect. Therefore, policies and technical approaches to minimize GHG leakage are necessary to enhance the GHG mitigation effect of the ecosystem carbon sequestration practices.
How to cite: Lu, F., Zhang, G., Liu, W., Liu, B., Zhao, H., Zhang, L., Wang, X., and Yuan, Y.: Greenhouse gas (GHG) leakage and net mitigation of typical carbon sequestration practices in China’s terrestrial ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21151, https://doi.org/10.5194/egusphere-egu2020-21151, 2020.
Forests play an important role in the exchange of radiatively important trace gases with the atmosphere. The past decade has seen remarkable growth in interest in this research area with studies yielding ever-greater insight into both the importance of these exchanges and the fundamental processes of exchange in ecosystems that are vulnerable and highly responsive to agents of global change. I will provide an overview of previous studies that are now global in coverage, which have shown that in both temperate and tropical wetland and upland forests, tree stems constitute significant surfaces of exchange of both methane (CH4) and nitrous oxide (N2O). Considering studies spanning diverse forest biomes across the full latitudinal range of forest extent, leads to emergent questions that this new and developing pan-disciplinary coalition of researchers are increasingly well able to address. Given that forests are both sensitive and highly responsive to agents of global change at a range of scales, there is a need to further characterise the fundamental functioning of exchange processes in forests e.g. with respect to hydrology, climate and the biology of microbes and the trees and soils they inhabit. Such insight will help with planning the next generation of integrative studies, at scale, to enable the role of forests in trace gas cycling in a changing world to be characterised.
How to cite: Gauci, V.: Where now for forest trace gas research?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18347, https://doi.org/10.5194/egusphere-egu2020-18347, 2020.
Forests play an important role in the exchange of radiatively important trace gases with the atmosphere. The past decade has seen remarkable growth in interest in this research area with studies yielding ever-greater insight into both the importance of these exchanges and the fundamental processes of exchange in ecosystems that are vulnerable and highly responsive to agents of global change. I will provide an overview of previous studies that are now global in coverage, which have shown that in both temperate and tropical wetland and upland forests, tree stems constitute significant surfaces of exchange of both methane (CH4) and nitrous oxide (N2O). Considering studies spanning diverse forest biomes across the full latitudinal range of forest extent, leads to emergent questions that this new and developing pan-disciplinary coalition of researchers are increasingly well able to address. Given that forests are both sensitive and highly responsive to agents of global change at a range of scales, there is a need to further characterise the fundamental functioning of exchange processes in forests e.g. with respect to hydrology, climate and the biology of microbes and the trees and soils they inhabit. Such insight will help with planning the next generation of integrative studies, at scale, to enable the role of forests in trace gas cycling in a changing world to be characterised.
How to cite: Gauci, V.: Where now for forest trace gas research?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18347, https://doi.org/10.5194/egusphere-egu2020-18347, 2020.
EGU2020-13502 | Displays | BG3.3
Contribution of vegetation to methane emission produced in the soil of an upland forest: a 13CH4-labelling approachCaroline Plain and Daniel Epron
The role of vegetation on net methane fluxes from upland forest ecosystem has only recently been underlined and is still not fully understand and quantify. Indeed, influences of forest plants on the methane budget could be antagonist, being a net methane producer or emitter in some cases or enhancing the methane consumption in others. But the vegetation in upland forests decreases the net methane uptake by 0 to 63%, and in a few cases, increases the methane uptake up to twice. One of the mains source of methane emission related to the vegetation is the transport of methane from deep anoxic soil layers where the methane is produced to the atmosphere through plant stems.
In order to quantify if vegetation is a preferential way of methane emission in our field site, a 13CH4 labelling had been undertaken in soil (at 40 cm depth) and 13CH4 had been traced in upper soil layers (0, 5, 10, 25 cm depth), on the soil surface with soil chambers with or without herbaceous vegetation and in tree stem chambers for two days after the pulse labelling.
13CH4 was recovered in all compartments even though the forest ecosystem was mainly a methane sink during this period when methane uptake dominated.
In our study, the vegetation (tree stems and herbaceous vegetation) have a limited contribution on the recovery of 13CH4 at the forest scale, which is dominated by soil emissions.
How to cite: Plain, C. and Epron, D.: Contribution of vegetation to methane emission produced in the soil of an upland forest: a 13CH4-labelling approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13502, https://doi.org/10.5194/egusphere-egu2020-13502, 2020.
The role of vegetation on net methane fluxes from upland forest ecosystem has only recently been underlined and is still not fully understand and quantify. Indeed, influences of forest plants on the methane budget could be antagonist, being a net methane producer or emitter in some cases or enhancing the methane consumption in others. But the vegetation in upland forests decreases the net methane uptake by 0 to 63%, and in a few cases, increases the methane uptake up to twice. One of the mains source of methane emission related to the vegetation is the transport of methane from deep anoxic soil layers where the methane is produced to the atmosphere through plant stems.
In order to quantify if vegetation is a preferential way of methane emission in our field site, a 13CH4 labelling had been undertaken in soil (at 40 cm depth) and 13CH4 had been traced in upper soil layers (0, 5, 10, 25 cm depth), on the soil surface with soil chambers with or without herbaceous vegetation and in tree stem chambers for two days after the pulse labelling.
13CH4 was recovered in all compartments even though the forest ecosystem was mainly a methane sink during this period when methane uptake dominated.
In our study, the vegetation (tree stems and herbaceous vegetation) have a limited contribution on the recovery of 13CH4 at the forest scale, which is dominated by soil emissions.
How to cite: Plain, C. and Epron, D.: Contribution of vegetation to methane emission produced in the soil of an upland forest: a 13CH4-labelling approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13502, https://doi.org/10.5194/egusphere-egu2020-13502, 2020.
EGU2020-11704 | Displays | BG3.3
Unravelling controls on methane uptake in a temperate forest soil: impacts of ectomycorrhizasSylvia Toet, Ruochan Ma, Phoebe Morton, and Phil Ineson
Methane (CH4) is an important greenhouse gas, globally responsible for 17% of current radiative forcing. Soils can be important net sources or sinks of CH4 depending on the net balance of two contrasting microbial processes - CH4 production and CH4 oxidation. In unsaturated soils, the aerobic methane oxidation process often dominates. These soils form the only global terrestrial CH4 sink, but estimates are still highly uncertain, both spatially and temporally. Forest soils have shown some of the strongest net CH4 uptake rates, but this is not consistent across sites and the controls are poorly understood.
In this field study, we focused on the effects of ectomycorrhizas on net CH4 uptake in an unsaturated, sandy gley podzolic soil of a mature coniferous forest stand dominated by Lodgepole pine (Pinus contorta) in Northern England over three years. Methane fluxes were determined in cores with soil only (roots and ectomycorrhizal mycelium excluded using windows with 1 µm mesh in the cores) and cores with soil and ectomycorrhizal mycelium (only roots excluded with 41 µm mesh). Net CH4 uptake rates in summer were higher when ectomycorrhizal mycelium was present, whereas the opposite was observed in winter. We will discuss mechanisms that may underpin these ectomycorrhizal impacts on net CH4 uptake in unsaturated forest soils.
How to cite: Toet, S., Ma, R., Morton, P., and Ineson, P.: Unravelling controls on methane uptake in a temperate forest soil: impacts of ectomycorrhizas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11704, https://doi.org/10.5194/egusphere-egu2020-11704, 2020.
Methane (CH4) is an important greenhouse gas, globally responsible for 17% of current radiative forcing. Soils can be important net sources or sinks of CH4 depending on the net balance of two contrasting microbial processes - CH4 production and CH4 oxidation. In unsaturated soils, the aerobic methane oxidation process often dominates. These soils form the only global terrestrial CH4 sink, but estimates are still highly uncertain, both spatially and temporally. Forest soils have shown some of the strongest net CH4 uptake rates, but this is not consistent across sites and the controls are poorly understood.
In this field study, we focused on the effects of ectomycorrhizas on net CH4 uptake in an unsaturated, sandy gley podzolic soil of a mature coniferous forest stand dominated by Lodgepole pine (Pinus contorta) in Northern England over three years. Methane fluxes were determined in cores with soil only (roots and ectomycorrhizal mycelium excluded using windows with 1 µm mesh in the cores) and cores with soil and ectomycorrhizal mycelium (only roots excluded with 41 µm mesh). Net CH4 uptake rates in summer were higher when ectomycorrhizal mycelium was present, whereas the opposite was observed in winter. We will discuss mechanisms that may underpin these ectomycorrhizal impacts on net CH4 uptake in unsaturated forest soils.
How to cite: Toet, S., Ma, R., Morton, P., and Ineson, P.: Unravelling controls on methane uptake in a temperate forest soil: impacts of ectomycorrhizas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11704, https://doi.org/10.5194/egusphere-egu2020-11704, 2020.
EGU2020-13072 | Displays | BG3.3
Methane consumption by proteobacterial methanotrophs in boreal spruce phyllosphere activated with methaneHenri Siljanen, Antti Laihonen, Sanni Aalto, Inga Martikainen, Richard Lamprecht, Christina Biasi, and Marja Tiirola
Current knowledge on methane (CH4) sinks is limited to chemical processes in the atmosphere, and to methanotrophy in forest soils and peatlands. Recent discoveries have indicated that also tree branches, i.e. phyllosphere, may consume atmospheric CH4, thus functioning as a novel CH4 sink. However, the process is not yet confirmed and the mechanism not resolved.
Here, we confirm that leaves and needles of boreal trees have the capacity to consume CH4 with stable isotope enrichment studies in field and laboratory experiments, and that the consumption is a biological process. With molecular analyses, we confirmed that the activity of needle-associated proteobacterial methanotrophs increased sporadically under CH4 and acetate enrichment. Our results indicate that CH4 consumption can exist in the tree canopy, which is characterized by interspecies variation, spatial patchiness and small but significant microbial activity.
This is a novel symbiotic connection between microbes and plant cells, which can enhance overall carbon sequestration in the boreal forests.
How to cite: Siljanen, H., Laihonen, A., Aalto, S., Martikainen, I., Lamprecht, R., Biasi, C., and Tiirola, M.: Methane consumption by proteobacterial methanotrophs in boreal spruce phyllosphere activated with methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13072, https://doi.org/10.5194/egusphere-egu2020-13072, 2020.
Current knowledge on methane (CH4) sinks is limited to chemical processes in the atmosphere, and to methanotrophy in forest soils and peatlands. Recent discoveries have indicated that also tree branches, i.e. phyllosphere, may consume atmospheric CH4, thus functioning as a novel CH4 sink. However, the process is not yet confirmed and the mechanism not resolved.
Here, we confirm that leaves and needles of boreal trees have the capacity to consume CH4 with stable isotope enrichment studies in field and laboratory experiments, and that the consumption is a biological process. With molecular analyses, we confirmed that the activity of needle-associated proteobacterial methanotrophs increased sporadically under CH4 and acetate enrichment. Our results indicate that CH4 consumption can exist in the tree canopy, which is characterized by interspecies variation, spatial patchiness and small but significant microbial activity.
This is a novel symbiotic connection between microbes and plant cells, which can enhance overall carbon sequestration in the boreal forests.
How to cite: Siljanen, H., Laihonen, A., Aalto, S., Martikainen, I., Lamprecht, R., Biasi, C., and Tiirola, M.: Methane consumption by proteobacterial methanotrophs in boreal spruce phyllosphere activated with methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13072, https://doi.org/10.5194/egusphere-egu2020-13072, 2020.
EGU2020-12917 | Displays | BG3.3
High frequency measurements reveal distinct sources of shoot methane emissions.Lukas Kohl, Markku Koskinen, Paivi Mäkiranta, Tatu Polvinen, Marjo Patama, Salla Tenhovirta, and Mari Pihlatie
Plant shoots can emit methane (CH4) from multiple source processes (microbial methanogenesis in soils and core wood, aerobic CH4 production in foliage). We constructed a chamber system to isolate these processes and study how leaf level CH4 emissions respond to environmental factors like dark-light-cycles, temperature, drought, or CO2 concentrations. Tree samplings are located in a FITOCLIMA D 1200 plant growth chamber for PAR, temperature and humidity control and equipped with a measurement chamber to quantify CH4 exchange in a closed loop setup with a Picarro G2301 CH4 analyser. The system was further customized to control temperature, CO2, and humidity in the measurement chamber. The system allows the detection of CH4 flux rates of on the order of 1 nmol CH4 h-1 and can conduct high frequency (< 15 min) measurements of CH4 emissions rates from small shoots (<5g foliage biomass). Initial measurements were conducted with Scots pine and birch saplings. In addition, we measured conducted manual methane flux measurements on shoots of Scots pine saplings in two 24-hour campaigns.
These experiments demonstrated that the shoots of different tree species emit CH4 from distinct sources. Scots pine shoots emitted CH4 produced within the shoot, likely through aerobic CH4 production, which showed a strong diurnal cycles that follows irradiation and photosynthesis rates. Shoot from some birch species, in contrast, showed emissions of soil-borne CH4 that remained constant throughout day and nighttime. We expect that future experiment with this unique setup will allow to further disentangle shoot CH4 emissions and characterize their response to environmental conditions including light, temperature, and relative humidity.
How to cite: Kohl, L., Koskinen, M., Mäkiranta, P., Polvinen, T., Patama, M., Tenhovirta, S., and Pihlatie, M.: High frequency measurements reveal distinct sources of shoot methane emissions. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12917, https://doi.org/10.5194/egusphere-egu2020-12917, 2020.
Plant shoots can emit methane (CH4) from multiple source processes (microbial methanogenesis in soils and core wood, aerobic CH4 production in foliage). We constructed a chamber system to isolate these processes and study how leaf level CH4 emissions respond to environmental factors like dark-light-cycles, temperature, drought, or CO2 concentrations. Tree samplings are located in a FITOCLIMA D 1200 plant growth chamber for PAR, temperature and humidity control and equipped with a measurement chamber to quantify CH4 exchange in a closed loop setup with a Picarro G2301 CH4 analyser. The system was further customized to control temperature, CO2, and humidity in the measurement chamber. The system allows the detection of CH4 flux rates of on the order of 1 nmol CH4 h-1 and can conduct high frequency (< 15 min) measurements of CH4 emissions rates from small shoots (<5g foliage biomass). Initial measurements were conducted with Scots pine and birch saplings. In addition, we measured conducted manual methane flux measurements on shoots of Scots pine saplings in two 24-hour campaigns.
These experiments demonstrated that the shoots of different tree species emit CH4 from distinct sources. Scots pine shoots emitted CH4 produced within the shoot, likely through aerobic CH4 production, which showed a strong diurnal cycles that follows irradiation and photosynthesis rates. Shoot from some birch species, in contrast, showed emissions of soil-borne CH4 that remained constant throughout day and nighttime. We expect that future experiment with this unique setup will allow to further disentangle shoot CH4 emissions and characterize their response to environmental conditions including light, temperature, and relative humidity.
How to cite: Kohl, L., Koskinen, M., Mäkiranta, P., Polvinen, T., Patama, M., Tenhovirta, S., and Pihlatie, M.: High frequency measurements reveal distinct sources of shoot methane emissions. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12917, https://doi.org/10.5194/egusphere-egu2020-12917, 2020.
EGU2020-20506 | Displays | BG3.3
The role of trees in the CH4 and N2O exchange in boreal forestElisa Vainio, Luca Galeotti, Homa Ghasemi, Iikka Haikarainen, Katerina Machacova, Marjo Patama, Petteri Pyykkö, Lilja Rauna, and Mari Pihlatie
Trees have been demonstrated to play a role in the methane (CH4) and nitrous oxide (N2O) cycling in forests. Emissions of these two greenhouse gases have been observed from tree stems and shoots. The stem emissions of both CH4 and N2O have been suggested to originate from the soil, however, their transportation mechanisms might differ, and furthermore, at least the stem-emitted CH4 can also be produced within tree tissue. Boreal forests are considered a sink of CH4 due to predominant soil oxidation, but when CH4 is taken up by the roots, it bypasses the CH4-oxidation zone in the surface soil. The stem N2O fluxes at the boreal zone have been shown to follow seasonal physiological activity of trees. However, studies on tree CH4 and N2O fluxes are scarce in the boreal zone.
We studied the tree stem CH4 and N2O exchange from the stems of Scots pine, downy birch, and Norway spruce – in total 47 trees, growing at six study plots with naturally different soil moisture and ground vegetation conditions (6–9 trees per plot). The measurements were performed during July–August 2017 at the Hyytiälä SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) ICOS (Integrated Carbon Observation System) research site, in southern Finland. In addition to the stems, we measured forest floor CH4 and N2O fluxes at all the plots, and shoot CH4 fluxes from birch and pine at one plot. The stem chambers were installed at the tree bases, ca. 30 cm above the soil surface. Additionally, from the trees with the shoot measurements, we measured the stem fluxes from several heights in order to study the flux variation in the stem vertical profile. All the flux measurements were conducted with closed chambers – the stem and forest floor measurements were performed by using manual sampling and gas chromatography, while a portable greenhouse gas analyser was used for the shoot measurements. Soil moisture and soil temperature were monitored at the study plots throughout the measurement period.
The results show that all the studied tree species emit both CH4 and N2O from stems. Birches growing at one plot with waterlogging conditions stand out with the highest stem CH4 emissions. Concerning the N2O emissions, birch stems showed significantly higher emissions than pine stems. The results of the shoot measurements indicate that both birch and pine emit small amounts of CH4 from their shoots, but the driving factors of the emissions may be different for the two species. Our aim is to model the spatial variability of the stem CH4 and N2O fluxes at the site, and to develop an upscaling method combining the stem and forest floor CH4 and N2O exchange, based on an existing modelling work on the forest floor CH4 fluxes at the site.
Acknowledgements: This research was supported by the Academy of Finland (288494, 2884941), National Centre of Excellence (272041), ICOS-FINLAND (281255), Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415), and the European Research Council (ERC) under Horizon 2020 research and innovation programme, grant agreement No (757695).
How to cite: Vainio, E., Galeotti, L., Ghasemi, H., Haikarainen, I., Machacova, K., Patama, M., Pyykkö, P., Rauna, L., and Pihlatie, M.: The role of trees in the CH4 and N2O exchange in boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20506, https://doi.org/10.5194/egusphere-egu2020-20506, 2020.
Trees have been demonstrated to play a role in the methane (CH4) and nitrous oxide (N2O) cycling in forests. Emissions of these two greenhouse gases have been observed from tree stems and shoots. The stem emissions of both CH4 and N2O have been suggested to originate from the soil, however, their transportation mechanisms might differ, and furthermore, at least the stem-emitted CH4 can also be produced within tree tissue. Boreal forests are considered a sink of CH4 due to predominant soil oxidation, but when CH4 is taken up by the roots, it bypasses the CH4-oxidation zone in the surface soil. The stem N2O fluxes at the boreal zone have been shown to follow seasonal physiological activity of trees. However, studies on tree CH4 and N2O fluxes are scarce in the boreal zone.
We studied the tree stem CH4 and N2O exchange from the stems of Scots pine, downy birch, and Norway spruce – in total 47 trees, growing at six study plots with naturally different soil moisture and ground vegetation conditions (6–9 trees per plot). The measurements were performed during July–August 2017 at the Hyytiälä SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations) ICOS (Integrated Carbon Observation System) research site, in southern Finland. In addition to the stems, we measured forest floor CH4 and N2O fluxes at all the plots, and shoot CH4 fluxes from birch and pine at one plot. The stem chambers were installed at the tree bases, ca. 30 cm above the soil surface. Additionally, from the trees with the shoot measurements, we measured the stem fluxes from several heights in order to study the flux variation in the stem vertical profile. All the flux measurements were conducted with closed chambers – the stem and forest floor measurements were performed by using manual sampling and gas chromatography, while a portable greenhouse gas analyser was used for the shoot measurements. Soil moisture and soil temperature were monitored at the study plots throughout the measurement period.
The results show that all the studied tree species emit both CH4 and N2O from stems. Birches growing at one plot with waterlogging conditions stand out with the highest stem CH4 emissions. Concerning the N2O emissions, birch stems showed significantly higher emissions than pine stems. The results of the shoot measurements indicate that both birch and pine emit small amounts of CH4 from their shoots, but the driving factors of the emissions may be different for the two species. Our aim is to model the spatial variability of the stem CH4 and N2O fluxes at the site, and to develop an upscaling method combining the stem and forest floor CH4 and N2O exchange, based on an existing modelling work on the forest floor CH4 fluxes at the site.
Acknowledgements: This research was supported by the Academy of Finland (288494, 2884941), National Centre of Excellence (272041), ICOS-FINLAND (281255), Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415), and the European Research Council (ERC) under Horizon 2020 research and innovation programme, grant agreement No (757695).
How to cite: Vainio, E., Galeotti, L., Ghasemi, H., Haikarainen, I., Machacova, K., Patama, M., Pyykkö, P., Rauna, L., and Pihlatie, M.: The role of trees in the CH4 and N2O exchange in boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20506, https://doi.org/10.5194/egusphere-egu2020-20506, 2020.
EGU2020-275 | Displays | BG3.3
Methane emissions and origin in tree stems in an upland forestJosep Barba, Rafael Poyatos, Margaret Capooci, and Rodrigo Vargas
Trees can exchange methane (CH4) with the atmosphere through their stems. However, the magnitudes, patterns, drivers and origin of these emissions as well as the biogeochemical pathways that might result in net CH4 production or uptake are still poorly understood. One of the most important constraints is the limited information on the spatial and temporal variability of these emissions. Manual measurements are useful for measuring spatial variability of stem emissions (both within and between trees), but their low temporal frequency hinders our understanding of temporal patterns. In contrast, high-frequency measurements capture temporal variability, but instrumentation cost and complex technical logistics preclude high number of spatial replicates. In this study we combined manual and automated measurements of tree stem emissions in 18 different bitternut hickory trees (Carya cordiformis) in an upland forest during one growing season. Methane emissions were measured at two stem heights (75 and 150 cm) in three trees every 30 min, whereas the other 15 trees were measured once every two weeks at three different stem heights (50, 110 and 170 cm). Additionally, sap flow, soil temperature, soil water content, ground water level, and CH4 concentrations in the heartwood and in the soil profile were measured. Finally, we performed incubations of stem cores to test its potential for producing CH4. All trees were net sources of methane during the experiment, but some of them showed sporadic capture of CH4. High-frequency measurements revealed large temporal variability of stem emissions even within hours. Trees showed a seasonal trend of CH4 emissions partially explained by sap flow, soil moisture and temperature, but the pattern and the magnitudes were not consistent between and within trees. Even when a larger number of trees were studied (15 trees with manual measurements every two weeks), no consistent spatial pattern emerged among trees or with stem height, with emissions differing up to two orders of magnitude among trees. We found high CH4 concentrations in the heartwood of the trees (up to 75,000 ppm), no relevant concentrations in the soil profile (<6 ppm in all cases), and methanogenic capacity in all trees (stem cores were able to produce CH4 in laboratory incubations), supporting the interpretation that CH4 emitted by treestems was likely produced in the heartwood of the trees rather than being produced in soils and transported by the roots. Our results provide evidence on the potential origin of CH4 emitted by tree stems, but also indicate that the spatial and temporal patterns of stem emissions should be better described in order to assess the role of trees in local-to-global CH4 budgets.
How to cite: Barba, J., Poyatos, R., Capooci, M., and Vargas, R.: Methane emissions and origin in tree stems in an upland forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-275, https://doi.org/10.5194/egusphere-egu2020-275, 2020.
Trees can exchange methane (CH4) with the atmosphere through their stems. However, the magnitudes, patterns, drivers and origin of these emissions as well as the biogeochemical pathways that might result in net CH4 production or uptake are still poorly understood. One of the most important constraints is the limited information on the spatial and temporal variability of these emissions. Manual measurements are useful for measuring spatial variability of stem emissions (both within and between trees), but their low temporal frequency hinders our understanding of temporal patterns. In contrast, high-frequency measurements capture temporal variability, but instrumentation cost and complex technical logistics preclude high number of spatial replicates. In this study we combined manual and automated measurements of tree stem emissions in 18 different bitternut hickory trees (Carya cordiformis) in an upland forest during one growing season. Methane emissions were measured at two stem heights (75 and 150 cm) in three trees every 30 min, whereas the other 15 trees were measured once every two weeks at three different stem heights (50, 110 and 170 cm). Additionally, sap flow, soil temperature, soil water content, ground water level, and CH4 concentrations in the heartwood and in the soil profile were measured. Finally, we performed incubations of stem cores to test its potential for producing CH4. All trees were net sources of methane during the experiment, but some of them showed sporadic capture of CH4. High-frequency measurements revealed large temporal variability of stem emissions even within hours. Trees showed a seasonal trend of CH4 emissions partially explained by sap flow, soil moisture and temperature, but the pattern and the magnitudes were not consistent between and within trees. Even when a larger number of trees were studied (15 trees with manual measurements every two weeks), no consistent spatial pattern emerged among trees or with stem height, with emissions differing up to two orders of magnitude among trees. We found high CH4 concentrations in the heartwood of the trees (up to 75,000 ppm), no relevant concentrations in the soil profile (<6 ppm in all cases), and methanogenic capacity in all trees (stem cores were able to produce CH4 in laboratory incubations), supporting the interpretation that CH4 emitted by treestems was likely produced in the heartwood of the trees rather than being produced in soils and transported by the roots. Our results provide evidence on the potential origin of CH4 emitted by tree stems, but also indicate that the spatial and temporal patterns of stem emissions should be better described in order to assess the role of trees in local-to-global CH4 budgets.
How to cite: Barba, J., Poyatos, R., Capooci, M., and Vargas, R.: Methane emissions and origin in tree stems in an upland forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-275, https://doi.org/10.5194/egusphere-egu2020-275, 2020.
EGU2020-19009 | Displays | BG3.3
Greenhouse gas emissions from a Mediterranean floodplain forest: the role of tree emissions under a changing flooding regime.Sílvia Poblador, Elisabet Martínez-Sancho, Mateu Menéndez-Serra, Emilio O. Casamayor, Marc Estiarte, Anna Lupon, Eugènia Martí, Josep Peñuelas, Santiago Sabaté, and Francesc Sabater
The increase of greenhouse gas (GHG) emissions into the atmosphere is promoting and accelerating climate warming. Among GHG sources, soils are an important natural source of GHG to the atmosphere through aerobic soil respiration that release carbon dioxide (CO2). However, in riparian areas, soils can also release relevant amounts of methane (CH4) and nitrous oxide (N2O) through anaerobic processes promoted by high groundwater levels or flooded conditions. Recent studies have highlighted the role of trees in CH4 emissions, but little is still known about the origin of these emissions, the processes involved, and their contribution to the global carbon and nitrogen cycles. To shed light on this issue, we measured GHG emissions (i.e. CO2, CH4, and N2O) from the stems of two riparian tree species (Fraxinus agustifolia and Quercus robur) located along a gradient of soil moisture conditions (i.e. from wet to completely flooded soils) in a Mediterranean floodplain forest. Moreover, we also analyzed the isotopic carbon signature of the GHG emitted and the microbial communities inhabiting within tree stems by 16S rRNA gene analysis. Our results showed that CH4 emitted by riparian tree stems was 100-fold higher at the flooded than at wet soil locations, while CO2 and N2O emissions did not vary across moisture conditions. When considering together emissions form soil surface and tree stems under flooded conditions, riparian trees contributed up to 20%, 40% and 60% of the total CH4, CO2, and N2O emissions, respectively. Keeling plots suggested that CO2 emitted through tree stems was produced within the soil compartment and thus transported to the atmosphere through the tree stems, whereas CH4 emissions may have a different origin. However, methanogens were almost absent on the wood microbiome. The substantially higher presence of methanotrophs on the wood than on the soil compartment suggested that, despite CH4 emitted by stems could come from soil microbial activity, the microbial consumption of that CH4 within the tree stem could have changed its isotopic signature. Overall, our findings suggest that the riparian trees growing in this Mediterranean floodplain forest may mainly act as passive transporters of GHG produced in soils instead of being active GHG producers.
How to cite: Poblador, S., Martínez-Sancho, E., Menéndez-Serra, M., Casamayor, E. O., Estiarte, M., Lupon, A., Martí, E., Peñuelas, J., Sabaté, S., and Sabater, F.: Greenhouse gas emissions from a Mediterranean floodplain forest: the role of tree emissions under a changing flooding regime., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19009, https://doi.org/10.5194/egusphere-egu2020-19009, 2020.
The increase of greenhouse gas (GHG) emissions into the atmosphere is promoting and accelerating climate warming. Among GHG sources, soils are an important natural source of GHG to the atmosphere through aerobic soil respiration that release carbon dioxide (CO2). However, in riparian areas, soils can also release relevant amounts of methane (CH4) and nitrous oxide (N2O) through anaerobic processes promoted by high groundwater levels or flooded conditions. Recent studies have highlighted the role of trees in CH4 emissions, but little is still known about the origin of these emissions, the processes involved, and their contribution to the global carbon and nitrogen cycles. To shed light on this issue, we measured GHG emissions (i.e. CO2, CH4, and N2O) from the stems of two riparian tree species (Fraxinus agustifolia and Quercus robur) located along a gradient of soil moisture conditions (i.e. from wet to completely flooded soils) in a Mediterranean floodplain forest. Moreover, we also analyzed the isotopic carbon signature of the GHG emitted and the microbial communities inhabiting within tree stems by 16S rRNA gene analysis. Our results showed that CH4 emitted by riparian tree stems was 100-fold higher at the flooded than at wet soil locations, while CO2 and N2O emissions did not vary across moisture conditions. When considering together emissions form soil surface and tree stems under flooded conditions, riparian trees contributed up to 20%, 40% and 60% of the total CH4, CO2, and N2O emissions, respectively. Keeling plots suggested that CO2 emitted through tree stems was produced within the soil compartment and thus transported to the atmosphere through the tree stems, whereas CH4 emissions may have a different origin. However, methanogens were almost absent on the wood microbiome. The substantially higher presence of methanotrophs on the wood than on the soil compartment suggested that, despite CH4 emitted by stems could come from soil microbial activity, the microbial consumption of that CH4 within the tree stem could have changed its isotopic signature. Overall, our findings suggest that the riparian trees growing in this Mediterranean floodplain forest may mainly act as passive transporters of GHG produced in soils instead of being active GHG producers.
How to cite: Poblador, S., Martínez-Sancho, E., Menéndez-Serra, M., Casamayor, E. O., Estiarte, M., Lupon, A., Martí, E., Peñuelas, J., Sabaté, S., and Sabater, F.: Greenhouse gas emissions from a Mediterranean floodplain forest: the role of tree emissions under a changing flooding regime., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19009, https://doi.org/10.5194/egusphere-egu2020-19009, 2020.
EGU2020-21139 | Displays | BG3.3
High CH4 and N2O emissions from soil and stems of disturbed swamp forests in Peruvian AmazonJaan Pärn, Kaido Soosaar, Thomas Schindler, Kateřina Macháčová, Waldemar Alegría Muñoz, Lizardo Manuel Fachín Malaverri, José Luis Jibaja Aspajo, Robinson Negron-Juarez, Jhon Ever Rengifo Marin, Rodil Tello Espinoza, Segundo Cordova Horna, Tedi Pacheco Gómez, Jose David Urquiza Muñoz, and Ülo Mander
Peatlands are an enormous sink of carbon and nitrogen. Natural and human disturbances may release them as greenhouse gases (GHGs) or water pollutants. Tropical peatlands have especially intensive matter cycling. Amazonia holds almost a half of tropical peatlands. Most of it is inaccessible to current forestry and drainage machinery and thus untouched by man. Tropical rainforest has been labelled ’lungs of the Earth’. While photosynthesis in mature forests does sequester carbon in biomass, they respire an equal amount of carbon dioxide (CO2). Only swamp forests may sequester carbon in wet anoxic peat for centuries. However, anoxic decomposition of peat yields methane (CH4) and suboxic processes release nitrous oxide (N2O). Both have high global warming potential. In undisturbed peatlands, carbon sequestration outweighs GHG emissions. GHG budgets are more complicated in disturbed peatlands.
With an objective to clarify the greenhouse gas budget of tropical peatlands, the Department of Geography, University of Tartu held a measurement campaign in Iquitos, Peruvian Amazon in September 2019. We observed fluxes of the three GHGs using opaque chambers and measured potential environmental factors in three sites under various disturbance histories: 1) a Mauritia flexuosa palm-dominated swamp forest, 2) toe-slope swamp forest grown in 12 years on fallow pasture and banana plantation, and 3) slash-and-burn cassava field.
The toe-slope swamp respired the largest amounts of CO2 while site differences were small and may have been offset by photosynthesis (which we did not measure). The wet swamp forest sites, especially palm trunks, emitted large amounts of CH4. The dry slash-and-burn cassava field emitted little methane. The CH4 emissions were strongly correlated with nitrogen content of the peat. Previous literature links high soil nitrogen content with lability of soil organic carbon and high microbial activity. The swamp forest floor emitted an average of 390 µg N2O-N m–2 h–1 after torrential rainfall. The downpour may have carried just enough oxygen into the peat to trigger N2O production by nitrification or hamper the full pathway of denitrification to N2. High peat Ca++ and Mg++ content and pH>4 favoured nitrification. High NH4+-N concentration in the swamp peat (190 mg kg–1), which can be related to N2 fixation and litter from three species of leguminous trees, formed a solid base for nitrification. The slash-and-burn cassava field emitted a sizable 37 µg N2O-N m–2 h–1. In conclusion, the variety of disturbances produced an interesting pattern of GHG emissions in relationship with environmental conditions. Thus, Amazonian peatlands demand elevated attention.
How to cite: Pärn, J., Soosaar, K., Schindler, T., Macháčová, K., Alegría Muñoz, W., Fachín Malaverri, L. M., Jibaja Aspajo, J. L., Negron-Juarez, R., Rengifo Marin, J. E., Tello Espinoza, R., Cordova Horna, S., Pacheco Gómez, T., Urquiza Muñoz, J. D., and Mander, Ü.: High CH4 and N2O emissions from soil and stems of disturbed swamp forests in Peruvian Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21139, https://doi.org/10.5194/egusphere-egu2020-21139, 2020.
Peatlands are an enormous sink of carbon and nitrogen. Natural and human disturbances may release them as greenhouse gases (GHGs) or water pollutants. Tropical peatlands have especially intensive matter cycling. Amazonia holds almost a half of tropical peatlands. Most of it is inaccessible to current forestry and drainage machinery and thus untouched by man. Tropical rainforest has been labelled ’lungs of the Earth’. While photosynthesis in mature forests does sequester carbon in biomass, they respire an equal amount of carbon dioxide (CO2). Only swamp forests may sequester carbon in wet anoxic peat for centuries. However, anoxic decomposition of peat yields methane (CH4) and suboxic processes release nitrous oxide (N2O). Both have high global warming potential. In undisturbed peatlands, carbon sequestration outweighs GHG emissions. GHG budgets are more complicated in disturbed peatlands.
With an objective to clarify the greenhouse gas budget of tropical peatlands, the Department of Geography, University of Tartu held a measurement campaign in Iquitos, Peruvian Amazon in September 2019. We observed fluxes of the three GHGs using opaque chambers and measured potential environmental factors in three sites under various disturbance histories: 1) a Mauritia flexuosa palm-dominated swamp forest, 2) toe-slope swamp forest grown in 12 years on fallow pasture and banana plantation, and 3) slash-and-burn cassava field.
The toe-slope swamp respired the largest amounts of CO2 while site differences were small and may have been offset by photosynthesis (which we did not measure). The wet swamp forest sites, especially palm trunks, emitted large amounts of CH4. The dry slash-and-burn cassava field emitted little methane. The CH4 emissions were strongly correlated with nitrogen content of the peat. Previous literature links high soil nitrogen content with lability of soil organic carbon and high microbial activity. The swamp forest floor emitted an average of 390 µg N2O-N m–2 h–1 after torrential rainfall. The downpour may have carried just enough oxygen into the peat to trigger N2O production by nitrification or hamper the full pathway of denitrification to N2. High peat Ca++ and Mg++ content and pH>4 favoured nitrification. High NH4+-N concentration in the swamp peat (190 mg kg–1), which can be related to N2 fixation and litter from three species of leguminous trees, formed a solid base for nitrification. The slash-and-burn cassava field emitted a sizable 37 µg N2O-N m–2 h–1. In conclusion, the variety of disturbances produced an interesting pattern of GHG emissions in relationship with environmental conditions. Thus, Amazonian peatlands demand elevated attention.
How to cite: Pärn, J., Soosaar, K., Schindler, T., Macháčová, K., Alegría Muñoz, W., Fachín Malaverri, L. M., Jibaja Aspajo, J. L., Negron-Juarez, R., Rengifo Marin, J. E., Tello Espinoza, R., Cordova Horna, S., Pacheco Gómez, T., Urquiza Muñoz, J. D., and Mander, Ü.: High CH4 and N2O emissions from soil and stems of disturbed swamp forests in Peruvian Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21139, https://doi.org/10.5194/egusphere-egu2020-21139, 2020.
EGU2020-11242 | Displays | BG3.3
Towards a better understanding of soil- and tree stem-atmosphere exchanges of greenhouse gases, i.e. CO2, CH4, N2O, in a tropical rainforestLaëtitia Brechet, Warren Daniel, Clément Stahl, Benoît Burban, Jean-Yves Goret, Roberto L. Salomόn, and Ivan A. Janssens
The importance of greenhouse gas (GHG) emissions in global climate change is undisputed, but our understanding of the daily and seasonal variations of the GHG fluxes is far from complete and detailed flux estimates are unequally distributed among ecosystems worldwide. Carbon dioxide (77%; CO2), methane (14%; CH4) and nitrous oxide (8%; N2O) are the three main GHGs that trap infrared radiations and contribute to climate change. While CO2 has been largely studied, a considerable effort is still required to quantify the magnitude and drivers of CH4 and N2O, which have radiative effects 25 and 298 times greater than CO2, respectively. Tropical forests play a pivotal role in global carbon (C) balance and climate change mitigation, accounting for 68% of global C stock and representing up to 30% of total forest soil C sink. In the tropics, soils are main contributors to the ecosystem GHG fluxes. In fact, tropical forest soils are the largest natural source of soil CO2 and N2O and are overwhelmingly reported as important sink of CH4. More recently, studies reported that tree stems can also emit CO2, CH4 and N2O and act, via passive transport through the soil xylem stream, as a pathway for these gas emissions to the atmosphere.
Although accurate estimates of GHG sources and sinks are of great importance for reducing the uncertainties of C cycle - climate feed-backs, we are only just beginning to understand the role of tropical tree stems as producers and / or conduits of soil-produced GHG.
I present first results of soil and tree stem GHG fluxes estimated over a six-month period, including a dry and a wet season, of continuous high frequency measurements with automated GHG flux systems in a tropical rainforest, in French Guiana. We adapted and extended an existing soil GHG flux system, combining a commercial automated soil CO2 flux chamber system (LI-8100A) and CH4 and N2O analyser (Picarro G2308), to include tree stem chambers. Different closure times were applied to ensure reliable flux estimates, especially for low CH4 and N2O fluxes. I show that the new automated system operated successfully, allowing for robust long-term measurements to examine temporal variations and ultimately calculate budgets of CO2, CH4 and N2O fluxes at soil and tree stem levels. Our results indicated that soils and tree stems acted exclusively as source for CO2, whereas soils and tree stems exhibited distinct patterns for both CH4 and N2O, which highlights the importance of partitioning GHG fluxes to better determine environmental controls regulating ecosystem GHG exchanges.
How to cite: Brechet, L., Daniel, W., Stahl, C., Burban, B., Goret, J.-Y., Salomόn, R. L., and Janssens, I. A.: Towards a better understanding of soil- and tree stem-atmosphere exchanges of greenhouse gases, i.e. CO2, CH4, N2O, in a tropical rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11242, https://doi.org/10.5194/egusphere-egu2020-11242, 2020.
The importance of greenhouse gas (GHG) emissions in global climate change is undisputed, but our understanding of the daily and seasonal variations of the GHG fluxes is far from complete and detailed flux estimates are unequally distributed among ecosystems worldwide. Carbon dioxide (77%; CO2), methane (14%; CH4) and nitrous oxide (8%; N2O) are the three main GHGs that trap infrared radiations and contribute to climate change. While CO2 has been largely studied, a considerable effort is still required to quantify the magnitude and drivers of CH4 and N2O, which have radiative effects 25 and 298 times greater than CO2, respectively. Tropical forests play a pivotal role in global carbon (C) balance and climate change mitigation, accounting for 68% of global C stock and representing up to 30% of total forest soil C sink. In the tropics, soils are main contributors to the ecosystem GHG fluxes. In fact, tropical forest soils are the largest natural source of soil CO2 and N2O and are overwhelmingly reported as important sink of CH4. More recently, studies reported that tree stems can also emit CO2, CH4 and N2O and act, via passive transport through the soil xylem stream, as a pathway for these gas emissions to the atmosphere.
Although accurate estimates of GHG sources and sinks are of great importance for reducing the uncertainties of C cycle - climate feed-backs, we are only just beginning to understand the role of tropical tree stems as producers and / or conduits of soil-produced GHG.
I present first results of soil and tree stem GHG fluxes estimated over a six-month period, including a dry and a wet season, of continuous high frequency measurements with automated GHG flux systems in a tropical rainforest, in French Guiana. We adapted and extended an existing soil GHG flux system, combining a commercial automated soil CO2 flux chamber system (LI-8100A) and CH4 and N2O analyser (Picarro G2308), to include tree stem chambers. Different closure times were applied to ensure reliable flux estimates, especially for low CH4 and N2O fluxes. I show that the new automated system operated successfully, allowing for robust long-term measurements to examine temporal variations and ultimately calculate budgets of CO2, CH4 and N2O fluxes at soil and tree stem levels. Our results indicated that soils and tree stems acted exclusively as source for CO2, whereas soils and tree stems exhibited distinct patterns for both CH4 and N2O, which highlights the importance of partitioning GHG fluxes to better determine environmental controls regulating ecosystem GHG exchanges.
How to cite: Brechet, L., Daniel, W., Stahl, C., Burban, B., Goret, J.-Y., Salomόn, R. L., and Janssens, I. A.: Towards a better understanding of soil- and tree stem-atmosphere exchanges of greenhouse gases, i.e. CO2, CH4, N2O, in a tropical rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11242, https://doi.org/10.5194/egusphere-egu2020-11242, 2020.
EGU2020-5650 | Displays | BG3.3
Patterns in CO2 exchange to the atmosphere from a borehole located in a Mediterranean karst system (Málaga, southern Spain)Enrique P. Sanchez-Cañete, José Benavente, Cristina Liñan, Lucía Ojeda, and Iñaki Vadillo
The vadose zone (VZ), found between the surface and groundwater level, can store massive amounts of CO2, recording values greater than 60,000 ppm to depths of a few tens of meters. The CO2 is produced mostly in the first meters of soil due to root respiration and microorganisms and, to a lesser extent, to geochemical reactions. Although commonly CO2 is produced mostly near the surface, the concentration increases with depth, due mainly to transport in two phases: 1) infiltration of CO2-enriched water followed by precipitation and CO2 release in deeper layers, and 2) percolation of CO2-rich air due to its high density. These transport process contribute to natural CO2 accumulation in the VZ, whose storage capacity depends on its thickness and porosity. All this CO2 storage can be exchange with the atmosphere mainly determined by differences in the temperature between the internal and external atmosphere.
Here we study a borehole located next to Nerja Cave (Málaga, Spain) developed within fissured and karstified Triassic dolomitic marbles. Our objective is to determine the main drivers involved in subterranean CO2 exchange with the atmosphere. To do that, CO2 molar fraction, air temperature, relative humidity, wind speed and direction were monitored in the top of the borehole, and were correlated with external variables as air temperature, relative humidity, atmospheric pressure, rain and sea tides. Results shown that within a few hours, the CO2 molar fraction can increase ten times more, showing a pattern with two cycles per day. In periods with low CO2 molar fraction the air penetrates into the borehole, on the other hand, periods with high CO2 values are due to the borehole CO2-rich air is moving toward the external atmosphere. We found that the CO2 emitted to the atmosphere by this borehole is several orders of magnitude than the soil CO2 fluxes in this area. Therefore, we need to produce accurate long-term estimates of borehole CO2 fluxes to improve our understanding of its contribution to local carbon balance.
How to cite: Sanchez-Cañete, E. P., Benavente, J., Liñan, C., Ojeda, L., and Vadillo, I.: Patterns in CO2 exchange to the atmosphere from a borehole located in a Mediterranean karst system (Málaga, southern Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5650, https://doi.org/10.5194/egusphere-egu2020-5650, 2020.
The vadose zone (VZ), found between the surface and groundwater level, can store massive amounts of CO2, recording values greater than 60,000 ppm to depths of a few tens of meters. The CO2 is produced mostly in the first meters of soil due to root respiration and microorganisms and, to a lesser extent, to geochemical reactions. Although commonly CO2 is produced mostly near the surface, the concentration increases with depth, due mainly to transport in two phases: 1) infiltration of CO2-enriched water followed by precipitation and CO2 release in deeper layers, and 2) percolation of CO2-rich air due to its high density. These transport process contribute to natural CO2 accumulation in the VZ, whose storage capacity depends on its thickness and porosity. All this CO2 storage can be exchange with the atmosphere mainly determined by differences in the temperature between the internal and external atmosphere.
Here we study a borehole located next to Nerja Cave (Málaga, Spain) developed within fissured and karstified Triassic dolomitic marbles. Our objective is to determine the main drivers involved in subterranean CO2 exchange with the atmosphere. To do that, CO2 molar fraction, air temperature, relative humidity, wind speed and direction were monitored in the top of the borehole, and were correlated with external variables as air temperature, relative humidity, atmospheric pressure, rain and sea tides. Results shown that within a few hours, the CO2 molar fraction can increase ten times more, showing a pattern with two cycles per day. In periods with low CO2 molar fraction the air penetrates into the borehole, on the other hand, periods with high CO2 values are due to the borehole CO2-rich air is moving toward the external atmosphere. We found that the CO2 emitted to the atmosphere by this borehole is several orders of magnitude than the soil CO2 fluxes in this area. Therefore, we need to produce accurate long-term estimates of borehole CO2 fluxes to improve our understanding of its contribution to local carbon balance.
How to cite: Sanchez-Cañete, E. P., Benavente, J., Liñan, C., Ojeda, L., and Vadillo, I.: Patterns in CO2 exchange to the atmosphere from a borehole located in a Mediterranean karst system (Málaga, southern Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5650, https://doi.org/10.5194/egusphere-egu2020-5650, 2020.
EGU2020-7483 | Displays | BG3.3
Borehole-based study of CO2-rich air transport in the vadose zone of a Mediterranean karst system (Malaga, southern Spain)Lucía Ojeda, José Benavente, Iñaki Vadillo, Cristina Liñán, and Enrique P. Sanchez-Cañete
The characterization of CO2 transport, and other C compounds (CH4, DIC, organic matter, etc.), in the vadose zone of a karst aquifer is key in order to quantify sources and sinks of carbon. In karst environments, most of the studies are focused on the dynamics of CO2 in caves, but only a few studies are related to field measurements of the CO2 content in boreholes, which provides direct insights about the vadose zone. Located at the east of the Nerja Cave (Malaga, Andalusia), one of the most important tourist caves in Spain, the vadose zone was accessed by 9 boreholes drilled into the vadose zone of a Triassic carbonate aquifer, with depths ranging between 15 and 30 m. The karst network in the study area is characterized by a great vertical heterogeneity, with significant cavities and voids at specific intervals. Groundwater levels at different altitudes are a consequence of this heterogeneity. Similarly, CO2 distribution and transport are clearly determined by the complex karst network.
Our study aims to identify significant horizontal gradients of CO2 in the karst vadose air, both spatial and temporally. We present monthly measurements of CO2 concentration, relative humidity, air temperature and 222Rn inside boreholes. In addition, we present CO2 results from an 18 hours-atmospheric air injection test. Linking them to the geophysical knowledge of voids in the study area, the results allow us to identify lateral fluxes of CO2-rich air in the vadose zone and how these fluxes are favoured by the incidence of the main karst discontinuity orientations. We observe different ventilation patterns: in spring the vadose air seems to be stored in specific orientations, while in summer there is a lower convective ventilation. The results contribute to explain the temporal variations of the chemical composition of recharge water in karst systems, as well as to support studies on the global carbon budget.
How to cite: Ojeda, L., Benavente, J., Vadillo, I., Liñán, C., and P. Sanchez-Cañete, E.: Borehole-based study of CO2-rich air transport in the vadose zone of a Mediterranean karst system (Malaga, southern Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7483, https://doi.org/10.5194/egusphere-egu2020-7483, 2020.
The characterization of CO2 transport, and other C compounds (CH4, DIC, organic matter, etc.), in the vadose zone of a karst aquifer is key in order to quantify sources and sinks of carbon. In karst environments, most of the studies are focused on the dynamics of CO2 in caves, but only a few studies are related to field measurements of the CO2 content in boreholes, which provides direct insights about the vadose zone. Located at the east of the Nerja Cave (Malaga, Andalusia), one of the most important tourist caves in Spain, the vadose zone was accessed by 9 boreholes drilled into the vadose zone of a Triassic carbonate aquifer, with depths ranging between 15 and 30 m. The karst network in the study area is characterized by a great vertical heterogeneity, with significant cavities and voids at specific intervals. Groundwater levels at different altitudes are a consequence of this heterogeneity. Similarly, CO2 distribution and transport are clearly determined by the complex karst network.
Our study aims to identify significant horizontal gradients of CO2 in the karst vadose air, both spatial and temporally. We present monthly measurements of CO2 concentration, relative humidity, air temperature and 222Rn inside boreholes. In addition, we present CO2 results from an 18 hours-atmospheric air injection test. Linking them to the geophysical knowledge of voids in the study area, the results allow us to identify lateral fluxes of CO2-rich air in the vadose zone and how these fluxes are favoured by the incidence of the main karst discontinuity orientations. We observe different ventilation patterns: in spring the vadose air seems to be stored in specific orientations, while in summer there is a lower convective ventilation. The results contribute to explain the temporal variations of the chemical composition of recharge water in karst systems, as well as to support studies on the global carbon budget.
How to cite: Ojeda, L., Benavente, J., Vadillo, I., Liñán, C., and P. Sanchez-Cañete, E.: Borehole-based study of CO2-rich air transport in the vadose zone of a Mediterranean karst system (Malaga, southern Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7483, https://doi.org/10.5194/egusphere-egu2020-7483, 2020.
EGU2020-21793 | Displays | BG3.3
On the role of cave-soil in the carbon cycle. A fist approach.Soledad Cuezva, Tamara Martin-Pozas, Angel Fernandez-Cortes, Juan Carlos Canaveras, Ivan Janssens, and Sergio Sanchez-Moral
Karsts cover up to 25 % of the land surface and contain significant sedimentary deposits that become active cave-soils. Subterranean karst ecosystems play an active role in the global carbon cycle in terms of their contribution to the global GHG balance. They act alternately as a source or sink of CO2 and as a rapid sink of CH4. The most recent results indicate that microbiota must play a significant ecological role in the biogeochemical processes that control the subterranean atmosphere composition. Soils forming underneath the surface must host a large part of the subterranean microbiota. But to date, their behaviour concerning the production of gases and exchange with the “confined troposphere” has not been evaluated. Systematic direct estimates of CO2 and CH4 fluxes from cave-soils do not exist in literature. And they are needed before global generalizations can be made about the carbon budgets (emissions and sinks) of karstic ecosystems.
Here we present pioneering research to evaluate the carbon fluxes from the cave soils directly exchanged with the cave atmosphere. This preliminary study is the first approach to systematically characterize the role of cave-soils in the production and transport of CO2 and CH4 in the subterranean environment. We carried out automatic in situ and real-time monitoring of CO2 and CH4 diffusive fluxes from a sedimentary alluvial soil in Pindal cave for one year (north Spain). We developed seasonal campaigns for CH4 and CO2 fluxes daily continuous monitoring by a LICOR closed chamber-based gas exchange system, in conjunction with a compatible Gasmet FTIR gas analyser. Moreover, autonomous equipment monitored the main micro-environmental parameters of the local subsurface-soil-atmosphere system. To interpret gas exchange processes and rates, and to understand the underlying mechanisms in soils, we also carried out seasonal δ13C geochemical tracing by using Picarro cavity ring-down spectroscopy, through simultaneous cave atmosphere-soil-chamber air samplings. We also characterized the soil microbial communities related to the carbon cycle by meta-barcoding analyses of bacterial 16S rRNA genes and Shotgun Metagenomics.
Preliminary results show net CO2 emissions from cave-soil on a daily scale, resulting from respiration by chemotrophic microorganisms. We detect significant magnitude variations along the day, reaching occasionally values close to zero. This is remarkable in such thermo-hygrometric stable environment and absence of light. Changes in the cave ventilation regime seems to be the determining factor just in some cases. Intrinsic microbial processes appear to be decisive in others. The results also reveal net CH4 uptake from cave-soil on a daily scale, with no significant magnitude variations along the day. It seems to be linked to the metabolism of Nitrate-dependent methanotrophs belonging to the phylum Rokubacteria. Additionally, we detected significant variations in magnitude and different flow patterns in the cave-soils colonized by biofilms, most prominent in the case of moonmilk deposits.
These preliminary results confirm that cave-soil is playing an outstanding role in the processes of production, consumption and storage of CO2 and CH4 and may be partially determining the strong variations of these major GHGs in natural subterranean ecosystems.
How to cite: Cuezva, S., Martin-Pozas, T., Fernandez-Cortes, A., Canaveras, J. C., Janssens, I., and Sanchez-Moral, S.: On the role of cave-soil in the carbon cycle. A fist approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21793, https://doi.org/10.5194/egusphere-egu2020-21793, 2020.
Karsts cover up to 25 % of the land surface and contain significant sedimentary deposits that become active cave-soils. Subterranean karst ecosystems play an active role in the global carbon cycle in terms of their contribution to the global GHG balance. They act alternately as a source or sink of CO2 and as a rapid sink of CH4. The most recent results indicate that microbiota must play a significant ecological role in the biogeochemical processes that control the subterranean atmosphere composition. Soils forming underneath the surface must host a large part of the subterranean microbiota. But to date, their behaviour concerning the production of gases and exchange with the “confined troposphere” has not been evaluated. Systematic direct estimates of CO2 and CH4 fluxes from cave-soils do not exist in literature. And they are needed before global generalizations can be made about the carbon budgets (emissions and sinks) of karstic ecosystems.
Here we present pioneering research to evaluate the carbon fluxes from the cave soils directly exchanged with the cave atmosphere. This preliminary study is the first approach to systematically characterize the role of cave-soils in the production and transport of CO2 and CH4 in the subterranean environment. We carried out automatic in situ and real-time monitoring of CO2 and CH4 diffusive fluxes from a sedimentary alluvial soil in Pindal cave for one year (north Spain). We developed seasonal campaigns for CH4 and CO2 fluxes daily continuous monitoring by a LICOR closed chamber-based gas exchange system, in conjunction with a compatible Gasmet FTIR gas analyser. Moreover, autonomous equipment monitored the main micro-environmental parameters of the local subsurface-soil-atmosphere system. To interpret gas exchange processes and rates, and to understand the underlying mechanisms in soils, we also carried out seasonal δ13C geochemical tracing by using Picarro cavity ring-down spectroscopy, through simultaneous cave atmosphere-soil-chamber air samplings. We also characterized the soil microbial communities related to the carbon cycle by meta-barcoding analyses of bacterial 16S rRNA genes and Shotgun Metagenomics.
Preliminary results show net CO2 emissions from cave-soil on a daily scale, resulting from respiration by chemotrophic microorganisms. We detect significant magnitude variations along the day, reaching occasionally values close to zero. This is remarkable in such thermo-hygrometric stable environment and absence of light. Changes in the cave ventilation regime seems to be the determining factor just in some cases. Intrinsic microbial processes appear to be decisive in others. The results also reveal net CH4 uptake from cave-soil on a daily scale, with no significant magnitude variations along the day. It seems to be linked to the metabolism of Nitrate-dependent methanotrophs belonging to the phylum Rokubacteria. Additionally, we detected significant variations in magnitude and different flow patterns in the cave-soils colonized by biofilms, most prominent in the case of moonmilk deposits.
These preliminary results confirm that cave-soil is playing an outstanding role in the processes of production, consumption and storage of CO2 and CH4 and may be partially determining the strong variations of these major GHGs in natural subterranean ecosystems.
How to cite: Cuezva, S., Martin-Pozas, T., Fernandez-Cortes, A., Canaveras, J. C., Janssens, I., and Sanchez-Moral, S.: On the role of cave-soil in the carbon cycle. A fist approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21793, https://doi.org/10.5194/egusphere-egu2020-21793, 2020.
EGU2020-19189 | Displays | BG3.3
Dynamics and effects of soil CO2 on carbonate dissolution and transport in response to precipitation eventsMartin Maier, Laurin Osterholt, and Andreas Hartmann
Dissolution of CaCO3 in calcareous soils is mainly governed by CO2 which forms a weak but ubiquitous acid in the aqueous phase. Soil CO2 concentrations are generally higher than atmospheric concentrations due to the CO2 production in the soil. It is generally assumed, that it is mainly the CO2 concentration in the soil and the discharge that control the re-location of CaCO3, and thus the further formation of soil and karst. In most cases soil and karst systems are considered to be static and that the CaCO3 dissolution process is a steady state process. However, we know that soil CO2 concentrations can be highly dynamic and are affected by soil temperature and soil moisture. Our objective was to investigate whether this steady state assumption regarding carbonate dissolution and transport can be applied or whether we have to consider the dynamics and interaction of soil CO2 and dissolution of CaCO3 in the aqueous phase.
We report on insights from a 3 year field study in a calcareous soil in which soil CO2 concentrations and its response to soil moisture and precipitation were investigated. Low intensity precipitation resulted in slow increase in soil CO2 concentration, since increased soil water content blocks formerly air-filled pores. Intense precipitation events were followed by fast infiltration and probably preferential flow. Intense precipitation also resulted in temporary drops in soil CO2. These drops can be explained by a relative under-saturation of the soil solution at a certain depth. The soil solution is mixed with infiltrating rain water, which is still equilibrated with the lower atmospheric CO2 concentrations and thus drawing CO2 from the surrounding soil air. These mechanisms should results in a much stronger dissolution of local CaCO3 and net transport of dissolved CaCO3.
A following laboratory experiment on mesocosms of natural soil and restructured soil was used to test and reproduce the observed CO2 patterns as well as dissolution and transport of carbonate due to precipitation events. These experiments also showed that higher intensity of precipitation results in stronger drops in soil CO2 concentration and higher transport rates of dissolved CaCO3. Hydrus1D was used to model soil CO2 dynamics and dissolution of CaCO3 in the aqueous phase for the measured scenarios. The observed general pattern of the “drops” of soil CO2 could be easily reproduced confirming the assumption of CO2 undersaturated soil water right after the precipitation events. The natural soil mesocosm showed comparable patterns in all precipitations experiments. The restructured soil mesocosm showed a high mobilization and drainage during the first precipitations experiments which then fast declined to the level of the natural soil mesocosm. We interpret this as fast dissolution and washing off of carbonates attached to the macropore surfaces in which preferential flow occurs.
We conclude that dynamics and interaction of soil CO2 and dissolution of CaCO3 in the aqueous phase are highly dynamic and affected by preferential flow. It seems that general patterns can be reproduced using Hydrus 1D, with the hydrological parametrization as a major challenge.
This research was financially supported by DFG (MA 5826/2-1).
How to cite: Maier, M., Osterholt, L., and Hartmann, A.: Dynamics and effects of soil CO2 on carbonate dissolution and transport in response to precipitation events , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19189, https://doi.org/10.5194/egusphere-egu2020-19189, 2020.
Dissolution of CaCO3 in calcareous soils is mainly governed by CO2 which forms a weak but ubiquitous acid in the aqueous phase. Soil CO2 concentrations are generally higher than atmospheric concentrations due to the CO2 production in the soil. It is generally assumed, that it is mainly the CO2 concentration in the soil and the discharge that control the re-location of CaCO3, and thus the further formation of soil and karst. In most cases soil and karst systems are considered to be static and that the CaCO3 dissolution process is a steady state process. However, we know that soil CO2 concentrations can be highly dynamic and are affected by soil temperature and soil moisture. Our objective was to investigate whether this steady state assumption regarding carbonate dissolution and transport can be applied or whether we have to consider the dynamics and interaction of soil CO2 and dissolution of CaCO3 in the aqueous phase.
We report on insights from a 3 year field study in a calcareous soil in which soil CO2 concentrations and its response to soil moisture and precipitation were investigated. Low intensity precipitation resulted in slow increase in soil CO2 concentration, since increased soil water content blocks formerly air-filled pores. Intense precipitation events were followed by fast infiltration and probably preferential flow. Intense precipitation also resulted in temporary drops in soil CO2. These drops can be explained by a relative under-saturation of the soil solution at a certain depth. The soil solution is mixed with infiltrating rain water, which is still equilibrated with the lower atmospheric CO2 concentrations and thus drawing CO2 from the surrounding soil air. These mechanisms should results in a much stronger dissolution of local CaCO3 and net transport of dissolved CaCO3.
A following laboratory experiment on mesocosms of natural soil and restructured soil was used to test and reproduce the observed CO2 patterns as well as dissolution and transport of carbonate due to precipitation events. These experiments also showed that higher intensity of precipitation results in stronger drops in soil CO2 concentration and higher transport rates of dissolved CaCO3. Hydrus1D was used to model soil CO2 dynamics and dissolution of CaCO3 in the aqueous phase for the measured scenarios. The observed general pattern of the “drops” of soil CO2 could be easily reproduced confirming the assumption of CO2 undersaturated soil water right after the precipitation events. The natural soil mesocosm showed comparable patterns in all precipitations experiments. The restructured soil mesocosm showed a high mobilization and drainage during the first precipitations experiments which then fast declined to the level of the natural soil mesocosm. We interpret this as fast dissolution and washing off of carbonates attached to the macropore surfaces in which preferential flow occurs.
We conclude that dynamics and interaction of soil CO2 and dissolution of CaCO3 in the aqueous phase are highly dynamic and affected by preferential flow. It seems that general patterns can be reproduced using Hydrus 1D, with the hydrological parametrization as a major challenge.
This research was financially supported by DFG (MA 5826/2-1).
How to cite: Maier, M., Osterholt, L., and Hartmann, A.: Dynamics and effects of soil CO2 on carbonate dissolution and transport in response to precipitation events , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19189, https://doi.org/10.5194/egusphere-egu2020-19189, 2020.
EGU2020-6689 | Displays | BG3.3
Impact of soil incorporation of biochar on radon emissionKamil Szewczak, Katarzyna Wołoszczuk, Sławomir Jednoróg, Anna Rafalska-Przysucha, Łukasz Gluba, and Mateusz Lukowski
Biochar (charcoal made from biomass in the pyrolysis process) has found broad application in agriculture. The research performed with biochar revealed the positive impact of biochar application for chemical and physical properties of soil. Biochar was also used as an material for decontamination of soil from heavy metals and pesticides. The improved water retention of soil after biochar application was shown as well. There are particular research concerning the usage of biochar as an material for decontamination of soil from anthropogenic radioactive material including Cs-137 and Sr-90 deposited after nuclear weapon test. However, the biochar find the most practical application in agriculture for improvement of crops efficiency and water retention of soils. The typical application amount of biochar for agricultural purpose varies from 40 to 100 Mg ha-1.
Actually, there are numerous research activities focused on the direct impact of biochar on physical and chemical soil properties. Simultaneously lack of information are available for issue if and how biochar impact for environment radioactivity. As one of that impact could be the influence on radon emission from soil surface. The aim of presented work was to investigate the impact of biochar application into the soil for the radon emission process.
The research objects were soil samples collected from experimental fields with biochar applied at doses from 1 to 100 Mg ha-1. Two type of biochar were investigated – first biochar produced from sunflower husk at temperature of 650°C and second biochar produced from wood chips at temperature of 650°C. The radon emanation coefficient were assessed using active cumulative technique incorporating AlphaGUARD instrument equipped with sealed accumulation box. In addition, we directly measured radon exhalation rate at the experimental fields. As the emanation coefficient calculation require the information on Ra-226 activity concentration, the gamma spectrometry analysis using HPGe detector were performed for samples collected on particular field.
The results of activity concentration assessments shown that the most visible effect of biochar application into the soil is associated with the reduction of soil bulk density by this material. No significant changes in activity concentration depending on the biochar dose applied were observed for Ra-226. Fluctuation in radon exhalation rate as well as in emanation coefficient, depending on the biochar dose (from 1 to 100 Mg ha-1) were observed and presented.
The research was partially conducted under the projects “Water in soil – satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017, which was financed by the Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” – BIOSTRATEG strategic R&D programme.
How to cite: Szewczak, K., Wołoszczuk, K., Jednoróg, S., Rafalska-Przysucha, A., Gluba, Ł., and Lukowski, M.: Impact of soil incorporation of biochar on radon emission, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6689, https://doi.org/10.5194/egusphere-egu2020-6689, 2020.
Biochar (charcoal made from biomass in the pyrolysis process) has found broad application in agriculture. The research performed with biochar revealed the positive impact of biochar application for chemical and physical properties of soil. Biochar was also used as an material for decontamination of soil from heavy metals and pesticides. The improved water retention of soil after biochar application was shown as well. There are particular research concerning the usage of biochar as an material for decontamination of soil from anthropogenic radioactive material including Cs-137 and Sr-90 deposited after nuclear weapon test. However, the biochar find the most practical application in agriculture for improvement of crops efficiency and water retention of soils. The typical application amount of biochar for agricultural purpose varies from 40 to 100 Mg ha-1.
Actually, there are numerous research activities focused on the direct impact of biochar on physical and chemical soil properties. Simultaneously lack of information are available for issue if and how biochar impact for environment radioactivity. As one of that impact could be the influence on radon emission from soil surface. The aim of presented work was to investigate the impact of biochar application into the soil for the radon emission process.
The research objects were soil samples collected from experimental fields with biochar applied at doses from 1 to 100 Mg ha-1. Two type of biochar were investigated – first biochar produced from sunflower husk at temperature of 650°C and second biochar produced from wood chips at temperature of 650°C. The radon emanation coefficient were assessed using active cumulative technique incorporating AlphaGUARD instrument equipped with sealed accumulation box. In addition, we directly measured radon exhalation rate at the experimental fields. As the emanation coefficient calculation require the information on Ra-226 activity concentration, the gamma spectrometry analysis using HPGe detector were performed for samples collected on particular field.
The results of activity concentration assessments shown that the most visible effect of biochar application into the soil is associated with the reduction of soil bulk density by this material. No significant changes in activity concentration depending on the biochar dose applied were observed for Ra-226. Fluctuation in radon exhalation rate as well as in emanation coefficient, depending on the biochar dose (from 1 to 100 Mg ha-1) were observed and presented.
The research was partially conducted under the projects “Water in soil – satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017, which was financed by the Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” – BIOSTRATEG strategic R&D programme.
How to cite: Szewczak, K., Wołoszczuk, K., Jednoróg, S., Rafalska-Przysucha, A., Gluba, Ł., and Lukowski, M.: Impact of soil incorporation of biochar on radon emission, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6689, https://doi.org/10.5194/egusphere-egu2020-6689, 2020.
EGU2020-4570 | Displays | BG3.3
Use of laser spectroscopy to evaluate the influence of soil storage on N2O emissionYang Ding, Maria Heiling, Mohammad Zaman, Christian Resch, Gerd Dercon, and Lee Kheng Heng
Accurate measurements of nitrous oxide (N2O) fluxes from soils are necessary to understand dynamic changes in soil nitrogen cycles. Laboratory incubation experiments provide a controlled condition to measure these N2O fluxes. Before incubation experiments, soils are often stored at certain conditions to minimize the microbial activities. However, the effect of soil storage on N2O emission has been poorly studied. A laboratory incubation experiment was conducted using disturbed soils to study the storage effect. The soil was sieved to 2mm and the following four treatments were tested: fresh undisturbed (FU), fresh sieved (FS), fridge stored at 4ºC (ST), and stored at room temperature after drying (PI). After soil samples were brought to 60% water-filled pore space (WFPS), 15N labelled urea (1 At%) was applied at the rate of 50 mg N kg-1 soil and the soil was incubated at room temperature (23 ºC). The N2O fluxes were measured for 7 weeks using off-axis integrated cavity output spectroscopy (OA-ICOS, Los Gatos Research, California, USA). Cumulative N2O fluxes and Keeling plot intercepts (δ15N source) were calculated. The results showed that soil storage has a significant effect on N2O emission. Over the 7-week period, ST produced the highest cumulative N2O emissions (2.70 µg N g-1 soil) as well as the largest amount of N derived from fertiliser (Ndff) (1.4 µg N g-1 soil). FU produced the lowest cumulative N2O emissions (1.0 µg N g-1 soil) but the largest amount of N derived from soil (Ndfs) (0.6 µg N g-1 soil). The daily N2O fluxes of FS and FU declined rapidly after the peak emissions, but the fluxes of PI and ST fluctuated after the peaks. These results indicate that soil storage affects microbial processes and therefore N2O emissions. Our results suggest using fresh soil to avoid storage effects. If this is not possible the effect of soil storage should be considered before the experiment.
How to cite: Ding, Y., Heiling, M., Zaman, M., Resch, C., Dercon, G., and Heng, L. K.: Use of laser spectroscopy to evaluate the influence of soil storage on N2O emission, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4570, https://doi.org/10.5194/egusphere-egu2020-4570, 2020.
Accurate measurements of nitrous oxide (N2O) fluxes from soils are necessary to understand dynamic changes in soil nitrogen cycles. Laboratory incubation experiments provide a controlled condition to measure these N2O fluxes. Before incubation experiments, soils are often stored at certain conditions to minimize the microbial activities. However, the effect of soil storage on N2O emission has been poorly studied. A laboratory incubation experiment was conducted using disturbed soils to study the storage effect. The soil was sieved to 2mm and the following four treatments were tested: fresh undisturbed (FU), fresh sieved (FS), fridge stored at 4ºC (ST), and stored at room temperature after drying (PI). After soil samples were brought to 60% water-filled pore space (WFPS), 15N labelled urea (1 At%) was applied at the rate of 50 mg N kg-1 soil and the soil was incubated at room temperature (23 ºC). The N2O fluxes were measured for 7 weeks using off-axis integrated cavity output spectroscopy (OA-ICOS, Los Gatos Research, California, USA). Cumulative N2O fluxes and Keeling plot intercepts (δ15N source) were calculated. The results showed that soil storage has a significant effect on N2O emission. Over the 7-week period, ST produced the highest cumulative N2O emissions (2.70 µg N g-1 soil) as well as the largest amount of N derived from fertiliser (Ndff) (1.4 µg N g-1 soil). FU produced the lowest cumulative N2O emissions (1.0 µg N g-1 soil) but the largest amount of N derived from soil (Ndfs) (0.6 µg N g-1 soil). The daily N2O fluxes of FS and FU declined rapidly after the peak emissions, but the fluxes of PI and ST fluctuated after the peaks. These results indicate that soil storage affects microbial processes and therefore N2O emissions. Our results suggest using fresh soil to avoid storage effects. If this is not possible the effect of soil storage should be considered before the experiment.
How to cite: Ding, Y., Heiling, M., Zaman, M., Resch, C., Dercon, G., and Heng, L. K.: Use of laser spectroscopy to evaluate the influence of soil storage on N2O emission, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4570, https://doi.org/10.5194/egusphere-egu2020-4570, 2020.
EGU2020-10266 | Displays | BG3.3
Development of combined measurement method for methane, nitrous oxide and carbon dioxide without gas cylinder by gas chromatographyShigeto Sudo
Greenhouse gas emission from agricultural ecosystems are one of major environmental issue, recently. Our research aim is improving greenhouse gas flux measurement method precisely, inexpensively and automatically in agricultural ecosystems. Measurement method for CO2, CH4 and N2O simultaneous analysis (3GHG-GC) was firstly launched in 2005 followed by automatic gas sampling system (AGSS) in 2006, automatic injector for GC (RoVi) in 2013 and nitrogen generation system from compressed air for precise GC analysis in 2011, respectively. 3GHG-GC was recently further improved that the carrier gas of this method was changed from helium to nitrogen or argon to meet global requirement to save helium consumption. In "3GHG-GC", 3 stages of packed separation column using Porapak Q (Waters Co. Ltd. USA) and Unibeads C (GL Science Co. Ltd. Japan). Shimadzu GC-2014 gas chromatograph equipped with thermal conductivity detector (TCD), flame ionization detector (FID) and electron capture detector (ECD). The carrier gas was purified nitrogen generated by compressed air. The impurity of methane in the carrier nitrogen was eliminated by catalytic chemical treatment to measure precise atmospheric level of CH4. Finally the system "3GHG-GC" achieved three gas combined precise measurement with standard error of within 1% without gas cylinder for carrier gases.
How to cite: Sudo, S.: Development of combined measurement method for methane, nitrous oxide and carbon dioxide without gas cylinder by gas chromatography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10266, https://doi.org/10.5194/egusphere-egu2020-10266, 2020.
Greenhouse gas emission from agricultural ecosystems are one of major environmental issue, recently. Our research aim is improving greenhouse gas flux measurement method precisely, inexpensively and automatically in agricultural ecosystems. Measurement method for CO2, CH4 and N2O simultaneous analysis (3GHG-GC) was firstly launched in 2005 followed by automatic gas sampling system (AGSS) in 2006, automatic injector for GC (RoVi) in 2013 and nitrogen generation system from compressed air for precise GC analysis in 2011, respectively. 3GHG-GC was recently further improved that the carrier gas of this method was changed from helium to nitrogen or argon to meet global requirement to save helium consumption. In "3GHG-GC", 3 stages of packed separation column using Porapak Q (Waters Co. Ltd. USA) and Unibeads C (GL Science Co. Ltd. Japan). Shimadzu GC-2014 gas chromatograph equipped with thermal conductivity detector (TCD), flame ionization detector (FID) and electron capture detector (ECD). The carrier gas was purified nitrogen generated by compressed air. The impurity of methane in the carrier nitrogen was eliminated by catalytic chemical treatment to measure precise atmospheric level of CH4. Finally the system "3GHG-GC" achieved three gas combined precise measurement with standard error of within 1% without gas cylinder for carrier gases.
How to cite: Sudo, S.: Development of combined measurement method for methane, nitrous oxide and carbon dioxide without gas cylinder by gas chromatography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10266, https://doi.org/10.5194/egusphere-egu2020-10266, 2020.
EGU2020-7272 | Displays | BG3.3
Development of an in-situ CO2 gradient samplerLaurin Osterholt and Martin Maier
Gas fluxes between soil and atmosphere play an important role for the global greenhouse gas budgets. Several methods are available to determine soil gas fluxes. Besides the commonly used chamber methods the gradient method becomes more and more important. Chamber methods have the disadvantage that the microclimate can be influenced by the chamber which can affect gas fluxes. This problem does not occur with the gradient method. Furthermore the gradient method has the advantage that it can provide information about the depth profile of gas production and consumption in the soil.
The concept of the gradient method is to calculate gas fluxes by the vertical concentration gradient of a gas in the soil. For the calculation of the flux the effective diffusivity coefficient of the soil is needed. This can be approximated by models or by lab measurements. However, both of these approaches often fail in explaining site specific characteristics and spatial variability. Another way to determine soil gas diffusivity is to apply the gradient method using a tracer gas. By the injection of a tracer gas with known flux soil gas diffusivity can be measured in-situ.
We developed an innovative sampling set-up to apply an improved gradient method including the possibility to determine soil gas diffusivity in situ. We designed a sampler with build-in CO2 sensors in multiple depths that can easily be installed into the soil. With this sampler CO2 concentrations can be measured continuously in several depths. This enables the identification of short-time effects such as the influence of wind-induced pressure pumping on gas transport. The sampler allows tracer gas injection into the soil for in-situ diffusivity measurement. We decided for CO2 as a tracer gas because it can be measured with small sensors which keep the set-up simple. To account for the natural CO2 production in the soil we developed a differential gas profile approach. Using an additional reference sampler allows measuring the natural CO2 gradient without the tracer signal, and thus subtracting the tracer CO2 signal from the natural CO2 signal.
The sampler consists of one 3D print segment per depth each containing one CO2 sensor. These parts can be combined to a sampler with flexible amount of measurement depths. The construction with individual segments allows a better maintenance in case of sensor defects. For the installation of the sampler a hole has to be drilled, into which the sampler is inserted. To prevent gas bypassing along the wall of the drill hole we equipped each segment with an inflatable gasket between the measurement locations.
In a next step we will evaluate the sampler and test it in the lab and under different environmental conditions. We expect that with this sampler we will be able to run gas transport experiments in the field with a high temporal resolution and relatively low effort.
Acknowledgements
We thank Alfred Baer and Sven Kolbe for the technical support.
How to cite: Osterholt, L. and Maier, M.: Development of an in-situ CO2 gradient sampler, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7272, https://doi.org/10.5194/egusphere-egu2020-7272, 2020.
Gas fluxes between soil and atmosphere play an important role for the global greenhouse gas budgets. Several methods are available to determine soil gas fluxes. Besides the commonly used chamber methods the gradient method becomes more and more important. Chamber methods have the disadvantage that the microclimate can be influenced by the chamber which can affect gas fluxes. This problem does not occur with the gradient method. Furthermore the gradient method has the advantage that it can provide information about the depth profile of gas production and consumption in the soil.
The concept of the gradient method is to calculate gas fluxes by the vertical concentration gradient of a gas in the soil. For the calculation of the flux the effective diffusivity coefficient of the soil is needed. This can be approximated by models or by lab measurements. However, both of these approaches often fail in explaining site specific characteristics and spatial variability. Another way to determine soil gas diffusivity is to apply the gradient method using a tracer gas. By the injection of a tracer gas with known flux soil gas diffusivity can be measured in-situ.
We developed an innovative sampling set-up to apply an improved gradient method including the possibility to determine soil gas diffusivity in situ. We designed a sampler with build-in CO2 sensors in multiple depths that can easily be installed into the soil. With this sampler CO2 concentrations can be measured continuously in several depths. This enables the identification of short-time effects such as the influence of wind-induced pressure pumping on gas transport. The sampler allows tracer gas injection into the soil for in-situ diffusivity measurement. We decided for CO2 as a tracer gas because it can be measured with small sensors which keep the set-up simple. To account for the natural CO2 production in the soil we developed a differential gas profile approach. Using an additional reference sampler allows measuring the natural CO2 gradient without the tracer signal, and thus subtracting the tracer CO2 signal from the natural CO2 signal.
The sampler consists of one 3D print segment per depth each containing one CO2 sensor. These parts can be combined to a sampler with flexible amount of measurement depths. The construction with individual segments allows a better maintenance in case of sensor defects. For the installation of the sampler a hole has to be drilled, into which the sampler is inserted. To prevent gas bypassing along the wall of the drill hole we equipped each segment with an inflatable gasket between the measurement locations.
In a next step we will evaluate the sampler and test it in the lab and under different environmental conditions. We expect that with this sampler we will be able to run gas transport experiments in the field with a high temporal resolution and relatively low effort.
Acknowledgements
We thank Alfred Baer and Sven Kolbe for the technical support.
How to cite: Osterholt, L. and Maier, M.: Development of an in-situ CO2 gradient sampler, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7272, https://doi.org/10.5194/egusphere-egu2020-7272, 2020.
EGU2020-17686 | Displays | BG3.3
The effect of vertical distribution functions on CO2 efflux and production calculated with the flux gradient approachHubert Jochheim, Stephan Wirth, Sinikka Paulus, Martin Maier, Christoph Haas, and Horst H. Gerke
Soil respiration is one of the most significant carbon fluxes in terrestrial ecosystems. The analyses and quantification of soil CO2 production and its influencing factors play a crucial role in the understanding of the global carbon budget.
To investigate CO2 efflux from terrestrial soils under field conditions, manual or automated soil chambers are the most common methods. The flux-gradient approach (FGA) as an alternative method applies Fick’s law to vertical profiles of soil CO2. The FGA uses the soil gas diffusivity to calculate vertical fluxes of soil CO2 and the CO2 efflux from soil. The vertical partitioning the production of CO2 in different soil layers can be regarded as an option and an advantage of FGA as compared to chamber methods.
This investigation aims at clarifying whether a spline or an exponential function is more suitable for fitting vertical distributions of measured CO2 concentrations. We compared simulation results on the CO2 efflux and the vertical distribution of CO2 production within the soil when applying an exponential function or a spline function, respectively. Soil CO2 concentrations were measured at the soil surface and at 0, 0.1, 0.2, 0.3 and 1.0 m soil depth of a Scots pine and a European beech forest stand of the Northeast German Lowlands. Additionally, the CO2 efflux was estimated by applying the manual chamber method. The results suggest that vertical distribution function of soil CO2 affects both the calculated CO2 efflux and the production of soil CO2. The CO2 efflux from the chamber method fits best with the CO2 efflux from spline function. We discus some effects with the application of the spline function on the calculated vertical distribution of CO2 production.
How to cite: Jochheim, H., Wirth, S., Paulus, S., Maier, M., Haas, C., and Gerke, H. H.: The effect of vertical distribution functions on CO2 efflux and production calculated with the flux gradient approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17686, https://doi.org/10.5194/egusphere-egu2020-17686, 2020.
Soil respiration is one of the most significant carbon fluxes in terrestrial ecosystems. The analyses and quantification of soil CO2 production and its influencing factors play a crucial role in the understanding of the global carbon budget.
To investigate CO2 efflux from terrestrial soils under field conditions, manual or automated soil chambers are the most common methods. The flux-gradient approach (FGA) as an alternative method applies Fick’s law to vertical profiles of soil CO2. The FGA uses the soil gas diffusivity to calculate vertical fluxes of soil CO2 and the CO2 efflux from soil. The vertical partitioning the production of CO2 in different soil layers can be regarded as an option and an advantage of FGA as compared to chamber methods.
This investigation aims at clarifying whether a spline or an exponential function is more suitable for fitting vertical distributions of measured CO2 concentrations. We compared simulation results on the CO2 efflux and the vertical distribution of CO2 production within the soil when applying an exponential function or a spline function, respectively. Soil CO2 concentrations were measured at the soil surface and at 0, 0.1, 0.2, 0.3 and 1.0 m soil depth of a Scots pine and a European beech forest stand of the Northeast German Lowlands. Additionally, the CO2 efflux was estimated by applying the manual chamber method. The results suggest that vertical distribution function of soil CO2 affects both the calculated CO2 efflux and the production of soil CO2. The CO2 efflux from the chamber method fits best with the CO2 efflux from spline function. We discus some effects with the application of the spline function on the calculated vertical distribution of CO2 production.
How to cite: Jochheim, H., Wirth, S., Paulus, S., Maier, M., Haas, C., and Gerke, H. H.: The effect of vertical distribution functions on CO2 efflux and production calculated with the flux gradient approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17686, https://doi.org/10.5194/egusphere-egu2020-17686, 2020.
EGU2020-20806 | Displays | BG3.3
Soil organic carbon dynamics and controlling factors in typical ecosystems of the Qinghai-Tibet Platea critical zoneHongyun Yao, Pei Wang, Chao Yang, Xuebao Xu, Junqi Wei, Fangzhong Shi, Na Guo, Hongyun Yao, and Xiaoyan Li
The interface of the Earth’s critical zone is the place where organic carbon is dramatically decomposed and transformed.The dynamics and fate of organic carbon serve as an important foundation to reveal the material transportation in the Qinghai-Tibet Platea critical zones. This research analyzed temperature, soil moisture and stable carbon isotope values (δ13C) of CO2 in different soil layers, measure soil surface respiration using soil respiration measurement system (LI-8100) , and analyzed carbon storage , carbon dynamics and its controlling factors in critical zones in seven typical ecosystems of the Qinghai-Tibet Platea. The results found that the underground carbon content and its controlling factors were very different in different ecosystems on the Qinghai-Tibet Plateau. The main controlling factor of carbon changes was water in alpine steppe and desert ecosystem while it was temperature in alpine meadow. In the meanwhile, this research also measured the maximum carboxylation rate (Vcmax) of dominant plants in each ecosystem, trying to explore the different carbon inputs in different ecosystems. Understanding the impacts of environmental changes on the geochemical cycling of critical zone’s organic carbon in the Qinghai-Tibet Platea would benefit the optimization of carbon cycling model and climate change predictions.
How to cite: Yao, H., Wang, P., Yang, C., Xu, X., Wei, J., Shi, F., Guo, N., Yao, H., and Li, X.: Soil organic carbon dynamics and controlling factors in typical ecosystems of the Qinghai-Tibet Platea critical zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20806, https://doi.org/10.5194/egusphere-egu2020-20806, 2020.
The interface of the Earth’s critical zone is the place where organic carbon is dramatically decomposed and transformed.The dynamics and fate of organic carbon serve as an important foundation to reveal the material transportation in the Qinghai-Tibet Platea critical zones. This research analyzed temperature, soil moisture and stable carbon isotope values (δ13C) of CO2 in different soil layers, measure soil surface respiration using soil respiration measurement system (LI-8100) , and analyzed carbon storage , carbon dynamics and its controlling factors in critical zones in seven typical ecosystems of the Qinghai-Tibet Platea. The results found that the underground carbon content and its controlling factors were very different in different ecosystems on the Qinghai-Tibet Plateau. The main controlling factor of carbon changes was water in alpine steppe and desert ecosystem while it was temperature in alpine meadow. In the meanwhile, this research also measured the maximum carboxylation rate (Vcmax) of dominant plants in each ecosystem, trying to explore the different carbon inputs in different ecosystems. Understanding the impacts of environmental changes on the geochemical cycling of critical zone’s organic carbon in the Qinghai-Tibet Platea would benefit the optimization of carbon cycling model and climate change predictions.
How to cite: Yao, H., Wang, P., Yang, C., Xu, X., Wei, J., Shi, F., Guo, N., Yao, H., and Li, X.: Soil organic carbon dynamics and controlling factors in typical ecosystems of the Qinghai-Tibet Platea critical zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20806, https://doi.org/10.5194/egusphere-egu2020-20806, 2020.
EGU2020-12686 | Displays | BG3.3
Evaluation of modelled methane emissions over high-latitude wetlandsYao Gao, Eleanor Burke, Sarah Chadburn, Maarit Raivonen, Timo Vesala, Mika Aurela, Annalea Lohila, Huiyi Yang, Tingting Li, and Tuula Aalto
Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after CO2. Previous studies indicated that wetland CH4 emission is not only the single largest but also the most uncertain natural source in the global CH4 budget. Furthermore, the strong sensitivity of wetland CH4 emissions to environmental conditions has raised concerns on potential positive feedbacks to climate change. Therefore, evaluation of the process-based land surface models of earth system models (ESMs) in simulating CH4 emission over wetlands is needed for more precise future predictions. In this work, a set of high-latitude wetland sites with various nutrient conditions are studied. The wetland CH4 fluxes are simulated by the land surface model JULES of the UK Earth System model and the Helsinki peatland methane emission model (HIMMELI), which is developed at Finnish Meteorological Institute and Helsinki University. The differences between the modelled and observed CH4 fluxes are analyzed, complemented with key environmental variables for interpretation (e.g. soil temperature and moisture, vegetation types, snow depth, NPP, soil carbon). In general, the simulated CH4 fluxes by HIMMELI is closer to the observed CH4 fluxes in magnitude and seasonality at sites than those by JULES. The inter-annual variability of simulated CH4 fluxes by HIMMELI depends on the simulated anoxic soil respiration, which serves as the substrate of the CH4 fluxes in HIMMELI. The anoxic soil respiration is calculated based on the simulated soil respiration and water table depth in JULES. More accurate simulation of soil carbon pool and water table depth in JULES will lead to improvement in the simulated anoxic soil respiration.
How to cite: Gao, Y., Burke, E., Chadburn, S., Raivonen, M., Vesala, T., Aurela, M., Lohila, A., Yang, H., Li, T., and Aalto, T.: Evaluation of modelled methane emissions over high-latitude wetlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12686, https://doi.org/10.5194/egusphere-egu2020-12686, 2020.
Atmospheric emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after CO2. Previous studies indicated that wetland CH4 emission is not only the single largest but also the most uncertain natural source in the global CH4 budget. Furthermore, the strong sensitivity of wetland CH4 emissions to environmental conditions has raised concerns on potential positive feedbacks to climate change. Therefore, evaluation of the process-based land surface models of earth system models (ESMs) in simulating CH4 emission over wetlands is needed for more precise future predictions. In this work, a set of high-latitude wetland sites with various nutrient conditions are studied. The wetland CH4 fluxes are simulated by the land surface model JULES of the UK Earth System model and the Helsinki peatland methane emission model (HIMMELI), which is developed at Finnish Meteorological Institute and Helsinki University. The differences between the modelled and observed CH4 fluxes are analyzed, complemented with key environmental variables for interpretation (e.g. soil temperature and moisture, vegetation types, snow depth, NPP, soil carbon). In general, the simulated CH4 fluxes by HIMMELI is closer to the observed CH4 fluxes in magnitude and seasonality at sites than those by JULES. The inter-annual variability of simulated CH4 fluxes by HIMMELI depends on the simulated anoxic soil respiration, which serves as the substrate of the CH4 fluxes in HIMMELI. The anoxic soil respiration is calculated based on the simulated soil respiration and water table depth in JULES. More accurate simulation of soil carbon pool and water table depth in JULES will lead to improvement in the simulated anoxic soil respiration.
How to cite: Gao, Y., Burke, E., Chadburn, S., Raivonen, M., Vesala, T., Aurela, M., Lohila, A., Yang, H., Li, T., and Aalto, T.: Evaluation of modelled methane emissions over high-latitude wetlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12686, https://doi.org/10.5194/egusphere-egu2020-12686, 2020.
EGU2020-19704 | Displays | BG3.3
Spatial heterogeneity of CO2 emission in Hungarian and Croatian arable fields – preliminary resultsEszter Toth, Márton Dencső, Györgyi Gelybó, János Mészáros, Zsófia Bakacsi, Ágota Horel, Leon Josip Telak, Marija Galic, Ivica Kisic, and Igor Bogunovic
The aim of this study was to investigate the spatial heterogeneity of CO2 emission of two different croplands in Croatia (Šašinovec, 45° 50´ N; 16° 11´ E; soil type - Stagnosols) and in Hungary (Józsefmajor, 47° 40´ N; 19° 36´ E; Chernozems). The measurements of the soil water content (SWC), soil temperature (Ts), organic matter (OM) and CO2 flux was executed after the harvest of the soybean in both fields. In a regular grid (2 x 2 m and 2 x 3 m) 44 and 170 samples were collected from Croatian and Hungarian site, respectively. At Hungarian site Ts and SWC showed relatively high spatial heterogeneity, ranging from 19.4 to 24.6 oC, and from 7.5 to 34.1%, respectively. Content of soil OM had lower variability ranging from 2.0 to 2.4 % at Croatian and from 3.2 to 4.5 % at Hungarian site, respectively. CO2 efflux was 0.125 ± 0.078 and 0.060 ± 0.088 mg m- 2 s-1 in average at Croatian and Hungarian field, respectively. Investigated properties did not follow normal distribution, so logarithm transformation were applied before modelling. Kriging interpolation model for mapping soil properties is tested to compare the prediction accuracy. Soil maps showed sufficient concentrations of soil OM at Hungarian site and insufficient concentrations of OM at Croatian site. Soil CO2 efflux map showed that the largest part of the investigated area in Hungary have low loss of C, while loss of C at Croatian site is high. There are areas, especially wheeled rows, where CO2 emission is lower than the average value of the field at both investigated site. These low CO2 emission areas coincide with the compacted row of wheel tracks. For future management it is necessary to provide better conditioning of soil at Croatian site and adopt environmental friendly soil management at both sites.
This work is supported by the Croatian-Hungarian Bilateral Project (2018-2.1.12-TÉT-HR-2018-00007) and the PD116084 and NKFIH131792 reseach project.
How to cite: Toth, E., Dencső, M., Gelybó, G., Mészáros, J., Bakacsi, Z., Horel, Á., Josip Telak, L., Galic, M., Kisic, I., and Bogunovic, I.: Spatial heterogeneity of CO2 emission in Hungarian and Croatian arable fields – preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19704, https://doi.org/10.5194/egusphere-egu2020-19704, 2020.
The aim of this study was to investigate the spatial heterogeneity of CO2 emission of two different croplands in Croatia (Šašinovec, 45° 50´ N; 16° 11´ E; soil type - Stagnosols) and in Hungary (Józsefmajor, 47° 40´ N; 19° 36´ E; Chernozems). The measurements of the soil water content (SWC), soil temperature (Ts), organic matter (OM) and CO2 flux was executed after the harvest of the soybean in both fields. In a regular grid (2 x 2 m and 2 x 3 m) 44 and 170 samples were collected from Croatian and Hungarian site, respectively. At Hungarian site Ts and SWC showed relatively high spatial heterogeneity, ranging from 19.4 to 24.6 oC, and from 7.5 to 34.1%, respectively. Content of soil OM had lower variability ranging from 2.0 to 2.4 % at Croatian and from 3.2 to 4.5 % at Hungarian site, respectively. CO2 efflux was 0.125 ± 0.078 and 0.060 ± 0.088 mg m- 2 s-1 in average at Croatian and Hungarian field, respectively. Investigated properties did not follow normal distribution, so logarithm transformation were applied before modelling. Kriging interpolation model for mapping soil properties is tested to compare the prediction accuracy. Soil maps showed sufficient concentrations of soil OM at Hungarian site and insufficient concentrations of OM at Croatian site. Soil CO2 efflux map showed that the largest part of the investigated area in Hungary have low loss of C, while loss of C at Croatian site is high. There are areas, especially wheeled rows, where CO2 emission is lower than the average value of the field at both investigated site. These low CO2 emission areas coincide with the compacted row of wheel tracks. For future management it is necessary to provide better conditioning of soil at Croatian site and adopt environmental friendly soil management at both sites.
This work is supported by the Croatian-Hungarian Bilateral Project (2018-2.1.12-TÉT-HR-2018-00007) and the PD116084 and NKFIH131792 reseach project.
How to cite: Toth, E., Dencső, M., Gelybó, G., Mészáros, J., Bakacsi, Z., Horel, Á., Josip Telak, L., Galic, M., Kisic, I., and Bogunovic, I.: Spatial heterogeneity of CO2 emission in Hungarian and Croatian arable fields – preliminary results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19704, https://doi.org/10.5194/egusphere-egu2020-19704, 2020.
EGU2020-388 | Displays | BG3.3
N2O emission and governing factors on arable fieldsMárton Dencső, Szandra Baklanov, Ágota Horel, Györgyi Gelybó, and Eszter Tóth
This study focuses on the soil N2O emission of arable fields. We initially set up several soil column experiments in laboratory and based on these findings we started field measurements in a long term tillage experiment at Józsefmajor Experimental and Training Farm, Hungary. For the column experiments we collected undisturbed soil columns (d=10 cm, h=10 cm) from mouldboard ploughing (P) and no-till (NT) treatments. We investigated the effect of different fertilizer doses (40, 80, 160, 240 kg h-1 N), soil water content (SWC) and different tillage methods on soil N2O emission.
We found a nonlinear response of N2O emission on the applied fertilizer doses. The moderately fertilized (80-160 kg ha-1 N) samples had the highest N2O emissions. Samples from NT had higher N2O emission than samples from P. We found better correlation between N2O emission and SWC in NT (R2 is between 0.47 and 0.62) than in the P (R2 is between 0.01 and 0.35). The N2O emission values showed high spatial variability. The field measurements showed similar findings of N2O emission compared to the column experiments. In 2020 we intend to continue the field measurements and include further investigations of governing factors of soil N2O emission.
How to cite: Dencső, M., Baklanov, S., Horel, Á., Gelybó, G., and Tóth, E.: N2O emission and governing factors on arable fields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-388, https://doi.org/10.5194/egusphere-egu2020-388, 2020.
This study focuses on the soil N2O emission of arable fields. We initially set up several soil column experiments in laboratory and based on these findings we started field measurements in a long term tillage experiment at Józsefmajor Experimental and Training Farm, Hungary. For the column experiments we collected undisturbed soil columns (d=10 cm, h=10 cm) from mouldboard ploughing (P) and no-till (NT) treatments. We investigated the effect of different fertilizer doses (40, 80, 160, 240 kg h-1 N), soil water content (SWC) and different tillage methods on soil N2O emission.
We found a nonlinear response of N2O emission on the applied fertilizer doses. The moderately fertilized (80-160 kg ha-1 N) samples had the highest N2O emissions. Samples from NT had higher N2O emission than samples from P. We found better correlation between N2O emission and SWC in NT (R2 is between 0.47 and 0.62) than in the P (R2 is between 0.01 and 0.35). The N2O emission values showed high spatial variability. The field measurements showed similar findings of N2O emission compared to the column experiments. In 2020 we intend to continue the field measurements and include further investigations of governing factors of soil N2O emission.
How to cite: Dencső, M., Baklanov, S., Horel, Á., Gelybó, G., and Tóth, E.: N2O emission and governing factors on arable fields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-388, https://doi.org/10.5194/egusphere-egu2020-388, 2020.
EGU2020-4958 | Displays | BG3.3
Vertical interval dynamics of greenhouse gases in groundwater (Hesbaye chalk aquifer, Belgium)Olha Nikolenko, Cedric Morana, Bernard Taminiau, Alberto V. Borges, Tanguy Robert, Pascal Goderniaux, Maxime Duvivier, and Serge Brouyѐre
Increase in the concentration of greenhouse gases (GHGs) in the atmosphere threatens the existence of many ecosystems and their inhabitants. Agricultural activities contribute up to 70 % of total anthropogenic emission of nitrous oxide (N2O), one of the GHGs, which is characterized with the highest global warming potential and contributes to stratospheric ozone depletion. Our study presents the results obtained from the recent field and lab activities carried out in order to obtain better insight into the factors that define the presence of N2O in groundwater. Previous large scale investigations, performed in the Hesbaye chalk aquifer in Eastern Belgium, suggested that the concentration of N2O in the aquifer depends on different, possibly overlapping biochemical processes such as nitrification, denitrification and/or nitrifier-denitrification. This study explored the occurrence of biochemical stratification in the same aquifer and its impact on N2O production and consumption mechanisms. For this purpose low flow sampling technique was applied at different depth intervals to obtain better insight into the extent of oxic and anoxic zones and variability of concentrations of GHGs along the vertical profile. Collected groundwater samples were analyzed for the range of hydrochemical parameters as well as NO3-, N2O, H2O and B isotopes signatures and N2O isotopomers. Afterwards, rates of nitrification and denitrification processes were estimated based on short-term incubations of collected groundwater amended with NO3- and NH4+ compounds labeled with heavy 15N isotope. In addition, in order to characterize the dynamics of ongoing biogeochemical processes, polymerase chain reaction (PCR) tests for detection of the activity-specific enzymes in the aquifer were performed. Such studies help to clarify which conditions are more prone to the accumulation of high concentrations of GHGs in aquifers and better constrain models which estimate local and regional GHGs budgets.
Acknowledgments
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675120.
How to cite: Nikolenko, O., Morana, C., Taminiau, B., Borges, A. V., Robert, T., Goderniaux, P., Duvivier, M., and Brouyѐre, S.: Vertical interval dynamics of greenhouse gases in groundwater (Hesbaye chalk aquifer, Belgium) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4958, https://doi.org/10.5194/egusphere-egu2020-4958, 2020.
Increase in the concentration of greenhouse gases (GHGs) in the atmosphere threatens the existence of many ecosystems and their inhabitants. Agricultural activities contribute up to 70 % of total anthropogenic emission of nitrous oxide (N2O), one of the GHGs, which is characterized with the highest global warming potential and contributes to stratospheric ozone depletion. Our study presents the results obtained from the recent field and lab activities carried out in order to obtain better insight into the factors that define the presence of N2O in groundwater. Previous large scale investigations, performed in the Hesbaye chalk aquifer in Eastern Belgium, suggested that the concentration of N2O in the aquifer depends on different, possibly overlapping biochemical processes such as nitrification, denitrification and/or nitrifier-denitrification. This study explored the occurrence of biochemical stratification in the same aquifer and its impact on N2O production and consumption mechanisms. For this purpose low flow sampling technique was applied at different depth intervals to obtain better insight into the extent of oxic and anoxic zones and variability of concentrations of GHGs along the vertical profile. Collected groundwater samples were analyzed for the range of hydrochemical parameters as well as NO3-, N2O, H2O and B isotopes signatures and N2O isotopomers. Afterwards, rates of nitrification and denitrification processes were estimated based on short-term incubations of collected groundwater amended with NO3- and NH4+ compounds labeled with heavy 15N isotope. In addition, in order to characterize the dynamics of ongoing biogeochemical processes, polymerase chain reaction (PCR) tests for detection of the activity-specific enzymes in the aquifer were performed. Such studies help to clarify which conditions are more prone to the accumulation of high concentrations of GHGs in aquifers and better constrain models which estimate local and regional GHGs budgets.
Acknowledgments
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675120.
How to cite: Nikolenko, O., Morana, C., Taminiau, B., Borges, A. V., Robert, T., Goderniaux, P., Duvivier, M., and Brouyѐre, S.: Vertical interval dynamics of greenhouse gases in groundwater (Hesbaye chalk aquifer, Belgium) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4958, https://doi.org/10.5194/egusphere-egu2020-4958, 2020.
EGU2020-6223 | Displays | BG3.3
An open-path QCL-based instrument with sub-ppbv sensitivity for NH3 eddy covariance measurementYin Wang, Kai Wang, Peng Kang, Yin Lu, Xiaojie Zhen, Gang Liu, and Xunhua Zheng
Ammonia (NH3) emissions from farmlands and livestock are attracting more and more attention. There is an urgent need for ground-based instruments that can acquire the spatial and temporal variability in NH3 concentrations and emissions, particularly in field environments where power and shelter are not readily available. However, accurate measurements of atmospheric NH3 is of great challenges due to its reactive nature. Conventional NH3 instruments are subject to drawbacks, such as slow response time, limited precision, intensive maintenance, or high power consumption due to the use of the closed-path tube, optics, and vacuum pump.
We have developed an open-path instrument for fast (10 Hz) and sub-ppbv sensitivity measurements of atmospheric NH3 concentration. The instrument is based on second-harmonic (2f) wavelength modulated laser absorption spectroscopy technique (WM-LAS), which employs a distributed-feedback semiconductor quantum cascade laser (DFB-QCL) and a HgCdTe (MCT) photodetector. An open-path Herriott cell configuration with a 0.5 m physical path and 46 m optical path-length is used for selective and sensitive detection of the mid-infrared absorption transition of NH3 at 9.06 μm [1]. There is no delay due to sample adsorption. The instrument has a precision (1σ noise level) of 0.53 ppbv and 0.15 ppbv at a sampling frequency of 10 Hz and 1 Hz, respectively. The entire NH3 instrument has a weight of ~7 kg and dimensions of 84 cm (length) and 20 cm (diameter). It can be powered by rechargeable lithium batteries, with a total power consumption of as low as 50 W. The instrument has strong environmental adaptability and is suitable for field deployment in various environments. It can be used in ground-based or vehicle-based measurements of atmospheric NH3 concentration.
With the good performance in terms of response time and precision, this instrument is an ideal tool for NH3 flux measurements based on the eddy covariance (EC) technique [2]. An EC flux system was built based on the open-path ammonia instrument, which also included a CSAT3 sonic anemometer (Campbell Scientific®) and LI-7500 (LICOR®) for water vapor (H2O) and carbon dioxide (CO2) measurements. The system was installed at a rice paddy field with a typical Chinese-style rice-duck symbiosis system in Jiangsu province, China. Experiments showed that the lower detection limit of the EC system for NH3 flux was around 17ng m-2 s-1.
References:
[1] Miller, D. J., Sun, K., Tao, L., and Zondlo, M. A.: Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements, Atmos. Meas. Tech., 7, 81–93,2014.
[2] McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., and Hastings, S.: A new low-power, open-path instrument for measuring methane flux by eddy covariance, Appl.Phys. B, 102, 391–405, 2011.
How to cite: Wang, Y., Wang, K., Kang, P., Lu, Y., Zhen, X., Liu, G., and Zheng, X.: An open-path QCL-based instrument with sub-ppbv sensitivity for NH3 eddy covariance measurement, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6223, https://doi.org/10.5194/egusphere-egu2020-6223, 2020.
Ammonia (NH3) emissions from farmlands and livestock are attracting more and more attention. There is an urgent need for ground-based instruments that can acquire the spatial and temporal variability in NH3 concentrations and emissions, particularly in field environments where power and shelter are not readily available. However, accurate measurements of atmospheric NH3 is of great challenges due to its reactive nature. Conventional NH3 instruments are subject to drawbacks, such as slow response time, limited precision, intensive maintenance, or high power consumption due to the use of the closed-path tube, optics, and vacuum pump.
We have developed an open-path instrument for fast (10 Hz) and sub-ppbv sensitivity measurements of atmospheric NH3 concentration. The instrument is based on second-harmonic (2f) wavelength modulated laser absorption spectroscopy technique (WM-LAS), which employs a distributed-feedback semiconductor quantum cascade laser (DFB-QCL) and a HgCdTe (MCT) photodetector. An open-path Herriott cell configuration with a 0.5 m physical path and 46 m optical path-length is used for selective and sensitive detection of the mid-infrared absorption transition of NH3 at 9.06 μm [1]. There is no delay due to sample adsorption. The instrument has a precision (1σ noise level) of 0.53 ppbv and 0.15 ppbv at a sampling frequency of 10 Hz and 1 Hz, respectively. The entire NH3 instrument has a weight of ~7 kg and dimensions of 84 cm (length) and 20 cm (diameter). It can be powered by rechargeable lithium batteries, with a total power consumption of as low as 50 W. The instrument has strong environmental adaptability and is suitable for field deployment in various environments. It can be used in ground-based or vehicle-based measurements of atmospheric NH3 concentration.
With the good performance in terms of response time and precision, this instrument is an ideal tool for NH3 flux measurements based on the eddy covariance (EC) technique [2]. An EC flux system was built based on the open-path ammonia instrument, which also included a CSAT3 sonic anemometer (Campbell Scientific®) and LI-7500 (LICOR®) for water vapor (H2O) and carbon dioxide (CO2) measurements. The system was installed at a rice paddy field with a typical Chinese-style rice-duck symbiosis system in Jiangsu province, China. Experiments showed that the lower detection limit of the EC system for NH3 flux was around 17ng m-2 s-1.
References:
[1] Miller, D. J., Sun, K., Tao, L., and Zondlo, M. A.: Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements, Atmos. Meas. Tech., 7, 81–93,2014.
[2] McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., and Hastings, S.: A new low-power, open-path instrument for measuring methane flux by eddy covariance, Appl.Phys. B, 102, 391–405, 2011.
How to cite: Wang, Y., Wang, K., Kang, P., Lu, Y., Zhen, X., Liu, G., and Zheng, X.: An open-path QCL-based instrument with sub-ppbv sensitivity for NH3 eddy covariance measurement, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6223, https://doi.org/10.5194/egusphere-egu2020-6223, 2020.
EGU2020-13487 | Displays | BG3.3
Quantifying NH3 and CH4 emissions from a dairy housing using backward Lagrangian stochastic modellingChristoph Häni, Marcel Bühler, Sabine Schrade, Michael Zähner, Simon Wyss, Joachim Mohn, and Thomas Kupper
Inverse dispersion modelling (IDM) using a backward Lagrangian stochastic (bLS) dispersion model has been successfully applied to quantify emissions from confined ground sources e.g. as for ammonia (NH3) loss after manure spreading. The most widely used bLS model for emission measurements of NH3 and methane (CH4) from agricultural sources such as lagoons and livestock buildings is based on Flesch et al. (2004). For such applications, the model assumptions of a diffusive ground source within a homogeneous turbulence field, which implies absence of obstacles as e.g. buildings disturbing the flow, is clearly not fulfilled. It remains unclear to what extend these violations introduce bias into the emission estimates. Further, the model by Flesch et al. does not include deposition removal, which for NH3, can induce an underestimation of the emission from the source (Häni et al., 2018). Häni et al. extended the standard bLS calculation model with an optional dry deposition mechanism.
In a field campaign between mid-September and mid-December 2018, CH4 and NH3 emissions from a natural ventilated dairy housing with 40 cows were quantified using the IDM method with the bLS model by Häni et al. (2018). From the three-month period, results for 63 measurement days at 30-minute resolution were evaluated and thereof 71% of the data points were discarded from the emission calculation due to inapplicable turbulence conditions or instrument failure.
NH3 and CH4 concentrations were analysed with open-path instruments (NH3: miniDOAS,; CH4: GasFinder, Boreal Laser, Inc., Edmonton, Alberta, Canada) (aligned in parallel) with 50 m path lengths (distance between sensor and reflector). During part of the field campaign (24 days), simultaneous in-house measurements of CH4 and NH3 emissions using the tracer ratio method (iTM) (SF6 and SF5CF3, Mohn et al., 2018) were conducted and results compared with the estimates retrieved by the IDM method. Overall, the results from the IDM method compare well to the results of the in-house measurements, with mean daily emissions of 18.3 kg CH4/d (IDM) and 17.9 kg CH4/d (iTM) and 1.08 kg NH3/d (IDM) and 1.56 kg NH3/d (iTM), respectively. Regarding NH3, the IDM method was run without the inclusion of a dry deposition mechanism. First results from IDM calculations with the inclusion of dry deposition indicate, that dry deposition modelling may explain the difference in NH3 emissions between the IDM method and the iTM.
References
Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R. R.: Deducing ground-to-air emissions from observed trace gas concentrations: A field trial, J. Appl. Meteorol., 43, 487–502, 2004.
Häni, C., Flechard, C., Neftel, A., Sintermann, J., and Kupper, T.: Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions, Atmosphere, 9, 146, 2018.
Mohn, J., Zeyer, K., Keck, M., Keller, M., Zähner, M., Poteko, J., Emmenegger, L., and Schrade, S.: A dual tracer ratio method for comparative emission measurements in an experimental dairy housing, Atmospheric Environment, 179, 12–22, 2018.
How to cite: Häni, C., Bühler, M., Schrade, S., Zähner, M., Wyss, S., Mohn, J., and Kupper, T.: Quantifying NH3 and CH4 emissions from a dairy housing using backward Lagrangian stochastic modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13487, https://doi.org/10.5194/egusphere-egu2020-13487, 2020.
Inverse dispersion modelling (IDM) using a backward Lagrangian stochastic (bLS) dispersion model has been successfully applied to quantify emissions from confined ground sources e.g. as for ammonia (NH3) loss after manure spreading. The most widely used bLS model for emission measurements of NH3 and methane (CH4) from agricultural sources such as lagoons and livestock buildings is based on Flesch et al. (2004). For such applications, the model assumptions of a diffusive ground source within a homogeneous turbulence field, which implies absence of obstacles as e.g. buildings disturbing the flow, is clearly not fulfilled. It remains unclear to what extend these violations introduce bias into the emission estimates. Further, the model by Flesch et al. does not include deposition removal, which for NH3, can induce an underestimation of the emission from the source (Häni et al., 2018). Häni et al. extended the standard bLS calculation model with an optional dry deposition mechanism.
In a field campaign between mid-September and mid-December 2018, CH4 and NH3 emissions from a natural ventilated dairy housing with 40 cows were quantified using the IDM method with the bLS model by Häni et al. (2018). From the three-month period, results for 63 measurement days at 30-minute resolution were evaluated and thereof 71% of the data points were discarded from the emission calculation due to inapplicable turbulence conditions or instrument failure.
NH3 and CH4 concentrations were analysed with open-path instruments (NH3: miniDOAS,; CH4: GasFinder, Boreal Laser, Inc., Edmonton, Alberta, Canada) (aligned in parallel) with 50 m path lengths (distance between sensor and reflector). During part of the field campaign (24 days), simultaneous in-house measurements of CH4 and NH3 emissions using the tracer ratio method (iTM) (SF6 and SF5CF3, Mohn et al., 2018) were conducted and results compared with the estimates retrieved by the IDM method. Overall, the results from the IDM method compare well to the results of the in-house measurements, with mean daily emissions of 18.3 kg CH4/d (IDM) and 17.9 kg CH4/d (iTM) and 1.08 kg NH3/d (IDM) and 1.56 kg NH3/d (iTM), respectively. Regarding NH3, the IDM method was run without the inclusion of a dry deposition mechanism. First results from IDM calculations with the inclusion of dry deposition indicate, that dry deposition modelling may explain the difference in NH3 emissions between the IDM method and the iTM.
References
Flesch, T. K., Wilson, J. D., Harper, L. A., Crenna, B. P., and Sharpe, R. R.: Deducing ground-to-air emissions from observed trace gas concentrations: A field trial, J. Appl. Meteorol., 43, 487–502, 2004.
Häni, C., Flechard, C., Neftel, A., Sintermann, J., and Kupper, T.: Accounting for Field-Scale Dry Deposition in Backward Lagrangian Stochastic Dispersion Modelling of NH3 Emissions, Atmosphere, 9, 146, 2018.
Mohn, J., Zeyer, K., Keck, M., Keller, M., Zähner, M., Poteko, J., Emmenegger, L., and Schrade, S.: A dual tracer ratio method for comparative emission measurements in an experimental dairy housing, Atmospheric Environment, 179, 12–22, 2018.
How to cite: Häni, C., Bühler, M., Schrade, S., Zähner, M., Wyss, S., Mohn, J., and Kupper, T.: Quantifying NH3 and CH4 emissions from a dairy housing using backward Lagrangian stochastic modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13487, https://doi.org/10.5194/egusphere-egu2020-13487, 2020.
EGU2020-9837 | Displays | BG3.3
Evapotranspiration over a rainfed maize field in northeast China: how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?Li Zhou, Yu Wang, and Guangsheng Zhou
As a central process in the hydrological system and the climate system, terrestrial evapotranspiration is a key factor furthering our understanding of the climate change processes. Knowledge of factors controlling the variability in evapotranspiration is crucial for the prediction of the fate of terrestrial ecosystems under environmental changes. Based on long-term (2005-2014) eddy covariance flux data observed at a rainfed maize site in northeast China, the purpose of this study was to clarify the environmental regulation of actual evapotranspiration (ET) and the extent to which the regulatory effects on ET are directly or indirectly mediated by changes in biotic factors, using the structural equation modeling (SEM) method. The results showed that annual total ET was 397 ± 35 mm for the rainfed maize site in comparison with 575 ± 169 mm of precipitation (Prec), with an ET/Prec ratio ranging from 0.43 (2012) to 1.14 (2014). It was revealed that net radiation (Rn) was the primary controlling factor of the maize ET, followed by leaf area index (LAI), vapor pressure deficit (VPD), air temperature (Ta), and soil water content (SWC). The adjusted SEM models explained 71%, 67%, and 67% of the variation in daily ET of the maize growing season (ETgs) for dry, normal, and moist years, respectively. Rn and VPD dominated ETgs in an increasing order of dry, normal, and moist years. Conversely, the effects of LAI and Ta on ETgs followed the opposite trend. This indicated that drought may increase the sensitivity of maize ET to temperature changes, and decrease the sensitivity of maize ET to radiation changes. In SEM analysis, LAI played an important mediating role in the relationship among climate, soil variables, and ETgs. Rn, VPD, Ta, and SWC all had significant indirect effects on ETgs mediated through LAI. At the annual scale, it was identified that most active days could be a robust predictor of annual ET.
How to cite: Zhou, L., Wang, Y., and Zhou, G.: Evapotranspiration over a rainfed maize field in northeast China: how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9837, https://doi.org/10.5194/egusphere-egu2020-9837, 2020.
As a central process in the hydrological system and the climate system, terrestrial evapotranspiration is a key factor furthering our understanding of the climate change processes. Knowledge of factors controlling the variability in evapotranspiration is crucial for the prediction of the fate of terrestrial ecosystems under environmental changes. Based on long-term (2005-2014) eddy covariance flux data observed at a rainfed maize site in northeast China, the purpose of this study was to clarify the environmental regulation of actual evapotranspiration (ET) and the extent to which the regulatory effects on ET are directly or indirectly mediated by changes in biotic factors, using the structural equation modeling (SEM) method. The results showed that annual total ET was 397 ± 35 mm for the rainfed maize site in comparison with 575 ± 169 mm of precipitation (Prec), with an ET/Prec ratio ranging from 0.43 (2012) to 1.14 (2014). It was revealed that net radiation (Rn) was the primary controlling factor of the maize ET, followed by leaf area index (LAI), vapor pressure deficit (VPD), air temperature (Ta), and soil water content (SWC). The adjusted SEM models explained 71%, 67%, and 67% of the variation in daily ET of the maize growing season (ETgs) for dry, normal, and moist years, respectively. Rn and VPD dominated ETgs in an increasing order of dry, normal, and moist years. Conversely, the effects of LAI and Ta on ETgs followed the opposite trend. This indicated that drought may increase the sensitivity of maize ET to temperature changes, and decrease the sensitivity of maize ET to radiation changes. In SEM analysis, LAI played an important mediating role in the relationship among climate, soil variables, and ETgs. Rn, VPD, Ta, and SWC all had significant indirect effects on ETgs mediated through LAI. At the annual scale, it was identified that most active days could be a robust predictor of annual ET.
How to cite: Zhou, L., Wang, Y., and Zhou, G.: Evapotranspiration over a rainfed maize field in northeast China: how are relationships between the environment and terrestrial evapotranspiration mediated by leaf area?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9837, https://doi.org/10.5194/egusphere-egu2020-9837, 2020.
EGU2020-17716 | Displays | BG3.3
Effect of crop residue incorporation and crop residue quality on soil N2O emissions and respiration - A laboratory measurement approachFelix Havermann, Klaus Butterbach-Bahl, Baldur Janz, Florian Engelsberger, Maria Ernfors, Patricia Laville, Gwenaëlle Lashermes, Søren O. Petersen, Arezoo Taghizadeh-Toosi, Marina A. Bleken, and Jørgen E. Olesen
Crop residues are a significant source for soil N2O emissions and major component affecting the C storage in arable soils. The balance between C sequestration and N2O emissions is delicate and depends on the type of residues and its management. Thus, residue management might be a feasible option to reduce the GHG footprint of crop production. However, the mitigation potential of residue management is highly variable and strongly affected by the crop residue quality (C and N content, C:N ratio, concentrations of lignin, cellulose and solutes), field management (incorporation depth, amount applied) as well as soil physical and soil biogeochemical properties. In the frame of the EU-ERAGAS project RESIDUEGAS, we investigated the impact of different crop residue qualities on soil respiration and reactive N fluxes as well as soil ammonium (NH4+) and nitrate (NO3-) concentrations in order to test and possibly improve existing IPCC emission factors for GHG emissions from crop residue management.
In this study, we used sieved and homogenized soil columns of 8 cm height and 12 cm diameter filled with arable soil taken from a site near Gießen, Germany. Soil columns were incubated in the laboratory for 60 days at constant soil temperature (15°C) and water-filled pore space (60 %). Residues from nine different crops (oilseed rape, winter wheat, field pea, maize, potato, mustard, red clover, sugar beet, ryegrass) were re-wetted according to field moisture level and incorporated over approx. 0-4 cm topsoil layer one week after soil re-wetting and start of the measurements. The CO2, N2O (as well as NO and NH3) fluxes were measured automatically using a dynamic chamber approach. Soil samples were additionally analyzed for soil NH4+ and NO3- concentrations at specific time steps during the experiment.
Re-wetting of the dry soil immediately resulted in a sharp increase of soil N2O and CO2 emissions, which, however, was less pronounced than peak emissions following residue incorporation. Those were 4-5 times higher as compared to soil cores without residue amendment. Elevated emissions were short-lived and declined to background levels within 10 days for N2O and within 30 days for CO2. However, a small but significant period of higher than background N2O emissions was observed in the second half of the incubation period, which might be directly related to the decomposition of slower decomposable organic matter such as lignin and cellulose from crop residues. Generally, the emission magnitude was strongly affected by the crop residue quality, with highest N2O as well as CO2 emissions being calculated for residues with a narrow C:N ratio. However, C:N ratio was not the single explaining factor. The range of calculated emission factors (fraction of cumulatively emitted N2O-N to crop residue N input) over a 60 day period was larger than the range given by IPCC in 2006.
How to cite: Havermann, F., Butterbach-Bahl, K., Janz, B., Engelsberger, F., Ernfors, M., Laville, P., Lashermes, G., Petersen, S. O., Taghizadeh-Toosi, A., Bleken, M. A., and Olesen, J. E.: Effect of crop residue incorporation and crop residue quality on soil N2O emissions and respiration - A laboratory measurement approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17716, https://doi.org/10.5194/egusphere-egu2020-17716, 2020.
Crop residues are a significant source for soil N2O emissions and major component affecting the C storage in arable soils. The balance between C sequestration and N2O emissions is delicate and depends on the type of residues and its management. Thus, residue management might be a feasible option to reduce the GHG footprint of crop production. However, the mitigation potential of residue management is highly variable and strongly affected by the crop residue quality (C and N content, C:N ratio, concentrations of lignin, cellulose and solutes), field management (incorporation depth, amount applied) as well as soil physical and soil biogeochemical properties. In the frame of the EU-ERAGAS project RESIDUEGAS, we investigated the impact of different crop residue qualities on soil respiration and reactive N fluxes as well as soil ammonium (NH4+) and nitrate (NO3-) concentrations in order to test and possibly improve existing IPCC emission factors for GHG emissions from crop residue management.
In this study, we used sieved and homogenized soil columns of 8 cm height and 12 cm diameter filled with arable soil taken from a site near Gießen, Germany. Soil columns were incubated in the laboratory for 60 days at constant soil temperature (15°C) and water-filled pore space (60 %). Residues from nine different crops (oilseed rape, winter wheat, field pea, maize, potato, mustard, red clover, sugar beet, ryegrass) were re-wetted according to field moisture level and incorporated over approx. 0-4 cm topsoil layer one week after soil re-wetting and start of the measurements. The CO2, N2O (as well as NO and NH3) fluxes were measured automatically using a dynamic chamber approach. Soil samples were additionally analyzed for soil NH4+ and NO3- concentrations at specific time steps during the experiment.
Re-wetting of the dry soil immediately resulted in a sharp increase of soil N2O and CO2 emissions, which, however, was less pronounced than peak emissions following residue incorporation. Those were 4-5 times higher as compared to soil cores without residue amendment. Elevated emissions were short-lived and declined to background levels within 10 days for N2O and within 30 days for CO2. However, a small but significant period of higher than background N2O emissions was observed in the second half of the incubation period, which might be directly related to the decomposition of slower decomposable organic matter such as lignin and cellulose from crop residues. Generally, the emission magnitude was strongly affected by the crop residue quality, with highest N2O as well as CO2 emissions being calculated for residues with a narrow C:N ratio. However, C:N ratio was not the single explaining factor. The range of calculated emission factors (fraction of cumulatively emitted N2O-N to crop residue N input) over a 60 day period was larger than the range given by IPCC in 2006.
How to cite: Havermann, F., Butterbach-Bahl, K., Janz, B., Engelsberger, F., Ernfors, M., Laville, P., Lashermes, G., Petersen, S. O., Taghizadeh-Toosi, A., Bleken, M. A., and Olesen, J. E.: Effect of crop residue incorporation and crop residue quality on soil N2O emissions and respiration - A laboratory measurement approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17716, https://doi.org/10.5194/egusphere-egu2020-17716, 2020.
EGU2020-19924 | Displays | BG3.3
First field estimation of greenhouse gas emissions from European soil-dwelling Scarabaeidae larvae targeting the genus MelolonthaCarolyn-Monika Görres and Claudia Kammann
Arthropods are a major soil fauna group, and have the potential to substantially influence the spatial and temporal variability of soil greenhouse gas (GHG) sinks and sources. The overall effect of soil-inhabiting arthropods on soil GHG fluxes still remains poorly quantified since the majority of the available data comes from laboratory experiments, is often controversial, and has been limited to a few species. The main objective of this study was to provide first insights into field-level carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions of soil-inhabiting larvae of the Scarabaeidae family. Larvae of the genus Melolontha were excavated at various grassland and forest sites in west-central and southern Germany, covering a wide range of different larval developmental stages, and larval activity levels. Excavated larvae were immediately incubated in the field to measure their GHG emissions. Gaseous carbon emissions of individual larvae showed a large inter- and intra-site variability which was strongly correlated to larval biomass. This correlation persisted when upscaling CO2 and CH4 emissions to the plot scale. Field emission estimates for Melolontha spp. were subsequently upscaled to the European level to derive the first regional GHG emission estimates for members of the Scarabaeidae family. Estimates ranged between 10.42 and 409.53 kt CO2 yr-1, and 0.01 and 1.36 kt CH4 yr-1. Larval N2O emissions were only sporadically observed and not upscaled. For one site, a comparison of field- and laboratory-based GHG emission measurements was conducted to assess potential biases introduced by transferring Scarabaeidae larvae to artificial environments. Emission strength and variability of captive larvae decreased significantly within two weeks and the correlation between larval biomass and gaseous carbon emissions disappeared, highlighting the importance of field measurements. Overall, our data show that Scarabaeidae larvae can be significant soil GHG sources and should not be neglected in soil GHG flux research.
How to cite: Görres, C.-M. and Kammann, C.: First field estimation of greenhouse gas emissions from European soil-dwelling Scarabaeidae larvae targeting the genus Melolontha, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19924, https://doi.org/10.5194/egusphere-egu2020-19924, 2020.
Arthropods are a major soil fauna group, and have the potential to substantially influence the spatial and temporal variability of soil greenhouse gas (GHG) sinks and sources. The overall effect of soil-inhabiting arthropods on soil GHG fluxes still remains poorly quantified since the majority of the available data comes from laboratory experiments, is often controversial, and has been limited to a few species. The main objective of this study was to provide first insights into field-level carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions of soil-inhabiting larvae of the Scarabaeidae family. Larvae of the genus Melolontha were excavated at various grassland and forest sites in west-central and southern Germany, covering a wide range of different larval developmental stages, and larval activity levels. Excavated larvae were immediately incubated in the field to measure their GHG emissions. Gaseous carbon emissions of individual larvae showed a large inter- and intra-site variability which was strongly correlated to larval biomass. This correlation persisted when upscaling CO2 and CH4 emissions to the plot scale. Field emission estimates for Melolontha spp. were subsequently upscaled to the European level to derive the first regional GHG emission estimates for members of the Scarabaeidae family. Estimates ranged between 10.42 and 409.53 kt CO2 yr-1, and 0.01 and 1.36 kt CH4 yr-1. Larval N2O emissions were only sporadically observed and not upscaled. For one site, a comparison of field- and laboratory-based GHG emission measurements was conducted to assess potential biases introduced by transferring Scarabaeidae larvae to artificial environments. Emission strength and variability of captive larvae decreased significantly within two weeks and the correlation between larval biomass and gaseous carbon emissions disappeared, highlighting the importance of field measurements. Overall, our data show that Scarabaeidae larvae can be significant soil GHG sources and should not be neglected in soil GHG flux research.
How to cite: Görres, C.-M. and Kammann, C.: First field estimation of greenhouse gas emissions from European soil-dwelling Scarabaeidae larvae targeting the genus Melolontha, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19924, https://doi.org/10.5194/egusphere-egu2020-19924, 2020.
EGU2020-1345 | Displays | BG3.3
Manure happens: re-examining mitigation potential from waste-to-resource in agricultural ecosystemsZhangcai Qin
Using animal waste (manure) for soil amendments have been recognized as an efficient strategy for farm management, as well as for soil preservation and greenhouse gas (GHG) emissions mitigation. It is believed that manure can improve soil quality, increase soil organic carbon (SOC) level and therefore potentially mitigate GHG emissions. However, recent studies reported that use of manure in the field can cause large amount of nitrous oxide (N2O) emissions which in many cases offset the amount of SOC sequestered in agricultural ecosystems and eventually lead to net GHG emissions. In this report, we intended to investigate this management related mitigation option holistically, by modeling the full GHG budgets from a life cycle perspective. GHG emissions and some reactive gases (e.g., VOCs, NO) were specifically included in the manure life cycle. By re-examining the system boundary in previous studies, we show that use of manure does not necessarily cause large GHG emissions as previously reported. Net GHG emissions or mitigation potentials depend on not only SOC and N2O emissions in situ, but also emissions and reactive gases beyond the farmgate and those would have been released anyway.
How to cite: Qin, Z.: Manure happens: re-examining mitigation potential from waste-to-resource in agricultural ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1345, https://doi.org/10.5194/egusphere-egu2020-1345, 2020.
Using animal waste (manure) for soil amendments have been recognized as an efficient strategy for farm management, as well as for soil preservation and greenhouse gas (GHG) emissions mitigation. It is believed that manure can improve soil quality, increase soil organic carbon (SOC) level and therefore potentially mitigate GHG emissions. However, recent studies reported that use of manure in the field can cause large amount of nitrous oxide (N2O) emissions which in many cases offset the amount of SOC sequestered in agricultural ecosystems and eventually lead to net GHG emissions. In this report, we intended to investigate this management related mitigation option holistically, by modeling the full GHG budgets from a life cycle perspective. GHG emissions and some reactive gases (e.g., VOCs, NO) were specifically included in the manure life cycle. By re-examining the system boundary in previous studies, we show that use of manure does not necessarily cause large GHG emissions as previously reported. Net GHG emissions or mitigation potentials depend on not only SOC and N2O emissions in situ, but also emissions and reactive gases beyond the farmgate and those would have been released anyway.
How to cite: Qin, Z.: Manure happens: re-examining mitigation potential from waste-to-resource in agricultural ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1345, https://doi.org/10.5194/egusphere-egu2020-1345, 2020.
EGU2020-13057 | Displays | BG3.3
The complexity of biogenic boreal emissions through the lens of hydroxyl radical (OH) reactivityArnaud P. Praplan, Simon Schallhart, Toni Tykkä, Jaana Bäck, and Heidi Hellén
Di Carlo et al. (2004) identified a discrepancy between measured total hydroxyl radical (OH) reactivity and the OH reactivity derived from the known air chemical composition in a forested environment. This missing reactivity has also been observed in the boreal forest (Sinha et al., 2010; Nölscher et al., 2012; Praplan et al., 2019). It remains ambiguous (e.g. Nölscher et al., 2013) if this missing reactivity stems from unknown primary emissions of volatile organic compounds (VOCs) from vegetation or from other sources (e.g. soil).
In order to further investigate emissions from a boreal forest, we applied the Comparative Reactivity Method (CRM; Sinha et al., 2008; Praplan et al., 2017) to emission measurements. Simultaneously, the emissions were chemically characterized with on-line gas chromatography coupled to mass spectrometery (GC/MS) methods.
In a first stage of the study (May to October 2017), measurements alternated between seedlings of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and downy birch (Betula pubescens). They were placed in pots outside of the container were the instrumentation was placed at the SMEAR II station in Hyytiälä, Finland. In a second stage (May to September 2019), emissions from forest trees (Norway spruce and Downy birch) for in situ conditions were analysed.
The results show large variations of emission profiles and amounts throughout the year. In particular seedling were subject to periods of high stress which saw a large fraction of Green Leaf Volatiles (GLVs) contributing to the reactivity and a general increase of the emissions and the total observed reactivity. Trees from the forest were less prone to such stress and their emissions are higher in the spring and early summer compared to later summer and autumn.
While the presented dataset is limited and difficult to extrapolate from, it highlights important factors that need to be taken into account when modelling emissions: variability between tree species and individual trees, seasonal variations (slow changes) and stress factors (rapid changes), for instance.
References:
- Di Carlo et al. (2004), Science, 304, 722–725, doi:10.1126/science.1094392.
- Nölscher et al. (2012), Atmos. Chem. Phys., 12, 8257–8270, doi:10.5194/acp-12-8257-2012.
- Nölscher et al. (2013), Biogeosciences, 10, 4241–4257, doi:10.5194/bg-10-4241-2013.
- Praplan et al. (2017), Atmos. Env., 169, 150–161, doi:10.1016/j.atmosenv.2017.09.013.
- Praplan et al. (2019), Atmos. Chem. Phys., 19, 14431–14453, doi:10.5194/acp-19-14431-2019.
- Sinha et al. (2008), Atmos. Chem. Phys., 8, 2213–2227, doi:10.5194/acp-8-2213-2008.
- Sinha et al. (2010), Environ. Sci. Technol., 44, 6614–6620, doi:10.1021/es101780b.
How to cite: Praplan, A. P., Schallhart, S., Tykkä, T., Bäck, J., and Hellén, H.: The complexity of biogenic boreal emissions through the lens of hydroxyl radical (OH) reactivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13057, https://doi.org/10.5194/egusphere-egu2020-13057, 2020.
Di Carlo et al. (2004) identified a discrepancy between measured total hydroxyl radical (OH) reactivity and the OH reactivity derived from the known air chemical composition in a forested environment. This missing reactivity has also been observed in the boreal forest (Sinha et al., 2010; Nölscher et al., 2012; Praplan et al., 2019). It remains ambiguous (e.g. Nölscher et al., 2013) if this missing reactivity stems from unknown primary emissions of volatile organic compounds (VOCs) from vegetation or from other sources (e.g. soil).
In order to further investigate emissions from a boreal forest, we applied the Comparative Reactivity Method (CRM; Sinha et al., 2008; Praplan et al., 2017) to emission measurements. Simultaneously, the emissions were chemically characterized with on-line gas chromatography coupled to mass spectrometery (GC/MS) methods.
In a first stage of the study (May to October 2017), measurements alternated between seedlings of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), and downy birch (Betula pubescens). They were placed in pots outside of the container were the instrumentation was placed at the SMEAR II station in Hyytiälä, Finland. In a second stage (May to September 2019), emissions from forest trees (Norway spruce and Downy birch) for in situ conditions were analysed.
The results show large variations of emission profiles and amounts throughout the year. In particular seedling were subject to periods of high stress which saw a large fraction of Green Leaf Volatiles (GLVs) contributing to the reactivity and a general increase of the emissions and the total observed reactivity. Trees from the forest were less prone to such stress and their emissions are higher in the spring and early summer compared to later summer and autumn.
While the presented dataset is limited and difficult to extrapolate from, it highlights important factors that need to be taken into account when modelling emissions: variability between tree species and individual trees, seasonal variations (slow changes) and stress factors (rapid changes), for instance.
References:
- Di Carlo et al. (2004), Science, 304, 722–725, doi:10.1126/science.1094392.
- Nölscher et al. (2012), Atmos. Chem. Phys., 12, 8257–8270, doi:10.5194/acp-12-8257-2012.
- Nölscher et al. (2013), Biogeosciences, 10, 4241–4257, doi:10.5194/bg-10-4241-2013.
- Praplan et al. (2017), Atmos. Env., 169, 150–161, doi:10.1016/j.atmosenv.2017.09.013.
- Praplan et al. (2019), Atmos. Chem. Phys., 19, 14431–14453, doi:10.5194/acp-19-14431-2019.
- Sinha et al. (2008), Atmos. Chem. Phys., 8, 2213–2227, doi:10.5194/acp-8-2213-2008.
- Sinha et al. (2010), Environ. Sci. Technol., 44, 6614–6620, doi:10.1021/es101780b.
How to cite: Praplan, A. P., Schallhart, S., Tykkä, T., Bäck, J., and Hellén, H.: The complexity of biogenic boreal emissions through the lens of hydroxyl radical (OH) reactivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13057, https://doi.org/10.5194/egusphere-egu2020-13057, 2020.
EGU2020-6896 | Displays | BG3.3
Does stand age affect methane consumption of forest soil? A study in a chronosequence of sessile oak.Nicolas Bras, Caroline Plain, and Daniel Epron
Soils play an important role of atmospheric methane sink, consuming about 30 Tg year-1. Methane consumption is carried out by methanotrophic bacteria whose activity can be affected by different environmental factors. One of the most important factors that impact on methane consumption is the air-filled porosity of soil (AFP), which depends on its total porosity (P) and its water content (SWC). A high AFP enhances gas diffusion in soil, and therefore methane consumption. In forests, P is thought to increase with stand age because of soil decompaction by tree roots and SWC is thought to decrease because of a high evapotranspiration. Another factor that can affect methane consumption and thought to decrease with the aging of forest stands is mineral nitrogen (Nmin) and particularly ammonium that competes with methane for the active site of methane monooxygenase, thus reducing methane oxidation. However only few studies have addressed the effects of stand aging on soil methane consumption.
Our objective was to confirm the hypothesis that methane consumption by forest soil increases with stand age, in relation with an increase AFP and a decrease Nmin. We carried out this study in a chronosequence of 16 stands of sessile oak divided into six age classes (20-30, 40-60, 60-70, 85-90, 125-130 and 140-145). Three sampling campaigns were conducted in late summer 2018 and 2019 (periods of maximum AFP) and in early spring 2018 (period of minimum AFP). Soil methane consumption was measured by incubating the five first centimetres of soil cores at 20°C and by measuring the decrease of CH4 concentration in the incubation chamber with a laser-based CH4 analyser.
In contrast to our hypothesis, we did not find any significant effect of stand age on Nmin, P, SWC and AFP, nor on methane consumption. However, methane consumption was higher in stands with high values of AFP and low value of SWC, whatever their age. AFP, through differences in SWC, appeared to be the main driver of soil methane consumption in our study site, explaining both seasonal variations and variations among stands, that could not however be related to their age.
How to cite: Bras, N., Plain, C., and Epron, D.: Does stand age affect methane consumption of forest soil? A study in a chronosequence of sessile oak., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6896, https://doi.org/10.5194/egusphere-egu2020-6896, 2020.
Soils play an important role of atmospheric methane sink, consuming about 30 Tg year-1. Methane consumption is carried out by methanotrophic bacteria whose activity can be affected by different environmental factors. One of the most important factors that impact on methane consumption is the air-filled porosity of soil (AFP), which depends on its total porosity (P) and its water content (SWC). A high AFP enhances gas diffusion in soil, and therefore methane consumption. In forests, P is thought to increase with stand age because of soil decompaction by tree roots and SWC is thought to decrease because of a high evapotranspiration. Another factor that can affect methane consumption and thought to decrease with the aging of forest stands is mineral nitrogen (Nmin) and particularly ammonium that competes with methane for the active site of methane monooxygenase, thus reducing methane oxidation. However only few studies have addressed the effects of stand aging on soil methane consumption.
Our objective was to confirm the hypothesis that methane consumption by forest soil increases with stand age, in relation with an increase AFP and a decrease Nmin. We carried out this study in a chronosequence of 16 stands of sessile oak divided into six age classes (20-30, 40-60, 60-70, 85-90, 125-130 and 140-145). Three sampling campaigns were conducted in late summer 2018 and 2019 (periods of maximum AFP) and in early spring 2018 (period of minimum AFP). Soil methane consumption was measured by incubating the five first centimetres of soil cores at 20°C and by measuring the decrease of CH4 concentration in the incubation chamber with a laser-based CH4 analyser.
In contrast to our hypothesis, we did not find any significant effect of stand age on Nmin, P, SWC and AFP, nor on methane consumption. However, methane consumption was higher in stands with high values of AFP and low value of SWC, whatever their age. AFP, through differences in SWC, appeared to be the main driver of soil methane consumption in our study site, explaining both seasonal variations and variations among stands, that could not however be related to their age.
How to cite: Bras, N., Plain, C., and Epron, D.: Does stand age affect methane consumption of forest soil? A study in a chronosequence of sessile oak., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6896, https://doi.org/10.5194/egusphere-egu2020-6896, 2020.
EGU2020-5094 | Displays | BG3.3
Logging residue produces greenhouse gases in boreal forestsAntti Laihonen and Marja Tiirola
Living trees are recognized as sources of greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). However, less is known about greenhouse gas exchange in deadwood during its decay, and especially in logging residue. During the logging process, logging residue is produced in large amounts. Even though residue can be harvested for energy production, significant amounts of logging residue is still left in forests. In Finland, 30 % of the logging residue is recommended to be left on the logging site. It has been estimated, that in the European Union, annually over 200 million cubic meters of logging residue is produced, which of approximately one sixth is produced solely in Finland. As an example, only 2.7 million cubic meters of logging residue was recovered from Finnish forests and used for energy production in 2018.
We hypothesized that logging residue left in forests produces various greenhouse gases – CO2, CH4 and N2O – during its decay. We studied greenhouse gas exchange in logging residue of spruce (Picea abies) and birch (Betula sp.) with focus on logs with average diameter of 5 – 10 cm. Residue was collected from 18 different research areas, covering approximately 47 hectares of spruce-dominated forest in Central Finland. All research areas were clear cuts, with known cut ages; the studied logs had decayed between 0 and 10 years. The study was carried out in 2019 during an eight-month period from May to December. In addition to greenhouse gas flux, dry matter content of logs was determined. All studied logs were a source of CO2, with CO2 flux correlating with log decay time and dry matter content. CO2 emission was observed to be dependent on ambient temperature. In general, we detected low CH4 emissions from logging residue; opposite to CO2, no clear trend was found between CH4 flux and log decay time or dry matter content. N2O results were similar to CH4, with low overall emissions. Dry matter content of logs correlated well with log decay time, with dry matter content decreasing as the logs were more decayed. Our study is an important step in understanding greenhouse gas exchange in logging residue and decaying wood in forests.
How to cite: Laihonen, A. and Tiirola, M.: Logging residue produces greenhouse gases in boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5094, https://doi.org/10.5194/egusphere-egu2020-5094, 2020.
Living trees are recognized as sources of greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). However, less is known about greenhouse gas exchange in deadwood during its decay, and especially in logging residue. During the logging process, logging residue is produced in large amounts. Even though residue can be harvested for energy production, significant amounts of logging residue is still left in forests. In Finland, 30 % of the logging residue is recommended to be left on the logging site. It has been estimated, that in the European Union, annually over 200 million cubic meters of logging residue is produced, which of approximately one sixth is produced solely in Finland. As an example, only 2.7 million cubic meters of logging residue was recovered from Finnish forests and used for energy production in 2018.
We hypothesized that logging residue left in forests produces various greenhouse gases – CO2, CH4 and N2O – during its decay. We studied greenhouse gas exchange in logging residue of spruce (Picea abies) and birch (Betula sp.) with focus on logs with average diameter of 5 – 10 cm. Residue was collected from 18 different research areas, covering approximately 47 hectares of spruce-dominated forest in Central Finland. All research areas were clear cuts, with known cut ages; the studied logs had decayed between 0 and 10 years. The study was carried out in 2019 during an eight-month period from May to December. In addition to greenhouse gas flux, dry matter content of logs was determined. All studied logs were a source of CO2, with CO2 flux correlating with log decay time and dry matter content. CO2 emission was observed to be dependent on ambient temperature. In general, we detected low CH4 emissions from logging residue; opposite to CO2, no clear trend was found between CH4 flux and log decay time or dry matter content. N2O results were similar to CH4, with low overall emissions. Dry matter content of logs correlated well with log decay time, with dry matter content decreasing as the logs were more decayed. Our study is an important step in understanding greenhouse gas exchange in logging residue and decaying wood in forests.
How to cite: Laihonen, A. and Tiirola, M.: Logging residue produces greenhouse gases in boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5094, https://doi.org/10.5194/egusphere-egu2020-5094, 2020.
EGU2020-7935 | Displays | BG3.3
The contribution of phyllospheric microbes on nitrous oxide fluxes of Norway spruceInga Martikainen, Anuliina Putkinen, Jukka Pumpanen, Mari Pihlatie, and Henri Siljanen
EGU2020-2892 | Displays | BG3.3
Spruce resins constitute a strong sink for methane (CH4)Katerina Machacova, Thomas Schindler, Ülo Mander, and Kaido Soosaar
Woody plants are known to emit methane (CH4) as an important greenhouse gas into the atmosphere. Recent studies show that tree stems might be also sinks for CH4; however, the mechanisms of CH4 uptake and its fate are unknown. Norway spruce (Picea abies) is characterised as negligible CH4 source in boreal forests. Even though spruce trees have been widely planted for its wood in large-scale monocultures in European temperate forests, no studies have focused on their CH4 exchange potential in the temperate zone.
We determined stems of Norway spruce growing in a temperate zone aiming to find out whether the tree stems exchange CH4 with the atmosphere and how they contribute to the forest trace gas exchange.
The measurements were performed at the experimental station of the ‘Kranzberg Forest Roof Experiment’ near Freising, Germany, in June 2019. Fluxes of CH4 in mature tree stems were measured using non-steady-state stem chamber systems (n=32) installed in stem vertical profile approx. two weeks prior to measurements using a portable greenhouse gas analyser. Moreover, resins sampled from spruce stems were investigated for their CH4 exchange potential. Control measurements were performed to ensure that the fluxes do not originate from used chamber materials, in particular silicones used for chamber installation.
Our preliminary results show that the spruce stems can be a strong sink for CH4 (-0.288 ± 0.053 mg CH4 m-2 stem area h-1, mean ± s.e.), even if a small amount of resin is present on the bark. The stems exuded resins to different extent (covering 4.8 ± 1.3% of the stem surface area in chambers), partly as a result of smoothening of rough surface layers of dead bark for chamber installation. However, even spruce stems without obvious “injuries” released small amounts of resins for unknown reasons (response to drought, bark-beetle attack, etc.?). The incubated resin samples consistently consumed CH4 (-12.0 ± 1.7 mg CH4 m-2 resin area h-1). Moreover, the detected stem CH4 uptake negatively correlated with the resin occurrence in the stem chambers (R² = 0.884). After re-calculation of the stem fluxes to resin area, the CH4 consumption rates of stems and resin samples were in the same order of magnitude at median level (-13.2 and -12.0 mg CH4 m-2 resin area h-1, resp.).
Concluded, the spruce resins appear to be a very strong and until now undiscovered sink for CH4. Even one small droplet of resins on bark can turn the known negligible CH4 exchange of intact spruce stems into strong CH4 sinks, having thus severe impact on the overall forest CH4 balance. This consumption potential of fresh resins should be considered by estimation of forest ecosystem CH4 balance especially in areas, where resin bleeding is widely spread or is to be expected (bark-beetle areas, drought events, tree harvest, clear-cutting).
Acknowledgement
This research was supported by the Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415). We thank Prof. Thorsten Grams for all his kind support, and Jan Hrdlička and Thomas Feuerbach for their technical support.
How to cite: Machacova, K., Schindler, T., Mander, Ü., and Soosaar, K.: Spruce resins constitute a strong sink for methane (CH4), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2892, https://doi.org/10.5194/egusphere-egu2020-2892, 2020.
Woody plants are known to emit methane (CH4) as an important greenhouse gas into the atmosphere. Recent studies show that tree stems might be also sinks for CH4; however, the mechanisms of CH4 uptake and its fate are unknown. Norway spruce (Picea abies) is characterised as negligible CH4 source in boreal forests. Even though spruce trees have been widely planted for its wood in large-scale monocultures in European temperate forests, no studies have focused on their CH4 exchange potential in the temperate zone.
We determined stems of Norway spruce growing in a temperate zone aiming to find out whether the tree stems exchange CH4 with the atmosphere and how they contribute to the forest trace gas exchange.
The measurements were performed at the experimental station of the ‘Kranzberg Forest Roof Experiment’ near Freising, Germany, in June 2019. Fluxes of CH4 in mature tree stems were measured using non-steady-state stem chamber systems (n=32) installed in stem vertical profile approx. two weeks prior to measurements using a portable greenhouse gas analyser. Moreover, resins sampled from spruce stems were investigated for their CH4 exchange potential. Control measurements were performed to ensure that the fluxes do not originate from used chamber materials, in particular silicones used for chamber installation.
Our preliminary results show that the spruce stems can be a strong sink for CH4 (-0.288 ± 0.053 mg CH4 m-2 stem area h-1, mean ± s.e.), even if a small amount of resin is present on the bark. The stems exuded resins to different extent (covering 4.8 ± 1.3% of the stem surface area in chambers), partly as a result of smoothening of rough surface layers of dead bark for chamber installation. However, even spruce stems without obvious “injuries” released small amounts of resins for unknown reasons (response to drought, bark-beetle attack, etc.?). The incubated resin samples consistently consumed CH4 (-12.0 ± 1.7 mg CH4 m-2 resin area h-1). Moreover, the detected stem CH4 uptake negatively correlated with the resin occurrence in the stem chambers (R² = 0.884). After re-calculation of the stem fluxes to resin area, the CH4 consumption rates of stems and resin samples were in the same order of magnitude at median level (-13.2 and -12.0 mg CH4 m-2 resin area h-1, resp.).
Concluded, the spruce resins appear to be a very strong and until now undiscovered sink for CH4. Even one small droplet of resins on bark can turn the known negligible CH4 exchange of intact spruce stems into strong CH4 sinks, having thus severe impact on the overall forest CH4 balance. This consumption potential of fresh resins should be considered by estimation of forest ecosystem CH4 balance especially in areas, where resin bleeding is widely spread or is to be expected (bark-beetle areas, drought events, tree harvest, clear-cutting).
Acknowledgement
This research was supported by the Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415). We thank Prof. Thorsten Grams for all his kind support, and Jan Hrdlička and Thomas Feuerbach for their technical support.
How to cite: Machacova, K., Schindler, T., Mander, Ü., and Soosaar, K.: Spruce resins constitute a strong sink for methane (CH4), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2892, https://doi.org/10.5194/egusphere-egu2020-2892, 2020.
EGU2020-9001 | Displays | BG3.3
Contribution of tree stem and canopy fluxes to the CH4 budget of a boreal birch and spruce forestMari Pihlatie, Elisa Vainio, Iikka Haikarainen, Anuliina Putkinen, Minna Santalahti, Markku Koskinen, and Katerina Machacova
Upland forest soils are typically a net methane (CH4) sink, while trees may act as CH4 sources. Studies on tree CH4 exchange in boreal forests, especially regarding canopies, are rare. We aimed to quantify the contribution of trees to the forest CH4 budget during spring leaf-out period and to reveal the role of microbes in the CH4 exchange of trees. We measured stem and shoot fluxes of two common boreal tree species at a fen and at an upland site at Hyytiälä, southern Finland, together with soil CH4 flux, environmental variables and the abundances methanogens and methanotrophs within the forest. Both birch (Betula pubescens) and spruce (Picea abies) trees emitted CH4 from their aboveground surfaces, with significantly higher stem emissions detected from the birch and higher shoot emissions from the spruce. The shoot CH4 exchange had no clear link to the vertical profile of the canopy or the progress of the leaf-out. The stem CH4 emissions from birches at the fen were high (mean 45 µg h−1 m−2) and decreased drastically with stem height. Their dynamics followed soil temperature, suggesting the emitted CH4 originated from the soil. A lack of similar pattern in the fen spruces and in the upland birch indicates other processes behind the stem CH4 fluxes of these trees. The lack of detection of methanogens or methanotrophs in the aboveground plant tissues suggest that the observed tree-derived CH4 fluxes were not induced by these microbes. The emitted CH4 from the tree stems may, however, be produced microbially in the soil indicating that physiological differences in tree anatomy or adaptation to different belowground conditions might be a key factor explaining the differences between the tree species.
Acknowledgements: This research was supported Academy of Finland (288494, 2884941), National Centre of Excellence (272041), ICOS-FINLAND (281255), Helsinki Institute of Life Science (HiLIFE), Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415), and the European Research Council (ERC) under Horizon 2020 research and innovation programme, grant agreement No (757695).
How to cite: Pihlatie, M., Vainio, E., Haikarainen, I., Putkinen, A., Santalahti, M., Koskinen, M., and Machacova, K.: Contribution of tree stem and canopy fluxes to the CH4 budget of a boreal birch and spruce forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9001, https://doi.org/10.5194/egusphere-egu2020-9001, 2020.
Upland forest soils are typically a net methane (CH4) sink, while trees may act as CH4 sources. Studies on tree CH4 exchange in boreal forests, especially regarding canopies, are rare. We aimed to quantify the contribution of trees to the forest CH4 budget during spring leaf-out period and to reveal the role of microbes in the CH4 exchange of trees. We measured stem and shoot fluxes of two common boreal tree species at a fen and at an upland site at Hyytiälä, southern Finland, together with soil CH4 flux, environmental variables and the abundances methanogens and methanotrophs within the forest. Both birch (Betula pubescens) and spruce (Picea abies) trees emitted CH4 from their aboveground surfaces, with significantly higher stem emissions detected from the birch and higher shoot emissions from the spruce. The shoot CH4 exchange had no clear link to the vertical profile of the canopy or the progress of the leaf-out. The stem CH4 emissions from birches at the fen were high (mean 45 µg h−1 m−2) and decreased drastically with stem height. Their dynamics followed soil temperature, suggesting the emitted CH4 originated from the soil. A lack of similar pattern in the fen spruces and in the upland birch indicates other processes behind the stem CH4 fluxes of these trees. The lack of detection of methanogens or methanotrophs in the aboveground plant tissues suggest that the observed tree-derived CH4 fluxes were not induced by these microbes. The emitted CH4 from the tree stems may, however, be produced microbially in the soil indicating that physiological differences in tree anatomy or adaptation to different belowground conditions might be a key factor explaining the differences between the tree species.
Acknowledgements: This research was supported Academy of Finland (288494, 2884941), National Centre of Excellence (272041), ICOS-FINLAND (281255), Helsinki Institute of Life Science (HiLIFE), Czech Science Foundation (17-18112Y) and National Sustainability Program I (LO1415), and the European Research Council (ERC) under Horizon 2020 research and innovation programme, grant agreement No (757695).
How to cite: Pihlatie, M., Vainio, E., Haikarainen, I., Putkinen, A., Santalahti, M., Koskinen, M., and Machacova, K.: Contribution of tree stem and canopy fluxes to the CH4 budget of a boreal birch and spruce forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9001, https://doi.org/10.5194/egusphere-egu2020-9001, 2020.
EGU2020-13438 | Displays | BG3.3
Nighttime doesn’t stop N2O and CH4 exchange from riparian forest tree stems with the atmosphereThomas Schindler, Katerina Machacova, Ülo Mander, and Kaido Soosaar
Riparian forest ecosystems have been considered to be a natural source of nitrous oxide (N2O) and a natural sink of methane (CH4), both of which are important greenhouse gases (GHG) originating from microbiological processes. Wetland trees may also contribute to the GHG exchange by the release of both gases to the atmosphere or uptake therefrom. Recent studies have investigated the role of tree stems, underlining their importance in understanding forest GHG dynamics, focussing on various tree species, soil conditions or seasonal dynamics. However, knowledge about the short-termed day and night-time distributed GHG exchange of tree stems with the atmosphere is still scarce. We studied stem fluxes in a riparian forest ecosystem aiming to investigate the diurnal pattern and predict the potential influence of solar radiation.
The diurnal flux measurements were performed at 40-year-old grey alder (Alnus incana) forest stand in Estonia with 12-hour interval during July-September 2017 and May-September 2018 (n=16). The exchange of N2O and CH4 was measured from 12 trees at profile height up to 5 m (0.1, 0.8, 1.7, 2.5, 5.0 m) using non-steady state stem chamber systems and gas chromatography. Simultaneously, soil fluxes were automatically quantified using a dynamic chamber system (Picarro 2508); piezometers, automatic groundwater level wells, soil temperature and moisture sensors were installed to determine coherent soil conditions.
Our preliminary results showed N2O and CH4 emissions from alder tree stems during daytime (4.91 ± 0.15 µg m-2 h-1 and 66.38 ± 16.02 µg m-2 h-1, mean ± s.e.) and lower during nighttime (3.65 ± 0.22 µg m-2 h-1 and 51.49 ± 13.83 µg m-2 h-1, mean ± s.e.) at 0.1 m stem height, revealing a likely link to solar-driven physiological tree activity. Further, with increasing stem height, the relation of night to daytime fluxes diminished. However, the day-wise variation, including a minor GHG uptake indicates a fast response to changing micro-spatial environmental conditions like water regime in the soil and temperature.
Our study demonstrates the GHG exchange between tree stems and atmosphere occurs both in day- and night-time, showing slightly higher values in day-time, probably due to the trees’ physiological activities. Furthermore, our findings provide the potential to predict reaction kinetics in future modelling of flux pathways in forest ecosystems.
Acknowledgement
This research was supported by the Ministry of Education and Science of Estonia (SF0180127s08 grant), the Estonian Research Council (IUT2-16, PRG-352, and MOBERC20), the Czech Science Foundation (17-18112Y), the Czech National Sustainability Program I (LO1415), and the EcolChange Centre of Excellence, Estonia.
How to cite: Schindler, T., Machacova, K., Mander, Ü., and Soosaar, K.: Nighttime doesn’t stop N2O and CH4 exchange from riparian forest tree stems with the atmosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13438, https://doi.org/10.5194/egusphere-egu2020-13438, 2020.
Riparian forest ecosystems have been considered to be a natural source of nitrous oxide (N2O) and a natural sink of methane (CH4), both of which are important greenhouse gases (GHG) originating from microbiological processes. Wetland trees may also contribute to the GHG exchange by the release of both gases to the atmosphere or uptake therefrom. Recent studies have investigated the role of tree stems, underlining their importance in understanding forest GHG dynamics, focussing on various tree species, soil conditions or seasonal dynamics. However, knowledge about the short-termed day and night-time distributed GHG exchange of tree stems with the atmosphere is still scarce. We studied stem fluxes in a riparian forest ecosystem aiming to investigate the diurnal pattern and predict the potential influence of solar radiation.
The diurnal flux measurements were performed at 40-year-old grey alder (Alnus incana) forest stand in Estonia with 12-hour interval during July-September 2017 and May-September 2018 (n=16). The exchange of N2O and CH4 was measured from 12 trees at profile height up to 5 m (0.1, 0.8, 1.7, 2.5, 5.0 m) using non-steady state stem chamber systems and gas chromatography. Simultaneously, soil fluxes were automatically quantified using a dynamic chamber system (Picarro 2508); piezometers, automatic groundwater level wells, soil temperature and moisture sensors were installed to determine coherent soil conditions.
Our preliminary results showed N2O and CH4 emissions from alder tree stems during daytime (4.91 ± 0.15 µg m-2 h-1 and 66.38 ± 16.02 µg m-2 h-1, mean ± s.e.) and lower during nighttime (3.65 ± 0.22 µg m-2 h-1 and 51.49 ± 13.83 µg m-2 h-1, mean ± s.e.) at 0.1 m stem height, revealing a likely link to solar-driven physiological tree activity. Further, with increasing stem height, the relation of night to daytime fluxes diminished. However, the day-wise variation, including a minor GHG uptake indicates a fast response to changing micro-spatial environmental conditions like water regime in the soil and temperature.
Our study demonstrates the GHG exchange between tree stems and atmosphere occurs both in day- and night-time, showing slightly higher values in day-time, probably due to the trees’ physiological activities. Furthermore, our findings provide the potential to predict reaction kinetics in future modelling of flux pathways in forest ecosystems.
Acknowledgement
This research was supported by the Ministry of Education and Science of Estonia (SF0180127s08 grant), the Estonian Research Council (IUT2-16, PRG-352, and MOBERC20), the Czech Science Foundation (17-18112Y), the Czech National Sustainability Program I (LO1415), and the EcolChange Centre of Excellence, Estonia.
How to cite: Schindler, T., Machacova, K., Mander, Ü., and Soosaar, K.: Nighttime doesn’t stop N2O and CH4 exchange from riparian forest tree stems with the atmosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13438, https://doi.org/10.5194/egusphere-egu2020-13438, 2020.
EGU2020-6139 | Displays | BG3.3
Tropical forest CH4: from flux chambers to micrometeorological tower measurementsHella van Asperen, Thorsten Warneke, Alessandro Carioca de Araújo, Bruce Rider Forsberg, Leonardo Ramos de Oliveira, Thiago de Lima Xavier, Marta de Oliveira Sá, Paulo Ricardo Teixeira, Robson Azevedo de Oliveira, Veber Sousa de Moura, Leila do Socorro Monteiro Leal, Santiago Botia, Jošt Lavrič, Shujiro Komiya, Arnoud Frumau, Arjan Hensen, Pim van den Bulk, Danielle van Dinther, and Justus Notholt
Methane (CH4) is the second most important long-lived anthropogenic atmospheric greenhouse gas. Despite its importance, natural sources of methane, such as tropical wetlands, are still not well understood and a large source of uncertainty to the global CH4 budget. The Amazonian rain forest is estimated to hold 90-120 Pg of carbon, which is approximately 14-27% of the carbon stored in vegetation worldwide. The region is characterized by high precipitation rates and large wetlands, and it has been estimated that the Amazon basin emits 7% of the annual total CH4 emissions. Due to its remote location, micro-meteorological measurements are rare and absent for other gases than CO2.
The 50 m high K34 tower (field site ZF2) is located in a pristine tropical forest region 60 km northwest of Manaus (Brazil), and is located next to a waterlogged valley, a possible location for anaerobic CH4 production. In October 2018, in addition to the existing EC CO2 system, a Relaxed Eddy Accumulation (REA) system was set up at this tower, connected to an in-situ FTIR-analyzer. This set up continually measures fluxes and concentration profiles of CO2, CO, CH4, N2O and δ13CO2. In addition, CH4, CO2, and N2O uptake and emission processes were studied by flux chamber measurements in the footprint of the REA tower, focusing on different possible sources (soil, stream, trees and termites). In this presentation, an overview of the measured CH4 and N2O forest concentrations and fluxes will be shown.
How to cite: van Asperen, H., Warneke, T., Carioca de Araújo, A., Rider Forsberg, B., Ramos de Oliveira, L., de Lima Xavier, T., de Oliveira Sá, M., Ricardo Teixeira, P., Azevedo de Oliveira, R., Sousa de Moura, V., do Socorro Monteiro Leal, L., Botia, S., Lavrič, J., Komiya, S., Frumau, A., Hensen, A., van den Bulk, P., van Dinther, D., and Notholt, J.: Tropical forest CH4: from flux chambers to micrometeorological tower measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6139, https://doi.org/10.5194/egusphere-egu2020-6139, 2020.
Methane (CH4) is the second most important long-lived anthropogenic atmospheric greenhouse gas. Despite its importance, natural sources of methane, such as tropical wetlands, are still not well understood and a large source of uncertainty to the global CH4 budget. The Amazonian rain forest is estimated to hold 90-120 Pg of carbon, which is approximately 14-27% of the carbon stored in vegetation worldwide. The region is characterized by high precipitation rates and large wetlands, and it has been estimated that the Amazon basin emits 7% of the annual total CH4 emissions. Due to its remote location, micro-meteorological measurements are rare and absent for other gases than CO2.
The 50 m high K34 tower (field site ZF2) is located in a pristine tropical forest region 60 km northwest of Manaus (Brazil), and is located next to a waterlogged valley, a possible location for anaerobic CH4 production. In October 2018, in addition to the existing EC CO2 system, a Relaxed Eddy Accumulation (REA) system was set up at this tower, connected to an in-situ FTIR-analyzer. This set up continually measures fluxes and concentration profiles of CO2, CO, CH4, N2O and δ13CO2. In addition, CH4, CO2, and N2O uptake and emission processes were studied by flux chamber measurements in the footprint of the REA tower, focusing on different possible sources (soil, stream, trees and termites). In this presentation, an overview of the measured CH4 and N2O forest concentrations and fluxes will be shown.
How to cite: van Asperen, H., Warneke, T., Carioca de Araújo, A., Rider Forsberg, B., Ramos de Oliveira, L., de Lima Xavier, T., de Oliveira Sá, M., Ricardo Teixeira, P., Azevedo de Oliveira, R., Sousa de Moura, V., do Socorro Monteiro Leal, L., Botia, S., Lavrič, J., Komiya, S., Frumau, A., Hensen, A., van den Bulk, P., van Dinther, D., and Notholt, J.: Tropical forest CH4: from flux chambers to micrometeorological tower measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6139, https://doi.org/10.5194/egusphere-egu2020-6139, 2020.
BG3.5 – Peatlands under pressure
EGU2020-773 | Displays | BG3.5
Long-term feedbacks result in the recovery of the CO2 sink in a remnant peatland following water table loweringJoshua Ratcliffe, David Campbell, Louis Schipper, Aaron Wall, and Beverley Clarkson
Peatland biological, physical and chemical properties change over time in response to the long-term water table position. Such changes complicate predicting the response of peatland carbon stocks to sustained drying. Here we use Eddy Covariance measurements of CO2 exchange to study the effect of sustained water table lowering on peatland carbon dynamics. We compare measurements from a near-pristine peatland with those of a drying remnant, both raised bogs dominated by Empodisma robustum (Restionaceae), across two different time periods separated by a 16-year interval. We found that the remnant bog was initially a source of CO2 following water table lowering. However, the CO2 sink recovered and strengthened after the 16-year interval between measurements. The increase in CO2 sink strength in the remnant bog was primarily due to increased photosynthetic uptake of CO2, which exceeded that of the near-pristine site in both time periods. Additionally we found the loss of CO2 via ecosystem respiration to have declined with time, however, ecosystem respiration remained elevated compared to the near-pristine site. These trends of increasing photosynthesis and declining ecosystem respiration resulted in the CO2 sink in the dry bog reaching half the sink strength of the near-pristine bog. We consider two factors to have been key for the recovery of the CO2 sink in the remnant bog. These were 1) resilience of the peat-forming plant community to water-table change and 2) the expansion of ericoid shrubs. Our results demonstrate that the peatland carbon sink can recover from drying over a multi-decadal timescale, but questions remain as to the long-term trajectory of dry bogs and the stability of carbon fixed after water table lowering.
How to cite: Ratcliffe, J., Campbell, D., Schipper, L., Wall, A., and Clarkson, B.: Long-term feedbacks result in the recovery of the CO2 sink in a remnant peatland following water table lowering, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-773, https://doi.org/10.5194/egusphere-egu2020-773, 2020.
Peatland biological, physical and chemical properties change over time in response to the long-term water table position. Such changes complicate predicting the response of peatland carbon stocks to sustained drying. Here we use Eddy Covariance measurements of CO2 exchange to study the effect of sustained water table lowering on peatland carbon dynamics. We compare measurements from a near-pristine peatland with those of a drying remnant, both raised bogs dominated by Empodisma robustum (Restionaceae), across two different time periods separated by a 16-year interval. We found that the remnant bog was initially a source of CO2 following water table lowering. However, the CO2 sink recovered and strengthened after the 16-year interval between measurements. The increase in CO2 sink strength in the remnant bog was primarily due to increased photosynthetic uptake of CO2, which exceeded that of the near-pristine site in both time periods. Additionally we found the loss of CO2 via ecosystem respiration to have declined with time, however, ecosystem respiration remained elevated compared to the near-pristine site. These trends of increasing photosynthesis and declining ecosystem respiration resulted in the CO2 sink in the dry bog reaching half the sink strength of the near-pristine bog. We consider two factors to have been key for the recovery of the CO2 sink in the remnant bog. These were 1) resilience of the peat-forming plant community to water-table change and 2) the expansion of ericoid shrubs. Our results demonstrate that the peatland carbon sink can recover from drying over a multi-decadal timescale, but questions remain as to the long-term trajectory of dry bogs and the stability of carbon fixed after water table lowering.
How to cite: Ratcliffe, J., Campbell, D., Schipper, L., Wall, A., and Clarkson, B.: Long-term feedbacks result in the recovery of the CO2 sink in a remnant peatland following water table lowering, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-773, https://doi.org/10.5194/egusphere-egu2020-773, 2020.
EGU2020-2553 | Displays | BG3.5 | Highlight
Does nitrogen deposition lead to a weaker or stronger carbon sink in nutrient-poor peatlands?Tuula Larmola, Jani Antila, Liisa Maanavilja, Sari Juutinen, Jill L. Bubier, Elyn Humphreys, Heikki Kiheri, Tim R. Moore, Mats Nilsson, and Matthias Peichl
Atmospheric nitrogen (N) deposition is increasing owing to fossil fuel burning and agriculture. In nutrient limited peatland ecosystems, the excess of reactive N has been found to increase vascular plant growth, but decrease Sphagnum growth. Higher vascular plant abundance and higher nutrient content alter decomposability of plant litter. These changes are likely to affect net imbalance of production and decomposition and thus carbon (C) accumulation in peatlands, which store about a third of global soil C. We studied whether the vegetation feedbacks of N deposition lead to stronger or weaker C sink in nutrient-poor peatlands. We investigated vegetation and ecosystem CO2 exchange at two of the longest-running nutrient addition experiments on peatlands, Mer Bleue Bog, Canada and Degerö Stormyr poor fen, Sweden that have been fertilized with NH4NO3 (2-15 times ambient annual wet deposition) for 12-23 years. Gross photosynthesis, ecosystem respiration and net CO2 exchange were measured weekly during June-August using chambers. To examine vegetation changes with increasing N influx, we determined the peak growing season aboveground biomass and coverage of vascular plants using the point intercept method. After 12-23 years of nutrient addition, the two sites revealed contrasting patterns: At Mer Bleue the highest nutrient additions were associated with up to 3-fold net CO2 uptake potential than in the control, whereas N addition treatments at Degerö Stormyr showed close to zero net CO2 uptake potential, only 0.3 fold compared to the control. The stronger C sink potential at Mer Bleue was mainly due to up to 50% increase in the gross photosynthesis and a diminished C sink potential at Degerö Stormyr due to down to 40 % lower gross photosynthesis. Ecosystem respiration showed similar trends at both peatlands: the rates were unaltered or increased to a lesser extent under N load. At both sites, the vegetation structure had changed remarkably. Most of the N addition treatments showed an increase of up to 90% in total vascular aboveground plant abundance and a concomitant loss of Sphagnum. At Mer Bleue along with the decrease in Sphagnum cover, the plots under highest N additions had become wetter, counterbalancing the impact of dry summer conditions in the study year whereas at Degerö Stormyr long term treatments did not alter wetness of the site. Thus, the contrasting C sink responses to long term N load may be explained by the type of vegetation and the water table depth. Shrubs were strong competitors at the dry Mer Bleue Bog while sedges had gained in abundance under N load at the wetter Degerö Stormyr. Our bog-fen comparison emphasizes the value of the long-term experiments in examining the ecosystem response of peatlands to N deposition, possible nonlinear responses and whether the key feedback mechanisms to ecosystem C sink potential differ in two main types of peatlands.
How to cite: Larmola, T., Antila, J., Maanavilja, L., Juutinen, S., Bubier, J. L., Humphreys, E., Kiheri, H., Moore, T. R., Nilsson, M., and Peichl, M.: Does nitrogen deposition lead to a weaker or stronger carbon sink in nutrient-poor peatlands?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2553, https://doi.org/10.5194/egusphere-egu2020-2553, 2020.
Atmospheric nitrogen (N) deposition is increasing owing to fossil fuel burning and agriculture. In nutrient limited peatland ecosystems, the excess of reactive N has been found to increase vascular plant growth, but decrease Sphagnum growth. Higher vascular plant abundance and higher nutrient content alter decomposability of plant litter. These changes are likely to affect net imbalance of production and decomposition and thus carbon (C) accumulation in peatlands, which store about a third of global soil C. We studied whether the vegetation feedbacks of N deposition lead to stronger or weaker C sink in nutrient-poor peatlands. We investigated vegetation and ecosystem CO2 exchange at two of the longest-running nutrient addition experiments on peatlands, Mer Bleue Bog, Canada and Degerö Stormyr poor fen, Sweden that have been fertilized with NH4NO3 (2-15 times ambient annual wet deposition) for 12-23 years. Gross photosynthesis, ecosystem respiration and net CO2 exchange were measured weekly during June-August using chambers. To examine vegetation changes with increasing N influx, we determined the peak growing season aboveground biomass and coverage of vascular plants using the point intercept method. After 12-23 years of nutrient addition, the two sites revealed contrasting patterns: At Mer Bleue the highest nutrient additions were associated with up to 3-fold net CO2 uptake potential than in the control, whereas N addition treatments at Degerö Stormyr showed close to zero net CO2 uptake potential, only 0.3 fold compared to the control. The stronger C sink potential at Mer Bleue was mainly due to up to 50% increase in the gross photosynthesis and a diminished C sink potential at Degerö Stormyr due to down to 40 % lower gross photosynthesis. Ecosystem respiration showed similar trends at both peatlands: the rates were unaltered or increased to a lesser extent under N load. At both sites, the vegetation structure had changed remarkably. Most of the N addition treatments showed an increase of up to 90% in total vascular aboveground plant abundance and a concomitant loss of Sphagnum. At Mer Bleue along with the decrease in Sphagnum cover, the plots under highest N additions had become wetter, counterbalancing the impact of dry summer conditions in the study year whereas at Degerö Stormyr long term treatments did not alter wetness of the site. Thus, the contrasting C sink responses to long term N load may be explained by the type of vegetation and the water table depth. Shrubs were strong competitors at the dry Mer Bleue Bog while sedges had gained in abundance under N load at the wetter Degerö Stormyr. Our bog-fen comparison emphasizes the value of the long-term experiments in examining the ecosystem response of peatlands to N deposition, possible nonlinear responses and whether the key feedback mechanisms to ecosystem C sink potential differ in two main types of peatlands.
How to cite: Larmola, T., Antila, J., Maanavilja, L., Juutinen, S., Bubier, J. L., Humphreys, E., Kiheri, H., Moore, T. R., Nilsson, M., and Peichl, M.: Does nitrogen deposition lead to a weaker or stronger carbon sink in nutrient-poor peatlands?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2553, https://doi.org/10.5194/egusphere-egu2020-2553, 2020.
EGU2020-5967 | Displays | BG3.5
From sink to source: long-term (2002-2019) trends and anomalies in net ecosystem exchange of CO2 from a Scottish temperate peatland.Karen Hei-Laan Yeung, Carole Helfter, Neil Mullinger, Mhairi Coyle, and Eiko Nemitz
Peatlands North of 45˚ represent one of the largest terrestrial carbon (C) stores. They play an important role in the global C-cycle, and their ability to sequester carbon is controlled by multiple, often competing, factors including precipitation, temperature and phenology. Land-atmosphere exchange of carbon dioxide (CO2) is dynamic, and exhibits marked seasonal and inter-annual variations which can effect the overall carbon sink strength in both the short- and long-term.
Due to increased incidences of climate anomalies in recent years, long-term datasets are essential to disambiguate natural variability in Net Ecosystem Exchange (NEE) from shorter-term fluctuations. This is particularly important at high latitudes (>45˚N) where the majority of global peatlands are found. With increasing pressure from stressors such as climate and land-use change, it has been predicted that with a ca. 3oC global temperature rise by 2100, UK peatlands could become a net source of C.
NEE of CO2 has been measured using the eddy-covariance (EC) method at Auchencorth Moss (55°47’32 N, 3°14’35 W, 267 m a.s.l.), a temperate, lowland, ombrotrophic peatland in central Scotland, continuously since 2002. Alongside EC data, we present a range of meteorological parameters measured at site including soil temperature, total solar and photosynthetically active radiation (PAR), rainfall, and, since April 2007, half-hourly water table depth readings. The length of record and range of measurements make this dataset an important resource as one of the longest term records of CO2 fluxes from a temperate peatland.
Although seasonal cycles of gross primary productivity (GPP) were highly variable between years, the site was a consistent CO2 sink for the period 2002-2012. However, net annual losses of CO2 have been recorded on several occasions since 2013. Whilst NEE tends to be positively correlated with the length of growing season, anomalies in winter weather also explain some of the variability in CO2 sink strength the following summer.
Additionally, water table depth (WTD) plays a crucial role, affecting both GPP and ecosystem respiration (Reco). Relatively dry summers in recent years have contributed to shifting the balance between Reco and GPP: prolonged periods of low WTD were typically accompanied by an increase in Reco, and a decrease in GPP, hence weakening the overall CO2 sink strength. Extreme events such as drought periods and cold winter temperatures can have significant and complex effects on NEE, particularly when such meteorological anomalies co-occur. For example, a positive annual NEE occurred in 2003 when Europe experienced heatwave and summer drought. More recently, an unusually long spell of snow lasting until the end of March delayed the onset of the 2018 growing season by up to 1.5 months compared to previous years. This was followed by a prolonged dry spell in summer 2018, which weakened GPP, increased Reco and led to a net annual loss of 47.4 ton CO2-C km-2. It is clear that the role of Northern peatlands within the carbon cycle is being modified, driven by changes in climate at both local and global scales.
How to cite: Yeung, K. H.-L., Helfter, C., Mullinger, N., Coyle, M., and Nemitz, E.: From sink to source: long-term (2002-2019) trends and anomalies in net ecosystem exchange of CO2 from a Scottish temperate peatland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5967, https://doi.org/10.5194/egusphere-egu2020-5967, 2020.
Peatlands North of 45˚ represent one of the largest terrestrial carbon (C) stores. They play an important role in the global C-cycle, and their ability to sequester carbon is controlled by multiple, often competing, factors including precipitation, temperature and phenology. Land-atmosphere exchange of carbon dioxide (CO2) is dynamic, and exhibits marked seasonal and inter-annual variations which can effect the overall carbon sink strength in both the short- and long-term.
Due to increased incidences of climate anomalies in recent years, long-term datasets are essential to disambiguate natural variability in Net Ecosystem Exchange (NEE) from shorter-term fluctuations. This is particularly important at high latitudes (>45˚N) where the majority of global peatlands are found. With increasing pressure from stressors such as climate and land-use change, it has been predicted that with a ca. 3oC global temperature rise by 2100, UK peatlands could become a net source of C.
NEE of CO2 has been measured using the eddy-covariance (EC) method at Auchencorth Moss (55°47’32 N, 3°14’35 W, 267 m a.s.l.), a temperate, lowland, ombrotrophic peatland in central Scotland, continuously since 2002. Alongside EC data, we present a range of meteorological parameters measured at site including soil temperature, total solar and photosynthetically active radiation (PAR), rainfall, and, since April 2007, half-hourly water table depth readings. The length of record and range of measurements make this dataset an important resource as one of the longest term records of CO2 fluxes from a temperate peatland.
Although seasonal cycles of gross primary productivity (GPP) were highly variable between years, the site was a consistent CO2 sink for the period 2002-2012. However, net annual losses of CO2 have been recorded on several occasions since 2013. Whilst NEE tends to be positively correlated with the length of growing season, anomalies in winter weather also explain some of the variability in CO2 sink strength the following summer.
Additionally, water table depth (WTD) plays a crucial role, affecting both GPP and ecosystem respiration (Reco). Relatively dry summers in recent years have contributed to shifting the balance between Reco and GPP: prolonged periods of low WTD were typically accompanied by an increase in Reco, and a decrease in GPP, hence weakening the overall CO2 sink strength. Extreme events such as drought periods and cold winter temperatures can have significant and complex effects on NEE, particularly when such meteorological anomalies co-occur. For example, a positive annual NEE occurred in 2003 when Europe experienced heatwave and summer drought. More recently, an unusually long spell of snow lasting until the end of March delayed the onset of the 2018 growing season by up to 1.5 months compared to previous years. This was followed by a prolonged dry spell in summer 2018, which weakened GPP, increased Reco and led to a net annual loss of 47.4 ton CO2-C km-2. It is clear that the role of Northern peatlands within the carbon cycle is being modified, driven by changes in climate at both local and global scales.
How to cite: Yeung, K. H.-L., Helfter, C., Mullinger, N., Coyle, M., and Nemitz, E.: From sink to source: long-term (2002-2019) trends and anomalies in net ecosystem exchange of CO2 from a Scottish temperate peatland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5967, https://doi.org/10.5194/egusphere-egu2020-5967, 2020.
EGU2020-6621 | Displays | BG3.5 | Highlight
A thawing boreal peat landscape along the southern limit of permafrost presently is carbon neutralOliver Sonnentag, Julien Fouché, Manuel Helbig, Gabriel Hould Gosselin, Matteo Detto, Ryan Connon, William Quinton, and Tim Moore
Along the southern limit of permafrost in northwestern Canada rising air temperatures have caused widespread land cover changes at unprecedented rates. A prominent change includes thermokarst wetland expansion at the expense of black spruce-dominated boreal forest stands due to the permafrost thaw-induced collapse of peat plateaus. We present a multi-year (2013 – 2017) net ecosystem carbon (C) balance (NECB, g C m-2year-1) at Scotty Creek near Fort Simpson, NT. The highly fragmented study site is dominated by permafrost-free wetlands and forested permafrost peat plateaus. Eddy covariance measurements of net ecosystem carbon dioxide (CO2) and methane (CH4) exchanges (2013 – 2017) are complemented by discharge (2014 – 2016) and water chemistry monitoring (2015 and 2016) at the outlets of three small headwater catchments (<0.5 km2) draining the eddy covariance footprint area. In addition to net ecosystem CO2and CH4exchanges, the NECB includes the export of dissolved C (DC) as the sum of inorganic and organic C (DIC and DOC), free CO2and CH4through runoff, and the estimated import of DOC through precipitation. We use absorbance spectroscopy for dissolved organic matter (DOM) characterization to distinguish different DOM sources among catchments and characteristic land cover types. Between 2013 and 2017, the NECB varied between a weak net C source (~16 ±5 g C m-2year-1) and sink (~-22 ±5 g C m-2year-1) in 2015 and 2013, respectively, with a mean value of -1 ±7 g C m-2year-1. The net C sink-source strength was largely controlled by variations in net CO2exchange, ranging between a weak net CO2 sink (~-29 ±3 g C m-2year-1) and source (~8 ±4 g C m-2year-1) in 2015 and 2013, respectively. In contrast, our study site was a persistent annual net CH4source (~8 ±1 g C m-2year-1). Compensated by the import of DOC through precipitation, DC exported from the three catchments was a negligible component of the NECB. There were no significant differences in DOC concentrations and absorbance indices among catchments, and thawed and frozen land cover types, overall illustrating high DOM aromaticity (SUVA254= 3.3 ± 0.6 L mg-1m-1) and high molecular weight (a254:a365 = 4.3 ± 0.3) characteristic for peatlands and peat-dominated landscapes outside the circumpolar permafrost region. We conclude that a rapidly thawing boreal peat landscape along the southern limit of permafrost presently appears to be C neutral.
How to cite: Sonnentag, O., Fouché, J., Helbig, M., Hould Gosselin, G., Detto, M., Connon, R., Quinton, W., and Moore, T.: A thawing boreal peat landscape along the southern limit of permafrost presently is carbon neutral, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6621, https://doi.org/10.5194/egusphere-egu2020-6621, 2020.
Along the southern limit of permafrost in northwestern Canada rising air temperatures have caused widespread land cover changes at unprecedented rates. A prominent change includes thermokarst wetland expansion at the expense of black spruce-dominated boreal forest stands due to the permafrost thaw-induced collapse of peat plateaus. We present a multi-year (2013 – 2017) net ecosystem carbon (C) balance (NECB, g C m-2year-1) at Scotty Creek near Fort Simpson, NT. The highly fragmented study site is dominated by permafrost-free wetlands and forested permafrost peat plateaus. Eddy covariance measurements of net ecosystem carbon dioxide (CO2) and methane (CH4) exchanges (2013 – 2017) are complemented by discharge (2014 – 2016) and water chemistry monitoring (2015 and 2016) at the outlets of three small headwater catchments (<0.5 km2) draining the eddy covariance footprint area. In addition to net ecosystem CO2and CH4exchanges, the NECB includes the export of dissolved C (DC) as the sum of inorganic and organic C (DIC and DOC), free CO2and CH4through runoff, and the estimated import of DOC through precipitation. We use absorbance spectroscopy for dissolved organic matter (DOM) characterization to distinguish different DOM sources among catchments and characteristic land cover types. Between 2013 and 2017, the NECB varied between a weak net C source (~16 ±5 g C m-2year-1) and sink (~-22 ±5 g C m-2year-1) in 2015 and 2013, respectively, with a mean value of -1 ±7 g C m-2year-1. The net C sink-source strength was largely controlled by variations in net CO2exchange, ranging between a weak net CO2 sink (~-29 ±3 g C m-2year-1) and source (~8 ±4 g C m-2year-1) in 2015 and 2013, respectively. In contrast, our study site was a persistent annual net CH4source (~8 ±1 g C m-2year-1). Compensated by the import of DOC through precipitation, DC exported from the three catchments was a negligible component of the NECB. There were no significant differences in DOC concentrations and absorbance indices among catchments, and thawed and frozen land cover types, overall illustrating high DOM aromaticity (SUVA254= 3.3 ± 0.6 L mg-1m-1) and high molecular weight (a254:a365 = 4.3 ± 0.3) characteristic for peatlands and peat-dominated landscapes outside the circumpolar permafrost region. We conclude that a rapidly thawing boreal peat landscape along the southern limit of permafrost presently appears to be C neutral.
How to cite: Sonnentag, O., Fouché, J., Helbig, M., Hould Gosselin, G., Detto, M., Connon, R., Quinton, W., and Moore, T.: A thawing boreal peat landscape along the southern limit of permafrost presently is carbon neutral, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6621, https://doi.org/10.5194/egusphere-egu2020-6621, 2020.
EGU2020-9007 | Displays | BG3.5
Volatile Organic Compound fluxes in a subarctic peatland and lakeRoger Seco, Thomas Holst, Andreas Westergaard-Nielsen, Tao Li, Tihomir Simin, Joachim Jansen, Patrick Crill, Thomas Friborg, Jutta Holst, Janne Rinne, and Riikka Rinnan
Arctic climate is warming twice as much as the global average, due to a number of climate system feedbacks, including albedo change due to retreating snow cover and sea ice, and the forest cover expansion across the open tundra. Northern ecosystems are known to emit trace gases (e.g., methane and volatile organic compounds, VOCs) to the atmosphere, from sources as diverse as soils, vegetation and lakes. These trace gas fluxes are likely to show a trend towards greater emissions with climate warming.
Here we report ecosystem-level VOC fluxes from Stordalen Mire, a subarctic peatland complex with a high fraction of open pond and lake surfaces, underlain by discontinuous permafrost and located in the Subarctic Sweden (68º20' N, 19º03' E).
In 2018, we deployed two online mass spectrometers (PTR-TOF-MS) to measure rapid fluctuations in VOC mixing ratios and to quantify ecosystem-level fluxes with the eddy covariance technique. One of the instruments obtained a growing-season-long dataset of biogenic emissions from palsa mire vegetation dominated by mosses (e.g., Sphagnum spp.), graminoids (such as Eriophorum spp. and Carex spp.), dwarf shrubs (e.g. Empetrum spp. and Betula nana) surrounding the ICOS Sweden Abisko-Stordalen long-term measurement station. The second instrument measured VOC fluxes during two contrasting periods (the peak and the end of the growing season) from a subarctic lake and its adjacent fen, permafrost-free, minerotrophic wetland with vegetation dominated by tall graminoids, mainly Carex rostrata and Eriophorum angustifolium.
At both sites, isoprene was the dominant VOC emitted by vegetation, showing clear diurnal patterns along the season and especially during the peak of the growing season in July. At the ICOS Sweden station, isoprene fluxes exceeded 2 nmol m-2 s-1 on several days in July, with a July monthly average midday emission of 1 nmol m-2 s-1. The fen site showed average midday emissions of 2 nmol m-2 s-1 during the peak growing season. Other VOCs emitted by vegetation at both sites in July were, with decreasing magnitude, methanol, acetone, acetaldehyde and monoterpenes. In contrast, acetaldehyde and acetone were not emitted but mostly deposited to the fen at the end of the season. In contrast to the wetland, the lake was a sink for acetaldehyde and acetone during all measurement periods.
Thermal imaging and spectral analysis of vegetation will be used to assess relationships between VOC fluxes, vegetation surface temperatures and phenology under varying environmental conditions.
How to cite: Seco, R., Holst, T., Westergaard-Nielsen, A., Li, T., Simin, T., Jansen, J., Crill, P., Friborg, T., Holst, J., Rinne, J., and Rinnan, R.: Volatile Organic Compound fluxes in a subarctic peatland and lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9007, https://doi.org/10.5194/egusphere-egu2020-9007, 2020.
Arctic climate is warming twice as much as the global average, due to a number of climate system feedbacks, including albedo change due to retreating snow cover and sea ice, and the forest cover expansion across the open tundra. Northern ecosystems are known to emit trace gases (e.g., methane and volatile organic compounds, VOCs) to the atmosphere, from sources as diverse as soils, vegetation and lakes. These trace gas fluxes are likely to show a trend towards greater emissions with climate warming.
Here we report ecosystem-level VOC fluxes from Stordalen Mire, a subarctic peatland complex with a high fraction of open pond and lake surfaces, underlain by discontinuous permafrost and located in the Subarctic Sweden (68º20' N, 19º03' E).
In 2018, we deployed two online mass spectrometers (PTR-TOF-MS) to measure rapid fluctuations in VOC mixing ratios and to quantify ecosystem-level fluxes with the eddy covariance technique. One of the instruments obtained a growing-season-long dataset of biogenic emissions from palsa mire vegetation dominated by mosses (e.g., Sphagnum spp.), graminoids (such as Eriophorum spp. and Carex spp.), dwarf shrubs (e.g. Empetrum spp. and Betula nana) surrounding the ICOS Sweden Abisko-Stordalen long-term measurement station. The second instrument measured VOC fluxes during two contrasting periods (the peak and the end of the growing season) from a subarctic lake and its adjacent fen, permafrost-free, minerotrophic wetland with vegetation dominated by tall graminoids, mainly Carex rostrata and Eriophorum angustifolium.
At both sites, isoprene was the dominant VOC emitted by vegetation, showing clear diurnal patterns along the season and especially during the peak of the growing season in July. At the ICOS Sweden station, isoprene fluxes exceeded 2 nmol m-2 s-1 on several days in July, with a July monthly average midday emission of 1 nmol m-2 s-1. The fen site showed average midday emissions of 2 nmol m-2 s-1 during the peak growing season. Other VOCs emitted by vegetation at both sites in July were, with decreasing magnitude, methanol, acetone, acetaldehyde and monoterpenes. In contrast, acetaldehyde and acetone were not emitted but mostly deposited to the fen at the end of the season. In contrast to the wetland, the lake was a sink for acetaldehyde and acetone during all measurement periods.
Thermal imaging and spectral analysis of vegetation will be used to assess relationships between VOC fluxes, vegetation surface temperatures and phenology under varying environmental conditions.
How to cite: Seco, R., Holst, T., Westergaard-Nielsen, A., Li, T., Simin, T., Jansen, J., Crill, P., Friborg, T., Holst, J., Rinne, J., and Rinnan, R.: Volatile Organic Compound fluxes in a subarctic peatland and lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9007, https://doi.org/10.5194/egusphere-egu2020-9007, 2020.
EGU2020-11024 | Displays | BG3.5 | Highlight
Enriched nutrient availability strengthens the net C uptake of the northernmost ecosystem station in GreenlandEfrén López-Blanco, Marcin Jackowicz-Korczynski, Mikhail Mastepanov, Kirstine Skov, Andreas Westergaard-Nielsen, Mathew Williams, and Torben R. Christensen
Although the Arctic tundra is an essential contributor to the global carbon (C) cycle, there is a lack of reference sites from where full C exchange dynamics can be characterized under harsh conditions and remoteness. The Greenland Ecosystem Monitoring (GEM) programme efforts have envisioned integrated and long-term activities to contribute to the basic scientific understanding of the Arctic and their responses to climate changes. Here we present 20+ years across the 2008-2018 period of C flux and ancillary data from two twin ecosystem stations in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). In this project we show that Zackenberg fen has a significant higher C sink strength in a higher latitude during regularly shorter growing seasons compared to Kobbefjord fen. This ecosystem acted as a sink of CO2 uptaking on average -50 g C m-2 (range of +21 to -90 g C m-2), more than twice compared to Kobbefjord (-18 g C m-2 as average and range of +41 to -41 g C m-2). We found that Zackenberg is a nutrient richer fen - the increased C uptake strength is associated with 3 times higher levels in soils of dissolved organic carbon and 5 times more plant nutrients, including dissolved organic nitrogen, nitrates. Additional evidences from in-situ sampling point to higher leaf area index (140%), foliar nitrogen (71%), and leaf mass per area (5%) in the northernmost site supporting the nutrient richer hypothesis. To test this overarching hypothesis, we further used the Soil-Plant-Atmosphere (SPA) model. We can explain ~68%, ~80% and ~67% of the variability of daily net ecosystem exchange of CO2, photosynthesis and respiration respectively applying the model parameterization previously used in Kobbefjord but with increases in initial C stocks, leaf mass per area, N content and Q10 of foliar and root respiration rates. Therefore, we conclude that the limitations of plant phenology timing in Zackenberg regarding net C uptake have not only been counterbalanced but also intensified due to richer compositions of nutrients and minerals. More high-temporal monitoring activities in Arctic ecosystems are needed not only to allow straightforward comparisons of key biogeochemical processes but also to help us understand the underlying differences in sensitive and rapidly changing ecosystems.
How to cite: López-Blanco, E., Jackowicz-Korczynski, M., Mastepanov, M., Skov, K., Westergaard-Nielsen, A., Williams, M., and R. Christensen, T.: Enriched nutrient availability strengthens the net C uptake of the northernmost ecosystem station in Greenland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11024, https://doi.org/10.5194/egusphere-egu2020-11024, 2020.
Although the Arctic tundra is an essential contributor to the global carbon (C) cycle, there is a lack of reference sites from where full C exchange dynamics can be characterized under harsh conditions and remoteness. The Greenland Ecosystem Monitoring (GEM) programme efforts have envisioned integrated and long-term activities to contribute to the basic scientific understanding of the Arctic and their responses to climate changes. Here we present 20+ years across the 2008-2018 period of C flux and ancillary data from two twin ecosystem stations in Greenland: Zackenberg (74°N) and Kobbefjord (64°N). In this project we show that Zackenberg fen has a significant higher C sink strength in a higher latitude during regularly shorter growing seasons compared to Kobbefjord fen. This ecosystem acted as a sink of CO2 uptaking on average -50 g C m-2 (range of +21 to -90 g C m-2), more than twice compared to Kobbefjord (-18 g C m-2 as average and range of +41 to -41 g C m-2). We found that Zackenberg is a nutrient richer fen - the increased C uptake strength is associated with 3 times higher levels in soils of dissolved organic carbon and 5 times more plant nutrients, including dissolved organic nitrogen, nitrates. Additional evidences from in-situ sampling point to higher leaf area index (140%), foliar nitrogen (71%), and leaf mass per area (5%) in the northernmost site supporting the nutrient richer hypothesis. To test this overarching hypothesis, we further used the Soil-Plant-Atmosphere (SPA) model. We can explain ~68%, ~80% and ~67% of the variability of daily net ecosystem exchange of CO2, photosynthesis and respiration respectively applying the model parameterization previously used in Kobbefjord but with increases in initial C stocks, leaf mass per area, N content and Q10 of foliar and root respiration rates. Therefore, we conclude that the limitations of plant phenology timing in Zackenberg regarding net C uptake have not only been counterbalanced but also intensified due to richer compositions of nutrients and minerals. More high-temporal monitoring activities in Arctic ecosystems are needed not only to allow straightforward comparisons of key biogeochemical processes but also to help us understand the underlying differences in sensitive and rapidly changing ecosystems.
How to cite: López-Blanco, E., Jackowicz-Korczynski, M., Mastepanov, M., Skov, K., Westergaard-Nielsen, A., Williams, M., and R. Christensen, T.: Enriched nutrient availability strengthens the net C uptake of the northernmost ecosystem station in Greenland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11024, https://doi.org/10.5194/egusphere-egu2020-11024, 2020.
EGU2020-20098 | Displays | BG3.5
Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature responseMatthias Peichl, Järvi Järveoja, Patrick M. Crill, and Mats B. Nilsson
Accurate projections of climate change impacts on the vast carbon stores of northern peatlands require detailed knowledge of ecosystem respiration (ER) and its heterotrophic (Rh) and autotrophic (Ra) components. Currently, however, standard measurement techniques (i.e. eddy covariance and manual chambers) generate semi-continuous empirical ER data (i.e. during only night- or daytime, respectively) that are extrapolated to the daily scale based on the paradigm that assumes a uniform diel response to temperature. Here, using continuous autochamber measurements of hourly ER, Rh and Ra in a boreal peatland, we demonstrate a distinct bimodal pattern in diel ER which contrasts the unimodal pattern inherent to the classical assumption. This feature results from divergent temperature dependencies of day- and nighttime ER due to differing contributions from Rh and Ra. We show that the classical approach overestimated daily ER by up to ~2-fold and growing season ER by 16-23%. These findings call for improved process-based understanding of ER to avoid bias in simulations of peatland carbon cycle-climate feedbacks.
How to cite: Peichl, M., Järveoja, J., Crill, P. M., and Nilsson, M. B.: Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20098, https://doi.org/10.5194/egusphere-egu2020-20098, 2020.
Accurate projections of climate change impacts on the vast carbon stores of northern peatlands require detailed knowledge of ecosystem respiration (ER) and its heterotrophic (Rh) and autotrophic (Ra) components. Currently, however, standard measurement techniques (i.e. eddy covariance and manual chambers) generate semi-continuous empirical ER data (i.e. during only night- or daytime, respectively) that are extrapolated to the daily scale based on the paradigm that assumes a uniform diel response to temperature. Here, using continuous autochamber measurements of hourly ER, Rh and Ra in a boreal peatland, we demonstrate a distinct bimodal pattern in diel ER which contrasts the unimodal pattern inherent to the classical assumption. This feature results from divergent temperature dependencies of day- and nighttime ER due to differing contributions from Rh and Ra. We show that the classical approach overestimated daily ER by up to ~2-fold and growing season ER by 16-23%. These findings call for improved process-based understanding of ER to avoid bias in simulations of peatland carbon cycle-climate feedbacks.
How to cite: Peichl, M., Järveoja, J., Crill, P. M., and Nilsson, M. B.: Bimodal diel pattern in peatland ecosystem respiration rebuts uniform temperature response, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20098, https://doi.org/10.5194/egusphere-egu2020-20098, 2020.
EGU2020-3477 | Displays | BG3.5
A tale of two peats: characterizing ecosystem-driven differences in chemical composition with depth in natural and drained Finnish mires using Py-GC/MS analytical techniquesKristy Klein, Miriam Groβ-Schmölders, Christine Alewell, and Jens Leifeld
Intact accumulating peatlands are a globally important terrestrial carbon sink. Climate change and agricultural drainage are degrading these ecosystems, and through increases in aerobic decomposition, shifting their C balance from sink to source. To argue the effectiveness of restoration activities (such as rewetting), techniques are needed that clearly show differences between drained and natural (or drained and rewetted) peatlands. Because these changes are not always macroscopically visible, molecular analysis methods are especially needed to distinguish between ecosystems experiencing net pet growth (sequestering carbon), and those where aerobic decomposition is still a primary driving mechanism. Molecular biomarkers are a useful way to use chemical composition to distinguish these mechanisms.
This study aimed to compare differences in chemical composition with depth between two peatland sites from a large ombrotrophic mire in Lakkasuo Finland – one natural and one drained. To characterize these chemical shifts, pyrolysis gas chromatography mass spectrometry was used to track changes in relative abundance of various molecular biomarkers and compound classes (ie., aromatics, Sphagnum phenols, lignin, N-containing compounds, n-alkanes, etc.) with depth across both sites. Three replicate cores per site were collected, allowing for statistical evaluation of the relative abundances of these compounds. Using radiocarbon dating at three depths per core, the drained and natural sites were also matched by age for reference purposes. Significant differences were found for the Sphagnum-specific biomarker, p-isopropenylphenol, aromatics, and lignin, to the approximate current depth of the drained peatland water table. Higher phenolic compound class abundance indicated inhibited aerobic decomposition in the natural cores. An increasing trend in lignin biomarker relative abundance with depth was observed in the natural site, despite the identification of comparatively fewer vascular plants during the macroscopic analysis. Rather than a higher abundance of palaeo-ecological vascular plants, this trend is considered to be an indicator of preferential preservation of lignin compounds with anaerobic conditions. Below the depth of the water table, the relative abundances of most biomarkers stabilized, indicating the existance of similar environmental conditions in both sites prior to drainage. These data were compared and are in agreement with findings from elemental analysis (CHNO) and bulk isotopic (13C and 15N) data measured on the same cores. Collectively, these data suggest that observed shifts in chemical composition in the natural and drained cores reflect the effect of different hydrological conditions between the two sites.
How to cite: Klein, K., Groβ-Schmölders, M., Alewell, C., and Leifeld, J.: A tale of two peats: characterizing ecosystem-driven differences in chemical composition with depth in natural and drained Finnish mires using Py-GC/MS analytical techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3477, https://doi.org/10.5194/egusphere-egu2020-3477, 2020.
Intact accumulating peatlands are a globally important terrestrial carbon sink. Climate change and agricultural drainage are degrading these ecosystems, and through increases in aerobic decomposition, shifting their C balance from sink to source. To argue the effectiveness of restoration activities (such as rewetting), techniques are needed that clearly show differences between drained and natural (or drained and rewetted) peatlands. Because these changes are not always macroscopically visible, molecular analysis methods are especially needed to distinguish between ecosystems experiencing net pet growth (sequestering carbon), and those where aerobic decomposition is still a primary driving mechanism. Molecular biomarkers are a useful way to use chemical composition to distinguish these mechanisms.
This study aimed to compare differences in chemical composition with depth between two peatland sites from a large ombrotrophic mire in Lakkasuo Finland – one natural and one drained. To characterize these chemical shifts, pyrolysis gas chromatography mass spectrometry was used to track changes in relative abundance of various molecular biomarkers and compound classes (ie., aromatics, Sphagnum phenols, lignin, N-containing compounds, n-alkanes, etc.) with depth across both sites. Three replicate cores per site were collected, allowing for statistical evaluation of the relative abundances of these compounds. Using radiocarbon dating at three depths per core, the drained and natural sites were also matched by age for reference purposes. Significant differences were found for the Sphagnum-specific biomarker, p-isopropenylphenol, aromatics, and lignin, to the approximate current depth of the drained peatland water table. Higher phenolic compound class abundance indicated inhibited aerobic decomposition in the natural cores. An increasing trend in lignin biomarker relative abundance with depth was observed in the natural site, despite the identification of comparatively fewer vascular plants during the macroscopic analysis. Rather than a higher abundance of palaeo-ecological vascular plants, this trend is considered to be an indicator of preferential preservation of lignin compounds with anaerobic conditions. Below the depth of the water table, the relative abundances of most biomarkers stabilized, indicating the existance of similar environmental conditions in both sites prior to drainage. These data were compared and are in agreement with findings from elemental analysis (CHNO) and bulk isotopic (13C and 15N) data measured on the same cores. Collectively, these data suggest that observed shifts in chemical composition in the natural and drained cores reflect the effect of different hydrological conditions between the two sites.
How to cite: Klein, K., Groβ-Schmölders, M., Alewell, C., and Leifeld, J.: A tale of two peats: characterizing ecosystem-driven differences in chemical composition with depth in natural and drained Finnish mires using Py-GC/MS analytical techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3477, https://doi.org/10.5194/egusphere-egu2020-3477, 2020.
EGU2020-7402 | Displays | BG3.5
Differences in peat formation between an Atlantic blanket bog and a subcontinental raised bogStephan Glatzel, Fred Worrall, Ian Boothroyd, Simon Drollinger, Catherine Moody, and Gareth Clay
Worrall et al. (2016, 2017, 2018) have determined the processes of organic matter transfer, transition and peat formation through and into a blanket bog at Moor House, UK (N54:41:18, W2:22:45 – altitude 580 m asl; MAT 5.8 deg C; rainfall 2012 mm/yr). These examinations indicated a transition from plant material to superficial and deeper peat that became thermodynamically limited around 40 cm depth with a continuous increase in the degree of unsaturation of the organic matter. However, it is not clear whether the same processes observed at Moor House are ultimately a universal pattern of peat formation and organic matter transitions or are site–specific. Therefore, to test theories developed at Moor House, peat formation and organic matter transitions were examined at a continental raised bog (Pürgschachen Moor, Austria, N47:34:53, E14:20:48 – altitude 632 m asl; MAT 7.3 deg C; rainfall 1248 mm/yr).
To test our developed theories the following were sampled: vegetation (Sphagnum, cotton grass and pine); dissolved organic carbon (DOC); and peat samples between 0 and 100 cm depth. Samples were dried, ground, and analysed by elemental analysis (for CHN and O), bomb calorimetry, and thermogravimetric analysis.
Results show that the pattern of a continuously rising degree of unsaturation from superficial to deeper peat does not prevail at the raised bog. At Pürgschachen Moor, the degree of unsaturation does not change between vegetation and superficial and deeper peat and there is little difference between the composition of vegetation and peat. At Moor House there appears to be an evolution from a cellulosic/Protein composition towards a lignin/protein composition, while at Pürgschachen, vegetation and peat appears to be composed more strongly of pure cellulose. Furthermore, thermodynamic limitation at the raised bog occurs in the top 10 cm of the peat profile. However, DOC at both sites show signs of strong alteration compared to peat samples. DOC export is an important pathway at Moor House (blanket bog) but not at Pürgschachen Moor (raised bog). Therefore, we deduce that the immobile DOC and the lack of pore water movement lead to a closed system and a rapid preservation of the peat in the raised bog. In contrast, mobile DOC and the fluvial export promotes a relatively open pore water system that drives further chemical reaction in the organic matter.
Our research indicates that, depending on relief and rainfall, there are distinctly different pathways of peat formation in blanket bogs compared to raised bogs. Furthermore, this provides direct chemical evidence of why high and static water tables preserve organic matter in raised bogs leading to higher relative carbon sequestration rates.
References:
Worrall, F., Clay, G.D., Moody, C.S., Burt, T.P., and R.Rose. (2016). The effective oxidation state of a peatland. JGR-Biogeosciences, 121, 145-158.
Worrall, F., Moody, C.S., Clay, G.D., Burt, T.P., and R.Rose. (2017). The flux of organic matter through a peatland ecosystem – the role of cellulose, lignin and their control of the oxidation state. JGR-Biogeosciences 122, 7, 1655-1671.
Worrall, F., Moody, C.S., Clay, G.D., Burt, T.P., and R.Rose. (2018). Thermodynamic control of the carbon budget of a peatland. JGR-Biogeosciences 123, 6, 1863-1878.
How to cite: Glatzel, S., Worrall, F., Boothroyd, I., Drollinger, S., Moody, C., and Clay, G.: Differences in peat formation between an Atlantic blanket bog and a subcontinental raised bog, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7402, https://doi.org/10.5194/egusphere-egu2020-7402, 2020.
Worrall et al. (2016, 2017, 2018) have determined the processes of organic matter transfer, transition and peat formation through and into a blanket bog at Moor House, UK (N54:41:18, W2:22:45 – altitude 580 m asl; MAT 5.8 deg C; rainfall 2012 mm/yr). These examinations indicated a transition from plant material to superficial and deeper peat that became thermodynamically limited around 40 cm depth with a continuous increase in the degree of unsaturation of the organic matter. However, it is not clear whether the same processes observed at Moor House are ultimately a universal pattern of peat formation and organic matter transitions or are site–specific. Therefore, to test theories developed at Moor House, peat formation and organic matter transitions were examined at a continental raised bog (Pürgschachen Moor, Austria, N47:34:53, E14:20:48 – altitude 632 m asl; MAT 7.3 deg C; rainfall 1248 mm/yr).
To test our developed theories the following were sampled: vegetation (Sphagnum, cotton grass and pine); dissolved organic carbon (DOC); and peat samples between 0 and 100 cm depth. Samples were dried, ground, and analysed by elemental analysis (for CHN and O), bomb calorimetry, and thermogravimetric analysis.
Results show that the pattern of a continuously rising degree of unsaturation from superficial to deeper peat does not prevail at the raised bog. At Pürgschachen Moor, the degree of unsaturation does not change between vegetation and superficial and deeper peat and there is little difference between the composition of vegetation and peat. At Moor House there appears to be an evolution from a cellulosic/Protein composition towards a lignin/protein composition, while at Pürgschachen, vegetation and peat appears to be composed more strongly of pure cellulose. Furthermore, thermodynamic limitation at the raised bog occurs in the top 10 cm of the peat profile. However, DOC at both sites show signs of strong alteration compared to peat samples. DOC export is an important pathway at Moor House (blanket bog) but not at Pürgschachen Moor (raised bog). Therefore, we deduce that the immobile DOC and the lack of pore water movement lead to a closed system and a rapid preservation of the peat in the raised bog. In contrast, mobile DOC and the fluvial export promotes a relatively open pore water system that drives further chemical reaction in the organic matter.
Our research indicates that, depending on relief and rainfall, there are distinctly different pathways of peat formation in blanket bogs compared to raised bogs. Furthermore, this provides direct chemical evidence of why high and static water tables preserve organic matter in raised bogs leading to higher relative carbon sequestration rates.
References:
Worrall, F., Clay, G.D., Moody, C.S., Burt, T.P., and R.Rose. (2016). The effective oxidation state of a peatland. JGR-Biogeosciences, 121, 145-158.
Worrall, F., Moody, C.S., Clay, G.D., Burt, T.P., and R.Rose. (2017). The flux of organic matter through a peatland ecosystem – the role of cellulose, lignin and their control of the oxidation state. JGR-Biogeosciences 122, 7, 1655-1671.
Worrall, F., Moody, C.S., Clay, G.D., Burt, T.P., and R.Rose. (2018). Thermodynamic control of the carbon budget of a peatland. JGR-Biogeosciences 123, 6, 1863-1878.
How to cite: Glatzel, S., Worrall, F., Boothroyd, I., Drollinger, S., Moody, C., and Clay, G.: Differences in peat formation between an Atlantic blanket bog and a subcontinental raised bog, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7402, https://doi.org/10.5194/egusphere-egu2020-7402, 2020.
EGU2020-19972 | Displays | BG3.5
10 yrs of Improved Groundwater Table Estimates in Northern Peatlands Through Assimilation of Passive Microwave Observations into PEATCLSMMichel Bechtold, Gabrielle De Lannoy, Rolf H Reichle, Dirk Roose, Nicole Balliston, Iuliia Burdun, Kevin Devito, Juliya Kurbatova, Maria Strack, and Evgeny A Zarov
Groundwater table depth and peat moisture, exert a first order control on a range of biogeochemical and -physical peatland processes, and the susceptibility to peat fires. Therefore, one of the first critical measures to identify “peatlands under pressure” is the change of hydrological conditions, e.g. due to changing climatic conditions or direct “hydraulic” human influence. In this presentation, we introduce a new opportunity for the global-scale monitoring of moisture conditions in peatlands. We assimilate L-band brightness temperature (Tb) data from the Soil Moisture Ocean Salinity (SMOS) into the Catchment land surface model (CLSM) to improve the simulation of Northern peatland hydrology from 2010 through 2019. We compare four simulation experiments: two open loop and two data assimilation simulations, either using the default CLSM or a recently-developed peatland-specific adaptation of it (PEATCLSM, Bechtold et al. 2019). The assimilation system uses a spatially distributed ensemble Kalman filter to update soil moisture and groundwater table depth. The simulation experiments are evaluated against an in-situ dataset of groundwater table depth in about 20 natural and semi-natural peatlands that are large enough to be dominant in the corresponding 81-km2 model grid cells. For PEATCLSM, Tb data assimilation increases the temporal Pearson correlation (R) and anomaly correlation (aR) between simulated and measured groundwater table from 0.53 and 0.38 (open-loop) to 0.58 and 0.45 (analysis), respectively. Time series comparison at monitoring sites demonstrates how the assimilation effectively corrects for remaining deficiencies in model physics and/or errors of the global meteorological data forcing the model. The generally lower coefficients of 0.30 (R) and 0.09 (aR) for the default CLSM also improve after Tb data assimilation to values of 0.39 (R) and 0.28 (aR). However, even with Tb data assimilation, the skill of CLSM remains inferior to that of PEATCLSM. The more realistic model physics of PEATCLSM are also supported by a reduction of the Tb misfits (observed Tb – forecasted Tb) over 94 % of the Northern peatland area. The temporal variance of Tb misfits is reduced by 20 % on average and is largest over the large peatland areas of the Western Siberian (25 %) and Hudson Bay Lowlands (40 %). This study demonstrates, for the first time, an improved estimation of the peatland hydrological dynamics by the assimilation of SMOS L-band brightness data into a global land surface model and suggests a new route of research focusing on the incorporation of additional satellite observations into peatland-specific modeling schemes.
Bechtold, M., De Lannoy, G.J M., Koster, R.D., Reichle, R.H., et al. (2019). PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 11 (7), 2130-2162. doi: 10.1029/2018MS001574.
How to cite: Bechtold, M., De Lannoy, G., Reichle, R. H., Roose, D., Balliston, N., Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: 10 yrs of Improved Groundwater Table Estimates in Northern Peatlands Through Assimilation of Passive Microwave Observations into PEATCLSM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19972, https://doi.org/10.5194/egusphere-egu2020-19972, 2020.
Groundwater table depth and peat moisture, exert a first order control on a range of biogeochemical and -physical peatland processes, and the susceptibility to peat fires. Therefore, one of the first critical measures to identify “peatlands under pressure” is the change of hydrological conditions, e.g. due to changing climatic conditions or direct “hydraulic” human influence. In this presentation, we introduce a new opportunity for the global-scale monitoring of moisture conditions in peatlands. We assimilate L-band brightness temperature (Tb) data from the Soil Moisture Ocean Salinity (SMOS) into the Catchment land surface model (CLSM) to improve the simulation of Northern peatland hydrology from 2010 through 2019. We compare four simulation experiments: two open loop and two data assimilation simulations, either using the default CLSM or a recently-developed peatland-specific adaptation of it (PEATCLSM, Bechtold et al. 2019). The assimilation system uses a spatially distributed ensemble Kalman filter to update soil moisture and groundwater table depth. The simulation experiments are evaluated against an in-situ dataset of groundwater table depth in about 20 natural and semi-natural peatlands that are large enough to be dominant in the corresponding 81-km2 model grid cells. For PEATCLSM, Tb data assimilation increases the temporal Pearson correlation (R) and anomaly correlation (aR) between simulated and measured groundwater table from 0.53 and 0.38 (open-loop) to 0.58 and 0.45 (analysis), respectively. Time series comparison at monitoring sites demonstrates how the assimilation effectively corrects for remaining deficiencies in model physics and/or errors of the global meteorological data forcing the model. The generally lower coefficients of 0.30 (R) and 0.09 (aR) for the default CLSM also improve after Tb data assimilation to values of 0.39 (R) and 0.28 (aR). However, even with Tb data assimilation, the skill of CLSM remains inferior to that of PEATCLSM. The more realistic model physics of PEATCLSM are also supported by a reduction of the Tb misfits (observed Tb – forecasted Tb) over 94 % of the Northern peatland area. The temporal variance of Tb misfits is reduced by 20 % on average and is largest over the large peatland areas of the Western Siberian (25 %) and Hudson Bay Lowlands (40 %). This study demonstrates, for the first time, an improved estimation of the peatland hydrological dynamics by the assimilation of SMOS L-band brightness data into a global land surface model and suggests a new route of research focusing on the incorporation of additional satellite observations into peatland-specific modeling schemes.
Bechtold, M., De Lannoy, G.J M., Koster, R.D., Reichle, R.H., et al. (2019). PEAT-CLSM: A Specific Treatment of Peatland Hydrology in the NASA Catchment Land Surface Model. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 11 (7), 2130-2162. doi: 10.1029/2018MS001574.
How to cite: Bechtold, M., De Lannoy, G., Reichle, R. H., Roose, D., Balliston, N., Burdun, I., Devito, K., Kurbatova, J., Strack, M., and Zarov, E. A.: 10 yrs of Improved Groundwater Table Estimates in Northern Peatlands Through Assimilation of Passive Microwave Observations into PEATCLSM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19972, https://doi.org/10.5194/egusphere-egu2020-19972, 2020.
EGU2020-5072 | Displays | BG3.5 | Highlight
Unveiling tipping points in long-term and experimental studies in peatlandsMariusz Lamentowicz, Katarzyna Marcisz, Michał Słowiński, and Vincent E.J. Jassey
Ecosystems are increasingly prone to climate extremes, such as drought, with long-lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. Unveiling past tipping points is a prerequisite for a better understanding of how individual species and entire ecosystems will respond to future climate changes, especially soil moisture. In the first study we identified the response of peatland vegetation to shifts in hydrological conditions over the past 2000 years using plant macrofossils, testate amoebae-based quantitative hydrological reconstructions from seven Polish peat-records (Lamentowicz et al., 2019). Using threshold indicator taxa analysis (TITAN), we discovered that plant community composition strongly converged at a water level of c. 11.7 cm, indicating a community-level tipping-point. We identified 45 plant taxa that showed either an increase or a decrease in their relative abundance between 8 and 17 cm of water level depth. In other the experimental study (Jassey et al., 2018) we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands—a major C sink ecosystem. We show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of 24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the nonlinear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of tipping points in peatlands with use of experiment and palaeoecology.
References
Jassey, V.E.J., Reczuga, M.K., Zielinska, M., Slowinska, S., Robroek, B.J.M., Mariotte, P., Seppey, C.V.W., Lara, E., Barabach, J., Slowinski, M., Bragazza, L., Chojnicki, B.H., Lamentowicz, M., Mitchell, E.A.D., Buttler, A., 2018. Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Glob Chang Biol. 24, (3) 972–986.
Lamentowicz, M., Gałka, M., Marcisz, K., Słowiński, M., Kajukało-Drygalska, K., Dayras, M.D., Jassey, V.E.J., 2019. Unveiling tipping points in long-term ecological records from Sphagnum -dominated peatlands. Biology Letters. 15, (4) 20190043.
How to cite: Lamentowicz, M., Marcisz, K., Słowiński, M., and Jassey, V. E. J.: Unveiling tipping points in long-term and experimental studies in peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5072, https://doi.org/10.5194/egusphere-egu2020-5072, 2020.
Ecosystems are increasingly prone to climate extremes, such as drought, with long-lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. Unveiling past tipping points is a prerequisite for a better understanding of how individual species and entire ecosystems will respond to future climate changes, especially soil moisture. In the first study we identified the response of peatland vegetation to shifts in hydrological conditions over the past 2000 years using plant macrofossils, testate amoebae-based quantitative hydrological reconstructions from seven Polish peat-records (Lamentowicz et al., 2019). Using threshold indicator taxa analysis (TITAN), we discovered that plant community composition strongly converged at a water level of c. 11.7 cm, indicating a community-level tipping-point. We identified 45 plant taxa that showed either an increase or a decrease in their relative abundance between 8 and 17 cm of water level depth. In other the experimental study (Jassey et al., 2018) we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands—a major C sink ecosystem. We show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of 24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the nonlinear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of tipping points in peatlands with use of experiment and palaeoecology.
References
Jassey, V.E.J., Reczuga, M.K., Zielinska, M., Slowinska, S., Robroek, B.J.M., Mariotte, P., Seppey, C.V.W., Lara, E., Barabach, J., Slowinski, M., Bragazza, L., Chojnicki, B.H., Lamentowicz, M., Mitchell, E.A.D., Buttler, A., 2018. Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Glob Chang Biol. 24, (3) 972–986.
Lamentowicz, M., Gałka, M., Marcisz, K., Słowiński, M., Kajukało-Drygalska, K., Dayras, M.D., Jassey, V.E.J., 2019. Unveiling tipping points in long-term ecological records from Sphagnum -dominated peatlands. Biology Letters. 15, (4) 20190043.
How to cite: Lamentowicz, M., Marcisz, K., Słowiński, M., and Jassey, V. E. J.: Unveiling tipping points in long-term and experimental studies in peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5072, https://doi.org/10.5194/egusphere-egu2020-5072, 2020.
EGU2020-13830 | Displays | BG3.5
Can we expect pristine mountain peatland ecosystems in Central Europe? Evidence from multi-proxy palaeoecological studies on the Holocene peatland developmentMariusz Gałka, Klaus-Holger Knorr, Andrei-Cosmin Diaconu, Angelica Feurdean, Adam Hölzer, Julie Loisel, Swindles Graeme T., and Ioan Tantau
The Holocene climate shifts had a significant impact on the development of ombrotrophic peatland ecosystems located in various biogeographic zones. Disturbances of the plant communities at peatlands ecosystems took place also due to intensified human activities in the past several centuries, that include peat excavation, fires, as well as deposition of dust and pollutants on peatland surfaces. This merger of natural and human impacts has led to direct hydrological and biochemical disturbances that triggered changes in plant populations, e.g. often leading to the decline of some species, such as Sphagnum austinii in Great Britain.
The knowledge about the development of peatlands across mountain ranges in Europe is still poor. Determining the resilience of peatland vegetation to disturbance is an important and significant task to aid further protection and management of the entire range of ombrotrophic peatlands found in the European mountains, from destroyed or restored to pristine. We carried out high-resolution, multi-proxy studies including plant macrofossils, pollen, testate amoebae, geochemical analyses (XRF and stable carbon isotopes), micro- and macro-charcoal, supported by radiocarbon dating, on replicate peat cores from five well-preserved ombrotrophic peatlands across Europe where peat-forming process is active. The studied peatlands are located along an east west gradient in the Central and Western Europe: Eastern Carpathian Mts. (Calimani-Gurghiu-Harghita, Romania; Bieszczady, Poland), Harz Mts. and Schwarzwald Mts. (Germany), and Vosges Mts (France). In our palaeocological studies we aimed to: i) reconstruct long-term local (mainly Sphagnum populations) and regional (forest communities) vegetation changes at and around selected bogs; ii) reconstruct long-term palaeohydrological shifts; iii) assess mountain peatland ecosystems resilience to Holocene climate shifts and disturbance by fire events and human impact (deforestation, dust and pollution).
Based on our results, we found that: i) despite human activites (pollutants and dust deposition, drainage) some of the mountain peatlands remained in a pristine state, however some plant communities had changed; ii) plant communities composed mainly by Sphagnum species, could repeatedly self-regenerate via autogenic processes following a decline in stressors; iii) recent climate warming has stimulated the spreading of some species indicative of more dry habitats; vi) lack of macrocharcoal in the peat layers indicate that fires did not play a significant role in the development or evolution of local peatland communities. Results from our studies show that palaeoecological records play an important role for the determination of present peatland ecosystem stage and reference conditions for the restoration of damaged ombrotrophic peatlands in European mountains.
The research has received support National Science Centre (Poland) grant No UMO-2016/23/B/ST10/00762 (PI: Mariusz Gałka).
How to cite: Gałka, M., Knorr, K.-H., Diaconu, A.-C., Feurdean, A., Hölzer, A., Loisel, J., Graeme T., S., and Tantau, I.: Can we expect pristine mountain peatland ecosystems in Central Europe? Evidence from multi-proxy palaeoecological studies on the Holocene peatland development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13830, https://doi.org/10.5194/egusphere-egu2020-13830, 2020.
The Holocene climate shifts had a significant impact on the development of ombrotrophic peatland ecosystems located in various biogeographic zones. Disturbances of the plant communities at peatlands ecosystems took place also due to intensified human activities in the past several centuries, that include peat excavation, fires, as well as deposition of dust and pollutants on peatland surfaces. This merger of natural and human impacts has led to direct hydrological and biochemical disturbances that triggered changes in plant populations, e.g. often leading to the decline of some species, such as Sphagnum austinii in Great Britain.
The knowledge about the development of peatlands across mountain ranges in Europe is still poor. Determining the resilience of peatland vegetation to disturbance is an important and significant task to aid further protection and management of the entire range of ombrotrophic peatlands found in the European mountains, from destroyed or restored to pristine. We carried out high-resolution, multi-proxy studies including plant macrofossils, pollen, testate amoebae, geochemical analyses (XRF and stable carbon isotopes), micro- and macro-charcoal, supported by radiocarbon dating, on replicate peat cores from five well-preserved ombrotrophic peatlands across Europe where peat-forming process is active. The studied peatlands are located along an east west gradient in the Central and Western Europe: Eastern Carpathian Mts. (Calimani-Gurghiu-Harghita, Romania; Bieszczady, Poland), Harz Mts. and Schwarzwald Mts. (Germany), and Vosges Mts (France). In our palaeocological studies we aimed to: i) reconstruct long-term local (mainly Sphagnum populations) and regional (forest communities) vegetation changes at and around selected bogs; ii) reconstruct long-term palaeohydrological shifts; iii) assess mountain peatland ecosystems resilience to Holocene climate shifts and disturbance by fire events and human impact (deforestation, dust and pollution).
Based on our results, we found that: i) despite human activites (pollutants and dust deposition, drainage) some of the mountain peatlands remained in a pristine state, however some plant communities had changed; ii) plant communities composed mainly by Sphagnum species, could repeatedly self-regenerate via autogenic processes following a decline in stressors; iii) recent climate warming has stimulated the spreading of some species indicative of more dry habitats; vi) lack of macrocharcoal in the peat layers indicate that fires did not play a significant role in the development or evolution of local peatland communities. Results from our studies show that palaeoecological records play an important role for the determination of present peatland ecosystem stage and reference conditions for the restoration of damaged ombrotrophic peatlands in European mountains.
The research has received support National Science Centre (Poland) grant No UMO-2016/23/B/ST10/00762 (PI: Mariusz Gałka).
How to cite: Gałka, M., Knorr, K.-H., Diaconu, A.-C., Feurdean, A., Hölzer, A., Loisel, J., Graeme T., S., and Tantau, I.: Can we expect pristine mountain peatland ecosystems in Central Europe? Evidence from multi-proxy palaeoecological studies on the Holocene peatland development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13830, https://doi.org/10.5194/egusphere-egu2020-13830, 2020.
EGU2020-17715 | Displays | BG3.5
Application of hyperspectral imaging of peat profiles to the case of fen-bog transition in aapa miresLars Granlund, Teemu Tahvanainen, and Markku Keinänen
Hyperspectral imaging (HSI) is a promising precision tool for analysing chronological peat strata from vegetation transitions in peatlands. We explored the potential of HSI in identifying transitions in peat-forming vegetation and degree of peat humification. The changes in aapa mire complexes during recent decades have been assessed by various remote sensing methods (aerial image time series, satellite data and high-resolution UAV multispectral imaging) and HSI methods have been developed to support the data from other sources. Rapid growth of Sphagnum mosses over string-patterned aapa mires in the north-boreal zone has immense significance, since it can alter ecosystem structure and functions such as carbon sequestration. HSI is well suited for analysis of recent ecosystem changes, since it can be applied for large sample sets with extremely fine spatial detail. Additionally, peat layers have complex 3D structures that can be overlooked by other sampling methods.
The HSI data was collected in laboratory conditions with two spectral imaging cameras, covering the visible to near-infrared range (VNIR 400-1000 nm), short-wave infrared range (SWIR, 1000-2500 nm). We used various methods such as PCA, k-means clustering and support vector machines for both quantitative and qualitative analysis of peat. Our analyses revealed detailed spectral changes that matched with transitions in peat quality and composition. Methodological issues unique to peat samples, such as the effect of oxidation and water content, were assessed for method development. We also used HSI to estimate quality changes that would easily be overlooked or only found by most laborious conventional techniques, like high-frequency microscopic counting of plant remains. Here, the spectral results can be used to guide sampling for microscopic routines, for example.
Results with Carex and Sphagnum peat proved that efficient image-based classification methods for identifying peat transitions can be developed. Our SVM models in the VNIR and SWIR regions were able to distinguish Sphagnum and Carex peat with overall accuracy of validation 80 % and 81 %, respectively. We also developed simple NDI indices for the estimation of von Post humification index that worked with accuracy of 86 % and 59 % for VNIR and SWIR, respectively. In combination with data collected from other sources (remote sensing, ground-truthing, conventional laboratory analysis), peat spectral analyses give strong inference of changes. In our study system, results indicate high sensitivity of northern aapa mires to ecosystem-scale changes.
How to cite: Granlund, L., Tahvanainen, T., and Keinänen, M.: Application of hyperspectral imaging of peat profiles to the case of fen-bog transition in aapa mires, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17715, https://doi.org/10.5194/egusphere-egu2020-17715, 2020.
Hyperspectral imaging (HSI) is a promising precision tool for analysing chronological peat strata from vegetation transitions in peatlands. We explored the potential of HSI in identifying transitions in peat-forming vegetation and degree of peat humification. The changes in aapa mire complexes during recent decades have been assessed by various remote sensing methods (aerial image time series, satellite data and high-resolution UAV multispectral imaging) and HSI methods have been developed to support the data from other sources. Rapid growth of Sphagnum mosses over string-patterned aapa mires in the north-boreal zone has immense significance, since it can alter ecosystem structure and functions such as carbon sequestration. HSI is well suited for analysis of recent ecosystem changes, since it can be applied for large sample sets with extremely fine spatial detail. Additionally, peat layers have complex 3D structures that can be overlooked by other sampling methods.
The HSI data was collected in laboratory conditions with two spectral imaging cameras, covering the visible to near-infrared range (VNIR 400-1000 nm), short-wave infrared range (SWIR, 1000-2500 nm). We used various methods such as PCA, k-means clustering and support vector machines for both quantitative and qualitative analysis of peat. Our analyses revealed detailed spectral changes that matched with transitions in peat quality and composition. Methodological issues unique to peat samples, such as the effect of oxidation and water content, were assessed for method development. We also used HSI to estimate quality changes that would easily be overlooked or only found by most laborious conventional techniques, like high-frequency microscopic counting of plant remains. Here, the spectral results can be used to guide sampling for microscopic routines, for example.
Results with Carex and Sphagnum peat proved that efficient image-based classification methods for identifying peat transitions can be developed. Our SVM models in the VNIR and SWIR regions were able to distinguish Sphagnum and Carex peat with overall accuracy of validation 80 % and 81 %, respectively. We also developed simple NDI indices for the estimation of von Post humification index that worked with accuracy of 86 % and 59 % for VNIR and SWIR, respectively. In combination with data collected from other sources (remote sensing, ground-truthing, conventional laboratory analysis), peat spectral analyses give strong inference of changes. In our study system, results indicate high sensitivity of northern aapa mires to ecosystem-scale changes.
How to cite: Granlund, L., Tahvanainen, T., and Keinänen, M.: Application of hyperspectral imaging of peat profiles to the case of fen-bog transition in aapa mires, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17715, https://doi.org/10.5194/egusphere-egu2020-17715, 2020.
EGU2020-18316 | Displays | BG3.5 | Highlight
Impact of long-term experimental water level drawdown on vegetation and carbon gas dynamics of boreal mire ecosystemsEeva-Stiina Tuittila, Aino Korrensalo, Anna Laine, Nicola Kokkonen, Lauri Mehtätalo, and Jukka Laine
Recent paleoecological studies have demonstrated an ongoing drying trend in temperate and boreal peatlands in Europe and in Canada. This drying is likely to alter vegetation and carbon gas exchange with atmosphere. However, to revel the expected change in carbon gas dynamics associated with decrease in water level experimental studies and long-term monitoring are needed. In here we present results from long term experiment in Finland where the impact of water level drawdown (WLD) of ~10 cm on three different peatland sites, two fens and a bog, has been studied since year 2000.
Response to WLD differed between the three ecosystem types. In the nutrient rich fen WLD initiated rapid directional succession from sedge dominated system to the dominance of woody species. In the poor fen changes were less drastic: Initially WLD benefitted dwarf scrubs already present at the site, later they were overtaken by pines. Sedges as a group hold their position but Carex species were replaced by Eriophorum. Similarly to sedges, in the moss layer proportions of different Sphagnum moss species changed. Bog vegetation was more stable than fen vegetation.
In all the ecosystems methane emissions decreased directly after WLD. In contrast, the response of CO2 dynamics was more complex. While long term net ecosystem exchange decreased to lower level than in controls in all studied ecosystems, the response of photosynthesis and respiration differed between the three ecosystems and between short term and long term. Results show how the response of peatlands to climate change is diverse and emphasize the need to understand what factors regulate the stability and resilience of peatland functioning.
How to cite: Tuittila, E.-S., Korrensalo, A., Laine, A., Kokkonen, N., Mehtätalo, L., and Laine, J.: Impact of long-term experimental water level drawdown on vegetation and carbon gas dynamics of boreal mire ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18316, https://doi.org/10.5194/egusphere-egu2020-18316, 2020.
Recent paleoecological studies have demonstrated an ongoing drying trend in temperate and boreal peatlands in Europe and in Canada. This drying is likely to alter vegetation and carbon gas exchange with atmosphere. However, to revel the expected change in carbon gas dynamics associated with decrease in water level experimental studies and long-term monitoring are needed. In here we present results from long term experiment in Finland where the impact of water level drawdown (WLD) of ~10 cm on three different peatland sites, two fens and a bog, has been studied since year 2000.
Response to WLD differed between the three ecosystem types. In the nutrient rich fen WLD initiated rapid directional succession from sedge dominated system to the dominance of woody species. In the poor fen changes were less drastic: Initially WLD benefitted dwarf scrubs already present at the site, later they were overtaken by pines. Sedges as a group hold their position but Carex species were replaced by Eriophorum. Similarly to sedges, in the moss layer proportions of different Sphagnum moss species changed. Bog vegetation was more stable than fen vegetation.
In all the ecosystems methane emissions decreased directly after WLD. In contrast, the response of CO2 dynamics was more complex. While long term net ecosystem exchange decreased to lower level than in controls in all studied ecosystems, the response of photosynthesis and respiration differed between the three ecosystems and between short term and long term. Results show how the response of peatlands to climate change is diverse and emphasize the need to understand what factors regulate the stability and resilience of peatland functioning.
How to cite: Tuittila, E.-S., Korrensalo, A., Laine, A., Kokkonen, N., Mehtätalo, L., and Laine, J.: Impact of long-term experimental water level drawdown on vegetation and carbon gas dynamics of boreal mire ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18316, https://doi.org/10.5194/egusphere-egu2020-18316, 2020.
EGU2020-1161 | Displays | BG3.5
Sensitivity of peatland respiration to vegetation community and temperature metric during a hot droughtJulia Kelly, Natascha Kljun, Lars Eklundh, Leif Klemedtsson, Bengt Liljebladh, Patrik Vestin, and Per Weslien
The majority of the world’s peatlands are located in northern regions where climate change is occurring most rapidly. Therefore, there is an urgent need to understand whether, and under what conditions, peatlands will remain carbon sinks or become carbon sources. The uncertainties in our predictions stem from a variety of sources, including uncertainty about the competing effects of rising air temperature on ecosystem respiration (Re) and gross primary production. Furthermore, peatlands contain a mixture of plant communities that respond differently to changes in temperature and precipitation. Such heterogeneity complicates attempts to upscale peatland carbon fluxes and predict the future peatland carbon balance.
We focus on understanding the sensitivity of peatland Re to temperature and how it relates to vegetation community and the choice of temperature metric. We assess how these relationships changed during and after the severe heatwave and drought (‘hot drought’) in 2018. We conducted manual dark chamber CO2 efflux measurements in Mycklemossen, an oligotrophic mire in southern Sweden in 2018 and in 2019, when weather conditions were closer to the long-term mean. The measurements covered the two main vegetation communities at the site: hummocks (vascular-plant dominated) and hollows (Sphagnum-dominated). We statistically compared the fluxes for both years and vegetation communities, then modelled them using three temperature metrics (air, surface, soil).
We found that Re decreased during the hot drought for both vegetation communities, with maximum fluxes of 0.18 and 0.34 mgCO2 m-2 s-1 in 2018 and 2019, respectively. However, the change in Re during the hot drought was dependent on vegetation community: hummock Re decreased substantially more than hollow Re (mean decrease: 48% and 15%, respectively). As a result, hollow Re was highest during drought whereas hummock Re was highest during non-drought conditions. Despite significant differences in Re between the vegetation communities, we found no significant differences in temperature between hummock and hollow vegetation, apart from in July and August 2018, at the peak of the hot drought. Nevertheless, hollow Re was more temperature-sensitive than hummock Re both during and after the hot drought. Furthermore, the temperature sensitivity of modelled Re depended on the choice of driving temperature, such that the surface temperature driven model produced the lowest whilst the soil temperature driven model produced the highest temperature sensitivity. Differences in temperature sensitivity of Re between the drought and non-drought conditions were similarly dependent on the temperature metric used to drive the Re model.
We found that peatland Re almost halved during a hot drought. Our results show that predictions of peatland response to warming must account for the proportion of different vegetation communities present, and how this may change, due to their differing responses to warming. The choice of driving temperature in peatland Re models does not impact model accuracy but it does influence the temperature-sensitivity, and thus the impact of temperature variations on the modelled flux. Modellers should therefore base parameter choices on vegetation community and driving temperature. Furthermore, comparisons of Re sensitivity to warming between studies using different driving temperatures may be misleading.
How to cite: Kelly, J., Kljun, N., Eklundh, L., Klemedtsson, L., Liljebladh, B., Vestin, P., and Weslien, P.: Sensitivity of peatland respiration to vegetation community and temperature metric during a hot drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1161, https://doi.org/10.5194/egusphere-egu2020-1161, 2020.
The majority of the world’s peatlands are located in northern regions where climate change is occurring most rapidly. Therefore, there is an urgent need to understand whether, and under what conditions, peatlands will remain carbon sinks or become carbon sources. The uncertainties in our predictions stem from a variety of sources, including uncertainty about the competing effects of rising air temperature on ecosystem respiration (Re) and gross primary production. Furthermore, peatlands contain a mixture of plant communities that respond differently to changes in temperature and precipitation. Such heterogeneity complicates attempts to upscale peatland carbon fluxes and predict the future peatland carbon balance.
We focus on understanding the sensitivity of peatland Re to temperature and how it relates to vegetation community and the choice of temperature metric. We assess how these relationships changed during and after the severe heatwave and drought (‘hot drought’) in 2018. We conducted manual dark chamber CO2 efflux measurements in Mycklemossen, an oligotrophic mire in southern Sweden in 2018 and in 2019, when weather conditions were closer to the long-term mean. The measurements covered the two main vegetation communities at the site: hummocks (vascular-plant dominated) and hollows (Sphagnum-dominated). We statistically compared the fluxes for both years and vegetation communities, then modelled them using three temperature metrics (air, surface, soil).
We found that Re decreased during the hot drought for both vegetation communities, with maximum fluxes of 0.18 and 0.34 mgCO2 m-2 s-1 in 2018 and 2019, respectively. However, the change in Re during the hot drought was dependent on vegetation community: hummock Re decreased substantially more than hollow Re (mean decrease: 48% and 15%, respectively). As a result, hollow Re was highest during drought whereas hummock Re was highest during non-drought conditions. Despite significant differences in Re between the vegetation communities, we found no significant differences in temperature between hummock and hollow vegetation, apart from in July and August 2018, at the peak of the hot drought. Nevertheless, hollow Re was more temperature-sensitive than hummock Re both during and after the hot drought. Furthermore, the temperature sensitivity of modelled Re depended on the choice of driving temperature, such that the surface temperature driven model produced the lowest whilst the soil temperature driven model produced the highest temperature sensitivity. Differences in temperature sensitivity of Re between the drought and non-drought conditions were similarly dependent on the temperature metric used to drive the Re model.
We found that peatland Re almost halved during a hot drought. Our results show that predictions of peatland response to warming must account for the proportion of different vegetation communities present, and how this may change, due to their differing responses to warming. The choice of driving temperature in peatland Re models does not impact model accuracy but it does influence the temperature-sensitivity, and thus the impact of temperature variations on the modelled flux. Modellers should therefore base parameter choices on vegetation community and driving temperature. Furthermore, comparisons of Re sensitivity to warming between studies using different driving temperatures may be misleading.
How to cite: Kelly, J., Kljun, N., Eklundh, L., Klemedtsson, L., Liljebladh, B., Vestin, P., and Weslien, P.: Sensitivity of peatland respiration to vegetation community and temperature metric during a hot drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1161, https://doi.org/10.5194/egusphere-egu2020-1161, 2020.
EGU2020-2881 | Displays | BG3.5
Specific features of the structure of oligotrophic peatlands in the Arctic ecoregionsSvetlana Selyanina and Tamara Ponomareva
The ecological functions of bog ecosystems and their resistance to external influences are largely determined by the structure and chemical composition of peat.
The structure of thick peat deposits of oligotrophic bogs typical for the west of the Arctic ecoregion of Russia is studied. The investigated peatlands are affected by the seas of the Arctic Ocean (the White and Barents). Bog massifs in the continental climate zone without marine influence outside the Arctic territories were studied for comparison purposes. The studied bog natural complexes all belong to the oligotrophic type, are similar in structure to the deposit profile, have a peat layer of the comparable thickness and a similar homogeneous botanical composition. The peat of all studied bogs is characterized by a low degree of decomposition over the entire depth of the profile (not more than 15-20%).
The degree of decomposition, the botanical composition and the structure of the samples was studied by transmitted-light-microscopy. Fractionation was carried out by elutriation on sieves with a mesh size of 100 μm and 250 μm.
The macrostructure of the studied peat bogs is formed by the undecomposed and weakly decomposed residues of peat-forming plants - mainly sphagnum mosses mixed with cotton-grass in certain layers. Analysis of peat samples from the Arctic ecoregion showed a high degree of grinding of sphagnum moss residues without visible signs of biochemical disturbance of cellular structures. This feature is most noticeable when considering the fraction of 100-250 μm, where particles of such plant residues are concentrated. Leaves of sphagnum mosses in peat samples from the Arctic maritime territories are broken, but the cellular structures retain their integrity. In peat samples from bogs of the continental climatic zone, this phenomenon is not observed. Plant residues retain their integrity quite well, both in the upper and lower layers, and the fraction of 100-250 μm is composed of undisturbed leaves of sphagnum mosses.
The revealed specific nature of defragmentation of plant residues in the conditions of oligotrophic bog massifs of the Arctic ecoregion can be explained by the freezing-thawing cycles during the formation of a stable snow cover. In the conditions of a maritime subarctic climate, a stable snow cover is formed for a long period in the multiple transitions of air and soil temperatures through the zero-temperature mark. The thickness of the snow cover under the influence of winds in the open spaces of the bogs can decrease to the minimum values. The noted structural features are traced throughout the depth of the deposit. However, increased content of physically destroyed particles of sphagnum mosses in the upper horizons of the peat deposit in the maritime subarctic climate is observed, which may well be associated with global warming and an increase in freezing-thawing cycles.
The obtained results require confirmation in the framework of model experiments both in the conditions of a mesocosm and laboratory. Besides, the extensive comparative studies on similar peat deposits in a maritime and continental climate must be made.
How to cite: Selyanina, S. and Ponomareva, T.: Specific features of the structure of oligotrophic peatlands in the Arctic ecoregions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2881, https://doi.org/10.5194/egusphere-egu2020-2881, 2020.
The ecological functions of bog ecosystems and their resistance to external influences are largely determined by the structure and chemical composition of peat.
The structure of thick peat deposits of oligotrophic bogs typical for the west of the Arctic ecoregion of Russia is studied. The investigated peatlands are affected by the seas of the Arctic Ocean (the White and Barents). Bog massifs in the continental climate zone without marine influence outside the Arctic territories were studied for comparison purposes. The studied bog natural complexes all belong to the oligotrophic type, are similar in structure to the deposit profile, have a peat layer of the comparable thickness and a similar homogeneous botanical composition. The peat of all studied bogs is characterized by a low degree of decomposition over the entire depth of the profile (not more than 15-20%).
The degree of decomposition, the botanical composition and the structure of the samples was studied by transmitted-light-microscopy. Fractionation was carried out by elutriation on sieves with a mesh size of 100 μm and 250 μm.
The macrostructure of the studied peat bogs is formed by the undecomposed and weakly decomposed residues of peat-forming plants - mainly sphagnum mosses mixed with cotton-grass in certain layers. Analysis of peat samples from the Arctic ecoregion showed a high degree of grinding of sphagnum moss residues without visible signs of biochemical disturbance of cellular structures. This feature is most noticeable when considering the fraction of 100-250 μm, where particles of such plant residues are concentrated. Leaves of sphagnum mosses in peat samples from the Arctic maritime territories are broken, but the cellular structures retain their integrity. In peat samples from bogs of the continental climatic zone, this phenomenon is not observed. Plant residues retain their integrity quite well, both in the upper and lower layers, and the fraction of 100-250 μm is composed of undisturbed leaves of sphagnum mosses.
The revealed specific nature of defragmentation of plant residues in the conditions of oligotrophic bog massifs of the Arctic ecoregion can be explained by the freezing-thawing cycles during the formation of a stable snow cover. In the conditions of a maritime subarctic climate, a stable snow cover is formed for a long period in the multiple transitions of air and soil temperatures through the zero-temperature mark. The thickness of the snow cover under the influence of winds in the open spaces of the bogs can decrease to the minimum values. The noted structural features are traced throughout the depth of the deposit. However, increased content of physically destroyed particles of sphagnum mosses in the upper horizons of the peat deposit in the maritime subarctic climate is observed, which may well be associated with global warming and an increase in freezing-thawing cycles.
The obtained results require confirmation in the framework of model experiments both in the conditions of a mesocosm and laboratory. Besides, the extensive comparative studies on similar peat deposits in a maritime and continental climate must be made.
How to cite: Selyanina, S. and Ponomareva, T.: Specific features of the structure of oligotrophic peatlands in the Arctic ecoregions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2881, https://doi.org/10.5194/egusphere-egu2020-2881, 2020.
EGU2020-3376 | Displays | BG3.5
Historial thallium deposition trends as recorded in peat bogs - examples from Czech sites with contrasting pollution historiesMartin Mihaljevic, Vojtech Ettler, and Ales Vanek
The purpose of this study is to investigate the Tl distribution and accumulation rates in Czech peatbogs with contrasting anthropogenic loads. Nine peat cores were sampled in the mountain areas of the Czech Republic (6 cores in the northern part affected by emissions from coal-burning power plants and 3 in the pristine southern part). In addition, 3 cores were collected close to the Pb mining and smelting area of Pribram. Cores were 210-Pb dated and trace metals/metalloids were measured in the digests by ICP-MS. Maximum Tl concentrations in peat were significantly higher in the polluted northern areas (1.16 mg/kg) and close to the Pb smelter (0.83 mg/kg) than in the pristine area (0.45 mg/kg). Thallium distribution well correlated with other metals (Pb, Hg) and metalloids (As, Sb). Thallium enrichment factors (EFs) calculated against Sc reached the maximum value of 17 indicating significant input of anthropogenic Tl. Thallium accumulation rates in peat varied between 20 and 50 µg/m2/y until 1930s, followed by a significant increase related to industrial activities in the northern part of the Czech Republic (up to 290 µg/m2/y in 1980s). In contrast, maximum Tl accumulation rate at the pristine site was 88 µg/m2/y. Data from the vicinity of Pb mines/smelter indicated higher accumulation rates even in the second half of the 19th century (between 50 and 200 µg/m2/y) followed by a significant decrease in late 1970s as a result of more efficient flue gas cleaning technology installed in the smelter during this period.
How to cite: Mihaljevic, M., Ettler, V., and Vanek, A.: Historial thallium deposition trends as recorded in peat bogs - examples from Czech sites with contrasting pollution histories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3376, https://doi.org/10.5194/egusphere-egu2020-3376, 2020.
The purpose of this study is to investigate the Tl distribution and accumulation rates in Czech peatbogs with contrasting anthropogenic loads. Nine peat cores were sampled in the mountain areas of the Czech Republic (6 cores in the northern part affected by emissions from coal-burning power plants and 3 in the pristine southern part). In addition, 3 cores were collected close to the Pb mining and smelting area of Pribram. Cores were 210-Pb dated and trace metals/metalloids were measured in the digests by ICP-MS. Maximum Tl concentrations in peat were significantly higher in the polluted northern areas (1.16 mg/kg) and close to the Pb smelter (0.83 mg/kg) than in the pristine area (0.45 mg/kg). Thallium distribution well correlated with other metals (Pb, Hg) and metalloids (As, Sb). Thallium enrichment factors (EFs) calculated against Sc reached the maximum value of 17 indicating significant input of anthropogenic Tl. Thallium accumulation rates in peat varied between 20 and 50 µg/m2/y until 1930s, followed by a significant increase related to industrial activities in the northern part of the Czech Republic (up to 290 µg/m2/y in 1980s). In contrast, maximum Tl accumulation rate at the pristine site was 88 µg/m2/y. Data from the vicinity of Pb mines/smelter indicated higher accumulation rates even in the second half of the 19th century (between 50 and 200 µg/m2/y) followed by a significant decrease in late 1970s as a result of more efficient flue gas cleaning technology installed in the smelter during this period.
How to cite: Mihaljevic, M., Ettler, V., and Vanek, A.: Historial thallium deposition trends as recorded in peat bogs - examples from Czech sites with contrasting pollution histories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3376, https://doi.org/10.5194/egusphere-egu2020-3376, 2020.
EGU2020-3452 | Displays | BG3.5 | Highlight
Carbon emission related to thermokarst processes in wetlands of NE European TundraSvetlana Zabelina, Liudmila Shirokova, Sergey Klimov, Artem Chupakov, Artem Lim, Yuri Polishchuk, Vladimir Polishchuk, Alexander Bogdanov, Ildar Muratov, Frederic Guerin, Jan Karlsson, and Oleg Pokrovsky
Emission of greenhouse gases (GHG) from inland waters is recognized as highly important and understudied part of terrestrial carbon (C) biogeochemical cycle. These emissions are still poorly quantified in permafrost regions containing a vast amount of surface C in frozen peatlands. This is especially true for NE European peatlands, located within sporadic to discontinuous permafrost zone which is highly vulnerable to thaw. For a first quantification of the C emission from lentic waters of the Bolshezemelskaya Tundra (BZT, 200,000 km²), we measured CO2 and CH4 concentrations and fluxes to the atmosphere in 98 depressions, thaw ponds and thermokarst lakes ranging from 0.5 to 5x106 m² in size. The CO2 fluxes decreased by an order of magnitude when lake size increased by > 3 orders of magnitude, while CH4 fluxes showed large variability that were not related to lake size By using a combination of Landsat-8 and GeoEye-1 images we found that lakes cover 4% of BZT, and calculated the overall C emission (CO2+CH4) from the lakes of the territory to 3.8 Tg C y-1 (99% C-CO2, 1% C-CH4). Large lakes (> 10,000 m²) dominated GHG emissions whereas small thaw ponds (< 1000 m²) had a minor contribution to overall lake surface area (< 2%) and GHG emission (< 5 % of CO2; < 20% of CH4). The results suggest that, if permafrost thaw in NE Europe leads to the disappearance of large thermokarst lakes and formation of new small thaw ponds and depressions, this will decrease GHG emission from lentic waters of this region. However, due to temporal and spatial variations of C fluxes, the uncertainties on areal GHG emission are at least one order of magnitude in small thaw ponds and a factor of 3 to 5 in thermokarst lakes.
This work was supported by the State Task AAAA-A18-118012390200-5, RFBR grant No. 18-05-70087 “Arctic Resources”, 19-07-00282, 18-45-860002, 18-45-703001 and 18-47-700001, and the Swedish Research Council (grant no. 2016-05275).
How to cite: Zabelina, S., Shirokova, L., Klimov, S., Chupakov, A., Lim, A., Polishchuk, Y., Polishchuk, V., Bogdanov, A., Muratov, I., Guerin, F., Karlsson, J., and Pokrovsky, O.: Carbon emission related to thermokarst processes in wetlands of NE European Tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3452, https://doi.org/10.5194/egusphere-egu2020-3452, 2020.
Emission of greenhouse gases (GHG) from inland waters is recognized as highly important and understudied part of terrestrial carbon (C) biogeochemical cycle. These emissions are still poorly quantified in permafrost regions containing a vast amount of surface C in frozen peatlands. This is especially true for NE European peatlands, located within sporadic to discontinuous permafrost zone which is highly vulnerable to thaw. For a first quantification of the C emission from lentic waters of the Bolshezemelskaya Tundra (BZT, 200,000 km²), we measured CO2 and CH4 concentrations and fluxes to the atmosphere in 98 depressions, thaw ponds and thermokarst lakes ranging from 0.5 to 5x106 m² in size. The CO2 fluxes decreased by an order of magnitude when lake size increased by > 3 orders of magnitude, while CH4 fluxes showed large variability that were not related to lake size By using a combination of Landsat-8 and GeoEye-1 images we found that lakes cover 4% of BZT, and calculated the overall C emission (CO2+CH4) from the lakes of the territory to 3.8 Tg C y-1 (99% C-CO2, 1% C-CH4). Large lakes (> 10,000 m²) dominated GHG emissions whereas small thaw ponds (< 1000 m²) had a minor contribution to overall lake surface area (< 2%) and GHG emission (< 5 % of CO2; < 20% of CH4). The results suggest that, if permafrost thaw in NE Europe leads to the disappearance of large thermokarst lakes and formation of new small thaw ponds and depressions, this will decrease GHG emission from lentic waters of this region. However, due to temporal and spatial variations of C fluxes, the uncertainties on areal GHG emission are at least one order of magnitude in small thaw ponds and a factor of 3 to 5 in thermokarst lakes.
This work was supported by the State Task AAAA-A18-118012390200-5, RFBR grant No. 18-05-70087 “Arctic Resources”, 19-07-00282, 18-45-860002, 18-45-703001 and 18-47-700001, and the Swedish Research Council (grant no. 2016-05275).
How to cite: Zabelina, S., Shirokova, L., Klimov, S., Chupakov, A., Lim, A., Polishchuk, Y., Polishchuk, V., Bogdanov, A., Muratov, I., Guerin, F., Karlsson, J., and Pokrovsky, O.: Carbon emission related to thermokarst processes in wetlands of NE European Tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3452, https://doi.org/10.5194/egusphere-egu2020-3452, 2020.
EGU2020-3660 | Displays | BG3.5 | Highlight
Quantification of peatland-mediated feedbacks to the climate systemNitin Chaudhary, Wenxin Zhang, Guy Schurgers, Susan Page, and Sebastian Westermann
Peatlands are important carbon reserves in the terrestrial ecosystem and cover 3% of the terrestrial land surface. Peatlands have stored around 350-500 Petagrams [1015] of carbon over the last thousands of years, comprising around 30% of the present-day soil organic carbon pool. Peatlands share many characteristics with upland mineral soils and non-peat wetland ecosystems. However, they constitute a unique ecosystem type with many special characteristics, such as a shallow water table depth, carbon-rich soils, a unique vegetation cover, spatial heterogeneity, anaerobic biogeochemistry and permafrost in the high latitude regions (>45°N). The recent changes in climate and land-use patterns have disturbed the Earth’s climate-carbon cycle equilibrium. These changes trigger some potentially important land-surface feedbacks, which will further modify the Earth’s climate. The ongoing changes in peatland carbon balance as a result of climate warming have the potential for strong positive and negative feedbacks to climate, but these impacts are poorly constrained. To assess the importance of these feedbacks, the interactions between the peatland carbon cycle and climate should be taken into account. However, the absence of peatlands in current Earth system models limits our understanding of the peatland-mediated feedbacks at different scales. LPJ-GUESS peatland-vegetation model showed a reasonable demonstration of capturing the right carbon accumulation rates and permafrost dynamics at different spatial and temporal scales and will be further improved and employed to quantify the hypothesized peatland-mediated feedbacks when coupled with regional/global climate models.
How to cite: Chaudhary, N., Zhang, W., Schurgers, G., Page, S., and Westermann, S.: Quantification of peatland-mediated feedbacks to the climate system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3660, https://doi.org/10.5194/egusphere-egu2020-3660, 2020.
Peatlands are important carbon reserves in the terrestrial ecosystem and cover 3% of the terrestrial land surface. Peatlands have stored around 350-500 Petagrams [1015] of carbon over the last thousands of years, comprising around 30% of the present-day soil organic carbon pool. Peatlands share many characteristics with upland mineral soils and non-peat wetland ecosystems. However, they constitute a unique ecosystem type with many special characteristics, such as a shallow water table depth, carbon-rich soils, a unique vegetation cover, spatial heterogeneity, anaerobic biogeochemistry and permafrost in the high latitude regions (>45°N). The recent changes in climate and land-use patterns have disturbed the Earth’s climate-carbon cycle equilibrium. These changes trigger some potentially important land-surface feedbacks, which will further modify the Earth’s climate. The ongoing changes in peatland carbon balance as a result of climate warming have the potential for strong positive and negative feedbacks to climate, but these impacts are poorly constrained. To assess the importance of these feedbacks, the interactions between the peatland carbon cycle and climate should be taken into account. However, the absence of peatlands in current Earth system models limits our understanding of the peatland-mediated feedbacks at different scales. LPJ-GUESS peatland-vegetation model showed a reasonable demonstration of capturing the right carbon accumulation rates and permafrost dynamics at different spatial and temporal scales and will be further improved and employed to quantify the hypothesized peatland-mediated feedbacks when coupled with regional/global climate models.
How to cite: Chaudhary, N., Zhang, W., Schurgers, G., Page, S., and Westermann, S.: Quantification of peatland-mediated feedbacks to the climate system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3660, https://doi.org/10.5194/egusphere-egu2020-3660, 2020.
EGU2020-4748 | Displays | BG3.5
Methane emissions from a palsa-mire underlayed by sporadic permafrost under rapid degradationPatryk Łakomiec, Jutta Holst, and Janne Rinne
Methane is one of the most important greenhouse gases. The largest natural source of this gas are wetlands. Quantification emission from this source, especially from subarctic regions, which are exposed to fast climate changes, is important for our understanding of biogeochemical climate feedbacks. Abisko Stordalen is one of few mires in this climatic zone in which the methane emission is being measured continuously. Here we analyze eddy covariance data from the ICOS Sweden site with respect to environmental parameters possibly controlling the methane emissions.
Due to the large scale topography at Abisko, wind is channeled along the valley, resulting in to two main wind directions. This divides the measurements into two different surface type groups. On easterly winds, the flux footprint is dominated by permafrost features, while for westerly winds it is dominated by non-permafrost fen. Measured methane fluxes from these to wetland types, exposed for the same environmental conditions, differ considerably being higher from non-permafrost area. We will further analyze the differences in the annual methane emission from the two systems, and their dependencies from environmental parameters.
How to cite: Łakomiec, P., Holst, J., and Rinne, J.: Methane emissions from a palsa-mire underlayed by sporadic permafrost under rapid degradation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4748, https://doi.org/10.5194/egusphere-egu2020-4748, 2020.
Methane is one of the most important greenhouse gases. The largest natural source of this gas are wetlands. Quantification emission from this source, especially from subarctic regions, which are exposed to fast climate changes, is important for our understanding of biogeochemical climate feedbacks. Abisko Stordalen is one of few mires in this climatic zone in which the methane emission is being measured continuously. Here we analyze eddy covariance data from the ICOS Sweden site with respect to environmental parameters possibly controlling the methane emissions.
Due to the large scale topography at Abisko, wind is channeled along the valley, resulting in to two main wind directions. This divides the measurements into two different surface type groups. On easterly winds, the flux footprint is dominated by permafrost features, while for westerly winds it is dominated by non-permafrost fen. Measured methane fluxes from these to wetland types, exposed for the same environmental conditions, differ considerably being higher from non-permafrost area. We will further analyze the differences in the annual methane emission from the two systems, and their dependencies from environmental parameters.
How to cite: Łakomiec, P., Holst, J., and Rinne, J.: Methane emissions from a palsa-mire underlayed by sporadic permafrost under rapid degradation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4748, https://doi.org/10.5194/egusphere-egu2020-4748, 2020.
EGU2020-5143 | Displays | BG3.5
Introducing the VESBO Project - Impact assessment of vascular plant encroachment on water and carbon cycling in a Sphagnum dominated bogCarla Welpelo, Maren Dubbert, Bärbel Tiemeyer, Ullrich Dettmann, Thomas Beuster, Samuli Launiainen, Antti-Jussi Kieloaho, Kersti Haahti, and Arndt Piayda
Boreal and temperate peatlands cover less than 3% of the earth's surface but store nearly 30% of the terrestrial carbon. Natural raised bogs are characterized by a Sphagnum-moss dominated vegetation cover. The majority of bogs has been used for peat extraction or agriculture for centuries, but in the last decades the focus on restoration to protect climate and biodiversity was increasing. This includes the re-establishment of quasi-natural hydrological conditions as well as of ecosystem-typical vegetation.
Recently, a change in species composition of restored bogs from Sphagnum-dominated bryophyte communities to multi-layered tree and graminoid vegetation was observed. Current investigations report contradictory effects for the impact on throughfall, evapotranspiration (ET), gross primary productivity, respiration, net CO2 balance (NEE) as well as soil carbon sink strength. A final conclusion with respect to altered ecosystem functioning through changing conditions for vegetation development in the light of climate change is missing.
The VESBO project aims at the mechanistic analysis of ET, NEE and soil carbon sink strength of a restored, atlantic-temperate raised bog during vascular plant encroachment. The two study areas are former peat extraction sites, with one being Sphagnum-dominated while the other one has been populated by Betula pubescens during the last years. Focus will be placed on the partitioning of total ecosystem ET and NEE fluxes by Eddy Covariance and chamber measurements in situ into bryophyte, graminoid and tree contributions. Results are used to parameterize a modern soil-vegetation-atmosphere-transport model able to simulate bryophyte and vascular plant layers on peat soil. The model, jointly with the empirical data, is used to quantify seasonal changes in plant functional group flux contributions depending on altered environmental conditions. The holistic process understanding is of high relevance for the NEE estimation of restored bog ecosystems under changing climatic conditions and vegetation compositions. The knowledge about different interactions of plant functional groups with mass and energy fluxes of the bog ecosystem will be valorised by the assessment of restoration and emission mitigation measures throughout Europe.
How to cite: Welpelo, C., Dubbert, M., Tiemeyer, B., Dettmann, U., Beuster, T., Launiainen, S., Kieloaho, A.-J., Haahti, K., and Piayda, A.: Introducing the VESBO Project - Impact assessment of vascular plant encroachment on water and carbon cycling in a Sphagnum dominated bog, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5143, https://doi.org/10.5194/egusphere-egu2020-5143, 2020.
Boreal and temperate peatlands cover less than 3% of the earth's surface but store nearly 30% of the terrestrial carbon. Natural raised bogs are characterized by a Sphagnum-moss dominated vegetation cover. The majority of bogs has been used for peat extraction or agriculture for centuries, but in the last decades the focus on restoration to protect climate and biodiversity was increasing. This includes the re-establishment of quasi-natural hydrological conditions as well as of ecosystem-typical vegetation.
Recently, a change in species composition of restored bogs from Sphagnum-dominated bryophyte communities to multi-layered tree and graminoid vegetation was observed. Current investigations report contradictory effects for the impact on throughfall, evapotranspiration (ET), gross primary productivity, respiration, net CO2 balance (NEE) as well as soil carbon sink strength. A final conclusion with respect to altered ecosystem functioning through changing conditions for vegetation development in the light of climate change is missing.
The VESBO project aims at the mechanistic analysis of ET, NEE and soil carbon sink strength of a restored, atlantic-temperate raised bog during vascular plant encroachment. The two study areas are former peat extraction sites, with one being Sphagnum-dominated while the other one has been populated by Betula pubescens during the last years. Focus will be placed on the partitioning of total ecosystem ET and NEE fluxes by Eddy Covariance and chamber measurements in situ into bryophyte, graminoid and tree contributions. Results are used to parameterize a modern soil-vegetation-atmosphere-transport model able to simulate bryophyte and vascular plant layers on peat soil. The model, jointly with the empirical data, is used to quantify seasonal changes in plant functional group flux contributions depending on altered environmental conditions. The holistic process understanding is of high relevance for the NEE estimation of restored bog ecosystems under changing climatic conditions and vegetation compositions. The knowledge about different interactions of plant functional groups with mass and energy fluxes of the bog ecosystem will be valorised by the assessment of restoration and emission mitigation measures throughout Europe.
How to cite: Welpelo, C., Dubbert, M., Tiemeyer, B., Dettmann, U., Beuster, T., Launiainen, S., Kieloaho, A.-J., Haahti, K., and Piayda, A.: Introducing the VESBO Project - Impact assessment of vascular plant encroachment on water and carbon cycling in a Sphagnum dominated bog, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5143, https://doi.org/10.5194/egusphere-egu2020-5143, 2020.
EGU2020-7693 | Displays | BG3.5
The effect of the addition of 13C labelled artificial root exudates on carbon cycling in intact peat bog mesocosmsRaphael Müller, Gareth Clay, Claudia Blauensteiner, Erich Inselsbacher, Karsten Kalbitz, Andreas Maier, Robert Peticzka, Gang Wang, and Stephan Glatzel
Root exudates are a key driver of carbon cycling in peatlands. They have been found to influence substrate quality in and methane release from peat (Ström et al., 2003), peat decomposition (Crow & Wieder, 2005) and to cause priming effects (Basiliko et al., 2012). However, investigating the fate of added root exudates in peatlands is very challenging, as it requires the consideration of the gaseous, liquid, and soil phase, a traceable substrate, and as little disturbance as possible.
We sampled 6 undisturbed peat cores from Pürgschachen Moor, Austria in September 2019. Following transport of the cores to the laboratory in Vienna, we stored the mesocosms in daylight with intact vegetation at 22°C and created ports for pore water sampling in 5, 15, and 25 cm depth. The water table was set to 3 cm below surface by daily addition of artificial Pürgschachen rainfall (20 kg N ha-1 yr-1). After 1 week of incubation for establishment of a baseline, three cores were spiked with 140 mg artificial root exudates consisting of 99% glucose-, acetic acid- and amino acid 13C following Basiliko et al. (2012) at 15 cm depth. We monitored carbon dioxide (CO2), and methane (CH4) and 13CO2 and 13CH4 efflux from the cores daily and sampled dissolved organic carbon (DOC) weekly from the ports. Three weeks after spiking, all cores were drained, drainage water collected, and peat at 5, 15, and 25 cm depth sampled. Upon drying at 60°C, peat C and 13C content was determined and DOC samples were analysed for C and 13C content.
Results show that ca. 20% of spiked substrates were incorporated into peat, but this effect was restricted to 15 cm peat depth and ca. 30% were respired as CO2. No priming effect was detected; the spiked cores did not release more CO2 and CH4 than the control cores. 13C concentration in peat at 5 and 25 cm depth showed no increased 13C concentration.
These results indicate a low mobility of DOC and a limited effect of root exudate derived substrate in peat bogs with a low water table oscillation, explaining remarkably constant CH4 release rates reported by Drollinger et al. (2019b).
References:
Basiliko, N., Stewart, H., Roulet, N.T., Moore, T.R. (2012): Do Root Exudates Enhance Peat Decomposition? Geomicrobiology Journal 29: 374-378.
Crow SE, Wieder RK. 2005. Sources of CO2 emission from a northern peatland:
root respiration, exudation, and decomposition. Ecology 86:1825–1834.
Drollinger, S., Kuzyakov, Y., Glatzel, S. (2019a): Effects of peat decomposition on d13C and d15N depth profiles of Alpine bogs. Catena 187: 1-10.
Drollinger, S., Maier, A. Glatzel, S. (2019b): Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria. Agricultural and Forest Meteorology 275: 69-78.
Ström, L. Ekberg, A., Mastepanov, M., Christensen, T.R. (2003): The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology 9: 1185-1192.
How to cite: Müller, R., Clay, G., Blauensteiner, C., Inselsbacher, E., Kalbitz, K., Maier, A., Peticzka, R., Wang, G., and Glatzel, S.: The effect of the addition of 13C labelled artificial root exudates on carbon cycling in intact peat bog mesocosms , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7693, https://doi.org/10.5194/egusphere-egu2020-7693, 2020.
Root exudates are a key driver of carbon cycling in peatlands. They have been found to influence substrate quality in and methane release from peat (Ström et al., 2003), peat decomposition (Crow & Wieder, 2005) and to cause priming effects (Basiliko et al., 2012). However, investigating the fate of added root exudates in peatlands is very challenging, as it requires the consideration of the gaseous, liquid, and soil phase, a traceable substrate, and as little disturbance as possible.
We sampled 6 undisturbed peat cores from Pürgschachen Moor, Austria in September 2019. Following transport of the cores to the laboratory in Vienna, we stored the mesocosms in daylight with intact vegetation at 22°C and created ports for pore water sampling in 5, 15, and 25 cm depth. The water table was set to 3 cm below surface by daily addition of artificial Pürgschachen rainfall (20 kg N ha-1 yr-1). After 1 week of incubation for establishment of a baseline, three cores were spiked with 140 mg artificial root exudates consisting of 99% glucose-, acetic acid- and amino acid 13C following Basiliko et al. (2012) at 15 cm depth. We monitored carbon dioxide (CO2), and methane (CH4) and 13CO2 and 13CH4 efflux from the cores daily and sampled dissolved organic carbon (DOC) weekly from the ports. Three weeks after spiking, all cores were drained, drainage water collected, and peat at 5, 15, and 25 cm depth sampled. Upon drying at 60°C, peat C and 13C content was determined and DOC samples were analysed for C and 13C content.
Results show that ca. 20% of spiked substrates were incorporated into peat, but this effect was restricted to 15 cm peat depth and ca. 30% were respired as CO2. No priming effect was detected; the spiked cores did not release more CO2 and CH4 than the control cores. 13C concentration in peat at 5 and 25 cm depth showed no increased 13C concentration.
These results indicate a low mobility of DOC and a limited effect of root exudate derived substrate in peat bogs with a low water table oscillation, explaining remarkably constant CH4 release rates reported by Drollinger et al. (2019b).
References:
Basiliko, N., Stewart, H., Roulet, N.T., Moore, T.R. (2012): Do Root Exudates Enhance Peat Decomposition? Geomicrobiology Journal 29: 374-378.
Crow SE, Wieder RK. 2005. Sources of CO2 emission from a northern peatland:
root respiration, exudation, and decomposition. Ecology 86:1825–1834.
Drollinger, S., Kuzyakov, Y., Glatzel, S. (2019a): Effects of peat decomposition on d13C and d15N depth profiles of Alpine bogs. Catena 187: 1-10.
Drollinger, S., Maier, A. Glatzel, S. (2019b): Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria. Agricultural and Forest Meteorology 275: 69-78.
Ström, L. Ekberg, A., Mastepanov, M., Christensen, T.R. (2003): The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology 9: 1185-1192.
How to cite: Müller, R., Clay, G., Blauensteiner, C., Inselsbacher, E., Kalbitz, K., Maier, A., Peticzka, R., Wang, G., and Glatzel, S.: The effect of the addition of 13C labelled artificial root exudates on carbon cycling in intact peat bog mesocosms , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7693, https://doi.org/10.5194/egusphere-egu2020-7693, 2020.
EGU2020-8893 | Displays | BG3.5 | Highlight
Transfer of organic matter through a peatland system – from terrestrial to aquatic systemsIan Boothroyd, Fred Worrall, Geoff Abbott, Catherine Moody, Gareth Clay, and Rob Rose
Peatlands are important terrestrial carbon stores and it is important to understand the processes involved in carbon cycling. At Moor House, an upland blanket bog in the United Kingdom (UK), stoichiometric approaches have been adopted to understand carbon cycling through the peatland and this has been used to understand the production, transport and transformation of organic matter from terrestrial to aquatic systems.
Previous results analysing vegetation, peat cores, soil pore water from shallow and deep sample depths, and stream water from Moor House assessed how the composition of organic matter changes through the peatland system, to its export in the stream network. Results showed that there was an increase in the nominal carbon oxidation state (Cox) of dissolved organic matter (DOM) transferred from soil pore water to stream water. The composition of DOM in soil pore water evolved from near-surface peat layers but stream water DOM was quite distinct in composition. This study assessed the role of DOM in the degradation of peat organic matter by examining the composition of DOM through the peat profile and in separate flow pathways. Sampling was undertaken at Moor House, with sampling from surface, shallow and deep soil water; surface runoff and stream water. Samples were analysed for their elemental content (C, H, N and O), and differential scanning calorimetry and bomb calorimetry.
How to cite: Boothroyd, I., Worrall, F., Abbott, G., Moody, C., Clay, G., and Rose, R.: Transfer of organic matter through a peatland system – from terrestrial to aquatic systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8893, https://doi.org/10.5194/egusphere-egu2020-8893, 2020.
Peatlands are important terrestrial carbon stores and it is important to understand the processes involved in carbon cycling. At Moor House, an upland blanket bog in the United Kingdom (UK), stoichiometric approaches have been adopted to understand carbon cycling through the peatland and this has been used to understand the production, transport and transformation of organic matter from terrestrial to aquatic systems.
Previous results analysing vegetation, peat cores, soil pore water from shallow and deep sample depths, and stream water from Moor House assessed how the composition of organic matter changes through the peatland system, to its export in the stream network. Results showed that there was an increase in the nominal carbon oxidation state (Cox) of dissolved organic matter (DOM) transferred from soil pore water to stream water. The composition of DOM in soil pore water evolved from near-surface peat layers but stream water DOM was quite distinct in composition. This study assessed the role of DOM in the degradation of peat organic matter by examining the composition of DOM through the peat profile and in separate flow pathways. Sampling was undertaken at Moor House, with sampling from surface, shallow and deep soil water; surface runoff and stream water. Samples were analysed for their elemental content (C, H, N and O), and differential scanning calorimetry and bomb calorimetry.
How to cite: Boothroyd, I., Worrall, F., Abbott, G., Moody, C., Clay, G., and Rose, R.: Transfer of organic matter through a peatland system – from terrestrial to aquatic systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8893, https://doi.org/10.5194/egusphere-egu2020-8893, 2020.
EGU2020-10948 | Displays | BG3.5
Modeling relevant factors and covariates of carbon stock changes in peatlands using a hierarchical linear mixed modeling approachKilian Walz, Kenneth A Byrne, David Wilson, and Florence Renou-Wilson
While peatlands constitute the largest soil carbon stock in Ireland with 75% of soil carbon stored in an area covering an estimated 20% of the land surface, carbon stocks of peatlands are affected by past and present disturbances related to various land uses. Afforestation, grazing and peat extraction for energy and horticultural use often are major drivers of peatland soil degradation. A comparative assessment of the impact of land disturbance on peatland soil carbon stocks on a national scale has been lacking so far. Current research, funded by the Irish Environmental Protection Agency (EPA), addresses this issue with the goal to fill various gaps related to mapping and modeling changes of soil carbon stock in Irish peatlands. Data from the first nationwide peatland survey forms the basis for this study, in which the influence of different factors and covariates on soil carbon distribution in peatlands is examined. After data exploratory analysis, a mixed linear modeling approach is tested for its suitability to explain peatland soil carbon distribution within the Republic of Ireland. Parameters are identified which are responsible for changes across the country. In addition, model performance to map peat soil carbon stock within a three-dimensional space is evaluated.
How to cite: Walz, K., Byrne, K. A., Wilson, D., and Renou-Wilson, F.: Modeling relevant factors and covariates of carbon stock changes in peatlands using a hierarchical linear mixed modeling approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10948, https://doi.org/10.5194/egusphere-egu2020-10948, 2020.
While peatlands constitute the largest soil carbon stock in Ireland with 75% of soil carbon stored in an area covering an estimated 20% of the land surface, carbon stocks of peatlands are affected by past and present disturbances related to various land uses. Afforestation, grazing and peat extraction for energy and horticultural use often are major drivers of peatland soil degradation. A comparative assessment of the impact of land disturbance on peatland soil carbon stocks on a national scale has been lacking so far. Current research, funded by the Irish Environmental Protection Agency (EPA), addresses this issue with the goal to fill various gaps related to mapping and modeling changes of soil carbon stock in Irish peatlands. Data from the first nationwide peatland survey forms the basis for this study, in which the influence of different factors and covariates on soil carbon distribution in peatlands is examined. After data exploratory analysis, a mixed linear modeling approach is tested for its suitability to explain peatland soil carbon distribution within the Republic of Ireland. Parameters are identified which are responsible for changes across the country. In addition, model performance to map peat soil carbon stock within a three-dimensional space is evaluated.
How to cite: Walz, K., Byrne, K. A., Wilson, D., and Renou-Wilson, F.: Modeling relevant factors and covariates of carbon stock changes in peatlands using a hierarchical linear mixed modeling approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10948, https://doi.org/10.5194/egusphere-egu2020-10948, 2020.
EGU2020-11170 | Displays | BG3.5 | Highlight
A geochemical peat record from the Great Vasyugan Mire, Tomsk, Siberia evidencing a regionally coherent pattern of human impact over the last five centuries.Simon Hutchinson, Andrei Diaconu, Sergey Kirpotin, and Angelica Feurdean
Interest in peatland environments, especially in terms of their carbon storage, has increased markedly in response to the heightened awareness of future, global climatic conditions. However, significant gaps remain in the spatial coverage of our knowledge of mires; including some major wetland systems. This paucity has implications, not only for our understanding of their origins, development and functioning, but also for adequately predicting future changes and providing scientifically based recommendations for mire environmental management. Our INTERACT-supported study provides a radiometrically dated, well-characterised millennial-scale peat record from two contrasting undisturbed and impacted (ditched) sites, respectively in the Great Vasyugan Mire (GVM) near Tomsk, Siberia, which is reputedly the largest peat system in the world. In addition to their palaeoecological characterisation, we identified both natural (lithogenic) and anthropogenic geochemical signals recording human impacts with site-specific variations. Elevated trace element concentrations in both peat profiles align with the time frame of the region’s wider agricultural and economic development with the annexation of Siberia by Russia (from ca. 1600 AD) when pollen assemblage characteristics suggest a decline in forest cover and an increase in herbaceous plants associated with human disturbance. Trace element concentrations peak with the subsequent industrialisation of centres around the Ob river (after ca. 1950 AD). On a global scale, our sites, together with evidence from the few other comparable studies in the region, suggest that the GVM is relatively uncontaminated by human activities with a mean lead (Pb) level of < 4 mg/kg. However, via lithogenic elements including Rb, Ti and Zr we detected both a geochemical signal as a result of historical land cover changes, which enhanced mineral dust deposition following disturbance, as well as fossil fuel derived pollutants, as relatively elevated, subsurface As and Pb concentrations of ca. 10 and 25 mg/kg respectively, with the development of industry in the region. Moreover, we identify the local effects of drainage for afforestation (ca. 1960s) on the peat profile. At the impacted site, which was ditched, but subsequently abandoned, the influence of arrested peat growth on the site’s geochemical depth profile highlights the potential significance of local factors. Although relatively remote and vast, the GVM appears to hold a legacy of human activity that can be detected as a geochemical signal supporting the inferences of other palaeoenvironmental proxies. Such geochemical peat core records, from Eurasia in particular, remain relatively scarce in the international scientific literature. Therefore, our study contributes to an understanding of a less well known and, as yet, inadequately characterised and quantified region.
How to cite: Hutchinson, S., Diaconu, A., Kirpotin, S., and Feurdean, A.: A geochemical peat record from the Great Vasyugan Mire, Tomsk, Siberia evidencing a regionally coherent pattern of human impact over the last five centuries. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11170, https://doi.org/10.5194/egusphere-egu2020-11170, 2020.
Interest in peatland environments, especially in terms of their carbon storage, has increased markedly in response to the heightened awareness of future, global climatic conditions. However, significant gaps remain in the spatial coverage of our knowledge of mires; including some major wetland systems. This paucity has implications, not only for our understanding of their origins, development and functioning, but also for adequately predicting future changes and providing scientifically based recommendations for mire environmental management. Our INTERACT-supported study provides a radiometrically dated, well-characterised millennial-scale peat record from two contrasting undisturbed and impacted (ditched) sites, respectively in the Great Vasyugan Mire (GVM) near Tomsk, Siberia, which is reputedly the largest peat system in the world. In addition to their palaeoecological characterisation, we identified both natural (lithogenic) and anthropogenic geochemical signals recording human impacts with site-specific variations. Elevated trace element concentrations in both peat profiles align with the time frame of the region’s wider agricultural and economic development with the annexation of Siberia by Russia (from ca. 1600 AD) when pollen assemblage characteristics suggest a decline in forest cover and an increase in herbaceous plants associated with human disturbance. Trace element concentrations peak with the subsequent industrialisation of centres around the Ob river (after ca. 1950 AD). On a global scale, our sites, together with evidence from the few other comparable studies in the region, suggest that the GVM is relatively uncontaminated by human activities with a mean lead (Pb) level of < 4 mg/kg. However, via lithogenic elements including Rb, Ti and Zr we detected both a geochemical signal as a result of historical land cover changes, which enhanced mineral dust deposition following disturbance, as well as fossil fuel derived pollutants, as relatively elevated, subsurface As and Pb concentrations of ca. 10 and 25 mg/kg respectively, with the development of industry in the region. Moreover, we identify the local effects of drainage for afforestation (ca. 1960s) on the peat profile. At the impacted site, which was ditched, but subsequently abandoned, the influence of arrested peat growth on the site’s geochemical depth profile highlights the potential significance of local factors. Although relatively remote and vast, the GVM appears to hold a legacy of human activity that can be detected as a geochemical signal supporting the inferences of other palaeoenvironmental proxies. Such geochemical peat core records, from Eurasia in particular, remain relatively scarce in the international scientific literature. Therefore, our study contributes to an understanding of a less well known and, as yet, inadequately characterised and quantified region.
How to cite: Hutchinson, S., Diaconu, A., Kirpotin, S., and Feurdean, A.: A geochemical peat record from the Great Vasyugan Mire, Tomsk, Siberia evidencing a regionally coherent pattern of human impact over the last five centuries. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11170, https://doi.org/10.5194/egusphere-egu2020-11170, 2020.
EGU2020-12952 | Displays | BG3.5
Redox state affects methane flux in a northern boreal flark fenMarkku Koskinen, Hanna Finné, Tarmo Virtanen, Annalea Lohila, Raija Laiho, Tuomas Laurila, and Mika Aurela
Long-term continuous measurement of reduction-oxidation (redox) potential is an emerging tool for analysing ecosystem status. Redox processes are intrinsically linked to methane (CH4) production and consumption in soils. Under highly reducing conditions, acetate and carbon dioxide (CO2) are reduced into CH4, while at less reducing conditions, CH4 is readily oxidised into CO2. These oxidation processes do not necessarily require oxygen; other electron acceptors such as nitrate (NO3-) and iron can also be used by microbes. The prevalence of different electron acceptors and donors is reflected in the redox potential of the soil solution which can be measured. Thus measurements of soil redox potential could in principle be used for predicting CH4 flux.
We measured soil redox potential at 4 depths between 5 and 40 cm continuously over one growing season on nine measurement plots on three different microsites (flark, lawn and string), in a north boreal flark fen, while concurrently measuring CO2 and CH4 flux of the same plots using the manual chamber method. Flux measurements were conducted five to seven times per week from late June to late September, 2019. Along with the redox potential, water table level (WTL), air and soil temperature (Tair, Tsoil) and several vegetation characteristics were also measured.
Tsoil was found to be the major control of the momentary CH4 flux, but after standardizing the flux to 10 C using the Lloyd-Taylor equation, including the soil redox potential was found to significantly (p < 0.001) improve the prediction of the flux over a model incorporating only WTL and momentary Tsoil.
This is an initial step towards inclusion of redox potential as a continuous variable describing the processes active in the soil into CH4 production/consumption models.
How to cite: Koskinen, M., Finné, H., Virtanen, T., Lohila, A., Laiho, R., Laurila, T., and Aurela, M.: Redox state affects methane flux in a northern boreal flark fen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12952, https://doi.org/10.5194/egusphere-egu2020-12952, 2020.
Long-term continuous measurement of reduction-oxidation (redox) potential is an emerging tool for analysing ecosystem status. Redox processes are intrinsically linked to methane (CH4) production and consumption in soils. Under highly reducing conditions, acetate and carbon dioxide (CO2) are reduced into CH4, while at less reducing conditions, CH4 is readily oxidised into CO2. These oxidation processes do not necessarily require oxygen; other electron acceptors such as nitrate (NO3-) and iron can also be used by microbes. The prevalence of different electron acceptors and donors is reflected in the redox potential of the soil solution which can be measured. Thus measurements of soil redox potential could in principle be used for predicting CH4 flux.
We measured soil redox potential at 4 depths between 5 and 40 cm continuously over one growing season on nine measurement plots on three different microsites (flark, lawn and string), in a north boreal flark fen, while concurrently measuring CO2 and CH4 flux of the same plots using the manual chamber method. Flux measurements were conducted five to seven times per week from late June to late September, 2019. Along with the redox potential, water table level (WTL), air and soil temperature (Tair, Tsoil) and several vegetation characteristics were also measured.
Tsoil was found to be the major control of the momentary CH4 flux, but after standardizing the flux to 10 C using the Lloyd-Taylor equation, including the soil redox potential was found to significantly (p < 0.001) improve the prediction of the flux over a model incorporating only WTL and momentary Tsoil.
This is an initial step towards inclusion of redox potential as a continuous variable describing the processes active in the soil into CH4 production/consumption models.
How to cite: Koskinen, M., Finné, H., Virtanen, T., Lohila, A., Laiho, R., Laurila, T., and Aurela, M.: Redox state affects methane flux in a northern boreal flark fen, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12952, https://doi.org/10.5194/egusphere-egu2020-12952, 2020.
EGU2020-19966 | Displays | BG3.5
High temporal resolution measurements of CO2, CH4 and N2O in a Norwegian mire ecosystem using automated light-dark chambersLinsey Avila, Klaus Steenberg Larsen, Andreas Ibrom, Norbert Pirk, and Poul Larsen
Regeneration of natural hydrology in previously drained peatlands is becoming a widespread practice in nature restoration projects around the world. The drained peatlands are well known for their high emissions of CO2 caused by increased microbial decomposition rates in these very organic soils when suddenly exposed to higher levels of oxygen availability. Restoring natural water levels reduces again the decomposition rates and CO2 emissions. It remains uncertain, however, how rates of the much stronger greenhouse gases, CH4 and N2O, respond to the restored water table and these fluxes can potentially offset the GHG balance of rewetting peatlands.
In a new project in Norway (close to Trysil, Innlandet), we installed five ECO2flux automated chambers and one eddy flux tower in each of two areas of drained peatlands. The automatic chambers were placed with different distances to the ditches reflecting variation in water table with greatest water level variability at the edges of the ditches. After two years, the ditches will be filled and the natural water table will be regenerated in one of the areas in order to follow the differences in the fluxes of CO2, CH4 and N2O upon rewetting.
We here present an analysis of the first year’s data from the ECO2flux chambers including the total greenhouse gas budget for the period measured. The fluxes of CO2 showed only little spatial heterogeneity whereas we observed a significant spatial pattern of higher fluxes of CH4 in plots where the water table was closer to the surface. The driest plots, i.e. the edges of the drain ditches, showed also the lowest emissions of CH4. The trend was similar in the two areas. This is an indicating that planned rewetting after two years of the project may lead to enhanced production and emission of CH4 in the area. So far, we observed no N2O emissions above the detection limit of the system indicating that CO2 and CH4 are the major components of the GHG budget.
How to cite: Avila, L., Steenberg Larsen, K., Ibrom, A., Pirk, N., and Larsen, P.: High temporal resolution measurements of CO2, CH4 and N2O in a Norwegian mire ecosystem using automated light-dark chambers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19966, https://doi.org/10.5194/egusphere-egu2020-19966, 2020.
Regeneration of natural hydrology in previously drained peatlands is becoming a widespread practice in nature restoration projects around the world. The drained peatlands are well known for their high emissions of CO2 caused by increased microbial decomposition rates in these very organic soils when suddenly exposed to higher levels of oxygen availability. Restoring natural water levels reduces again the decomposition rates and CO2 emissions. It remains uncertain, however, how rates of the much stronger greenhouse gases, CH4 and N2O, respond to the restored water table and these fluxes can potentially offset the GHG balance of rewetting peatlands.
In a new project in Norway (close to Trysil, Innlandet), we installed five ECO2flux automated chambers and one eddy flux tower in each of two areas of drained peatlands. The automatic chambers were placed with different distances to the ditches reflecting variation in water table with greatest water level variability at the edges of the ditches. After two years, the ditches will be filled and the natural water table will be regenerated in one of the areas in order to follow the differences in the fluxes of CO2, CH4 and N2O upon rewetting.
We here present an analysis of the first year’s data from the ECO2flux chambers including the total greenhouse gas budget for the period measured. The fluxes of CO2 showed only little spatial heterogeneity whereas we observed a significant spatial pattern of higher fluxes of CH4 in plots where the water table was closer to the surface. The driest plots, i.e. the edges of the drain ditches, showed also the lowest emissions of CH4. The trend was similar in the two areas. This is an indicating that planned rewetting after two years of the project may lead to enhanced production and emission of CH4 in the area. So far, we observed no N2O emissions above the detection limit of the system indicating that CO2 and CH4 are the major components of the GHG budget.
How to cite: Avila, L., Steenberg Larsen, K., Ibrom, A., Pirk, N., and Larsen, P.: High temporal resolution measurements of CO2, CH4 and N2O in a Norwegian mire ecosystem using automated light-dark chambers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19966, https://doi.org/10.5194/egusphere-egu2020-19966, 2020.
EGU2020-20203 | Displays | BG3.5
Microrefugia - limiting factors and unique synergy of environmentSandra Słowińska, Michał Słowiński, Agnieszka M. Noryśkiewicz, Mariusz Lamentowicz, and Piotr Kołaczek
Peatlands are a very important ecosystem which are characterized by distinctive vegetation, hydrology, and local climate. In the last decades, much effort was made a better understanding of microrefugia and their importance. Nevertheless, we still have little knowledge about the histories of the refugia. In the day of rapid climate change and increasing anthropogenic pressure, knowledge about the history of sites that represent a refugium of flora or fauna is a key aspect. The aim of this study is reconstructing the history of the glacial relict Betula nana in northern Poland located far from the southern range of its natural distribution. We suppose that the persistence of Betula nana is driven by a) the morphology and geology of the catchment, b) the maintenance of open vegetation on the peatland surface and c) exceptional microclimatic and hydrological conditions. Here, based on recent eco-hydrological monitoring and long-term palaeoecological proxy we try to be understated postglacial refugia of Betula nana from Central Europe (Linje mire). Detailed research was carried out on the peat profile using pollen analysis, to reconstruct the presence of open habitat on the mire during the Holocene. Pollen and macrofossils analysis revealed a continuous presence of Betula nana in the postglacial history of the peatland. Palaeoecological results show the variable situation of the Betula nana population in the peatland over the past 12 ka, indicating a strong relationship between paleohydrology and changes in the occurrence of this species. Our results of 12 years of local monitoring indicated that the mire is characterized by specific local climate and diverse water table depth. A synergy of local relief, microclimates, hydrology, and geology of the catchment affects the Betula nana population during the post-glacial history.
How to cite: Słowińska, S., Słowiński, M., Noryśkiewicz, A. M., Lamentowicz, M., and Kołaczek, P.: Microrefugia - limiting factors and unique synergy of environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20203, https://doi.org/10.5194/egusphere-egu2020-20203, 2020.
Peatlands are a very important ecosystem which are characterized by distinctive vegetation, hydrology, and local climate. In the last decades, much effort was made a better understanding of microrefugia and their importance. Nevertheless, we still have little knowledge about the histories of the refugia. In the day of rapid climate change and increasing anthropogenic pressure, knowledge about the history of sites that represent a refugium of flora or fauna is a key aspect. The aim of this study is reconstructing the history of the glacial relict Betula nana in northern Poland located far from the southern range of its natural distribution. We suppose that the persistence of Betula nana is driven by a) the morphology and geology of the catchment, b) the maintenance of open vegetation on the peatland surface and c) exceptional microclimatic and hydrological conditions. Here, based on recent eco-hydrological monitoring and long-term palaeoecological proxy we try to be understated postglacial refugia of Betula nana from Central Europe (Linje mire). Detailed research was carried out on the peat profile using pollen analysis, to reconstruct the presence of open habitat on the mire during the Holocene. Pollen and macrofossils analysis revealed a continuous presence of Betula nana in the postglacial history of the peatland. Palaeoecological results show the variable situation of the Betula nana population in the peatland over the past 12 ka, indicating a strong relationship between paleohydrology and changes in the occurrence of this species. Our results of 12 years of local monitoring indicated that the mire is characterized by specific local climate and diverse water table depth. A synergy of local relief, microclimates, hydrology, and geology of the catchment affects the Betula nana population during the post-glacial history.
How to cite: Słowińska, S., Słowiński, M., Noryśkiewicz, A. M., Lamentowicz, M., and Kołaczek, P.: Microrefugia - limiting factors and unique synergy of environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20203, https://doi.org/10.5194/egusphere-egu2020-20203, 2020.
EGU2020-20705 | Displays | BG3.5
Pre-restoration carbon dioxide exchange and energy balance dynamics in an eroded upland blanket bog peatland, Scotland, UKMhairi Coyle, Ross Morrison, Rebekka Artz, Jagadeesh Yeluripati, and Gillian Donaldson-Selby
Greenhouse gas emissions from damaged peatlands in the UK contribute around 5% to the annual national UK emissions. This has prompted a large national effort to restore these ecosystems as part of the package of action that aims to deliver net zero by 2050 in the UK and 2045 in Scotland. Eroded peatlands cover an estimated 275kha in Scotland, yet continuous monitoring data on the carbon losses from such sites are very sparse, in part due to the challenge in instrumenting such remote and complex terrain with eddy covariance equipment. We present a full, pre-restoration, 18-month data series of carbon dioxide and energy budget from a typical Scottish eroded peatland and show initial data that suggests sensitivity of the sign of the net annual CO2 budget to interannual climate variability.
How to cite: Coyle, M., Morrison, R., Artz, R., Yeluripati, J., and Donaldson-Selby, G.: Pre-restoration carbon dioxide exchange and energy balance dynamics in an eroded upland blanket bog peatland, Scotland, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20705, https://doi.org/10.5194/egusphere-egu2020-20705, 2020.
Greenhouse gas emissions from damaged peatlands in the UK contribute around 5% to the annual national UK emissions. This has prompted a large national effort to restore these ecosystems as part of the package of action that aims to deliver net zero by 2050 in the UK and 2045 in Scotland. Eroded peatlands cover an estimated 275kha in Scotland, yet continuous monitoring data on the carbon losses from such sites are very sparse, in part due to the challenge in instrumenting such remote and complex terrain with eddy covariance equipment. We present a full, pre-restoration, 18-month data series of carbon dioxide and energy budget from a typical Scottish eroded peatland and show initial data that suggests sensitivity of the sign of the net annual CO2 budget to interannual climate variability.
How to cite: Coyle, M., Morrison, R., Artz, R., Yeluripati, J., and Donaldson-Selby, G.: Pre-restoration carbon dioxide exchange and energy balance dynamics in an eroded upland blanket bog peatland, Scotland, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20705, https://doi.org/10.5194/egusphere-egu2020-20705, 2020.
EGU2020-6222 | Displays | BG3.5 | Highlight
Cores for concern: Peatland carbon dynamics in a changing climate; a multidisciplinary approach.Luke Andrews, James Rowson, Richard Payne, Simon Caporn, Nancy Dise, Maria Gehrels, and Roland Gehrels
The effects of 21st century climate change are projected to be most severe in the northern hemisphere, where the majority of peatlands are located. Peatlands represent important long-term terrestrial stores of carbon (C), containing an estimated c.600-1055GT C, despite covering only 3% of total land area globally. In addition, pristine peatlands act as net sinks of atmospheric CO2, imparting a negative feedback mechanism cooling global climate, whilst simultaneously acting as sources of CO2 and CH4. Peatlands remain net sinks of C as long as the rate of carbon sequestration exceeds that of decomposition. Projected changes in temperature, precipitation and other environmental variables threaten to disrupt this precarious balance, however, and the future direction of carbon feedback mechanisms are poorly understood, due to the complex nature of the peatland carbon cycle.
Two methods are used in order to help understand future the carbon dynamics of peat bogs under climate change. These are experimental studies, which measure greenhouse gas fluxes under manipulated climatic and environmental conditions (warmer, drier), and palaeoecological studies, which examine the effects of past climate change upon carbon sequestration throughout the peat profile. However, both methods fundamentally contradict each other. Palaeoecological studies suggest that carbon accumulation increases during warming periods, whereas warming experiments observe greater carbon loss with increased temperature.
The aim of this project is to link contemporary experimental and palaeoecological approaches to explain this discrepancy. This will be achieved by comparing greenhouse gas fluxes between plots which have been subjected to 10 years of passive warming and drought simulation at an experimental climate manipulation site on Cors Fochno, Ceredigion, Wales. Long term rates of carbon accumulation will be compared with net ecosystem contemporary carbon budgets from each plot. Surface samples from each plot will be analysed by a range of palaeoenvironmental proxies to test how well the climate manipulations are represented by each proxy. Finally, a high-resolution multi-proxy palaeoenvironmental reconstruction spanning the past 1000 years will be compared with reconstructions derived from short-cores from each plot covering the duration of the experiment from each treatment, to see how faithfully climate manipulation mirrors real periods of climate change.
Understanding the future role of peatlands in future carbon sequestration and storage is of vital importance for modelling future climate change, in terms of both quantifying the potential ecosystem services peatlands may offer in mitigating the effects of climate change, as well as enhancing the predictive capabilities of global climate models. Currently, the uncertainty associated with peatland carbon cycling is such that peatlands are rarely included in global climate models.
How to cite: Andrews, L., Rowson, J., Payne, R., Caporn, S., Dise, N., Gehrels, M., and Gehrels, R.: Cores for concern: Peatland carbon dynamics in a changing climate; a multidisciplinary approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6222, https://doi.org/10.5194/egusphere-egu2020-6222, 2020.
The effects of 21st century climate change are projected to be most severe in the northern hemisphere, where the majority of peatlands are located. Peatlands represent important long-term terrestrial stores of carbon (C), containing an estimated c.600-1055GT C, despite covering only 3% of total land area globally. In addition, pristine peatlands act as net sinks of atmospheric CO2, imparting a negative feedback mechanism cooling global climate, whilst simultaneously acting as sources of CO2 and CH4. Peatlands remain net sinks of C as long as the rate of carbon sequestration exceeds that of decomposition. Projected changes in temperature, precipitation and other environmental variables threaten to disrupt this precarious balance, however, and the future direction of carbon feedback mechanisms are poorly understood, due to the complex nature of the peatland carbon cycle.
Two methods are used in order to help understand future the carbon dynamics of peat bogs under climate change. These are experimental studies, which measure greenhouse gas fluxes under manipulated climatic and environmental conditions (warmer, drier), and palaeoecological studies, which examine the effects of past climate change upon carbon sequestration throughout the peat profile. However, both methods fundamentally contradict each other. Palaeoecological studies suggest that carbon accumulation increases during warming periods, whereas warming experiments observe greater carbon loss with increased temperature.
The aim of this project is to link contemporary experimental and palaeoecological approaches to explain this discrepancy. This will be achieved by comparing greenhouse gas fluxes between plots which have been subjected to 10 years of passive warming and drought simulation at an experimental climate manipulation site on Cors Fochno, Ceredigion, Wales. Long term rates of carbon accumulation will be compared with net ecosystem contemporary carbon budgets from each plot. Surface samples from each plot will be analysed by a range of palaeoenvironmental proxies to test how well the climate manipulations are represented by each proxy. Finally, a high-resolution multi-proxy palaeoenvironmental reconstruction spanning the past 1000 years will be compared with reconstructions derived from short-cores from each plot covering the duration of the experiment from each treatment, to see how faithfully climate manipulation mirrors real periods of climate change.
Understanding the future role of peatlands in future carbon sequestration and storage is of vital importance for modelling future climate change, in terms of both quantifying the potential ecosystem services peatlands may offer in mitigating the effects of climate change, as well as enhancing the predictive capabilities of global climate models. Currently, the uncertainty associated with peatland carbon cycling is such that peatlands are rarely included in global climate models.
How to cite: Andrews, L., Rowson, J., Payne, R., Caporn, S., Dise, N., Gehrels, M., and Gehrels, R.: Cores for concern: Peatland carbon dynamics in a changing climate; a multidisciplinary approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6222, https://doi.org/10.5194/egusphere-egu2020-6222, 2020.
EGU2020-6602 | Displays | BG3.5
Experimental approach to study the climate effects from drained peatland restaurationAndreas Ibrom, Norbert Pirk, Klaus Steenberg Larsen, Paula Anna Kindler, and Poul Larsen
Peatlands have been traditionally drained to increase productivity. Aeration of the topsoil increases decomposition of peat, which results in increased CO2 emissions contributing to warming of the global climate. Peatland restauration tries to reestablish the natural state by blocking the drainage and increasing the ground water table. Two questions arise, whether the establishment of anaerobic conditions in the peat will increase methane production and whether the net CO2 uptake by plants will be reduced, both of which offsetting the anticipated positive climate effect from peatland restauration. In order to claim a positive climate effect from peatland restauration, the effect on the total greenhouse gas (GHG) balance must be demonstrated[VH1] at different time scales.
In a new project in Norway (close to Trysil, Innlandet), we established a paired plot design in an ombrotrophic bog, where one of the two plots will be restored, while the other will remain drained. The two sites differ slightly in elevation and lie 1.5 km apart from each other. We report results from the first phase of the experiment, i.e. examining the comparability of the two plots. We use eddy covariance and ecosystem chambers to measure CO2, CH4 and N2O fluxes.
While the CO2 fluxes are remarkably similar between the two plots, the CH4 fluxes tend to be slightly higher in the lower of the two plots. With flux footprint simulations and spatio-temporal analysis of the chamber flux measurements it is examined, whether these differences are caused by small scale horizontal heterogeneity, i.e. by CH4 emission hotspots, or whether these are a general feature of the lower experimental site. Options to improve the comparability of the two experimental plots, namely source area filtering versus relational approaches will be discussed.
The methodology that is developed in the project is relevant for monitoring, reporting and verification of climate change mitigation measures within terrestrial ecosystems.
Acknowledgements:
The project is funded by the Norwegian Environment Agency (Miljødirektoratet), Oslo, Norway, (project number 18088061).
How to cite: Ibrom, A., Pirk, N., Steenberg Larsen, K., Kindler, P. A., and Larsen, P.: Experimental approach to study the climate effects from drained peatland restauration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6602, https://doi.org/10.5194/egusphere-egu2020-6602, 2020.
Peatlands have been traditionally drained to increase productivity. Aeration of the topsoil increases decomposition of peat, which results in increased CO2 emissions contributing to warming of the global climate. Peatland restauration tries to reestablish the natural state by blocking the drainage and increasing the ground water table. Two questions arise, whether the establishment of anaerobic conditions in the peat will increase methane production and whether the net CO2 uptake by plants will be reduced, both of which offsetting the anticipated positive climate effect from peatland restauration. In order to claim a positive climate effect from peatland restauration, the effect on the total greenhouse gas (GHG) balance must be demonstrated[VH1] at different time scales.
In a new project in Norway (close to Trysil, Innlandet), we established a paired plot design in an ombrotrophic bog, where one of the two plots will be restored, while the other will remain drained. The two sites differ slightly in elevation and lie 1.5 km apart from each other. We report results from the first phase of the experiment, i.e. examining the comparability of the two plots. We use eddy covariance and ecosystem chambers to measure CO2, CH4 and N2O fluxes.
While the CO2 fluxes are remarkably similar between the two plots, the CH4 fluxes tend to be slightly higher in the lower of the two plots. With flux footprint simulations and spatio-temporal analysis of the chamber flux measurements it is examined, whether these differences are caused by small scale horizontal heterogeneity, i.e. by CH4 emission hotspots, or whether these are a general feature of the lower experimental site. Options to improve the comparability of the two experimental plots, namely source area filtering versus relational approaches will be discussed.
The methodology that is developed in the project is relevant for monitoring, reporting and verification of climate change mitigation measures within terrestrial ecosystems.
Acknowledgements:
The project is funded by the Norwegian Environment Agency (Miljødirektoratet), Oslo, Norway, (project number 18088061).
How to cite: Ibrom, A., Pirk, N., Steenberg Larsen, K., Kindler, P. A., and Larsen, P.: Experimental approach to study the climate effects from drained peatland restauration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6602, https://doi.org/10.5194/egusphere-egu2020-6602, 2020.
EGU2020-7329 | Displays | BG3.5 | Highlight
Effect of the 2018 drought on methane and carbon dioxide exchange of northern mire ecosystemsJanne Rinne, Juha-Pekka Tuovinen, Leif Klemendtsson, Mika Aurela, Jutta Holst, Annalea Lohila, Per Weslien, Patrik Vestin, Matthias Peichl, Eeva-Stiina Tuittila, Lauri Heiskanen, Tuomas Laurila, Xuefei Li, Pavel Alekseychik, Ivan Mammarella, Lena Ström, Patrick Crill, and Mats Nilsson
In 2018, North-Western Europe experienced very dry and warm summer. These conditions can have considerable effects on the functioning and greenhouse gas exchange of terrestrial ecosystems. Peat-forming wetlands, or mires, are a characteristic component of the North-European boreal landscape, and crucial for long-term carbon storage as well as for methane emission. We have analyzed the effect of the drought on greenhouse gas (GHG) exchange of five North European mire ecosystems in Sweden and Finland in 2018. The low precipitation and high summer temperatures in Fennoscandia led to a lowered water table in majority of the mires. This lowered both carbon dioxide (CO2) uptake and methane (CH4) emission during 2018, turning many of the mires from CO2sinks to sources during this year. The changes in methane emission and total GHG exchange, expressed as CO2equivalent, were significantly correlated with change in water table position. The calculated time-evolving radiative forcing due to the changes in GHG fluxes in 2018 showed that the drought-induced changes in GHG fluxes first resulted in a cooling effect lasting 15-50 years, due to the lowered CH4emission, which was followed by longer-term warming phase due to the lower CO2 uptake in 2018.
How to cite: Rinne, J., Tuovinen, J.-P., Klemendtsson, L., Aurela, M., Holst, J., Lohila, A., Weslien, P., Vestin, P., Peichl, M., Tuittila, E.-S., Heiskanen, L., Laurila, T., Li, X., Alekseychik, P., Mammarella, I., Ström, L., Crill, P., and Nilsson, M.: Effect of the 2018 drought on methane and carbon dioxide exchange of northern mire ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7329, https://doi.org/10.5194/egusphere-egu2020-7329, 2020.
In 2018, North-Western Europe experienced very dry and warm summer. These conditions can have considerable effects on the functioning and greenhouse gas exchange of terrestrial ecosystems. Peat-forming wetlands, or mires, are a characteristic component of the North-European boreal landscape, and crucial for long-term carbon storage as well as for methane emission. We have analyzed the effect of the drought on greenhouse gas (GHG) exchange of five North European mire ecosystems in Sweden and Finland in 2018. The low precipitation and high summer temperatures in Fennoscandia led to a lowered water table in majority of the mires. This lowered both carbon dioxide (CO2) uptake and methane (CH4) emission during 2018, turning many of the mires from CO2sinks to sources during this year. The changes in methane emission and total GHG exchange, expressed as CO2equivalent, were significantly correlated with change in water table position. The calculated time-evolving radiative forcing due to the changes in GHG fluxes in 2018 showed that the drought-induced changes in GHG fluxes first resulted in a cooling effect lasting 15-50 years, due to the lowered CH4emission, which was followed by longer-term warming phase due to the lower CO2 uptake in 2018.
How to cite: Rinne, J., Tuovinen, J.-P., Klemendtsson, L., Aurela, M., Holst, J., Lohila, A., Weslien, P., Vestin, P., Peichl, M., Tuittila, E.-S., Heiskanen, L., Laurila, T., Li, X., Alekseychik, P., Mammarella, I., Ström, L., Crill, P., and Nilsson, M.: Effect of the 2018 drought on methane and carbon dioxide exchange of northern mire ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7329, https://doi.org/10.5194/egusphere-egu2020-7329, 2020.
EGU2020-7655 | Displays | BG3.5
Long-term human impact on alluvial peatland dynamics in temperate climatesWard Swinnen, Nils Broothaerts, and Gert Verstraeten
Peatlands across the globe are experiencing external pressures such as land use change, drainage and climatic changes, but are also directly impacted e.g. through peat harvesting. As a result, the dynamics of these peatlands, and their role in long-term carbon storage, has changed. In contrast to many other regions around the globe, temperate Europe has known a long history of human impact. In the northwest European lowlands, peat growth occurs mostly in floodplains under the form of alluvial peatlands. In central Belgian river valleys, alluvial peatlands developed since the Early Holocene, with a typical peat thickness between 1.5 and 2.5 metres, but reaching values of more than 6 metres at some locations.
Alluvial peatlands therefore are an important store of soil organic carbon reaching values of up to 2754 t ha-1, thus providing an important ecosystem service. However, the fate of this carbon reservoir is challenged through many different types of human actions since at least the Middle Ages including peat cutting for fuel, drainage for land reclamation and changes in catchment hydrology through land use change. For instance, a comparison of field-based peatland carbon budgets for different river valleys indicates that floodplains where cutting of topsoil peat has been important in the Late Holocene, store significantly less carbon (729 ± 397 t ha-1) than floodplains where Early to Mid-Holocene peat has been buried by mineral sediments originating from agricultural erosion on hillslopes (1991 ± 877 t ha-1). Adequate modelling can provide a powerful tool to study peatland dynamics and the interaction between internal and external processes in peatlands, but unfortunately, there are currently no available modelling tools to study the long-term dynamics of alluvial peatlands.
A long-term peatland model (Digibog) was adapted to be applicable to the context of alluvial peatlands. Changes were made to both the hydrological and biological modules to include variations in the river water level, flooding, anthropogenic peat cutting and a wide variety of vegetation types, ranging from open meadows to carr forests. In a first step, the Holocene evolution of an alluvial peatland was simulated under the conditions which were typical for lowland Belgium to provide a Holocene peat sequence with an annual resolution. In a second step, this peatland was subjected to a wide set of alternative management scenarios that have been in place since the Middle Ages. The simulations allow to estimate the effect of these scenarios on the peatland dynamics in terms of peatland hydrology, productivity and carbon storage. Based on this modelling study, the sensitivity of these systems to human activities can be quantified. The resultant magnitudes and rates of change under different scenarios can provide useful information for future management of alluvial peatlands and a better understanding of long-term peatland dynamics in general.
How to cite: Swinnen, W., Broothaerts, N., and Verstraeten, G.: Long-term human impact on alluvial peatland dynamics in temperate climates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7655, https://doi.org/10.5194/egusphere-egu2020-7655, 2020.
Peatlands across the globe are experiencing external pressures such as land use change, drainage and climatic changes, but are also directly impacted e.g. through peat harvesting. As a result, the dynamics of these peatlands, and their role in long-term carbon storage, has changed. In contrast to many other regions around the globe, temperate Europe has known a long history of human impact. In the northwest European lowlands, peat growth occurs mostly in floodplains under the form of alluvial peatlands. In central Belgian river valleys, alluvial peatlands developed since the Early Holocene, with a typical peat thickness between 1.5 and 2.5 metres, but reaching values of more than 6 metres at some locations.
Alluvial peatlands therefore are an important store of soil organic carbon reaching values of up to 2754 t ha-1, thus providing an important ecosystem service. However, the fate of this carbon reservoir is challenged through many different types of human actions since at least the Middle Ages including peat cutting for fuel, drainage for land reclamation and changes in catchment hydrology through land use change. For instance, a comparison of field-based peatland carbon budgets for different river valleys indicates that floodplains where cutting of topsoil peat has been important in the Late Holocene, store significantly less carbon (729 ± 397 t ha-1) than floodplains where Early to Mid-Holocene peat has been buried by mineral sediments originating from agricultural erosion on hillslopes (1991 ± 877 t ha-1). Adequate modelling can provide a powerful tool to study peatland dynamics and the interaction between internal and external processes in peatlands, but unfortunately, there are currently no available modelling tools to study the long-term dynamics of alluvial peatlands.
A long-term peatland model (Digibog) was adapted to be applicable to the context of alluvial peatlands. Changes were made to both the hydrological and biological modules to include variations in the river water level, flooding, anthropogenic peat cutting and a wide variety of vegetation types, ranging from open meadows to carr forests. In a first step, the Holocene evolution of an alluvial peatland was simulated under the conditions which were typical for lowland Belgium to provide a Holocene peat sequence with an annual resolution. In a second step, this peatland was subjected to a wide set of alternative management scenarios that have been in place since the Middle Ages. The simulations allow to estimate the effect of these scenarios on the peatland dynamics in terms of peatland hydrology, productivity and carbon storage. Based on this modelling study, the sensitivity of these systems to human activities can be quantified. The resultant magnitudes and rates of change under different scenarios can provide useful information for future management of alluvial peatlands and a better understanding of long-term peatland dynamics in general.
How to cite: Swinnen, W., Broothaerts, N., and Verstraeten, G.: Long-term human impact on alluvial peatland dynamics in temperate climates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7655, https://doi.org/10.5194/egusphere-egu2020-7655, 2020.
EGU2020-8836 | Displays | BG3.5
Using remote sensing to monitor peatland fire occurrence and recoveryKirsten Lees, Josh Buxton, Chris Boulton, and Tim Lenton
Many peatland areas in Great Britain are managed as grouse moors, with regular burns as part of management practice to encourage heather growth. Remote sensing has the potential to monitor the size, location, and impact of these burns using new fine resolution satellites such as Sentinel-2. Google Earth Engine allows large areas to be analysed at small scale over several years, building up a visual record of fire occurrence. This study uses satellite data to map managed burns on several areas of moorland around Great Britain, and uses remote sensing methods to assess the impact of this management strategy on vegetation cover. The project also considers how areas subject to managed burns react to wildfire occurrence, with the 2018 Saddleworth wildfire as a case study.
How to cite: Lees, K., Buxton, J., Boulton, C., and Lenton, T.: Using remote sensing to monitor peatland fire occurrence and recovery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8836, https://doi.org/10.5194/egusphere-egu2020-8836, 2020.
Many peatland areas in Great Britain are managed as grouse moors, with regular burns as part of management practice to encourage heather growth. Remote sensing has the potential to monitor the size, location, and impact of these burns using new fine resolution satellites such as Sentinel-2. Google Earth Engine allows large areas to be analysed at small scale over several years, building up a visual record of fire occurrence. This study uses satellite data to map managed burns on several areas of moorland around Great Britain, and uses remote sensing methods to assess the impact of this management strategy on vegetation cover. The project also considers how areas subject to managed burns react to wildfire occurrence, with the 2018 Saddleworth wildfire as a case study.
How to cite: Lees, K., Buxton, J., Boulton, C., and Lenton, T.: Using remote sensing to monitor peatland fire occurrence and recovery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8836, https://doi.org/10.5194/egusphere-egu2020-8836, 2020.
EGU2020-9842 | Displays | BG3.5
Carbon dynamics and full carbon balance of a Northern mire ecosystemPatrik Vestin, Per Weslien, Marcus Wallin, David Bastviken, Natascha Kljun, Johannes Edvardsson, Jutta Holst, Anders Lindroth, Patrick Crill, Janne Rinne, and Leif Klemedtsson
We present the Net Ecosystem Carbon Balance (NECB) of a Northern mire ecosystem for the period 2016-2019. The Mycklemossen peatland is located in the hemi-boreal region in the Southwestern part of Sweden and is classified as a fen with bog-like vegetation. The NECB was determined from eddy covariance (EC) measurements of carbon dioxide (CO2) and methane (CH4) and continuous water discharge measurements with biweekly measurements of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and dissolved CH4.
We focus on the carbon dynamics of the Mycklemossen ecosystem during summer droughts and on its recovery during normal years. During 2016-2018, the annual precipitation was lower than the 30-year average while 2019 was a normal year in terms of weather conditions. 2018 sticks out as an extreme year with a severe drought and unusually high air temperature at Mycklemossen, as was the case in much of Northern and Central Europe.
The EC results indicate that Mycklemossen lost carbon during 2016-2018. While CH4 emissions decreased, the mire became a strong source of CO2 these years, especially 2018. There were also large losses of DOC during this period, which were further enhanced during 2019.
How to cite: Vestin, P., Weslien, P., Wallin, M., Bastviken, D., Kljun, N., Edvardsson, J., Holst, J., Lindroth, A., Crill, P., Rinne, J., and Klemedtsson, L.: Carbon dynamics and full carbon balance of a Northern mire ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9842, https://doi.org/10.5194/egusphere-egu2020-9842, 2020.
We present the Net Ecosystem Carbon Balance (NECB) of a Northern mire ecosystem for the period 2016-2019. The Mycklemossen peatland is located in the hemi-boreal region in the Southwestern part of Sweden and is classified as a fen with bog-like vegetation. The NECB was determined from eddy covariance (EC) measurements of carbon dioxide (CO2) and methane (CH4) and continuous water discharge measurements with biweekly measurements of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and dissolved CH4.
We focus on the carbon dynamics of the Mycklemossen ecosystem during summer droughts and on its recovery during normal years. During 2016-2018, the annual precipitation was lower than the 30-year average while 2019 was a normal year in terms of weather conditions. 2018 sticks out as an extreme year with a severe drought and unusually high air temperature at Mycklemossen, as was the case in much of Northern and Central Europe.
The EC results indicate that Mycklemossen lost carbon during 2016-2018. While CH4 emissions decreased, the mire became a strong source of CO2 these years, especially 2018. There were also large losses of DOC during this period, which were further enhanced during 2019.
How to cite: Vestin, P., Weslien, P., Wallin, M., Bastviken, D., Kljun, N., Edvardsson, J., Holst, J., Lindroth, A., Crill, P., Rinne, J., and Klemedtsson, L.: Carbon dynamics and full carbon balance of a Northern mire ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9842, https://doi.org/10.5194/egusphere-egu2020-9842, 2020.
EGU2020-13187 | Displays | BG3.5
Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation typesJames Benjamin Keane, Sylvia Toet, Phil Ineson, Per Weslien, and Leif Klemedtsson
Peatlands are a globally important store of approximately 500 Gt carbon (C), with northern blanket bogs accumulating ca. 23 g C m-2 y-1 from undecomposed organic material due to prevailing cool wet conditions. As a sink of carbon dioxide (CO2) they act as an important brake on anthropogenic climate change, but in the warming climate the likelihood of drought will increase. However, it is unknown how drought will affect the GHG balance of peatlands: dryer, warmer conditions will likely reduce net ecosystem exchange (NEE) of CO2 and increase soil respiration, potentially tipping these landscapes from sinks to sources of C. High water tables mean blanket bogs are major source of methane (CH4), an important greenhouse gas (GHG) with a global warming potential (GWP) 34 times that of CO2 over 100 years, but this may change in the future climate. It is further expected that the changing climate will alter blanket bog species composition, which may also influence the GHG balance, due to differences in plant traits such as those which form aerenchyma, e.g. Eriophorum vaginatum (eriophorum) and non-aerenchymatous species, e.g. Calluna vulgaris (heather). In order to understand how these important C stores will respond to climate change, it is vital to measure GHG responses to drought at the species level.
We used an automated chamber system, SkyLine2D, to measure NEE and CH4 fluxes near-continuously from an ombrotrophic blanket peat bog. Five general ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather, water and mixtures of species, with five replicates of each sampled. We followed the fluxes of CO2 throughout 2017- 2019 and CH4 throughout 2017- 2018, hypothesising that GHG fluxes would significantly differ between ecotypes. In 2018, the bog experienced drought conditions, allowing the comparison of NEE between drought and non-drought years, and the potential to recover the following year. Contemporaneous measurements of environmental variables were collected to infer details regarding the drivers of GHG fluxes.
We found significant differences in CH4 emissions between ecotypes, F= 2.71, p< 0.02, ordered high to low: eriophorum > sphagnum > water > heather> mix, ranging from ca. 1.5 mg CH4-C m-2 d-1 to 0.5 mg CH4-C m-2 d-1. There were no significant differences in NEE between ecotypes, F= 0.54, p> 0.7, however, under 2018 drought conditions all ecotypes were net sources of CO2. We will also present NEE from 2019, when precipitation levels returned to typical conditions. Our results indicate that drought and shifts in vegetation composition under future climate may alter the C balance of hemi-boreal and potentially act as a positive feedback to climate change in a long-term scenario.
How to cite: Keane, J. B., Toet, S., Ineson, P., Weslien, P., and Klemedtsson, L.: Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13187, https://doi.org/10.5194/egusphere-egu2020-13187, 2020.
Peatlands are a globally important store of approximately 500 Gt carbon (C), with northern blanket bogs accumulating ca. 23 g C m-2 y-1 from undecomposed organic material due to prevailing cool wet conditions. As a sink of carbon dioxide (CO2) they act as an important brake on anthropogenic climate change, but in the warming climate the likelihood of drought will increase. However, it is unknown how drought will affect the GHG balance of peatlands: dryer, warmer conditions will likely reduce net ecosystem exchange (NEE) of CO2 and increase soil respiration, potentially tipping these landscapes from sinks to sources of C. High water tables mean blanket bogs are major source of methane (CH4), an important greenhouse gas (GHG) with a global warming potential (GWP) 34 times that of CO2 over 100 years, but this may change in the future climate. It is further expected that the changing climate will alter blanket bog species composition, which may also influence the GHG balance, due to differences in plant traits such as those which form aerenchyma, e.g. Eriophorum vaginatum (eriophorum) and non-aerenchymatous species, e.g. Calluna vulgaris (heather). In order to understand how these important C stores will respond to climate change, it is vital to measure GHG responses to drought at the species level.
We used an automated chamber system, SkyLine2D, to measure NEE and CH4 fluxes near-continuously from an ombrotrophic blanket peat bog. Five general ecotypes were identified: sphagnum (Sphagnum spp), eriophorum, heather, water and mixtures of species, with five replicates of each sampled. We followed the fluxes of CO2 throughout 2017- 2019 and CH4 throughout 2017- 2018, hypothesising that GHG fluxes would significantly differ between ecotypes. In 2018, the bog experienced drought conditions, allowing the comparison of NEE between drought and non-drought years, and the potential to recover the following year. Contemporaneous measurements of environmental variables were collected to infer details regarding the drivers of GHG fluxes.
We found significant differences in CH4 emissions between ecotypes, F= 2.71, p< 0.02, ordered high to low: eriophorum > sphagnum > water > heather> mix, ranging from ca. 1.5 mg CH4-C m-2 d-1 to 0.5 mg CH4-C m-2 d-1. There were no significant differences in NEE between ecotypes, F= 0.54, p> 0.7, however, under 2018 drought conditions all ecotypes were net sources of CO2. We will also present NEE from 2019, when precipitation levels returned to typical conditions. Our results indicate that drought and shifts in vegetation composition under future climate may alter the C balance of hemi-boreal and potentially act as a positive feedback to climate change in a long-term scenario.
How to cite: Keane, J. B., Toet, S., Ineson, P., Weslien, P., and Klemedtsson, L.: Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13187, https://doi.org/10.5194/egusphere-egu2020-13187, 2020.
EGU2020-17989 | Displays | BG3.5
Impact of reduced precipitation and increased temperature on CH4 emission from peatland in Western PolandMarcin Strozecki, Anshu Rastogi, Bogdan Chojnicki, Jacek Leśny, Marek Urbaniak, Janusz Olejnik, Anna Basińska, Mariusz Lamentowicz, Dominika Łuców, Maciej Gąbka, Damian Józefczyk, Mateusz Samson, Mathias Hoffmann, Hanna Silvennoinen, and Radosław Juszczak
Peatlands play a key role in the global carbon cycle and the greenhouse gas balance of the biosphere, due to the amount of stored organic carbon and rather big methane (CH4) emissions. Climate change can make these very valuable and vulnerable ecosystems a net emitter of greenhouse gases to the atmosphere. The question is however, how the anticipated climate changes may impact the methane emission. Will it decrease due to expected drier conditions, or other processes and factors may play a role leading to higher emissions? To answer this question we carried out a field climate manipulation experiment at Rzecin peatland in Poland to assess how, increased temperature and reduced precipitation may impact the CH4 emission. The field site consists of three times replicated treatments [control (CO); simulated warming (W); reduced precipitation (RP), and warming & RP (WRP)]. Temperature (T) was increased year around with infrared heaters (400Wx4 per site), while precipitation was reduced with an automatic curtain working during growth seasons at night. The average yearly peat (at 5 cm depth) and air temperatures (at 30 cm) increased at manipulated plots by ca. 1.0oC and 0.4oC, respectively, while the precipitation was reduced from 24% in 2017 to 38% in 2016. Methane and carbon dioxide fluxes were measured with an automated prototyped mobile chamber system equipped with LGR and Picarro gas analyzers.
Here we present data from three years; very dry and warm 2015 (417 mm, 9.5°C), more wet and colder 2016 (678 mm, 8.9°C) ad very wet and warm 2017 (929 mm, 9.3°C). The net CH4 emissions at the control site were at the same rate of 25 gC·m-2yr-1 for both 2015 and 2016 years, and significantly higher (by 55%) in the very wet 2017 (39 gCH4-C·m2·yr-1). This may indicate that 1) temperature and precipitation play a role in driving the methane emissions from peatland, 2) increase of methane emissions due to higher precipitation can be compensated by lower temperature leading to smaller emission, 3) at more wet and warm years methane emissions may be higher than presently. However, our manipulation clearly indicated that at manipulated sites (W, WRP and RP) methane fluxes were significantly higher (by 28%) than on control plots for both 2015 and 2016 years, while no significant differences between sites exposed for manipulation were found for wet and warm 2017 (although peat temperatures at W, WRD and RD were higher than on CO). This can indicate that in conditions of a high level of groundwater in peatland (due to high rainfall) the sensitivity of methane production processes to temperature changes caused by manipulations may be lower. On the other hand, we found that higher methane fluxes at the manipulated plots are significantly correlated to a higher biomass of vascular plants. This may indicate how important might be the plant species composition on peatland in defining the transport pathways of methane to the atmosphere and overall methane emissions with respect to anticipated climate change.
Research was funded within the NCN projects (017/25/N/ST10/02212, 72016/21/B/ST10/02271) and WETMAN project.
How to cite: Strozecki, M., Rastogi, A., Chojnicki, B., Leśny, J., Urbaniak, M., Olejnik, J., Basińska, A., Lamentowicz, M., Łuców, D., Gąbka, M., Józefczyk, D., Samson, M., Hoffmann, M., Silvennoinen, H., and Juszczak, R.: Impact of reduced precipitation and increased temperature on CH4 emission from peatland in Western Poland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17989, https://doi.org/10.5194/egusphere-egu2020-17989, 2020.
Peatlands play a key role in the global carbon cycle and the greenhouse gas balance of the biosphere, due to the amount of stored organic carbon and rather big methane (CH4) emissions. Climate change can make these very valuable and vulnerable ecosystems a net emitter of greenhouse gases to the atmosphere. The question is however, how the anticipated climate changes may impact the methane emission. Will it decrease due to expected drier conditions, or other processes and factors may play a role leading to higher emissions? To answer this question we carried out a field climate manipulation experiment at Rzecin peatland in Poland to assess how, increased temperature and reduced precipitation may impact the CH4 emission. The field site consists of three times replicated treatments [control (CO); simulated warming (W); reduced precipitation (RP), and warming & RP (WRP)]. Temperature (T) was increased year around with infrared heaters (400Wx4 per site), while precipitation was reduced with an automatic curtain working during growth seasons at night. The average yearly peat (at 5 cm depth) and air temperatures (at 30 cm) increased at manipulated plots by ca. 1.0oC and 0.4oC, respectively, while the precipitation was reduced from 24% in 2017 to 38% in 2016. Methane and carbon dioxide fluxes were measured with an automated prototyped mobile chamber system equipped with LGR and Picarro gas analyzers.
Here we present data from three years; very dry and warm 2015 (417 mm, 9.5°C), more wet and colder 2016 (678 mm, 8.9°C) ad very wet and warm 2017 (929 mm, 9.3°C). The net CH4 emissions at the control site were at the same rate of 25 gC·m-2yr-1 for both 2015 and 2016 years, and significantly higher (by 55%) in the very wet 2017 (39 gCH4-C·m2·yr-1). This may indicate that 1) temperature and precipitation play a role in driving the methane emissions from peatland, 2) increase of methane emissions due to higher precipitation can be compensated by lower temperature leading to smaller emission, 3) at more wet and warm years methane emissions may be higher than presently. However, our manipulation clearly indicated that at manipulated sites (W, WRP and RP) methane fluxes were significantly higher (by 28%) than on control plots for both 2015 and 2016 years, while no significant differences between sites exposed for manipulation were found for wet and warm 2017 (although peat temperatures at W, WRD and RD were higher than on CO). This can indicate that in conditions of a high level of groundwater in peatland (due to high rainfall) the sensitivity of methane production processes to temperature changes caused by manipulations may be lower. On the other hand, we found that higher methane fluxes at the manipulated plots are significantly correlated to a higher biomass of vascular plants. This may indicate how important might be the plant species composition on peatland in defining the transport pathways of methane to the atmosphere and overall methane emissions with respect to anticipated climate change.
Research was funded within the NCN projects (017/25/N/ST10/02212, 72016/21/B/ST10/02271) and WETMAN project.
How to cite: Strozecki, M., Rastogi, A., Chojnicki, B., Leśny, J., Urbaniak, M., Olejnik, J., Basińska, A., Lamentowicz, M., Łuców, D., Gąbka, M., Józefczyk, D., Samson, M., Hoffmann, M., Silvennoinen, H., and Juszczak, R.: Impact of reduced precipitation and increased temperature on CH4 emission from peatland in Western Poland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17989, https://doi.org/10.5194/egusphere-egu2020-17989, 2020.
BG3.6 – Plant traits, adaptation, and biogeochemical cycles – from measurements to models
EGU2020-794 | Displays | BG3.6
Using plant trait data to extend a theory of global ecosystem functionYunke Peng, Keith Bloomfield, Lucas Cernusak, Thomas Domingues, Jon Lloyd, and Iain Colin Prentice
There remains large uncertainty about the global exchanges of carbon between the atmosphere and the terrestrial biosphere under different environmental change scenarios. Ecosystem and Earth system models rely on photosynthetic capacity (maximum rates of carboxylation (Vcmax) and electron transport (Jmax)) to simulate carbon assimilation. Photosynthetic capacity has been related to environmental and climatic constraints, but also to leaf and soil nutrients. Views differ on which are more important.
We assembled and analysed a large dataset of global observations of photosynthetic and other leaf traits. Photosynthetic capacity was best predicted based on optimality hypotheses. Vcmax standardized to 25°C (Vcmax25) was proportional to light availability, and increased towards colder and drier environments – as expected due to the greater biochemical investment required at lower temperatures, or when stomata are more closed. The ratio Jmax25/ Vcmax25 declined with growth temperature (also predicted). However, theoretical predictions slightly underestimated Vcmax at high growth temperatures, and overestimated it at low growth temperatures. This bias might be due to the difference between leaf and air temperatures.
Statistical models for photosynthetic capacity (all species, and site means) overestimated Vcmax in low-P leaves. Analysis of a subset of the data showed that leaf P tends to increase with measured soil P. A relationship of model bias to leaf N appears in the all-species analysis – perhaps reflecting a correlation of Vcmax, leaf N and light levels within communities. But site-mean analysis showed no such bias, and leaf N showed no relationship to the soil C:N ratio. These results support a previously noted dependency of Vcmax on P availability; but not the control of Vcmax by N availability that has been assumed in many models.
How to cite: Peng, Y., Bloomfield, K., Cernusak, L., Domingues, T., Lloyd, J., and Prentice, I. C.: Using plant trait data to extend a theory of global ecosystem function, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-794, https://doi.org/10.5194/egusphere-egu2020-794, 2020.
There remains large uncertainty about the global exchanges of carbon between the atmosphere and the terrestrial biosphere under different environmental change scenarios. Ecosystem and Earth system models rely on photosynthetic capacity (maximum rates of carboxylation (Vcmax) and electron transport (Jmax)) to simulate carbon assimilation. Photosynthetic capacity has been related to environmental and climatic constraints, but also to leaf and soil nutrients. Views differ on which are more important.
We assembled and analysed a large dataset of global observations of photosynthetic and other leaf traits. Photosynthetic capacity was best predicted based on optimality hypotheses. Vcmax standardized to 25°C (Vcmax25) was proportional to light availability, and increased towards colder and drier environments – as expected due to the greater biochemical investment required at lower temperatures, or when stomata are more closed. The ratio Jmax25/ Vcmax25 declined with growth temperature (also predicted). However, theoretical predictions slightly underestimated Vcmax at high growth temperatures, and overestimated it at low growth temperatures. This bias might be due to the difference between leaf and air temperatures.
Statistical models for photosynthetic capacity (all species, and site means) overestimated Vcmax in low-P leaves. Analysis of a subset of the data showed that leaf P tends to increase with measured soil P. A relationship of model bias to leaf N appears in the all-species analysis – perhaps reflecting a correlation of Vcmax, leaf N and light levels within communities. But site-mean analysis showed no such bias, and leaf N showed no relationship to the soil C:N ratio. These results support a previously noted dependency of Vcmax on P availability; but not the control of Vcmax by N availability that has been assumed in many models.
How to cite: Peng, Y., Bloomfield, K., Cernusak, L., Domingues, T., Lloyd, J., and Prentice, I. C.: Using plant trait data to extend a theory of global ecosystem function, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-794, https://doi.org/10.5194/egusphere-egu2020-794, 2020.
EGU2020-4154 | Displays | BG3.6 | Highlight
Adapting an optimality-based model to predict half-hourly carbon uptake by ecosystemsGiulia Mengoli, Iain Colin Prentice, and Sandy P. Harrison
Carbon dioxide (CO2) uptake by leaves and its conversion into sugar by photosynthesis – gross primary production (GPP) – is the basis for vegetation growth. GPP is important for the carbon cycle, and its interactions with climate are a subject of study in Earth System modelling. One assumption of many current ecosystem models is that key photosynthetic traits, such as the capacities for carboxylation (Vcmax) and electron transport (Jmax) for ribulose-1,5-bisphosphate (RuBP) regeneration, are constant in time for any given plant functional type. Optimality theory predicts they should vary systematically with growth conditions, both in space and in time, and are not necessarily depend on the plant functional type. Moreover, theory makes specific, quantitative predictions about their (acclimated) community-mean values, predictions well supported by evidence. Neglecting such acclimation could lead to incorrect model estimates of the responses of primary production to climate change.
We focus on a proof-of-concept based on a primary production model, the P-model – which combines the Farquhar-von Caemmerer-Berry model for C3 photosynthesis with eco-evolutionary optimality principles for the co-optimization of carboxylation and water transport costs – to allow the model to reproduce short-term variations in photosynthesis and transpiration as well as longer-term, acclimated variations. Key to this effort is explicitly separating the instantaneous responses of photosynthetic rates, and the slower acclimation of photosynthetic traits. The model also includes a dynamic optimization of stomatal conductance via the ci:ca ratio, which separates the rapid response to vapour pressure deficit (VPD) from a slower, acclimated response of the single parameter (ξ) of the stomatal optimality model to growth temperature.
A day-by-day diagnostic investigation has been carried out in order to optimize the behaviour of the resulting model at a half-hourly timestep. The model reproduces well the daily variations of GPP evaluated against FLUXNET observations, when forced with site-specific, half-hourly meteorological data from flux towers, and satellite data on the slowly varying fractional absorbed photosynthetically active radiation (fAPAR). Our approach accounts for the memory effect of past environmental conditions on photosynthetic traits, by introducing a daily average computation of temperature, solar radiation, VPD, CO2 concentration and elevation. The results show that plants coordinate their biochemical capacities to match the maximum level of light during a day, optimizing to conditions near midday, when light is greatest. This is consistent with an interpretation of the co-limitation theory, whereby the Vcmax and Jmax of leaves at any canopy level acclimate to the prevailing incident light. One implication is that the canopy is light-limited for most of the time. This is strongly supported by the diurnal time-course of observed GPP.
How to cite: Mengoli, G., Prentice, I. C., and Harrison, S. P.: Adapting an optimality-based model to predict half-hourly carbon uptake by ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4154, https://doi.org/10.5194/egusphere-egu2020-4154, 2020.
Carbon dioxide (CO2) uptake by leaves and its conversion into sugar by photosynthesis – gross primary production (GPP) – is the basis for vegetation growth. GPP is important for the carbon cycle, and its interactions with climate are a subject of study in Earth System modelling. One assumption of many current ecosystem models is that key photosynthetic traits, such as the capacities for carboxylation (Vcmax) and electron transport (Jmax) for ribulose-1,5-bisphosphate (RuBP) regeneration, are constant in time for any given plant functional type. Optimality theory predicts they should vary systematically with growth conditions, both in space and in time, and are not necessarily depend on the plant functional type. Moreover, theory makes specific, quantitative predictions about their (acclimated) community-mean values, predictions well supported by evidence. Neglecting such acclimation could lead to incorrect model estimates of the responses of primary production to climate change.
We focus on a proof-of-concept based on a primary production model, the P-model – which combines the Farquhar-von Caemmerer-Berry model for C3 photosynthesis with eco-evolutionary optimality principles for the co-optimization of carboxylation and water transport costs – to allow the model to reproduce short-term variations in photosynthesis and transpiration as well as longer-term, acclimated variations. Key to this effort is explicitly separating the instantaneous responses of photosynthetic rates, and the slower acclimation of photosynthetic traits. The model also includes a dynamic optimization of stomatal conductance via the ci:ca ratio, which separates the rapid response to vapour pressure deficit (VPD) from a slower, acclimated response of the single parameter (ξ) of the stomatal optimality model to growth temperature.
A day-by-day diagnostic investigation has been carried out in order to optimize the behaviour of the resulting model at a half-hourly timestep. The model reproduces well the daily variations of GPP evaluated against FLUXNET observations, when forced with site-specific, half-hourly meteorological data from flux towers, and satellite data on the slowly varying fractional absorbed photosynthetically active radiation (fAPAR). Our approach accounts for the memory effect of past environmental conditions on photosynthetic traits, by introducing a daily average computation of temperature, solar radiation, VPD, CO2 concentration and elevation. The results show that plants coordinate their biochemical capacities to match the maximum level of light during a day, optimizing to conditions near midday, when light is greatest. This is consistent with an interpretation of the co-limitation theory, whereby the Vcmax and Jmax of leaves at any canopy level acclimate to the prevailing incident light. One implication is that the canopy is light-limited for most of the time. This is strongly supported by the diurnal time-course of observed GPP.
How to cite: Mengoli, G., Prentice, I. C., and Harrison, S. P.: Adapting an optimality-based model to predict half-hourly carbon uptake by ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4154, https://doi.org/10.5194/egusphere-egu2020-4154, 2020.
EGU2020-5589 | Displays | BG3.6
Tree crown economics: testing and scaling a functional-trait based theoryBrenden McNeil
The relationship of tree form and function has long fascinated humans, and now, much of our ability to improve maps and forecasts of the vital interactions of forests and global change hinges on our ability to understand this adaptive tree crown architecture. To help address this challenge, I revisit Henry Horn’s classic 1971 monograph “The Adaptive Geometry of Trees”, and blend his theoretical framework with a contemporary ecological theory of species’ functional traits. Then, I describe how this trait-based theory tree crown architecture can be robustly tested using state-of-the-art hyper-remote sensing techniques. This suite of imaging techniques from hyper-spatial (e.g. UAV and satellite imagery), hyper-spectral (e.g. AVIRIS imagery), hyper-temporal (e.g. phenocams and tree- or tower-mounted time-lapse cameras), and hyper-dimensional (terrestrial and UAV LiDAR) sensors now enables us to visualize and measure the spectral and architectural properties of individual trees with unprecedented accuracy and precision. Through analysis of hyper-remote sensing datasets collected in forests across eastern North America, I highlight how this testable trait-based theory of tree crown economics is already providing fresh insights into several important, but heretofore unresolved patterns of spatial and temporal variability in forest functioning.
How to cite: McNeil, B.: Tree crown economics: testing and scaling a functional-trait based theory, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5589, https://doi.org/10.5194/egusphere-egu2020-5589, 2020.
The relationship of tree form and function has long fascinated humans, and now, much of our ability to improve maps and forecasts of the vital interactions of forests and global change hinges on our ability to understand this adaptive tree crown architecture. To help address this challenge, I revisit Henry Horn’s classic 1971 monograph “The Adaptive Geometry of Trees”, and blend his theoretical framework with a contemporary ecological theory of species’ functional traits. Then, I describe how this trait-based theory tree crown architecture can be robustly tested using state-of-the-art hyper-remote sensing techniques. This suite of imaging techniques from hyper-spatial (e.g. UAV and satellite imagery), hyper-spectral (e.g. AVIRIS imagery), hyper-temporal (e.g. phenocams and tree- or tower-mounted time-lapse cameras), and hyper-dimensional (terrestrial and UAV LiDAR) sensors now enables us to visualize and measure the spectral and architectural properties of individual trees with unprecedented accuracy and precision. Through analysis of hyper-remote sensing datasets collected in forests across eastern North America, I highlight how this testable trait-based theory of tree crown economics is already providing fresh insights into several important, but heretofore unresolved patterns of spatial and temporal variability in forest functioning.
How to cite: McNeil, B.: Tree crown economics: testing and scaling a functional-trait based theory, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5589, https://doi.org/10.5194/egusphere-egu2020-5589, 2020.
EGU2020-8670 | Displays | BG3.6
Time for a Plant Structural Economics SpectrumHans Verbeeck, Marijn Bauters, Jackson Toby, Alexander Schenkin, Mathias Disney, and Kim Calders
We argue that tree and crown structural diversity can and should be integrated in the whole-plant economics spectrum. Ecologists have found that certain functional trait combinations have been more viable than others during evolution, generating a trait trade-off continuum which can be summarized along a few axes of variation, such as the “worldwide leaf economics spectrum” and the “wood economics spectrum”. However, for woody plants the crown structural diversity should be included as well in the recently introduced “global spectrum of plant form and function”, which now merely focusses on plant height as structural factor. The recent revolution in terrestrial laser scanning (TLS) unlocks the possibility to describe the three dimensional structure of trees quantitatively with unprecedented detail. We demonstrate that based on TLS data, a multidimensional structural trait space can be constructed, which can be decomposed into a few descriptive axes or spectra. We conclude that the time has come to develop a “structural economics spectrum” for woody plants based on structural trait data across the globe. We make suggestions as to what structural features might lie on this spectrum and how these might help improve our understanding of tree form-function relationships.
How to cite: Verbeeck, H., Bauters, M., Toby, J., Schenkin, A., Disney, M., and Calders, K.: Time for a Plant Structural Economics Spectrum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8670, https://doi.org/10.5194/egusphere-egu2020-8670, 2020.
We argue that tree and crown structural diversity can and should be integrated in the whole-plant economics spectrum. Ecologists have found that certain functional trait combinations have been more viable than others during evolution, generating a trait trade-off continuum which can be summarized along a few axes of variation, such as the “worldwide leaf economics spectrum” and the “wood economics spectrum”. However, for woody plants the crown structural diversity should be included as well in the recently introduced “global spectrum of plant form and function”, which now merely focusses on plant height as structural factor. The recent revolution in terrestrial laser scanning (TLS) unlocks the possibility to describe the three dimensional structure of trees quantitatively with unprecedented detail. We demonstrate that based on TLS data, a multidimensional structural trait space can be constructed, which can be decomposed into a few descriptive axes or spectra. We conclude that the time has come to develop a “structural economics spectrum” for woody plants based on structural trait data across the globe. We make suggestions as to what structural features might lie on this spectrum and how these might help improve our understanding of tree form-function relationships.
How to cite: Verbeeck, H., Bauters, M., Toby, J., Schenkin, A., Disney, M., and Calders, K.: Time for a Plant Structural Economics Spectrum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8670, https://doi.org/10.5194/egusphere-egu2020-8670, 2020.
EGU2020-9687 | Displays | BG3.6
Towards a unified theory of plant photosynthesis and hydraulicsJaideep Joshi, Ulf Dieckmann, and Iain Colin Prentice
Increasing frequencies and intensities of droughts are projected for many regions of the Earth. Water stress leads to a decline in the gross primary productivity (GPP) of plants. Plant responses to water stress vary with timescale, and plants adapted to different environments differ in their responses. Here, we present a unified theory of plant photosynthesis and plant hydraulics, which explains a wide range of observed plant responses to developing water stress.
Our theory is based on the least-cost hypothesis of Prentice et al. (2014). By integrating plant hydraulics into the least-cost framework, we attempt to improve upon the model of GPP by Wang et al. (2017), which accurately predicts the responses of global GPP to temperature, elevation, and vapour pressure deficit, but overestimates GPP under water-stressed conditions. Our model has three key ingredients. (1) The aforementioned least-cost framework, in which optimal stomatal conductance minimizes the summed costs of maintaining transpiration, the photosynthetic machinery, and the hydraulic pathways, including the potential costs of repairing embolized xylem. We also test a closely related maximum-benefit framework, in which optimal stomatal conductance maximizes the net benefit from assimilation while accounting for these summed costs, and obtain comparable results. (2) A trait-dependent model of water flow through the plant stem, in which water flow is limited by the conductivity (Ks) and embolism resistance (P50) of the hydraulic pathway. At the shortest timescale, water stress causes stomatal closure to an extent that the transpiration demand determined by the vapour pressure deficit at the leaf surface is matched by the water supply through the stem. (3) A short-term response of photosynthetic capacity (Vcmax) to soil moisture, through which the potential Vcmax acclimates to prevailing daytime conditions to equalize carboxylation-limited and electron-transport-limited photosynthesis rates (Ac and Aj), while the realized values of Vcmax, Ac, and Aj are reduced from their potential values by a factor dependent on the leaf water potential and the leaf embolism resistance.
We estimate the parameters of our model using published data from short-term and long-term dry-down experiments. The key predictions of our model are as follows: (1) GPP declines with decreasing soil water potential and drops to zero soon after the soil water potential crosses P50; (2) soil-to-leaf water potential difference remains relatively constant under developing water stress; (3) functional forms describing the declines in stomatal conductance, Vcmax, and GPP with soil water potential are consistent with observations; and (4) decreased photosynthetic capacity (Vcmax) recovers (in the long term) if the plant increases its Huber value (e.g., by shedding leaves), increases its conductivity (e.g., by growing wider new vessels), or decreases its height growth (e.g., by reducing allocation to growth). Our theory provides a potential way of integrating trait-based responses of plants to water stress into global vegetation models, and should therefore help to improve predictions of the global carbon and water cycles in a changing environment.
References: [1] Prentice IC, et al. Ecology letters 17.1 (2014): 82-91. [2] Wang H, et al. Nature Plants 3.9 (2017): 734.
How to cite: Joshi, J., Dieckmann, U., and Prentice, I. C.: Towards a unified theory of plant photosynthesis and hydraulics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9687, https://doi.org/10.5194/egusphere-egu2020-9687, 2020.
Increasing frequencies and intensities of droughts are projected for many regions of the Earth. Water stress leads to a decline in the gross primary productivity (GPP) of plants. Plant responses to water stress vary with timescale, and plants adapted to different environments differ in their responses. Here, we present a unified theory of plant photosynthesis and plant hydraulics, which explains a wide range of observed plant responses to developing water stress.
Our theory is based on the least-cost hypothesis of Prentice et al. (2014). By integrating plant hydraulics into the least-cost framework, we attempt to improve upon the model of GPP by Wang et al. (2017), which accurately predicts the responses of global GPP to temperature, elevation, and vapour pressure deficit, but overestimates GPP under water-stressed conditions. Our model has three key ingredients. (1) The aforementioned least-cost framework, in which optimal stomatal conductance minimizes the summed costs of maintaining transpiration, the photosynthetic machinery, and the hydraulic pathways, including the potential costs of repairing embolized xylem. We also test a closely related maximum-benefit framework, in which optimal stomatal conductance maximizes the net benefit from assimilation while accounting for these summed costs, and obtain comparable results. (2) A trait-dependent model of water flow through the plant stem, in which water flow is limited by the conductivity (Ks) and embolism resistance (P50) of the hydraulic pathway. At the shortest timescale, water stress causes stomatal closure to an extent that the transpiration demand determined by the vapour pressure deficit at the leaf surface is matched by the water supply through the stem. (3) A short-term response of photosynthetic capacity (Vcmax) to soil moisture, through which the potential Vcmax acclimates to prevailing daytime conditions to equalize carboxylation-limited and electron-transport-limited photosynthesis rates (Ac and Aj), while the realized values of Vcmax, Ac, and Aj are reduced from their potential values by a factor dependent on the leaf water potential and the leaf embolism resistance.
We estimate the parameters of our model using published data from short-term and long-term dry-down experiments. The key predictions of our model are as follows: (1) GPP declines with decreasing soil water potential and drops to zero soon after the soil water potential crosses P50; (2) soil-to-leaf water potential difference remains relatively constant under developing water stress; (3) functional forms describing the declines in stomatal conductance, Vcmax, and GPP with soil water potential are consistent with observations; and (4) decreased photosynthetic capacity (Vcmax) recovers (in the long term) if the plant increases its Huber value (e.g., by shedding leaves), increases its conductivity (e.g., by growing wider new vessels), or decreases its height growth (e.g., by reducing allocation to growth). Our theory provides a potential way of integrating trait-based responses of plants to water stress into global vegetation models, and should therefore help to improve predictions of the global carbon and water cycles in a changing environment.
References: [1] Prentice IC, et al. Ecology letters 17.1 (2014): 82-91. [2] Wang H, et al. Nature Plants 3.9 (2017): 734.
How to cite: Joshi, J., Dieckmann, U., and Prentice, I. C.: Towards a unified theory of plant photosynthesis and hydraulics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9687, https://doi.org/10.5194/egusphere-egu2020-9687, 2020.
EGU2020-18977 | Displays | BG3.6
Plant thermal tolerance: a global synthesis for future researchSonya Geange, Pieter Arnold, Alexandra Catling, Onoriode Coast, Alicia Cook, Kelli Gowland, Andrea Leigh, Rocco Notarnicola, Bradley Posch, Susanna Venn, Lingling Zhu, and Adrienne Nicotra
Extreme temperature events are increasing in frequency and intensity across the globe. These extremes, rather than averages, drive species evolution and determine survival by profoundly changing the structure and fluidity of cell membranes, altering enzyme function, and denaturing proteins. Given not only our dependence on agricultural crops and natural vegetation, but also the role of photosynthetic processes within the carbon and hydrological cycles, it is imperative to assess the state of our understanding of the potential impacts of extreme events on plants. Scaling responses from the molecular and organ level to ecosystem function is not without challenge however. There is vast literature on plant thermal tolerance research, but the body of literature is so large, the approaches so disparate and often siloed among disciplines, that research in this field risks floundering at a critical time. We conducted a systematic review of more than 21,500 studies spanning over 100 years of research that yielded almost 1,700 included studies on the tolerance of cultivated and wild land plants to both heat and cold. Our review indicates that most studies on thermal tolerance focus on the cold tolerance of cultivated species (52%) and only a trivial percentage of studies have considered both heat and cold tolerance of any given species (~5%). Combined heat and cold tolerance are important in areas where plants are exposed to extremes of both or may be in the future. This review illustrates the global distribution and concentrations of thermal tolerance studies and the diversity of thermal tolerance methods, ranging from molecular to biochemical, physiological and physical examinations, from transgenic model plants to agricultural and horticultural crops, to natural forest trees, shrubs, and grassland herbs. Critically, it also demonstrates that methods and metrics for assessing thermal tolerance are far from standardised, such that our potential to achieve mechanistic insight and compare across species and biomes is compromised. Without reconciling these issues, the scope for incorporating this critical ecological information into vegetation elements of land surface models may be limited. To aid this, we identify priorities for achieving efficient, reliable, and repeatable research across the spectrum of plant thermal tolerance. These priorities, including meta-analytical approaches and comparative experimental work, will not only further fundamental plant science, but will prove essential next steps if we are to integrate such diverse data on a critical plant functional trait into a usable metric within biogeochemical models.
How to cite: Geange, S., Arnold, P., Catling, A., Coast, O., Cook, A., Gowland, K., Leigh, A., Notarnicola, R., Posch, B., Venn, S., Zhu, L., and Nicotra, A.: Plant thermal tolerance: a global synthesis for future research, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18977, https://doi.org/10.5194/egusphere-egu2020-18977, 2020.
Extreme temperature events are increasing in frequency and intensity across the globe. These extremes, rather than averages, drive species evolution and determine survival by profoundly changing the structure and fluidity of cell membranes, altering enzyme function, and denaturing proteins. Given not only our dependence on agricultural crops and natural vegetation, but also the role of photosynthetic processes within the carbon and hydrological cycles, it is imperative to assess the state of our understanding of the potential impacts of extreme events on plants. Scaling responses from the molecular and organ level to ecosystem function is not without challenge however. There is vast literature on plant thermal tolerance research, but the body of literature is so large, the approaches so disparate and often siloed among disciplines, that research in this field risks floundering at a critical time. We conducted a systematic review of more than 21,500 studies spanning over 100 years of research that yielded almost 1,700 included studies on the tolerance of cultivated and wild land plants to both heat and cold. Our review indicates that most studies on thermal tolerance focus on the cold tolerance of cultivated species (52%) and only a trivial percentage of studies have considered both heat and cold tolerance of any given species (~5%). Combined heat and cold tolerance are important in areas where plants are exposed to extremes of both or may be in the future. This review illustrates the global distribution and concentrations of thermal tolerance studies and the diversity of thermal tolerance methods, ranging from molecular to biochemical, physiological and physical examinations, from transgenic model plants to agricultural and horticultural crops, to natural forest trees, shrubs, and grassland herbs. Critically, it also demonstrates that methods and metrics for assessing thermal tolerance are far from standardised, such that our potential to achieve mechanistic insight and compare across species and biomes is compromised. Without reconciling these issues, the scope for incorporating this critical ecological information into vegetation elements of land surface models may be limited. To aid this, we identify priorities for achieving efficient, reliable, and repeatable research across the spectrum of plant thermal tolerance. These priorities, including meta-analytical approaches and comparative experimental work, will not only further fundamental plant science, but will prove essential next steps if we are to integrate such diverse data on a critical plant functional trait into a usable metric within biogeochemical models.
How to cite: Geange, S., Arnold, P., Catling, A., Coast, O., Cook, A., Gowland, K., Leigh, A., Notarnicola, R., Posch, B., Venn, S., Zhu, L., and Nicotra, A.: Plant thermal tolerance: a global synthesis for future research, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18977, https://doi.org/10.5194/egusphere-egu2020-18977, 2020.
EGU2020-4100 | Displays | BG3.6 | Highlight
Simulating co-existence of functionally diverse trees in European natural forests with LPJmL-FITKirsten Thonicke, Maik Billing, Werner von Bloh, Boris Sakschewski, Ülo Niinemets, Josep Penuelas, J.Hans C. Cornelissen, Peter van Bodegom, Michael E. Shaepman, Fabian D. Schneider, and Ariane Walz
We adopted the flexible trait Dynamic Global Vegetation Model LPJmL-FIT for European natural forests by eliminating bioclimatic limits of Plant Functional Types (PFTs) and replacing prescribed values of functional traits with flexible individual traits. Vegetation dynamics are simulated with permafrost and fire disturbance being considered in the simulation domain. Leaf and stem-economic traits are assigned to individual trees at establishment which then determine plant competition for light and water in a forest patch. We simulate vegetation dynamics in selected natural forests sites and at the Pan-European scale. We quantified functional richness (FR), functional divergence (FDv) and functional evenness (FE) from combinations of functional and structural traits of the simulated individual trees.
We find good agreement with observed productivity, biomass and tree height, and spatial PFT and local trait distributions. The latter is compared against TRY observations. We find site-specific trait distributions and spatial gradients of the simulated LES and SES traits to coincide with environmental and competitive filtering for light and water in environments with strong abiotic stress. Where deciduous and needle-leaved trees co-occur in a forest patch, functional richness (potential niche space) is high, and extreme ends of the niche space are occupied resulting in high FDv. Functional divergence declines where the performance of deciduous trees decreases due to increasing environmental stress as simulated along altitudinal and latitudinal gradients. When climate gets cooler, needle-leaved trees become dominant, occupying the extreme ends of the niche space. Under Mediterranean climate conditions, drought increasingly limits tree growth thus niche differentiation becomes more important.
Co-existence of functionally diverse trees within and across PFTs emerges from alternative life history strategies, disturbance and tree demography.
How to cite: Thonicke, K., Billing, M., von Bloh, W., Sakschewski, B., Niinemets, Ü., Penuelas, J., Cornelissen, J. H. C., van Bodegom, P., Shaepman, M. E., Schneider, F. D., and Walz, A.: Simulating co-existence of functionally diverse trees in European natural forests with LPJmL-FIT, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4100, https://doi.org/10.5194/egusphere-egu2020-4100, 2020.
We adopted the flexible trait Dynamic Global Vegetation Model LPJmL-FIT for European natural forests by eliminating bioclimatic limits of Plant Functional Types (PFTs) and replacing prescribed values of functional traits with flexible individual traits. Vegetation dynamics are simulated with permafrost and fire disturbance being considered in the simulation domain. Leaf and stem-economic traits are assigned to individual trees at establishment which then determine plant competition for light and water in a forest patch. We simulate vegetation dynamics in selected natural forests sites and at the Pan-European scale. We quantified functional richness (FR), functional divergence (FDv) and functional evenness (FE) from combinations of functional and structural traits of the simulated individual trees.
We find good agreement with observed productivity, biomass and tree height, and spatial PFT and local trait distributions. The latter is compared against TRY observations. We find site-specific trait distributions and spatial gradients of the simulated LES and SES traits to coincide with environmental and competitive filtering for light and water in environments with strong abiotic stress. Where deciduous and needle-leaved trees co-occur in a forest patch, functional richness (potential niche space) is high, and extreme ends of the niche space are occupied resulting in high FDv. Functional divergence declines where the performance of deciduous trees decreases due to increasing environmental stress as simulated along altitudinal and latitudinal gradients. When climate gets cooler, needle-leaved trees become dominant, occupying the extreme ends of the niche space. Under Mediterranean climate conditions, drought increasingly limits tree growth thus niche differentiation becomes more important.
Co-existence of functionally diverse trees within and across PFTs emerges from alternative life history strategies, disturbance and tree demography.
How to cite: Thonicke, K., Billing, M., von Bloh, W., Sakschewski, B., Niinemets, Ü., Penuelas, J., Cornelissen, J. H. C., van Bodegom, P., Shaepman, M. E., Schneider, F. D., and Walz, A.: Simulating co-existence of functionally diverse trees in European natural forests with LPJmL-FIT, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4100, https://doi.org/10.5194/egusphere-egu2020-4100, 2020.
EGU2020-7019 | Displays | BG3.6 | Highlight
Global climate controls on the plant rooting depthBenjamin D. Stocker, Shersingh J. Tumber-Dávila, and Robert B. Jackson
Rooting depth governs plants' access to water during dry (rain-free) periods and is thus a key variable determining the sensitivity of transpiration and carbon assimilation to soil moisture drought and land-climate coupling during drought and heat events. Plant rooting depth variations of two orders of magnitude have been recorded across the globe and a substantial portion of this variation appears within species and functional groups. This suggests that plant rooting depth is a relatively plastic “trait” that may adjust to the local environment and soil hydrology and possibly also to temporally changing climatic conditions. Yet, plant rooting depth is commonly treated as a fixed parameter in global vegetation and climate models, specified for each plant functional type. How can respective trait flexibility be introduced in such models?
Approaches to explain these large variations have focussed on the depth of the local water table as a constraint on the maximum rooting depth (Fan et al., 2017), on the mean seasonality and synchrony of precipitation and radiation (Gao et al., 2014; Schenk et al., 2005), or on optimality principles for balancing the trade-offs between the benefits of deep rooting and their associated costs (carbon used for root construction and respiration and maintaining water transport along the entire soil-root-leaf pathway) (Kleidon and Heimann, 1998; Schymanski et al., 2009).
Here, we follow the approach by Gao et al. (2014), assuming that plants’ rooting depth is adjusted to sustain cumulative water deficits (precipitation minus evapotranspiration: P - ET) of a magnitude, corresponding to an event with a return period of N years, where N is a global constant. The water deficit is determined using daily reanalysis data of precipitation, while ET is estimated from remotely sensed vegetation cover and observed radiation, and from simulated stomatal responses to observed vapour pressure deficit across the globe for the past 35 years. Cumulative water deficits are translated into a “soil drying depth” using information on soil texture and its estimated water holding capacity.
First results reveal a global pattern of plant rooting depth, adjusted to the apparent cumulative water deficit during rain-free periods, peaking at intermediate aridity, where dry periods are long, radiation is high, and vegetation cover is substantial. A comparison to biome-level distributions of observed rooting depths indicates that the control by the cumulative water deficit, embodied in our model, is a powerful driver of variations between biomes. Shallowest rooting depths are observed and modelled in boreal forests and alpine meadows, while deepest rooting is observed and modelled in xeric forests. Stomatal response to dry conditions appears to be an important mechanism that mitigates the necessity for deep rooting, particularly in broadleaved tropical and temperate forests. Our analysis also revealed challenges in bridging the scales of observations and our global-scale model, possibly due to small-scale heterogeneity in soil water availability driven by the topographic setting.
How to cite: Stocker, B. D., Tumber-Dávila, S. J., and Jackson, R. B.: Global climate controls on the plant rooting depth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7019, https://doi.org/10.5194/egusphere-egu2020-7019, 2020.
Rooting depth governs plants' access to water during dry (rain-free) periods and is thus a key variable determining the sensitivity of transpiration and carbon assimilation to soil moisture drought and land-climate coupling during drought and heat events. Plant rooting depth variations of two orders of magnitude have been recorded across the globe and a substantial portion of this variation appears within species and functional groups. This suggests that plant rooting depth is a relatively plastic “trait” that may adjust to the local environment and soil hydrology and possibly also to temporally changing climatic conditions. Yet, plant rooting depth is commonly treated as a fixed parameter in global vegetation and climate models, specified for each plant functional type. How can respective trait flexibility be introduced in such models?
Approaches to explain these large variations have focussed on the depth of the local water table as a constraint on the maximum rooting depth (Fan et al., 2017), on the mean seasonality and synchrony of precipitation and radiation (Gao et al., 2014; Schenk et al., 2005), or on optimality principles for balancing the trade-offs between the benefits of deep rooting and their associated costs (carbon used for root construction and respiration and maintaining water transport along the entire soil-root-leaf pathway) (Kleidon and Heimann, 1998; Schymanski et al., 2009).
Here, we follow the approach by Gao et al. (2014), assuming that plants’ rooting depth is adjusted to sustain cumulative water deficits (precipitation minus evapotranspiration: P - ET) of a magnitude, corresponding to an event with a return period of N years, where N is a global constant. The water deficit is determined using daily reanalysis data of precipitation, while ET is estimated from remotely sensed vegetation cover and observed radiation, and from simulated stomatal responses to observed vapour pressure deficit across the globe for the past 35 years. Cumulative water deficits are translated into a “soil drying depth” using information on soil texture and its estimated water holding capacity.
First results reveal a global pattern of plant rooting depth, adjusted to the apparent cumulative water deficit during rain-free periods, peaking at intermediate aridity, where dry periods are long, radiation is high, and vegetation cover is substantial. A comparison to biome-level distributions of observed rooting depths indicates that the control by the cumulative water deficit, embodied in our model, is a powerful driver of variations between biomes. Shallowest rooting depths are observed and modelled in boreal forests and alpine meadows, while deepest rooting is observed and modelled in xeric forests. Stomatal response to dry conditions appears to be an important mechanism that mitigates the necessity for deep rooting, particularly in broadleaved tropical and temperate forests. Our analysis also revealed challenges in bridging the scales of observations and our global-scale model, possibly due to small-scale heterogeneity in soil water availability driven by the topographic setting.
How to cite: Stocker, B. D., Tumber-Dávila, S. J., and Jackson, R. B.: Global climate controls on the plant rooting depth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7019, https://doi.org/10.5194/egusphere-egu2020-7019, 2020.
EGU2020-10214 | Displays | BG3.6
Incorporating hydraulic traits within the functional strategy spectrum of woody plants globallyDaijun Liu, Adriane Esquivel-Muelbert, Jonathan Sadler, Nezha Acil, Phillip Papastefanou, Anja Rammig, and Thomas A. M. Pugh
Global-change-type droughts, resulting from climate warming and changes in precipitation patterns are believed to be accelerating the rates of tree mortality globally. Simulation of these changes, for instance in global vegetation models, requires parameterisation of plant strategies with respect to drought. However, our understanding of realised combinations of drought-relevant physiological and morphological traits across the range of global forest types is still limited.
We constructed a dataset consisting of 12 functional traits related to resource acquisition, growth rate, plant defence, water conductivity and hydraulic vulnerability for 11,000 woody species globally. We used a novel envelope-based analysis to assess the functional space occupied by these species whilst circumventing the problem of sparse sampling for many traits. We then subdivided the space into a continuum of strategic “clusters”. These clusters only map partially onto groupings of traditional plant functional types based on leaf type and phenology.
We found that the functional spaces for the plant strategies are highly interrelated globally, showing that the traits related to resource acquisition are positively associated with growth rates and leaf water conductivity, which together are negatively associated with conservative traits of plant defence, although these associations differ greatly between needleleaf and broadleaf species. However, the trait related to hydraulic failure demonstrated positive associations with resource acquisition, but no relationship with woody defence. Furthermore, there are clear linkages between water flow and hydraulic vulnerability traits, and climatic drivers relating to aridity and plant distribution.
The clusters identified in this systemic work can form a basis for new plant functional type definitions, facilitating including plant hydraulics in global vegetation models and, taking a step towards making reliable large-scale simulations of drought-driven tree mortality.
How to cite: Liu, D., Esquivel-Muelbert, A., Sadler, J., Acil, N., Papastefanou, P., Rammig, A., and A. M. Pugh, T.: Incorporating hydraulic traits within the functional strategy spectrum of woody plants globally, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10214, https://doi.org/10.5194/egusphere-egu2020-10214, 2020.
Global-change-type droughts, resulting from climate warming and changes in precipitation patterns are believed to be accelerating the rates of tree mortality globally. Simulation of these changes, for instance in global vegetation models, requires parameterisation of plant strategies with respect to drought. However, our understanding of realised combinations of drought-relevant physiological and morphological traits across the range of global forest types is still limited.
We constructed a dataset consisting of 12 functional traits related to resource acquisition, growth rate, plant defence, water conductivity and hydraulic vulnerability for 11,000 woody species globally. We used a novel envelope-based analysis to assess the functional space occupied by these species whilst circumventing the problem of sparse sampling for many traits. We then subdivided the space into a continuum of strategic “clusters”. These clusters only map partially onto groupings of traditional plant functional types based on leaf type and phenology.
We found that the functional spaces for the plant strategies are highly interrelated globally, showing that the traits related to resource acquisition are positively associated with growth rates and leaf water conductivity, which together are negatively associated with conservative traits of plant defence, although these associations differ greatly between needleleaf and broadleaf species. However, the trait related to hydraulic failure demonstrated positive associations with resource acquisition, but no relationship with woody defence. Furthermore, there are clear linkages between water flow and hydraulic vulnerability traits, and climatic drivers relating to aridity and plant distribution.
The clusters identified in this systemic work can form a basis for new plant functional type definitions, facilitating including plant hydraulics in global vegetation models and, taking a step towards making reliable large-scale simulations of drought-driven tree mortality.
How to cite: Liu, D., Esquivel-Muelbert, A., Sadler, J., Acil, N., Papastefanou, P., Rammig, A., and A. M. Pugh, T.: Incorporating hydraulic traits within the functional strategy spectrum of woody plants globally, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10214, https://doi.org/10.5194/egusphere-egu2020-10214, 2020.
EGU2020-11248 | Displays | BG3.6
Towards a new trait-based framework bringing together terrestrial and marine ecosystems in Earth system models.Felix Pellerin, Philipp Porada, and Inga Hense
The climate on Earth arises from multiple interactions between the different spheres, including the biosphere. Within the biosphere, the organisms composing the various types of ecosystem are characterized by a set of traits involved in biological processes that can influence the climate system. Identifying and integrating these traits into models such as earth system models (ESM) is thus crucial to predict the future of earth climate. While an important number of biological processes are similar, the amount and the type of traits considered to represent these processes can vary considerably among ecosystem types in current ESMs. Such inconsistencies could bias our perception of the global influence of biosphere on climate dynamics. Here we first list the biological traits that have been included in the terrestrial and oceanic modules of the CMIP5 Earth system models. By comparing the traits and associated processes, we reveal consistencies and inconsistencies in trait representation among both ecosystem types. Based on a critical evaluation we propose a new conceptual framework that allows to describe the climate relevant traits in a consistent way in terrestrial and oceanic modules of ESMs. This framework can also be used to identify new traits characterizing terrestrial and/or marine ecosystems, and to integrate them in ESMs.
How to cite: Pellerin, F., Porada, P., and Hense, I.: Towards a new trait-based framework bringing together terrestrial and marine ecosystems in Earth system models., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11248, https://doi.org/10.5194/egusphere-egu2020-11248, 2020.
The climate on Earth arises from multiple interactions between the different spheres, including the biosphere. Within the biosphere, the organisms composing the various types of ecosystem are characterized by a set of traits involved in biological processes that can influence the climate system. Identifying and integrating these traits into models such as earth system models (ESM) is thus crucial to predict the future of earth climate. While an important number of biological processes are similar, the amount and the type of traits considered to represent these processes can vary considerably among ecosystem types in current ESMs. Such inconsistencies could bias our perception of the global influence of biosphere on climate dynamics. Here we first list the biological traits that have been included in the terrestrial and oceanic modules of the CMIP5 Earth system models. By comparing the traits and associated processes, we reveal consistencies and inconsistencies in trait representation among both ecosystem types. Based on a critical evaluation we propose a new conceptual framework that allows to describe the climate relevant traits in a consistent way in terrestrial and oceanic modules of ESMs. This framework can also be used to identify new traits characterizing terrestrial and/or marine ecosystems, and to integrate them in ESMs.
How to cite: Pellerin, F., Porada, P., and Hense, I.: Towards a new trait-based framework bringing together terrestrial and marine ecosystems in Earth system models., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11248, https://doi.org/10.5194/egusphere-egu2020-11248, 2020.
EGU2020-8994 | Displays | BG3.6 | Highlight
Neural Networks to estimate world forest foliar elemental composition and stoichiometryHelena Vallicrosa, Jordi Sardans, Paolo Zuccarini, Joan Maspons, and Josep Peñuelas
We developed global maps of N, P, K concentrations and ratios in leaves for woody plants by modeling with Neural Networks at 1km resolution. We gathered georeferenciated data from published data bases (like TRY and ICP) and a total of 206 peer-published papers (ISI WEB) achieving 28736 records of N, P and K leaf concentrations that we split in 6 morphoclimatic groups (tropical evergreen, tropical deciduous broadleaves, temperate coniferous, temperate evergreen broadleaves, temperate deciduous broadleaves and boreal). We trained Neural Networks with climatic, soil and atmospheric deposition data and morphoclimatic groups to model the foliar elemental composition and project it at global scale according to a Land Cover map. The models provide maps with information of the foliar concentrations of each element at pixel level, their uncertainty and goodness of fit, and relative importance of the independent variables. Linear models were also created to show the relationship between dependent and independent variables. These maps and these relationships will improve the understanding of the biogeochemical processes and provide better input nutritional data for the global models of carbon cycle and climate change.
How to cite: Vallicrosa, H., Sardans, J., Zuccarini, P., Maspons, J., and Peñuelas, J.: Neural Networks to estimate world forest foliar elemental composition and stoichiometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8994, https://doi.org/10.5194/egusphere-egu2020-8994, 2020.
We developed global maps of N, P, K concentrations and ratios in leaves for woody plants by modeling with Neural Networks at 1km resolution. We gathered georeferenciated data from published data bases (like TRY and ICP) and a total of 206 peer-published papers (ISI WEB) achieving 28736 records of N, P and K leaf concentrations that we split in 6 morphoclimatic groups (tropical evergreen, tropical deciduous broadleaves, temperate coniferous, temperate evergreen broadleaves, temperate deciduous broadleaves and boreal). We trained Neural Networks with climatic, soil and atmospheric deposition data and morphoclimatic groups to model the foliar elemental composition and project it at global scale according to a Land Cover map. The models provide maps with information of the foliar concentrations of each element at pixel level, their uncertainty and goodness of fit, and relative importance of the independent variables. Linear models were also created to show the relationship between dependent and independent variables. These maps and these relationships will improve the understanding of the biogeochemical processes and provide better input nutritional data for the global models of carbon cycle and climate change.
How to cite: Vallicrosa, H., Sardans, J., Zuccarini, P., Maspons, J., and Peñuelas, J.: Neural Networks to estimate world forest foliar elemental composition and stoichiometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8994, https://doi.org/10.5194/egusphere-egu2020-8994, 2020.
EGU2020-20651 | Displays | BG3.6
Canopy N across European forests: comparing spatial patterns of canopy N retrieved from remote sensing, environmental variables and global vegetation modelsYasmina Loozen, Derek Karssenberg, Steven de Jong, Meng Lu, Stefan Olin, Martin Wassen, David Wårlind, Sönke Zaehle, and Karin Rebel
Humans have dramatically increased atmospheric CO2 concentration as well as biologically available nitrogen (N). Nitrogen is an essential nutrient for vegetation growth and N availability represents a limiting factor on carbon (C) sequestration by the terrestrial ecosystems. While there is a large infrastructure for measurements to constrain the C cycle, data to constrain the N cycle are less readily available. Using a combination of remote sensing products (MODIS), canopy N concentration data (ICP forest), plant functional type and environmental variables including soil, climate (WorldClim) and elevation (EU-DEM), we generated a canopy N map across European forests using a random forest statistical method (hereafter RF canopy N map).
Most current Global Vegetation Models (GVMs) have integrated C and N cycles, to account for the link between C and N for plant growth and respiration. Leaf N concentration is also important for other biomass compartments as N allocations are prescribed relative to leaf N. The objective of this study is to compare canopy N of two GVMs, O-CN and LPJ-GUESS, and the RF canopy N map in European forests.
The obtained canopy N maps show contrasting spatial patterns. The RF canopy N map shows higher canopy N values, i.e. between 1.8 and 2.2 %N, in mid-western and eastern Europe, while showing lower values, i.e. 1.2 and 1.6 %N, around the Mediterranean region and in the south of Sweden. The canopy N map obtained from the O-CN simulation shows relatively lower canopy N values, ranging from 1.0 to 1.8 %N, in central and northern Europe, while in the Mediterranean region the values are higher, between 1.8 and 2.4 %N. Similar to the RF map, the LPJ-GUESS canopy N map shows relatively higher canopy N values in mid-western Europe compared to southern and northern Europe, however, the LPJ-GUESS canopy N values show little spatial variation in the Mediterranean region. Also, the LPJ-GUESS values are higher, with canopy N values ranging between 2.0 and 2.8 %N in mid-western Europe, and canopy N values ranging between 1.6 and 1.8 %N in the Mediterranean region.
The analysis yields insight into spatial differences in RF canopy N and canopy N predicted by GVMs, with especially a mismatch in arid and warm regions.
How to cite: Loozen, Y., Karssenberg, D., de Jong, S., Lu, M., Olin, S., Wassen, M., Wårlind, D., Zaehle, S., and Rebel, K.: Canopy N across European forests: comparing spatial patterns of canopy N retrieved from remote sensing, environmental variables and global vegetation models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20651, https://doi.org/10.5194/egusphere-egu2020-20651, 2020.
Humans have dramatically increased atmospheric CO2 concentration as well as biologically available nitrogen (N). Nitrogen is an essential nutrient for vegetation growth and N availability represents a limiting factor on carbon (C) sequestration by the terrestrial ecosystems. While there is a large infrastructure for measurements to constrain the C cycle, data to constrain the N cycle are less readily available. Using a combination of remote sensing products (MODIS), canopy N concentration data (ICP forest), plant functional type and environmental variables including soil, climate (WorldClim) and elevation (EU-DEM), we generated a canopy N map across European forests using a random forest statistical method (hereafter RF canopy N map).
Most current Global Vegetation Models (GVMs) have integrated C and N cycles, to account for the link between C and N for plant growth and respiration. Leaf N concentration is also important for other biomass compartments as N allocations are prescribed relative to leaf N. The objective of this study is to compare canopy N of two GVMs, O-CN and LPJ-GUESS, and the RF canopy N map in European forests.
The obtained canopy N maps show contrasting spatial patterns. The RF canopy N map shows higher canopy N values, i.e. between 1.8 and 2.2 %N, in mid-western and eastern Europe, while showing lower values, i.e. 1.2 and 1.6 %N, around the Mediterranean region and in the south of Sweden. The canopy N map obtained from the O-CN simulation shows relatively lower canopy N values, ranging from 1.0 to 1.8 %N, in central and northern Europe, while in the Mediterranean region the values are higher, between 1.8 and 2.4 %N. Similar to the RF map, the LPJ-GUESS canopy N map shows relatively higher canopy N values in mid-western Europe compared to southern and northern Europe, however, the LPJ-GUESS canopy N values show little spatial variation in the Mediterranean region. Also, the LPJ-GUESS values are higher, with canopy N values ranging between 2.0 and 2.8 %N in mid-western Europe, and canopy N values ranging between 1.6 and 1.8 %N in the Mediterranean region.
The analysis yields insight into spatial differences in RF canopy N and canopy N predicted by GVMs, with especially a mismatch in arid and warm regions.
How to cite: Loozen, Y., Karssenberg, D., de Jong, S., Lu, M., Olin, S., Wassen, M., Wårlind, D., Zaehle, S., and Rebel, K.: Canopy N across European forests: comparing spatial patterns of canopy N retrieved from remote sensing, environmental variables and global vegetation models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20651, https://doi.org/10.5194/egusphere-egu2020-20651, 2020.
EGU2020-11293 | Displays | BG3.6
Leaf functional diversity is not equivalent to canopy functional diversity: Mapping whole canopy traits with imaging spectroscopy and lidar fusionAaron Kamoske, Kyla Dahlin, Shawn Serbin, and Scott Stark
Foliar nitrogen concentration (foliar N) and leaf mass per area (LMA) have been identified as key drivers of plant functional diversity and are strongly correlated with photosynthetic carbon assimilation in terrestrial ecosystems. However, these traits are not static between and among species, instead tradeoffs between light interception, photosynthetic capacity, and construction costs (e.g. leaf economics spectrum) lead to significant variation across landscapes. This diversity in leaf traits can lead to considerable differences in carbon assimilation rates at the leaf level, which is difficult to quantify at ecosystem scales without advanced technologies. Much of our current understanding of landscape-scale heterogeneity in functional traits has come from airborne imaging spectroscopy, which can be linked with foliar trait data to map functional diversity across entire ecosystems. Yet, these remote sensing platforms primarily measure processes occurring in leaves at the top of the canopy, thus ignoring critical information about the three-dimensional structure of forest canopies. Moreover, there is a critical relationship between forest structure and function which drives ecological processes such as carbon assimilation, resource use and efficiency, and woody growth. With traditional remote sensing platforms assuming a 2D world, this leads to an important question in ecosystem functioning: Do total canopy foliar N patterns match top of canopy N concentrations, or are these patterns different? In the United States, the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) provides a unique opportunity to address this question by collecting airborne lidar and hyperspectral data in unison across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field collected foliar trait data, we show that top of canopy leaf-level and whole canopy foliar N represent fundamentally different measurements regardless of spatial resolution, which could have critical impacts when scaled to landscape, continental, and global models. In addition, we examine the influence of topography, geology, and management regimes on these two measurements of functional diversity at a NEON site consisting of patches of open longleaf pine and dense broadleaf deciduous forests. By understanding how these measurements are linked to abiotic gradients and management regimes, we show that top of canopy functional diversity is more closely related to environmental gradients, reflecting species differences, while whole canopy functional diversity is more evenly distributed, which is a reflection of N availability and utilization across this ecosystem.
How to cite: Kamoske, A., Dahlin, K., Serbin, S., and Stark, S.: Leaf functional diversity is not equivalent to canopy functional diversity: Mapping whole canopy traits with imaging spectroscopy and lidar fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11293, https://doi.org/10.5194/egusphere-egu2020-11293, 2020.
Foliar nitrogen concentration (foliar N) and leaf mass per area (LMA) have been identified as key drivers of plant functional diversity and are strongly correlated with photosynthetic carbon assimilation in terrestrial ecosystems. However, these traits are not static between and among species, instead tradeoffs between light interception, photosynthetic capacity, and construction costs (e.g. leaf economics spectrum) lead to significant variation across landscapes. This diversity in leaf traits can lead to considerable differences in carbon assimilation rates at the leaf level, which is difficult to quantify at ecosystem scales without advanced technologies. Much of our current understanding of landscape-scale heterogeneity in functional traits has come from airborne imaging spectroscopy, which can be linked with foliar trait data to map functional diversity across entire ecosystems. Yet, these remote sensing platforms primarily measure processes occurring in leaves at the top of the canopy, thus ignoring critical information about the three-dimensional structure of forest canopies. Moreover, there is a critical relationship between forest structure and function which drives ecological processes such as carbon assimilation, resource use and efficiency, and woody growth. With traditional remote sensing platforms assuming a 2D world, this leads to an important question in ecosystem functioning: Do total canopy foliar N patterns match top of canopy N concentrations, or are these patterns different? In the United States, the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) provides a unique opportunity to address this question by collecting airborne lidar and hyperspectral data in unison across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field collected foliar trait data, we show that top of canopy leaf-level and whole canopy foliar N represent fundamentally different measurements regardless of spatial resolution, which could have critical impacts when scaled to landscape, continental, and global models. In addition, we examine the influence of topography, geology, and management regimes on these two measurements of functional diversity at a NEON site consisting of patches of open longleaf pine and dense broadleaf deciduous forests. By understanding how these measurements are linked to abiotic gradients and management regimes, we show that top of canopy functional diversity is more closely related to environmental gradients, reflecting species differences, while whole canopy functional diversity is more evenly distributed, which is a reflection of N availability and utilization across this ecosystem.
How to cite: Kamoske, A., Dahlin, K., Serbin, S., and Stark, S.: Leaf functional diversity is not equivalent to canopy functional diversity: Mapping whole canopy traits with imaging spectroscopy and lidar fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11293, https://doi.org/10.5194/egusphere-egu2020-11293, 2020.
EGU2020-12843 | Displays | BG3.6 | Highlight
The spectrum of ecosystem functional propertiesMirco Migliavacca, Talie Musavi, Miguel D. Mahecha, Jacob A. Nelson, Juergen Knauer, Dennis D. Baldocchi, Oscar Perez-Priego, and Markus Reichstein and the Ecosystem Functional Properties group
Understanding the coordination of ecosystem functions across biomes and climate is still a major challenge that hampers our ability to properly predict biosphere response to climate change. Theories such as the leaf economics spectrum and the least cost investment strategy postulate that plants optimize the rate of investment in transpiration, photosynthetic capacity, and nitrogen (N) allocation dependent on the ratio of their costs to gain given their resources and environment.
In this contribution we test whether theories about functional traits coordination at leaf and organs level are emerging at ecosystem scale. We further investigate the existence of a global spectrum of ecosystem functional properties, and analyze how state of the art terrestrial biosphere models reproduce the spectrum.
To do so we used data of CO2, water and energy exchange for 164 sites (1237 site years) from the FLUXNET LaThuile and FLUXNET 2015 datasets with at least 3 years of data. For 61 sites, we were able to compile site information on canopy-scale measurements of foliar N concentration, maximum leaf area index , and stand age, from the literature.
We find evidence that a global spectrum of ecosystem functional properties exist, and that most of the variability (66.2%) is captured by three dimensions. The first dimension represents ecosystem productivity; the second the water availability gradient, and climate limitations to productivity; the third dimension reflects ecosystem respiration potential and carbon-use efficiency and is related to aridity and stand age and disturbance regimes. The first two dimensions of the spectrum are well captured by ecosystem models, while the third dimension is poorly reproduced. This might be related to the spin up of the models (steady-state condition) or to an incomplete representation of processes related to age that might limit the ability of models to accurately predict the dynamic carbon, water and nutrient cycling in ecosystems in disturbed areas.
Finally, we show across ecosystems globally that leaf level theories can be in some cases translated to the ecosystem scale. As a main example we found an inverse relationship between photosynthetic N and water use efficiency as postulated by the least cost investment theory across FLUXNET sites. However, this is possible only when the contribution of vegetation is properly accounted for, and evaporation from soil and wet surfaces is removed from the analysis. This highlights that emerging biological patterns at ecosystem scale might be masked by other factors related to physical rather than biological responses.
How to cite: Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi, D. D., Perez-Priego, O., and Reichstein, M. and the Ecosystem Functional Properties group: The spectrum of ecosystem functional properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12843, https://doi.org/10.5194/egusphere-egu2020-12843, 2020.
Understanding the coordination of ecosystem functions across biomes and climate is still a major challenge that hampers our ability to properly predict biosphere response to climate change. Theories such as the leaf economics spectrum and the least cost investment strategy postulate that plants optimize the rate of investment in transpiration, photosynthetic capacity, and nitrogen (N) allocation dependent on the ratio of their costs to gain given their resources and environment.
In this contribution we test whether theories about functional traits coordination at leaf and organs level are emerging at ecosystem scale. We further investigate the existence of a global spectrum of ecosystem functional properties, and analyze how state of the art terrestrial biosphere models reproduce the spectrum.
To do so we used data of CO2, water and energy exchange for 164 sites (1237 site years) from the FLUXNET LaThuile and FLUXNET 2015 datasets with at least 3 years of data. For 61 sites, we were able to compile site information on canopy-scale measurements of foliar N concentration, maximum leaf area index , and stand age, from the literature.
We find evidence that a global spectrum of ecosystem functional properties exist, and that most of the variability (66.2%) is captured by three dimensions. The first dimension represents ecosystem productivity; the second the water availability gradient, and climate limitations to productivity; the third dimension reflects ecosystem respiration potential and carbon-use efficiency and is related to aridity and stand age and disturbance regimes. The first two dimensions of the spectrum are well captured by ecosystem models, while the third dimension is poorly reproduced. This might be related to the spin up of the models (steady-state condition) or to an incomplete representation of processes related to age that might limit the ability of models to accurately predict the dynamic carbon, water and nutrient cycling in ecosystems in disturbed areas.
Finally, we show across ecosystems globally that leaf level theories can be in some cases translated to the ecosystem scale. As a main example we found an inverse relationship between photosynthetic N and water use efficiency as postulated by the least cost investment theory across FLUXNET sites. However, this is possible only when the contribution of vegetation is properly accounted for, and evaporation from soil and wet surfaces is removed from the analysis. This highlights that emerging biological patterns at ecosystem scale might be masked by other factors related to physical rather than biological responses.
How to cite: Migliavacca, M., Musavi, T., Mahecha, M. D., Nelson, J. A., Knauer, J., Baldocchi, D. D., Perez-Priego, O., and Reichstein, M. and the Ecosystem Functional Properties group: The spectrum of ecosystem functional properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12843, https://doi.org/10.5194/egusphere-egu2020-12843, 2020.
EGU2020-1128 | Displays | BG3.6
Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of western Siberia in the discontinuous and continuous permafrost zoneRinat Manasypov, Oleg Pokrovsky, and Liudmila Shirokova
Despite high importance of macrophytes in shallow thaw lakes for control of major and trace nutrients in lake water, the chemical composition of different aquatic plants and trace element (TE) partitioning between macrophytes and lake water and sediments in the permafrost regions remain totally unknown. Here we sampled dominant macrophytes of thermokarst (thaw) lakes of discontinuous and continuous permafrost zones in Western Siberia Lowland (WSL) and we measured major and trace elements in plant biomass, lake water, lake sediments and sediment porewater. All 6 studies plants (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.), sizably accumulate macronutrients (Na, Mg, Ca), micronutrients (B, Mo, Nu, Cu, Zn, Co) and toxicants (As, Cd) relative to lake sediments. The accumulation of other trace elements including rare earth elements (REE) in macrophytes relative to pore waters and sediments was strongly species-specific. Under climate warmings scenario and the propagation of southern species northward, the accumulation of trace metals in aquatic plants of thermokarst lakes will produce preferential uptake of Cd, Pb, Ba from thermokarst lake water and sediments by the biomass of aquatic macrophytes. This may eventually diminish the transport of metal micronutrients from lakes to rivers and further to the Arctic Ocean.
Support from the RSF (RNF) grant 19-77-00073 “Experimental modeling of the formation mechanisms for elemental composition of water in thermokarst lakes of Western Siberia: vegetation effect”.
How to cite: Manasypov, R., Pokrovsky, O., and Shirokova, L.: Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of western Siberia in the discontinuous and continuous permafrost zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1128, https://doi.org/10.5194/egusphere-egu2020-1128, 2020.
Despite high importance of macrophytes in shallow thaw lakes for control of major and trace nutrients in lake water, the chemical composition of different aquatic plants and trace element (TE) partitioning between macrophytes and lake water and sediments in the permafrost regions remain totally unknown. Here we sampled dominant macrophytes of thermokarst (thaw) lakes of discontinuous and continuous permafrost zones in Western Siberia Lowland (WSL) and we measured major and trace elements in plant biomass, lake water, lake sediments and sediment porewater. All 6 studies plants (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.), sizably accumulate macronutrients (Na, Mg, Ca), micronutrients (B, Mo, Nu, Cu, Zn, Co) and toxicants (As, Cd) relative to lake sediments. The accumulation of other trace elements including rare earth elements (REE) in macrophytes relative to pore waters and sediments was strongly species-specific. Under climate warmings scenario and the propagation of southern species northward, the accumulation of trace metals in aquatic plants of thermokarst lakes will produce preferential uptake of Cd, Pb, Ba from thermokarst lake water and sediments by the biomass of aquatic macrophytes. This may eventually diminish the transport of metal micronutrients from lakes to rivers and further to the Arctic Ocean.
Support from the RSF (RNF) grant 19-77-00073 “Experimental modeling of the formation mechanisms for elemental composition of water in thermokarst lakes of Western Siberia: vegetation effect”.
How to cite: Manasypov, R., Pokrovsky, O., and Shirokova, L.: Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of western Siberia in the discontinuous and continuous permafrost zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1128, https://doi.org/10.5194/egusphere-egu2020-1128, 2020.
EGU2020-2346 | Displays | BG3.6
Drought-forced tree morphological changes facilitate trubs in a semiarid regionJingyu Dai, Hongyan Liu, Yongcai Wang, and Qinghua Guo
Semiarid forests characterized by the presence of “trub” species, which have short heights but large canopy sizes, can maintain a high carbon sequestration rate. By integrating terrestrial laser scanning (TLS), we quantified drought-forced tree morphological variation along a precipitation gradient; annual precipitation (MAP) explained 70.3% of variation in tree height (Height) but did not explain the variation in canopy area (CA). Theoretical CA-Height relationships widely adopted by dynamic global vegetation models (DGVMs) matched only the 5th percentile of our results, which is problematic for simulating carbon sequestration of open forests in semiarid regions. The trend toward “trubs” under a drying climate implies two decoupled functions of stems, mechanical stability and hydraulic efficiency, and can be an important strategy for trees to balance water and carbon. Our results demonstrate the importance of tree morphological studies for both tree environment-acclimation strategies and the improvement of DGVMs.
How to cite: Dai, J., Liu, H., Wang, Y., and Guo, Q.: Drought-forced tree morphological changes facilitate trubs in a semiarid region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2346, https://doi.org/10.5194/egusphere-egu2020-2346, 2020.
Semiarid forests characterized by the presence of “trub” species, which have short heights but large canopy sizes, can maintain a high carbon sequestration rate. By integrating terrestrial laser scanning (TLS), we quantified drought-forced tree morphological variation along a precipitation gradient; annual precipitation (MAP) explained 70.3% of variation in tree height (Height) but did not explain the variation in canopy area (CA). Theoretical CA-Height relationships widely adopted by dynamic global vegetation models (DGVMs) matched only the 5th percentile of our results, which is problematic for simulating carbon sequestration of open forests in semiarid regions. The trend toward “trubs” under a drying climate implies two decoupled functions of stems, mechanical stability and hydraulic efficiency, and can be an important strategy for trees to balance water and carbon. Our results demonstrate the importance of tree morphological studies for both tree environment-acclimation strategies and the improvement of DGVMs.
How to cite: Dai, J., Liu, H., Wang, Y., and Guo, Q.: Drought-forced tree morphological changes facilitate trubs in a semiarid region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2346, https://doi.org/10.5194/egusphere-egu2020-2346, 2020.
EGU2020-2675 | Displays | BG3.6
Measuring plant hydraulic conductance and xylem vulnerability under close to natural conditionsLouis Krieger and Stanislaus Schymanski
Usually hydraulic conductance and vulnerability are measured under extreme conditions never experienced by living plants (e. g. centrifugation, bench dehydration, and large pressure gradients). A common factor that is known to inhibit the water transport in plants is cavitation, which is believed to occur either by air entry through the pit valves on the walls of the xylem, or by ex-solution of dissolved gases, or vaporization of water at very low pressures. Various physical characteristics of the xylem influence the efficiency of transport and the vulnerability to cavitation.
Here we explore possibilities to measure hydraulic conductance and induce cavitation under close to natural conditions. We designed a very simple “artificial plant” consisting of a root and a transpiring membrane, equipped with pressure and flow meters, where a twig can be inserted in the flow path to measure its hydraulic conductance. Attempts to induce cavitation resulted in surprising results, provoking new questions on the role of xylem structural traits and their relevance for water transport in plants.
How to cite: Krieger, L. and Schymanski, S.: Measuring plant hydraulic conductance and xylem vulnerability under close to natural conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2675, https://doi.org/10.5194/egusphere-egu2020-2675, 2020.
Usually hydraulic conductance and vulnerability are measured under extreme conditions never experienced by living plants (e. g. centrifugation, bench dehydration, and large pressure gradients). A common factor that is known to inhibit the water transport in plants is cavitation, which is believed to occur either by air entry through the pit valves on the walls of the xylem, or by ex-solution of dissolved gases, or vaporization of water at very low pressures. Various physical characteristics of the xylem influence the efficiency of transport and the vulnerability to cavitation.
Here we explore possibilities to measure hydraulic conductance and induce cavitation under close to natural conditions. We designed a very simple “artificial plant” consisting of a root and a transpiring membrane, equipped with pressure and flow meters, where a twig can be inserted in the flow path to measure its hydraulic conductance. Attempts to induce cavitation resulted in surprising results, provoking new questions on the role of xylem structural traits and their relevance for water transport in plants.
How to cite: Krieger, L. and Schymanski, S.: Measuring plant hydraulic conductance and xylem vulnerability under close to natural conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2675, https://doi.org/10.5194/egusphere-egu2020-2675, 2020.
EGU2020-4827 | Displays | BG3.6
Introduced species in new ecosystems: concerning possible distortions of local biogeochemical cyclesLyudmila Kavelenova, Nataly Prokhorova, Svetlana Rozno, Alexander Pomogaybin, and Nikolay Yankov
The higher plants species during introduction demonstrate their properties, sometimes going beyond their traits in the natural areas. The most striking example may be given in this case is Acer nugundo L. (ash-leaved maple from the North America, a common component of forests in river valleys). In the forest-steppe –steppe landscapes of the Middle Volga region, it became a tree weed that exhibits exceptional resistance to abiotic stress conditions, including droughts.
Being introduced to alien territories, tree species generate different sorts of “distortions” into local biogeochemical cycles in natural ecosystems and anthropogenically transformed environment. We would like to list briefly some kinds of such influence expressed in the conditions of the forest-steppe-and steppe ecosystems of our region.
The direct or indirect effects on water cycle may be connected with:
- The changes in water balance due to additional transpiration during the overgrowth of previously treeless localities with the transition from grassy to pseudo-forest communities (Ulmus foliaceae L., Acer negundo L., Elaeagnus angustifolia L.).
- The emission of additional amount of terpenes and other aeroions into the air (various types of coniferous and deciduous trees and shrubs), which can act as centers of water vapor condensation.
The direct or indirect effects on carbon cycle (as well as nitrogen and phosphorus) may be connected with:
- The formation of leaf mass not eaten by local phytophages, replenishing the fund of leaf litter (Acer negundo L., Aesculus hyppocastanum L., species of Juglans genera.).
- The influence on the soil biological activity by stimulating or inhibiting the development of soil microbiota members (different tree species including Juglans cinerea L., J. mandshurica Maxim. , J. nigra L. and others).
- The changes in the soil nitrogen balance, especially pronounced for species with "symbiotic support" (Elaeagnus angustifolia L., Hyppophae ramnoides L.).
The above effects were detected by us for the few species including named above using various field and laboratory methods. Now we can consider them at the level of their identification as such Their scale assessment at the ecosystem level may become a next stage.
An analysis of the possibilities of identifying new pseudo-forest communities developing on the grassy deposits was carried out in local conditions by integrating ground-based survey data and remote sensing. This aspect seems to be valuable for our region with highly mosaic combination of natural, cultivated, anthropogenically transformed and other territories.
How to cite: Kavelenova, L., Prokhorova, N., Rozno, S., Pomogaybin, A., and Yankov, N.: Introduced species in new ecosystems: concerning possible distortions of local biogeochemical cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4827, https://doi.org/10.5194/egusphere-egu2020-4827, 2020.
The higher plants species during introduction demonstrate their properties, sometimes going beyond their traits in the natural areas. The most striking example may be given in this case is Acer nugundo L. (ash-leaved maple from the North America, a common component of forests in river valleys). In the forest-steppe –steppe landscapes of the Middle Volga region, it became a tree weed that exhibits exceptional resistance to abiotic stress conditions, including droughts.
Being introduced to alien territories, tree species generate different sorts of “distortions” into local biogeochemical cycles in natural ecosystems and anthropogenically transformed environment. We would like to list briefly some kinds of such influence expressed in the conditions of the forest-steppe-and steppe ecosystems of our region.
The direct or indirect effects on water cycle may be connected with:
- The changes in water balance due to additional transpiration during the overgrowth of previously treeless localities with the transition from grassy to pseudo-forest communities (Ulmus foliaceae L., Acer negundo L., Elaeagnus angustifolia L.).
- The emission of additional amount of terpenes and other aeroions into the air (various types of coniferous and deciduous trees and shrubs), which can act as centers of water vapor condensation.
The direct or indirect effects on carbon cycle (as well as nitrogen and phosphorus) may be connected with:
- The formation of leaf mass not eaten by local phytophages, replenishing the fund of leaf litter (Acer negundo L., Aesculus hyppocastanum L., species of Juglans genera.).
- The influence on the soil biological activity by stimulating or inhibiting the development of soil microbiota members (different tree species including Juglans cinerea L., J. mandshurica Maxim. , J. nigra L. and others).
- The changes in the soil nitrogen balance, especially pronounced for species with "symbiotic support" (Elaeagnus angustifolia L., Hyppophae ramnoides L.).
The above effects were detected by us for the few species including named above using various field and laboratory methods. Now we can consider them at the level of their identification as such Their scale assessment at the ecosystem level may become a next stage.
An analysis of the possibilities of identifying new pseudo-forest communities developing on the grassy deposits was carried out in local conditions by integrating ground-based survey data and remote sensing. This aspect seems to be valuable for our region with highly mosaic combination of natural, cultivated, anthropogenically transformed and other territories.
How to cite: Kavelenova, L., Prokhorova, N., Rozno, S., Pomogaybin, A., and Yankov, N.: Introduced species in new ecosystems: concerning possible distortions of local biogeochemical cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4827, https://doi.org/10.5194/egusphere-egu2020-4827, 2020.
EGU2020-5029 | Displays | BG3.6
On the traits of the nitrogen cycle in natural and anthropogenically disturbed ecosystems of the Sokol'i Mountains (Samara Region, Russia)Nataly Prokhorova, Yulia Makarova, and Lyudmila Kavelenova
The Sokol'i Mountains are a small continuation of the Zhiguli mountains on the Volga River left bank. We studied the quantitative characteristics of the mineral nitrogen forms content and the Azotobacter activity levels in soils along the ecological profile that crosses the Sokol'i Mountains massif from south to north from Samara city.
The plots in the profile were represented different types of plant communities: in the Samara city suburb adjacent to the Sokol'i Mountains - a part of the birch planting; on the southern, northern slopes and the watershed – the broad-leaved forest with a predominance of Tilia cordata Mill., Acer platanoides L. and Quercus robur L. with a small participation of Betula pendula Roth.; on the terraces and the bottom of the carbonate quarry at the northern slope of the mountains - sparse forests dominated by small-leaved species (Populus nigra L., P. tremula L.), and Pinus sylvestris L. with the addition of Salix sp.; near the quarry - rocky steppes and steppe meadows.
The main nitrogen suppliers to the geochemical cycle in the study area are the organic residues (leaf litter in the forest, steppe felt in steppes) and the fixation of atmosphere nitrogen. Nitrogen-containing compounds from atmospheric precipitation due to transport emissions and other sorts of air pollutions can also make a certain contribution into nitrogen cycle.
The broad-leaved species prevail in the natural forests of the Sokol'i Mountains, and small-leaved species and pine dominate in the secondary forest stands, which are formed during the self-growth of the former quarry. It is known that the litter of broad-leaved species is much richer in nitrogen than the litter of small-leaved and coniferous species. The undisturbed soils of the forest trial plots in the Sokol'i Mountains contain significantly more mineral forms of nitrogen (nitrites, nitrates, ammonium) than in the fine-grained soil fractions of the former quarry with their low fertility, as well as in the soils of stony steppes and steppe meadows.
The content of mineral forms of nitrogen directly correlates with the content of humus (correlation coefficient from 0.77 to 0.92), which is significantly higher in soils under natural broad-leaved forests. A high and reliable positive correlation was found for all analyzed forms of nitrogen among themselves (correlation coefficient from 0.64 to 1.0), which proves the natural pattern of nitrogen cycle in the study area.
A regular increase of the Azotobacter activity level in the humus-poor soils of the quarry and grassy ecosystems has been established. This activity was characterized by a negative correlative relationship with the content of humus and all mineral forms of nitrogen (correlation coefficient from 0.4 to 0.71).
The Azotobacter activity increases as soil alkalization rised, which is especially pronounced in the quarry.
In general, the nitrogen cycle occurring in the Sokol'i Mountains ecosystems demonstrates association with the type of plant organic matter, nitrogen fixation levels, with the influence of the anthropogenic activity ( past open-cast mining of raw materials and the self-growing of secondary forests in the former quarry).
How to cite: Prokhorova, N., Makarova, Y., and Kavelenova, L.: On the traits of the nitrogen cycle in natural and anthropogenically disturbed ecosystems of the Sokol'i Mountains (Samara Region, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5029, https://doi.org/10.5194/egusphere-egu2020-5029, 2020.
The Sokol'i Mountains are a small continuation of the Zhiguli mountains on the Volga River left bank. We studied the quantitative characteristics of the mineral nitrogen forms content and the Azotobacter activity levels in soils along the ecological profile that crosses the Sokol'i Mountains massif from south to north from Samara city.
The plots in the profile were represented different types of plant communities: in the Samara city suburb adjacent to the Sokol'i Mountains - a part of the birch planting; on the southern, northern slopes and the watershed – the broad-leaved forest with a predominance of Tilia cordata Mill., Acer platanoides L. and Quercus robur L. with a small participation of Betula pendula Roth.; on the terraces and the bottom of the carbonate quarry at the northern slope of the mountains - sparse forests dominated by small-leaved species (Populus nigra L., P. tremula L.), and Pinus sylvestris L. with the addition of Salix sp.; near the quarry - rocky steppes and steppe meadows.
The main nitrogen suppliers to the geochemical cycle in the study area are the organic residues (leaf litter in the forest, steppe felt in steppes) and the fixation of atmosphere nitrogen. Nitrogen-containing compounds from atmospheric precipitation due to transport emissions and other sorts of air pollutions can also make a certain contribution into nitrogen cycle.
The broad-leaved species prevail in the natural forests of the Sokol'i Mountains, and small-leaved species and pine dominate in the secondary forest stands, which are formed during the self-growth of the former quarry. It is known that the litter of broad-leaved species is much richer in nitrogen than the litter of small-leaved and coniferous species. The undisturbed soils of the forest trial plots in the Sokol'i Mountains contain significantly more mineral forms of nitrogen (nitrites, nitrates, ammonium) than in the fine-grained soil fractions of the former quarry with their low fertility, as well as in the soils of stony steppes and steppe meadows.
The content of mineral forms of nitrogen directly correlates with the content of humus (correlation coefficient from 0.77 to 0.92), which is significantly higher in soils under natural broad-leaved forests. A high and reliable positive correlation was found for all analyzed forms of nitrogen among themselves (correlation coefficient from 0.64 to 1.0), which proves the natural pattern of nitrogen cycle in the study area.
A regular increase of the Azotobacter activity level in the humus-poor soils of the quarry and grassy ecosystems has been established. This activity was characterized by a negative correlative relationship with the content of humus and all mineral forms of nitrogen (correlation coefficient from 0.4 to 0.71).
The Azotobacter activity increases as soil alkalization rised, which is especially pronounced in the quarry.
In general, the nitrogen cycle occurring in the Sokol'i Mountains ecosystems demonstrates association with the type of plant organic matter, nitrogen fixation levels, with the influence of the anthropogenic activity ( past open-cast mining of raw materials and the self-growing of secondary forests in the former quarry).
How to cite: Prokhorova, N., Makarova, Y., and Kavelenova, L.: On the traits of the nitrogen cycle in natural and anthropogenically disturbed ecosystems of the Sokol'i Mountains (Samara Region, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5029, https://doi.org/10.5194/egusphere-egu2020-5029, 2020.
EGU2020-5810 | Displays | BG3.6
Microelement mobile forms in southern taiga landscapes of the Central Forest State Biosphere Nature Reserve (Russia)Polina Enchilik, Elena Aseeva, Ivan Semenkov, Olga Samonova, Anastasia Iovcheva, Elena Terskaya, and Nikolay Kasimov
We investigated the vertical and spatial distribution of chemical elements (ChEs) in four cross-sections within a catena formed in typical southern taiga on Retiosols , underlying loess loams and carbonate moraine deposits. Catena located in the Tver' region (Russia). In plants (70 samples, 19 species) and soils (31 samples), the total content of the ChEs was determined by mass spectrometry. In soil samples, we measured pH, grain size and levels of ChE mobile fractions (exchangeable (F1), bound to organic complexes (F2) and bound to Fe and Mn hydroxides (F3).
In the A-horizons the average total concentration of Fe is 1,2%, Ti – 0,33%; Mn – 482 mg‧kg-1, Zr–292, Sr–90, Zn–39, Cr–21, Pb–21, Ni–9, Cu–8. The concentration of metal F1 diminishes in order: Fe>Mn>Sr>Zn, Pb>Ti, Cr, Ni, Cu, Co, Zr. The concentrations of F2 and F3 show the following order: Fe>Mn>>Ti, Zr, Pb>Co>Ni, Cu, Zn>Cr, Sr and Fe>Mn>Ti>Zn, Sr, Pb>Cr>Cu, Ni, Co>Zr, respectively.
In all studied Retisols, vertical distribution of the total Pb and Zr, F1 of Co, Fe, Mn, Pb and Zn, F2 of Cu, Fe, Pb and Zn, F3 of Pb accumulate in topsoil. For the total Co, Fe, Ni, Sr and Zn, F1 of Co, Cr, Cu, Mn, Pb, Zn and Zr, F2 of Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr and F3 of Co, Cr, Cu, Ti, Zn, Zr the loss from the albic horizons and/or the accumulation in the argic horizons were registered.
Spatial distribution of the total concentration of ChEs increases in the A-horizon in the upper part of the catena slope position. In the A-horizons at footslope and toeslope positions, the concentration of F1 Ni, Cu, Sr and Zr, F2 Ni, Cu and Zn increases, and the concentration F2 of Co, Cr, Pb, Ti and Zn, F2 of Cr, Ti and Co, F3 of Mn, Ni, Zn, Pb, Zr decreases.
Ratios calculated on the basis of the total and mobile element content were applied to evaluate biogenic migration of ChEs with different biophilicity in the "plant-soil" system. According to soil-to-plant transfer ratios, Mn, Zn and Cd are actively involved in biological accumulation. Participation in biological accumulation of Mn and Zn was noted in many works (Avessalomova, 2007; Isachenkova, Tarzayeva, 2006, Kadata-Pendias, Szteke, 2015)
Mn and Zn have important physiological significance in plants; they actively migrate in plant tissues. Cd is not a necessary ChEs for plants but is easily absorbed by the root system and leaves (Kabata-Pendias, 2011). Cationic elements (Cd and Zn) have high mobility in the soils (Jen-How Huang, 2011). Our results indicate that in the reference forest communities, tree species play the major role in the uptake and turnover of biophilic microelements (Mn, Zn, Co) while sphagnum moss and grassy covers mostly absorb the elements with low biophilicity (Fe, Ti, Cr, Zr, Pb). Metabolic pathways carry out the absorption of Fe and Cr (Kabata-Pendias, 2011).
How to cite: Enchilik, P., Aseeva, E., Semenkov, I., Samonova, O., Iovcheva, A., Terskaya, E., and Kasimov, N.: Microelement mobile forms in southern taiga landscapes of the Central Forest State Biosphere Nature Reserve (Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5810, https://doi.org/10.5194/egusphere-egu2020-5810, 2020.
We investigated the vertical and spatial distribution of chemical elements (ChEs) in four cross-sections within a catena formed in typical southern taiga on Retiosols , underlying loess loams and carbonate moraine deposits. Catena located in the Tver' region (Russia). In plants (70 samples, 19 species) and soils (31 samples), the total content of the ChEs was determined by mass spectrometry. In soil samples, we measured pH, grain size and levels of ChE mobile fractions (exchangeable (F1), bound to organic complexes (F2) and bound to Fe and Mn hydroxides (F3).
In the A-horizons the average total concentration of Fe is 1,2%, Ti – 0,33%; Mn – 482 mg‧kg-1, Zr–292, Sr–90, Zn–39, Cr–21, Pb–21, Ni–9, Cu–8. The concentration of metal F1 diminishes in order: Fe>Mn>Sr>Zn, Pb>Ti, Cr, Ni, Cu, Co, Zr. The concentrations of F2 and F3 show the following order: Fe>Mn>>Ti, Zr, Pb>Co>Ni, Cu, Zn>Cr, Sr and Fe>Mn>Ti>Zn, Sr, Pb>Cr>Cu, Ni, Co>Zr, respectively.
In all studied Retisols, vertical distribution of the total Pb and Zr, F1 of Co, Fe, Mn, Pb and Zn, F2 of Cu, Fe, Pb and Zn, F3 of Pb accumulate in topsoil. For the total Co, Fe, Ni, Sr and Zn, F1 of Co, Cr, Cu, Mn, Pb, Zn and Zr, F2 of Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn and Zr and F3 of Co, Cr, Cu, Ti, Zn, Zr the loss from the albic horizons and/or the accumulation in the argic horizons were registered.
Spatial distribution of the total concentration of ChEs increases in the A-horizon in the upper part of the catena slope position. In the A-horizons at footslope and toeslope positions, the concentration of F1 Ni, Cu, Sr and Zr, F2 Ni, Cu and Zn increases, and the concentration F2 of Co, Cr, Pb, Ti and Zn, F2 of Cr, Ti and Co, F3 of Mn, Ni, Zn, Pb, Zr decreases.
Ratios calculated on the basis of the total and mobile element content were applied to evaluate biogenic migration of ChEs with different biophilicity in the "plant-soil" system. According to soil-to-plant transfer ratios, Mn, Zn and Cd are actively involved in biological accumulation. Participation in biological accumulation of Mn and Zn was noted in many works (Avessalomova, 2007; Isachenkova, Tarzayeva, 2006, Kadata-Pendias, Szteke, 2015)
Mn and Zn have important physiological significance in plants; they actively migrate in plant tissues. Cd is not a necessary ChEs for plants but is easily absorbed by the root system and leaves (Kabata-Pendias, 2011). Cationic elements (Cd and Zn) have high mobility in the soils (Jen-How Huang, 2011). Our results indicate that in the reference forest communities, tree species play the major role in the uptake and turnover of biophilic microelements (Mn, Zn, Co) while sphagnum moss and grassy covers mostly absorb the elements with low biophilicity (Fe, Ti, Cr, Zr, Pb). Metabolic pathways carry out the absorption of Fe and Cr (Kabata-Pendias, 2011).
How to cite: Enchilik, P., Aseeva, E., Semenkov, I., Samonova, O., Iovcheva, A., Terskaya, E., and Kasimov, N.: Microelement mobile forms in southern taiga landscapes of the Central Forest State Biosphere Nature Reserve (Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5810, https://doi.org/10.5194/egusphere-egu2020-5810, 2020.
EGU2020-5856 | Displays | BG3.6
The hydraulic conductivity of wounded xylemSara Bonetti, Daniel Breitenstein, Simone Fatichi, Jean-Christophe Domec, and Dani Or
The xylem specific hydraulic conductivity (ks) is a key trait for the description of the plant’s ability to sustain the long-distance water transport required for transpiration. In this work, we systematically analyze xylem flow in several woody plants with contrasting anatomical traits combining flow experiments under different hydraulic pressure gradients. Results show a time and pressure dependence of ks similar to observations made a century ago by Dixon (1914). We mainly attribute the persistent drop in ks, accentuated with higher-pressure gradients, to a wounding response of the xylem tissues. Evidence suggests that wounded xylem tissue releases polysaccharides (prominently pectin) that gradually occlude xylem conduits. The macroscopic definition of K is further affected by complex microscopic xylem dynamics, with a key role of the xylem network topology, interconduit pit membrane flexibility, and redundancy of flow paths. These findings validate the picture of a complex and delicate conductive system whose hydraulic behavior goes beyond that of passive and inert deadwood. Notable implications for xylem conceptualization, measurements protocols, as well as ecosystem modeling applications are discussed.
How to cite: Bonetti, S., Breitenstein, D., Fatichi, S., Domec, J.-C., and Or, D.: The hydraulic conductivity of wounded xylem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5856, https://doi.org/10.5194/egusphere-egu2020-5856, 2020.
The xylem specific hydraulic conductivity (ks) is a key trait for the description of the plant’s ability to sustain the long-distance water transport required for transpiration. In this work, we systematically analyze xylem flow in several woody plants with contrasting anatomical traits combining flow experiments under different hydraulic pressure gradients. Results show a time and pressure dependence of ks similar to observations made a century ago by Dixon (1914). We mainly attribute the persistent drop in ks, accentuated with higher-pressure gradients, to a wounding response of the xylem tissues. Evidence suggests that wounded xylem tissue releases polysaccharides (prominently pectin) that gradually occlude xylem conduits. The macroscopic definition of K is further affected by complex microscopic xylem dynamics, with a key role of the xylem network topology, interconduit pit membrane flexibility, and redundancy of flow paths. These findings validate the picture of a complex and delicate conductive system whose hydraulic behavior goes beyond that of passive and inert deadwood. Notable implications for xylem conceptualization, measurements protocols, as well as ecosystem modeling applications are discussed.
How to cite: Bonetti, S., Breitenstein, D., Fatichi, S., Domec, J.-C., and Or, D.: The hydraulic conductivity of wounded xylem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5856, https://doi.org/10.5194/egusphere-egu2020-5856, 2020.
EGU2020-6133 | Displays | BG3.6
Sapwood proportion and nitrogen content in boreal and temperate tree speciesMartin Thurner, Christian Beer, and Thomas Hickler
The spatial and temporal variation in plant respiration is one of the largest unknowns in the global land carbon budget. While respiration rates are directly related to temperature, plant respiration of trees is also determined by their stem sapwood proportion, tissue nitrogen (N) contents and other factors. The sapwood proportion is related to the biomass fraction of respiring living cells in the tree stem. The respiratory costs that plants have to invest to maintain basic functions (maintenance respiration) are related to the vegetation N content, since maintenance respiration supports protein repair and replacement, and most plant organic N is in proteins.
Here we explore the variation and underlying drivers in these two plant traits (stem sapwood proportion, tissue N contents) and derive novel estimates of their spatial distribution in northern hemisphere boreal and temperate forests. For the first task, we make use of measurements of sapwood and total cross-sectional area in tree stems and of N contents per dry matter in stems, roots and leaves. Such data are collected from plant trait databases like TRY, the biomass and allometry database (BAAD) and extensive literature reviews covering the most common boreal and temperate tree species. For the second task, we apply the derived tree level relationships between these traits and the underlying drivers (species, climate, soil variables) in combination with satellite radar remote sensing based products of compartment (stem, branch, root and leaf) biomass and tree species distribution maps covering the entire northern boreal and temperate forests.
We find that both the proportion of sapwood to total stem biomass and the response of the N content to environmental conditions are fundamentally different among tree genera. For instance, the sapwood proportions are spanning from 20–30% in larch to > 70% in pine and birch forests. These findings highlight the need to consider genera-specific differences when estimating the response of plant respiration to changes in climate and forest management.
How to cite: Thurner, M., Beer, C., and Hickler, T.: Sapwood proportion and nitrogen content in boreal and temperate tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6133, https://doi.org/10.5194/egusphere-egu2020-6133, 2020.
The spatial and temporal variation in plant respiration is one of the largest unknowns in the global land carbon budget. While respiration rates are directly related to temperature, plant respiration of trees is also determined by their stem sapwood proportion, tissue nitrogen (N) contents and other factors. The sapwood proportion is related to the biomass fraction of respiring living cells in the tree stem. The respiratory costs that plants have to invest to maintain basic functions (maintenance respiration) are related to the vegetation N content, since maintenance respiration supports protein repair and replacement, and most plant organic N is in proteins.
Here we explore the variation and underlying drivers in these two plant traits (stem sapwood proportion, tissue N contents) and derive novel estimates of their spatial distribution in northern hemisphere boreal and temperate forests. For the first task, we make use of measurements of sapwood and total cross-sectional area in tree stems and of N contents per dry matter in stems, roots and leaves. Such data are collected from plant trait databases like TRY, the biomass and allometry database (BAAD) and extensive literature reviews covering the most common boreal and temperate tree species. For the second task, we apply the derived tree level relationships between these traits and the underlying drivers (species, climate, soil variables) in combination with satellite radar remote sensing based products of compartment (stem, branch, root and leaf) biomass and tree species distribution maps covering the entire northern boreal and temperate forests.
We find that both the proportion of sapwood to total stem biomass and the response of the N content to environmental conditions are fundamentally different among tree genera. For instance, the sapwood proportions are spanning from 20–30% in larch to > 70% in pine and birch forests. These findings highlight the need to consider genera-specific differences when estimating the response of plant respiration to changes in climate and forest management.
How to cite: Thurner, M., Beer, C., and Hickler, T.: Sapwood proportion and nitrogen content in boreal and temperate tree species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6133, https://doi.org/10.5194/egusphere-egu2020-6133, 2020.
EGU2020-6703 | Displays | BG3.6
A synthesis-analysis of winter oilseed rape (Brassica napus L.) yield response to planting density under intensive cropping systemRihuan Cong, Zhi Zhang, and Jianwei Lu
Background: Optimal yield is dependent on the collocations between plant population and individual growth. High plant populations for direct sown winter oilseed rape would be a prevailing way to achieve high yield under intensive cropping systems.
Results: We investigated the oilseed rape yield response to planting density while considering the productivity environment, nitrogen (N) fertilizer, and sowing date. A synthesis-analysis was conducted by collecting the density-yield data in the field experiments of oilseed rape from 2000 to 2016 in China. The population yield response to different planting density levels could be described by a quadratic model, with threshold value of 45-60 plant m-2, and excessive density may cause yield loss as the weak individual growth. High planting density has no remarkable influence on the attainable population yield due to the decreasing individual potential yield. The population yield increment capacity by the increasing planting density was higher in medium yield environment (i.e., average yield at 1500-2500 kg ha-1). The planting density presented remarkably effect on population yield after the N limitation was relieved. Increasing planting density at 104 plants per hectare was equivalent to apply 1.17 kg N fertilizer on population yield, ranging from 0.42 kg to 4.76 kg under different yield environment levels. Yield loss caused by unsuitable sowing date (especially for the late sowing) could be compensated by increasing planting density.
Conclusion: Planting density played a crucial role in cooperating the other management practices. Optimizing the allocation of plant population and individual growth, establishing target plant phenotype under high planting density would help to achieve high population yield.
How to cite: Cong, R., Zhang, Z., and Lu, J.: A synthesis-analysis of winter oilseed rape (Brassica napus L.) yield response to planting density under intensive cropping system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6703, https://doi.org/10.5194/egusphere-egu2020-6703, 2020.
Background: Optimal yield is dependent on the collocations between plant population and individual growth. High plant populations for direct sown winter oilseed rape would be a prevailing way to achieve high yield under intensive cropping systems.
Results: We investigated the oilseed rape yield response to planting density while considering the productivity environment, nitrogen (N) fertilizer, and sowing date. A synthesis-analysis was conducted by collecting the density-yield data in the field experiments of oilseed rape from 2000 to 2016 in China. The population yield response to different planting density levels could be described by a quadratic model, with threshold value of 45-60 plant m-2, and excessive density may cause yield loss as the weak individual growth. High planting density has no remarkable influence on the attainable population yield due to the decreasing individual potential yield. The population yield increment capacity by the increasing planting density was higher in medium yield environment (i.e., average yield at 1500-2500 kg ha-1). The planting density presented remarkably effect on population yield after the N limitation was relieved. Increasing planting density at 104 plants per hectare was equivalent to apply 1.17 kg N fertilizer on population yield, ranging from 0.42 kg to 4.76 kg under different yield environment levels. Yield loss caused by unsuitable sowing date (especially for the late sowing) could be compensated by increasing planting density.
Conclusion: Planting density played a crucial role in cooperating the other management practices. Optimizing the allocation of plant population and individual growth, establishing target plant phenotype under high planting density would help to achieve high population yield.
How to cite: Cong, R., Zhang, Z., and Lu, J.: A synthesis-analysis of winter oilseed rape (Brassica napus L.) yield response to planting density under intensive cropping system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6703, https://doi.org/10.5194/egusphere-egu2020-6703, 2020.
EGU2020-7079 | Displays | BG3.6
Multiple drivers of seasonal and interannual variation in Pmax: Implications for leaf photosynthesis of Artemisia ordosicaYun Tian, Tianshan Zha, and Xin Jia
Revealing the seasonal and interannual variations in leaf-level photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and shrub ecosystem. Artemisia ordosica is a dominant shrub species in semi-arid area of northwest China. Photosynthetic gas exchange, leaf nitrogen content(LN), specific leaf area (SLA) and some environmental factors were measured simultaneously on clear days (rotated every 10 days) of the growing season from 2011 to 2018, to quantify the temporal variations and environmental controls of photosynthetic parameters. Our results demonstrated that mean value of light-response curve parameters, the maximum photosynthetic capacity (Pmax), appear quality efficiency (AQE), respiration in dark (Rd), light saturated point (LSP) and light compensated point (LCP) had a gradual decline with the growth (spring> summer>autumn). Structural equation modeling (SEM) was used to elucidate the direct and indirect effects of biophysical factors on Pmax. The driven factors of Pmax in growing season changed, but stomatal conductance (gs) was the dominant factor in all stages. The gs was influenced by SLA and LN,and the soil water content at a depth of 10cm (SWC10) affected the Pmax in spring. In summer, Pmax was significantly positively related with gs and transpiration rate (Tr), and gs was influenced by SLA, LN and soil water content at a depth of 30cm (SWC30). In autumn, Pmax was significantly positively correlated with gs, while was significantly negatively correlated with air temperature (Ta). This simulation based on situ ecophysiological research suggest that Pmax of A. ordosica responded to the environment factors of seasonal and interannual variations, which is not the inherent genetic characteristics. Soil water content is the major environmental factor influencing Pmax in spring and summer, while Ta is the major one in autumn. Knowledge of how environmental change will affect the photosynthesis of A. ordosica in the future is essential for their protection, adaptation strategies and carbon fixation prediction in shrub ecosystems.
How to cite: Tian, Y., Zha, T., and Jia, X.: Multiple drivers of seasonal and interannual variation in Pmax: Implications for leaf photosynthesis of Artemisia ordosica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7079, https://doi.org/10.5194/egusphere-egu2020-7079, 2020.
Revealing the seasonal and interannual variations in leaf-level photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and shrub ecosystem. Artemisia ordosica is a dominant shrub species in semi-arid area of northwest China. Photosynthetic gas exchange, leaf nitrogen content(LN), specific leaf area (SLA) and some environmental factors were measured simultaneously on clear days (rotated every 10 days) of the growing season from 2011 to 2018, to quantify the temporal variations and environmental controls of photosynthetic parameters. Our results demonstrated that mean value of light-response curve parameters, the maximum photosynthetic capacity (Pmax), appear quality efficiency (AQE), respiration in dark (Rd), light saturated point (LSP) and light compensated point (LCP) had a gradual decline with the growth (spring> summer>autumn). Structural equation modeling (SEM) was used to elucidate the direct and indirect effects of biophysical factors on Pmax. The driven factors of Pmax in growing season changed, but stomatal conductance (gs) was the dominant factor in all stages. The gs was influenced by SLA and LN,and the soil water content at a depth of 10cm (SWC10) affected the Pmax in spring. In summer, Pmax was significantly positively related with gs and transpiration rate (Tr), and gs was influenced by SLA, LN and soil water content at a depth of 30cm (SWC30). In autumn, Pmax was significantly positively correlated with gs, while was significantly negatively correlated with air temperature (Ta). This simulation based on situ ecophysiological research suggest that Pmax of A. ordosica responded to the environment factors of seasonal and interannual variations, which is not the inherent genetic characteristics. Soil water content is the major environmental factor influencing Pmax in spring and summer, while Ta is the major one in autumn. Knowledge of how environmental change will affect the photosynthesis of A. ordosica in the future is essential for their protection, adaptation strategies and carbon fixation prediction in shrub ecosystems.
How to cite: Tian, Y., Zha, T., and Jia, X.: Multiple drivers of seasonal and interannual variation in Pmax: Implications for leaf photosynthesis of Artemisia ordosica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7079, https://doi.org/10.5194/egusphere-egu2020-7079, 2020.
EGU2020-8113 | Displays | BG3.6
Assessing responses to climate stressors in two contrasting pine speciesDaniel Nadal-Sala, Benjamin Birami, Romy Rehschuh, Marielle Gattmann, Ruediger Grote, Jose Grünzweig, Yakir Preisler, Yann Salmon, Fedor Tatarinov, Dan Yakir, and Nadine Ruehr
EGU2020-8259 | Displays | BG3.6
Causality in the diversity-abundance relationship across the main World’s forest biomes: insights for nature-based mitigation solutionsJaime Madrigal-Gonzalez and the World's natural forests
Increasing evidence now exists for a tight connection between tree diversity and carbon storage capacity. As part of the Paris Agreement (COP21), forests play a critical and prominent role to reach the ambitious goal of net-zero emissions in the second half of this century. Besides reducing emissions from deforestation and forest degradation (also known as REDD), maintaining and enriching tree assemblages could thus help mitigating climate change via increased abundance and more efficient resource use.
However, recent evidence questions this widespread idea of positive diversity effects on forest carbon storage. Specifically, tree diversity may not always be a causal mechanism but rather a consequence of tree abundance and productivity (following the ‘more individuals hypothesis’). To test these contrasting hypotheses, this contribution analyses the most plausible causal pathways and their stability along global climatic gradients in the diversity-abundance relationship across the World’s main forest biomes, using a dataset comprising more than 2,500 forest plots and 83,800 trees sampled in pristine forest landscapes in all continents (except Antarctica).
We demonstrate that causal relations can be reconciled along global climate gradients, with diversity effects prevailing in the most productive environments, and abundance effects becoming dominant towards the most limiting conditions. These findings have major implications on climate change mitigation strategies aimed at carbon sequestration: we find that future nature-based mitigation solutions focused on fostering biodiversity will only be cost-effective in productive forest landscapes. In less productive environments, by contrast, mitigation measures should promote the abundance of locally adapted functional strategies. Conservation of species diversity in equatorial and tropical areas is thus a priority, not only to preserve the inherent value of biodiversity but also to achieve the global goals on atmospheric decarbonization. In less productive lands on Earth, the conservation of abundance through productivity should be posed, next to diversity, as a major element in environmental policies and land management.
How to cite: Madrigal-Gonzalez, J. and the World's natural forests: Causality in the diversity-abundance relationship across the main World’s forest biomes: insights for nature-based mitigation solutions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8259, https://doi.org/10.5194/egusphere-egu2020-8259, 2020.
Increasing evidence now exists for a tight connection between tree diversity and carbon storage capacity. As part of the Paris Agreement (COP21), forests play a critical and prominent role to reach the ambitious goal of net-zero emissions in the second half of this century. Besides reducing emissions from deforestation and forest degradation (also known as REDD), maintaining and enriching tree assemblages could thus help mitigating climate change via increased abundance and more efficient resource use.
However, recent evidence questions this widespread idea of positive diversity effects on forest carbon storage. Specifically, tree diversity may not always be a causal mechanism but rather a consequence of tree abundance and productivity (following the ‘more individuals hypothesis’). To test these contrasting hypotheses, this contribution analyses the most plausible causal pathways and their stability along global climatic gradients in the diversity-abundance relationship across the World’s main forest biomes, using a dataset comprising more than 2,500 forest plots and 83,800 trees sampled in pristine forest landscapes in all continents (except Antarctica).
We demonstrate that causal relations can be reconciled along global climate gradients, with diversity effects prevailing in the most productive environments, and abundance effects becoming dominant towards the most limiting conditions. These findings have major implications on climate change mitigation strategies aimed at carbon sequestration: we find that future nature-based mitigation solutions focused on fostering biodiversity will only be cost-effective in productive forest landscapes. In less productive environments, by contrast, mitigation measures should promote the abundance of locally adapted functional strategies. Conservation of species diversity in equatorial and tropical areas is thus a priority, not only to preserve the inherent value of biodiversity but also to achieve the global goals on atmospheric decarbonization. In less productive lands on Earth, the conservation of abundance through productivity should be posed, next to diversity, as a major element in environmental policies and land management.
How to cite: Madrigal-Gonzalez, J. and the World's natural forests: Causality in the diversity-abundance relationship across the main World’s forest biomes: insights for nature-based mitigation solutions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8259, https://doi.org/10.5194/egusphere-egu2020-8259, 2020.
EGU2020-8838 | Displays | BG3.6
The impacts of CO2 enrichment on the plant resources utilization efficiency of Schima superba seedlings in subtropical ChinaJixin Cao, Hong Pan, Zhan Chen, and He Shang
The resources (light, nitrogen and water) utilization efficiency of plant is a key indicator reflecting the adaptive ability of plant to environment. CO2 enrichment would increase photosynthesis substrate supply and nutrient absorption in plants,and may also change the utilization efficiencies of light (LUE), nitrogen (NUE) and water (WUE) and their trade-offs relationship. However, the knowledge regarding how the LUE, NUE and WUE of woody plant change in the context of CO2 enrichment is still weak. In order to understand the impacts of CO2 enrichment on the LUE, NUE and WUE of Schima superba and their trade-offs, one-year-old container seedlings of S. superba were grown with ambient air (AA treatment), 550 ppm of CO2 concentration (E1-CO2 treatment), 750 ppm of CO2 concentration ( E2-CO2 treatment) and 1000ppm of CO2 concentration (E3-CO2 treatment) using open top chambers. In the growing season, we regularly examined the net photosynthetic rate, stomatal conductance, transpiration rate, nitrogen concentration and photosynthetic pigment concentration of S. superba leaves. In addition, the different organ biomass, leaf area, soil nitrate and ammonium nitrogen concentrations were also simultaneously examined. The results demonstrate that three CO2 enrichment treatments significantly increased the LUE and NUE of S. superba leaves at the end of June, while the leaf nitrogen concentration and soil nitrate nitrogen significantly decreased under both the E2-CO2 and E3-CO2 treatments compared with those under the AA treatment. In contrast, only the E1-CO2 treatment significantly increased the LUE and NUE of S. superba leaves at the end of August. The NUE of S. superba leaves under both the E2-CO2 and E3-CO2 treatments were significantly higher than that under the AA treatment at the end of October. With regard to the WUE of S. superba leaves, there were no significant differences between the four treatments. At the end of October, the total biomass of S. superba under the E1-CO2 treatment was significantly higher than that under both the AA and E3-CO2 treatments, while the total biomass of S. superba under the AA treatment was not significantly different from that under both the E2-CO2 and E3-CO2treatments. During the experiment, the LUE, NUE, stomatal conductance, and transpiration rate of S. superba leaves were significantly and positively related to each other. The LUE also had a significantly positive correlation with specific leaf weight. Furthermore, the NUE was significantly and positively correlated with the total biomass and the ratio of underground and aboveground biomass. Meanwhile, the NUE was significantly and negatively correlated with the chlorophyll a concentration, chlorophyll b concentration, carotenoid concentration, leaf nitrogen concentration, soil ammonia nitrogen and nitrate nitrogen concentration. The WUE was significantly and negatively related to the stomatal conductance, transpiration rate and total biomass. CO2 enrichment may enhance both the LUE and NUE of S. superba seedlings, whereas the impacts of CO2 enrichment on the LUE and NUE of S. superba seedlings varied with time. S. superba seedlings would appear photosynthesis acclimation with the persistently high CO2 enrichment.
How to cite: Cao, J., Pan, H., Chen, Z., and Shang, H.: The impacts of CO2 enrichment on the plant resources utilization efficiency of Schima superba seedlings in subtropical China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8838, https://doi.org/10.5194/egusphere-egu2020-8838, 2020.
The resources (light, nitrogen and water) utilization efficiency of plant is a key indicator reflecting the adaptive ability of plant to environment. CO2 enrichment would increase photosynthesis substrate supply and nutrient absorption in plants,and may also change the utilization efficiencies of light (LUE), nitrogen (NUE) and water (WUE) and their trade-offs relationship. However, the knowledge regarding how the LUE, NUE and WUE of woody plant change in the context of CO2 enrichment is still weak. In order to understand the impacts of CO2 enrichment on the LUE, NUE and WUE of Schima superba and their trade-offs, one-year-old container seedlings of S. superba were grown with ambient air (AA treatment), 550 ppm of CO2 concentration (E1-CO2 treatment), 750 ppm of CO2 concentration ( E2-CO2 treatment) and 1000ppm of CO2 concentration (E3-CO2 treatment) using open top chambers. In the growing season, we regularly examined the net photosynthetic rate, stomatal conductance, transpiration rate, nitrogen concentration and photosynthetic pigment concentration of S. superba leaves. In addition, the different organ biomass, leaf area, soil nitrate and ammonium nitrogen concentrations were also simultaneously examined. The results demonstrate that three CO2 enrichment treatments significantly increased the LUE and NUE of S. superba leaves at the end of June, while the leaf nitrogen concentration and soil nitrate nitrogen significantly decreased under both the E2-CO2 and E3-CO2 treatments compared with those under the AA treatment. In contrast, only the E1-CO2 treatment significantly increased the LUE and NUE of S. superba leaves at the end of August. The NUE of S. superba leaves under both the E2-CO2 and E3-CO2 treatments were significantly higher than that under the AA treatment at the end of October. With regard to the WUE of S. superba leaves, there were no significant differences between the four treatments. At the end of October, the total biomass of S. superba under the E1-CO2 treatment was significantly higher than that under both the AA and E3-CO2 treatments, while the total biomass of S. superba under the AA treatment was not significantly different from that under both the E2-CO2 and E3-CO2treatments. During the experiment, the LUE, NUE, stomatal conductance, and transpiration rate of S. superba leaves were significantly and positively related to each other. The LUE also had a significantly positive correlation with specific leaf weight. Furthermore, the NUE was significantly and positively correlated with the total biomass and the ratio of underground and aboveground biomass. Meanwhile, the NUE was significantly and negatively correlated with the chlorophyll a concentration, chlorophyll b concentration, carotenoid concentration, leaf nitrogen concentration, soil ammonia nitrogen and nitrate nitrogen concentration. The WUE was significantly and negatively related to the stomatal conductance, transpiration rate and total biomass. CO2 enrichment may enhance both the LUE and NUE of S. superba seedlings, whereas the impacts of CO2 enrichment on the LUE and NUE of S. superba seedlings varied with time. S. superba seedlings would appear photosynthesis acclimation with the persistently high CO2 enrichment.
How to cite: Cao, J., Pan, H., Chen, Z., and Shang, H.: The impacts of CO2 enrichment on the plant resources utilization efficiency of Schima superba seedlings in subtropical China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8838, https://doi.org/10.5194/egusphere-egu2020-8838, 2020.
EGU2020-9609 | Displays | BG3.6
Global evaluation of the nutrient enabled version of land surface model ORCHIDEE-CNP (v1.2)Yan Sun, Daniel S Goll, Jinfeng Chang, Philippe Ciais, Betrand Guenet, Julian Helfenstein, YuanYuan Huang, Ronny Lauerwald, Fabienne Maignan, Victoria Naipal, Yilong Wang, Hui Yang, and Haicheng Zhang
Future land carbon (C) uptake under climate changes and rising atmospheric CO2 is influenced by nitrogen (N) and phosphorus (P) constraints. A few existing land surface models (LSMs) account for both N and P dynamics, but lack comprehensive evaluation. This will lead to large uncertainty in estimating the P effect on terrestrial C cycles. With the increasing number of measurements and data-driven products for N- and P- related variables, comprehensive model evaluations on large scale is becoming feasible.
In this study, we evaluated the performance of ORCHIDEE-CNP (v1.2) which explicitly simulates N and P cycles in plant and soil, in four aspects: 1) terrestrial C fluxes, 2) N and P fluxes and budget, 3) leaf and soil stoichiometry and 4) resource use efficiencies. We found that ORCHIDEE-CNP improves the simulation of the magnitude of gross primary productivity (GPP) due to more realistic strength of the CO2 fertilization effect of GPP than the without-nutrient-version ORCHIDEE. However, ORCHIDEE-CNP cannot capture the positive and increasing C sink in North Hemisphere over past decades, which is mainly due to that a large fraction of N and P ‘locked’ in soil organic matter cannot be re-allocated into vegetation and leads to a strong N and P limitation on plant growth. ORCHIDEE-CNP generally simulates comparable global total N and P fluxes (e.g. N biofixation, P weathering, N and P uptake etc.) for both natural and agricultural biomes. Overall, ORCHIDEE-CNP doesn’t performance worse in C fluxes than ORCHIDEE, and gives reasonable N and P cycles, which is acceptable in simulating the coupling relationships between C, N and P cycles can be used to explore the nutrient limitations on land C sink from present to the future.
How to cite: Sun, Y., S Goll, D., Chang, J., Ciais, P., Guenet, B., Helfenstein, J., Huang, Y., Lauerwald, R., Maignan, F., Naipal, V., Wang, Y., Yang, H., and Zhang, H.: Global evaluation of the nutrient enabled version of land surface model ORCHIDEE-CNP (v1.2) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9609, https://doi.org/10.5194/egusphere-egu2020-9609, 2020.
Future land carbon (C) uptake under climate changes and rising atmospheric CO2 is influenced by nitrogen (N) and phosphorus (P) constraints. A few existing land surface models (LSMs) account for both N and P dynamics, but lack comprehensive evaluation. This will lead to large uncertainty in estimating the P effect on terrestrial C cycles. With the increasing number of measurements and data-driven products for N- and P- related variables, comprehensive model evaluations on large scale is becoming feasible.
In this study, we evaluated the performance of ORCHIDEE-CNP (v1.2) which explicitly simulates N and P cycles in plant and soil, in four aspects: 1) terrestrial C fluxes, 2) N and P fluxes and budget, 3) leaf and soil stoichiometry and 4) resource use efficiencies. We found that ORCHIDEE-CNP improves the simulation of the magnitude of gross primary productivity (GPP) due to more realistic strength of the CO2 fertilization effect of GPP than the without-nutrient-version ORCHIDEE. However, ORCHIDEE-CNP cannot capture the positive and increasing C sink in North Hemisphere over past decades, which is mainly due to that a large fraction of N and P ‘locked’ in soil organic matter cannot be re-allocated into vegetation and leads to a strong N and P limitation on plant growth. ORCHIDEE-CNP generally simulates comparable global total N and P fluxes (e.g. N biofixation, P weathering, N and P uptake etc.) for both natural and agricultural biomes. Overall, ORCHIDEE-CNP doesn’t performance worse in C fluxes than ORCHIDEE, and gives reasonable N and P cycles, which is acceptable in simulating the coupling relationships between C, N and P cycles can be used to explore the nutrient limitations on land C sink from present to the future.
How to cite: Sun, Y., S Goll, D., Chang, J., Ciais, P., Guenet, B., Helfenstein, J., Huang, Y., Lauerwald, R., Maignan, F., Naipal, V., Wang, Y., Yang, H., and Zhang, H.: Global evaluation of the nutrient enabled version of land surface model ORCHIDEE-CNP (v1.2) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9609, https://doi.org/10.5194/egusphere-egu2020-9609, 2020.
EGU2020-12373 | Displays | BG3.6
Shrub traits of forest and shrubland reveal different growth strategiesJian Ni, Jiayu Cao, and Quan Yuan
Shrub plants play important roles in both forest and shrubland ecosystems. Analyzing the differences of functional traits of shrubs grown in understory of forest communities and in various shrublands can explore the adaptation strategies of shrubs in different habitats. Nine functional traits of leaf and twig collected from 20 dominant shrub species in 24 plots distributed in three habitats: forest shrub layer, secondary shrubland and primary shrubland, in Beishan Mountain of Jinhua, Zhejiang Province, eastern China, were measured. The overall differences, inter- and intra-specific variations and the differences in various life forms of shrub traits in three different habitats were statistically analyzed. Results show that: 1) There are differences of nine plant traits for shrubs grown in three different habitats. The understory shrubs have larger leaf area (LA) and specific leaf area (SLA), smaller leaf dry matter content (LDMC), leaf tissue density (LTD) and twig tissue density (TTD), while shrubs in secondary shrubland have larger leaf thickness (LT) and LTD, smaller SLA and twig dry matter content (TDMC) compared with shrubs from the primary shrubland. 2) The intraspecific variation coefficients of SLA, twig diameter (TD), TTD, and TDMC in understory shrubs are the largest, while the interspecific variation coefficients of SLA, LDMC, TDMC, and TTD in secondary shrubland are the smallest. 3) Among different life forms, the understory evergreen shrubs have significant higher LT, LTD, and LDMC than deciduous shrubs, while deciduous shrubs have significant higher SLA than evergreen shrubs. The differences of LT and SLA between evergreen and deciduous shrubs of primary shrubland are the same as those of understory shrubs, but the differences of LTD and LDMC between evergreen and deciduous shrubs have the opposite trend. 4) The main source affecting shrub traits is species, along with an explanation ratio from 38.01% to 78.92%. The second source is habitat. In short, compared to shrubs from shrublands, understory shrubs in forest communities form a series of trait combinations that are larger LA and SLA, smaller LTD, TTD, and LDMC to adapt to the understory environment with less light and stronger competition. Secondary shrubland, compared to the primary shrubland, has a series of shrub trait combinations that are larger LT, LTD and TD, smaller LA, SLA, TDMC and twig bark thickness (TBT) to store more nutrients.
How to cite: Ni, J., Cao, J., and Yuan, Q.: Shrub traits of forest and shrubland reveal different growth strategies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12373, https://doi.org/10.5194/egusphere-egu2020-12373, 2020.
Shrub plants play important roles in both forest and shrubland ecosystems. Analyzing the differences of functional traits of shrubs grown in understory of forest communities and in various shrublands can explore the adaptation strategies of shrubs in different habitats. Nine functional traits of leaf and twig collected from 20 dominant shrub species in 24 plots distributed in three habitats: forest shrub layer, secondary shrubland and primary shrubland, in Beishan Mountain of Jinhua, Zhejiang Province, eastern China, were measured. The overall differences, inter- and intra-specific variations and the differences in various life forms of shrub traits in three different habitats were statistically analyzed. Results show that: 1) There are differences of nine plant traits for shrubs grown in three different habitats. The understory shrubs have larger leaf area (LA) and specific leaf area (SLA), smaller leaf dry matter content (LDMC), leaf tissue density (LTD) and twig tissue density (TTD), while shrubs in secondary shrubland have larger leaf thickness (LT) and LTD, smaller SLA and twig dry matter content (TDMC) compared with shrubs from the primary shrubland. 2) The intraspecific variation coefficients of SLA, twig diameter (TD), TTD, and TDMC in understory shrubs are the largest, while the interspecific variation coefficients of SLA, LDMC, TDMC, and TTD in secondary shrubland are the smallest. 3) Among different life forms, the understory evergreen shrubs have significant higher LT, LTD, and LDMC than deciduous shrubs, while deciduous shrubs have significant higher SLA than evergreen shrubs. The differences of LT and SLA between evergreen and deciduous shrubs of primary shrubland are the same as those of understory shrubs, but the differences of LTD and LDMC between evergreen and deciduous shrubs have the opposite trend. 4) The main source affecting shrub traits is species, along with an explanation ratio from 38.01% to 78.92%. The second source is habitat. In short, compared to shrubs from shrublands, understory shrubs in forest communities form a series of trait combinations that are larger LA and SLA, smaller LTD, TTD, and LDMC to adapt to the understory environment with less light and stronger competition. Secondary shrubland, compared to the primary shrubland, has a series of shrub trait combinations that are larger LT, LTD and TD, smaller LA, SLA, TDMC and twig bark thickness (TBT) to store more nutrients.
How to cite: Ni, J., Cao, J., and Yuan, Q.: Shrub traits of forest and shrubland reveal different growth strategies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12373, https://doi.org/10.5194/egusphere-egu2020-12373, 2020.
EGU2020-12887 | Displays | BG3.6
Genetic and environmental controls of tree water and nitrogen use efficiency of 5-year-old mango plantation in relation to mango fruit yield and size as well as soil fertility in tropical AustraliaWeiling Sun, Zhihong Xu, Paula Ibell, and Ian Bally
Purpose: This study was aimed to quantify the effect of different variety, planting density, training system and canopy position on tree water and nitrogen use efficiencies in relation to mango fruit yield and size as well as soil fertility in a 5-year-old mango plantation of tropical Australia.
Material and Methods: Soil (0-10 cm) and mango foliar samples were collected from a 5-year-old, factorial field experiment testing the effects of two mango varieties (Calypso vs Keitt), two planting densities (medium vs high), two training systems (single leader vs conventional) and two sampling canopy positions (north vs south) on foliar total carbon (TC, %), total nitrogen concentration (TN, %), and stable carbon (C) and nitrogen (N) isotope compositions (δ13C and δ15N) as well as the corresponding total C, total N and δ13C and δ15N in the surface soil of tropical Australia. In addition, mango fruit yields and sizes were determined. Soil and foliar total C and N as well as δ13C and δ15N were determined on mass spectrometers at Griffith University. Each of the above treatment was replicated 6 times for foliar samples and 3 times for soil samples.
Results: There were significant genetic effect on foliar total N concentration (TN, %), tree water use efficiency (WUE) as reflected by foliar δ13C, N use efficiency (NUE) as indicated by foliar TN and δ15N, mango fruit yield and sizes in the 5-year-old mango plantation of tropical Australia. Overall, mango variety of Keitt had higher tree WUE and NUE as well as higher mango yield and greater fruit size, compared with those of mango variety of Calypso. There were also significant environmental influences on mango tree WUE and NUE as well as mango yield and fruit size. In particular, high planting density had higher tree NUE, and lower WUE as well as higher N loss, compared with those of medium planting density. High planting density treatment also had higher soil total N, compared with that of medium planting density treatment. The convention training system also had higher tree NUE and WUE, compared with the single leader training system. The northern side of tree canopy (sunny side) had lower fruit number, compared with the southern side (shady side) of tree canopy.
Conclusion: There were significant genetic and environmental influences on tree WUE and NUE as well as mango fruit yield and sizes in the 5-year-old mango plantation, highlighting the significant and exciting opportunities to improve mango tree WUE and NUE as well as fruit yield and soil fertility with both genetic selection and site management regimes.
How to cite: Sun, W., Xu, Z., Ibell, P., and Bally, I.: Genetic and environmental controls of tree water and nitrogen use efficiency of 5-year-old mango plantation in relation to mango fruit yield and size as well as soil fertility in tropical Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12887, https://doi.org/10.5194/egusphere-egu2020-12887, 2020.
Purpose: This study was aimed to quantify the effect of different variety, planting density, training system and canopy position on tree water and nitrogen use efficiencies in relation to mango fruit yield and size as well as soil fertility in a 5-year-old mango plantation of tropical Australia.
Material and Methods: Soil (0-10 cm) and mango foliar samples were collected from a 5-year-old, factorial field experiment testing the effects of two mango varieties (Calypso vs Keitt), two planting densities (medium vs high), two training systems (single leader vs conventional) and two sampling canopy positions (north vs south) on foliar total carbon (TC, %), total nitrogen concentration (TN, %), and stable carbon (C) and nitrogen (N) isotope compositions (δ13C and δ15N) as well as the corresponding total C, total N and δ13C and δ15N in the surface soil of tropical Australia. In addition, mango fruit yields and sizes were determined. Soil and foliar total C and N as well as δ13C and δ15N were determined on mass spectrometers at Griffith University. Each of the above treatment was replicated 6 times for foliar samples and 3 times for soil samples.
Results: There were significant genetic effect on foliar total N concentration (TN, %), tree water use efficiency (WUE) as reflected by foliar δ13C, N use efficiency (NUE) as indicated by foliar TN and δ15N, mango fruit yield and sizes in the 5-year-old mango plantation of tropical Australia. Overall, mango variety of Keitt had higher tree WUE and NUE as well as higher mango yield and greater fruit size, compared with those of mango variety of Calypso. There were also significant environmental influences on mango tree WUE and NUE as well as mango yield and fruit size. In particular, high planting density had higher tree NUE, and lower WUE as well as higher N loss, compared with those of medium planting density. High planting density treatment also had higher soil total N, compared with that of medium planting density treatment. The convention training system also had higher tree NUE and WUE, compared with the single leader training system. The northern side of tree canopy (sunny side) had lower fruit number, compared with the southern side (shady side) of tree canopy.
Conclusion: There were significant genetic and environmental influences on tree WUE and NUE as well as mango fruit yield and sizes in the 5-year-old mango plantation, highlighting the significant and exciting opportunities to improve mango tree WUE and NUE as well as fruit yield and soil fertility with both genetic selection and site management regimes.
How to cite: Sun, W., Xu, Z., Ibell, P., and Bally, I.: Genetic and environmental controls of tree water and nitrogen use efficiency of 5-year-old mango plantation in relation to mango fruit yield and size as well as soil fertility in tropical Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12887, https://doi.org/10.5194/egusphere-egu2020-12887, 2020.
EGU2020-12891 | Displays | BG3.6
Flower Power: flower-strips host bees & sequester carbon in soilsVanessa Vetter, Hermann Jungkunst, Klaus Schützenmeister, and Constanze Buhk
Flower-strips are increasingly recognized as mandatory elements in agricultural landscapes for pollinators to survive. In this study, we raised the hypothesis that flower-strip traits additionally affect biogeochemical cycling towards climate change mitigation. Therefore, we investigated soil carbon and nutrients stocks in paired comparison to adjacent land use and looked at water retention.
Two study farms of 50 ha in southern Germany were sampled once in spring, summer and autumn. The examined flower-strips of both farms were sown in 2011 and are in use since then. Pairwise sampling reduces the influence of the expected high variation in soil parameters. For each pair we sampled 3 depths: topsoil (0-5 cm), plow horizon (20-25 cm) and subsoil (30-35 cm). Different parameters of soil carbon, nitrogen, nutrients and water will be presented with a focus on clay bonded carbon.
Preliminary results indicate that flower-strips significantly increased nitrogen availability, soil carbon stocks and accordingly showed a trend to improve the water storage capacity in the plow horizon. We did not observe a statistically significant effect on nutrient availability.
Provided that these results will be confirmed, flower-strips traits could go beyond the important trait of giving pollinators a home in vast agricultural landscapes. By slightly increasing the amount of flower-strips in these landscapes, a significant increase in carbon sequestration and water retention will be achievable adding to the 4 per mille goal of the UN.
How to cite: Vetter, V., Jungkunst, H., Schützenmeister, K., and Buhk, C.: Flower Power: flower-strips host bees & sequester carbon in soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12891, https://doi.org/10.5194/egusphere-egu2020-12891, 2020.
Flower-strips are increasingly recognized as mandatory elements in agricultural landscapes for pollinators to survive. In this study, we raised the hypothesis that flower-strip traits additionally affect biogeochemical cycling towards climate change mitigation. Therefore, we investigated soil carbon and nutrients stocks in paired comparison to adjacent land use and looked at water retention.
Two study farms of 50 ha in southern Germany were sampled once in spring, summer and autumn. The examined flower-strips of both farms were sown in 2011 and are in use since then. Pairwise sampling reduces the influence of the expected high variation in soil parameters. For each pair we sampled 3 depths: topsoil (0-5 cm), plow horizon (20-25 cm) and subsoil (30-35 cm). Different parameters of soil carbon, nitrogen, nutrients and water will be presented with a focus on clay bonded carbon.
Preliminary results indicate that flower-strips significantly increased nitrogen availability, soil carbon stocks and accordingly showed a trend to improve the water storage capacity in the plow horizon. We did not observe a statistically significant effect on nutrient availability.
Provided that these results will be confirmed, flower-strips traits could go beyond the important trait of giving pollinators a home in vast agricultural landscapes. By slightly increasing the amount of flower-strips in these landscapes, a significant increase in carbon sequestration and water retention will be achievable adding to the 4 per mille goal of the UN.
How to cite: Vetter, V., Jungkunst, H., Schützenmeister, K., and Buhk, C.: Flower Power: flower-strips host bees & sequester carbon in soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12891, https://doi.org/10.5194/egusphere-egu2020-12891, 2020.
EGU2020-13303 | Displays | BG3.6
Identifying canopy-scale adjustments to the extreme climate in a semi-arid pine forest using eddy covariance and close-range sensing dataHuanhuan Wang, Anatoly Gitelson, Michael Sprintsin, Eyal Rotenberg, and Dan Yakir
Semi-arid forests represent some of the most sensitive ecosystems to climate change. Identifying adjustments to extreme conditions can indicate their resilience, and that of forests undergoing increasing aridity trends. We used eddy covariance and close-range sensing measurements over four years in a semi-arid pine forest to identify canopy-scale adjustments to the short active season and long seasonal drought. Peaks in light use efficiency (LUE), leaf chlorophyll content (LCC), and increasing absorbed photosynthetic active radiation (APAR; based on canopy absorption coefficient in the green range), all converged to support an early peak (March) in gross primary productivity (GPP), exploiting the narrow optimum between PARin, temperature and the rapidly decreasing soil moisture in spring. In contrast, during the long dry period (>200 days), while PARin increased, LCC and LUE decreased, offering physiological photoprotection as GPP sharply declined under the stressful conditions. The strong negative correlation between ρNIR and PARin indicated canopy biophysical adjustments that enhance light absorption under low radiation and eliminate photodamage under excessive radiation. The results provide clear indications of canopy-scale adjustments underlying the high productivity of the forest and its resistance to the harsh conditions, which may soon apply to forests in currently milder climatic regions.
How to cite: Wang, H., Gitelson, A., Sprintsin, M., Rotenberg, E., and Yakir, D.: Identifying canopy-scale adjustments to the extreme climate in a semi-arid pine forest using eddy covariance and close-range sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13303, https://doi.org/10.5194/egusphere-egu2020-13303, 2020.
Semi-arid forests represent some of the most sensitive ecosystems to climate change. Identifying adjustments to extreme conditions can indicate their resilience, and that of forests undergoing increasing aridity trends. We used eddy covariance and close-range sensing measurements over four years in a semi-arid pine forest to identify canopy-scale adjustments to the short active season and long seasonal drought. Peaks in light use efficiency (LUE), leaf chlorophyll content (LCC), and increasing absorbed photosynthetic active radiation (APAR; based on canopy absorption coefficient in the green range), all converged to support an early peak (March) in gross primary productivity (GPP), exploiting the narrow optimum between PARin, temperature and the rapidly decreasing soil moisture in spring. In contrast, during the long dry period (>200 days), while PARin increased, LCC and LUE decreased, offering physiological photoprotection as GPP sharply declined under the stressful conditions. The strong negative correlation between ρNIR and PARin indicated canopy biophysical adjustments that enhance light absorption under low radiation and eliminate photodamage under excessive radiation. The results provide clear indications of canopy-scale adjustments underlying the high productivity of the forest and its resistance to the harsh conditions, which may soon apply to forests in currently milder climatic regions.
How to cite: Wang, H., Gitelson, A., Sprintsin, M., Rotenberg, E., and Yakir, D.: Identifying canopy-scale adjustments to the extreme climate in a semi-arid pine forest using eddy covariance and close-range sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13303, https://doi.org/10.5194/egusphere-egu2020-13303, 2020.
EGU2020-18535 | Displays | BG3.6
Drivers, climate sensitivity, and management of functional diversity in northeastern North AmericaDominik Thom, Anthony Taylor, Rupert Seidl, Wilfried Thuiller, Jiejie Wang, Marie Robideau, and William Keeton
The functional diversity (FD) represented by plant traits is fundamentally linked to the ecosystem’s capacity to respond to changes in the environment. Thus, there is an ongoing debate about including FD considerations in management plans to safeguard forests and their services to the society under climate change. However, incomplete scientific knowledge and difficulties to understand the concept of FD hinder the implementation of FD-based management approaches. Our study fills these knowledge gaps by (i) mapping the current distribution, (ii) analyzing the drivers, and (iii) testing the sensitivity of FD to projected increases in temperature and precipitation in northeastern North America. Following the stress-dominance hypothesis, we expected the strongest effect on FD from environmental filtering (i.e., climatic conditions) within our study region.
We combined a literature and database review of 44 traits for 43 tree species with terrestrial inventory data of 48,426 plots spanning an environmental gradient from northern boreal to temperate biomes. Employing multiple non-parametric models, we evaluated the impacts of 25 covariates on FD. Subsequently, we conducted a climate sensitivity analysis. The effect of rarity and commonness were tested for all outcomes using Hill numbers with different abundance weightings.
We identified FD hotspots in temperate forests and the boreal-temperate ecotone east and northeast of the Great Lakes. Forest stand structure explained most of the variation in FD. Elevated temperature increased FD in boreal, but lowered FD in temperate forests. Different species abundance weightings affected trait diversity distributions and drivers only marginally.
As environmental filtering was of secondary importance behind forest structure in explaining the trait diversity distribution of tree species in northeastern North America, our study provides only partial support for the stress-dominance hypothesis. Forest management can increase FD by promoting structural complexity. In addition, mixing species from functionally different groups identified in this study can enhance the response diversity of forests to an uncertain future.
How to cite: Thom, D., Taylor, A., Seidl, R., Thuiller, W., Wang, J., Robideau, M., and Keeton, W.: Drivers, climate sensitivity, and management of functional diversity in northeastern North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18535, https://doi.org/10.5194/egusphere-egu2020-18535, 2020.
The functional diversity (FD) represented by plant traits is fundamentally linked to the ecosystem’s capacity to respond to changes in the environment. Thus, there is an ongoing debate about including FD considerations in management plans to safeguard forests and their services to the society under climate change. However, incomplete scientific knowledge and difficulties to understand the concept of FD hinder the implementation of FD-based management approaches. Our study fills these knowledge gaps by (i) mapping the current distribution, (ii) analyzing the drivers, and (iii) testing the sensitivity of FD to projected increases in temperature and precipitation in northeastern North America. Following the stress-dominance hypothesis, we expected the strongest effect on FD from environmental filtering (i.e., climatic conditions) within our study region.
We combined a literature and database review of 44 traits for 43 tree species with terrestrial inventory data of 48,426 plots spanning an environmental gradient from northern boreal to temperate biomes. Employing multiple non-parametric models, we evaluated the impacts of 25 covariates on FD. Subsequently, we conducted a climate sensitivity analysis. The effect of rarity and commonness were tested for all outcomes using Hill numbers with different abundance weightings.
We identified FD hotspots in temperate forests and the boreal-temperate ecotone east and northeast of the Great Lakes. Forest stand structure explained most of the variation in FD. Elevated temperature increased FD in boreal, but lowered FD in temperate forests. Different species abundance weightings affected trait diversity distributions and drivers only marginally.
As environmental filtering was of secondary importance behind forest structure in explaining the trait diversity distribution of tree species in northeastern North America, our study provides only partial support for the stress-dominance hypothesis. Forest management can increase FD by promoting structural complexity. In addition, mixing species from functionally different groups identified in this study can enhance the response diversity of forests to an uncertain future.
How to cite: Thom, D., Taylor, A., Seidl, R., Thuiller, W., Wang, J., Robideau, M., and Keeton, W.: Drivers, climate sensitivity, and management of functional diversity in northeastern North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18535, https://doi.org/10.5194/egusphere-egu2020-18535, 2020.
EGU2020-19701 | Displays | BG3.6
Spatial soil respiration measurements under varying environmental conditions in a dry grasslandJános Balogh, Szilvia Fóti, Bernadett Gecse, Marianna Papp, Gabriella Süle, Giulia de Luca, Krisztina Pintér, Levente Kardos, Dávid Mónok, and Zoltán Nagy
Spatial variability of ecosystem processes constitutes significant uncertainty source in greenhouse gas flux measurements and estimations. The major disadvantage of the chamber-based flux measurements is the poor spatial representativeness, but eddy-covariance measurements also have an uncertainty due to the unequal and not constant footprint area. One way to overcome these difficulties is the spatial sampling improving the field-scale data coverage.
The aim of this study was to describe the spatial variability of grassland soil CO2 efflux under varying environmental conditions. For this reason, we conducted spatial measurements on a range of variables including soil respiration, above-ground biomass, greenness index of the vegetation, soil water content and soil temperature during a seven-year study in a dry grassland site in Hungary. Altitude and soil organic carbon (SOC) content of the measuring positions were also used as background factors. Measurements were repeated 19 times at 78 positions during the study, in the main phenological stages of the grassland vegetation: spring growth, summer drought, autumn regrowth. The sampling scheme was based on 80×60 m grid of 10 m resolution. SOC content was highly variable among the positions due to the exposure differences and their environmental constrains. We analyzed the effect of the drivers on soil respiration grouping the measuring positions by the SOC content of the soil.
How to cite: Balogh, J., Fóti, S., Gecse, B., Papp, M., Süle, G., de Luca, G., Pintér, K., Kardos, L., Mónok, D., and Nagy, Z.: Spatial soil respiration measurements under varying environmental conditions in a dry grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19701, https://doi.org/10.5194/egusphere-egu2020-19701, 2020.
Spatial variability of ecosystem processes constitutes significant uncertainty source in greenhouse gas flux measurements and estimations. The major disadvantage of the chamber-based flux measurements is the poor spatial representativeness, but eddy-covariance measurements also have an uncertainty due to the unequal and not constant footprint area. One way to overcome these difficulties is the spatial sampling improving the field-scale data coverage.
The aim of this study was to describe the spatial variability of grassland soil CO2 efflux under varying environmental conditions. For this reason, we conducted spatial measurements on a range of variables including soil respiration, above-ground biomass, greenness index of the vegetation, soil water content and soil temperature during a seven-year study in a dry grassland site in Hungary. Altitude and soil organic carbon (SOC) content of the measuring positions were also used as background factors. Measurements were repeated 19 times at 78 positions during the study, in the main phenological stages of the grassland vegetation: spring growth, summer drought, autumn regrowth. The sampling scheme was based on 80×60 m grid of 10 m resolution. SOC content was highly variable among the positions due to the exposure differences and their environmental constrains. We analyzed the effect of the drivers on soil respiration grouping the measuring positions by the SOC content of the soil.
How to cite: Balogh, J., Fóti, S., Gecse, B., Papp, M., Süle, G., de Luca, G., Pintér, K., Kardos, L., Mónok, D., and Nagy, Z.: Spatial soil respiration measurements under varying environmental conditions in a dry grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19701, https://doi.org/10.5194/egusphere-egu2020-19701, 2020.
EGU2020-19768 | Displays | BG3.6
Does acclimation of plant traits improve dynamic vegetation modelling of a tree species?Louis François, Alain Hambuckers, Alexandra-Jane Henrot, Franck Trolliet, Jean-Luc Pitance, Rachid Cheddadi, and Marie Dury
Dynamic vegetation modelling is intensively used with plant functional types which limits the range of interest of obtained outputs for other fields of knowledge like conservation science. An alternative approach is to simulate plant species. This however requires additional data, i.e. morphological and physiological traits values characterizing the species and determining their functional properties. However, not only many traits vary among the species belonging to the same plant functional type but also the traits vary broadly according to climate factors.
Since most of the traits are functional, their values may be critical for dynamic vegetation model outputs. We measured several traits (specific leaf area, leaf and sapwood C:N) of Cedrus atlantica in its native range, the Rif and Middle Atlas Mountains of Morocco, as well as in some plantations in western Europe. Trait values exhibit significant variations between the sampled sites. It is possible to predict these trait values using multiple regression with climate factors as explanatory variables. Using regression equations, we produced spatial- and time-varying traits over the study area. We implemented these equations in the CARAIB dynamic vegetation model and tested whether they improve the simulation of C. atlantica in the Rif and Middle Atlas Mountains, by comparing the net primary productivities and biomasses computed with and without trait variation, with those retrieved from measurements on the sampled sites. We then performed simulations of the future using climate projections of the regional climate model RCA4 nested in HadGEM2 general circulation model under the RCP8.5 scenario, in order to test the influence of trait acclimation on the predicted future changes in the range and productivity of the species.
How to cite: François, L., Hambuckers, A., Henrot, A.-J., Trolliet, F., Pitance, J.-L., Cheddadi, R., and Dury, M.: Does acclimation of plant traits improve dynamic vegetation modelling of a tree species?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19768, https://doi.org/10.5194/egusphere-egu2020-19768, 2020.
Dynamic vegetation modelling is intensively used with plant functional types which limits the range of interest of obtained outputs for other fields of knowledge like conservation science. An alternative approach is to simulate plant species. This however requires additional data, i.e. morphological and physiological traits values characterizing the species and determining their functional properties. However, not only many traits vary among the species belonging to the same plant functional type but also the traits vary broadly according to climate factors.
Since most of the traits are functional, their values may be critical for dynamic vegetation model outputs. We measured several traits (specific leaf area, leaf and sapwood C:N) of Cedrus atlantica in its native range, the Rif and Middle Atlas Mountains of Morocco, as well as in some plantations in western Europe. Trait values exhibit significant variations between the sampled sites. It is possible to predict these trait values using multiple regression with climate factors as explanatory variables. Using regression equations, we produced spatial- and time-varying traits over the study area. We implemented these equations in the CARAIB dynamic vegetation model and tested whether they improve the simulation of C. atlantica in the Rif and Middle Atlas Mountains, by comparing the net primary productivities and biomasses computed with and without trait variation, with those retrieved from measurements on the sampled sites. We then performed simulations of the future using climate projections of the regional climate model RCA4 nested in HadGEM2 general circulation model under the RCP8.5 scenario, in order to test the influence of trait acclimation on the predicted future changes in the range and productivity of the species.
How to cite: François, L., Hambuckers, A., Henrot, A.-J., Trolliet, F., Pitance, J.-L., Cheddadi, R., and Dury, M.: Does acclimation of plant traits improve dynamic vegetation modelling of a tree species?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19768, https://doi.org/10.5194/egusphere-egu2020-19768, 2020.
EGU2020-19834 | Displays | BG3.6
Nitrogen and phosphorus resorption efficiencies change under drought and shrub encroachment in a Mediterranean ecosystemRaquel Lobo-do-Vale, José Rodrigues, Joana Martins, Simon Haberstroh, Ana Alves, Christiane Werner, and Maria Conceição Caldeira
Mediterranean ecosystems, such as the savannah-type cork oak (Quercus suber) woodlands, are hotspots for climate change, as the highest impacts are forecasted for the Mediterranean region, mainly by more frequent and intense severe droughts. These ecosystems are also threatened by shrub encroachment, which might further decrease tree water availability and affect ecosystem functioning and resilience. Nevertheless, the combined effects of drought and shrub encroachment on ecosystems have seldom been investigated. A precipitation manipulation and shrub removal experiment was established in a cork oak woodland located in SE Portugal and invaded by the native shrub gum rockrose (Cistus ladanifer). Here we present and discuss the combined effects of drought and shrub encroachment on litterfall production of cork oak trees, an evergreen species, over two contrasting years, a wet year (2018) and a dry year (2019) and assess the nitrogen and phosphorus resorption efficiencies from senescent to green leaves.
A previous study reported significant increases in cork oak’s nitrogen resorption efficiency in response to drought. Our preliminary results also indicate changes in nitrogen and phosphorus resorption efficiencies. An increase in nutrient resorption efficiency is likely to mitigate the limitation in nutrient uptake by the roots during drought, improving tree fitness in the short-term. However, it will probably exert a negative feedback on the nitrogen and phosphorus cycles in the long-term which might affect the ecosystem functioning under the forecasted droughts.
How to cite: Lobo-do-Vale, R., Rodrigues, J., Martins, J., Haberstroh, S., Alves, A., Werner, C., and Caldeira, M. C.: Nitrogen and phosphorus resorption efficiencies change under drought and shrub encroachment in a Mediterranean ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19834, https://doi.org/10.5194/egusphere-egu2020-19834, 2020.
Mediterranean ecosystems, such as the savannah-type cork oak (Quercus suber) woodlands, are hotspots for climate change, as the highest impacts are forecasted for the Mediterranean region, mainly by more frequent and intense severe droughts. These ecosystems are also threatened by shrub encroachment, which might further decrease tree water availability and affect ecosystem functioning and resilience. Nevertheless, the combined effects of drought and shrub encroachment on ecosystems have seldom been investigated. A precipitation manipulation and shrub removal experiment was established in a cork oak woodland located in SE Portugal and invaded by the native shrub gum rockrose (Cistus ladanifer). Here we present and discuss the combined effects of drought and shrub encroachment on litterfall production of cork oak trees, an evergreen species, over two contrasting years, a wet year (2018) and a dry year (2019) and assess the nitrogen and phosphorus resorption efficiencies from senescent to green leaves.
A previous study reported significant increases in cork oak’s nitrogen resorption efficiency in response to drought. Our preliminary results also indicate changes in nitrogen and phosphorus resorption efficiencies. An increase in nutrient resorption efficiency is likely to mitigate the limitation in nutrient uptake by the roots during drought, improving tree fitness in the short-term. However, it will probably exert a negative feedback on the nitrogen and phosphorus cycles in the long-term which might affect the ecosystem functioning under the forecasted droughts.
How to cite: Lobo-do-Vale, R., Rodrigues, J., Martins, J., Haberstroh, S., Alves, A., Werner, C., and Caldeira, M. C.: Nitrogen and phosphorus resorption efficiencies change under drought and shrub encroachment in a Mediterranean ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19834, https://doi.org/10.5194/egusphere-egu2020-19834, 2020.
EGU2020-20191 | Displays | BG3.6
The TRY Plant Trait Database - enhanced coverage and open accessJens Kattge, Gerhard Boenisch, Sandra Diaz, Sandra Lavorel, Colin Prentice, Paul Leadley, Christian Wirth, and the TRY Consortium
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants – determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystems properties and derived benefits and detriments to people. Plant trait data thus represent the essential basis for a vast area of research spanning evolutionary biology, community and functional ecology, biodiversity conservation, ecosystem and landscape management and restoration, biogeography to earth system modeling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community. Increasingly the TRY database also supports new frontiers of trait-based research, including identi:cation of data gaps and subsequent mobilization or measurement of new data. To support this development, in this article we take stock of trait data compiled in TRY and analyze emerging patterns of data coverage, representativeness, and gaps. Best species coverage is achieved for categorical traits (stable within species) relevant to determine plant functional types commonly used in global vegetation models. For the trait ‘plant growth form’ complete species coverage is within reach. However, most traits relevant for ecology and vegetation modeling are characterized by intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment: completeness at global scale is impossible and representativeness challenging. Due to the sheer amount of data in the TRY database, machine learning for trait prediction is promising - but does not add new data. We therefore conclude that reducing data gaps and biases by further and more systematic mobilization of trait data and new in-situ trait measurements must continue to be a high priority. This can only be achieved by a community effort in collaboration with other initiatives.
How to cite: Kattge, J., Boenisch, G., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Wirth, C., and Consortium, T. T.: The TRY Plant Trait Database - enhanced coverage and open access , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20191, https://doi.org/10.5194/egusphere-egu2020-20191, 2020.
Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants – determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystems properties and derived benefits and detriments to people. Plant trait data thus represent the essential basis for a vast area of research spanning evolutionary biology, community and functional ecology, biodiversity conservation, ecosystem and landscape management and restoration, biogeography to earth system modeling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community. Increasingly the TRY database also supports new frontiers of trait-based research, including identi:cation of data gaps and subsequent mobilization or measurement of new data. To support this development, in this article we take stock of trait data compiled in TRY and analyze emerging patterns of data coverage, representativeness, and gaps. Best species coverage is achieved for categorical traits (stable within species) relevant to determine plant functional types commonly used in global vegetation models. For the trait ‘plant growth form’ complete species coverage is within reach. However, most traits relevant for ecology and vegetation modeling are characterized by intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment: completeness at global scale is impossible and representativeness challenging. Due to the sheer amount of data in the TRY database, machine learning for trait prediction is promising - but does not add new data. We therefore conclude that reducing data gaps and biases by further and more systematic mobilization of trait data and new in-situ trait measurements must continue to be a high priority. This can only be achieved by a community effort in collaboration with other initiatives.
How to cite: Kattge, J., Boenisch, G., Diaz, S., Lavorel, S., Prentice, C., Leadley, P., Wirth, C., and Consortium, T. T.: The TRY Plant Trait Database - enhanced coverage and open access , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20191, https://doi.org/10.5194/egusphere-egu2020-20191, 2020.
EGU2020-20933 | Displays | BG3.6
Nutrient addition in a Mediterranean grassland decreases species diversity, increases productivity but does not affect stabilityMaria Caldeira and Carla Nogueira
Increased nutrient inputs and climate change are affecting ecosystems worldwide. However, there is a dearth of knowledge on how the interacting effects of multiple nutrient inputs and climatic variability may affect ecosystem functioning including grassland species and functional diversity, productivity or resilience to disturbances. This is particularly important in the Mediterranean Basin, a hotspot of climate change, where the frequency of autumn and spring droughts is projected to increase.
We conducted a 6-year nutrient addition experiment in an annual grassland site, in Portugal, that is part of a globally distributed experiment called the Nutrient Network (http://www.nutnet.org/). We added high rates of nitrogen, phosphorus and potassium to 5 × 5 m plots, following a full factorial combination in a complete randomized three block design. We established three treatments of one, two and three added nutrients and maintained control plots without addition of nutrients. We examined how a decrease in nutrient limitation and inter-annual climatic variability affected grassland productivity and diversity. We determined the community functional structure (e.g., Community Weighted Mean) and functional diversity (e.g., Function Dispersion) of key morphological and physiological leaf traits associated with the leaf economics spectrum, resource acquisition and water use strategies.
Our 6-year study period was characterized by contrasting climatological years, including two dry years (2017 and 2019). We found that grassland productivity was co-limited by multiple nutrients and that species richness decreased with nutrient enrichment. Dry years reduced productivity and species richness and were a critical factor reducing functional diversity of most of the studied traits. Species with competitive characteristics dominated nutrient enriched communities and were related to ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Contrary to expectations species richness was not related to stability.
This study shows that mechanisms underlying ecological functioning of Mediterranean grasslands depend on interactions of multiple nutrient addition and precipitation variability. Understanding these mechanisms is crucial to anticipate potential effects of global changes on Mediterranean grasslands.
How to cite: Caldeira, M. and Nogueira, C.: Nutrient addition in a Mediterranean grassland decreases species diversity, increases productivity but does not affect stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20933, https://doi.org/10.5194/egusphere-egu2020-20933, 2020.
Increased nutrient inputs and climate change are affecting ecosystems worldwide. However, there is a dearth of knowledge on how the interacting effects of multiple nutrient inputs and climatic variability may affect ecosystem functioning including grassland species and functional diversity, productivity or resilience to disturbances. This is particularly important in the Mediterranean Basin, a hotspot of climate change, where the frequency of autumn and spring droughts is projected to increase.
We conducted a 6-year nutrient addition experiment in an annual grassland site, in Portugal, that is part of a globally distributed experiment called the Nutrient Network (http://www.nutnet.org/). We added high rates of nitrogen, phosphorus and potassium to 5 × 5 m plots, following a full factorial combination in a complete randomized three block design. We established three treatments of one, two and three added nutrients and maintained control plots without addition of nutrients. We examined how a decrease in nutrient limitation and inter-annual climatic variability affected grassland productivity and diversity. We determined the community functional structure (e.g., Community Weighted Mean) and functional diversity (e.g., Function Dispersion) of key morphological and physiological leaf traits associated with the leaf economics spectrum, resource acquisition and water use strategies.
Our 6-year study period was characterized by contrasting climatological years, including two dry years (2017 and 2019). We found that grassland productivity was co-limited by multiple nutrients and that species richness decreased with nutrient enrichment. Dry years reduced productivity and species richness and were a critical factor reducing functional diversity of most of the studied traits. Species with competitive characteristics dominated nutrient enriched communities and were related to ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Contrary to expectations species richness was not related to stability.
This study shows that mechanisms underlying ecological functioning of Mediterranean grasslands depend on interactions of multiple nutrient addition and precipitation variability. Understanding these mechanisms is crucial to anticipate potential effects of global changes on Mediterranean grasslands.
How to cite: Caldeira, M. and Nogueira, C.: Nutrient addition in a Mediterranean grassland decreases species diversity, increases productivity but does not affect stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20933, https://doi.org/10.5194/egusphere-egu2020-20933, 2020.
EGU2020-21796 | Displays | BG3.6
Soil organic carbon stability in European mountain meadowsPablo Raguet, Pierre Barré, François Baudin, Norine Khedim, Jérôme Poulenard, Amélie Saillard, Philippe Choler, and Lauric Cécillon
Soil organic carbon (SOC) stocks play a significant role in global climate regulation. CO2 fluxes between soils and atmosphere partly depend on soil organic matter (SOM) biogeochemical stability. Cold ecosystems are generally characterized by a high SOC stock, a large part of it being stabilized by environmental conditions (e.g. low pH and temperature). SOC stocks of cold ecosystems are also supposed to be highly vulnerable to climate change that is cancelling the stabilizing effect of low temperature on SOM.
The aim of this study was to investigate the biogeochemical characteristics of SOM in mountain meadows at the European scale. Our goal was also to determine how environmental factors, including climate, elevation and plant functional traits could drive SOM stability and chemistry. To do so, we used the soil sample set of the ODYSSEE project (), collected in 65 sites located in the main European’s mountains range (Alps, Pyrenees, Carpathians, Balkans). Topsoils (0–10 cm) from two plant communities (when both were present) were sampled in acidic meadows: Nardetum strictae and Caricetum curvulae. To assess SOM chemistry and biogeochemical stability, we used several indices based on Rock-Eval® 6 thermal analysis.
The topsoil samples showed a high concentration of organic carbon (114 ± 54 gC/kg of soil), and a weakly decomposed SOM as indicated by a relatively high C:N ratio (15 ± 2.5), hydrogen content (Rock-Eval® hydrogen index = 358 ± 44 mgHC/gC) and a relatively low oxygen content (Rock-Eval® OIRE6 = 151 ± 10 mgO2/gC). The decomposition state of SOM increased with mean air temperature in winter. The size of the thermally labile SOC pool was high for all samples (pyrolysable SOC = 27 to 44% of total SOC), and it strongly increased with elevation. The size of the labile SOC pool (pyrolysable SOC) was also negatively correlated to a plant functional trait: the mean height of the plant community.
The topsoils of European mountains meadows have a high SOC content characterized by a globally high lability that further increases with elevation. The high lability of SOM revealed by Rock-Eval® 6 thermal analysis indicates a generally high vulnerability of SOC to climate change throughout European mountain meadows ecosystems.
The grass adaptative strategy developed under a cold climate induces lower plant height and higher carbon allocation to the root system. Higher carbon input to soil and/or allelopathic mechanisms protecting SOM from decomposition could possibly explain that lower plant communities of European acidic alpine meadows are characterized by a more labile SOM.
How to cite: Raguet, P., Barré, P., Baudin, F., Khedim, N., Poulenard, J., Saillard, A., Choler, P., and Cécillon, L.: Soil organic carbon stability in European mountain meadows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21796, https://doi.org/10.5194/egusphere-egu2020-21796, 2020.
Soil organic carbon (SOC) stocks play a significant role in global climate regulation. CO2 fluxes between soils and atmosphere partly depend on soil organic matter (SOM) biogeochemical stability. Cold ecosystems are generally characterized by a high SOC stock, a large part of it being stabilized by environmental conditions (e.g. low pH and temperature). SOC stocks of cold ecosystems are also supposed to be highly vulnerable to climate change that is cancelling the stabilizing effect of low temperature on SOM.
The aim of this study was to investigate the biogeochemical characteristics of SOM in mountain meadows at the European scale. Our goal was also to determine how environmental factors, including climate, elevation and plant functional traits could drive SOM stability and chemistry. To do so, we used the soil sample set of the ODYSSEE project (), collected in 65 sites located in the main European’s mountains range (Alps, Pyrenees, Carpathians, Balkans). Topsoils (0–10 cm) from two plant communities (when both were present) were sampled in acidic meadows: Nardetum strictae and Caricetum curvulae. To assess SOM chemistry and biogeochemical stability, we used several indices based on Rock-Eval® 6 thermal analysis.
The topsoil samples showed a high concentration of organic carbon (114 ± 54 gC/kg of soil), and a weakly decomposed SOM as indicated by a relatively high C:N ratio (15 ± 2.5), hydrogen content (Rock-Eval® hydrogen index = 358 ± 44 mgHC/gC) and a relatively low oxygen content (Rock-Eval® OIRE6 = 151 ± 10 mgO2/gC). The decomposition state of SOM increased with mean air temperature in winter. The size of the thermally labile SOC pool was high for all samples (pyrolysable SOC = 27 to 44% of total SOC), and it strongly increased with elevation. The size of the labile SOC pool (pyrolysable SOC) was also negatively correlated to a plant functional trait: the mean height of the plant community.
The topsoils of European mountains meadows have a high SOC content characterized by a globally high lability that further increases with elevation. The high lability of SOM revealed by Rock-Eval® 6 thermal analysis indicates a generally high vulnerability of SOC to climate change throughout European mountain meadows ecosystems.
The grass adaptative strategy developed under a cold climate induces lower plant height and higher carbon allocation to the root system. Higher carbon input to soil and/or allelopathic mechanisms protecting SOM from decomposition could possibly explain that lower plant communities of European acidic alpine meadows are characterized by a more labile SOM.
How to cite: Raguet, P., Barré, P., Baudin, F., Khedim, N., Poulenard, J., Saillard, A., Choler, P., and Cécillon, L.: Soil organic carbon stability in European mountain meadows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21796, https://doi.org/10.5194/egusphere-egu2020-21796, 2020.
EGU2020-15489 | Displays | BG3.6
Seasonal analysis of photosynthetic limitations in mature Scots pine trees reveals that models based on intracellular CO2 concentration grossly underestimate photosynthetic capacityZsofia R. Stangl, Lasse Tarvainen, Mats Räntfors, Göran Wallin, and John D. Marshall
Global models of photosynthesis commonly use photosynthetic capacity parameters (Vcmax, Jmax) that are estimated based on Ci, the intercellular CO2 concentration. The underlying assumption of these models is that mesophyll conductance (gm) is infinite and therefore the CO2 concentration at the site of carboxylation (Cc) is equal to Ci, despite a growing body of literature acknowledging that these assumptions are incorrect. Because relatively few studies on gm have been conducted under natural conditions and with high enough resolution, it is currently unclear how significant the assumption of infinite Cc is for the accuracy of long-term predictions by large-scale photosynthesis models. In this study we investigated this question with data collected in a mature Scots pine stand, one of the dominant species of the boreal region. We conducted high-resolution gas-exchange and online 13C discrimination measurements over a whole growing season (May-October), and analysed the relative contribution of diffusional and biochemical limitations to photosynthesis. We hypothesised that diffusional limitation will be significant in this species, as conifers typically have low stomatal and mesophyll conductance (gs and gm respectively). Accordingly, we found that diffusional limitations were similar or stronger than biochemical limitation during May-July, and that all limitations reached minima around the end of June when Anet values were highest. However, during August-October biochemical limitation became increasingly dominant, as the diffusional limitations were relatively small and stable. Over the whole period, both gm and the relative mesophyll limitation were similar in magnitude to gs and the stomatal limitation, respectively, resulting in a 40-100 ppm reduction in CO2 concentration between Ci and Cc. This meant that Vcmax was under-estimated by 20-40% when calculated from Cicompared to Cc, highlighting the importance of accounting for the finite gm when determining photosynthetic capacity and modelling photosynthesis under natural conditions.
How to cite: Stangl, Z. R., Tarvainen, L., Räntfors, M., Wallin, G., and Marshall, J. D.: Seasonal analysis of photosynthetic limitations in mature Scots pine trees reveals that models based on intracellular CO2 concentration grossly underestimate photosynthetic capacity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15489, https://doi.org/10.5194/egusphere-egu2020-15489, 2020.
Global models of photosynthesis commonly use photosynthetic capacity parameters (Vcmax, Jmax) that are estimated based on Ci, the intercellular CO2 concentration. The underlying assumption of these models is that mesophyll conductance (gm) is infinite and therefore the CO2 concentration at the site of carboxylation (Cc) is equal to Ci, despite a growing body of literature acknowledging that these assumptions are incorrect. Because relatively few studies on gm have been conducted under natural conditions and with high enough resolution, it is currently unclear how significant the assumption of infinite Cc is for the accuracy of long-term predictions by large-scale photosynthesis models. In this study we investigated this question with data collected in a mature Scots pine stand, one of the dominant species of the boreal region. We conducted high-resolution gas-exchange and online 13C discrimination measurements over a whole growing season (May-October), and analysed the relative contribution of diffusional and biochemical limitations to photosynthesis. We hypothesised that diffusional limitation will be significant in this species, as conifers typically have low stomatal and mesophyll conductance (gs and gm respectively). Accordingly, we found that diffusional limitations were similar or stronger than biochemical limitation during May-July, and that all limitations reached minima around the end of June when Anet values were highest. However, during August-October biochemical limitation became increasingly dominant, as the diffusional limitations were relatively small and stable. Over the whole period, both gm and the relative mesophyll limitation were similar in magnitude to gs and the stomatal limitation, respectively, resulting in a 40-100 ppm reduction in CO2 concentration between Ci and Cc. This meant that Vcmax was under-estimated by 20-40% when calculated from Cicompared to Cc, highlighting the importance of accounting for the finite gm when determining photosynthetic capacity and modelling photosynthesis under natural conditions.
How to cite: Stangl, Z. R., Tarvainen, L., Räntfors, M., Wallin, G., and Marshall, J. D.: Seasonal analysis of photosynthetic limitations in mature Scots pine trees reveals that models based on intracellular CO2 concentration grossly underestimate photosynthetic capacity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15489, https://doi.org/10.5194/egusphere-egu2020-15489, 2020.
EGU2020-20687 | Displays | BG3.6
Nutrient availability imbalance modify the relationship between root traits and carbon assimilation at the community levelVictor Rolo, Richard K. F. Nair, Tiana W. Hammer, Mirco Migliavacca, and Gerardo Moreno
Changes in the availability of nitrogen (N) and phosphorus (P) can modify plant species composition, traits, and functional diversity with potential consequences on ecosystem functioning. Previous research on the effect of nutrient imbalances has mostly focused on the response of aboveground traits, while the response of belowground traits and their relationship with carbon fluxes remains relatively underexplored. We measured gross primary production (GPP) using canopy chambers in a Mediterranean tree-grass ecosystem with different levels of N and P availability: i) N addition (N+), ii) N and P addition (NP) and iii) control. In the same locations, we sampled five functional traits (specific leaf area (SLA, cm2 g-1), leaf nitrogen content (g g-1), 13C isotopic composition (δ13C, ‰), specific root length (SRL, cm g-1) and root tissue density (RTD, g cm-3) in one individual for each species. We also measured above- and belowground biomass and plant species composition. For each functional trait, we computed community weighted mean values (CWM) to characterize dominant trait values in the community. We used linear mixed models to assess overall differences among treatments and structural equation models to assess indirect effect of plant traits through GPP on biomass. We fit a multigroup structural equation models to evaluate if relationships between traits and fluxes varied among nutrient availability treatments. Our results showed that species composition and below- and aboveground biomass were similar among treatments. We observed lower SLA CWM and higher RTD CWM values in the N+ treatment as compared to control and the NP treatment. The theoretic causal model fit the data well (R2 = 0.47, P = 0.156), confirming the indirect effect of traits on biomass. 13C isotopic composition was positively related to GPP (P = 0.036), suggesting a positive relationship between water use efficiency and carbon assimilation. There were distinct relationships between root traits and GPP depending on the treatment (P = 0.035 and P = 0.027 for SRL and RTD, respectively). SRL was negatively related to GPP but the magnitude of the relationship varied among treatments, showing a stronger relationship in the N+ (-0.65) and NP (-0.84) treatment than in the control (-0.08). RTD also showed a negative relationship with GPP in the NP treatment (-0.66) and in the control (-0.18), but not in the N+ treatment (0.07) that showed a positive relationship. GPP showed a positive effect of aboveground biomass (0.16, P = 0.044), but no effect on belowground. Overall, our results demonstrate the potential effect of nutrient imbalances on carbon fluxes. Despite being SLA similarly sensitive to nutrient imbalances than root traits, both SRL and RTD showed a significant relationship with GPP, suggesting that root traits could be better indicators of ecosystem functioning.
How to cite: Rolo, V., Nair, R. K. F., Hammer, T. W., Migliavacca, M., and Moreno, G.: Nutrient availability imbalance modify the relationship between root traits and carbon assimilation at the community level, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20687, https://doi.org/10.5194/egusphere-egu2020-20687, 2020.
Changes in the availability of nitrogen (N) and phosphorus (P) can modify plant species composition, traits, and functional diversity with potential consequences on ecosystem functioning. Previous research on the effect of nutrient imbalances has mostly focused on the response of aboveground traits, while the response of belowground traits and their relationship with carbon fluxes remains relatively underexplored. We measured gross primary production (GPP) using canopy chambers in a Mediterranean tree-grass ecosystem with different levels of N and P availability: i) N addition (N+), ii) N and P addition (NP) and iii) control. In the same locations, we sampled five functional traits (specific leaf area (SLA, cm2 g-1), leaf nitrogen content (g g-1), 13C isotopic composition (δ13C, ‰), specific root length (SRL, cm g-1) and root tissue density (RTD, g cm-3) in one individual for each species. We also measured above- and belowground biomass and plant species composition. For each functional trait, we computed community weighted mean values (CWM) to characterize dominant trait values in the community. We used linear mixed models to assess overall differences among treatments and structural equation models to assess indirect effect of plant traits through GPP on biomass. We fit a multigroup structural equation models to evaluate if relationships between traits and fluxes varied among nutrient availability treatments. Our results showed that species composition and below- and aboveground biomass were similar among treatments. We observed lower SLA CWM and higher RTD CWM values in the N+ treatment as compared to control and the NP treatment. The theoretic causal model fit the data well (R2 = 0.47, P = 0.156), confirming the indirect effect of traits on biomass. 13C isotopic composition was positively related to GPP (P = 0.036), suggesting a positive relationship between water use efficiency and carbon assimilation. There were distinct relationships between root traits and GPP depending on the treatment (P = 0.035 and P = 0.027 for SRL and RTD, respectively). SRL was negatively related to GPP but the magnitude of the relationship varied among treatments, showing a stronger relationship in the N+ (-0.65) and NP (-0.84) treatment than in the control (-0.08). RTD also showed a negative relationship with GPP in the NP treatment (-0.66) and in the control (-0.18), but not in the N+ treatment (0.07) that showed a positive relationship. GPP showed a positive effect of aboveground biomass (0.16, P = 0.044), but no effect on belowground. Overall, our results demonstrate the potential effect of nutrient imbalances on carbon fluxes. Despite being SLA similarly sensitive to nutrient imbalances than root traits, both SRL and RTD showed a significant relationship with GPP, suggesting that root traits could be better indicators of ecosystem functioning.
How to cite: Rolo, V., Nair, R. K. F., Hammer, T. W., Migliavacca, M., and Moreno, G.: Nutrient availability imbalance modify the relationship between root traits and carbon assimilation at the community level, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20687, https://doi.org/10.5194/egusphere-egu2020-20687, 2020.
BG3.7 – Complex case studies for ecosystem responses to climate and hydrological extremes
EGU2020-1090 | Displays | BG3.7
The impact of fictitious land use changes on water management related ecosystem services in a Hungarian catchmentBence Decsi and Zsolt Kozma
As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.
Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.
Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.
In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water. The catchment area is 1521 km2, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).
For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.
We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).
We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.
How to cite: Decsi, B. and Kozma, Z.: The impact of fictitious land use changes on water management related ecosystem services in a Hungarian catchment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1090, https://doi.org/10.5194/egusphere-egu2020-1090, 2020.
As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.
Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.
Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.
In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water. The catchment area is 1521 km2, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).
For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.
We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).
We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.
How to cite: Decsi, B. and Kozma, Z.: The impact of fictitious land use changes on water management related ecosystem services in a Hungarian catchment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1090, https://doi.org/10.5194/egusphere-egu2020-1090, 2020.
EGU2020-5430 | Displays | BG3.7
Water supply of an ecologically vulnerable wood pasture area at Kőszeg (Hungary)Előd Szőke, Péter Csáki, Péter Kalicz, Katalin Anita Zagyvai-Kiss, Péter Primusz, and Zoltán Gribovszki
The reconstruction of a wood pasture area and a marsh meadow and thereby achieve a more complex biodiversity are the aims of an ongoing project in Western Hungary (Kőszeg Mountains, Őrség National Park Directorate). Previously, the project area (70 hectares) was used as pasture and as meadow. Later it was abandoned, resulted in an increased spread of shrubs and weeds. Climate change may harm the water balance of the vulnerable wetlands. To ensure and manage the water supply and retention in the project area several interventions are planned. The hydrological investigations started in April 2019. Groundwater levels and surface soil moisture (at the surroundings of the wells) are monitored manually once a week at the four selected points in the area. According to the initial results, the groundwater levels and the surface soil moisture values follow the typical seasonal change. A decrease can be detected during the vegetation period, while an increase started in the dormant season. Since the measurements started before the installation of the water control structures and the grazing, the current results can be interpreted as the results of the control period. Thus, the effects of the water supply and retention will be subsequently analyzed.
The research was supported by the “EFOP-3.6.1-16-2016-00018 – Improving the role of research+development+innovation in the higher education through institutional developments assisting intelligent specialization in Sopron and Szombathely” project.
How to cite: Szőke, E., Csáki, P., Kalicz, P., Zagyvai-Kiss, K. A., Primusz, P., and Gribovszki, Z.: Water supply of an ecologically vulnerable wood pasture area at Kőszeg (Hungary), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5430, https://doi.org/10.5194/egusphere-egu2020-5430, 2020.
The reconstruction of a wood pasture area and a marsh meadow and thereby achieve a more complex biodiversity are the aims of an ongoing project in Western Hungary (Kőszeg Mountains, Őrség National Park Directorate). Previously, the project area (70 hectares) was used as pasture and as meadow. Later it was abandoned, resulted in an increased spread of shrubs and weeds. Climate change may harm the water balance of the vulnerable wetlands. To ensure and manage the water supply and retention in the project area several interventions are planned. The hydrological investigations started in April 2019. Groundwater levels and surface soil moisture (at the surroundings of the wells) are monitored manually once a week at the four selected points in the area. According to the initial results, the groundwater levels and the surface soil moisture values follow the typical seasonal change. A decrease can be detected during the vegetation period, while an increase started in the dormant season. Since the measurements started before the installation of the water control structures and the grazing, the current results can be interpreted as the results of the control period. Thus, the effects of the water supply and retention will be subsequently analyzed.
The research was supported by the “EFOP-3.6.1-16-2016-00018 – Improving the role of research+development+innovation in the higher education through institutional developments assisting intelligent specialization in Sopron and Szombathely” project.
How to cite: Szőke, E., Csáki, P., Kalicz, P., Zagyvai-Kiss, K. A., Primusz, P., and Gribovszki, Z.: Water supply of an ecologically vulnerable wood pasture area at Kőszeg (Hungary), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5430, https://doi.org/10.5194/egusphere-egu2020-5430, 2020.
EGU2020-6861 | Displays | BG3.7
Groundwater dependent forest and wet meadow characteristics in a changing climateCsenge Nevezi, Tamás Bazsó, Péter Csáki, Péter Kalicz, Katalin Anita Zagyvai-Kiss, and Zoltán Gribovszki
Eco-hydrology of hydrophyte forests and wet meadows are very important question in changing climate. Hydrological extremes can cause in these habitats droughts, intense rainfall events and floods. In this study, we investigated a riparian alder forest and its edge, and a neighbouring meadow in Hidegvíz Valley experimental catchment to compare different surface cover type hydrological and botanical characteristics. The research has conducted in 2018-2019 hydrological year.
Throughout the botanical study, a list has been made of the various plant species – trees, bushes, and herbs - of the elder woodland and its edge, and the grassland, in each vegetation period. The classifications of the habitats were made by the Á-NÉR system, which is a Hungarian classification system for Hungarian habitats.
The hydrological research was focused on three important factors in the one-year period: precipitation, the changes of the groundwater levels, and the soil moisture values. We summarised the monthly data, and from all this, we calculated an annual water balance graph. This graph showed us a correlation between hydrological extremes and soil moisture value changes.
The research was supported by the “EFOP-3.6.1-16-2016-00018 – Improving the role of research+development+innovation in the higher education through institutional developments assisting intelligent specialization in Sopron and Szombathely” project.
How to cite: Nevezi, C., Bazsó, T., Csáki, P., Kalicz, P., Zagyvai-Kiss, K. A., and Gribovszki, Z.: Groundwater dependent forest and wet meadow characteristics in a changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6861, https://doi.org/10.5194/egusphere-egu2020-6861, 2020.
Eco-hydrology of hydrophyte forests and wet meadows are very important question in changing climate. Hydrological extremes can cause in these habitats droughts, intense rainfall events and floods. In this study, we investigated a riparian alder forest and its edge, and a neighbouring meadow in Hidegvíz Valley experimental catchment to compare different surface cover type hydrological and botanical characteristics. The research has conducted in 2018-2019 hydrological year.
Throughout the botanical study, a list has been made of the various plant species – trees, bushes, and herbs - of the elder woodland and its edge, and the grassland, in each vegetation period. The classifications of the habitats were made by the Á-NÉR system, which is a Hungarian classification system for Hungarian habitats.
The hydrological research was focused on three important factors in the one-year period: precipitation, the changes of the groundwater levels, and the soil moisture values. We summarised the monthly data, and from all this, we calculated an annual water balance graph. This graph showed us a correlation between hydrological extremes and soil moisture value changes.
The research was supported by the “EFOP-3.6.1-16-2016-00018 – Improving the role of research+development+innovation in the higher education through institutional developments assisting intelligent specialization in Sopron and Szombathely” project.
How to cite: Nevezi, C., Bazsó, T., Csáki, P., Kalicz, P., Zagyvai-Kiss, K. A., and Gribovszki, Z.: Groundwater dependent forest and wet meadow characteristics in a changing climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6861, https://doi.org/10.5194/egusphere-egu2020-6861, 2020.
EGU2020-12933 | Displays | BG3.7
How can climate change modify the carbon stock of forest soils?Adrienn Horváth, Zsolt Bene, Borbála Gálos, and András Bidló
Organic matter, the most complex and heterogeneous component of soil. SOM is a very relevant indicator for soil quality, as it can change the behavior and direction of many properties, soil functions, transformation processes. Less water reduces the amount of biomass produced, resulting in lower production and less plant residue in the soil. Under drier conditions, organic matter decomposes faster due to dominant aerobic processes, thereby reducing soil organic matter content. As the temperature rises, the rate of degradation processes and the intensity of soil respiration increases, which may further increase the reduction of soil carbon stock. Our forests are under high pressure due to climate change, especially in the Carpathian Basin. Therefore, beech and sessile oak are expected to replace with Turkey oak and the afforestation may lead to a change in carbon storage of forests.
To create a database and estimate the changes, we measured the carbon stock of soil in three different regions in Hungary, where the research sites formed on loess bedrock, on 150 and 250 m a.s.l., 650-710 mm precipitation sum with 10-10.4 °C annual temperature.
We took a 1.1 m soil column with soil borer and divided it into 11 samples in each column. Physical (texture, bulk density, water holding capacity) and chemical (pH, CaCO3) soil properties and SOM were determined based on the methods of the Hungarian Standard in the soil laboratory.
During the evaluation, the amount of SOC was the highest in the topsoil layers. In summary, we found a larger amount (104 C t/ha) of SOC in the soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was lower where turkey oak was dominant in sessile oak stands (70 C t/ha on average).
To conclude, the SOC order in case of the stand-forming tree species: sessile oak (/hornbeam) > beech > Turkey oak. We detected that different forest utilization and tree species have an effect on the forest carbon as the litter as well (amount, composition). Our measurements are not representative of the whole stand, but the homogenous loess bedrock demonstrates the impact of different mixture forests on carbon stock. After all, vegetation depends on site conditions (e.g. moisture) and not vice versa. The effects of future climatic changes on soil carbon storage are difficult to predict. In the future, it would be important to expand the use of continuous forest cover farming modes.
How to cite: Horváth, A., Bene, Z., Gálos, B., and Bidló, A.: How can climate change modify the carbon stock of forest soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12933, https://doi.org/10.5194/egusphere-egu2020-12933, 2020.
Organic matter, the most complex and heterogeneous component of soil. SOM is a very relevant indicator for soil quality, as it can change the behavior and direction of many properties, soil functions, transformation processes. Less water reduces the amount of biomass produced, resulting in lower production and less plant residue in the soil. Under drier conditions, organic matter decomposes faster due to dominant aerobic processes, thereby reducing soil organic matter content. As the temperature rises, the rate of degradation processes and the intensity of soil respiration increases, which may further increase the reduction of soil carbon stock. Our forests are under high pressure due to climate change, especially in the Carpathian Basin. Therefore, beech and sessile oak are expected to replace with Turkey oak and the afforestation may lead to a change in carbon storage of forests.
To create a database and estimate the changes, we measured the carbon stock of soil in three different regions in Hungary, where the research sites formed on loess bedrock, on 150 and 250 m a.s.l., 650-710 mm precipitation sum with 10-10.4 °C annual temperature.
We took a 1.1 m soil column with soil borer and divided it into 11 samples in each column. Physical (texture, bulk density, water holding capacity) and chemical (pH, CaCO3) soil properties and SOM were determined based on the methods of the Hungarian Standard in the soil laboratory.
During the evaluation, the amount of SOC was the highest in the topsoil layers. In summary, we found a larger amount (104 C t/ha) of SOC in the soil of stands, where sessile oak were the main stand-forming tree species. The amount of carbon was lower where turkey oak was dominant in sessile oak stands (70 C t/ha on average).
To conclude, the SOC order in case of the stand-forming tree species: sessile oak (/hornbeam) > beech > Turkey oak. We detected that different forest utilization and tree species have an effect on the forest carbon as the litter as well (amount, composition). Our measurements are not representative of the whole stand, but the homogenous loess bedrock demonstrates the impact of different mixture forests on carbon stock. After all, vegetation depends on site conditions (e.g. moisture) and not vice versa. The effects of future climatic changes on soil carbon storage are difficult to predict. In the future, it would be important to expand the use of continuous forest cover farming modes.
How to cite: Horváth, A., Bene, Z., Gálos, B., and Bidló, A.: How can climate change modify the carbon stock of forest soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12933, https://doi.org/10.5194/egusphere-egu2020-12933, 2020.
EGU2020-13692 | Displays | BG3.7
Modelling of impacts of erosion processes on agricultural landscapes due to intensive rainfall eventsSilvia Kohnová and Zuzana Németová
At present, the occurrence of extreme precipitation events is becoming more and more frequent and therefore it is important to quantify their impact on the landscape and soil degradation processes. Until now a wide range of soil erosion models have been developed and many significant studies performed to evaluate soil erosion processes at local and regional level, but there are still many modeling principles that suffer from a range of problems. The general problem in soil erosion modelling lies in the validation and verification of the methodologies used. The validation of erosion models is a very complicated and complex process due to lack of suitable sites, financial demands and due to the high temporal and spatial variability. The paper points to validate the physically and event-based Erosion-3D model predominantly developed to calculate the amounts of soil loss, surface runoff, and depositions resulting from natural and design rainfall events. In the study two different erosion assessment methods were chosen in order to compare diverse evaluation approaches. Both water erosion assessment methods used have certain advantages and disadvantages, but nowadays the use of physically-based models, which are a younger generation of models, are regarded to be a more innovative and effective technique for the evaluation of complex runoff-erosion processes, deposition and transport processes. The significant contribution of physically-based models is seen in their more precise representation of the erosion and deposition processes, a more proper calculation of the erosion, deposition and sediment yields and the application of more complicated characteristics, including fluctuating soil conditions and surface properties in comparison with empirical models. The validation of the models was performed based on the continuous rainfall events for the period selected (2015, 2016 and 2017). The extreme rainfall events occurring during the period were chosen and their serious impact on the agricultural land was modeled. The modelled sediment data were compared with the measured sediment deposition data obtained by a bathymetry survey of the Svacenicky Creek polder. The polder is situated in the middle of the Myjava hill lands in the western part of Slovakia and the bathymetry measurement were conducted using a hydrographical survey using the EcoMapper Autonomous Underwater Vehicle (AUV) device. The results of the study include a comparison between the modelled and measured data and an assessment of the impact of the intensive rainfall events on the investigated territory.
Key words: intensive rainfall events, agricultural land, soil degradation processes, hydrological extremes, physically-based model
How to cite: Kohnová, S. and Németová, Z.: Modelling of impacts of erosion processes on agricultural landscapes due to intensive rainfall events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13692, https://doi.org/10.5194/egusphere-egu2020-13692, 2020.
At present, the occurrence of extreme precipitation events is becoming more and more frequent and therefore it is important to quantify their impact on the landscape and soil degradation processes. Until now a wide range of soil erosion models have been developed and many significant studies performed to evaluate soil erosion processes at local and regional level, but there are still many modeling principles that suffer from a range of problems. The general problem in soil erosion modelling lies in the validation and verification of the methodologies used. The validation of erosion models is a very complicated and complex process due to lack of suitable sites, financial demands and due to the high temporal and spatial variability. The paper points to validate the physically and event-based Erosion-3D model predominantly developed to calculate the amounts of soil loss, surface runoff, and depositions resulting from natural and design rainfall events. In the study two different erosion assessment methods were chosen in order to compare diverse evaluation approaches. Both water erosion assessment methods used have certain advantages and disadvantages, but nowadays the use of physically-based models, which are a younger generation of models, are regarded to be a more innovative and effective technique for the evaluation of complex runoff-erosion processes, deposition and transport processes. The significant contribution of physically-based models is seen in their more precise representation of the erosion and deposition processes, a more proper calculation of the erosion, deposition and sediment yields and the application of more complicated characteristics, including fluctuating soil conditions and surface properties in comparison with empirical models. The validation of the models was performed based on the continuous rainfall events for the period selected (2015, 2016 and 2017). The extreme rainfall events occurring during the period were chosen and their serious impact on the agricultural land was modeled. The modelled sediment data were compared with the measured sediment deposition data obtained by a bathymetry survey of the Svacenicky Creek polder. The polder is situated in the middle of the Myjava hill lands in the western part of Slovakia and the bathymetry measurement were conducted using a hydrographical survey using the EcoMapper Autonomous Underwater Vehicle (AUV) device. The results of the study include a comparison between the modelled and measured data and an assessment of the impact of the intensive rainfall events on the investigated territory.
Key words: intensive rainfall events, agricultural land, soil degradation processes, hydrological extremes, physically-based model
How to cite: Kohnová, S. and Németová, Z.: Modelling of impacts of erosion processes on agricultural landscapes due to intensive rainfall events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13692, https://doi.org/10.5194/egusphere-egu2020-13692, 2020.
EGU2020-13722 | Displays | BG3.7
Integrated methods and a complex solution for flood protection and erosion control – A case study of the village of Vrbovce, SlovakiaRoman Výleta, Viera Rattayová, Kamila Hlavčová, Michaela Danáčová, Andrej Škrinár, Silvia Kohnová, and Ján Szolgay
The aim of the study was an integrated application of methods for the identification and complex assessment of ecosystem responses to abiotic stress factors as extreme runoff, muddy floods and soil erosion processes. The protection of land with flysch geological structures with regard to and the problems caused by extreme runoff are a very important task in water management. The unsuitable management of land and irresponsible land use causes the formation of flash floods on watersheds and results in accelerated soil erosion. The decreasing soil quality and excessive sedimentation of eroded material in the water structures, which are components of flood protection structures, are a consequence of accelerated soil erosion. Research on and the design of measures were realized on five small watersheds in the cadastral area of the village of Vrbovce, which is situated in western Slovakia, on the edge of the flysch zone of the White Carpathians. Flash floods regularly recur in the village of Vrbovce, and extreme runoff causes the formation of rill erosion on the arable land. The soil erosion was modelled by the Universal Soil Loss Equation and the topographic factor was calculated by the Usle2D program. The results of the calculations show that 96.19 % of the agricultural land is endangered by accelerated soil erosion, with the values of the average annual soil loss greater than the limit for the tolerance of soil erosion. We calculated the direct runoff for five selected watersheds of the Teplica river tributaries with the CN-SCS method. The flooded areas in the village were modelled by the 2D hydrodynamic model MIKE21. A set of measures, i.e., polders, an infiltration trench and agrotechnical measures on the arable land, was designed outside the built-up areas of the village of Vrbovce for the reduction of the extreme runoff and accelerated soil erosion. Measures for the Teplica river revitalisation in the village were proposed. From the estimation of effectiveness of the measures proposed follows that we were able to reduce the amount of the soil erosion to values permissible for the norm by the proposed measures.
Key words: soil erosion, flash floods, flood protection, erosion control and river revitalisation practices
How to cite: Výleta, R., Rattayová, V., Hlavčová, K., Danáčová, M., Škrinár, A., Kohnová, S., and Szolgay, J.: Integrated methods and a complex solution for flood protection and erosion control – A case study of the village of Vrbovce, Slovakia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13722, https://doi.org/10.5194/egusphere-egu2020-13722, 2020.
The aim of the study was an integrated application of methods for the identification and complex assessment of ecosystem responses to abiotic stress factors as extreme runoff, muddy floods and soil erosion processes. The protection of land with flysch geological structures with regard to and the problems caused by extreme runoff are a very important task in water management. The unsuitable management of land and irresponsible land use causes the formation of flash floods on watersheds and results in accelerated soil erosion. The decreasing soil quality and excessive sedimentation of eroded material in the water structures, which are components of flood protection structures, are a consequence of accelerated soil erosion. Research on and the design of measures were realized on five small watersheds in the cadastral area of the village of Vrbovce, which is situated in western Slovakia, on the edge of the flysch zone of the White Carpathians. Flash floods regularly recur in the village of Vrbovce, and extreme runoff causes the formation of rill erosion on the arable land. The soil erosion was modelled by the Universal Soil Loss Equation and the topographic factor was calculated by the Usle2D program. The results of the calculations show that 96.19 % of the agricultural land is endangered by accelerated soil erosion, with the values of the average annual soil loss greater than the limit for the tolerance of soil erosion. We calculated the direct runoff for five selected watersheds of the Teplica river tributaries with the CN-SCS method. The flooded areas in the village were modelled by the 2D hydrodynamic model MIKE21. A set of measures, i.e., polders, an infiltration trench and agrotechnical measures on the arable land, was designed outside the built-up areas of the village of Vrbovce for the reduction of the extreme runoff and accelerated soil erosion. Measures for the Teplica river revitalisation in the village were proposed. From the estimation of effectiveness of the measures proposed follows that we were able to reduce the amount of the soil erosion to values permissible for the norm by the proposed measures.
Key words: soil erosion, flash floods, flood protection, erosion control and river revitalisation practices
How to cite: Výleta, R., Rattayová, V., Hlavčová, K., Danáčová, M., Škrinár, A., Kohnová, S., and Szolgay, J.: Integrated methods and a complex solution for flood protection and erosion control – A case study of the village of Vrbovce, Slovakia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13722, https://doi.org/10.5194/egusphere-egu2020-13722, 2020.
EGU2020-13934 | Displays | BG3.7
Evaluation of riparian forest water supply with groundwater monitoring and numerical modellingZoltán Gribovszki, Csaba Cseke, Péter Csáki, László Horváth, Péter Kalicz, László Nagy, Előd Szőke, and Katalin Anita Zagyvai-Kiss
Riparian zone forests are a special type of agro-forestry systems. As buffer zones protect stream systems against stress factors. These ecosystems are diverse so ecologically valuable, on the other hand, they are valuable (because of high productivity) from an economic viewpoint as well.
Riparian forests are very vulnerable because they strongly depend on surplus water (shallow groundwater or seasonally flooded condition). Long drought periods caused by changing climate induce lowering of the water table and shortening flooded periods. With reasonably designed water supply systems, these negative processes can be stopped, and valuable ecosystems can be preserved.
The effect of an artificial structures (new lakes and bottom thresholds) induced water supply was evaluated in Kaszó Forest (Somogy county, Hungary). Eco-Hydrological monitoring (groundwater and phenological) was conducted on 14 regular (under the effect of water supply interventions) and 4 control plots in different forest ecosystems. The impact of water supply interventions was interpreted with spatio-temporal groundwater level difference analysis and found that surplus water had a positive effect on the riparian zone water table (40-50 cm rise in the neighbourhood of new lakes) and vegetation.
A complex field monitoring (hydro-meteorological and phenological measurements) was conducted on three representative locations. 1-D Hydrus model was successfully calibrated for an alder and two common oak forest plots. Diurnal signal of groundwater levels was used for ET estimation in the model. Model results showed that groundwater uptake of forest vegetation was significantly increased (30%) regarding water supply interventions.
Acknowledgements: The research was supported by EFOP-3.6.2-16-2017-00018 in University of Sopron project.
Keywords: riparian forest, water supply, groundwater monitoring, 1-D Hydrus model
How to cite: Gribovszki, Z., Cseke, C., Csáki, P., Horváth, L., Kalicz, P., Nagy, L., Szőke, E., and Zagyvai-Kiss, K. A.: Evaluation of riparian forest water supply with groundwater monitoring and numerical modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13934, https://doi.org/10.5194/egusphere-egu2020-13934, 2020.
Riparian zone forests are a special type of agro-forestry systems. As buffer zones protect stream systems against stress factors. These ecosystems are diverse so ecologically valuable, on the other hand, they are valuable (because of high productivity) from an economic viewpoint as well.
Riparian forests are very vulnerable because they strongly depend on surplus water (shallow groundwater or seasonally flooded condition). Long drought periods caused by changing climate induce lowering of the water table and shortening flooded periods. With reasonably designed water supply systems, these negative processes can be stopped, and valuable ecosystems can be preserved.
The effect of an artificial structures (new lakes and bottom thresholds) induced water supply was evaluated in Kaszó Forest (Somogy county, Hungary). Eco-Hydrological monitoring (groundwater and phenological) was conducted on 14 regular (under the effect of water supply interventions) and 4 control plots in different forest ecosystems. The impact of water supply interventions was interpreted with spatio-temporal groundwater level difference analysis and found that surplus water had a positive effect on the riparian zone water table (40-50 cm rise in the neighbourhood of new lakes) and vegetation.
A complex field monitoring (hydro-meteorological and phenological measurements) was conducted on three representative locations. 1-D Hydrus model was successfully calibrated for an alder and two common oak forest plots. Diurnal signal of groundwater levels was used for ET estimation in the model. Model results showed that groundwater uptake of forest vegetation was significantly increased (30%) regarding water supply interventions.
Acknowledgements: The research was supported by EFOP-3.6.2-16-2017-00018 in University of Sopron project.
Keywords: riparian forest, water supply, groundwater monitoring, 1-D Hydrus model
How to cite: Gribovszki, Z., Cseke, C., Csáki, P., Horváth, L., Kalicz, P., Nagy, L., Szőke, E., and Zagyvai-Kiss, K. A.: Evaluation of riparian forest water supply with groundwater monitoring and numerical modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13934, https://doi.org/10.5194/egusphere-egu2020-13934, 2020.
EGU2020-17549 | Displays | BG3.7
Enhancing the spatial resolution of actual evapotranspiration maps for HungaryPéter Csáki, Kornél Czimber, Géza Király, Péter Kalicz, Katalin Anita Zagyvai-Kiss, and Zoltán Gribovszki
Spatially distributed evapotranspiration (ET) data are crucial for the water balance calculations of the different ecosystems. The increasingly used remote sensing-based ET estimation methods allow to obtain information about spatial variability of ET at the field and regional scales. For Hungary, the most reliable actual evapotranspiration mapping model is the CREMAP (Calibration-Free Evapotranspiration Mapping), which uses MODIS surface temperature data. However, its 1 km2 resolution is too coarse to be effectively used for smaller scale operations such as precision forest management or agroforestry systems. Therefore, the CREMAP ET was statistically downscaled to the resolution of 250 m * 250 m with MODIS NDVI data as a co-variable. The downscaled data were used for the comparison of ET of different forest stand types during a dry period and a wet period.
The research was supported by the EFOP-3.6.2-16-2017-00018 for the University of Sopron project.
How to cite: Csáki, P., Czimber, K., Király, G., Kalicz, P., Zagyvai-Kiss, K. A., and Gribovszki, Z.: Enhancing the spatial resolution of actual evapotranspiration maps for Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17549, https://doi.org/10.5194/egusphere-egu2020-17549, 2020.
Spatially distributed evapotranspiration (ET) data are crucial for the water balance calculations of the different ecosystems. The increasingly used remote sensing-based ET estimation methods allow to obtain information about spatial variability of ET at the field and regional scales. For Hungary, the most reliable actual evapotranspiration mapping model is the CREMAP (Calibration-Free Evapotranspiration Mapping), which uses MODIS surface temperature data. However, its 1 km2 resolution is too coarse to be effectively used for smaller scale operations such as precision forest management or agroforestry systems. Therefore, the CREMAP ET was statistically downscaled to the resolution of 250 m * 250 m with MODIS NDVI data as a co-variable. The downscaled data were used for the comparison of ET of different forest stand types during a dry period and a wet period.
The research was supported by the EFOP-3.6.2-16-2017-00018 for the University of Sopron project.
How to cite: Csáki, P., Czimber, K., Király, G., Kalicz, P., Zagyvai-Kiss, K. A., and Gribovszki, Z.: Enhancing the spatial resolution of actual evapotranspiration maps for Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17549, https://doi.org/10.5194/egusphere-egu2020-17549, 2020.
EGU2020-18054 | Displays | BG3.7
Reducing the impact of extreme environmental factors on berry plantationsKatalin Anita Zagyvai-Kiss, Péter Csáki, Péter Kalicz, Előd Szőke, Jenő Varga, Gergely Zagyvai, and Zoltán Gribovszki
Climate extremes affect the vitality and health of the berry species. In some regions, if enough water is available, the impacts can be reduced. Long-lasting stress effect causes sunscald in case of leaves and berries. There are resistant and susceptible varieties of berry species. The disorder, likely caused by ultra-violet radiation, appears on susceptible varieties when the temperature suddenly increases (above about 30 °C), but the humidity is low. It can easily occur in the presence of wind.
Agroforestry systems offer a possible way to reduce direct sunlight by shading to sensitive agricultural crops. The humidity of the tree canopy can decrease the effect of hot dry air. Trees protect the berry species by slowing wind speed. This ongoing research focuses on how trees can influence the hydrological conditions.
We installed a research plot to study the spatial and temporal variability of soil moisture and groundwater level in an agroforestry system compared with agricultural field without trees (Fertőd, Hungary). The measurement is completed with local climatic parameters such as precipitation, air temperature, and relative humidity. The species of the measured plots are blackberry (Rubus fruticosus ‘Dirksen’), raspberry (Rubus idaeus ‘Fertődi zamatos’), and blackcurrant (Ribes nigrum ‘Otelo’) with integrated shadowing trees: hybrid poplar (Populus x euramericana).
Acknowledgements: The project was supported by EFOP-3.6.2-16-2017-00018 for the University of Sopron.
How to cite: Zagyvai-Kiss, K. A., Csáki, P., Kalicz, P., Szőke, E., Varga, J., Zagyvai, G., and Gribovszki, Z.: Reducing the impact of extreme environmental factors on berry plantations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18054, https://doi.org/10.5194/egusphere-egu2020-18054, 2020.
Climate extremes affect the vitality and health of the berry species. In some regions, if enough water is available, the impacts can be reduced. Long-lasting stress effect causes sunscald in case of leaves and berries. There are resistant and susceptible varieties of berry species. The disorder, likely caused by ultra-violet radiation, appears on susceptible varieties when the temperature suddenly increases (above about 30 °C), but the humidity is low. It can easily occur in the presence of wind.
Agroforestry systems offer a possible way to reduce direct sunlight by shading to sensitive agricultural crops. The humidity of the tree canopy can decrease the effect of hot dry air. Trees protect the berry species by slowing wind speed. This ongoing research focuses on how trees can influence the hydrological conditions.
We installed a research plot to study the spatial and temporal variability of soil moisture and groundwater level in an agroforestry system compared with agricultural field without trees (Fertőd, Hungary). The measurement is completed with local climatic parameters such as precipitation, air temperature, and relative humidity. The species of the measured plots are blackberry (Rubus fruticosus ‘Dirksen’), raspberry (Rubus idaeus ‘Fertődi zamatos’), and blackcurrant (Ribes nigrum ‘Otelo’) with integrated shadowing trees: hybrid poplar (Populus x euramericana).
Acknowledgements: The project was supported by EFOP-3.6.2-16-2017-00018 for the University of Sopron.
How to cite: Zagyvai-Kiss, K. A., Csáki, P., Kalicz, P., Szőke, E., Varga, J., Zagyvai, G., and Gribovszki, Z.: Reducing the impact of extreme environmental factors on berry plantations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18054, https://doi.org/10.5194/egusphere-egu2020-18054, 2020.
EGU2020-21583 | Displays | BG3.7
Modeling of climate change impact on hydrological regime in small headwater mountainous catchments in SlovakiaKamila Hlavcova, Martin Kubán, Patrik Sleziak, and Jan Szolgay
Assessment of the impacts of climate change on hydrological regime is important for sustainable water resources management. The objective of this study is to assess the impacts of future climate changes on the hydrological regime of the headwater catchment of the Vistucky Creek (area 9.8 km2) in south-western Slovakia. Changes in climatic characteristics (i.e. precipitation and air temperature) for periods 2022-2060 and 2062-2100 were prepared by two regional climate models KNMI and MPI using the A1B emission scenario (average related to fossil carbon production). Both climatic scenarios assume increase in the air temperature and precipitation (higher in winter than in summer). A lumped conceptual rainfall-runoff model (the HBV-based TUW model) was used to simulate the catchment hydrological behaviour. The TUW model was calibrated for the reference period of 1982 – 2008. The calibration of the model was performed 50 times with a differential evolution algorithm. After obtaining the collection of the 50 parameter sets, the best set (in terms of Nash-Sutcliffe efficiency and the volume error) was chosen. This set of model parameters was used for the simulation of long-term mean monthly runoff for the three periods (i.e. 1982-2008, 2022-2060, and 2062-2100). The results show that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future if the climate changes as the scenarios assume. The runoff should increase in autumn and winter months (i.e. from September to February) and decrease in spring and summer months (i.e, from April to August) compared to the reference period. Peakflows should increase in period 2062-2100 while discharge minima should slightly decrease (only for the climatic data from the KNMI model). It indicates possible increase in flow extremality. Catchment water storage as expressed by the soil moisture index and baseflow should decrease in period 2062-2100, especially according to climatic data from the KNMI model. Our contribution will discuss these changes in hydrological regime in the climate change context.
How to cite: Hlavcova, K., Kubán, M., Sleziak, P., and Szolgay, J.: Modeling of climate change impact on hydrological regime in small headwater mountainous catchments in Slovakia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21583, https://doi.org/10.5194/egusphere-egu2020-21583, 2020.
Assessment of the impacts of climate change on hydrological regime is important for sustainable water resources management. The objective of this study is to assess the impacts of future climate changes on the hydrological regime of the headwater catchment of the Vistucky Creek (area 9.8 km2) in south-western Slovakia. Changes in climatic characteristics (i.e. precipitation and air temperature) for periods 2022-2060 and 2062-2100 were prepared by two regional climate models KNMI and MPI using the A1B emission scenario (average related to fossil carbon production). Both climatic scenarios assume increase in the air temperature and precipitation (higher in winter than in summer). A lumped conceptual rainfall-runoff model (the HBV-based TUW model) was used to simulate the catchment hydrological behaviour. The TUW model was calibrated for the reference period of 1982 – 2008. The calibration of the model was performed 50 times with a differential evolution algorithm. After obtaining the collection of the 50 parameter sets, the best set (in terms of Nash-Sutcliffe efficiency and the volume error) was chosen. This set of model parameters was used for the simulation of long-term mean monthly runoff for the three periods (i.e. 1982-2008, 2022-2060, and 2062-2100). The results show that changes in the long-term runoff seasonality and extremality of hydrological cycle could be expected in the future if the climate changes as the scenarios assume. The runoff should increase in autumn and winter months (i.e. from September to February) and decrease in spring and summer months (i.e, from April to August) compared to the reference period. Peakflows should increase in period 2062-2100 while discharge minima should slightly decrease (only for the climatic data from the KNMI model). It indicates possible increase in flow extremality. Catchment water storage as expressed by the soil moisture index and baseflow should decrease in period 2062-2100, especially according to climatic data from the KNMI model. Our contribution will discuss these changes in hydrological regime in the climate change context.
How to cite: Hlavcova, K., Kubán, M., Sleziak, P., and Szolgay, J.: Modeling of climate change impact on hydrological regime in small headwater mountainous catchments in Slovakia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21583, https://doi.org/10.5194/egusphere-egu2020-21583, 2020.
BG3.8 – Advances in the understanding and scaling of water-carbon interactions
EGU2020-8472 | Displays | BG3.8
Plant hydraulics accentuates the effects of atmospheric moisture stress on transpirationAlexandra Konings, Yanlan Liu, Mukesh Kumar, Xue Feng, and Gabriel Katul
Transpiration directly links the water, energy and carbon cycles. It is commonly restricted by soil (through soil moisture) and atmospheric (through vapor pressure deficit, VPD) moisture stresses governed by the movement of water through plants, also known as plant hydraulics. These sources of moisture stress are likely to diverge under climate change, with globally enhanced VPD due to increased air temperatures but more variable and uncertain changes in soil moisture. In most Earth system and land surface models, the ET response to each of the two stresses is evaluated through independent empirical relations, while neglecting plant hydraulics. Comparison of these two models is challenged by the difficulty of ensuring any perceived differences are due to the model structure, not an imperfect parametrization. Here, we use a model-data fusion approach applied to long-term ET records collected at 40 sites across a diverse range of biomes to demonstrate that the widely used empirical approach underestimates ET sensitivity to VPD, but compensates by overestimating the sensitivity to soil moisture stress. The bias originates from the joint control of leaf water potential on plant response to soil moisture and VPD stress. To a lesser degree, it also overestimates from increased sensitivity to VPD under dry (low leaf water potential) conditions in the plant hydraulic model. As a result, a hydraulic model captures ET under high-VPD conditions for wide-ranging soil moisture states better than the empirical approach does. Our findings highlight the central role of plant hydraulics in regulating the increasing importance of atmospheric moisture stress on biosphere-atmosphere interactions under elevated temperatures.
How to cite: Konings, A., Liu, Y., Kumar, M., Feng, X., and Katul, G.: Plant hydraulics accentuates the effects of atmospheric moisture stress on transpiration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8472, https://doi.org/10.5194/egusphere-egu2020-8472, 2020.
Transpiration directly links the water, energy and carbon cycles. It is commonly restricted by soil (through soil moisture) and atmospheric (through vapor pressure deficit, VPD) moisture stresses governed by the movement of water through plants, also known as plant hydraulics. These sources of moisture stress are likely to diverge under climate change, with globally enhanced VPD due to increased air temperatures but more variable and uncertain changes in soil moisture. In most Earth system and land surface models, the ET response to each of the two stresses is evaluated through independent empirical relations, while neglecting plant hydraulics. Comparison of these two models is challenged by the difficulty of ensuring any perceived differences are due to the model structure, not an imperfect parametrization. Here, we use a model-data fusion approach applied to long-term ET records collected at 40 sites across a diverse range of biomes to demonstrate that the widely used empirical approach underestimates ET sensitivity to VPD, but compensates by overestimating the sensitivity to soil moisture stress. The bias originates from the joint control of leaf water potential on plant response to soil moisture and VPD stress. To a lesser degree, it also overestimates from increased sensitivity to VPD under dry (low leaf water potential) conditions in the plant hydraulic model. As a result, a hydraulic model captures ET under high-VPD conditions for wide-ranging soil moisture states better than the empirical approach does. Our findings highlight the central role of plant hydraulics in regulating the increasing importance of atmospheric moisture stress on biosphere-atmosphere interactions under elevated temperatures.
How to cite: Konings, A., Liu, Y., Kumar, M., Feng, X., and Katul, G.: Plant hydraulics accentuates the effects of atmospheric moisture stress on transpiration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8472, https://doi.org/10.5194/egusphere-egu2020-8472, 2020.
EGU2020-5195 | Displays | BG3.8 | Highlight
Amazon rainforest increases photosynthesis in reponse to atmospheric drynessJulia K. Green, Pierre Gentine, Yao Zhang, Joe Berry, and Philippe Ciais
Earth system models predict that atmospheric dryness reduces photosynthesis due to its reductive effect on stomatal conductance. However, while this representation may be appropriate in many environments, in the wet Amazonian tropical rainforest, this is not the case. Using remote sensing data combined with machine learning techniques (k-means clustering and artificial neural networks), we show that in the wettest parts of the Amazon rainforest, gross primary production and evapotranspiration continue to increase alongside atmospheric dryness, i.e. vapor pressure deficit, despite reductions in ecosystem conductance. On the other hand, Earth system models have the opposite photosynthetic response to vapor pressure deficit in the wettest part of the Amazon, overestimating its reductive effect on tropical vegetation photosynthesis and evapotranspiration, leading to an exaggerated carbon source to the atmosphere. As vapor pressure deficit is expected to increase with climate change, our study highlights the importance of reframing how we understand and represent the response of ecosystem photosynthesis to atmospheric dryness in the wettest ecosystems, to accurately quantify the future land carbon sink and atmospheric CO2 growth rate.
How to cite: Green, J. K., Gentine, P., Zhang, Y., Berry, J., and Ciais, P.: Amazon rainforest increases photosynthesis in reponse to atmospheric dryness, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5195, https://doi.org/10.5194/egusphere-egu2020-5195, 2020.
Earth system models predict that atmospheric dryness reduces photosynthesis due to its reductive effect on stomatal conductance. However, while this representation may be appropriate in many environments, in the wet Amazonian tropical rainforest, this is not the case. Using remote sensing data combined with machine learning techniques (k-means clustering and artificial neural networks), we show that in the wettest parts of the Amazon rainforest, gross primary production and evapotranspiration continue to increase alongside atmospheric dryness, i.e. vapor pressure deficit, despite reductions in ecosystem conductance. On the other hand, Earth system models have the opposite photosynthetic response to vapor pressure deficit in the wettest part of the Amazon, overestimating its reductive effect on tropical vegetation photosynthesis and evapotranspiration, leading to an exaggerated carbon source to the atmosphere. As vapor pressure deficit is expected to increase with climate change, our study highlights the importance of reframing how we understand and represent the response of ecosystem photosynthesis to atmospheric dryness in the wettest ecosystems, to accurately quantify the future land carbon sink and atmospheric CO2 growth rate.
How to cite: Green, J. K., Gentine, P., Zhang, Y., Berry, J., and Ciais, P.: Amazon rainforest increases photosynthesis in reponse to atmospheric dryness, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5195, https://doi.org/10.5194/egusphere-egu2020-5195, 2020.
EGU2020-10458 | Displays | BG3.8
Water Constraint is Limiting Global Gross Primary ProductivityNima Madani, Nicholas Parazoo, John Kimball, Ashley Ballantyne, Marco Maneta, Sassan Saatchi, Paul Palmer, Zhihua Liu, and Torbern Tagesson
We use a light use efficiency model (LUE) to describe gross primary productivity (GPP) from 1982 to 2016 using the GIMMS-3g FPAR record and NASA MERRA-2 reanalysis, and explore how GPP trends and anomalies can be explained using annual changes in temperature and hydrology. The GPP model uses optimum LUE (LUEopt) inferred from the global FLUXNET network and extrapolated using solar induced chlorophyll fluorescence observations. We find that increasing trends in GPP at mid to high latitudes over the 35-year study period are due to reduced cold temperature of plant growth constraints. Our results suggest a persistent and increasing negative carbon-climate feedback at mid to high latitudes. We also find an increasing atmospheric vapor pressure deficit trends over the tropics, which represents an emerging positive climate feedback that results in a negative trend in GPP after the early 2000s. We expect that further warming, increasing water constraints, and disturbance events will significantly reduce global ecosystem productivity.
How to cite: Madani, N., Parazoo, N., Kimball, J., Ballantyne, A., Maneta, M., Saatchi, S., Palmer, P., Liu, Z., and Tagesson, T.: Water Constraint is Limiting Global Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10458, https://doi.org/10.5194/egusphere-egu2020-10458, 2020.
We use a light use efficiency model (LUE) to describe gross primary productivity (GPP) from 1982 to 2016 using the GIMMS-3g FPAR record and NASA MERRA-2 reanalysis, and explore how GPP trends and anomalies can be explained using annual changes in temperature and hydrology. The GPP model uses optimum LUE (LUEopt) inferred from the global FLUXNET network and extrapolated using solar induced chlorophyll fluorescence observations. We find that increasing trends in GPP at mid to high latitudes over the 35-year study period are due to reduced cold temperature of plant growth constraints. Our results suggest a persistent and increasing negative carbon-climate feedback at mid to high latitudes. We also find an increasing atmospheric vapor pressure deficit trends over the tropics, which represents an emerging positive climate feedback that results in a negative trend in GPP after the early 2000s. We expect that further warming, increasing water constraints, and disturbance events will significantly reduce global ecosystem productivity.
How to cite: Madani, N., Parazoo, N., Kimball, J., Ballantyne, A., Maneta, M., Saatchi, S., Palmer, P., Liu, Z., and Tagesson, T.: Water Constraint is Limiting Global Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10458, https://doi.org/10.5194/egusphere-egu2020-10458, 2020.
EGU2020-21053 | Displays | BG3.8
Evaluating Light Use Efficiency Models and Parameter-upscaling MethodsShanning Bao, Fabian Gans, Simon Besnard, Sujan Koirala, Alvaro Moreno, Sophia Walther, Ulrich Weber, Martin Jung, Miguel Mahecha, and Nuno Carvalhais
Given its simplicity, the light use efficiency (LUE) concept is widely used for the estimation of gross primary productivity (GPP) at the ecosystem scale. In the last three decades, many types of LUE models have been developed to explain the dependencies of GPP to different environmental and meteorological conditions across spatial and temporal scales. Despite the simplicity, LUE models are robust against observations from daily to seasonal scales, though entailing challenges in parameter upscaling. The main differences across LUEs resides in the presence/absence of certain meteorological drivers and in the particular formulations of different response functions to diagnose instantaneous light use efficiency (ε*).
Here, we collected different algorithms for describing the meteorological constraints on ε* from literature and performed a factorial experiment by recombining the different response functions between the different models to assess model performance at site and network level. These models were forced and parameterized by remote sensing data, meteorological data and GPP for 177 eddy covariance flux sites from the FLUXNET2015 and LaThuile using a data assimilation approach. The results show that the two selected optimal LUE models had no significant differences in model performances at site-level at daily, weekly, and monthly scales. The Nash-Sutcliffe Model Efficiency Coefficient (NSE) of 50% sites were larger than 0.726 and 0.725 at daily, 0.788 and 0.783 at weekly, 0.836 and 0.834 at monthly and 0.544 and 0.510 at annual scales.
Based on the selected models, we further explored the different methods to upscale the optimized parameters: a) site means and medians per plant functional type and climate class, b) random forest regression, using bioclimatic variables and corresponding vegetation index, and c) selection according to the similarity between sites, determined via the NSE in mean seasonal cycle temperature, precipitation, radiation, and vegetation indexes within the same plant functional type. The model efficiencies in cross validation for both models show that using the median parameters per plant functional type had the best performance to upscale parameters from site-level to global-level at daily, weekly and monthly scales. Since the meteorological response functions and the corresponding parameters represent the sensitivity of plant photosynthesis to the meteorological conditions we further explore the relationship between the climate sensitivities and other environmental drivers as well as biophysical plant traits using global retrievals of Sun induced fluorescence. Our results emphasize that novel Earth Observations datasets and transfer learning approaches bridge the LUE formulation tradeoffs between complexity and tractability.
How to cite: Bao, S., Gans, F., Besnard, S., Koirala, S., Moreno, A., Walther, S., Weber, U., Jung, M., Mahecha, M., and Carvalhais, N.: Evaluating Light Use Efficiency Models and Parameter-upscaling Methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21053, https://doi.org/10.5194/egusphere-egu2020-21053, 2020.
Given its simplicity, the light use efficiency (LUE) concept is widely used for the estimation of gross primary productivity (GPP) at the ecosystem scale. In the last three decades, many types of LUE models have been developed to explain the dependencies of GPP to different environmental and meteorological conditions across spatial and temporal scales. Despite the simplicity, LUE models are robust against observations from daily to seasonal scales, though entailing challenges in parameter upscaling. The main differences across LUEs resides in the presence/absence of certain meteorological drivers and in the particular formulations of different response functions to diagnose instantaneous light use efficiency (ε*).
Here, we collected different algorithms for describing the meteorological constraints on ε* from literature and performed a factorial experiment by recombining the different response functions between the different models to assess model performance at site and network level. These models were forced and parameterized by remote sensing data, meteorological data and GPP for 177 eddy covariance flux sites from the FLUXNET2015 and LaThuile using a data assimilation approach. The results show that the two selected optimal LUE models had no significant differences in model performances at site-level at daily, weekly, and monthly scales. The Nash-Sutcliffe Model Efficiency Coefficient (NSE) of 50% sites were larger than 0.726 and 0.725 at daily, 0.788 and 0.783 at weekly, 0.836 and 0.834 at monthly and 0.544 and 0.510 at annual scales.
Based on the selected models, we further explored the different methods to upscale the optimized parameters: a) site means and medians per plant functional type and climate class, b) random forest regression, using bioclimatic variables and corresponding vegetation index, and c) selection according to the similarity between sites, determined via the NSE in mean seasonal cycle temperature, precipitation, radiation, and vegetation indexes within the same plant functional type. The model efficiencies in cross validation for both models show that using the median parameters per plant functional type had the best performance to upscale parameters from site-level to global-level at daily, weekly and monthly scales. Since the meteorological response functions and the corresponding parameters represent the sensitivity of plant photosynthesis to the meteorological conditions we further explore the relationship between the climate sensitivities and other environmental drivers as well as biophysical plant traits using global retrievals of Sun induced fluorescence. Our results emphasize that novel Earth Observations datasets and transfer learning approaches bridge the LUE formulation tradeoffs between complexity and tractability.
How to cite: Bao, S., Gans, F., Besnard, S., Koirala, S., Moreno, A., Walther, S., Weber, U., Jung, M., Mahecha, M., and Carvalhais, N.: Evaluating Light Use Efficiency Models and Parameter-upscaling Methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21053, https://doi.org/10.5194/egusphere-egu2020-21053, 2020.
EGU2020-11870 | Displays | BG3.8
Moisture and heat advection as drivers of global ecosystem productivityDominik L. Schumacher, Jessica Keune, and Diego G. Miralles
Terrestrial ecosystems play a key role in climate by dampening the increasing atmospheric CO2 concentrations primarily caused by anthropogenic fossil fuel emissions. The capability of the land biosphere to act as a carbon sink largely depends on climate conditions, which determine the energy and water availability required by plants to grow. Even though only a small part of the global land area is covered by vegetation, the impact of extreme dry and wet seasons has been shown to largely drive the global interannual variability of gross primary production. The climate in a certain area can be seen as the balance of different heat and moisture fluxes: local surface–atmosphere fluxes from below, entrainment of heat and moisture from aloft, and ‘horizontal’ advection of heat and moisture from upwind regions. The latter provides a mechanism for remote regions to impact gross primary production downwind, and has received less scientific attention. Here, advection is inferred from a bird’s eye perspective, focussing on the five ecoregions with the largest interannual variability in peak productivity around the globe. Employing the atmospheric Lagrangian trajectory model FLEXPART, driven by ERA-Interim reanalysis data, we track the air residing over ecoregions back in time to deduce the origins of heat and moisture that affect ecosystem gross primary production. Utilizing the evaporative source regions supplying water for precipitation to these ecosystems, as well as the analogous source regions of advected heat, we estimate the contribution of advection to gross primary production. Our findings show that source regions of heat and moisture are not congruent: upwind land surfaces typically supply most of the advected heat, whereas upwind oceans tend to provide more moisture. Moreover, low gross primary production in heat-stressed and water-limited ecosystems is often accompanied by enhanced heat and reduced moisture advection from land regions, exacerbated by upwind land–atmosphere feedbacks. These results demonstrate that anomalies in atmospheric advection can cause ecosystem productivity extremes. Particularly in light of ongoing climate change, we emphasize the potentially detrimental effects of upwind areas that may cause long-lasting impacts on the terrestrial carbon budget, thereby further affecting the climate.
How to cite: Schumacher, D. L., Keune, J., and Miralles, D. G.: Moisture and heat advection as drivers of global ecosystem productivity , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11870, https://doi.org/10.5194/egusphere-egu2020-11870, 2020.
Terrestrial ecosystems play a key role in climate by dampening the increasing atmospheric CO2 concentrations primarily caused by anthropogenic fossil fuel emissions. The capability of the land biosphere to act as a carbon sink largely depends on climate conditions, which determine the energy and water availability required by plants to grow. Even though only a small part of the global land area is covered by vegetation, the impact of extreme dry and wet seasons has been shown to largely drive the global interannual variability of gross primary production. The climate in a certain area can be seen as the balance of different heat and moisture fluxes: local surface–atmosphere fluxes from below, entrainment of heat and moisture from aloft, and ‘horizontal’ advection of heat and moisture from upwind regions. The latter provides a mechanism for remote regions to impact gross primary production downwind, and has received less scientific attention. Here, advection is inferred from a bird’s eye perspective, focussing on the five ecoregions with the largest interannual variability in peak productivity around the globe. Employing the atmospheric Lagrangian trajectory model FLEXPART, driven by ERA-Interim reanalysis data, we track the air residing over ecoregions back in time to deduce the origins of heat and moisture that affect ecosystem gross primary production. Utilizing the evaporative source regions supplying water for precipitation to these ecosystems, as well as the analogous source regions of advected heat, we estimate the contribution of advection to gross primary production. Our findings show that source regions of heat and moisture are not congruent: upwind land surfaces typically supply most of the advected heat, whereas upwind oceans tend to provide more moisture. Moreover, low gross primary production in heat-stressed and water-limited ecosystems is often accompanied by enhanced heat and reduced moisture advection from land regions, exacerbated by upwind land–atmosphere feedbacks. These results demonstrate that anomalies in atmospheric advection can cause ecosystem productivity extremes. Particularly in light of ongoing climate change, we emphasize the potentially detrimental effects of upwind areas that may cause long-lasting impacts on the terrestrial carbon budget, thereby further affecting the climate.
How to cite: Schumacher, D. L., Keune, J., and Miralles, D. G.: Moisture and heat advection as drivers of global ecosystem productivity , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11870, https://doi.org/10.5194/egusphere-egu2020-11870, 2020.
EGU2020-20157 | Displays | BG3.8
Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremesMatthew Dannenberg, Erika Wise, and William Smith
Earth’s hydroclimatic variability is increasing, with changes in the frequency of extreme events that may negatively affect forest ecosystems. We examined possible consequences of changing precipitation variability using tree rings in the conterminous U.S. While many growth records showed either little evidence of precipitation limitation or linear relationships to precipitation, growth of some species (particularly those in semiarid regions) responded asymmetrically to precipitation, such that tree growth reductions during dry years were greater than, and not compensated by, increases during wet years. The U.S. Southwest in particular showed both a large increase in precipitation variability coupled with asymmetric responses of growth to precipitation. Simulations suggested roughly a two-fold increase in the probability of large negative growth anomalies across the Southwest resulting solely from 20th century increases in the variability of cool-season precipitation. Models project continued increases in precipitation variability, portending future growth reductions across semiarid forests of the western U.S.
How to cite: Dannenberg, M., Wise, E., and Smith, W.: Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20157, https://doi.org/10.5194/egusphere-egu2020-20157, 2020.
Earth’s hydroclimatic variability is increasing, with changes in the frequency of extreme events that may negatively affect forest ecosystems. We examined possible consequences of changing precipitation variability using tree rings in the conterminous U.S. While many growth records showed either little evidence of precipitation limitation or linear relationships to precipitation, growth of some species (particularly those in semiarid regions) responded asymmetrically to precipitation, such that tree growth reductions during dry years were greater than, and not compensated by, increases during wet years. The U.S. Southwest in particular showed both a large increase in precipitation variability coupled with asymmetric responses of growth to precipitation. Simulations suggested roughly a two-fold increase in the probability of large negative growth anomalies across the Southwest resulting solely from 20th century increases in the variability of cool-season precipitation. Models project continued increases in precipitation variability, portending future growth reductions across semiarid forests of the western U.S.
How to cite: Dannenberg, M., Wise, E., and Smith, W.: Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20157, https://doi.org/10.5194/egusphere-egu2020-20157, 2020.
EGU2020-11033 | Displays | BG3.8 | Highlight
Define the water-use strategy: A network study on hydraulic mechanisms regulating water use of European tree species during drought.Richard L. Peters, Rafael Poyatos, Roman Zweifel, Ansgar Kahmen, Charlotte Grossiord, Patrick Fonti, Mana Gharun, Nina Buchmann, and Kathy Steppe
Continuous and long-term monitoring of water use are required to reduce uncertainties in modelling forest transpiration. Since drought threatens the vitality and survival of forests worldwide, understanding and modelling responses to drought are of particular interest. Tree species undergo strong selective pressure to develop specialized mechanisms for regulating water-use dynamics during unfavourable climatic conditions. To cope with drought a tree can adjust its “water-use strategy”, by 1) altering the regulation of water release through the leaves to the atmosphere, 2) adjusting the water storage capacitances, or 3) changing the hydraulic conductivity of the xylem, impacting the water flux. There is thus a pressing need to understand the variability of such hydraulic mechanisms, between and within tree species, and quantify how they impact forest transpiration.
We strive to elucidate hydraulic mechanisms in European tree species by combining, for the first time, three hydraulic components (stomatal conductance regulation, storage water capacity and wood anatomical traits) to identify water-use strategies and mechanistically model their effect on water use under increasing drought and warming. We constructed a European monitoring network, integrating ongoing meteorological measurements (e.g., temperature, relative humidity, global radiation and soil moisture) with sap flow (SF) and dendrometer (DM) measurements, as well as wood anatomical properties collected from the same tree individuals. Currently, the network includes 22 sites stretching from Spain till Finland (latitudinal range: 40° - 62° N), with a total of 281 individuals (14 tree species) and hourly-resolution monitoring of SF and DM from ~2011-2018. This large temporal coverage ensures a broad range of dry and wet conditions at each site, while the extensive climatological range of sites promotes the detection of intra-specific variability in hydraulic mechanisms.
Focussing on four common European tree species (Fagus sylvatica, Quercus petraea, Pinus sylvestris and Picea abies), we present initial results from a Swiss temperate forest, where combining SF, DM and wood anatomy allowed us to disentangle species-specific differences in water-use strategies. Building upon these empirical observations, we were able to quantify the impact of these inter-specific differences on water use. Moreover, a mechanistic water transport model was used to assess stem water content, stem water potential (i.e., an indicator for hydraulic vulnerability), and subsequently turgidity within the cambium (i.e., crucial for wood formation) during the summer drought of 2015. Our efforts will advance process-based understanding of drought impacts on water use and could constrain predictions of forest transpiration under changing climatic conditions.
How to cite: Peters, R. L., Poyatos, R., Zweifel, R., Kahmen, A., Grossiord, C., Fonti, P., Gharun, M., Buchmann, N., and Steppe, K.: Define the water-use strategy: A network study on hydraulic mechanisms regulating water use of European tree species during drought. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11033, https://doi.org/10.5194/egusphere-egu2020-11033, 2020.
Continuous and long-term monitoring of water use are required to reduce uncertainties in modelling forest transpiration. Since drought threatens the vitality and survival of forests worldwide, understanding and modelling responses to drought are of particular interest. Tree species undergo strong selective pressure to develop specialized mechanisms for regulating water-use dynamics during unfavourable climatic conditions. To cope with drought a tree can adjust its “water-use strategy”, by 1) altering the regulation of water release through the leaves to the atmosphere, 2) adjusting the water storage capacitances, or 3) changing the hydraulic conductivity of the xylem, impacting the water flux. There is thus a pressing need to understand the variability of such hydraulic mechanisms, between and within tree species, and quantify how they impact forest transpiration.
We strive to elucidate hydraulic mechanisms in European tree species by combining, for the first time, three hydraulic components (stomatal conductance regulation, storage water capacity and wood anatomical traits) to identify water-use strategies and mechanistically model their effect on water use under increasing drought and warming. We constructed a European monitoring network, integrating ongoing meteorological measurements (e.g., temperature, relative humidity, global radiation and soil moisture) with sap flow (SF) and dendrometer (DM) measurements, as well as wood anatomical properties collected from the same tree individuals. Currently, the network includes 22 sites stretching from Spain till Finland (latitudinal range: 40° - 62° N), with a total of 281 individuals (14 tree species) and hourly-resolution monitoring of SF and DM from ~2011-2018. This large temporal coverage ensures a broad range of dry and wet conditions at each site, while the extensive climatological range of sites promotes the detection of intra-specific variability in hydraulic mechanisms.
Focussing on four common European tree species (Fagus sylvatica, Quercus petraea, Pinus sylvestris and Picea abies), we present initial results from a Swiss temperate forest, where combining SF, DM and wood anatomy allowed us to disentangle species-specific differences in water-use strategies. Building upon these empirical observations, we were able to quantify the impact of these inter-specific differences on water use. Moreover, a mechanistic water transport model was used to assess stem water content, stem water potential (i.e., an indicator for hydraulic vulnerability), and subsequently turgidity within the cambium (i.e., crucial for wood formation) during the summer drought of 2015. Our efforts will advance process-based understanding of drought impacts on water use and could constrain predictions of forest transpiration under changing climatic conditions.
How to cite: Peters, R. L., Poyatos, R., Zweifel, R., Kahmen, A., Grossiord, C., Fonti, P., Gharun, M., Buchmann, N., and Steppe, K.: Define the water-use strategy: A network study on hydraulic mechanisms regulating water use of European tree species during drought. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11033, https://doi.org/10.5194/egusphere-egu2020-11033, 2020.
EGU2020-13361 | Displays | BG3.8
Live fast-die young: Scaling CO2 fertilization effects from leaf to ecosystem levelsLaura Marques, Ensheng Weng, and Benjamin Stocker
Global environmental changes are rapidly altering the functioning and structure of terrestrial ecosystems.Particularly, rising CO2 atmospheric concentrations have been reported to increase photosynthesis by increasing carbon assimilation and water-use efficiency. This leaf-level CO2 fertilization effect may lead to an increase in the biomass stock in forest stands. However, previous studies argued that an enhanced tree growth rate is associated with a reduction in the longevity of trees, thus reducing the ability of forest biomass to act as carbon sinks over long timescales. In addition, faster growth may lead to an acceleration of self-thinning whereby tree density in the stand is reduced due to progressive mutual shading as tree crowns expand and a resulting increase in shaded individuals’ mortality. Nevertheless, previous results relied on empirical relationships between tree growth rates and longevity, without considering any positive effects of elevated CO2 on individual tree’s carbon balance. Individual-based forest datasets such as tree ring width data and forests inventories have been widely used to monitor long-term changes in forest demography. Yet, the mechanistic underlying these processes remains poorly understood and challenges persist in upscaling from individual measurements to higher level of organization.
Here, we use a vegetation demography model (LM3-PPA) which simulates vegetation dynamics and biogeochemical processes by explicitly scaling from leaf up to ecosystem level by resolving leaf-level physiology, growth, and height-structured competition for light, using the perfect plasticity approximation (PPA). Using this simulation model, we investigate the links between individual trees’ carbon balance under rising CO2 levels, their longevity under alternative mortality parametrizations, and the implications for forest dynamics and self-thinning rates. Inventory data from long-term forest reserves is used to assess empirical support for these simulated links. Specifically, we test the hypothesis of faster growth-earlier death in order to assess forests’ capacity to store carbon under environmental changes. This provides key mechanistic insights to reveal whether increased CO2 fertilization on leaf-level photosynthesis positively affects tree’s C balance and thereby reduces the mortality under competition for light in the canopy.
How to cite: Marques, L., Weng, E., and Stocker, B.: Live fast-die young: Scaling CO2 fertilization effects from leaf to ecosystem levels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13361, https://doi.org/10.5194/egusphere-egu2020-13361, 2020.
Global environmental changes are rapidly altering the functioning and structure of terrestrial ecosystems.Particularly, rising CO2 atmospheric concentrations have been reported to increase photosynthesis by increasing carbon assimilation and water-use efficiency. This leaf-level CO2 fertilization effect may lead to an increase in the biomass stock in forest stands. However, previous studies argued that an enhanced tree growth rate is associated with a reduction in the longevity of trees, thus reducing the ability of forest biomass to act as carbon sinks over long timescales. In addition, faster growth may lead to an acceleration of self-thinning whereby tree density in the stand is reduced due to progressive mutual shading as tree crowns expand and a resulting increase in shaded individuals’ mortality. Nevertheless, previous results relied on empirical relationships between tree growth rates and longevity, without considering any positive effects of elevated CO2 on individual tree’s carbon balance. Individual-based forest datasets such as tree ring width data and forests inventories have been widely used to monitor long-term changes in forest demography. Yet, the mechanistic underlying these processes remains poorly understood and challenges persist in upscaling from individual measurements to higher level of organization.
Here, we use a vegetation demography model (LM3-PPA) which simulates vegetation dynamics and biogeochemical processes by explicitly scaling from leaf up to ecosystem level by resolving leaf-level physiology, growth, and height-structured competition for light, using the perfect plasticity approximation (PPA). Using this simulation model, we investigate the links between individual trees’ carbon balance under rising CO2 levels, their longevity under alternative mortality parametrizations, and the implications for forest dynamics and self-thinning rates. Inventory data from long-term forest reserves is used to assess empirical support for these simulated links. Specifically, we test the hypothesis of faster growth-earlier death in order to assess forests’ capacity to store carbon under environmental changes. This provides key mechanistic insights to reveal whether increased CO2 fertilization on leaf-level photosynthesis positively affects tree’s C balance and thereby reduces the mortality under competition for light in the canopy.
How to cite: Marques, L., Weng, E., and Stocker, B.: Live fast-die young: Scaling CO2 fertilization effects from leaf to ecosystem levels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13361, https://doi.org/10.5194/egusphere-egu2020-13361, 2020.
EGU2020-3295 | Displays | BG3.8
Reviewing the role of precipitation and soil moisture in driving the terrestrial carbon cycle variability in Europe: recent advances and known unknownsGabriele Messori, Guiomar Ruiz-Pérez, Stefano Manzoni, and Giulia Vico
The terrestrial biosphere is a key component of the global carbon cycle and is heavily influenced by climate. This interaction spans a wide range of temporal (from sub-daily to paleoclimatic) and spatial (from local to continental and global) scales and a multitude of bio-physical processes. In part due to this complexity, a comprehensive picture of the physical links and correlations between climate drivers and carbon cycle metrics at different scales remains elusive, framing the scope of this contribution. Here, we specifically explore how precipitation, soil moisture and aggregated climate variability indices relate to the variability of the European terrestrial carbon cycle at sub-daily to interannual scales (i.e. excluding long-term trends). We first discuss broad areas of agreement and disagreement in the literature. For example, while most carbon cycle proxies tend to correlate positively with precipitation, responses to soil moisture and climate indices are more variable. In fact, soil moisture often correlates positively with productivity in water-limited environments, and negatively in light limited ones, or can exhibit nonlinear relations with the carbon cycle proxies. We then conclude by outlining some existing knowledge gaps and by proposing avenues for improving our holistic understanding of the role of climate drivers in modulating the terrestrial carbon cycle.
How to cite: Messori, G., Ruiz-Pérez, G., Manzoni, S., and Vico, G.: Reviewing the role of precipitation and soil moisture in driving the terrestrial carbon cycle variability in Europe: recent advances and known unknowns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3295, https://doi.org/10.5194/egusphere-egu2020-3295, 2020.
The terrestrial biosphere is a key component of the global carbon cycle and is heavily influenced by climate. This interaction spans a wide range of temporal (from sub-daily to paleoclimatic) and spatial (from local to continental and global) scales and a multitude of bio-physical processes. In part due to this complexity, a comprehensive picture of the physical links and correlations between climate drivers and carbon cycle metrics at different scales remains elusive, framing the scope of this contribution. Here, we specifically explore how precipitation, soil moisture and aggregated climate variability indices relate to the variability of the European terrestrial carbon cycle at sub-daily to interannual scales (i.e. excluding long-term trends). We first discuss broad areas of agreement and disagreement in the literature. For example, while most carbon cycle proxies tend to correlate positively with precipitation, responses to soil moisture and climate indices are more variable. In fact, soil moisture often correlates positively with productivity in water-limited environments, and negatively in light limited ones, or can exhibit nonlinear relations with the carbon cycle proxies. We then conclude by outlining some existing knowledge gaps and by proposing avenues for improving our holistic understanding of the role of climate drivers in modulating the terrestrial carbon cycle.
How to cite: Messori, G., Ruiz-Pérez, G., Manzoni, S., and Vico, G.: Reviewing the role of precipitation and soil moisture in driving the terrestrial carbon cycle variability in Europe: recent advances and known unknowns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3295, https://doi.org/10.5194/egusphere-egu2020-3295, 2020.
EGU2020-10559 | Displays | BG3.8
Boreal forest carbon exchange and growth recovery after the summer 2018 droughtMaj-Lena Linderson, Jutta Holst, Michal Heliasz, Leif Klemedtsson, Anne Klosterhalfen, Alisa Krasnova, Alar Läänelaid, Hans Linderson, Eduardo Martínez García, Meelis Mölder, Matthias Peichl, Kaido Soosaar, Tzu Tung Chen, Patrik Vestin, Per Weslien, and Anders Lindroth
In summer 2018, Northern Europe experienced an extreme summer drought in combination with unusually high temperatures, which had a substantial impact on agricultural yields as well as on forest growth conditions in various ways. An ongoing study, using ICOS and other forest ecosystem stations in the Nordic region, shows that the drought dramatically decreased NEP in the southern Scandinavian and Baltic region, almost nullifying the carbon sinks in some of the forests. However, some of the forests that not were exposed to the most extreme drought actually increased their NEP because of the high evaporative demand. Such severe conditions during a single year could be expected to influence a forest over several following years. Reduced tree storage of carbohydrates leads to a changed carbon allocation pattern in spring that may affect both the woody growth and the resistance to pests. It is thus important to reveal the impact of such climatic events over a longer period.
This study aims at assessing the carry-over effects of the extreme weather conditions on the carbon fluxes and the forest growth to the year after the event, 2019. The base of the analysis will be eddy covariance data combined with tree ring time series from measurement stations that has been shown to be significantly affected by the drought through reduced carbon fluxes: the spruce forests Hyltemossa and Skogaryd and the mixed forests Norunda, Svartberget, Soontaga and Rumperöd. The eddy covariance and tree ring data will be used to assess the forest ecosystem carbon fluxes and growth recovery in 2019 by comparisons to earlier normal years and extreme events.
How to cite: Linderson, M.-L., Holst, J., Heliasz, M., Klemedtsson, L., Klosterhalfen, A., Krasnova, A., Läänelaid, A., Linderson, H., Martínez García, E., Mölder, M., Peichl, M., Soosaar, K., Tung Chen, T., Vestin, P., Weslien, P., and Lindroth, A.: Boreal forest carbon exchange and growth recovery after the summer 2018 drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10559, https://doi.org/10.5194/egusphere-egu2020-10559, 2020.
In summer 2018, Northern Europe experienced an extreme summer drought in combination with unusually high temperatures, which had a substantial impact on agricultural yields as well as on forest growth conditions in various ways. An ongoing study, using ICOS and other forest ecosystem stations in the Nordic region, shows that the drought dramatically decreased NEP in the southern Scandinavian and Baltic region, almost nullifying the carbon sinks in some of the forests. However, some of the forests that not were exposed to the most extreme drought actually increased their NEP because of the high evaporative demand. Such severe conditions during a single year could be expected to influence a forest over several following years. Reduced tree storage of carbohydrates leads to a changed carbon allocation pattern in spring that may affect both the woody growth and the resistance to pests. It is thus important to reveal the impact of such climatic events over a longer period.
This study aims at assessing the carry-over effects of the extreme weather conditions on the carbon fluxes and the forest growth to the year after the event, 2019. The base of the analysis will be eddy covariance data combined with tree ring time series from measurement stations that has been shown to be significantly affected by the drought through reduced carbon fluxes: the spruce forests Hyltemossa and Skogaryd and the mixed forests Norunda, Svartberget, Soontaga and Rumperöd. The eddy covariance and tree ring data will be used to assess the forest ecosystem carbon fluxes and growth recovery in 2019 by comparisons to earlier normal years and extreme events.
How to cite: Linderson, M.-L., Holst, J., Heliasz, M., Klemedtsson, L., Klosterhalfen, A., Krasnova, A., Läänelaid, A., Linderson, H., Martínez García, E., Mölder, M., Peichl, M., Soosaar, K., Tung Chen, T., Vestin, P., Weslien, P., and Lindroth, A.: Boreal forest carbon exchange and growth recovery after the summer 2018 drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10559, https://doi.org/10.5194/egusphere-egu2020-10559, 2020.
EGU2020-3550 | Displays | BG3.8
Negative asymmetry response of ecosystem productivity to annual rainfall anomalies over the conterminous U.S during the 2010 -2018 periodAmen Al-Yaari, Jean-Pierre Wigneron, Philippe Ciais, Alan Knapp, Markus Reichstein, Jerome Ogee, Lisa Wingate, Nuno Carvalhais, Fan Lei, Koen Hufkens, Jerome Chave, Frédéric Frappart, Jennifer Swenson, and Ducharne Ducharne
Terrestrial ecosystems play a major role in the interannual variability of the global carbon budget representing a substantial sink equivalent to about one-third of current anthropogenic CO2 emissions (Le Quéré et al., 2018). Therefore, it is vital to understand how plants and vegetation respond to the impacts of climate extremes as this impacts the productivity terrestrial ecosystems. The conterminous United States (CONUS) represent a diverse range of climate conditions and ecosystems where productivity and its interannual variability are controlled regionally by rainfall and/or temperature. The responses of ecosystem productivity to wet and dry years have been previously investigated over the CONUS using annual aboveground net primary productivity (ANPP) data from multi-site observations (Knapp and Smith, 2001). From this previous study, a positive asymmetry of ANPP in response to rainfall anomalies was found at individual sites (i.e. an increase of ANPP in wet years was greater than a decline in dry years). Here, we evaluate the asymmetry of ecosystem productivity to rainfall over the entire CONUS from 2010 to 2018 using multiple data streams including: the Global Unified Gauge-Based precipitation data, the GRIDMET surface meteorological data (maximum temperature, minimum temperature, precipitation accumulation, and Palmer Drought Severity Index), the SMOS satellite L-Vegetation optical depth product, CO2 fluxes (net ecosystem exchange (NEE) & gross primary productivity (GPP)) derived from eddy covariance measurements, MODIS ANPP product, Fluxnet GPP at site scale, and three different GPP products from observation-driven models. We address the following two questions: (1) How does ecosystem productivity across the CONUS respond to rainfall anomalies during the period 2010-2018? (2) Does the evidence for positive asymmetry previously observed using site studies hold true across the entire CONUS? For this, we define an asymmetry index (AI) where positive AI indicate a greater increase of productivity in wet years compared to the decline in dry years, and negative AI indicate a greater decline of productivity in dry years compared to the increases in wet years. We find that the spatial patterns of AI across the CONUS are similar amongst the different products and exhibit more pronounced negative asymmetries over the Great Plains and the west north central region whilst positive asymmetries are observed over the southwestern USA during the 2010-2018 period. While the “shrubland” biome shows a persistent positive asymmetry during the period, the “grasslands” biome appears to have switched from positive (observed by Knapp and Smith, 2001) to negative anomalies during the last decade. The observed asymmetry of the different GPP products is reflected by the negative asymmetry of the precipitation anomalies (skewness of precipitation annual anomalies), which we conclude is the primary driver of negative asymmetry across the US continental surface.
References
Knapp, A.K., Smith, M.D., 2001. Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production. Science (80-. ). 291, 481. https://doi.org/10.1126/science.291.5503.481
Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., et al., 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
How to cite: Al-Yaari, A., Wigneron, J.-P., Ciais, P., Knapp, A., Reichstein, M., Ogee, J., Wingate, L., Carvalhais, N., Lei, F., Hufkens, K., Chave, J., Frappart, F., Swenson, J., and Ducharne, D.: Negative asymmetry response of ecosystem productivity to annual rainfall anomalies over the conterminous U.S during the 2010 -2018 period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3550, https://doi.org/10.5194/egusphere-egu2020-3550, 2020.
Terrestrial ecosystems play a major role in the interannual variability of the global carbon budget representing a substantial sink equivalent to about one-third of current anthropogenic CO2 emissions (Le Quéré et al., 2018). Therefore, it is vital to understand how plants and vegetation respond to the impacts of climate extremes as this impacts the productivity terrestrial ecosystems. The conterminous United States (CONUS) represent a diverse range of climate conditions and ecosystems where productivity and its interannual variability are controlled regionally by rainfall and/or temperature. The responses of ecosystem productivity to wet and dry years have been previously investigated over the CONUS using annual aboveground net primary productivity (ANPP) data from multi-site observations (Knapp and Smith, 2001). From this previous study, a positive asymmetry of ANPP in response to rainfall anomalies was found at individual sites (i.e. an increase of ANPP in wet years was greater than a decline in dry years). Here, we evaluate the asymmetry of ecosystem productivity to rainfall over the entire CONUS from 2010 to 2018 using multiple data streams including: the Global Unified Gauge-Based precipitation data, the GRIDMET surface meteorological data (maximum temperature, minimum temperature, precipitation accumulation, and Palmer Drought Severity Index), the SMOS satellite L-Vegetation optical depth product, CO2 fluxes (net ecosystem exchange (NEE) & gross primary productivity (GPP)) derived from eddy covariance measurements, MODIS ANPP product, Fluxnet GPP at site scale, and three different GPP products from observation-driven models. We address the following two questions: (1) How does ecosystem productivity across the CONUS respond to rainfall anomalies during the period 2010-2018? (2) Does the evidence for positive asymmetry previously observed using site studies hold true across the entire CONUS? For this, we define an asymmetry index (AI) where positive AI indicate a greater increase of productivity in wet years compared to the decline in dry years, and negative AI indicate a greater decline of productivity in dry years compared to the increases in wet years. We find that the spatial patterns of AI across the CONUS are similar amongst the different products and exhibit more pronounced negative asymmetries over the Great Plains and the west north central region whilst positive asymmetries are observed over the southwestern USA during the 2010-2018 period. While the “shrubland” biome shows a persistent positive asymmetry during the period, the “grasslands” biome appears to have switched from positive (observed by Knapp and Smith, 2001) to negative anomalies during the last decade. The observed asymmetry of the different GPP products is reflected by the negative asymmetry of the precipitation anomalies (skewness of precipitation annual anomalies), which we conclude is the primary driver of negative asymmetry across the US continental surface.
References
Knapp, A.K., Smith, M.D., 2001. Variation Among Biomes in Temporal Dynamics of Aboveground Primary Production. Science (80-. ). 291, 481. https://doi.org/10.1126/science.291.5503.481
Le Quéré, C., Andrew, R.M., Friedlingstein, P., Sitch, S., et al., 2018. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194. https://doi.org/10.5194/essd-10-2141-2018
How to cite: Al-Yaari, A., Wigneron, J.-P., Ciais, P., Knapp, A., Reichstein, M., Ogee, J., Wingate, L., Carvalhais, N., Lei, F., Hufkens, K., Chave, J., Frappart, F., Swenson, J., and Ducharne, D.: Negative asymmetry response of ecosystem productivity to annual rainfall anomalies over the conterminous U.S during the 2010 -2018 period, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3550, https://doi.org/10.5194/egusphere-egu2020-3550, 2020.
EGU2020-18697 | Displays | BG3.8
The CO2 balance of a boreal fen is more sensitive to drought than surrounding forestsMats Nilsson, Joshua Ratcliffe, Anne Klosterhalfen, Peng Zhao, Jinchu Chi, and Matthias Peichl
The boreal zone is one of the most carbon-dense biomes in the world and is comprised of a highly interconnected mosaic of forest and wetlands which are warming at a rate several times the global average with extreme weather events, such as droughts, becoming increasingly common. At the ecosystem scale, both forests and peatlands are often vulnerable to drought-induced carbon loss, however, the relative resilience of these two ecosystems within the boreal landscape is not well understood. Here we study the effect of the 2018 drought on CO2 fluxes in two boreal forests and a boreal peatland within <20km radius, i.e. experiencing the same weather conditions. The peatland displayed the strongest response to the drought, with the site becoming a net annual source for CO2 for the first time in 17 years, with the CO2 sink slow to recover after the drought broke. In contrast, the response of the forests was mixed, a spruce/pine forest on glacial till remained unaffected by the drought, whereas a nearby pine forest, situated on drier sandy soil, responded strongly to vapour pressure deficit and declining soil moisture content, decreasing with CO2 uptake weakening, but still allowing the forest to function as a CO2 sink. In contrast to the bog, the pine forest CO2 sink quickly recovered following the end of the drought. We conclude that boreal peatlands are likely to be the most vulnerable component of the boreal landscape to drought and that soil type is likely to play a role in regulating the response of boreal forests.
How to cite: Nilsson, M., Ratcliffe, J., Klosterhalfen, A., Zhao, P., Chi, J., and Peichl, M.: The CO2 balance of a boreal fen is more sensitive to drought than surrounding forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18697, https://doi.org/10.5194/egusphere-egu2020-18697, 2020.
The boreal zone is one of the most carbon-dense biomes in the world and is comprised of a highly interconnected mosaic of forest and wetlands which are warming at a rate several times the global average with extreme weather events, such as droughts, becoming increasingly common. At the ecosystem scale, both forests and peatlands are often vulnerable to drought-induced carbon loss, however, the relative resilience of these two ecosystems within the boreal landscape is not well understood. Here we study the effect of the 2018 drought on CO2 fluxes in two boreal forests and a boreal peatland within <20km radius, i.e. experiencing the same weather conditions. The peatland displayed the strongest response to the drought, with the site becoming a net annual source for CO2 for the first time in 17 years, with the CO2 sink slow to recover after the drought broke. In contrast, the response of the forests was mixed, a spruce/pine forest on glacial till remained unaffected by the drought, whereas a nearby pine forest, situated on drier sandy soil, responded strongly to vapour pressure deficit and declining soil moisture content, decreasing with CO2 uptake weakening, but still allowing the forest to function as a CO2 sink. In contrast to the bog, the pine forest CO2 sink quickly recovered following the end of the drought. We conclude that boreal peatlands are likely to be the most vulnerable component of the boreal landscape to drought and that soil type is likely to play a role in regulating the response of boreal forests.
How to cite: Nilsson, M., Ratcliffe, J., Klosterhalfen, A., Zhao, P., Chi, J., and Peichl, M.: The CO2 balance of a boreal fen is more sensitive to drought than surrounding forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18697, https://doi.org/10.5194/egusphere-egu2020-18697, 2020.
EGU2020-5672 | Displays | BG3.8
Diurnal and inter-day hysteresis of species-specific stomatal conductance from sap-flow measurements illustrates hydraulic-stress responses strategies of treesGil Bohrer, Theresia Yazbeck, Ana Maria Restrepo Acevedo, and Ashley M. Matheny
Modeling of plant hydraulics is at the forefront of development in vegetation and land-surface models. Numerical tools that consider water flow within the conductive system of plants, and particularly trees, have been developed and used in studies of hydraulic strategy and consequences of hydraulic behavior for drought tolerance. Several established land-surface models such as ED2, CLM, and E3SM have recently developed “hydro” versions and are ready to extrapolate the consequences of including tree hydraulic behaviors into large scale and global simulations. At the core of any plant hydrodynamic model is the assumption that stomatal conductance is dependent on xylem water potential. Further, “plant hydro” models assume that the effect of soil moisture on stomatal conductance is not direct but cascades through depletion of xylem water content in dry soil conditions.
We use observations of sap flow, soil moisture, and evapotranspiration at a mixed forest in the University of Michigan Biological Station (UMBS) at the footprint of the US-UMd flux tower to characterize the onset and advancement of hydraulic stress and post-stress recovery. We define stress by observing tree-level decrease of stomatal conductance during sunny days as soil-moisture deficit progresses. We use the Penman-Monteith (PM) formulation to calculate stomatal conductance given observed atmospheric forcing: air temperature, humidity, net radiation, soil heat flux, and aerodynamic resistance. Such PM-based approach effectively decouples changes in evapotranspiration due to atmospheric forcing vs. changes due to decreased stomatal conductance. Multiple years of sap-flow measurements in tens of trees of multiple species allow us to identify the species-specific characteristics of the onset of stress, and the hysteretic dynamics of stomatal conductance. The daily hysteresis indicates the severity of stress. Longer-term inter-day hysteresis of the relationship between noon-time stomatal conductance and soil moisture, before and after rain have alleviated the moisture stress, indicates species-specific strategies of hydraulic-stress recovery. Recovery time is related to the degree of stress, and can vary between a nearly reversible state and 1 to 2 days of recovery, to a long recovery of several days. We find large differences between species in the sensitivity to stress and in the strength of coupling between stem water content and stomatal conductance. These are consistent with the hydraulic strategy of the trees along the an/isohydric continuum.
Identifying the hydraulic characteristics of water stress and direct observations of the coupling between stem water storage, conductance, and transpiration provide key observations with which to tune hydrodynamic models and allow process-based functional-type parameterization of stomatal conductance that accounts for tree hydrodynamics and hydraulic stress recovery.
How to cite: Bohrer, G., Yazbeck, T., Restrepo Acevedo, A. M., and Matheny, A. M.: Diurnal and inter-day hysteresis of species-specific stomatal conductance from sap-flow measurements illustrates hydraulic-stress responses strategies of trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5672, https://doi.org/10.5194/egusphere-egu2020-5672, 2020.
Modeling of plant hydraulics is at the forefront of development in vegetation and land-surface models. Numerical tools that consider water flow within the conductive system of plants, and particularly trees, have been developed and used in studies of hydraulic strategy and consequences of hydraulic behavior for drought tolerance. Several established land-surface models such as ED2, CLM, and E3SM have recently developed “hydro” versions and are ready to extrapolate the consequences of including tree hydraulic behaviors into large scale and global simulations. At the core of any plant hydrodynamic model is the assumption that stomatal conductance is dependent on xylem water potential. Further, “plant hydro” models assume that the effect of soil moisture on stomatal conductance is not direct but cascades through depletion of xylem water content in dry soil conditions.
We use observations of sap flow, soil moisture, and evapotranspiration at a mixed forest in the University of Michigan Biological Station (UMBS) at the footprint of the US-UMd flux tower to characterize the onset and advancement of hydraulic stress and post-stress recovery. We define stress by observing tree-level decrease of stomatal conductance during sunny days as soil-moisture deficit progresses. We use the Penman-Monteith (PM) formulation to calculate stomatal conductance given observed atmospheric forcing: air temperature, humidity, net radiation, soil heat flux, and aerodynamic resistance. Such PM-based approach effectively decouples changes in evapotranspiration due to atmospheric forcing vs. changes due to decreased stomatal conductance. Multiple years of sap-flow measurements in tens of trees of multiple species allow us to identify the species-specific characteristics of the onset of stress, and the hysteretic dynamics of stomatal conductance. The daily hysteresis indicates the severity of stress. Longer-term inter-day hysteresis of the relationship between noon-time stomatal conductance and soil moisture, before and after rain have alleviated the moisture stress, indicates species-specific strategies of hydraulic-stress recovery. Recovery time is related to the degree of stress, and can vary between a nearly reversible state and 1 to 2 days of recovery, to a long recovery of several days. We find large differences between species in the sensitivity to stress and in the strength of coupling between stem water content and stomatal conductance. These are consistent with the hydraulic strategy of the trees along the an/isohydric continuum.
Identifying the hydraulic characteristics of water stress and direct observations of the coupling between stem water storage, conductance, and transpiration provide key observations with which to tune hydrodynamic models and allow process-based functional-type parameterization of stomatal conductance that accounts for tree hydrodynamics and hydraulic stress recovery.
How to cite: Bohrer, G., Yazbeck, T., Restrepo Acevedo, A. M., and Matheny, A. M.: Diurnal and inter-day hysteresis of species-specific stomatal conductance from sap-flow measurements illustrates hydraulic-stress responses strategies of trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5672, https://doi.org/10.5194/egusphere-egu2020-5672, 2020.
EGU2020-17021 | Displays | BG3.8
Design and Performance Evaluation of Internet of Things (IoT) Based Multifunctional Device for Plant Ecophysiology & Hydrology: Toward Stem Water Content & Sap FlowShahla Asgharinia, Luca Belelli Marchesini, Damiano Gianelle, and Riccardo Valentini
Using IoT technologies represents a novel low cost and efficient tool for studies in many disciplines (plant ecophysiology and hydrology) to unravel the vulnerability of an ecosystem to climatic stress. Taking advantage of IoT, a new multifunctional device, the “TreeTalker”, was developed to monitor in real time physical and biological parameters of single trees as well as some additional ecosystem-related variables. Here, we present performance of the TreeTalker to illustrate mainly the role of stem water content and water transport in tree behavior and function with respect to internal and external forces. TreeTalker is designed based on Granier-type thermal dissipation probe (TDP) and a capacitance sensor to measure stem water content.
In this study, two main experiments are analyzed. In the first experiment, procedures for calibration and use of capacitance sensors are presented. Considering the effect of wood density on frequency data, calibration is performed on different species and diameter harvested stems to convert the sensor-reported values to stem volumetric water content. In the second experiment, application of 20 TreeTalkers with particular emphasis placed on measuring hourly, daily and monthly sap flow and stem water content fluctuations under well-irrigated and deficit-irrigated treatments of Juglans regia L. was conducted on a study site in northeast of Italy.
The results show that the range of stem water content is highly influenced by environmental factors. Stem water content has a significant portion of the daily tree water uptake. Low water storage occurs in response to drought and less soil water availability, which clarifies the high dependency of trees on stem water content under deficit-irrigated treatments. The diurnal-nocturnal pattern of stem water content and sap flow revealed an inverse relation. Such finding, still under investigation is explained by the important water recharge during the night, likely due to stem volume changes and lateral water distribution rather than by vertical flow rate.
How to cite: Asgharinia, S., Belelli Marchesini, L., Gianelle, D., and Valentini, R.: Design and Performance Evaluation of Internet of Things (IoT) Based Multifunctional Device for Plant Ecophysiology & Hydrology: Toward Stem Water Content & Sap Flow , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17021, https://doi.org/10.5194/egusphere-egu2020-17021, 2020.
Using IoT technologies represents a novel low cost and efficient tool for studies in many disciplines (plant ecophysiology and hydrology) to unravel the vulnerability of an ecosystem to climatic stress. Taking advantage of IoT, a new multifunctional device, the “TreeTalker”, was developed to monitor in real time physical and biological parameters of single trees as well as some additional ecosystem-related variables. Here, we present performance of the TreeTalker to illustrate mainly the role of stem water content and water transport in tree behavior and function with respect to internal and external forces. TreeTalker is designed based on Granier-type thermal dissipation probe (TDP) and a capacitance sensor to measure stem water content.
In this study, two main experiments are analyzed. In the first experiment, procedures for calibration and use of capacitance sensors are presented. Considering the effect of wood density on frequency data, calibration is performed on different species and diameter harvested stems to convert the sensor-reported values to stem volumetric water content. In the second experiment, application of 20 TreeTalkers with particular emphasis placed on measuring hourly, daily and monthly sap flow and stem water content fluctuations under well-irrigated and deficit-irrigated treatments of Juglans regia L. was conducted on a study site in northeast of Italy.
The results show that the range of stem water content is highly influenced by environmental factors. Stem water content has a significant portion of the daily tree water uptake. Low water storage occurs in response to drought and less soil water availability, which clarifies the high dependency of trees on stem water content under deficit-irrigated treatments. The diurnal-nocturnal pattern of stem water content and sap flow revealed an inverse relation. Such finding, still under investigation is explained by the important water recharge during the night, likely due to stem volume changes and lateral water distribution rather than by vertical flow rate.
How to cite: Asgharinia, S., Belelli Marchesini, L., Gianelle, D., and Valentini, R.: Design and Performance Evaluation of Internet of Things (IoT) Based Multifunctional Device for Plant Ecophysiology & Hydrology: Toward Stem Water Content & Sap Flow , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17021, https://doi.org/10.5194/egusphere-egu2020-17021, 2020.
EGU2020-5658 | Displays | BG3.8
Integrating soil moisture in SCOPE model for improving remote sensing of evapotranspiration and photosynthesis under water stress conditionsBagher Bayat, Christiaan van der Tol, Peiqi Yang, Carsten Montzka, Harry Vereecken, and Wouter Verhoef
A radiative transfer and process-based model, called Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE), relates remote sensing signals with plant functioning (i.e., evapotranspiration and photosynthesis). Relying on optical remote sensing data, the SCOPE model estimates evapotranspiration and photosynthesis, but these ecosystem-level fluxes may be significantly overestimated if water availability is the primary limiting factor for vegetation. Remedying this shortcoming, additional information from extra sources is needed. In this study, we propose considering water stress in SCOPE by incorporating soil moisture data in the model, besides using satellite optical reflectance observations. A functional link between soil moisture, soil surface resistance, leaf water potential, and carboxylation capacity is introduced as an extra element in SCOPE, resulting in a soil moisture integrated version of the model, SCOPE-SM. The modified model simulates additional state variables: (i) vapor pressure (ei), both in the soil pore space and leaf stomata in equilibrium with liquid water potential; (ii) the maximum carboxylation capacity (Vcmax) by a soil moisture dependent stress factor; and (iii) the soil surface resistance (rss) through approximation by a soil moisture dependent hydraulic conductivity. The new approach was evaluated at a Fluxnet site (US-Var) with dominant C3 grasses and covering a wet-to-dry episode from January to August 2004. By using the original SCOPE (version 1.61), we simulated half-hourly time steps of plant functioning via locally measured weather data and time series of Landsat (TM and ETM) imagery. Then, SCOPE-SM was similarly applied to simulate plant functioning for three cases using Landsat imagery: (i) with modeled ei; (ii) with modeled ei and Vcmax; and (iii) with modeled ei, Vcmax, and rss. The outputs of all four simulations were compared to flux tower plant functioning measurements. The results indicate a significant improvement proceeding from the first to the fourth case in which we used both Landsat optical imagery and soil moisture data through SCOPE-SM. Our results show that the combined use of optical reflectance and soil moisture observations has great potential to capture variations of evapotranspiration and photosynthesis during drought episodes. Further, we found that the information contained in soil moisture observations can describe more variations of measured evapotranspiration compared to the information contained in thermal observations.
How to cite: Bayat, B., van der Tol, C., Yang, P., Montzka, C., Vereecken, H., and Verhoef, W.: Integrating soil moisture in SCOPE model for improving remote sensing of evapotranspiration and photosynthesis under water stress conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5658, https://doi.org/10.5194/egusphere-egu2020-5658, 2020.
A radiative transfer and process-based model, called Soil-Canopy-Observation of Photosynthesis and Energy fluxes (SCOPE), relates remote sensing signals with plant functioning (i.e., evapotranspiration and photosynthesis). Relying on optical remote sensing data, the SCOPE model estimates evapotranspiration and photosynthesis, but these ecosystem-level fluxes may be significantly overestimated if water availability is the primary limiting factor for vegetation. Remedying this shortcoming, additional information from extra sources is needed. In this study, we propose considering water stress in SCOPE by incorporating soil moisture data in the model, besides using satellite optical reflectance observations. A functional link between soil moisture, soil surface resistance, leaf water potential, and carboxylation capacity is introduced as an extra element in SCOPE, resulting in a soil moisture integrated version of the model, SCOPE-SM. The modified model simulates additional state variables: (i) vapor pressure (ei), both in the soil pore space and leaf stomata in equilibrium with liquid water potential; (ii) the maximum carboxylation capacity (Vcmax) by a soil moisture dependent stress factor; and (iii) the soil surface resistance (rss) through approximation by a soil moisture dependent hydraulic conductivity. The new approach was evaluated at a Fluxnet site (US-Var) with dominant C3 grasses and covering a wet-to-dry episode from January to August 2004. By using the original SCOPE (version 1.61), we simulated half-hourly time steps of plant functioning via locally measured weather data and time series of Landsat (TM and ETM) imagery. Then, SCOPE-SM was similarly applied to simulate plant functioning for three cases using Landsat imagery: (i) with modeled ei; (ii) with modeled ei and Vcmax; and (iii) with modeled ei, Vcmax, and rss. The outputs of all four simulations were compared to flux tower plant functioning measurements. The results indicate a significant improvement proceeding from the first to the fourth case in which we used both Landsat optical imagery and soil moisture data through SCOPE-SM. Our results show that the combined use of optical reflectance and soil moisture observations has great potential to capture variations of evapotranspiration and photosynthesis during drought episodes. Further, we found that the information contained in soil moisture observations can describe more variations of measured evapotranspiration compared to the information contained in thermal observations.
How to cite: Bayat, B., van der Tol, C., Yang, P., Montzka, C., Vereecken, H., and Verhoef, W.: Integrating soil moisture in SCOPE model for improving remote sensing of evapotranspiration and photosynthesis under water stress conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5658, https://doi.org/10.5194/egusphere-egu2020-5658, 2020.
EGU2020-6038 | Displays | BG3.8
Global transpiration modelling: can the optimality hypothesis improve partitioning of ecosystem-scale evapotranspiration?Alison Prior and Iain-Colin Prentice
The volume of water entering the atmosphere through transpiration is thought to be greater than the flow of all rivers to the oceans. It makes up the majority of evapotranspiration (ET) and significantly contributes to rainfall and therefore also to surface water runoff. However, there is no consensus on how transpiration responds to a changing environment; or even as to whether it is increasing over time. Global transpiration estimates are most commonly made through the partitioning of ET models. However, in many ET models, the dynamics of vegetation growth and associated impacts on evapotranspiration are overlooked. Therefore, global estimates of transpiration from climate models are poorly constrained, with large uncertainties especially in stomatal conductance.
The ‘P model’ (for Production) is a recently developed, ‘next-generation’ model for Gross Primary Production, GPP. Derived from biochemical process of plants, the P model is built upon the established standard model for photosynthesis – combined with optimality hypotheses for the adaptation and acclimation of key model parameters – to determine GPP. The P model has the potential to provide a coupled global carbon and water model that responds correctly to changing environmental conditions. It requires only elevation, CO2 concentration, incident solar radiation, vapour pressure deficit (VPD) and temperature as inputs, in addition to remotely sensed green vegetation cover (fAPAR). The key idea motivating this research is that by exploiting the coupling of land-atmosphere carbon and water exchanges through stomatal behaviour, it should be possible to develop a near real-time transpiration monitoring system in which fAPAR is a key input. The P-model provides the means to do this. Initial results will be shown for both transpiration and GPP, with validation at >100 eddy-covariance flux-tower sites.
How to cite: Prior, A. and Prentice, I.-C.: Global transpiration modelling: can the optimality hypothesis improve partitioning of ecosystem-scale evapotranspiration?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6038, https://doi.org/10.5194/egusphere-egu2020-6038, 2020.
The volume of water entering the atmosphere through transpiration is thought to be greater than the flow of all rivers to the oceans. It makes up the majority of evapotranspiration (ET) and significantly contributes to rainfall and therefore also to surface water runoff. However, there is no consensus on how transpiration responds to a changing environment; or even as to whether it is increasing over time. Global transpiration estimates are most commonly made through the partitioning of ET models. However, in many ET models, the dynamics of vegetation growth and associated impacts on evapotranspiration are overlooked. Therefore, global estimates of transpiration from climate models are poorly constrained, with large uncertainties especially in stomatal conductance.
The ‘P model’ (for Production) is a recently developed, ‘next-generation’ model for Gross Primary Production, GPP. Derived from biochemical process of plants, the P model is built upon the established standard model for photosynthesis – combined with optimality hypotheses for the adaptation and acclimation of key model parameters – to determine GPP. The P model has the potential to provide a coupled global carbon and water model that responds correctly to changing environmental conditions. It requires only elevation, CO2 concentration, incident solar radiation, vapour pressure deficit (VPD) and temperature as inputs, in addition to remotely sensed green vegetation cover (fAPAR). The key idea motivating this research is that by exploiting the coupling of land-atmosphere carbon and water exchanges through stomatal behaviour, it should be possible to develop a near real-time transpiration monitoring system in which fAPAR is a key input. The P-model provides the means to do this. Initial results will be shown for both transpiration and GPP, with validation at >100 eddy-covariance flux-tower sites.
How to cite: Prior, A. and Prentice, I.-C.: Global transpiration modelling: can the optimality hypothesis improve partitioning of ecosystem-scale evapotranspiration?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6038, https://doi.org/10.5194/egusphere-egu2020-6038, 2020.
EGU2020-19744 | Displays | BG3.8
Machine-learning emulation of a forest biogeochemistry model for efficient biosphere optimizationNikolay Strigul and Adam Erickson
Management controls the spatial configuration of a number of landscapes globally, from forests to rangelands. The majority of landcover change and all land-use change is the result of human decision-making. As human populations and global temperatures continue to increase, an engineering approach is needed to ensure the persistence of biological diversity and natural capital critical to human well-being. Such an approach may be based on manipulating ecosystems to achieve desired future states, informed by the latest simulation models. Models of the land surface are now being used to inform policy in the form of planning and management practices. This often involves the application of models that include spatial dynamics and operate at a landscape scale. The strong correspondence between the resolution and extent of modeling and management activities at this scale, and ability to efficiently simulate the decadal-to-centennial time-scales of interest, provide managers with a credible scientific tool for anticipating future land states under different scenarios. The importance of such tools to managers has grown dramatically with the challenges posed by anthropogenic climate change. As ecosystem simulation models continually improve in precision, accuracy, and robustness, we posit that models may be mathematically optimized as a basis for optimizing the management of real-world systems. Since current ecosystem simulation models are coarse approximations of highly complex and dynamic real-world systems, such optimizations should ideally account for uncertainty and physical or biochemical constraints, thereby improving the tractability of the optimization problem. In this work, we demonstrate the emulation and optimization of a forest biogeochemistry model from the SORTIE-PPA family of models. In doing so, we provide the first demonstration of the concept of biosphere optimization (Erickson 2015), which may one day be extended to include computational genetic manipulation experiments. To perform this work, we utilize the open-source Earth-systems Research and Development Environment (ERDE) library, which contains built-in functions for performing these and other analyses with land models, with a particular focus on forests.
How to cite: Strigul, N. and Erickson, A.: Machine-learning emulation of a forest biogeochemistry model for efficient biosphere optimization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19744, https://doi.org/10.5194/egusphere-egu2020-19744, 2020.
Management controls the spatial configuration of a number of landscapes globally, from forests to rangelands. The majority of landcover change and all land-use change is the result of human decision-making. As human populations and global temperatures continue to increase, an engineering approach is needed to ensure the persistence of biological diversity and natural capital critical to human well-being. Such an approach may be based on manipulating ecosystems to achieve desired future states, informed by the latest simulation models. Models of the land surface are now being used to inform policy in the form of planning and management practices. This often involves the application of models that include spatial dynamics and operate at a landscape scale. The strong correspondence between the resolution and extent of modeling and management activities at this scale, and ability to efficiently simulate the decadal-to-centennial time-scales of interest, provide managers with a credible scientific tool for anticipating future land states under different scenarios. The importance of such tools to managers has grown dramatically with the challenges posed by anthropogenic climate change. As ecosystem simulation models continually improve in precision, accuracy, and robustness, we posit that models may be mathematically optimized as a basis for optimizing the management of real-world systems. Since current ecosystem simulation models are coarse approximations of highly complex and dynamic real-world systems, such optimizations should ideally account for uncertainty and physical or biochemical constraints, thereby improving the tractability of the optimization problem. In this work, we demonstrate the emulation and optimization of a forest biogeochemistry model from the SORTIE-PPA family of models. In doing so, we provide the first demonstration of the concept of biosphere optimization (Erickson 2015), which may one day be extended to include computational genetic manipulation experiments. To perform this work, we utilize the open-source Earth-systems Research and Development Environment (ERDE) library, which contains built-in functions for performing these and other analyses with land models, with a particular focus on forests.
How to cite: Strigul, N. and Erickson, A.: Machine-learning emulation of a forest biogeochemistry model for efficient biosphere optimization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19744, https://doi.org/10.5194/egusphere-egu2020-19744, 2020.
EGU2020-11925 | Displays | BG3.8
On the relation between tree foliage clumping at the branch scale and light and water limitationsMartin Beland and Dennis Baldocchi
Foliage clumping is known to have a significant effect on the radiative transfer and mass and energy exchanges in forests. It is an important component of canopy structure to consider for the estimation of photosynthesis rates and the interpretation of observed solar induced fluorescence (SIF). Yet, relatively little is known about the drivers of foliage clumping, and few observations of foliage clumping are available at the branch scale. Here, we report on a study using laser light to estimate foliage clumping at the tree branch scale in eight broadleaf species, at different heights above ground, from four sites located in two climatic zones: one water limited, and one light limited. We also integrate our results with published foliage clumping estimates from two sites (one in each climatic zone). We find that foliage arrangement on branches exposed to high solar irradiance tend to be random at the dry sites, but are very clumped at humid sites where competition for light is high. Branches sampled at the top of tall canopies at humid sites showed that foliage clumping increased with tree height, suggesting that higher competition for light results in the production of larger numbers of leaves grouped together which reduces the light interception efficiency on a per leaf area basis. Comparison with landscape clumping values suggests that the spatial availability of a limiting resource is a major driver of foliage clumping in forests.
How to cite: Beland, M. and Baldocchi, D.: On the relation between tree foliage clumping at the branch scale and light and water limitations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11925, https://doi.org/10.5194/egusphere-egu2020-11925, 2020.
Foliage clumping is known to have a significant effect on the radiative transfer and mass and energy exchanges in forests. It is an important component of canopy structure to consider for the estimation of photosynthesis rates and the interpretation of observed solar induced fluorescence (SIF). Yet, relatively little is known about the drivers of foliage clumping, and few observations of foliage clumping are available at the branch scale. Here, we report on a study using laser light to estimate foliage clumping at the tree branch scale in eight broadleaf species, at different heights above ground, from four sites located in two climatic zones: one water limited, and one light limited. We also integrate our results with published foliage clumping estimates from two sites (one in each climatic zone). We find that foliage arrangement on branches exposed to high solar irradiance tend to be random at the dry sites, but are very clumped at humid sites where competition for light is high. Branches sampled at the top of tall canopies at humid sites showed that foliage clumping increased with tree height, suggesting that higher competition for light results in the production of larger numbers of leaves grouped together which reduces the light interception efficiency on a per leaf area basis. Comparison with landscape clumping values suggests that the spatial availability of a limiting resource is a major driver of foliage clumping in forests.
How to cite: Beland, M. and Baldocchi, D.: On the relation between tree foliage clumping at the branch scale and light and water limitations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11925, https://doi.org/10.5194/egusphere-egu2020-11925, 2020.
EGU2020-2793 | Displays | BG3.8
Importance of shaded leaf contribution to the total GPP of high latitude ecosystems: evaluation of MODIS GPPBin Chen, Altaf Arain, Jing Chen, Shaoqiang Wang, Gang Mo, and Jane Liu
The Moderate Resolution Imaging Radiometer (MODIS) is a primary instrument in the NASA Earth Observing System (EOS) which was designed for monitoring global terrestrial vegetation. MODIS provides global estimates of 8-day mean gross primary productivity (GPP) at 1-km spatial resolution. In this study, the MODIS GPP algorithm using light use efficiency (LUE) approach and the Integrated Carbon-Canadian Land Surface Scheme (IC-CLASS) based on Farquhar photosynthetic model and a sunlit and shaded leaf separation scheme was evaluated against eddy covariance (EC) measured GPP in a variety of ecosystems in Canada. Although GPP simulated by the two models agreed well when they were averaged over Canadian landmass, there were systematic differences between them in spatial distribution patterns. These differences were due to inherent shortcomings of the LUE modeling approach. When a constant maximum LUE value is specified for each biome type, this simplification cannot appropriately deal with the shaded leaf contribution to total canopy GPP. When GPP was simulated by IC-CLASS with the separation of sunlit and shaded leaves, the biases were minimized. Compared with daily and annual GPP derived from EC flux data at 7 Fluxnet Canada sites, IC-CLASS performed better than the MODIS GPP algorithm. The differences between IC-CLASS and MODIS GPP were larger in more clumped canopies (i.e. forests), resulting from the increase in the fraction of shaded leaves. Thus, the LUE models should be improved to consider different LUEs in sunlit and shaded portions of the canopy for their effective and reliable estimation of GPP at regional scale.
How to cite: Chen, B., Arain, A., Chen, J., Wang, S., Mo, G., and Liu, J.: Importance of shaded leaf contribution to the total GPP of high latitude ecosystems: evaluation of MODIS GPP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2793, https://doi.org/10.5194/egusphere-egu2020-2793, 2020.
The Moderate Resolution Imaging Radiometer (MODIS) is a primary instrument in the NASA Earth Observing System (EOS) which was designed for monitoring global terrestrial vegetation. MODIS provides global estimates of 8-day mean gross primary productivity (GPP) at 1-km spatial resolution. In this study, the MODIS GPP algorithm using light use efficiency (LUE) approach and the Integrated Carbon-Canadian Land Surface Scheme (IC-CLASS) based on Farquhar photosynthetic model and a sunlit and shaded leaf separation scheme was evaluated against eddy covariance (EC) measured GPP in a variety of ecosystems in Canada. Although GPP simulated by the two models agreed well when they were averaged over Canadian landmass, there were systematic differences between them in spatial distribution patterns. These differences were due to inherent shortcomings of the LUE modeling approach. When a constant maximum LUE value is specified for each biome type, this simplification cannot appropriately deal with the shaded leaf contribution to total canopy GPP. When GPP was simulated by IC-CLASS with the separation of sunlit and shaded leaves, the biases were minimized. Compared with daily and annual GPP derived from EC flux data at 7 Fluxnet Canada sites, IC-CLASS performed better than the MODIS GPP algorithm. The differences between IC-CLASS and MODIS GPP were larger in more clumped canopies (i.e. forests), resulting from the increase in the fraction of shaded leaves. Thus, the LUE models should be improved to consider different LUEs in sunlit and shaded portions of the canopy for their effective and reliable estimation of GPP at regional scale.
How to cite: Chen, B., Arain, A., Chen, J., Wang, S., Mo, G., and Liu, J.: Importance of shaded leaf contribution to the total GPP of high latitude ecosystems: evaluation of MODIS GPP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2793, https://doi.org/10.5194/egusphere-egu2020-2793, 2020.
EGU2020-12801 | Displays | BG3.8
Interception by a temperate coniferous forest and its relationship with wet canopy gas exchangeLinjie Jiao, Yuichi Sempuku, Ting-wei Chang, and Yoshiko Kosugi
Interception is an important hydrological process relating to canopy gas exchange and takes a significant part from precipitation. The real interception process by the needle leaves is worth discussing because their shape may allow interception by both surfaces and thus affects photosynthesis by blocking stomata. Therefore, the aim of this study is to figure out the distribution of interception at needle leaf and its relation with the gas exchange of wet canopy.
We measured ecosystem flux and wetness from a Japanese cypress forest by the advanced water-proof enclosed gas analyzer (LI7200, LI-COR, the USA) and handmade wetness sensors. A SVAT (soil-vegetation-atmosphere transfer) multilayer model with two rainfall interception solutions (free gas exchange with interception only by the adaxial surface and no gas exchange with interception by both surfaces) has been used to figure out the distribution of rainfall interception, snow melting water distribution and photosynthesis process of wet canopy.
The results include precipitation events from 4 years, showing that interception can happen not only on the adaxial surface but also on both surfaces. Meanwhile, when the intensity of rainfall events enhanced, the possibility of interception on both surfaces increased. Hence, such kind of needle leaf can process photosynthesis during the rainfall. Future studies should concentrate on improving the model for snow process and soil respiration. More comparison with other types of forests may also provide worthy results for learning how plants adjust photosynthesis to adapt the climate change.
How to cite: Jiao, L., Sempuku, Y., Chang, T., and Kosugi, Y.: Interception by a temperate coniferous forest and its relationship with wet canopy gas exchange, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12801, https://doi.org/10.5194/egusphere-egu2020-12801, 2020.
Interception is an important hydrological process relating to canopy gas exchange and takes a significant part from precipitation. The real interception process by the needle leaves is worth discussing because their shape may allow interception by both surfaces and thus affects photosynthesis by blocking stomata. Therefore, the aim of this study is to figure out the distribution of interception at needle leaf and its relation with the gas exchange of wet canopy.
We measured ecosystem flux and wetness from a Japanese cypress forest by the advanced water-proof enclosed gas analyzer (LI7200, LI-COR, the USA) and handmade wetness sensors. A SVAT (soil-vegetation-atmosphere transfer) multilayer model with two rainfall interception solutions (free gas exchange with interception only by the adaxial surface and no gas exchange with interception by both surfaces) has been used to figure out the distribution of rainfall interception, snow melting water distribution and photosynthesis process of wet canopy.
The results include precipitation events from 4 years, showing that interception can happen not only on the adaxial surface but also on both surfaces. Meanwhile, when the intensity of rainfall events enhanced, the possibility of interception on both surfaces increased. Hence, such kind of needle leaf can process photosynthesis during the rainfall. Future studies should concentrate on improving the model for snow process and soil respiration. More comparison with other types of forests may also provide worthy results for learning how plants adjust photosynthesis to adapt the climate change.
How to cite: Jiao, L., Sempuku, Y., Chang, T., and Kosugi, Y.: Interception by a temperate coniferous forest and its relationship with wet canopy gas exchange, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12801, https://doi.org/10.5194/egusphere-egu2020-12801, 2020.
EGU2020-5183 | Displays | BG3.8
Proofs of non-stomatal limitations of potato photosynthesis during drought by using in-situ eddy covariance dataQuentin Beauclaire, Louis Gourlez de la Motte, Heinesch Bernard, and Longdoz Bernard
Water stress in one of the main limiting factors in agro-systems, causing a reduction in gross primary production (GPP) and by extend, yields. However, it is still unclear to attribute whether the limitations of photosynthesis originate from a strict stomatal control (SOL) or from other non-stomatal limitations (NSOL). In this study, we investigated the effects of drought on potato crop by using eddy covariance data at the Lonzée Terrestrial Observatory during three consecutive cultivation periods (2010, 2014 and 2018). Regardless the years and the timing of the drought appearance, the maximum carboxylation rate Vcmax (one of the NSOL) was reduced with decreasing REW, while the stomatal sensitivity to GPP parameter in the Medlyn et al. model (G1-SOL) remained constant. We showed that below the REW threshold of 0.55 ± 0.05, the non-consideration of NSOL in the ecosystem CO2 model led to an overestimation of the modelled GPP, which was about three times higher than its unstressed corresponding value. As a result, decreasing Vcmax while maintaining G1 constant was sufficient to reproduce GPP and canopy conductance dynamics during drought. At a sub-daily scale, the intrinsic water-use efficiency did not vary during drought, neither its dependence on VPD nor its hourly dynamics. This reinforced the hypothesis of direct and feedback effects of NSOL on canopy conductance and photosynthesis, which was supported by the uniform coupling between carbon and water fluxes. We recommend the implementation of NSOL in ecosystem CO2 models since non-stomatal factors were responsible for the decrease in potato crop GPP during drought.
How to cite: Beauclaire, Q., Gourlez de la Motte, L., Bernard, H., and Bernard, L.: Proofs of non-stomatal limitations of potato photosynthesis during drought by using in-situ eddy covariance data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5183, https://doi.org/10.5194/egusphere-egu2020-5183, 2020.
Water stress in one of the main limiting factors in agro-systems, causing a reduction in gross primary production (GPP) and by extend, yields. However, it is still unclear to attribute whether the limitations of photosynthesis originate from a strict stomatal control (SOL) or from other non-stomatal limitations (NSOL). In this study, we investigated the effects of drought on potato crop by using eddy covariance data at the Lonzée Terrestrial Observatory during three consecutive cultivation periods (2010, 2014 and 2018). Regardless the years and the timing of the drought appearance, the maximum carboxylation rate Vcmax (one of the NSOL) was reduced with decreasing REW, while the stomatal sensitivity to GPP parameter in the Medlyn et al. model (G1-SOL) remained constant. We showed that below the REW threshold of 0.55 ± 0.05, the non-consideration of NSOL in the ecosystem CO2 model led to an overestimation of the modelled GPP, which was about three times higher than its unstressed corresponding value. As a result, decreasing Vcmax while maintaining G1 constant was sufficient to reproduce GPP and canopy conductance dynamics during drought. At a sub-daily scale, the intrinsic water-use efficiency did not vary during drought, neither its dependence on VPD nor its hourly dynamics. This reinforced the hypothesis of direct and feedback effects of NSOL on canopy conductance and photosynthesis, which was supported by the uniform coupling between carbon and water fluxes. We recommend the implementation of NSOL in ecosystem CO2 models since non-stomatal factors were responsible for the decrease in potato crop GPP during drought.
How to cite: Beauclaire, Q., Gourlez de la Motte, L., Bernard, H., and Bernard, L.: Proofs of non-stomatal limitations of potato photosynthesis during drought by using in-situ eddy covariance data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5183, https://doi.org/10.5194/egusphere-egu2020-5183, 2020.
EGU2020-18170 | Displays | BG3.8
Small scale CO2 fluxes in a rainfed maize field under N fertilizationGyörgyi Gelybó, Réka Deli, Márton Dencső, Bernadett Kósa, Viktória Mateika, Márton Tóth, Emese Ujj, Tamás Árendás, Nándor Fodor, and Hosam Bayoumi
Carbon-dioxide (CO2) fluxes in the soil-plant-atmosphere system contain bidirectional material transport with organic and inorganic sources and sinks, and various pathways. Proportion of irrigated fields in the total area of Hungarian arable lands is low, and incase of a rainfed field water and CO2 fluxes are only driven by meteorological factors. In this study we focused on maize under different fertilization treatments to see the plot scale variability of CO2 fluxes and connected parameters.
The site is a multifactorial sowing time-fertilizer-maize variety field experiment near Martonvásár. Two treatment plots were selected for the measurements with contrasting 60 kg N ha-1 and 180 kg N ha-1 fertilizer treatments and no other factors were considered in the present study. We performed synchronized observations of (i) CO2 fluxes: soil respiration (Rs; EGM-5 gas analyser + SRC-1 chamber, PPSystems); leaf scale photosynthesis (A; CIRAS-3 portable photosynthesis system, PPSystems)), (ii) soil temperature and soil water content, (iii) plant parameters: root growth (CI-600, CID-Bioscience), plant height, leaf area index (Accupar LP-80 ceptometer, Li-Cor). Data on the above parameters comprise several spatial replicates to explore spatial heterogeneity in case of a maize field managed in accordance with the typical Hungarian practice. The average applied N amount in the country is around 100-105 kg ha-1.
Field measurements for CO2 fluxes and biotic and abiotic drivers were performed six times in the vegetation period to establish relationship among them. Data were analyzed to optimize the labour intensive protocol for this experimental setup. Photosynthesis varied within the vertical canopy as reflected by measurements on five leaves per plant. Soil respiration was more dependent temporally on soil water availability than on temperature.
How to cite: Gelybó, G., Deli, R., Dencső, M., Kósa, B., Mateika, V., Tóth, M., Ujj, E., Árendás, T., Fodor, N., and Bayoumi, H.: Small scale CO2 fluxes in a rainfed maize field under N fertilization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18170, https://doi.org/10.5194/egusphere-egu2020-18170, 2020.
Carbon-dioxide (CO2) fluxes in the soil-plant-atmosphere system contain bidirectional material transport with organic and inorganic sources and sinks, and various pathways. Proportion of irrigated fields in the total area of Hungarian arable lands is low, and incase of a rainfed field water and CO2 fluxes are only driven by meteorological factors. In this study we focused on maize under different fertilization treatments to see the plot scale variability of CO2 fluxes and connected parameters.
The site is a multifactorial sowing time-fertilizer-maize variety field experiment near Martonvásár. Two treatment plots were selected for the measurements with contrasting 60 kg N ha-1 and 180 kg N ha-1 fertilizer treatments and no other factors were considered in the present study. We performed synchronized observations of (i) CO2 fluxes: soil respiration (Rs; EGM-5 gas analyser + SRC-1 chamber, PPSystems); leaf scale photosynthesis (A; CIRAS-3 portable photosynthesis system, PPSystems)), (ii) soil temperature and soil water content, (iii) plant parameters: root growth (CI-600, CID-Bioscience), plant height, leaf area index (Accupar LP-80 ceptometer, Li-Cor). Data on the above parameters comprise several spatial replicates to explore spatial heterogeneity in case of a maize field managed in accordance with the typical Hungarian practice. The average applied N amount in the country is around 100-105 kg ha-1.
Field measurements for CO2 fluxes and biotic and abiotic drivers were performed six times in the vegetation period to establish relationship among them. Data were analyzed to optimize the labour intensive protocol for this experimental setup. Photosynthesis varied within the vertical canopy as reflected by measurements on five leaves per plant. Soil respiration was more dependent temporally on soil water availability than on temperature.
How to cite: Gelybó, G., Deli, R., Dencső, M., Kósa, B., Mateika, V., Tóth, M., Ujj, E., Árendás, T., Fodor, N., and Bayoumi, H.: Small scale CO2 fluxes in a rainfed maize field under N fertilization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18170, https://doi.org/10.5194/egusphere-egu2020-18170, 2020.
EGU2020-19926 | Displays | BG3.8
Global trends of soil organic carbon based on soil moisture and ensemble learningMario Guevara and Rodrigo Vargas
The response of SOC spatial variability to different soil moisture conditions has not been explored at the global scale in part due to the lack of continuous information of these variables across large areas of the world. Analyzing this relationship could be useful to reduce the current uncertainty around SOC distribution and change. Large scale models and SOC mapping efforts contrast with country specific SOC maps, and large uncertainties on SOC magnitudes and patterns remain across large areas of the world. Our main objective was to explore SOC trends using soil moisture values as prediction factors. Using SOC point data from the World Soil Information Service (WoSIS, n=87002 point data between the years 1991 and 2015) we applied a cross validation-based ensemble learning approach to generate continuous SOC maps in a quinquennial basis (limited to 0-30 cm depth). The cross validated root mean squared error (RMSE) of our ensemble for the period 1991 -1995 varied from 32 to 33 g/kg while the correlation between modeled and observed data varied from r=0.45 to r=0.55. The accuracy of SOC estimates increased for the period 2011-2015 (r=0.75 to r=0.81 and RMSE= 20 to 23 g/kg). However the lower RMSE (16 to 17 gr/kg) was found for the years 2001-2005 (r=52 to r=58). Trend detection analysis applied to SOC predictions reveal areas showing significant (p-value < 0.05) positive trends across ~2.7 million km2 at the global scale ranging from 0.3 to 29 g/kg. Significant negative trends of SOC were found across ~3.6 million km2 at the global scale ranging from -22.2 to -0.3 g/kg. Main SOC losses were found across North America, Europe, central Africa, and Siberia. Our results quantifying the response of soils to changing soil moisture conditions contribute with new insights that are useful for the development of soil carbon monitoring systems.
How to cite: Guevara, M. and Vargas, R.: Global trends of soil organic carbon based on soil moisture and ensemble learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19926, https://doi.org/10.5194/egusphere-egu2020-19926, 2020.
The response of SOC spatial variability to different soil moisture conditions has not been explored at the global scale in part due to the lack of continuous information of these variables across large areas of the world. Analyzing this relationship could be useful to reduce the current uncertainty around SOC distribution and change. Large scale models and SOC mapping efforts contrast with country specific SOC maps, and large uncertainties on SOC magnitudes and patterns remain across large areas of the world. Our main objective was to explore SOC trends using soil moisture values as prediction factors. Using SOC point data from the World Soil Information Service (WoSIS, n=87002 point data between the years 1991 and 2015) we applied a cross validation-based ensemble learning approach to generate continuous SOC maps in a quinquennial basis (limited to 0-30 cm depth). The cross validated root mean squared error (RMSE) of our ensemble for the period 1991 -1995 varied from 32 to 33 g/kg while the correlation between modeled and observed data varied from r=0.45 to r=0.55. The accuracy of SOC estimates increased for the period 2011-2015 (r=0.75 to r=0.81 and RMSE= 20 to 23 g/kg). However the lower RMSE (16 to 17 gr/kg) was found for the years 2001-2005 (r=52 to r=58). Trend detection analysis applied to SOC predictions reveal areas showing significant (p-value < 0.05) positive trends across ~2.7 million km2 at the global scale ranging from 0.3 to 29 g/kg. Significant negative trends of SOC were found across ~3.6 million km2 at the global scale ranging from -22.2 to -0.3 g/kg. Main SOC losses were found across North America, Europe, central Africa, and Siberia. Our results quantifying the response of soils to changing soil moisture conditions contribute with new insights that are useful for the development of soil carbon monitoring systems.
How to cite: Guevara, M. and Vargas, R.: Global trends of soil organic carbon based on soil moisture and ensemble learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19926, https://doi.org/10.5194/egusphere-egu2020-19926, 2020.
EGU2020-20943 | Displays | BG3.8
Soil heterotrophic respiration as a function of water content and temperature in a mechanistic pore-scale modelMehdi Gharasoo, Linden Fairbairn, Fereidoun Rezanezhad, and Philippe Van Cappellen
Soil heterotrophic respiration has been considered as a key source of CO2 flux into the atmosphere and thus plays an important role in global warming. Although the relationship between soil heterotrophic respiration and soil water content has been frequently studied both theoretically and experimentally, model development has thus far been empirically based. Empirical models are often limited to the specific condition of their case studies and cannot be used as a general platform for modeling. Moreover, it is difficult to extend the empirical models by theoretically defined affinities to any desired degree of accuracy. As a result, it is of high priority to develop process-based models that are able to describe the mechanisms behind this phenomenon with more deterministic terms.
Here we present a mechanistic, mathematically-driven model that is based on the common geometry of a pore in porous media. Assuming that the aerobic respiration of bacteria requires oxygen as an electron acceptor and dissolved organic carbon (DOC) as a substrate, the CO2 fluxes are considered a function of the bioavailable fraction of both DOC and oxygen. In this modeling approach, the availability of oxygen is controlled by its penetration into the aquatic phase through the interface between air and water. DOC on the other hand is only available to a section of the soil that is in contact with water. As the water saturation in the pore changes, it dynamically and kinematically impacts these interfaces through which the mass transfer of nutrients occurs, and therefore the CO2 fluxes are directly controlled by water content. We showcased the model applicability on several case studies and illustrated the model capability in simulating the observed microbial respiration rates versus the soil water contents. Furthermore, we showed the model potential to accept additional physically-motivated parameters in order to explain respiration rates in frozen soils or at different temperatures.
How to cite: Gharasoo, M., Fairbairn, L., Rezanezhad, F., and Van Cappellen, P.: Soil heterotrophic respiration as a function of water content and temperature in a mechanistic pore-scale model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20943, https://doi.org/10.5194/egusphere-egu2020-20943, 2020.
Soil heterotrophic respiration has been considered as a key source of CO2 flux into the atmosphere and thus plays an important role in global warming. Although the relationship between soil heterotrophic respiration and soil water content has been frequently studied both theoretically and experimentally, model development has thus far been empirically based. Empirical models are often limited to the specific condition of their case studies and cannot be used as a general platform for modeling. Moreover, it is difficult to extend the empirical models by theoretically defined affinities to any desired degree of accuracy. As a result, it is of high priority to develop process-based models that are able to describe the mechanisms behind this phenomenon with more deterministic terms.
Here we present a mechanistic, mathematically-driven model that is based on the common geometry of a pore in porous media. Assuming that the aerobic respiration of bacteria requires oxygen as an electron acceptor and dissolved organic carbon (DOC) as a substrate, the CO2 fluxes are considered a function of the bioavailable fraction of both DOC and oxygen. In this modeling approach, the availability of oxygen is controlled by its penetration into the aquatic phase through the interface between air and water. DOC on the other hand is only available to a section of the soil that is in contact with water. As the water saturation in the pore changes, it dynamically and kinematically impacts these interfaces through which the mass transfer of nutrients occurs, and therefore the CO2 fluxes are directly controlled by water content. We showcased the model applicability on several case studies and illustrated the model capability in simulating the observed microbial respiration rates versus the soil water contents. Furthermore, we showed the model potential to accept additional physically-motivated parameters in order to explain respiration rates in frozen soils or at different temperatures.
How to cite: Gharasoo, M., Fairbairn, L., Rezanezhad, F., and Van Cappellen, P.: Soil heterotrophic respiration as a function of water content and temperature in a mechanistic pore-scale model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20943, https://doi.org/10.5194/egusphere-egu2020-20943, 2020.
EGU2020-11913 | Displays | BG3.8
The role of soil characteristics on measured and modelled carbon dioxide and energy fluxes for Arctic dwarf shrub tundra sitesGesa Meyer, Elyn Humphreys, Joe Melton, Peter Lafleur, Philip Marsh, Matteo Detto, Manuel Helbig, Julia Boike, Carolina Voigt, and Oliver Sonnentag
Four years of growing season eddy covariance measurements of net carbon dioxide (CO2) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO2 uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m-2) compared to DL1 (33 ± 11 g C m-2). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.
As recent studies have shown, winter fluxes play an important role in the annual CO2 balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO2 losses are substantial and may exceed the growing season CO2 uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO2 balance.
How to cite: Meyer, G., Humphreys, E., Melton, J., Lafleur, P., Marsh, P., Detto, M., Helbig, M., Boike, J., Voigt, C., and Sonnentag, O.: The role of soil characteristics on measured and modelled carbon dioxide and energy fluxes for Arctic dwarf shrub tundra sites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11913, https://doi.org/10.5194/egusphere-egu2020-11913, 2020.
Four years of growing season eddy covariance measurements of net carbon dioxide (CO2) and energy fluxes were used to examine the similarities/differences in surface-atmosphere interactions at two dwarf shrub tundra sites within Canada’s Southern Arctic ecozone, separated by approximately 1000 km. Both sites, Trail Valley Creek (TVC) and Daring Lake (DL1), are characterised by similar climate (with some differences in radiation due to latitudinal differences), vegetation composition and structure, and are underlain by continuous permafrost, but differ in their soil characteristics. Total atmospheric heating (the sum of latent and sensible heat fluxes) was similar at the two sites. However, at DL1, where the surface organic layer was thinner and mineral soil coarser in texture, latent heat fluxes were greater, sensible heat fluxes were lower, soils were warmer and the active layer thicker. At TVC, cooler soils likely kept ecosystem respiration relatively low despite similar total growing season productivity. As a result, the 4-year mean net growing season ecosystem CO2 uptake (May 1 - September 30) was almost twice as large at TVC (64 ± 19 g C m-2) compared to DL1 (33 ± 11 g C m-2). These results highlight that soil and thaw characteristics are important to understand variability in surface-atmosphere interactions among tundra ecosystems.
As recent studies have shown, winter fluxes play an important role in the annual CO2 balance of Arctic tundra ecosystems. However, flux measurements were not available at TVC and DL1 during the cold season. Thus, the process-based ecosystem model CLASSIC (the Canadian Land Surface Scheme including biogeochemical Cycles, formerly CLASS-CTEM) was used to simulate year-round fluxes. In order to represent the Arctic shrub tundra better, shrub and sedge plant functional types were included in CLASSIC and results were evaluated using measurements at DL1. Preliminary results indicate that cold season CO2 losses are substantial and may exceed the growing season CO2 uptake at DL1 during 2010-2017. The joint use of observations and models is valuable in order to better constrain the Arctic CO2 balance.
How to cite: Meyer, G., Humphreys, E., Melton, J., Lafleur, P., Marsh, P., Detto, M., Helbig, M., Boike, J., Voigt, C., and Sonnentag, O.: The role of soil characteristics on measured and modelled carbon dioxide and energy fluxes for Arctic dwarf shrub tundra sites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11913, https://doi.org/10.5194/egusphere-egu2020-11913, 2020.
EGU2020-7396 | Displays | BG3.8
Diagnosing temperature sensitivity of respiration at multiple spatial scale in the northern high-latitude regionsDongxing Wu, Shaomin Liu, Ziwei Xu, Xiaofan Yang, Xiuchen Wu, Tongren Xu, and Hanyu Shi
Accurate estimation of the temperature sensitivity of respiration (Q10) is important for understanding terrestrial ecosystem carbon cycle and its response to climate change, especially in the northern high-latitude regions (NHL). The conventional calculation of temperature sensitivity contain seasonal confounding effects on annual temporal scale. The scale-dependent parameter estimation (SCAPE) method which is based on singular spectral analysis could circumvent confounding effects. However, the process of screening a series of high frequency subsignals to identify the best intrinsic Q10 produce large error. In this study, we proposed the SCAPE-M method to improve the approach of screening high frequency subsignals. Three datasets were used to validate the SCAPE-M method in the NHL, namely FLUXNET2015 datasets, MsTMIP multi-model weighted average outputs, and ERA_interim reanalysis data. The main results were as follows: (1) On the site scale, the confounding effects in the forest ecosystems were less than grassland and cropland ecosystems in the NHL. The apparent Q10 derived from conventional approach differed among biomes in the NHL and increased with annual mean temperature. The mean apparent Q10 across 36 FLUXNET sites in the NHL was 2.71 ± 0.77. Contrary to the results of apparent Q10, the intrinsic Q10 across 36 FLUXNET sites in the NHL were independent of annual mean temperature, and were confined to values around 1.54 ± 0.38. (2) On the grid scale, the apparent Q10 increased with annual mean temperature, with high values in the Western Europe and low values in the Mongolian Plateau. There were no significant changes of intrinsic Q10 in the spatial distribution. While the convergence value 1.01 ± 0.15 on the grid scale was smaller than the site scale. The results in this study indicated that the response of carbon cycle to climate warming in the NHL was less pronounced than suggested by most carbon cycle climate models.
How to cite: Wu, D., Liu, S., Xu, Z., Yang, X., Wu, X., Xu, T., and Shi, H.: Diagnosing temperature sensitivity of respiration at multiple spatial scale in the northern high-latitude regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7396, https://doi.org/10.5194/egusphere-egu2020-7396, 2020.
Accurate estimation of the temperature sensitivity of respiration (Q10) is important for understanding terrestrial ecosystem carbon cycle and its response to climate change, especially in the northern high-latitude regions (NHL). The conventional calculation of temperature sensitivity contain seasonal confounding effects on annual temporal scale. The scale-dependent parameter estimation (SCAPE) method which is based on singular spectral analysis could circumvent confounding effects. However, the process of screening a series of high frequency subsignals to identify the best intrinsic Q10 produce large error. In this study, we proposed the SCAPE-M method to improve the approach of screening high frequency subsignals. Three datasets were used to validate the SCAPE-M method in the NHL, namely FLUXNET2015 datasets, MsTMIP multi-model weighted average outputs, and ERA_interim reanalysis data. The main results were as follows: (1) On the site scale, the confounding effects in the forest ecosystems were less than grassland and cropland ecosystems in the NHL. The apparent Q10 derived from conventional approach differed among biomes in the NHL and increased with annual mean temperature. The mean apparent Q10 across 36 FLUXNET sites in the NHL was 2.71 ± 0.77. Contrary to the results of apparent Q10, the intrinsic Q10 across 36 FLUXNET sites in the NHL were independent of annual mean temperature, and were confined to values around 1.54 ± 0.38. (2) On the grid scale, the apparent Q10 increased with annual mean temperature, with high values in the Western Europe and low values in the Mongolian Plateau. There were no significant changes of intrinsic Q10 in the spatial distribution. While the convergence value 1.01 ± 0.15 on the grid scale was smaller than the site scale. The results in this study indicated that the response of carbon cycle to climate warming in the NHL was less pronounced than suggested by most carbon cycle climate models.
How to cite: Wu, D., Liu, S., Xu, Z., Yang, X., Wu, X., Xu, T., and Shi, H.: Diagnosing temperature sensitivity of respiration at multiple spatial scale in the northern high-latitude regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7396, https://doi.org/10.5194/egusphere-egu2020-7396, 2020.
EGU2020-8727 | Displays | BG3.8
Optimizing chambers for stream carbon dioxide evasion estimates; results of a controlled flume experiment.Filippo Vingiani, Nicola Durighetto, Gianluca Botter, Marcus Klaus, and Jakob Schelker
Fluvial ecosystems have a huge potential to affect the global carbon budget. In particular, streams and rivers significantly contribute to carbon dioxide emissions. However, CO2 fluxes from streams to the atmosphere exhibit a marked spatial and temporal variability that is difficult to quantify. Spatio-temporal patterns of biogeochemical fluxes are the result of interconnected unsteady hydrological (e.g. discharge, stream’s length and area, air-water gas exchange velocities) and biochemical conditions. Local estimates of carbon dioxide fluxes from a water body require the simultaneous knowledge of gas exchange coefficients and carbon dioxide concentrations. Different methods (e.g. tracer gas addition, oxygen time series, eddy covariance technique, flux chambers) have been recently developed to obtain point or spatially integrated measures of carbon fluxes under different environmental conditions. Here, we present the results of a flume experiment conducted in the Lunzer Rinnen facility in Lunz am See (Austria). The contribution discusses the dependence of the air-water gas exchange velocities on a set of relevant physical flow properties (i.e. slope, water velocity, discharge). The experimental setup is representative of low slope/velocity streams (flume energy dissipation rate less than 0.01). Gas exchange velocities were evaluated interpreting CO2 observations derived from a standard and an ad-hoc designed flexible-foil CO2 chamber under different deployment modes - anchored and drifting. Our data confirms that higher slopes and flow velocity enhance air-water gas exchange velocities; hence, CO2 outgassing rates in rivers. Moreover, the flexible foil chamber developed for this experiment is shown to be a useful tool for the estimate of local CO2 outgassing rates as it reduces the turbulence induced by the standard chamber on the streamflow. Given the flexibility/simplicity of the floating chamber its use can improve the ability to quantify spatio-temporal patterns of CO2 outgassing in streams.
How to cite: Vingiani, F., Durighetto, N., Botter, G., Klaus, M., and Schelker, J.: Optimizing chambers for stream carbon dioxide evasion estimates; results of a controlled flume experiment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8727, https://doi.org/10.5194/egusphere-egu2020-8727, 2020.
Fluvial ecosystems have a huge potential to affect the global carbon budget. In particular, streams and rivers significantly contribute to carbon dioxide emissions. However, CO2 fluxes from streams to the atmosphere exhibit a marked spatial and temporal variability that is difficult to quantify. Spatio-temporal patterns of biogeochemical fluxes are the result of interconnected unsteady hydrological (e.g. discharge, stream’s length and area, air-water gas exchange velocities) and biochemical conditions. Local estimates of carbon dioxide fluxes from a water body require the simultaneous knowledge of gas exchange coefficients and carbon dioxide concentrations. Different methods (e.g. tracer gas addition, oxygen time series, eddy covariance technique, flux chambers) have been recently developed to obtain point or spatially integrated measures of carbon fluxes under different environmental conditions. Here, we present the results of a flume experiment conducted in the Lunzer Rinnen facility in Lunz am See (Austria). The contribution discusses the dependence of the air-water gas exchange velocities on a set of relevant physical flow properties (i.e. slope, water velocity, discharge). The experimental setup is representative of low slope/velocity streams (flume energy dissipation rate less than 0.01). Gas exchange velocities were evaluated interpreting CO2 observations derived from a standard and an ad-hoc designed flexible-foil CO2 chamber under different deployment modes - anchored and drifting. Our data confirms that higher slopes and flow velocity enhance air-water gas exchange velocities; hence, CO2 outgassing rates in rivers. Moreover, the flexible foil chamber developed for this experiment is shown to be a useful tool for the estimate of local CO2 outgassing rates as it reduces the turbulence induced by the standard chamber on the streamflow. Given the flexibility/simplicity of the floating chamber its use can improve the ability to quantify spatio-temporal patterns of CO2 outgassing in streams.
How to cite: Vingiani, F., Durighetto, N., Botter, G., Klaus, M., and Schelker, J.: Optimizing chambers for stream carbon dioxide evasion estimates; results of a controlled flume experiment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8727, https://doi.org/10.5194/egusphere-egu2020-8727, 2020.
EGU2020-13974 | Displays | BG3.8
Using Eddy-Covariance to understand CO2 and CH4 flux dynamics within a temperate, coastal wetland on French Island, Victoria, AustraliaMatthew Peck, Ruth Reef, Nigel Tapper, Edoardo Daly, Leigh Burgess, and Adrien Guyot
Coastal wetlands play a pivotal role in regulating both carbon (CO2) and methane (CH4) concentrations across the globe. The amount of CO2 and CH4 stored and released by these ecosystems is becoming more understood, in particular, within each aspect of the ecosystem. However, how the dynamics of the ecosystem affect CO2 and CH4 fluxes on a microclimate level is poorly understood, as well as the overall flux of these Greenhouse Gases (GHGs) within temperate, coastal wetlands. Current research primarily focuses on inland wetlands and coastal wetlands in sub-tropical and tropical regions. Thus, this research aims to investigate CO2 and CH4 fluxes within coastal, temperate wetlands, and improve the understanding of how environmental dynamics impact the flux of these critically important Greenhouse Gases (GHGs).
To satisfy this aim, the use of the Eddy-Covariance (EC) method was employed. An EC station was installed on the South-West tip of French Island, Victoria, Australia in late February 2018. The collected data demonstrates the challenges with collecting micro-climate data in an ecosystem with ever-changing environmental conditions. The preliminary results indicate how sensitive flux dynamics are within coastal, temperate wetlands, in particular, to factors such as: tidal and seasonal inundation, seasonal vegetation dynamics, and shifting ecological gradients. The data obtained by the EC station provides a preliminary indication of the complexities of accounting for, and understanding, carbon and methane movement through coastal wetlands in general. The full dataset will aid in improving this understanding, specifically for rare, temperate wetland environments, increasing the knowledge base on how flux dynamics of carbon and methane are affected when collected via open-source methods in dynamic environments.
How to cite: Peck, M., Reef, R., Tapper, N., Daly, E., Burgess, L., and Guyot, A.: Using Eddy-Covariance to understand CO2 and CH4 flux dynamics within a temperate, coastal wetland on French Island, Victoria, Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13974, https://doi.org/10.5194/egusphere-egu2020-13974, 2020.
Coastal wetlands play a pivotal role in regulating both carbon (CO2) and methane (CH4) concentrations across the globe. The amount of CO2 and CH4 stored and released by these ecosystems is becoming more understood, in particular, within each aspect of the ecosystem. However, how the dynamics of the ecosystem affect CO2 and CH4 fluxes on a microclimate level is poorly understood, as well as the overall flux of these Greenhouse Gases (GHGs) within temperate, coastal wetlands. Current research primarily focuses on inland wetlands and coastal wetlands in sub-tropical and tropical regions. Thus, this research aims to investigate CO2 and CH4 fluxes within coastal, temperate wetlands, and improve the understanding of how environmental dynamics impact the flux of these critically important Greenhouse Gases (GHGs).
To satisfy this aim, the use of the Eddy-Covariance (EC) method was employed. An EC station was installed on the South-West tip of French Island, Victoria, Australia in late February 2018. The collected data demonstrates the challenges with collecting micro-climate data in an ecosystem with ever-changing environmental conditions. The preliminary results indicate how sensitive flux dynamics are within coastal, temperate wetlands, in particular, to factors such as: tidal and seasonal inundation, seasonal vegetation dynamics, and shifting ecological gradients. The data obtained by the EC station provides a preliminary indication of the complexities of accounting for, and understanding, carbon and methane movement through coastal wetlands in general. The full dataset will aid in improving this understanding, specifically for rare, temperate wetland environments, increasing the knowledge base on how flux dynamics of carbon and methane are affected when collected via open-source methods in dynamic environments.
How to cite: Peck, M., Reef, R., Tapper, N., Daly, E., Burgess, L., and Guyot, A.: Using Eddy-Covariance to understand CO2 and CH4 flux dynamics within a temperate, coastal wetland on French Island, Victoria, Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13974, https://doi.org/10.5194/egusphere-egu2020-13974, 2020.
EGU2020-342 | Displays | BG3.8
A Machine Learning Approach to Upscale Net Ecosystem Exchange to a Regional Scale: Integration of Eddy Covariance, Remote Sensing and Reanalysis DataOliver Reitz, Alexander Graf, Marius Schmidt, Gunnar Ketzler, and Michael Leuchner
Net Ecosystem Exchange (NEE) is an important factor regarding the impact of land use changes to the global carbon cycle and thus climate change. The Eddy Covariance technique is the most direct way of measuring CO2 fluxes, however, it provides spatially discontinuous data from a sparse network of stations. Thus, generating high-resolution spatiotemporal products of carbon fluxes remains a major challenge. Machine Learning (ML) techniques are a promising approach to upscale this information to regional and global scales and can thereby help to produce better NEE datasets for earth-system modelling.
Our approach uses statistical relationships between NEE, vegetation indices and meteorological variables to train a Random Forest model with spatial feature selection to predict daily NEE values at 1 km spatial resolution for the Rur-catchment area (ca. 2400 km²) in western Germany. Data from twelve Eddy stations of different land use types of the TERENO Network Eifel/Lower Rhine Valley between 2010 and 2018 were used to train and test the ML model. Factors potentially affecting NEE such as vegetation indices (NDVI, EVI, LAI) extracted from MODIS products, incoming solar radiation from Heliosat (SARAH-2) and additional meteorological variables from COSMO REA6 reanalysis products served as independent variables, which were further evaluated in regard to their relative importance for NEE prediction.
A novel spatial cross-validation scheme has been applied and compared to a conventional random k-fold cross-validation. This is important for the assessment of the model performance regarding spatial predictions beyond the scope of training locations in contrast to mere data reproduction. Results indicate a lower model performance evaluated with spatial cross-validation and that conventional random cross-validation hence leads to an overoptimistic view of the prediction skills. Nonetheless, the ML approach displayed a feasible way to upscale carbon fluxes to a regional scale utilizing different datasets and produced high-resolution NEE-raster for an entire catchment area.
How to cite: Reitz, O., Graf, A., Schmidt, M., Ketzler, G., and Leuchner, M.: A Machine Learning Approach to Upscale Net Ecosystem Exchange to a Regional Scale: Integration of Eddy Covariance, Remote Sensing and Reanalysis Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-342, https://doi.org/10.5194/egusphere-egu2020-342, 2020.
Net Ecosystem Exchange (NEE) is an important factor regarding the impact of land use changes to the global carbon cycle and thus climate change. The Eddy Covariance technique is the most direct way of measuring CO2 fluxes, however, it provides spatially discontinuous data from a sparse network of stations. Thus, generating high-resolution spatiotemporal products of carbon fluxes remains a major challenge. Machine Learning (ML) techniques are a promising approach to upscale this information to regional and global scales and can thereby help to produce better NEE datasets for earth-system modelling.
Our approach uses statistical relationships between NEE, vegetation indices and meteorological variables to train a Random Forest model with spatial feature selection to predict daily NEE values at 1 km spatial resolution for the Rur-catchment area (ca. 2400 km²) in western Germany. Data from twelve Eddy stations of different land use types of the TERENO Network Eifel/Lower Rhine Valley between 2010 and 2018 were used to train and test the ML model. Factors potentially affecting NEE such as vegetation indices (NDVI, EVI, LAI) extracted from MODIS products, incoming solar radiation from Heliosat (SARAH-2) and additional meteorological variables from COSMO REA6 reanalysis products served as independent variables, which were further evaluated in regard to their relative importance for NEE prediction.
A novel spatial cross-validation scheme has been applied and compared to a conventional random k-fold cross-validation. This is important for the assessment of the model performance regarding spatial predictions beyond the scope of training locations in contrast to mere data reproduction. Results indicate a lower model performance evaluated with spatial cross-validation and that conventional random cross-validation hence leads to an overoptimistic view of the prediction skills. Nonetheless, the ML approach displayed a feasible way to upscale carbon fluxes to a regional scale utilizing different datasets and produced high-resolution NEE-raster for an entire catchment area.
How to cite: Reitz, O., Graf, A., Schmidt, M., Ketzler, G., and Leuchner, M.: A Machine Learning Approach to Upscale Net Ecosystem Exchange to a Regional Scale: Integration of Eddy Covariance, Remote Sensing and Reanalysis Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-342, https://doi.org/10.5194/egusphere-egu2020-342, 2020.
EGU2020-4312 | Displays | BG3.8
Comparison of Regional Simulation of Biospheric CO2 Flux from the Updated Version of CarbonTracker Asia with FLUXCOM and Other Inversions over AsiaSamuel Takele Kenea, Lev Labzovskii, Tae‐Young Goo, Shanlan Li, Young‐Suk Oh, and Young‐Hwa Byun
There are still large uncertainties in the estimates of net ecosystem exchange of CO2
(NEE) with atmosphere in Asia, particularly in the boreal and eastern part of temperate Asia. To
understand these uncertainties, we assessed the CarbonTracker Asia (CTA2017) estimates of the
spatial and temporal distributions of NEE through a comparison with FLUXCOM and the global
inversion models from the Copernicus Atmospheric Monitoring Service (CAMS), Monitoring
Atmospheric Composition and Climate (MACC), and Jena CarboScope in Asia, as well as
examining the impact of the nesting approach on the optimized NEE flux during the 2001–2013
period. The long‐term mean carbon uptake is reduced in Asia, which is −0.32 ± 0.22 PgC yr‐1,
whereas –0.58 ± 0.26 PgC yr‐1 is shown from CT2017 (CarbonTracker global). The domain
aggregated mean carbon uptake from CTA2017 is found to be lower by 23.8%, 44.8%, and 60.5%
than CAMS, MACC, and Jena CarboScope, respectively. For example, both CTA2017 and CT2017
models captured the interannual variability (IAV) of the NEE flux with a different magnitude and
this leads to divergent annual aggregated results. Differences in the estimated interannual
variability of NEE in response to El Niño–Southern Oscillation (ENSO) may result from
differences in the transport model resolutions. These inverse models’ results have a substantial
difference compared to FLUXCOM, which was found to be –5.54 PgC yr‐1. On the one hand, we
showed that the large NEE discrepancies between both inversion models and FLUXCOM stem
mostly from the tropical forests. On the other hand, CTA2017 exhibits a slightly better correlation
with FLUXCOM over grass/shrub, fields/woods/savanna, and mixed forest than CT2017. The land
cover inconsistency between CTA2017 and FLUXCOM is therefore one driver of the discrepancy in
the NEE estimates. The diurnal averaged NEE flux between CTA2017 and FLUXCOM exhibits
better agreement during the carbon uptake period than the carbon release period. Both CTA2017
and CT2017 revealed that the overall spatial patterns of the carbon sink and source are similar, but
the magnitude varied with seasons and ecosystem types, which is mainly attributed to differences
in the transport model resolutions. Our findings indicate that substantial inconsistencies in the
inversions and FLUXCOM mainly emerge during the carbon uptake period and over tropical
forests. The main problems are underrepresentation of FLUXCOM NEE estimates by limited eddy
covariance flux measurements, the role of CO2 emissions from land use change not accounted for
by FLUXCOM, sparseness of surface observations of CO2 concentrations used by the assimilation
systems, and land cover inconsistency. This suggested that further scrutiny on the FLUXCOM and
inverse estimates is most likely required. Such efforts will reduce inconsistencies across various
NEE estimates over Asia, thus mitigating ecosystem‐driven errors that propagate the global
carbon budget. Moreover, this work also recommends further investigation on how the
changes/updates made in CarbonTracker affect the interannual variability of the aggregate and
spatial pattern of NEE flux in response to the ENSO effect over the region of interest.
How to cite: Takele Kenea, S., Labzovskii, L., Goo, T., Li, S., Oh, Y., and Byun, Y.: Comparison of Regional Simulation of Biospheric CO2 Flux from the Updated Version of CarbonTracker Asia with FLUXCOM and Other Inversions over Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4312, https://doi.org/10.5194/egusphere-egu2020-4312, 2020.
There are still large uncertainties in the estimates of net ecosystem exchange of CO2
(NEE) with atmosphere in Asia, particularly in the boreal and eastern part of temperate Asia. To
understand these uncertainties, we assessed the CarbonTracker Asia (CTA2017) estimates of the
spatial and temporal distributions of NEE through a comparison with FLUXCOM and the global
inversion models from the Copernicus Atmospheric Monitoring Service (CAMS), Monitoring
Atmospheric Composition and Climate (MACC), and Jena CarboScope in Asia, as well as
examining the impact of the nesting approach on the optimized NEE flux during the 2001–2013
period. The long‐term mean carbon uptake is reduced in Asia, which is −0.32 ± 0.22 PgC yr‐1,
whereas –0.58 ± 0.26 PgC yr‐1 is shown from CT2017 (CarbonTracker global). The domain
aggregated mean carbon uptake from CTA2017 is found to be lower by 23.8%, 44.8%, and 60.5%
than CAMS, MACC, and Jena CarboScope, respectively. For example, both CTA2017 and CT2017
models captured the interannual variability (IAV) of the NEE flux with a different magnitude and
this leads to divergent annual aggregated results. Differences in the estimated interannual
variability of NEE in response to El Niño–Southern Oscillation (ENSO) may result from
differences in the transport model resolutions. These inverse models’ results have a substantial
difference compared to FLUXCOM, which was found to be –5.54 PgC yr‐1. On the one hand, we
showed that the large NEE discrepancies between both inversion models and FLUXCOM stem
mostly from the tropical forests. On the other hand, CTA2017 exhibits a slightly better correlation
with FLUXCOM over grass/shrub, fields/woods/savanna, and mixed forest than CT2017. The land
cover inconsistency between CTA2017 and FLUXCOM is therefore one driver of the discrepancy in
the NEE estimates. The diurnal averaged NEE flux between CTA2017 and FLUXCOM exhibits
better agreement during the carbon uptake period than the carbon release period. Both CTA2017
and CT2017 revealed that the overall spatial patterns of the carbon sink and source are similar, but
the magnitude varied with seasons and ecosystem types, which is mainly attributed to differences
in the transport model resolutions. Our findings indicate that substantial inconsistencies in the
inversions and FLUXCOM mainly emerge during the carbon uptake period and over tropical
forests. The main problems are underrepresentation of FLUXCOM NEE estimates by limited eddy
covariance flux measurements, the role of CO2 emissions from land use change not accounted for
by FLUXCOM, sparseness of surface observations of CO2 concentrations used by the assimilation
systems, and land cover inconsistency. This suggested that further scrutiny on the FLUXCOM and
inverse estimates is most likely required. Such efforts will reduce inconsistencies across various
NEE estimates over Asia, thus mitigating ecosystem‐driven errors that propagate the global
carbon budget. Moreover, this work also recommends further investigation on how the
changes/updates made in CarbonTracker affect the interannual variability of the aggregate and
spatial pattern of NEE flux in response to the ENSO effect over the region of interest.
How to cite: Takele Kenea, S., Labzovskii, L., Goo, T., Li, S., Oh, Y., and Byun, Y.: Comparison of Regional Simulation of Biospheric CO2 Flux from the Updated Version of CarbonTracker Asia with FLUXCOM and Other Inversions over Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4312, https://doi.org/10.5194/egusphere-egu2020-4312, 2020.
EGU2020-6351 | Displays | BG3.8
Using net primary productivity and water use efficiency for assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland regionSinkyu Kang and Wenping Kang
Changes in vegetation productivity and species composition have been used as conventional indicators of land degradation and rehabilitation assessments. The two biophysical parameters vary nonlinearly during land change process with various time lags, which provide, as a whole, a useful framework to diagnose degree of land degradation and rehabilitation. In this study, the net primary productivity (NPP) and water use efficiency (WUE), which are the proxies of vegetation productivity and ecophysiological properties related to species composition, were combined to develop an eco-physiological framework to assess the degree of land degradation in the Northeast-Asia dryland regions (NADR) from 1982 to 2012. Results from long-term trends analysis showed early, middle or late degradation stages occurred in northern grassland and central barren or sparsely vegetated regions, respectively, while the rehabilitation prevailed in eastern croplands and forest, southern, and western grassland. In contrast, short-term trend analysis illustrated the recent rehabilitation in mideastern Mongolia and Loess Plateau, which was unseen in long-term trend analysis. The spatial patterns and temporal changes of land degradation and rehabilitation could be explained partly by either or both natural and anthropogenic factors. Longterm drying and warming might induce land degradation in northern and central NADR, respectively, while the recovery projects and wetting conditions after 2000s promoted the land rehabilitation in Loess Plateau and mid-eastern Mongolia. Here, our NPP–WUE framework may contribute further conceptual development and rapid assessments on land degradation and rehabilitation in wide geographic regions.
How to cite: Kang, S. and Kang, W.: Using net primary productivity and water use efficiency for assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6351, https://doi.org/10.5194/egusphere-egu2020-6351, 2020.
Changes in vegetation productivity and species composition have been used as conventional indicators of land degradation and rehabilitation assessments. The two biophysical parameters vary nonlinearly during land change process with various time lags, which provide, as a whole, a useful framework to diagnose degree of land degradation and rehabilitation. In this study, the net primary productivity (NPP) and water use efficiency (WUE), which are the proxies of vegetation productivity and ecophysiological properties related to species composition, were combined to develop an eco-physiological framework to assess the degree of land degradation in the Northeast-Asia dryland regions (NADR) from 1982 to 2012. Results from long-term trends analysis showed early, middle or late degradation stages occurred in northern grassland and central barren or sparsely vegetated regions, respectively, while the rehabilitation prevailed in eastern croplands and forest, southern, and western grassland. In contrast, short-term trend analysis illustrated the recent rehabilitation in mideastern Mongolia and Loess Plateau, which was unseen in long-term trend analysis. The spatial patterns and temporal changes of land degradation and rehabilitation could be explained partly by either or both natural and anthropogenic factors. Longterm drying and warming might induce land degradation in northern and central NADR, respectively, while the recovery projects and wetting conditions after 2000s promoted the land rehabilitation in Loess Plateau and mid-eastern Mongolia. Here, our NPP–WUE framework may contribute further conceptual development and rapid assessments on land degradation and rehabilitation in wide geographic regions.
How to cite: Kang, S. and Kang, W.: Using net primary productivity and water use efficiency for assessing the degree of land degradation and rehabilitation in the Northeast Asia dryland region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6351, https://doi.org/10.5194/egusphere-egu2020-6351, 2020.
BG3.9 – The Greenhouse Gas Balance and Mitigation Potential of Different Land Use Mosaics
EGU2020-3087 | Displays | BG3.9
Decadal carbon balance and its response to 2 degree warming among heterogenous Arctic landscapesDan Kou, Tarmo Virtanen, Aleksi Räsänen, Sari Juutinen, Mika Aurela, Lauri Heiskanen, Mingyang Guo, Qianlai Zhuang, Claire Treat, Atte Korhola, and Narasinha Shurpali
The large amounts of carbon (C) stored in the Arctic region can strongly interact with the climate system through the exchange of carbon dioxide (CO2) and methane (CH4) under the unmitigated environmental changes. Currently, there are still large uncertainties in the C exchange and the subsequent C-climate feedbacks between the land and atmosphere across the Arctic region, to which the highly heterogeneous landscapes make a key contribution. However, our knowledge on the present and future ecosystem C balance jointly considering the exchange of CO2 and CH4 in the Arctic region with heterogeneous landscapes is still limited. In this study, a process-based biogeochemistry model was calibrated and validated using the empirical data on concurrently measured CO2 and CH4 exchange observed using eddy covariance, automatic and manual chamber methods and associated climate, soil and plant data derived from several heterogeneous landscapes in the Kaamanen region. With the validated model, decadal C balance during 2005-2018 and its response to 2 oC warming were evaluated for the constituent land cover types (LCTs). Our results showed that most LCTs were a sink for atmospheric CO2 and a source of CH4 during 2005-2018. Under the 2 oC warming scenario, most ecosystems continued to be CO2 sinks and CH4 sources. Moreover, the CO2 budget in most LCTs did not change significantly as the two major fluxes of gross primary productivity (GPP) and total ecosystem respiration (TER) increased simultaneously thus maintaining similar rates of net ecosystem exchange (NEE) in response to warming, while a significant increase in CH4 emission from most LCTs was evident. Our results presented here provide us a better understanding and prediction of C dynamics and the inherent C-climate feedbacks in the Arctic region.
How to cite: Kou, D., Virtanen, T., Räsänen, A., Juutinen, S., Aurela, M., Heiskanen, L., Guo, M., Zhuang, Q., Treat, C., Korhola, A., and Shurpali, N.: Decadal carbon balance and its response to 2 degree warming among heterogenous Arctic landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3087, https://doi.org/10.5194/egusphere-egu2020-3087, 2020.
The large amounts of carbon (C) stored in the Arctic region can strongly interact with the climate system through the exchange of carbon dioxide (CO2) and methane (CH4) under the unmitigated environmental changes. Currently, there are still large uncertainties in the C exchange and the subsequent C-climate feedbacks between the land and atmosphere across the Arctic region, to which the highly heterogeneous landscapes make a key contribution. However, our knowledge on the present and future ecosystem C balance jointly considering the exchange of CO2 and CH4 in the Arctic region with heterogeneous landscapes is still limited. In this study, a process-based biogeochemistry model was calibrated and validated using the empirical data on concurrently measured CO2 and CH4 exchange observed using eddy covariance, automatic and manual chamber methods and associated climate, soil and plant data derived from several heterogeneous landscapes in the Kaamanen region. With the validated model, decadal C balance during 2005-2018 and its response to 2 oC warming were evaluated for the constituent land cover types (LCTs). Our results showed that most LCTs were a sink for atmospheric CO2 and a source of CH4 during 2005-2018. Under the 2 oC warming scenario, most ecosystems continued to be CO2 sinks and CH4 sources. Moreover, the CO2 budget in most LCTs did not change significantly as the two major fluxes of gross primary productivity (GPP) and total ecosystem respiration (TER) increased simultaneously thus maintaining similar rates of net ecosystem exchange (NEE) in response to warming, while a significant increase in CH4 emission from most LCTs was evident. Our results presented here provide us a better understanding and prediction of C dynamics and the inherent C-climate feedbacks in the Arctic region.
How to cite: Kou, D., Virtanen, T., Räsänen, A., Juutinen, S., Aurela, M., Heiskanen, L., Guo, M., Zhuang, Q., Treat, C., Korhola, A., and Shurpali, N.: Decadal carbon balance and its response to 2 degree warming among heterogenous Arctic landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3087, https://doi.org/10.5194/egusphere-egu2020-3087, 2020.
EGU2020-4900 | Displays | BG3.9
Methane uptake by various forest soils with and without litterAnna Walkiewicz, Piotr Bulak, Bruce Osborne, Mohammad Ibrahim Khalil, Syed Faiz-ul Islam, Bart Kruijt, Ronald Hutjes, Daniel Spengler, Pia Gottschalk, Torsten Sachs, Katja Klumpp, Aurore Vigan, Mélynda Hassouna, Donagh Henessy, and Laurence Shalloo
Forest soils are often a sink for atmospheric methane (CH4) and are thus worth special attention in the context of mitigation of greenhouse gases (GHGs) and offset of agricultural GHG emissions at farm to national levels. The litter layer influences the exchange of GHGs between soil and atmosphere; however, most studies focus on the contribution of only soil to the CH4 cycle. In order to improve the inventory of this gas, it is worth investigating how litter influences the exchange of GHGs. Its effect on CH4 uptake may vary in deciduous and coniferous sites due to the different properties of litter. Field experiments were carried out to assess the CH4 uptake capability in 5 different soil types (with and without litter) under different forest types (deciduous, coniferous, and mixed) in Poland. During summer 2019, the highest CH4 uptake (about 2 mg C m-2 day-1) in a variant without litter on the ground was detected in Dystric Cambisol (with the highest C/N ratio) under a 100-year-old coniferous forest and in Albic Luvisol under a 58-year-old mixed forest. The presence of the litter level reduced the CH4 flux in the range of 6-27% in these locations. Methane consumption was the lowest in silty soils (~ 0.4 – 1 mg C m-2 day-1) in the mixed forest and decreased by 13-29% when covered with the litter layer. The negative effect of the litter layer on CH4 absorption was the lowest (~ 3-4%) in sandy Eutric Gleysol under a 75-year-old deciduous forest with 90% of oak and 10% of European hornbeam. The dry conditions in the summer 2019 (with total rainfall 163 mm during the tested months in the studied region) resulted in low moisture in both the litter and soil. However, even low-humidity litter (below 10%) reduced CH4 consumption rates in the measured sites.
Research was partially conducted under the project financed by Polish National Centre for Research and Development within of ERA-NET CO-FUND ERA-GAS Programme (ERA-GAS/I/GHG-MANAGE/01/2018).
How to cite: Walkiewicz, A., Bulak, P., Osborne, B., Khalil, M. I., Islam, S. F., Kruijt, B., Hutjes, R., Spengler, D., Gottschalk, P., Sachs, T., Klumpp, K., Vigan, A., Hassouna, M., Henessy, D., and Shalloo, L.: Methane uptake by various forest soils with and without litter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4900, https://doi.org/10.5194/egusphere-egu2020-4900, 2020.
Forest soils are often a sink for atmospheric methane (CH4) and are thus worth special attention in the context of mitigation of greenhouse gases (GHGs) and offset of agricultural GHG emissions at farm to national levels. The litter layer influences the exchange of GHGs between soil and atmosphere; however, most studies focus on the contribution of only soil to the CH4 cycle. In order to improve the inventory of this gas, it is worth investigating how litter influences the exchange of GHGs. Its effect on CH4 uptake may vary in deciduous and coniferous sites due to the different properties of litter. Field experiments were carried out to assess the CH4 uptake capability in 5 different soil types (with and without litter) under different forest types (deciduous, coniferous, and mixed) in Poland. During summer 2019, the highest CH4 uptake (about 2 mg C m-2 day-1) in a variant without litter on the ground was detected in Dystric Cambisol (with the highest C/N ratio) under a 100-year-old coniferous forest and in Albic Luvisol under a 58-year-old mixed forest. The presence of the litter level reduced the CH4 flux in the range of 6-27% in these locations. Methane consumption was the lowest in silty soils (~ 0.4 – 1 mg C m-2 day-1) in the mixed forest and decreased by 13-29% when covered with the litter layer. The negative effect of the litter layer on CH4 absorption was the lowest (~ 3-4%) in sandy Eutric Gleysol under a 75-year-old deciduous forest with 90% of oak and 10% of European hornbeam. The dry conditions in the summer 2019 (with total rainfall 163 mm during the tested months in the studied region) resulted in low moisture in both the litter and soil. However, even low-humidity litter (below 10%) reduced CH4 consumption rates in the measured sites.
Research was partially conducted under the project financed by Polish National Centre for Research and Development within of ERA-NET CO-FUND ERA-GAS Programme (ERA-GAS/I/GHG-MANAGE/01/2018).
How to cite: Walkiewicz, A., Bulak, P., Osborne, B., Khalil, M. I., Islam, S. F., Kruijt, B., Hutjes, R., Spengler, D., Gottschalk, P., Sachs, T., Klumpp, K., Vigan, A., Hassouna, M., Henessy, D., and Shalloo, L.: Methane uptake by various forest soils with and without litter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4900, https://doi.org/10.5194/egusphere-egu2020-4900, 2020.
EGU2020-5432 | Displays | BG3.9
The Nitrogen Dynamics of Multi-species Grasslands when Subject to Drought and Re-wetting.Saoirse Cummins, John Finn, Gary Lanigan, Karl Richards, Tom Misselbrook, Laura Cardenas, Chris Reynolds, and Dominika Krol
It is predicted that climate change will result in more extreme and frequent weather events including flooding and drought. Nitrous oxide (N2O) is a potent greenhouse gas having 298 times the global warming potential of CO2. The ‘Birch effect’, the term given to high N2O fluxes following the drying and re-wetting of soils, is an accelerator of this process. Multi species grasslands have been shown have higher nitrogen use efficiency and potential for drought resilience and recovery. This experiment analysed the nitrogen dynamics of multi-species grasslands by means of quantifying the responses of soil mineral nitrogen (NH4+ and NO3-) and N2O fluxes during an eight week simulated drought, re-wetting and fertiliser application two weeks after the re-wetting event. A simplex experimental design was used to determine species and functional group effects which could potentially influence responses. The hypothesis of this study was therefore that multi species grasslands would mitigate the ‘Birch effect’ resulting in less erratic transformations of soil mineral nitrogen and lower N2O fluxes compared to monocultures. This study also predicted a lasting legacy effect of drought on soil systems resulting in prolonged heightened N2O fluxes. Drought resulted in a depletion of soil NO3-, increased levels of NH4+ and background level N2O emissions. Following re-wetting soil mineral N underwent transformations from NH4+ to NO3- indicating nitrification. Four times more N2O emissions were recorded during re-wetting period compared to fertilizer application. There was no lasting legacy effect of drought and re-wetting on N2O fluxes observed during fertilizer application two weeks after re-wetting bar T. repens which has implications for grassland management strategies.
How to cite: Cummins, S., Finn, J., Lanigan, G., Richards, K., Misselbrook, T., Cardenas, L., Reynolds, C., and Krol, D.: The Nitrogen Dynamics of Multi-species Grasslands when Subject to Drought and Re-wetting., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5432, https://doi.org/10.5194/egusphere-egu2020-5432, 2020.
It is predicted that climate change will result in more extreme and frequent weather events including flooding and drought. Nitrous oxide (N2O) is a potent greenhouse gas having 298 times the global warming potential of CO2. The ‘Birch effect’, the term given to high N2O fluxes following the drying and re-wetting of soils, is an accelerator of this process. Multi species grasslands have been shown have higher nitrogen use efficiency and potential for drought resilience and recovery. This experiment analysed the nitrogen dynamics of multi-species grasslands by means of quantifying the responses of soil mineral nitrogen (NH4+ and NO3-) and N2O fluxes during an eight week simulated drought, re-wetting and fertiliser application two weeks after the re-wetting event. A simplex experimental design was used to determine species and functional group effects which could potentially influence responses. The hypothesis of this study was therefore that multi species grasslands would mitigate the ‘Birch effect’ resulting in less erratic transformations of soil mineral nitrogen and lower N2O fluxes compared to monocultures. This study also predicted a lasting legacy effect of drought on soil systems resulting in prolonged heightened N2O fluxes. Drought resulted in a depletion of soil NO3-, increased levels of NH4+ and background level N2O emissions. Following re-wetting soil mineral N underwent transformations from NH4+ to NO3- indicating nitrification. Four times more N2O emissions were recorded during re-wetting period compared to fertilizer application. There was no lasting legacy effect of drought and re-wetting on N2O fluxes observed during fertilizer application two weeks after re-wetting bar T. repens which has implications for grassland management strategies.
How to cite: Cummins, S., Finn, J., Lanigan, G., Richards, K., Misselbrook, T., Cardenas, L., Reynolds, C., and Krol, D.: The Nitrogen Dynamics of Multi-species Grasslands when Subject to Drought and Re-wetting., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5432, https://doi.org/10.5194/egusphere-egu2020-5432, 2020.
EGU2020-6122 | Displays | BG3.9
Towards operational quantification of GHG exchange in heterogeneous agricultural landscapes and experimental plotsBart Kruijt, Reinder Nouta, Cor Jacobs, Merit van den Berg, Christian Fritz, Katja Klumpp, Ronald Hutjes, Wietse Franssen, and Bruce Osborne
With the increasing need to mitigate rising atmospheric greenhouse gas (GHG) concentrations more attention is being directed at the quantification of the GHG exchange characteristics of heterogenous landscape assemblages that vary in land cover and land use. Whilst emission-limiting or uptake-enhancing management actions are often being proposed for specific land use most remain to be experimentally tested and validated at the landscape scale. This is a challenge because the typical size of different landscape elements (fields, afforested areas and unmanaged land at hectare scale) or experimental fields where emission reduction measures are being tested, is at the lower limit of what micrometeorological techniques such as eddy covariance measurements can deal with. With large heterogeneity the use of chamber measurements is also limited. The investments to be made in equipment are a challenge for operational monitoring of GHG budgets.
To address this we assess the feasibility of several options to acquire appropriate data in a way that is achievable for stakeholders, such as land managers and regional authorities. We use existing and new flux data from an agricultural landscape in the North of the Netherlands to: 1) compare paired eddy covariance (EC) data and automatic chamber (AC) data to test the representativity of small footprints. Results from a test site on drained meadows show almost identical CO2 fluxes. Future research should compare grass length and soil moisture of EC- and AC footprints; 2) test simplified alternatives to EC, such as those relying on concentration variances. Data from the peat meadow site suggest that time-averaged fluxes can be estimated in an empirical way with reasonable accuracy from concentration variances; 3) analyze the value of information gathered with mobile, roving/temporary EC approaches interpolated with gap filling models. The indications are that the values and variability of fluxes is largely conserved and predictable within seasons In all these analyses, we will consider the tradeoffs between the need for accuracy and pragmatism in operational practice.
How to cite: Kruijt, B., Nouta, R., Jacobs, C., van den Berg, M., Fritz, C., Klumpp, K., Hutjes, R., Franssen, W., and Osborne, B.: Towards operational quantification of GHG exchange in heterogeneous agricultural landscapes and experimental plots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6122, https://doi.org/10.5194/egusphere-egu2020-6122, 2020.
With the increasing need to mitigate rising atmospheric greenhouse gas (GHG) concentrations more attention is being directed at the quantification of the GHG exchange characteristics of heterogenous landscape assemblages that vary in land cover and land use. Whilst emission-limiting or uptake-enhancing management actions are often being proposed for specific land use most remain to be experimentally tested and validated at the landscape scale. This is a challenge because the typical size of different landscape elements (fields, afforested areas and unmanaged land at hectare scale) or experimental fields where emission reduction measures are being tested, is at the lower limit of what micrometeorological techniques such as eddy covariance measurements can deal with. With large heterogeneity the use of chamber measurements is also limited. The investments to be made in equipment are a challenge for operational monitoring of GHG budgets.
To address this we assess the feasibility of several options to acquire appropriate data in a way that is achievable for stakeholders, such as land managers and regional authorities. We use existing and new flux data from an agricultural landscape in the North of the Netherlands to: 1) compare paired eddy covariance (EC) data and automatic chamber (AC) data to test the representativity of small footprints. Results from a test site on drained meadows show almost identical CO2 fluxes. Future research should compare grass length and soil moisture of EC- and AC footprints; 2) test simplified alternatives to EC, such as those relying on concentration variances. Data from the peat meadow site suggest that time-averaged fluxes can be estimated in an empirical way with reasonable accuracy from concentration variances; 3) analyze the value of information gathered with mobile, roving/temporary EC approaches interpolated with gap filling models. The indications are that the values and variability of fluxes is largely conserved and predictable within seasons In all these analyses, we will consider the tradeoffs between the need for accuracy and pragmatism in operational practice.
How to cite: Kruijt, B., Nouta, R., Jacobs, C., van den Berg, M., Fritz, C., Klumpp, K., Hutjes, R., Franssen, W., and Osborne, B.: Towards operational quantification of GHG exchange in heterogeneous agricultural landscapes and experimental plots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6122, https://doi.org/10.5194/egusphere-egu2020-6122, 2020.
EGU2020-8017 | Displays | BG3.9 | Highlight
Do we need more trees to achieve carbon neutrality on livestock farms? Accounting for the negative emissions on small tropical livestock farms in EcuadorJuan Pablo Iñamagua Uyaguari, Pamela Sangoluisa, David R Green, Nuala Fitton, and Pete Smith
Ecuador, as a signatory to the United Nations Framework Convention on Climate Change, in its Nationally Determined Contribution, has expressed its intention to reduce greenhouse gas emissions (GHG), with a focus on the energy and forest sectors. Despite the socio-economic importance and the growing pressure of agricultural and livestock activities on land use change, this sector is not explicitly considered in the national mitigation goals. Currently, grasslands occupy 57% of agricultural land in Ecuador and cattle, being the main livestock activity, is responsible for at least 46% of agricultural emissions, the third largest source of GHG emissions, after land use change and energy. The foot and mouth disease national eradication campaign carried out in 2016, shows that the cattle population is distributed over approximately 275000 farms, where 80% of these farms can be considered as subsistence systems (<20 animals/farm). Due to the heterogeneity of these systems, mitigation strategies focused on reducing methane from enteric fermentation can be difficult to apply, measure, and report. Another possibility for cattle livestock systems is to focus the mitigation opportunities on maintaining carbon stocks and enhancing carbon sequestration through the management of trees on farms. This study analyses the contribution of trees in pasture areas and forests on small livestock systems for offsetting GHG emissions from cattle activities. In 2018, a survey was performed on 101 farms distributed across the Amazon and coastal region in Ecuador, where herd characteristics and management were recorded. Farmers were asked to draw the boundaries of the farm on a Google Earth map, identifying the extent of primary and secondary forest areas. Trees in pasture areas were measured on plots of 1000m2, with two plots per farm. A UAV survey was performed using a DJI Mavic Pro quadcopter, equipped with an RGB camera, over plots off 125m2, and at a flying altitude of 70m. For this work, 37 farms were selected (13 in the Amazon region and 24 in the Coastal region) and GHG emissions calculated from cattle livestock activities using IPCC Tier 1 equations. The aboveground biomass for pasture areas was estimated using the Jucker et al., 2017 equation, with tree characteristics derived from the UAV survey. Average results were extrapolated to the total pasture area reported by farmers in the survey. Primary and secondary forest areas were identified from satellite images. Forest state (degradation level) was estimated using NIR data from SENTINEL-2/LANDSAT 8/PlanetScope. Aboveground biomass estimates for forests were obtained from published data using similar site conditions. Emissions from cattle activities are expressed as carbon equivalent. Biomass carbon was estimated as 0.47 of total biomass.
How to cite: Iñamagua Uyaguari, J. P., Sangoluisa, P., Green, D. R., Fitton, N., and Smith, P.: Do we need more trees to achieve carbon neutrality on livestock farms? Accounting for the negative emissions on small tropical livestock farms in Ecuador , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8017, https://doi.org/10.5194/egusphere-egu2020-8017, 2020.
Ecuador, as a signatory to the United Nations Framework Convention on Climate Change, in its Nationally Determined Contribution, has expressed its intention to reduce greenhouse gas emissions (GHG), with a focus on the energy and forest sectors. Despite the socio-economic importance and the growing pressure of agricultural and livestock activities on land use change, this sector is not explicitly considered in the national mitigation goals. Currently, grasslands occupy 57% of agricultural land in Ecuador and cattle, being the main livestock activity, is responsible for at least 46% of agricultural emissions, the third largest source of GHG emissions, after land use change and energy. The foot and mouth disease national eradication campaign carried out in 2016, shows that the cattle population is distributed over approximately 275000 farms, where 80% of these farms can be considered as subsistence systems (<20 animals/farm). Due to the heterogeneity of these systems, mitigation strategies focused on reducing methane from enteric fermentation can be difficult to apply, measure, and report. Another possibility for cattle livestock systems is to focus the mitigation opportunities on maintaining carbon stocks and enhancing carbon sequestration through the management of trees on farms. This study analyses the contribution of trees in pasture areas and forests on small livestock systems for offsetting GHG emissions from cattle activities. In 2018, a survey was performed on 101 farms distributed across the Amazon and coastal region in Ecuador, where herd characteristics and management were recorded. Farmers were asked to draw the boundaries of the farm on a Google Earth map, identifying the extent of primary and secondary forest areas. Trees in pasture areas were measured on plots of 1000m2, with two plots per farm. A UAV survey was performed using a DJI Mavic Pro quadcopter, equipped with an RGB camera, over plots off 125m2, and at a flying altitude of 70m. For this work, 37 farms were selected (13 in the Amazon region and 24 in the Coastal region) and GHG emissions calculated from cattle livestock activities using IPCC Tier 1 equations. The aboveground biomass for pasture areas was estimated using the Jucker et al., 2017 equation, with tree characteristics derived from the UAV survey. Average results were extrapolated to the total pasture area reported by farmers in the survey. Primary and secondary forest areas were identified from satellite images. Forest state (degradation level) was estimated using NIR data from SENTINEL-2/LANDSAT 8/PlanetScope. Aboveground biomass estimates for forests were obtained from published data using similar site conditions. Emissions from cattle activities are expressed as carbon equivalent. Biomass carbon was estimated as 0.47 of total biomass.
How to cite: Iñamagua Uyaguari, J. P., Sangoluisa, P., Green, D. R., Fitton, N., and Smith, P.: Do we need more trees to achieve carbon neutrality on livestock farms? Accounting for the negative emissions on small tropical livestock farms in Ecuador , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8017, https://doi.org/10.5194/egusphere-egu2020-8017, 2020.
EGU2020-10279 | Displays | BG3.9
Simulation of long-term changes in soil organic carbon and nitrous oxide emissions from permanent grass silage using the DNDC modelMohammad I. Khalil and Bruce A. Osborne
Quantification and reporting of soil organic carbon density (SOCρ) changes and greenhouse gases (GHGs), particularly nitrous oxide (N2O), emissions from agricultural soils using higher tiers remain a key challenge. Modelling approaches can provide largescale land use and management coverage whilst minimizing spatial and temporal variability. Identification of an advanced tool to simulate the net balance of SOC and GHG for mitigation, offsetting and policy formulation is a global concern. We tested the widely used latest version of Denitrification-Decomposition (DNDC95) model, a process-based one, to simulate both SOCρ and N2O emissions and their annual changes over 45 years. The moist temperate grass silage was managed with inorganic fertilizer as urea and organic ones as cattle and pig slurry applied at low, medium and high rates. The model performed well for urea, cattle slurry and pig slurry to predict both SOCρ and N2O emissions. The measured data for SOCρ at a 0-15 cm depth for unfertilized and urea-fertilized fields (73-77 t C ha-1) were significantly higher than the simulated ones (54-55). However, the model-estimates showed good agreement with the measured values (R2 = 0.66) and revealed increased C sequestration with increasing added-C (0.46±0.06 vs. 0.37±0.01 t C ha-1 yr-1). The model simulated N2O emissions well and the resulted emission factors (EFs) estimated on average to be 0.35 ± 0.02, 1.80 ± 0.28 and 1.53 ± 0.41%, respectively, which are close to national and IPCC estimates. Variations in the simulated-SOCρ and derived-EFs could be explained mainly by differences in nitrogen inputs (49%) and added-C (62%), respectively, where the impact of rainfall (15-16%) and temperature (10-11%) was identical. Generally, SOCρ and N2O EFs were sensitive to soil texture, pH, bulk density and organic carbon (R2 = 0.77-0.99) but annual changes in SOCρ decreased with the latter two (R2 = -0.99). Application of animal slurry during autumn demonstrated more C being sequestered in the clay loam soil (Dystric Gleysol) and strategic replacement of slurry either after the second or third silage cuts by urea decreased N2O EFs significantly. Results imply that the updated DNDC95 could provide an accurate representation of the key drivers influencing both SOCρ and N2O fluxes in temperate grass silage.
How to cite: Khalil, M. I. and Osborne, B. A.: Simulation of long-term changes in soil organic carbon and nitrous oxide emissions from permanent grass silage using the DNDC model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10279, https://doi.org/10.5194/egusphere-egu2020-10279, 2020.
Quantification and reporting of soil organic carbon density (SOCρ) changes and greenhouse gases (GHGs), particularly nitrous oxide (N2O), emissions from agricultural soils using higher tiers remain a key challenge. Modelling approaches can provide largescale land use and management coverage whilst minimizing spatial and temporal variability. Identification of an advanced tool to simulate the net balance of SOC and GHG for mitigation, offsetting and policy formulation is a global concern. We tested the widely used latest version of Denitrification-Decomposition (DNDC95) model, a process-based one, to simulate both SOCρ and N2O emissions and their annual changes over 45 years. The moist temperate grass silage was managed with inorganic fertilizer as urea and organic ones as cattle and pig slurry applied at low, medium and high rates. The model performed well for urea, cattle slurry and pig slurry to predict both SOCρ and N2O emissions. The measured data for SOCρ at a 0-15 cm depth for unfertilized and urea-fertilized fields (73-77 t C ha-1) were significantly higher than the simulated ones (54-55). However, the model-estimates showed good agreement with the measured values (R2 = 0.66) and revealed increased C sequestration with increasing added-C (0.46±0.06 vs. 0.37±0.01 t C ha-1 yr-1). The model simulated N2O emissions well and the resulted emission factors (EFs) estimated on average to be 0.35 ± 0.02, 1.80 ± 0.28 and 1.53 ± 0.41%, respectively, which are close to national and IPCC estimates. Variations in the simulated-SOCρ and derived-EFs could be explained mainly by differences in nitrogen inputs (49%) and added-C (62%), respectively, where the impact of rainfall (15-16%) and temperature (10-11%) was identical. Generally, SOCρ and N2O EFs were sensitive to soil texture, pH, bulk density and organic carbon (R2 = 0.77-0.99) but annual changes in SOCρ decreased with the latter two (R2 = -0.99). Application of animal slurry during autumn demonstrated more C being sequestered in the clay loam soil (Dystric Gleysol) and strategic replacement of slurry either after the second or third silage cuts by urea decreased N2O EFs significantly. Results imply that the updated DNDC95 could provide an accurate representation of the key drivers influencing both SOCρ and N2O fluxes in temperate grass silage.
How to cite: Khalil, M. I. and Osborne, B. A.: Simulation of long-term changes in soil organic carbon and nitrous oxide emissions from permanent grass silage using the DNDC model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10279, https://doi.org/10.5194/egusphere-egu2020-10279, 2020.
EGU2020-13323 | Displays | BG3.9
Organic carbon storage in the biomass and soils of hedgerowsSophie Drexler and Axel Don
The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.
Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha-1. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha-1 was estimated, but with high uncertainty.
Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha-1 year-1 over a 20-year period. Additionally, up to 9.4 Mg C ha-1 year-1 could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha-1 more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.
How to cite: Drexler, S. and Don, A.: Organic carbon storage in the biomass and soils of hedgerows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13323, https://doi.org/10.5194/egusphere-egu2020-13323, 2020.
The establishment of hedgerows as traditional form of agroforestry in Europe is a promising strategy to promote carbon sinks in the context of climate change mitigation. However, only few studies quantified the potential of hedgerows to sequester and store carbon. We therefore conducted a meta-analysis to gain a quantitative overview about the carbon storage in the above- and below-ground biomass and soils of hedgerows.
Soil organic carbon (SOC) data of hedgerows and adjacent agricultural fields of nine studies with 83 hedgerow sites was compiled. On average, the establishment of hedgerows on cropland increased SOC by 32%. No significant differences were found between the SOC storage of hedgerows and that of grassland. The literature survey on the biomass carbon stocks of hedgerows resulted in 23 sampled hedgerows, which were supplemented by own biomass data of 49 hedgerows from northern Germany. Biomass stocks increased with time since last coppicing and hedgerow height. The mean (± SD) above-ground biomass carbon stock of the analysed hedgerows was 48 ± 29 Mg C ha-1. Below-ground biomass values seemed mostly underestimated, as they were calculated from above-ground biomass via fixed assumed root:shoot ratios not specific for hedgerows. Only one study reported measured root biomass under hedgerows with a root:shoot ratio of 0.94:1 ± 0.084. With this shoot:root ratio an average below-ground biomass carbon stock of 45 ± 28 Mg C ha-1 was estimated, but with high uncertainty.
Thus, the establishment of hedgerows on cropland could lead to a SOC sequestration of 1.0 Mg C ha-1 year-1 over a 20-year period. Additionally, up to 9.4 Mg C ha-1 year-1 could be sequestered in the hedgerow biomass over a 10 year period. In total, hedgerows store 106 ± 41 Mg C ha-1 more C than croplands. Our results indicate that organic carbon stored in hedgerows is similar high as in forests. We discuss how the establishment of hedgerows, especially on cropland, can thus be an effective option for C sequestration in agricultural landscapes, meanwhile enhance biodiversity, and soil protection.
How to cite: Drexler, S. and Don, A.: Organic carbon storage in the biomass and soils of hedgerows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13323, https://doi.org/10.5194/egusphere-egu2020-13323, 2020.
EGU2020-13343 | Displays | BG3.9
How does biochar affect soil respiration?Adam Kubaczyński, Anna Walkiewicz, Małgorzata Brzezińska, and Bogusław Usowicz
Agricultural soils are an important landscape element in terms of climate change and this ecosystem is considered as a one of the major source of greenhouse gases (GHGs). Soil may be also a sink for GHGs, from this reason so many research projects are focused on determination of factors and conditions affecting gas exchange. Biochar is produced from biomass that has been pyrolysed in a zero or low oxygen availability. It is currently widely considered as a stable addition to the soil, which not only improve its fertility, but also can mitigate climate change. Considering landscape elements, the char also prevents carbon loss from forest soils. Higher microbial activity is usually associated with higher carbon dioxide (CO2) production (soil respiration). One of the most important questions is how does biochar influence production of GHGs such as CO2? Which doses have a critical meaning for CO2 emission? The aim of our study was to determine the effect of wide range doses of biochar (produced from sunflower husks) (from 1 to 100 Mg ha-1) to Haplic Luvisol soil from fallow fields. We investigated the changes of CO2 emission during laboratory incubation using gas chromatography method. In short-term incubations soil respiration was positively correlated with increasing biochar dose, while during long-term (several years) observation, the impact of biochar dose on the amount of emitted CO2 was not so significant. It is worthwhile to conduct short- term and long-term field studies in this area.
Research was partially conducted under the project “Water in soil - satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” - BIOSTRATEG strategic R&D programme.
How to cite: Kubaczyński, A., Walkiewicz, A., Brzezińska, M., and Usowicz, B.: How does biochar affect soil respiration?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13343, https://doi.org/10.5194/egusphere-egu2020-13343, 2020.
Agricultural soils are an important landscape element in terms of climate change and this ecosystem is considered as a one of the major source of greenhouse gases (GHGs). Soil may be also a sink for GHGs, from this reason so many research projects are focused on determination of factors and conditions affecting gas exchange. Biochar is produced from biomass that has been pyrolysed in a zero or low oxygen availability. It is currently widely considered as a stable addition to the soil, which not only improve its fertility, but also can mitigate climate change. Considering landscape elements, the char also prevents carbon loss from forest soils. Higher microbial activity is usually associated with higher carbon dioxide (CO2) production (soil respiration). One of the most important questions is how does biochar influence production of GHGs such as CO2? Which doses have a critical meaning for CO2 emission? The aim of our study was to determine the effect of wide range doses of biochar (produced from sunflower husks) (from 1 to 100 Mg ha-1) to Haplic Luvisol soil from fallow fields. We investigated the changes of CO2 emission during laboratory incubation using gas chromatography method. In short-term incubations soil respiration was positively correlated with increasing biochar dose, while during long-term (several years) observation, the impact of biochar dose on the amount of emitted CO2 was not so significant. It is worthwhile to conduct short- term and long-term field studies in this area.
Research was partially conducted under the project “Water in soil - satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” - BIOSTRATEG strategic R&D programme.
How to cite: Kubaczyński, A., Walkiewicz, A., Brzezińska, M., and Usowicz, B.: How does biochar affect soil respiration?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13343, https://doi.org/10.5194/egusphere-egu2020-13343, 2020.
EGU2020-13514 | Displays | BG3.9
Short-term response of methane oxidation to biofertilizer treatments in sandy and clay soil.Andrzej Bieganowski, Małgorzata Brzezińska, Cezary Polakowski, Sylwia Duda, Anna Walkiewicz, Karolina Tkaczyk, Katarzyna Jaromin-Gleń, and Magdalena Frąc
The use of biofertilizers is a promising method of improving the quality of degraded and cultivated soils. High soil quality ensures high crop yields as well as is prerequisite to the proper soil functioning in the ecosystem. We tested methanotrophic activity of sandy and clayey soil (located in Poland - in Biszcza and Basznia, respectively) as affected by the use fertilizers with microorganisms and humic acids. Nine soil treatments were included (B: without microbial enrichments: (C) - Control zero without fertilization; (CF) - Control zero + fungal strains; (CB) - Control zero + bacterial strains; (UC) - Urea without microbiological amendment; (UA100) - Urea (100% + bacterial strains; (UA60) - Urea (60%) + bacterial strains; (NPK) - Control + NPK; (NPKF) - Control + NPK + fungal strains; and (NPKB) – Control + NPK + bacterial strains. Soil samples were collected two months after fertilization, and incubated in laboratory with methane (1% vol.) for 21 days. Soils differed in CH4 uptake rate and showed various response to the treatments. Generally, sandy soil showed higher methanotrophic activity than clayey soil. Fungal and bacterial strains (CF and CB) delayed CH4 oxidation in sandy soil, while not affected the process in the clay soil. Urea apparently inhibited CH4 oxidation in sandy soil without as well as with microbial enrichment (UC, UA100, UA60). In clayey soil urea had no effect. The use of NPK fertilizer without microbes inhibited CH4 consumption compared to Control (C) in sandy soil but not in clayey soil. Fungal (NPKF) and bacterial (NPKB) enrichments resulted in acceleration of the CH4 oxidation in sandy soil. In clayey soil fungal enrichments (NPKF) accelerated CH4 oxidation while bacterial amendments (NPKB) gave the opposite effect.
The presentation is financed by the National Centre for Research and Development under the program BIOSTRATEG3, contract number BIOSTRATEG3/347464/5/NCBR/2017 "BIO FERTIL"
How to cite: Bieganowski, A., Brzezińska, M., Polakowski, C., Duda, S., Walkiewicz, A., Tkaczyk, K., Jaromin-Gleń, K., and Frąc, M.: Short-term response of methane oxidation to biofertilizer treatments in sandy and clay soil., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13514, https://doi.org/10.5194/egusphere-egu2020-13514, 2020.
The use of biofertilizers is a promising method of improving the quality of degraded and cultivated soils. High soil quality ensures high crop yields as well as is prerequisite to the proper soil functioning in the ecosystem. We tested methanotrophic activity of sandy and clayey soil (located in Poland - in Biszcza and Basznia, respectively) as affected by the use fertilizers with microorganisms and humic acids. Nine soil treatments were included (B: without microbial enrichments: (C) - Control zero without fertilization; (CF) - Control zero + fungal strains; (CB) - Control zero + bacterial strains; (UC) - Urea without microbiological amendment; (UA100) - Urea (100% + bacterial strains; (UA60) - Urea (60%) + bacterial strains; (NPK) - Control + NPK; (NPKF) - Control + NPK + fungal strains; and (NPKB) – Control + NPK + bacterial strains. Soil samples were collected two months after fertilization, and incubated in laboratory with methane (1% vol.) for 21 days. Soils differed in CH4 uptake rate and showed various response to the treatments. Generally, sandy soil showed higher methanotrophic activity than clayey soil. Fungal and bacterial strains (CF and CB) delayed CH4 oxidation in sandy soil, while not affected the process in the clay soil. Urea apparently inhibited CH4 oxidation in sandy soil without as well as with microbial enrichment (UC, UA100, UA60). In clayey soil urea had no effect. The use of NPK fertilizer without microbes inhibited CH4 consumption compared to Control (C) in sandy soil but not in clayey soil. Fungal (NPKF) and bacterial (NPKB) enrichments resulted in acceleration of the CH4 oxidation in sandy soil. In clayey soil fungal enrichments (NPKF) accelerated CH4 oxidation while bacterial amendments (NPKB) gave the opposite effect.
The presentation is financed by the National Centre for Research and Development under the program BIOSTRATEG3, contract number BIOSTRATEG3/347464/5/NCBR/2017 "BIO FERTIL"
How to cite: Bieganowski, A., Brzezińska, M., Polakowski, C., Duda, S., Walkiewicz, A., Tkaczyk, K., Jaromin-Gleń, K., and Frąc, M.: Short-term response of methane oxidation to biofertilizer treatments in sandy and clay soil., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13514, https://doi.org/10.5194/egusphere-egu2020-13514, 2020.
EGU2020-15311 | Displays | BG3.9
Multi-source data driven spatial changes of FFCO2 emissions balance and mitigation potential of different land use in ChinaJing Zhao, Guoqing Li, and Jason Blake Cohen
Estimates of fossil-fuel carbon dioxide (FFCO2) emissions in China are contingent on large uncertainty, and currently have enormous discrepancies among different inventories/datasets. The uncertainty is most attributed to underlying causes: only a few actual measurements and consumption data, and the statistical methods to confine the spatial resolution of FFCO2. In this study, an attempt is made to assess the heterogeneities and uncertainty associated with spatial distributions of emissions in six gridded FFCO2 inventories/datasets, which are compared at a 0.25 × 0.25 degree resolution.
We extract signals of urban CO2 emissions with a Deep Learning (DL) & Deep Reinforcement Learning (DRL) modeling framework from the existing new generation of satellite (OCO-2/GOSAT-2/TROPOMI) observations of atmospheric column CO2 (XCO2). We then use the results as a proxy to further estimate of the FFCO2 uncertainty. Subsequently, the estimated FFCO2 uncertainty is included in an up-to-date multivariate spatial statistic to analyze China’s spatiotemporal FFCO2 emissions balance, with a specific consideration made for the mitigation potential of different land-use types.
We find an interconnected system between the spatial FFCO2 emissions distribution and two diverse factors being the most important: urbanization and either croplands (rainfed, irrigated, and post-flooding) or native vegetation. We have determined that wettability in croplands or the increase in native vegetation have an association with the decrease of FFCO2 emissions. Ongoing work addresses the potential impacts of this FFCO2 uncertainty on flux inversions.
How to cite: Zhao, J., Li, G., and Cohen, J. B.: Multi-source data driven spatial changes of FFCO2 emissions balance and mitigation potential of different land use in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15311, https://doi.org/10.5194/egusphere-egu2020-15311, 2020.
Estimates of fossil-fuel carbon dioxide (FFCO2) emissions in China are contingent on large uncertainty, and currently have enormous discrepancies among different inventories/datasets. The uncertainty is most attributed to underlying causes: only a few actual measurements and consumption data, and the statistical methods to confine the spatial resolution of FFCO2. In this study, an attempt is made to assess the heterogeneities and uncertainty associated with spatial distributions of emissions in six gridded FFCO2 inventories/datasets, which are compared at a 0.25 × 0.25 degree resolution.
We extract signals of urban CO2 emissions with a Deep Learning (DL) & Deep Reinforcement Learning (DRL) modeling framework from the existing new generation of satellite (OCO-2/GOSAT-2/TROPOMI) observations of atmospheric column CO2 (XCO2). We then use the results as a proxy to further estimate of the FFCO2 uncertainty. Subsequently, the estimated FFCO2 uncertainty is included in an up-to-date multivariate spatial statistic to analyze China’s spatiotemporal FFCO2 emissions balance, with a specific consideration made for the mitigation potential of different land-use types.
We find an interconnected system between the spatial FFCO2 emissions distribution and two diverse factors being the most important: urbanization and either croplands (rainfed, irrigated, and post-flooding) or native vegetation. We have determined that wettability in croplands or the increase in native vegetation have an association with the decrease of FFCO2 emissions. Ongoing work addresses the potential impacts of this FFCO2 uncertainty on flux inversions.
How to cite: Zhao, J., Li, G., and Cohen, J. B.: Multi-source data driven spatial changes of FFCO2 emissions balance and mitigation potential of different land use in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15311, https://doi.org/10.5194/egusphere-egu2020-15311, 2020.
EGU2020-18708 | Displays | BG3.9
Reducing uncertainty in quantifying and reporting GHG emissions and carbon sequestration from European farming landscapesSyed Faiz-ul Islam, Mohammad Ibrahim Khalil, Katja Klumpp, and Bruce A. Osborne
It has been widely reported that although IPCC methodologies appropriate for national-level accounting purposes, they lack the farm level resolution and holistic approach required for whole-farm systems analysis. The importance of evaluating greenhouse gas (GHG) emissions from crop production, animal farming and agroforestry within the whole farm setting is being realized as more important than evaluating these emissions in isolation. Thus, whole-farm systems modelling is widely used for farm-level analysis. Here we compare three whole-farm models e.g. FarmSim, Holos and IFSM to simulate the effect of management practices on GHG emissions at the whole farm level and evaluate the carbon sequestration and methane oxidation potential of afforestation as a compensation mechanism for the mitigation of farm-level GHG emissions. Ideally, we would also want information on model performance in predicting GHG emissions in future climatic scenarios. Initial results indicate that these models can accurately predict CO2 emissions but the accuracy of these models for predicting methane (CH4) and nitrous oxide (N2O) emissions is quite low. We found that the most prominent drivers for GHG emissions in a whole farm setting were the enteric CH4 from animal farming and N2O emissions from soil management in cropland. Thus, the low prediction accuracy for CH4 and N2O emissions in whole-farm models may introduce substantial errors into GHG inventories and lead to incorrect mitigation recommendations, which necessitates further fine-tuning of these models. Efforts are ongoing to integrate carbon sequestration and soil methane oxidation potential of farm-level afforestation in the whole farm models. There are indications that afforestation can be an effective mitigation strategy. The variation we found in farm system parameters, and the inherent uncertainties associated with emissions of CH4 and N2O can have substantial implications for reported agricultural emissions requiring uncertainty or sensitivity analysis in any modelling approach. Although there is considerable variation among the quality of farm data, boundary assumptions, the emission factors used we suggest that whole-farm systems models are an appropriate tool to develop and measure GHG mitigation strategies for the European farmed landscape.
How to cite: Islam, S. F., Khalil, M. I., Klumpp, K., and Osborne, B. A.: Reducing uncertainty in quantifying and reporting GHG emissions and carbon sequestration from European farming landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18708, https://doi.org/10.5194/egusphere-egu2020-18708, 2020.
It has been widely reported that although IPCC methodologies appropriate for national-level accounting purposes, they lack the farm level resolution and holistic approach required for whole-farm systems analysis. The importance of evaluating greenhouse gas (GHG) emissions from crop production, animal farming and agroforestry within the whole farm setting is being realized as more important than evaluating these emissions in isolation. Thus, whole-farm systems modelling is widely used for farm-level analysis. Here we compare three whole-farm models e.g. FarmSim, Holos and IFSM to simulate the effect of management practices on GHG emissions at the whole farm level and evaluate the carbon sequestration and methane oxidation potential of afforestation as a compensation mechanism for the mitigation of farm-level GHG emissions. Ideally, we would also want information on model performance in predicting GHG emissions in future climatic scenarios. Initial results indicate that these models can accurately predict CO2 emissions but the accuracy of these models for predicting methane (CH4) and nitrous oxide (N2O) emissions is quite low. We found that the most prominent drivers for GHG emissions in a whole farm setting were the enteric CH4 from animal farming and N2O emissions from soil management in cropland. Thus, the low prediction accuracy for CH4 and N2O emissions in whole-farm models may introduce substantial errors into GHG inventories and lead to incorrect mitigation recommendations, which necessitates further fine-tuning of these models. Efforts are ongoing to integrate carbon sequestration and soil methane oxidation potential of farm-level afforestation in the whole farm models. There are indications that afforestation can be an effective mitigation strategy. The variation we found in farm system parameters, and the inherent uncertainties associated with emissions of CH4 and N2O can have substantial implications for reported agricultural emissions requiring uncertainty or sensitivity analysis in any modelling approach. Although there is considerable variation among the quality of farm data, boundary assumptions, the emission factors used we suggest that whole-farm systems models are an appropriate tool to develop and measure GHG mitigation strategies for the European farmed landscape.
How to cite: Islam, S. F., Khalil, M. I., Klumpp, K., and Osborne, B. A.: Reducing uncertainty in quantifying and reporting GHG emissions and carbon sequestration from European farming landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18708, https://doi.org/10.5194/egusphere-egu2020-18708, 2020.
EGU2020-18924 | Displays | BG3.9
“Solar panels forest” and its radiative forcing effect: preliminary results from the Arava DesertRafael Stern, Madi Amer, Jonathan Müller, Fyodor Tatarinov, Lior Segev, Eyal Rotenberg, and Dan Yakir
The production of electricity from solar radiation should replace power production by burning fossil fuel and help reduce atmospheric concentrations of CO2. However, large photovoltaic (PV) fields can also influence the climate in more direct ways. The albedo of solar panels is low to allow efficient light absorption, but actual conversion efficiency is below 20%. The remaining 80% of the energy is reflected, re-emitted as thermal radiation or dissipated as sensible heat (H). These effects can heat the surface, influence local air circulations, and lead to the formation of “heat-islands”. Such effects are particularly significant in desert areas with high radiation load and high background albedo. The ultimate objective of this study will be to estimate the cost (in number of years) of CO2 emission suppression of a PV power generation (a “cooling effect”) associated with the albedo radiative forcing and the surface "warming effects" and the partitioning to its components.
We used a state-of-the-art field laboratory to carry out eddy covariance flux measurements of sensible and latent heat, and the radiative balance of incoming and outgoing short- and long-wave radiations. A research drone equipped with a thermal and a multi-spectral camera was used to estimate the spatial average reflected and emitted radiation from the solar panels field. Measurements were carried out on campaign basis during 2018-2019, both inside and outside a PV field in the Arava desert in southern Israel.
The preliminary results indicated that summer noon incoming solar radiation (S) is ~1000 Wm-2 and the desert surface albedo is on average 0.40. The mean solar panel field albedo is 0.23 (with panels projected area about 1/3rd of the PV field area), which is translated to ~170 Wm-2 higher S absorption by the PV field. A large fraction of the energy is converted to sensible heat flux with mid-day H values of 450 Wm-2, compared with 250 Wm-2 in the desert, or about 200 Wm-2 of extra heating above the PV field. A first approximation of the summer daily carbon suppression (assuming 12h daily average sunlight of ~500 Wm-2, PV efficiency of 0.2, and conventional power efficiency of ~200 gC/KWh) indicated ~0.08 Kg C per day per m-2 PV area. These preliminary results are being extended to include thermal emission effects and the annual scale perspective to assess the “PV forest” radiative forcing effect. But it is evident that the land use change examined here has a large impact on the surface energy budget and its surrounding environments.
How to cite: Stern, R., Amer, M., Müller, J., Tatarinov, F., Segev, L., Rotenberg, E., and Yakir, D.: “Solar panels forest” and its radiative forcing effect: preliminary results from the Arava Desert, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18924, https://doi.org/10.5194/egusphere-egu2020-18924, 2020.
The production of electricity from solar radiation should replace power production by burning fossil fuel and help reduce atmospheric concentrations of CO2. However, large photovoltaic (PV) fields can also influence the climate in more direct ways. The albedo of solar panels is low to allow efficient light absorption, but actual conversion efficiency is below 20%. The remaining 80% of the energy is reflected, re-emitted as thermal radiation or dissipated as sensible heat (H). These effects can heat the surface, influence local air circulations, and lead to the formation of “heat-islands”. Such effects are particularly significant in desert areas with high radiation load and high background albedo. The ultimate objective of this study will be to estimate the cost (in number of years) of CO2 emission suppression of a PV power generation (a “cooling effect”) associated with the albedo radiative forcing and the surface "warming effects" and the partitioning to its components.
We used a state-of-the-art field laboratory to carry out eddy covariance flux measurements of sensible and latent heat, and the radiative balance of incoming and outgoing short- and long-wave radiations. A research drone equipped with a thermal and a multi-spectral camera was used to estimate the spatial average reflected and emitted radiation from the solar panels field. Measurements were carried out on campaign basis during 2018-2019, both inside and outside a PV field in the Arava desert in southern Israel.
The preliminary results indicated that summer noon incoming solar radiation (S) is ~1000 Wm-2 and the desert surface albedo is on average 0.40. The mean solar panel field albedo is 0.23 (with panels projected area about 1/3rd of the PV field area), which is translated to ~170 Wm-2 higher S absorption by the PV field. A large fraction of the energy is converted to sensible heat flux with mid-day H values of 450 Wm-2, compared with 250 Wm-2 in the desert, or about 200 Wm-2 of extra heating above the PV field. A first approximation of the summer daily carbon suppression (assuming 12h daily average sunlight of ~500 Wm-2, PV efficiency of 0.2, and conventional power efficiency of ~200 gC/KWh) indicated ~0.08 Kg C per day per m-2 PV area. These preliminary results are being extended to include thermal emission effects and the annual scale perspective to assess the “PV forest” radiative forcing effect. But it is evident that the land use change examined here has a large impact on the surface energy budget and its surrounding environments.
How to cite: Stern, R., Amer, M., Müller, J., Tatarinov, F., Segev, L., Rotenberg, E., and Yakir, D.: “Solar panels forest” and its radiative forcing effect: preliminary results from the Arava Desert, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18924, https://doi.org/10.5194/egusphere-egu2020-18924, 2020.
EGU2020-21473 | Displays | BG3.9
A regional assessment of land-based carbon mitigation options: Bioenergy, reforestation, forest managementMona Reiss, Andy Krause, and Anja Rammig
Current scenarios assume that in addition to a rapid reduction in greenhouse gas emissions, land-based carbon mitigation will also be necessary to achieve the targets of the Paris Climate Agreement. Possible measures are increased carbon sequestration via planting new forests, the cultivation of bioenergy crops, possibly in combination with carbon capture and storage (BECCS), or increasing the carbon storage of existing forests. However, currently available scenarios that are in line with IPCC storylines (SSPs, Shared Socioeconomic Pathways and RCPs, Representative Concentration Pathways) usually have a global perspective, while in practice mitigation projects have to be realized regionally or locally. Here, we investigate the carbon mitigation potential via alternative management of Bavarian ecosystems using an ecosystem model with an explicit representation of climate impacts and land management. Bioenergy cultivation on existing agricultural land has a larger mitigation potential than reforestation only if combined with carbon capture and storage (BECCS). The mitigation potential in the forestry sector via alternative management is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Overall, the potential for land-based mitigation in Bavaria is limited because the majority of current agricultural lands will still be needed for food production and the forestry sector offers only small per-area carbon mitigation potentials.
How to cite: Reiss, M., Krause, A., and Rammig, A.: A regional assessment of land-based carbon mitigation options: Bioenergy, reforestation, forest management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21473, https://doi.org/10.5194/egusphere-egu2020-21473, 2020.
Current scenarios assume that in addition to a rapid reduction in greenhouse gas emissions, land-based carbon mitigation will also be necessary to achieve the targets of the Paris Climate Agreement. Possible measures are increased carbon sequestration via planting new forests, the cultivation of bioenergy crops, possibly in combination with carbon capture and storage (BECCS), or increasing the carbon storage of existing forests. However, currently available scenarios that are in line with IPCC storylines (SSPs, Shared Socioeconomic Pathways and RCPs, Representative Concentration Pathways) usually have a global perspective, while in practice mitigation projects have to be realized regionally or locally. Here, we investigate the carbon mitigation potential via alternative management of Bavarian ecosystems using an ecosystem model with an explicit representation of climate impacts and land management. Bioenergy cultivation on existing agricultural land has a larger mitigation potential than reforestation only if combined with carbon capture and storage (BECCS). The mitigation potential in the forestry sector via alternative management is limited (converting coniferous into mixed forests, nitrogen fertilization) or even negative (suspending wood harvest) due to decreased carbon storage in product pools and associated substitution effects. Overall, the potential for land-based mitigation in Bavaria is limited because the majority of current agricultural lands will still be needed for food production and the forestry sector offers only small per-area carbon mitigation potentials.
How to cite: Reiss, M., Krause, A., and Rammig, A.: A regional assessment of land-based carbon mitigation options: Bioenergy, reforestation, forest management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21473, https://doi.org/10.5194/egusphere-egu2020-21473, 2020.
BG3.10 – Forest vulnerability and tree mortality across different biomes and climatic conditions: the need of interdisciplinary approaches at multiple scales
EGU2020-2522 | Displays | BG3.10
Forest vulnerability and tree mortality in the Mediterranean: Impacts and OpportunitiesTamir Klein
The Mediterranean basin is a mosaic of human and natural landscapes, many of which are important forests and woodlands. Among global biomes, it has been under the longest anthropogenic stress, and today, in addition to the ongoing warming, it experiences drying. In my talk I will give examples from new research on the impacts of these processes on Mediterranean forests, as well as opportunities for increasing their sustainability under intensifying change.
Aleppo pine is perhaps the single most important forest tree species for the region, and has been grown for decades in common garden plots of provenances from around the region. Forest scientists from Spain, Italy, Greece and Israel, teamed up to synthesize the results of these provenance trials. Together, we produced the temperature and precipitation growth sensitivity profiles for Aleppo pine. Next, these profiles were applied on future climate maps, to show the potential expansion of this key species northward, as well as its extinction in many southern locations. In a seven decades-long tree mortality study across Israel, this mortality pattern is already occurring, driven by hotter and longer drought periods.
My current research is focused on finding new avenues to ensure the long-term existence of forests and trees in the Mediterranean. Examples include: (1) Mixed forests, with native broadleaf and conifer species coexisting, have high resilience, thanks to interspecific niche partitioning; (2) Native fruit trees have higher drought resistance than their cultivated relatives, and should be protected and integrated into local agriculture; (3) Native savannah trees from the southern fringes of the region are becoming more important, and offer new resilience strategies; and (4) Variations among Aleppo pine ecotypes give hope for the future suitability of this species across the Mediterranean.
How to cite: Klein, T.: Forest vulnerability and tree mortality in the Mediterranean: Impacts and Opportunities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2522, https://doi.org/10.5194/egusphere-egu2020-2522, 2020.
The Mediterranean basin is a mosaic of human and natural landscapes, many of which are important forests and woodlands. Among global biomes, it has been under the longest anthropogenic stress, and today, in addition to the ongoing warming, it experiences drying. In my talk I will give examples from new research on the impacts of these processes on Mediterranean forests, as well as opportunities for increasing their sustainability under intensifying change.
Aleppo pine is perhaps the single most important forest tree species for the region, and has been grown for decades in common garden plots of provenances from around the region. Forest scientists from Spain, Italy, Greece and Israel, teamed up to synthesize the results of these provenance trials. Together, we produced the temperature and precipitation growth sensitivity profiles for Aleppo pine. Next, these profiles were applied on future climate maps, to show the potential expansion of this key species northward, as well as its extinction in many southern locations. In a seven decades-long tree mortality study across Israel, this mortality pattern is already occurring, driven by hotter and longer drought periods.
My current research is focused on finding new avenues to ensure the long-term existence of forests and trees in the Mediterranean. Examples include: (1) Mixed forests, with native broadleaf and conifer species coexisting, have high resilience, thanks to interspecific niche partitioning; (2) Native fruit trees have higher drought resistance than their cultivated relatives, and should be protected and integrated into local agriculture; (3) Native savannah trees from the southern fringes of the region are becoming more important, and offer new resilience strategies; and (4) Variations among Aleppo pine ecotypes give hope for the future suitability of this species across the Mediterranean.
How to cite: Klein, T.: Forest vulnerability and tree mortality in the Mediterranean: Impacts and Opportunities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2522, https://doi.org/10.5194/egusphere-egu2020-2522, 2020.
EGU2020-9316 | Displays | BG3.10
Forest dynamics after drought-induced mortality: a global assessmentEnric Batllori Presas and Francisco Lloret Maya
Forest mortality related to extreme drought has been reported worldwide, affecting all biomes and plant types (angiosperm vs. gymnosperms, evergreen vs. deciduous). The forecasted increased frequency and intensity of drought events as a consequence of anthropogenic climate change could promote an increasingly widespread drought-induced mortality in the future. However, little understanding exists on ecological trajectories or the replacement processes after drought-induced mortality events. We assess (through a collaborative initiative) the extent of short-term self-replacement patterns in temperate forest ecosystems worldwide (N = 131 sites) in relation to: species traits, the major bioclimatic characteristics of reporting sites, and past management and disturbance legacies in the affected sites. We found that alternate species replaced pre-drought dominant tree species in ~70% of the examined cases, whereas in ~10% of the study sites there was no replacement by woody vegetation. Replacement was influenced by management intensity, and post-drought shrub dominance was higher when pathogens acted as co-drivers of tree mortality. No significant replacement patterns were found in relation to the bioclimatic characteristics of the reporting sites (environmental location) or of the dominant species (bioclimatic ‘niche’). Shifts to both more xeric and to moister communities were observed. These changes were driven by species with higher limits of tolerance to dry conditions and by species with wider bioclimatic ranges, respectively. Overall, our findings highlight the potential for major forest ecosystem reorganization in the coming decades.
How to cite: Batllori Presas, E. and Lloret Maya, F.: Forest dynamics after drought-induced mortality: a global assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9316, https://doi.org/10.5194/egusphere-egu2020-9316, 2020.
Forest mortality related to extreme drought has been reported worldwide, affecting all biomes and plant types (angiosperm vs. gymnosperms, evergreen vs. deciduous). The forecasted increased frequency and intensity of drought events as a consequence of anthropogenic climate change could promote an increasingly widespread drought-induced mortality in the future. However, little understanding exists on ecological trajectories or the replacement processes after drought-induced mortality events. We assess (through a collaborative initiative) the extent of short-term self-replacement patterns in temperate forest ecosystems worldwide (N = 131 sites) in relation to: species traits, the major bioclimatic characteristics of reporting sites, and past management and disturbance legacies in the affected sites. We found that alternate species replaced pre-drought dominant tree species in ~70% of the examined cases, whereas in ~10% of the study sites there was no replacement by woody vegetation. Replacement was influenced by management intensity, and post-drought shrub dominance was higher when pathogens acted as co-drivers of tree mortality. No significant replacement patterns were found in relation to the bioclimatic characteristics of the reporting sites (environmental location) or of the dominant species (bioclimatic ‘niche’). Shifts to both more xeric and to moister communities were observed. These changes were driven by species with higher limits of tolerance to dry conditions and by species with wider bioclimatic ranges, respectively. Overall, our findings highlight the potential for major forest ecosystem reorganization in the coming decades.
How to cite: Batllori Presas, E. and Lloret Maya, F.: Forest dynamics after drought-induced mortality: a global assessment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9316, https://doi.org/10.5194/egusphere-egu2020-9316, 2020.
EGU2020-5679 | Displays | BG3.10
A consistent link between drought and forest diebacks across EuropeCornelius Senf, Allan Buras, Christian Zang, Anja Rammig, and Rupert Seidl
Drought has been suggested as major driver of large-scale forest diebacks, but quantitative evidence covering large spatial and long temporal scales is rare for Europe. Combining spatially explicit maps of canopy mortality (i.e., partial or full loss of the dominant tree canopy) generated from Landsat satellite data for the period 1986-2016 and gridded drought indices (0.5° resolution; including vapor pressure deficit, climatic water balance, and precipitation deficit), we report a consistent link between pulses of above-average tree mortality and drought conditions as measured in all three drought indices. As such, we deliver first quantitative evidence that drought conditions can trigger large-scale forest diebacks across Europe’s forests. A future increase in the severity and intensity of droughts as predicted for Europe might thus have unforeseen consequences for Europe’s forests, with large-scale forest diebacks likely becoming more common in the future.
How to cite: Senf, C., Buras, A., Zang, C., Rammig, A., and Seidl, R.: A consistent link between drought and forest diebacks across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5679, https://doi.org/10.5194/egusphere-egu2020-5679, 2020.
Drought has been suggested as major driver of large-scale forest diebacks, but quantitative evidence covering large spatial and long temporal scales is rare for Europe. Combining spatially explicit maps of canopy mortality (i.e., partial or full loss of the dominant tree canopy) generated from Landsat satellite data for the period 1986-2016 and gridded drought indices (0.5° resolution; including vapor pressure deficit, climatic water balance, and precipitation deficit), we report a consistent link between pulses of above-average tree mortality and drought conditions as measured in all three drought indices. As such, we deliver first quantitative evidence that drought conditions can trigger large-scale forest diebacks across Europe’s forests. A future increase in the severity and intensity of droughts as predicted for Europe might thus have unforeseen consequences for Europe’s forests, with large-scale forest diebacks likely becoming more common in the future.
How to cite: Senf, C., Buras, A., Zang, C., Rammig, A., and Seidl, R.: A consistent link between drought and forest diebacks across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5679, https://doi.org/10.5194/egusphere-egu2020-5679, 2020.
EGU2020-4758 | Displays | BG3.10
Effects of changing evapotranspiration and precipitation patterns on Scots pine vitality and mortalityStefan Hunziker, Michael Begert, and Arthur Gessler
Forest decline has been attributed to climatic changes in many parts of the world. Although climate conditions are an undisputed crucial factor affecting tree vitality, open questions remain regarding the relative roles of evaporative demand versus precipitation and the relative importance of individual climate variables.
In recent decades, there was a pronounced decline of Scots pines (Pinus sylvestris) at lower elevations in the inner-alpine Rhône valley in Switzerland. Similar observations were made in other inner-alpine valleys. Tree vitality was not continuously decreasing: single events of strong decrease in tree vitality and high mortality rates were observed in between phases of largely constant vitality levels. However, trees were hardly able to recover from such events in recent decades, resulting in a pronounced decrease in living Scots pines.
Climate-trend signals in the Rhône valley from 1981 to 2018 vary between the seasons. The clearest changes occurred in spring, when a strong climatic shift towards drier conditions was detected with significantly increasing evapotranspiration, decreasing precipitation sums and frequency of precipitation events, increasing duration of dry spells at lower elevations, and increasing diurnal temperature ranges. Relative trends of evapotranspiration are elevation dependent with the highest increase at low elevations. Temperature trends are the main driver towards higher evapotranspiration rates, but humidity and sunshine duration are important drivers too. For seasonal evapotranspiration anomalies, anomalies of temperature, humidity, and sunshine duration are of similar importance.
In previous works on Scots pine mortality in the Rhône valley, mortality events were attributed to prolonged periods of water deficits. However, the occurrence and magnitude of mortality events cannot be explained by droughts only. In case of Scots pines at low elevations in the Rhône valley, factors such as insect infestation and spring frost may strongly impact tree vitality and increase mortality rates.
In summary, climatic conditions changed markedly in the Swiss Rhône valley within the last approximately 40 years, especially in spring and at lower elevations. Hence, the less favorable climatic background conditions result in decreased resilience and recuperative power of the Scots pines to various disturbances, leading to the observed forest decline.
How to cite: Hunziker, S., Begert, M., and Gessler, A.: Effects of changing evapotranspiration and precipitation patterns on Scots pine vitality and mortality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4758, https://doi.org/10.5194/egusphere-egu2020-4758, 2020.
Forest decline has been attributed to climatic changes in many parts of the world. Although climate conditions are an undisputed crucial factor affecting tree vitality, open questions remain regarding the relative roles of evaporative demand versus precipitation and the relative importance of individual climate variables.
In recent decades, there was a pronounced decline of Scots pines (Pinus sylvestris) at lower elevations in the inner-alpine Rhône valley in Switzerland. Similar observations were made in other inner-alpine valleys. Tree vitality was not continuously decreasing: single events of strong decrease in tree vitality and high mortality rates were observed in between phases of largely constant vitality levels. However, trees were hardly able to recover from such events in recent decades, resulting in a pronounced decrease in living Scots pines.
Climate-trend signals in the Rhône valley from 1981 to 2018 vary between the seasons. The clearest changes occurred in spring, when a strong climatic shift towards drier conditions was detected with significantly increasing evapotranspiration, decreasing precipitation sums and frequency of precipitation events, increasing duration of dry spells at lower elevations, and increasing diurnal temperature ranges. Relative trends of evapotranspiration are elevation dependent with the highest increase at low elevations. Temperature trends are the main driver towards higher evapotranspiration rates, but humidity and sunshine duration are important drivers too. For seasonal evapotranspiration anomalies, anomalies of temperature, humidity, and sunshine duration are of similar importance.
In previous works on Scots pine mortality in the Rhône valley, mortality events were attributed to prolonged periods of water deficits. However, the occurrence and magnitude of mortality events cannot be explained by droughts only. In case of Scots pines at low elevations in the Rhône valley, factors such as insect infestation and spring frost may strongly impact tree vitality and increase mortality rates.
In summary, climatic conditions changed markedly in the Swiss Rhône valley within the last approximately 40 years, especially in spring and at lower elevations. Hence, the less favorable climatic background conditions result in decreased resilience and recuperative power of the Scots pines to various disturbances, leading to the observed forest decline.
How to cite: Hunziker, S., Begert, M., and Gessler, A.: Effects of changing evapotranspiration and precipitation patterns on Scots pine vitality and mortality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4758, https://doi.org/10.5194/egusphere-egu2020-4758, 2020.
EGU2020-18729 | Displays | BG3.10
Vulnerability of Amazonian tree communities to global changeAdriane Esquivel‐Muelbert, Thomas Pugh, Timothy Baker, Kyle Dexter, Simon Lewis, David Galbraith, and Oliver Phillips and the RAINFOR Network
Tree mortality is the principal mechanism whereby forests lose living biomass. This process has been observed to have increased across the Amazon forest over recent decades. Greater tree mortality rates have been attributed largely to an increase in the frequency and intensity of droughts, and to the intensification of competition, as a consequence of greater tree growth stimulated by higher CO2concentrations. Analysing the trends in mortality for different taxa allows us to test the contribution of these different drivers to the rise in tree mortality. Droughts are expected to kill wet-affiliated, large, and low wood density taxa. Increased competition is likely to affect slow growth, understory taxa. We assess data from over 30 years of forest monitoring across the Amazon to investigate the changes in mortality across different taxa, providing a greater understanding of the drivers of increased tree mortality across the basin and the vulnerability of these forests to water stress. We observed that the proportion of dead trees across different taxa has changed across the Amazon forest. We show an increase in the mortality of drought-vulnerable trees, particularly in those areas where dry climatic events have intensified over the last 30 years. However, the proportion of large taxa within the dead trees has not changed over the length of this study. We also observed indications of increasing competition-driven mortality represented by a decrease in abundance of slow-growth shade-tolerant species. A suite of mechanisms, varying regionally in importance, are acting synchronically to drive recent increases in tree death across Amazonia. The patterns and mechanisms observed here are amenable to incorporation within the latest generation of global vegetation models and Earth system models, providing a basis for improved simulations of forest dynamics in one of the world’s most carbon-dense ecosystems.
How to cite: Esquivel‐Muelbert, A., Pugh, T., Baker, T., Dexter, K., Lewis, S., Galbraith, D., and Phillips, O. and the RAINFOR Network: Vulnerability of Amazonian tree communities to global change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18729, https://doi.org/10.5194/egusphere-egu2020-18729, 2020.
Tree mortality is the principal mechanism whereby forests lose living biomass. This process has been observed to have increased across the Amazon forest over recent decades. Greater tree mortality rates have been attributed largely to an increase in the frequency and intensity of droughts, and to the intensification of competition, as a consequence of greater tree growth stimulated by higher CO2concentrations. Analysing the trends in mortality for different taxa allows us to test the contribution of these different drivers to the rise in tree mortality. Droughts are expected to kill wet-affiliated, large, and low wood density taxa. Increased competition is likely to affect slow growth, understory taxa. We assess data from over 30 years of forest monitoring across the Amazon to investigate the changes in mortality across different taxa, providing a greater understanding of the drivers of increased tree mortality across the basin and the vulnerability of these forests to water stress. We observed that the proportion of dead trees across different taxa has changed across the Amazon forest. We show an increase in the mortality of drought-vulnerable trees, particularly in those areas where dry climatic events have intensified over the last 30 years. However, the proportion of large taxa within the dead trees has not changed over the length of this study. We also observed indications of increasing competition-driven mortality represented by a decrease in abundance of slow-growth shade-tolerant species. A suite of mechanisms, varying regionally in importance, are acting synchronically to drive recent increases in tree death across Amazonia. The patterns and mechanisms observed here are amenable to incorporation within the latest generation of global vegetation models and Earth system models, providing a basis for improved simulations of forest dynamics in one of the world’s most carbon-dense ecosystems.
How to cite: Esquivel‐Muelbert, A., Pugh, T., Baker, T., Dexter, K., Lewis, S., Galbraith, D., and Phillips, O. and the RAINFOR Network: Vulnerability of Amazonian tree communities to global change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18729, https://doi.org/10.5194/egusphere-egu2020-18729, 2020.
EGU2020-21728 | Displays | BG3.10
Environmental, biological and human drivers of the dieback of an evergreen Mediterranean forestPaolo De Angelis, Dario Liberati, Diego Giuliarelli, Loredana Oreti, and Andrea Vannini
Forests play a key role in the climate system thanks to their large carbon uptake and storage. On the other hand, forests are vulnerable to climate extremes and pest attacks, causing early tree mortality which in turn could reduce their carbon uptake capacity.
Early tree mortality is often associated to a complex interaction of predisposing stress factors (poor site quality, unfavourable stand conditions), inciting factors (frost, drought, mechanical damage) and contributing factors (fungi, insect borers).
In this context, the aim of the present work was to investigate the processes underlying the tree mortality observed in an evergreen mixed forest stand dominated by Quercus ilex, located in the Circeo National Park (central Italy).
The forest has the typical structure of an old-coppice not more managed (actual rotation time about 2 times that the normal), and was recently (2016) affected by an outbreak of Asian ambrosia beetle (Xylosandrus compactus) and Granulate ambrosia beetle (Xylosandrus crassiusculus) that caused an extensive trees crown browning. In 2019, plots were set in the area to monitor the beetle population dynamic and their impact on tree mortality. In each plot, species, dimension (DBH), stage of dieback, stem origin (resprouts after coppicing or from seed), presence of epicormic shoots and subcortical fungi stroma, were recorded for each woody plant.
The plot survey revealed a high frequency of stems classified in a declining stage or dead, on average 42% of the standing stems, with significant differences among the species: 97%, 85%, 74% and 47% for Arbutus unedo, Quercus ilex, Phyllirea latifolia and Fraxinus ornus respectively.
The higher stem mortality of Q. ilex was recorded in the smaller diameter classes, suggesting that the self-thinning process played an important role on the observed mortality as typical in the old not more managed coppices.
To disentangle the role of the interruption of the management from the climatic and biological drivers, time trends on NDVI index were constrained with the duration of the summer dry seasons and comparing our forest with similar Q. ilex forest coppices in the region and regularly managed.
Furthermore, the contribution of recent ambrosia beetles attack was assessed identifying the presence of twigs with signs of previous beetle attack on healthy, declining and dead plants.
Our findings point towards complex tree mortality dynamics, in which the competition generated by the stand abandonment predisposed the forest to the insect attack, leading to the general decline of the forest stand.
How to cite: De Angelis, P., Liberati, D., Giuliarelli, D., Oreti, L., and Vannini, A.: Environmental, biological and human drivers of the dieback of an evergreen Mediterranean forest , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21728, https://doi.org/10.5194/egusphere-egu2020-21728, 2020.
Forests play a key role in the climate system thanks to their large carbon uptake and storage. On the other hand, forests are vulnerable to climate extremes and pest attacks, causing early tree mortality which in turn could reduce their carbon uptake capacity.
Early tree mortality is often associated to a complex interaction of predisposing stress factors (poor site quality, unfavourable stand conditions), inciting factors (frost, drought, mechanical damage) and contributing factors (fungi, insect borers).
In this context, the aim of the present work was to investigate the processes underlying the tree mortality observed in an evergreen mixed forest stand dominated by Quercus ilex, located in the Circeo National Park (central Italy).
The forest has the typical structure of an old-coppice not more managed (actual rotation time about 2 times that the normal), and was recently (2016) affected by an outbreak of Asian ambrosia beetle (Xylosandrus compactus) and Granulate ambrosia beetle (Xylosandrus crassiusculus) that caused an extensive trees crown browning. In 2019, plots were set in the area to monitor the beetle population dynamic and their impact on tree mortality. In each plot, species, dimension (DBH), stage of dieback, stem origin (resprouts after coppicing or from seed), presence of epicormic shoots and subcortical fungi stroma, were recorded for each woody plant.
The plot survey revealed a high frequency of stems classified in a declining stage or dead, on average 42% of the standing stems, with significant differences among the species: 97%, 85%, 74% and 47% for Arbutus unedo, Quercus ilex, Phyllirea latifolia and Fraxinus ornus respectively.
The higher stem mortality of Q. ilex was recorded in the smaller diameter classes, suggesting that the self-thinning process played an important role on the observed mortality as typical in the old not more managed coppices.
To disentangle the role of the interruption of the management from the climatic and biological drivers, time trends on NDVI index were constrained with the duration of the summer dry seasons and comparing our forest with similar Q. ilex forest coppices in the region and regularly managed.
Furthermore, the contribution of recent ambrosia beetles attack was assessed identifying the presence of twigs with signs of previous beetle attack on healthy, declining and dead plants.
Our findings point towards complex tree mortality dynamics, in which the competition generated by the stand abandonment predisposed the forest to the insect attack, leading to the general decline of the forest stand.
How to cite: De Angelis, P., Liberati, D., Giuliarelli, D., Oreti, L., and Vannini, A.: Environmental, biological and human drivers of the dieback of an evergreen Mediterranean forest , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21728, https://doi.org/10.5194/egusphere-egu2020-21728, 2020.
EGU2020-10084 | Displays | BG3.10
Experimentally disentangling drought from heat stress effects in European beech treesGünter Hoch, Nikita Häfeli, and Ansgar Kahmen
Hot summer droughts are becoming increasingly frequent in temperate biomes world-wide. In summer 2018, several weeks of drought paired with constantly high temperatures led to significant forest decline and mortality in mature trees in central Europe. In many regions, European beech was one of the most drought-sensitive tree species in 2018 with many trees showing partial or complete crown dieback by the end of the year, preceded by early leaf browning in mid-summer. So far it is disputed, if these symptoms were solemnly driven by a direct drought effect from dried-out soils, or if they were additionally amplified by hot mid-day temperatures and high atmospheric vapor pressure deficits (VPD).
In a recent study we therefore aimed to disentangle the effects of soil drought, air temperature and VPD on beech seedlings in a full-factorial experiment. Two-year old beech saplings were exposed to either cooler (daily max. temperature 24°C) or warmer (daily max. temperature 35°C) temperatures in walk-in phytotrons. Within each temperature treatment, half of the saplings were grown at either high or low relative humidity resulting in the same low or high mid-day VPD in both temperature treatments (0.7 vs. 2 kPa).Finally, half of the saplings from each temperature-VPD treatment combination where exposed to drought by stopping irrigation in July, with only compensatory water addition among pots to ensure the same dry-out rate among treatments (i.e. no faster soil drying at high VPD). Across all temperature-VPD treatment combinations, drought led to very similar decreases of stomatal conductance, photosynthesis and pre-dawn leaf water potential. There was only a tendency for an approximately 1 week earlier decline of Fv/Fm (leaf fluorescence) under drought at high VPD conditions, pointing at slightly faster stress occurrence at the leaf-level at very low air humidity. Neither high temperatures, nor high VPD induced stress symptoms at the leaf or whole-tree level in well-irrigated saplings. Overall, air temperature and VPD had no significant effect on the saplings' survival time under drought, with saplings from all temperature-VPD combinations dying on average after about 100 days into drought. Therefore, at the same decreasing rate of soil water availability, we did not find additional negative effects of warm temperatures or high VPD on tree survival, indicating that European beech is per se quite robust against heat and high VPD stress.
How to cite: Hoch, G., Häfeli, N., and Kahmen, A.: Experimentally disentangling drought from heat stress effects in European beech trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10084, https://doi.org/10.5194/egusphere-egu2020-10084, 2020.
Hot summer droughts are becoming increasingly frequent in temperate biomes world-wide. In summer 2018, several weeks of drought paired with constantly high temperatures led to significant forest decline and mortality in mature trees in central Europe. In many regions, European beech was one of the most drought-sensitive tree species in 2018 with many trees showing partial or complete crown dieback by the end of the year, preceded by early leaf browning in mid-summer. So far it is disputed, if these symptoms were solemnly driven by a direct drought effect from dried-out soils, or if they were additionally amplified by hot mid-day temperatures and high atmospheric vapor pressure deficits (VPD).
In a recent study we therefore aimed to disentangle the effects of soil drought, air temperature and VPD on beech seedlings in a full-factorial experiment. Two-year old beech saplings were exposed to either cooler (daily max. temperature 24°C) or warmer (daily max. temperature 35°C) temperatures in walk-in phytotrons. Within each temperature treatment, half of the saplings were grown at either high or low relative humidity resulting in the same low or high mid-day VPD in both temperature treatments (0.7 vs. 2 kPa).Finally, half of the saplings from each temperature-VPD treatment combination where exposed to drought by stopping irrigation in July, with only compensatory water addition among pots to ensure the same dry-out rate among treatments (i.e. no faster soil drying at high VPD). Across all temperature-VPD treatment combinations, drought led to very similar decreases of stomatal conductance, photosynthesis and pre-dawn leaf water potential. There was only a tendency for an approximately 1 week earlier decline of Fv/Fm (leaf fluorescence) under drought at high VPD conditions, pointing at slightly faster stress occurrence at the leaf-level at very low air humidity. Neither high temperatures, nor high VPD induced stress symptoms at the leaf or whole-tree level in well-irrigated saplings. Overall, air temperature and VPD had no significant effect on the saplings' survival time under drought, with saplings from all temperature-VPD combinations dying on average after about 100 days into drought. Therefore, at the same decreasing rate of soil water availability, we did not find additional negative effects of warm temperatures or high VPD on tree survival, indicating that European beech is per se quite robust against heat and high VPD stress.
How to cite: Hoch, G., Häfeli, N., and Kahmen, A.: Experimentally disentangling drought from heat stress effects in European beech trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10084, https://doi.org/10.5194/egusphere-egu2020-10084, 2020.
EGU2020-12895 | Displays | BG3.10
New approaches in tree phenomics using IoT technologies and AI machine learning : the TreeTalker networkRiccardo Valentini
Climate variability and extremes are observed with increasing amplitude and frequency in almost any continent and extensive tree mortality and widespread forest dieback is an increasing and emergent global concern although direct attribution of extensive tree mortality to warming or drying episodes is still under debate (IPCC AR5). Although tree dieback is a combination of causes, including pathogen/pest invasions, genetic responses and management factors, still climate anomalies, even at shorter time scales, can trigger predisposition factors that may lead to irreversible tree decline and dieback. Despite there are a number of methods for addressing simultaneously tree functions such as photosynthesis and transpiration at leaf level or at canopy scale the same information at high temporal frequency and at individual tree scale is not yet widely diffused. Taking advantage of new technology and latest developments in sensor science, (e.g Internet of Things) we have developed a new device able to measure simultaneously important tree parameters. The parameters are: 1) tree radial growth, as indicator of photosynthetic carbon allocation in biomass; 2) sap flow, as indicator of tree transpiration and functionality of xylem transport; 3) xylem moisture content as indicator of hydraulic functionality 3) light penetration in the canopy in terms of fractional absorbed radiation and 4) light spectral components related to foliage dieback and physiology, 5) tree stability parameters to allow real time forecast of potential tree fallings. We will present a synthesis of data coming from different forest locations including natural, urban and artificial plantations and discuss the capabilities to extend such network at global scale. Examples of AI machine learning application to ecophysiological data will presented. Finally we discuss the possibility of using the TreeTalker network in large scale phenomics applications for individual tree responses to climate change impacts and identification of plant traits.
How to cite: Valentini, R.: New approaches in tree phenomics using IoT technologies and AI machine learning : the TreeTalker network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12895, https://doi.org/10.5194/egusphere-egu2020-12895, 2020.
Climate variability and extremes are observed with increasing amplitude and frequency in almost any continent and extensive tree mortality and widespread forest dieback is an increasing and emergent global concern although direct attribution of extensive tree mortality to warming or drying episodes is still under debate (IPCC AR5). Although tree dieback is a combination of causes, including pathogen/pest invasions, genetic responses and management factors, still climate anomalies, even at shorter time scales, can trigger predisposition factors that may lead to irreversible tree decline and dieback. Despite there are a number of methods for addressing simultaneously tree functions such as photosynthesis and transpiration at leaf level or at canopy scale the same information at high temporal frequency and at individual tree scale is not yet widely diffused. Taking advantage of new technology and latest developments in sensor science, (e.g Internet of Things) we have developed a new device able to measure simultaneously important tree parameters. The parameters are: 1) tree radial growth, as indicator of photosynthetic carbon allocation in biomass; 2) sap flow, as indicator of tree transpiration and functionality of xylem transport; 3) xylem moisture content as indicator of hydraulic functionality 3) light penetration in the canopy in terms of fractional absorbed radiation and 4) light spectral components related to foliage dieback and physiology, 5) tree stability parameters to allow real time forecast of potential tree fallings. We will present a synthesis of data coming from different forest locations including natural, urban and artificial plantations and discuss the capabilities to extend such network at global scale. Examples of AI machine learning application to ecophysiological data will presented. Finally we discuss the possibility of using the TreeTalker network in large scale phenomics applications for individual tree responses to climate change impacts and identification of plant traits.
How to cite: Valentini, R.: New approaches in tree phenomics using IoT technologies and AI machine learning : the TreeTalker network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12895, https://doi.org/10.5194/egusphere-egu2020-12895, 2020.
EGU2020-3830 | Displays | BG3.10
Past the climate optimum: Recruitment is declining at the world’s highest juniper shrublines on the Tibetan PlateauEryuan Liang, Xiaoming Lu, Yafeng Wang, Flurin Babst, Steven W. Leavitt, and J. Julio Camarero
Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world’s highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900–1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930–2000). Recruitment was also positively correlated with precipitation, except in the 1780–1830 period, when a trend toward wetter climate conditions began. This apparent tipping point in recruitment success coincides with a switch from positive to negative impacts of rising temperatures. Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Continued warming is thus expected to further alter the dynamics of alpine shrublines on the Tibetan Plateau and elsewhere.
How to cite: Liang, E., Lu, X., Wang, Y., Babst, F., Leavitt, S. W., and Camarero, J. J.: Past the climate optimum: Recruitment is declining at the world’s highest juniper shrublines on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3830, https://doi.org/10.5194/egusphere-egu2020-3830, 2020.
Alpine biomes are climate change hotspots, and treeline dynamics in particular have received much attention as visible evidence of climate-induced shifts in species distributions. Comparatively little is known, however, about the effects of climate change on alpine shrubline dynamics. Here, we reconstruct decadally resolved shrub recruitment history (age structure) through the combination of field surveys and dendroecology methods at the world’s highest juniper (Juniperus pingii var. wilsonii) shrublines on the south-central Tibetan Plateau. A total of 1,899 shrubs were surveyed at 12 plots located in four regions along an east-to-west declining precipitation gradient. We detected synchronous recruitment with 9 out of 12 plots showing a gradual increase from 1600 to 1900, a peak at 1900–1940, and a subsequent decrease from the 1930s onward. Shrub recruitment was significantly and positively correlated with reconstructed summer temperature from 1600 to 1940, whereas it was negatively associated with temperature in recent decades (1930–2000). Recruitment was also positively correlated with precipitation, except in the 1780–1830 period, when a trend toward wetter climate conditions began. This apparent tipping point in recruitment success coincides with a switch from positive to negative impacts of rising temperatures. Warming-induced drought limitation has likely reduced the recruitment potential of alpine juniper shrubs in recent decades. Continued warming is thus expected to further alter the dynamics of alpine shrublines on the Tibetan Plateau and elsewhere.
How to cite: Liang, E., Lu, X., Wang, Y., Babst, F., Leavitt, S. W., and Camarero, J. J.: Past the climate optimum: Recruitment is declining at the world’s highest juniper shrublines on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3830, https://doi.org/10.5194/egusphere-egu2020-3830, 2020.
EGU2020-19551 | Displays | BG3.10
Combining tree ring analysis and remote sensing to assess the 2017 black pine dieback in Vinschgau/Val Venosta (Italy)Nikolaus Obojes, Jennifer Klemm, Ruth Sonnenschein, Francesco Giammarchi, Giustino Tonon, Ulrike Tappeiner, and Marc Zebisch
To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.
How to cite: Obojes, N., Klemm, J., Sonnenschein, R., Giammarchi, F., Tonon, G., Tappeiner, U., and Zebisch, M.: Combining tree ring analysis and remote sensing to assess the 2017 black pine dieback in Vinschgau/Val Venosta (Italy) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19551, https://doi.org/10.5194/egusphere-egu2020-19551, 2020.
To prevent further erosion of pastures along the south slopes of the Vinschgau/Val Venosta (South Tyrol/Italy) about 900 ha of non-native black pine (Pinus nigra) have been afforested there between 1900 and the 1960s. This drought-tolerant Mediterranean species was supposed to be able to cope with the dry climate at degraded soils in the inner-alpine dry valley. Nevertheless, black pine in the Vinschgau has been affected by reoccurring tree vitality decline and diebacks in the last 20 years linked to repeated droughts and heat waves. Observing growth trends via tree ring analysis is usually restricted to single stands. On the other hand, remote sensing data to track tree vitality was not available in sufficient spatial and temporal resolution to be applied to complex mountain terrain until recently. This has changed with the launch of the Sentinel-2 A and B satellites in 2015 and 2017 with a spatial resolution of 10 to 20 m and a revisiting period of 5 days. To analyse the accordance of remote sensing-based vegetation indices to tree-ring based growth data, we compared twelve sites across the Vinschgau/Val Venosta with a differing degree of vitality loss in 2017 for a four-year period from 2015 to 2018. In general, less vital sites were located at lower elevation and on steeper slopes. Radial tree growth was positively correlated to spring precipitation and strongly decreased during earlier hot and dry years such as 1995 and 2003. We found high and statistically significant correlations between site-average basal area increment as well as tree ring width indices and multiple vegetation indices (Normalized Difference Vegetation Index NDVI, Green Normalized Difference Vegetation Index GNDVI, Normalized Difference Infrared Index NDII, Moisture Stress Index MSI) especially for the dry 2017 growing season and the 2018 recovery year, which had large gradients in tree vitality between sites. Overall, these results show that remote sensing-based vegetation indices can be used to scale up stand level growth data also in complex mountain terrain.
How to cite: Obojes, N., Klemm, J., Sonnenschein, R., Giammarchi, F., Tonon, G., Tappeiner, U., and Zebisch, M.: Combining tree ring analysis and remote sensing to assess the 2017 black pine dieback in Vinschgau/Val Venosta (Italy) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19551, https://doi.org/10.5194/egusphere-egu2020-19551, 2020.
EGU2020-20690 | Displays | BG3.10
Ecological memory effects in Norway spruce ring-width chronologies across managed forests of Central-East Germany: Implications for modelling and planningJakob Wernicke, Christian Torsten Seltmann, and Michael Körner
The combined negative effects of climate change and adverse forest structures currently result in large amounts of random timber use all over Central Europe. Particularly Norway spruce (Picea abies [L.] Karst) is threatened by summer droughts and secondary pests. Hence, achieving insights in the drought tolerance of spruce is highly relevant to reduce the vulnerability of forest systems under climate change. Especially long-living spruce individuals witness several periods of drought in their ring-width variability. A common measure of trees drought tolerance is referred to resistance, resilience and recovery ability. Besides forest management and site characteristic, the ecological memory of trees might distinctly affect spruce drought tolerance.
Therefore we investigate the spatio-temporal variability of the ecological memory effect from more than 1500 individual ring-width time series of spruce trees collected from the managed forests of Central-East Germany. The memory effect is examined via time series first to third autocorrelation. We are particularly interested in the question: ‘can trees with a ‘good memory’ cope better with climate extremes than trees with a ‘bad memory’? If so, is it possible to influence the memory of trees via specific thinning strategies? Finally, how can autocorrelation improve the assessment of site productivity, taking the climate change induced displacement of growth areas into consideration? The study results reveal crucial insights in the drought vulnerability of spruce dominated forests in relation to forest structure and management strategies.
How to cite: Wernicke, J., Seltmann, C. T., and Körner, M.: Ecological memory effects in Norway spruce ring-width chronologies across managed forests of Central-East Germany: Implications for modelling and planning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20690, https://doi.org/10.5194/egusphere-egu2020-20690, 2020.
The combined negative effects of climate change and adverse forest structures currently result in large amounts of random timber use all over Central Europe. Particularly Norway spruce (Picea abies [L.] Karst) is threatened by summer droughts and secondary pests. Hence, achieving insights in the drought tolerance of spruce is highly relevant to reduce the vulnerability of forest systems under climate change. Especially long-living spruce individuals witness several periods of drought in their ring-width variability. A common measure of trees drought tolerance is referred to resistance, resilience and recovery ability. Besides forest management and site characteristic, the ecological memory of trees might distinctly affect spruce drought tolerance.
Therefore we investigate the spatio-temporal variability of the ecological memory effect from more than 1500 individual ring-width time series of spruce trees collected from the managed forests of Central-East Germany. The memory effect is examined via time series first to third autocorrelation. We are particularly interested in the question: ‘can trees with a ‘good memory’ cope better with climate extremes than trees with a ‘bad memory’? If so, is it possible to influence the memory of trees via specific thinning strategies? Finally, how can autocorrelation improve the assessment of site productivity, taking the climate change induced displacement of growth areas into consideration? The study results reveal crucial insights in the drought vulnerability of spruce dominated forests in relation to forest structure and management strategies.
How to cite: Wernicke, J., Seltmann, C. T., and Körner, M.: Ecological memory effects in Norway spruce ring-width chronologies across managed forests of Central-East Germany: Implications for modelling and planning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20690, https://doi.org/10.5194/egusphere-egu2020-20690, 2020.
EGU2020-10908 | Displays | BG3.10
Hydraulic strategy drives Amazon forest modelled response to droughtPhillip Papastefanou, Christian Zang, Thomas Pugh, Daijun Liu, David Lapola, Katrin Fleischer, Thorsten Grams, Thomas Hickler, and Anja Rammig
Plant hydraulics are crucial to understand impacts of droughts on single plants and whole forest ecosystems. The complex interplay of hydraulic mechanisms still poses challenges for vegetation modellers, regarding development and parameterization. Here, we apply a new hydraulic module developed for the dynamic global vegetation model LPJ-GUESS to the Amazon Basin. Special focus is given to the newly developed mortality process based on hydraulic-failure and to differences in hydraulic behaviour of plants. The implemented hydraulic-failure process can explain observed mortality patterns at rainfall exclusion experiments in the Amazon. Modelled vegetation carbon is most sensitive to two of the hydraulic processes: The xylem vulnerability to water stress and the plant specific hydraulic behaviour, i.e. how plants regulate their water potential under drought stress. Applied to the whole Amazon Basin, our model shows a strong impact of the 2005 drought event across a wide margin of modelled species and parameters, which is in good agreement with empirical studies. We highlight the hydraulic behaviour of plants, for which little is known in the Amazon rainforest, and its relevance for ecosystem model development. Considering only one single plant functional type does not sufficiently capture the complex response of the Amazon rainforest to drought, hence future modelling studies should take the interaction and competition of different hydraulic strategies into account.
How to cite: Papastefanou, P., Zang, C., Pugh, T., Liu, D., Lapola, D., Fleischer, K., Grams, T., Hickler, T., and Rammig, A.: Hydraulic strategy drives Amazon forest modelled response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10908, https://doi.org/10.5194/egusphere-egu2020-10908, 2020.
Plant hydraulics are crucial to understand impacts of droughts on single plants and whole forest ecosystems. The complex interplay of hydraulic mechanisms still poses challenges for vegetation modellers, regarding development and parameterization. Here, we apply a new hydraulic module developed for the dynamic global vegetation model LPJ-GUESS to the Amazon Basin. Special focus is given to the newly developed mortality process based on hydraulic-failure and to differences in hydraulic behaviour of plants. The implemented hydraulic-failure process can explain observed mortality patterns at rainfall exclusion experiments in the Amazon. Modelled vegetation carbon is most sensitive to two of the hydraulic processes: The xylem vulnerability to water stress and the plant specific hydraulic behaviour, i.e. how plants regulate their water potential under drought stress. Applied to the whole Amazon Basin, our model shows a strong impact of the 2005 drought event across a wide margin of modelled species and parameters, which is in good agreement with empirical studies. We highlight the hydraulic behaviour of plants, for which little is known in the Amazon rainforest, and its relevance for ecosystem model development. Considering only one single plant functional type does not sufficiently capture the complex response of the Amazon rainforest to drought, hence future modelling studies should take the interaction and competition of different hydraulic strategies into account.
How to cite: Papastefanou, P., Zang, C., Pugh, T., Liu, D., Lapola, D., Fleischer, K., Grams, T., Hickler, T., and Rammig, A.: Hydraulic strategy drives Amazon forest modelled response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10908, https://doi.org/10.5194/egusphere-egu2020-10908, 2020.
EGU2020-9680 | Displays | BG3.10
Combining multispectral and texture imagery features to assess health condition in priority riparian forests by means of unmanned aerial systemsPatricia María Rodríguez-González, Juan Guerra-Hernández, Ramón Alberto Díaz-Varela, and Juan Gabriel Álvarez-González
Expansion of damaging pests and pathogens is a reality which, together with rapid global change, is arguably the greatest contemporaneous challenge to sustainable forestry and the continuing function of forest ecosystems. Alnus glutinosa (black alder) woodlands are priority riparian forests for conservation at European Scale (Habitat 91E0* of Habitat Directive 43/92/CEE), due to their key ecological functions (such as N fixation, wildlife habitat) and ecosystem services provision (e.g. improvement of water quality). Recently, substantial declines in alder stands have been observed along streams in Europe. A major driver has been the invasive oomycete pathogen Phytophthora alni species complex, with damages widespread across Europe and even in some parts of North America. This is critical, not only due to disproportionate ecological importance of riparian forests in relation to their surface area extent but also due potential impacts to other forest species. Proper management requires accurate assessment of forest status and novel remote sensing devices offer increasing opportunities to overcome high labour costs and time-consuming travels, typical of field based monitoring. The mapping of the defoliation caused by the disease is particularly challenging in high density ecosystems with high spectral variability due to canopy heterogeneity. The use of Unmanned Aerial Vehicle (UAV) data for such tasks might be particularly advisable due to its high resolution, acquisition flexibility and cost efficiency in the field. In this study, Alnus glutinosa decline was assessed by classifying four different health condition levels (healthy, dead, and defoliation under and below a 50% threshold), previously attributed through individual tree field sampling. A combination of multispectral Parrot Sequoia and RGB-UAV-data were analysed using Random Forest (RF) and a simple and robust three-step logistic modelling approaches to identify the most relevant predictors and keep the models parsimonious. A total of 34 remote sensing (RS) variables were included in the study, including a set of vegetation indices (VI), texture features from NDVI and DSM (Digital Surface Model), topographic and DAP (Digital Aerial Photogrammetry)-derived structural from Digital Surface Model (DSM) at crown level. The four level health condition classification achieved an overall classification accuracy of 67%. On the other hand, the confusion matrix computed from the three logistic models using leave-out cross-validation method achieved an overall accuracy of 76% when using four level health condition classification. Our results offer an alternative robust classification method to forest and conservation managers for the rapid and effective assessment of areas affected by the disease in their planning of control and restoration measures aimed at reducing these forests vulnerability and black alder mortality with potential application to other species.
How to cite: Rodríguez-González, P. M., Guerra-Hernández, J., Díaz-Varela, R. A., and Álvarez-González, J. G.: Combining multispectral and texture imagery features to assess health condition in priority riparian forests by means of unmanned aerial systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9680, https://doi.org/10.5194/egusphere-egu2020-9680, 2020.
Expansion of damaging pests and pathogens is a reality which, together with rapid global change, is arguably the greatest contemporaneous challenge to sustainable forestry and the continuing function of forest ecosystems. Alnus glutinosa (black alder) woodlands are priority riparian forests for conservation at European Scale (Habitat 91E0* of Habitat Directive 43/92/CEE), due to their key ecological functions (such as N fixation, wildlife habitat) and ecosystem services provision (e.g. improvement of water quality). Recently, substantial declines in alder stands have been observed along streams in Europe. A major driver has been the invasive oomycete pathogen Phytophthora alni species complex, with damages widespread across Europe and even in some parts of North America. This is critical, not only due to disproportionate ecological importance of riparian forests in relation to their surface area extent but also due potential impacts to other forest species. Proper management requires accurate assessment of forest status and novel remote sensing devices offer increasing opportunities to overcome high labour costs and time-consuming travels, typical of field based monitoring. The mapping of the defoliation caused by the disease is particularly challenging in high density ecosystems with high spectral variability due to canopy heterogeneity. The use of Unmanned Aerial Vehicle (UAV) data for such tasks might be particularly advisable due to its high resolution, acquisition flexibility and cost efficiency in the field. In this study, Alnus glutinosa decline was assessed by classifying four different health condition levels (healthy, dead, and defoliation under and below a 50% threshold), previously attributed through individual tree field sampling. A combination of multispectral Parrot Sequoia and RGB-UAV-data were analysed using Random Forest (RF) and a simple and robust three-step logistic modelling approaches to identify the most relevant predictors and keep the models parsimonious. A total of 34 remote sensing (RS) variables were included in the study, including a set of vegetation indices (VI), texture features from NDVI and DSM (Digital Surface Model), topographic and DAP (Digital Aerial Photogrammetry)-derived structural from Digital Surface Model (DSM) at crown level. The four level health condition classification achieved an overall classification accuracy of 67%. On the other hand, the confusion matrix computed from the three logistic models using leave-out cross-validation method achieved an overall accuracy of 76% when using four level health condition classification. Our results offer an alternative robust classification method to forest and conservation managers for the rapid and effective assessment of areas affected by the disease in their planning of control and restoration measures aimed at reducing these forests vulnerability and black alder mortality with potential application to other species.
How to cite: Rodríguez-González, P. M., Guerra-Hernández, J., Díaz-Varela, R. A., and Álvarez-González, J. G.: Combining multispectral and texture imagery features to assess health condition in priority riparian forests by means of unmanned aerial systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9680, https://doi.org/10.5194/egusphere-egu2020-9680, 2020.
EGU2020-12858 | Displays | BG3.10
Five years of experimental summer drought – Anatomical and physiological acclimation of mature beech and spruceThorsten Grams
This contribution summarizes the outcome of a five-year experiment on mature (60-80 years old) trees in a Central European forest. We studied roughly 100 trees of European beech and Norway spruce, two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. anisohydric vs. isohydric behavior). Trees were exposed to experimentally induced summer droughts from 2014 to 2018 with precipitation throughfall being completely excluded during the growing seasons. The throughfall-exclusion study was established on 12 plots with trees readily accessible by canopy crane (Kranzberg forest roof experiment, southern Germany). We aimed at bringing trees to the edge of survival to studying trees’ capability for acclimation under repeated, severe summer droughts as expected more frequently in future climate scenarios. Results come from a multidisciplinary approach focusing on mechanisms of acclimation, eventually reducing trees’ vulnerability to drought during the five-year study period. Presented data integrate responses from the level of soil/microbial interactions over tree organs and whole-tree morphology to responses at the stand level.
During the first two years, restrictions caused by drought were most prominent, exemplified by pre-dawn leaf water potentials of down to -2.5 MPa and reductions in photosynthesis and growth by up to 50 and 80 % in European beech and Norway spruce, respectively. Nevertheless, percentage loss of conductivity in branch xylem was hardly affected. Likewise, concentrations of non-structural carbohydrates (sum of soluble sugars and starch) in tree organs remained largely unaffected, but translated to significantly lower carbohydrate pool sizes in view of strongly reduced tree growth. Nevertheless, two spruce trees died from drought, in the absence of bark beetle or pathogen interactions. During the fourth and fifth year of summer drought, trees showed clear signs of drought acclimation with e.g. some recovery of stomatal conductance, reductions of whole-tree leaf area, changes in rooting depth and acclimation of associated soil microbial communities. Accordingly, stem diameter growth recovered during the last years of the stress treatment, indicating reduced vulnerability of trees towards the end of the five-year drought treatment.
How to cite: Grams, T.: Five years of experimental summer drought – Anatomical and physiological acclimation of mature beech and spruce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12858, https://doi.org/10.5194/egusphere-egu2020-12858, 2020.
This contribution summarizes the outcome of a five-year experiment on mature (60-80 years old) trees in a Central European forest. We studied roughly 100 trees of European beech and Norway spruce, two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. anisohydric vs. isohydric behavior). Trees were exposed to experimentally induced summer droughts from 2014 to 2018 with precipitation throughfall being completely excluded during the growing seasons. The throughfall-exclusion study was established on 12 plots with trees readily accessible by canopy crane (Kranzberg forest roof experiment, southern Germany). We aimed at bringing trees to the edge of survival to studying trees’ capability for acclimation under repeated, severe summer droughts as expected more frequently in future climate scenarios. Results come from a multidisciplinary approach focusing on mechanisms of acclimation, eventually reducing trees’ vulnerability to drought during the five-year study period. Presented data integrate responses from the level of soil/microbial interactions over tree organs and whole-tree morphology to responses at the stand level.
During the first two years, restrictions caused by drought were most prominent, exemplified by pre-dawn leaf water potentials of down to -2.5 MPa and reductions in photosynthesis and growth by up to 50 and 80 % in European beech and Norway spruce, respectively. Nevertheless, percentage loss of conductivity in branch xylem was hardly affected. Likewise, concentrations of non-structural carbohydrates (sum of soluble sugars and starch) in tree organs remained largely unaffected, but translated to significantly lower carbohydrate pool sizes in view of strongly reduced tree growth. Nevertheless, two spruce trees died from drought, in the absence of bark beetle or pathogen interactions. During the fourth and fifth year of summer drought, trees showed clear signs of drought acclimation with e.g. some recovery of stomatal conductance, reductions of whole-tree leaf area, changes in rooting depth and acclimation of associated soil microbial communities. Accordingly, stem diameter growth recovered during the last years of the stress treatment, indicating reduced vulnerability of trees towards the end of the five-year drought treatment.
How to cite: Grams, T.: Five years of experimental summer drought – Anatomical and physiological acclimation of mature beech and spruce, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12858, https://doi.org/10.5194/egusphere-egu2020-12858, 2020.
EGU2020-1414 | Displays | BG3.10
Fire susceptibility and transitional climate regime in Amazon tropicsXiyan Xu, Gensuo Jia, Xiaoyan Zhang, and Ying Xue
Amazon wildfire surge in 2019 once again raised the alarm about the fate of the Earth’s most biodiverse forest. Climate change and deforestation lead to greater vegetation water stress and susceptibility to fires. We use multiple satellite and climate reanalysis data to explore fire susceptibility in response to shifted climate regime due to global climate change and forest loss in Amazon regions. We found that climate in Amazon has been shifting to increased frequency of extreme conditions with increased drought extent and severity. The tropical vegetation that has adapted to its surrounding climate are less resilient under stress of climate change and highly susceptible to fire. The fire susceptibility has been expanding through the transition season and northward to the tropical rain and seasonal forests. These results highlighted the links between fire risk, climate change and human activities in Amazon regions.
How to cite: Xu, X., Jia, G., Zhang, X., and Xue, Y.: Fire susceptibility and transitional climate regime in Amazon tropics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1414, https://doi.org/10.5194/egusphere-egu2020-1414, 2020.
Amazon wildfire surge in 2019 once again raised the alarm about the fate of the Earth’s most biodiverse forest. Climate change and deforestation lead to greater vegetation water stress and susceptibility to fires. We use multiple satellite and climate reanalysis data to explore fire susceptibility in response to shifted climate regime due to global climate change and forest loss in Amazon regions. We found that climate in Amazon has been shifting to increased frequency of extreme conditions with increased drought extent and severity. The tropical vegetation that has adapted to its surrounding climate are less resilient under stress of climate change and highly susceptible to fire. The fire susceptibility has been expanding through the transition season and northward to the tropical rain and seasonal forests. These results highlighted the links between fire risk, climate change and human activities in Amazon regions.
How to cite: Xu, X., Jia, G., Zhang, X., and Xue, Y.: Fire susceptibility and transitional climate regime in Amazon tropics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1414, https://doi.org/10.5194/egusphere-egu2020-1414, 2020.
EGU2020-1786 | Displays | BG3.10
Evaluating drought-induced mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the Loess PlateauZhongdian Zhang, Mingbin Huang, Yingnan Yang, and Xiaofang Zhao
Extensive afforestation with exotic species like Robinia pseudoacacia on the Chinese Loess Plateau are facing high drought-induced mortality risk due to the large fluctuations in annual precipitation and severe soil desiccation. The aim of this study was to assess the risk of drought-induced mortality for R. pseudoacacia plantations on the Loess Plateau based on plant hydraulics. We modified the routines of soil-plant-atmosphere water transfer in the Biome BioGeochemistry model (Biome-BGC) using a plant hydraulic model based on the supply-demand theory. The modified model efficiently captured the dynamics of canopy transpiration, soil moisture, leaf water potential, and regional variation in leaf area index in R. pseudoacacia stands on the Loess Plateau. We simulated the 50-year (1968-2017) plant hydraulic dynamics at 14 sites along a precipitation gradient on the Loess Plateau. The results indicated that annual average percentage loss of whole-plant hydraulic conductance (APLK) showed strong temporal variation due to climatic variability, which was positively correlated with annual potential evapotranspiration (PET) and the aridity index (the ratio of PET to annual precipitation). Along the precipitation gradient, the maximum APLK increased linearly with decreasing mean annual precipitation (MAP) and could exceed 60% at sites with MAP <446.1 mm. The sustainable growth of R. pseudoacacia plantations at these sites would face a severe threat. We analyzed the effect of soil desiccation on drought-induced mortality risk further. Soil desiccation increased the sensitivity of plant hydraulic safety to precipitation variability considerably, and the effect was more significant in areas with lower MAP. These quantitative findings should be helpful for evaluating and promoting the sustainability of plantation forests on the Loess Plateau.
How to cite: Zhang, Z., Huang, M., Yang, Y., and Zhao, X.: Evaluating drought-induced mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1786, https://doi.org/10.5194/egusphere-egu2020-1786, 2020.
Extensive afforestation with exotic species like Robinia pseudoacacia on the Chinese Loess Plateau are facing high drought-induced mortality risk due to the large fluctuations in annual precipitation and severe soil desiccation. The aim of this study was to assess the risk of drought-induced mortality for R. pseudoacacia plantations on the Loess Plateau based on plant hydraulics. We modified the routines of soil-plant-atmosphere water transfer in the Biome BioGeochemistry model (Biome-BGC) using a plant hydraulic model based on the supply-demand theory. The modified model efficiently captured the dynamics of canopy transpiration, soil moisture, leaf water potential, and regional variation in leaf area index in R. pseudoacacia stands on the Loess Plateau. We simulated the 50-year (1968-2017) plant hydraulic dynamics at 14 sites along a precipitation gradient on the Loess Plateau. The results indicated that annual average percentage loss of whole-plant hydraulic conductance (APLK) showed strong temporal variation due to climatic variability, which was positively correlated with annual potential evapotranspiration (PET) and the aridity index (the ratio of PET to annual precipitation). Along the precipitation gradient, the maximum APLK increased linearly with decreasing mean annual precipitation (MAP) and could exceed 60% at sites with MAP <446.1 mm. The sustainable growth of R. pseudoacacia plantations at these sites would face a severe threat. We analyzed the effect of soil desiccation on drought-induced mortality risk further. Soil desiccation increased the sensitivity of plant hydraulic safety to precipitation variability considerably, and the effect was more significant in areas with lower MAP. These quantitative findings should be helpful for evaluating and promoting the sustainability of plantation forests on the Loess Plateau.
How to cite: Zhang, Z., Huang, M., Yang, Y., and Zhao, X.: Evaluating drought-induced mortality risk for Robinia pseudoacacia plantations along the precipitation gradient on the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1786, https://doi.org/10.5194/egusphere-egu2020-1786, 2020.
EGU2020-2110 | Displays | BG3.10
Few large trees drive the carbon dynamics of temperate forestsZuoqiang Yuan
Although large trees explain the most variation in biomass and structure of forests, but little is known about whether and how large trees can explain variation of forest dynamics (forest productivity and biomass loss). To shed light on the effects of large trees on forest dynamics we analyzed repeated forest inventory data on 74,300 adult trees spread across 700 quadrats of temperate mixed forest in northeastern China. Here, using piecewise structural equation modeling we examined how top 1% high-biomass, 99% remaining-biomass trees, functional trait diversity (FD) and composition (CWM), climate and soil conditions influence forest dynamics in temperate old growth forests. We found that top 1% high-biomass and top 1% large-diameter trees highly increased forset dynamics and biomass stock rather their relevant 99% remaining trees, FD and CWM supporting big-size trees hypothesis. In addition, climate is more important determinant of forest productivity rates than soil nutrients. Moreover, forest productivity and biomass stock declined with CWM traits. Hence, we highlight top 1% trees overruled the effect of 99% remaining trees, FD and CWM on forest dynamics and biomass stock. We argue that including site variation and the big trees to the integrative ecological modeling help better understanding of ecological mechanisms and drivers of forest dynamics.
How to cite: Yuan, Z.: Few large trees drive the carbon dynamics of temperate forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2110, https://doi.org/10.5194/egusphere-egu2020-2110, 2020.
Although large trees explain the most variation in biomass and structure of forests, but little is known about whether and how large trees can explain variation of forest dynamics (forest productivity and biomass loss). To shed light on the effects of large trees on forest dynamics we analyzed repeated forest inventory data on 74,300 adult trees spread across 700 quadrats of temperate mixed forest in northeastern China. Here, using piecewise structural equation modeling we examined how top 1% high-biomass, 99% remaining-biomass trees, functional trait diversity (FD) and composition (CWM), climate and soil conditions influence forest dynamics in temperate old growth forests. We found that top 1% high-biomass and top 1% large-diameter trees highly increased forset dynamics and biomass stock rather their relevant 99% remaining trees, FD and CWM supporting big-size trees hypothesis. In addition, climate is more important determinant of forest productivity rates than soil nutrients. Moreover, forest productivity and biomass stock declined with CWM traits. Hence, we highlight top 1% trees overruled the effect of 99% remaining trees, FD and CWM on forest dynamics and biomass stock. We argue that including site variation and the big trees to the integrative ecological modeling help better understanding of ecological mechanisms and drivers of forest dynamics.
How to cite: Yuan, Z.: Few large trees drive the carbon dynamics of temperate forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2110, https://doi.org/10.5194/egusphere-egu2020-2110, 2020.
EGU2020-6169 | Displays | BG3.10
Cambium production pattern in Q. ilex growing at a dry site in Southern ItalyVeronica De Micco, Katarina Cufar, and Angela Balzano
Survival of forest tree species in semi-arid environments such as the Mediterranean area is threatened by the increase in harsh drought conditions. Therefore, better knowledge of the eco-physiology of Mediterranean species and their growth responses to climatic factors is needed to develop strategies for sustainable management.
The studies of cambial activity and wood formation can provide information on tree growth and physiological responses to variations in intra-annual climatic parameters, helping to answer questions related to tree performance and plasticity under changing environmental conditions.
Our aim was to investigate cambium production in holm oak (Quercus ilex L.) as one of the most widespread evergreen oaks in Southern Italy. We studied the response of cambium activity throughout the particularly dry year 2017. We collected tissues from tree stems every two weeks by sampling microcores containing phloem, cambium and xylem. For the analyses, thin cross sections of the microcores were analysed under a light microscope to identify the timing of cambial production, xylogenesis and phloem formation. We detected the period in which the cambium was active, as well as the period in which the cambium was not productive. We interpreted the cambial response to climatic conditions at the site during the period of observation.
The observed pattern of xylogenesis differed from the expected bi-modal pattern typical for Mediterranean species which usually results in Intra-annual Density Fluctuations (IADFs) in tree-rings. In Q. ilex we observed only one peak of cambial activity, likely due to the low water availability during the year 2017.
The obtained results provide useful information supporting the forecasting of the wood-growth responses to expected climate change. Moreover, we gained technical experience on optimal preparation of thin sections of problematic tissues, which is especially challenging in Q.ilex due to high hardness of the peculiar wood structure making the investigations of xylogenesis very challenging in this species.
How to cite: De Micco, V., Cufar, K., and Balzano, A.: Cambium production pattern in Q. ilex growing at a dry site in Southern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6169, https://doi.org/10.5194/egusphere-egu2020-6169, 2020.
Survival of forest tree species in semi-arid environments such as the Mediterranean area is threatened by the increase in harsh drought conditions. Therefore, better knowledge of the eco-physiology of Mediterranean species and their growth responses to climatic factors is needed to develop strategies for sustainable management.
The studies of cambial activity and wood formation can provide information on tree growth and physiological responses to variations in intra-annual climatic parameters, helping to answer questions related to tree performance and plasticity under changing environmental conditions.
Our aim was to investigate cambium production in holm oak (Quercus ilex L.) as one of the most widespread evergreen oaks in Southern Italy. We studied the response of cambium activity throughout the particularly dry year 2017. We collected tissues from tree stems every two weeks by sampling microcores containing phloem, cambium and xylem. For the analyses, thin cross sections of the microcores were analysed under a light microscope to identify the timing of cambial production, xylogenesis and phloem formation. We detected the period in which the cambium was active, as well as the period in which the cambium was not productive. We interpreted the cambial response to climatic conditions at the site during the period of observation.
The observed pattern of xylogenesis differed from the expected bi-modal pattern typical for Mediterranean species which usually results in Intra-annual Density Fluctuations (IADFs) in tree-rings. In Q. ilex we observed only one peak of cambial activity, likely due to the low water availability during the year 2017.
The obtained results provide useful information supporting the forecasting of the wood-growth responses to expected climate change. Moreover, we gained technical experience on optimal preparation of thin sections of problematic tissues, which is especially challenging in Q.ilex due to high hardness of the peculiar wood structure making the investigations of xylogenesis very challenging in this species.
How to cite: De Micco, V., Cufar, K., and Balzano, A.: Cambium production pattern in Q. ilex growing at a dry site in Southern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6169, https://doi.org/10.5194/egusphere-egu2020-6169, 2020.
EGU2020-6175 | Displays | BG3.10
Supporting decision makers through rapid assessments of remote sensing data: the case of Tefé National Forest, BrazilAna Carolina Moreira Pessôa, Liana O. Anderson, Rafael Suertegaray Rossato, Victor Marchezini, Bruna Maria Pechini Bento, Sacha Maruã Ortiz Siani, Ane Auxiliadora Costa Alencar, Isabel de Castro Silva, and Torfinn Harding
Providing scientific subsidies for public policies is a compromise that is beyond the boundaries created by the academic universe, requiring scientists to respond to the challenges posed by increasingly complex societies, both socially and environmentally. Considering this, the objective of this work was to build a pilot project for rapid assessment of Tefé National Forest (TNF) land use zoning and evaluate its relevance as a tool to support actions and influence discussions in protected area management councils.
The assessment considered remote sensing data on deforestation and fire from 2005 to 2015. Deforestation maps (PRODES-INPE) and active fire (MODIS) information were overlapped with TNF land use zoning. Although National Forest, in general, has its land use rules provided by law, each protected area defines on its Management Plan their own land use zoning, with specific rules.
The study showed that in 2015, 97% of TNF was covered by forest, and although no deforestation was recorded in the same year, the number of active fires was 1.8 times higher than the average from 2005 to 2014. This demonstrates the vulnerability of this area to the extreme drought which affected the region this year. The Population Zone, where 44% of the TNF population lives, recorded the highest rates of deforestation and fire. The Preservation Zone, on the other hand, showed to be fulfilling its function, presenting no active fires and only one deforestation event during the whole analyzed period.
These results were presented at the 20th TNF Council Meeting, in 2017. The TNF manager pointed out the great importance of spatial and temporal diagnoses, which can exert in prioritize actions to tackle specific problems in most threatened zones. Community leaders participating in the meeting contributed to the completion of the results with in situ day-to-day reports, offering hypotheses for some phenomena observed on the assessment, such as the deforestation observed in 2010. After that, it became clear that actions directly focused on the Population Zone, and mainly related to the use of fire in years of extreme drought, can improve the conservation outcome for this protected area. Integrated socio-environmental diagnosis, such as this pilot project, can be an important tool, allowing a broader version of the monitoring strategies.
How to cite: Moreira Pessôa, A. C., O. Anderson, L., Suertegaray Rossato, R., Marchezini, V., Pechini Bento, B. M., Maruã Ortiz Siani, S., Costa Alencar, A. A., de Castro Silva, I., and Harding, T.: Supporting decision makers through rapid assessments of remote sensing data: the case of Tefé National Forest, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6175, https://doi.org/10.5194/egusphere-egu2020-6175, 2020.
Providing scientific subsidies for public policies is a compromise that is beyond the boundaries created by the academic universe, requiring scientists to respond to the challenges posed by increasingly complex societies, both socially and environmentally. Considering this, the objective of this work was to build a pilot project for rapid assessment of Tefé National Forest (TNF) land use zoning and evaluate its relevance as a tool to support actions and influence discussions in protected area management councils.
The assessment considered remote sensing data on deforestation and fire from 2005 to 2015. Deforestation maps (PRODES-INPE) and active fire (MODIS) information were overlapped with TNF land use zoning. Although National Forest, in general, has its land use rules provided by law, each protected area defines on its Management Plan their own land use zoning, with specific rules.
The study showed that in 2015, 97% of TNF was covered by forest, and although no deforestation was recorded in the same year, the number of active fires was 1.8 times higher than the average from 2005 to 2014. This demonstrates the vulnerability of this area to the extreme drought which affected the region this year. The Population Zone, where 44% of the TNF population lives, recorded the highest rates of deforestation and fire. The Preservation Zone, on the other hand, showed to be fulfilling its function, presenting no active fires and only one deforestation event during the whole analyzed period.
These results were presented at the 20th TNF Council Meeting, in 2017. The TNF manager pointed out the great importance of spatial and temporal diagnoses, which can exert in prioritize actions to tackle specific problems in most threatened zones. Community leaders participating in the meeting contributed to the completion of the results with in situ day-to-day reports, offering hypotheses for some phenomena observed on the assessment, such as the deforestation observed in 2010. After that, it became clear that actions directly focused on the Population Zone, and mainly related to the use of fire in years of extreme drought, can improve the conservation outcome for this protected area. Integrated socio-environmental diagnosis, such as this pilot project, can be an important tool, allowing a broader version of the monitoring strategies.
How to cite: Moreira Pessôa, A. C., O. Anderson, L., Suertegaray Rossato, R., Marchezini, V., Pechini Bento, B. M., Maruã Ortiz Siani, S., Costa Alencar, A. A., de Castro Silva, I., and Harding, T.: Supporting decision makers through rapid assessments of remote sensing data: the case of Tefé National Forest, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6175, https://doi.org/10.5194/egusphere-egu2020-6175, 2020.
EGU2020-6701 | Displays | BG3.10
Climate change impact assessment of sub-alpine vegetation in national park using CMIP5 GCMsJaeuk Kim, Huicheul Jung, Insang Yu, and Sung-Hun Lee
In South Korea, national parks occupy the largest area among the protected areas designated to protect biodiversity and ecosystem. Among the 17 mountainous national parks, the vegetation in alpine and sub-alpine regions are very vulnerable to climate change. The objective of this study is to estimate the impact of climate change on sub-alpine vegetation considering uncertainties of future climate and the species distribution method. Observation data were gridded to 3 km spatial resolution from 1981 to 2010 using the Improved GIS-based Registry Model(IDW-IGISRM) based on the Inverse distance weighting(IDW). To reduce future uncertainty of climate change, future climate scenarios of RCP 4.5 and RCP 8.5 of CMIP5 GCM were utilized. In order to increase the spatial resolution of the GCM, Simple Quantile Mapping, one of the various bias correction and downscaling techniques, was applied. Bioclim DB, a bioclimatic variable considering temperature and moisture conditions, was established using monthly maximum temperature, minimum temperature and precipitation data among detailed GCM data. Impact assessment was held using Biomod2 of R package, for endangered sub-alpine vegetation in the National Forest Inventory(NFI). Verification of the species distribution models were carried out using AUC(Area Under the Curve) and TSS(True Skill Statistics). The result of this study is expected to be utilized for protected area management measures for biodiversity conservation in forests.
※ This work was supported by Korea Environment Industry & Technology Institute(KEITI) through Climate Change Correspondence Program, funded by Korea Ministry of Environment(MOE)(2018001310004).
How to cite: Kim, J., Jung, H., Yu, I., and Lee, S.-H.: Climate change impact assessment of sub-alpine vegetation in national park using CMIP5 GCMs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6701, https://doi.org/10.5194/egusphere-egu2020-6701, 2020.
In South Korea, national parks occupy the largest area among the protected areas designated to protect biodiversity and ecosystem. Among the 17 mountainous national parks, the vegetation in alpine and sub-alpine regions are very vulnerable to climate change. The objective of this study is to estimate the impact of climate change on sub-alpine vegetation considering uncertainties of future climate and the species distribution method. Observation data were gridded to 3 km spatial resolution from 1981 to 2010 using the Improved GIS-based Registry Model(IDW-IGISRM) based on the Inverse distance weighting(IDW). To reduce future uncertainty of climate change, future climate scenarios of RCP 4.5 and RCP 8.5 of CMIP5 GCM were utilized. In order to increase the spatial resolution of the GCM, Simple Quantile Mapping, one of the various bias correction and downscaling techniques, was applied. Bioclim DB, a bioclimatic variable considering temperature and moisture conditions, was established using monthly maximum temperature, minimum temperature and precipitation data among detailed GCM data. Impact assessment was held using Biomod2 of R package, for endangered sub-alpine vegetation in the National Forest Inventory(NFI). Verification of the species distribution models were carried out using AUC(Area Under the Curve) and TSS(True Skill Statistics). The result of this study is expected to be utilized for protected area management measures for biodiversity conservation in forests.
※ This work was supported by Korea Environment Industry & Technology Institute(KEITI) through Climate Change Correspondence Program, funded by Korea Ministry of Environment(MOE)(2018001310004).
How to cite: Kim, J., Jung, H., Yu, I., and Lee, S.-H.: Climate change impact assessment of sub-alpine vegetation in national park using CMIP5 GCMs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6701, https://doi.org/10.5194/egusphere-egu2020-6701, 2020.
EGU2020-8568 | Displays | BG3.10
Autumn warming delays downregulation of photosynthesis and does not increase risk of freezing damage in interior and coastal Douglas-fir seedlingsDevin Noordermeer, Vera Velasco, and Ingo Ensminger
In the next several decades, warming in the northern hemisphere will result in asynchronous phasing between the temperature and photoperiod signals that evergreen conifers rely upon for cold hardening during autumn. Our study investigated intraspecific variation in photosynthetic and photoprotective mechanisms in Douglas-fir (Pseudotsuga menziesii) originating from contrasting climates during simulated summer and autumn conditions, as well as how autumn warming affects downregulation of photosynthesis and development of cold hardening. Following growth under long days and summer temperature (LD/ST; 16 h photoperiod; 22 °C/13 °C day/night), Douglas-fir seedlings from two interior and two coastal provenances were acclimated to simulated autumn conditions with short days and either low temperature (SD/LT; 8 h photoperiod; 4 °C/-4 °C day/night) or high temperature (SD/HT; 8 h photoperiod; 19 °C/11 °C day/night). Exposure to low temperature induced increase in size and de-epoxidation of the xanthophyll cycle pigment pool, development of sustained nonphotochemical quenching, and downregulation of photosynthetic activity. SD/HT seedlings exhibited no downregulation of photosynthesis, corresponding with no change in xanthophyll cycle pigment de-epoxidation and no development of sustained nonphotochemical quenching. However, freezing tolerance development for all provenances was not impaired under SD/HT relative to SD/LT. Interior Douglas-fir provenances developed greater freezing tolerance relative to coastal provenances under both temperature treatments. Our findings suggest that short photoperiod alone is insufficient to induce downregulation of photosynthesis in autumn for Douglas-fir. However, this prolonged period of photosynthetic activity does not appear to bear a trade-off of impaired freezing tolerance.
How to cite: Noordermeer, D., Velasco, V., and Ensminger, I.: Autumn warming delays downregulation of photosynthesis and does not increase risk of freezing damage in interior and coastal Douglas-fir seedlings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8568, https://doi.org/10.5194/egusphere-egu2020-8568, 2020.
In the next several decades, warming in the northern hemisphere will result in asynchronous phasing between the temperature and photoperiod signals that evergreen conifers rely upon for cold hardening during autumn. Our study investigated intraspecific variation in photosynthetic and photoprotective mechanisms in Douglas-fir (Pseudotsuga menziesii) originating from contrasting climates during simulated summer and autumn conditions, as well as how autumn warming affects downregulation of photosynthesis and development of cold hardening. Following growth under long days and summer temperature (LD/ST; 16 h photoperiod; 22 °C/13 °C day/night), Douglas-fir seedlings from two interior and two coastal provenances were acclimated to simulated autumn conditions with short days and either low temperature (SD/LT; 8 h photoperiod; 4 °C/-4 °C day/night) or high temperature (SD/HT; 8 h photoperiod; 19 °C/11 °C day/night). Exposure to low temperature induced increase in size and de-epoxidation of the xanthophyll cycle pigment pool, development of sustained nonphotochemical quenching, and downregulation of photosynthetic activity. SD/HT seedlings exhibited no downregulation of photosynthesis, corresponding with no change in xanthophyll cycle pigment de-epoxidation and no development of sustained nonphotochemical quenching. However, freezing tolerance development for all provenances was not impaired under SD/HT relative to SD/LT. Interior Douglas-fir provenances developed greater freezing tolerance relative to coastal provenances under both temperature treatments. Our findings suggest that short photoperiod alone is insufficient to induce downregulation of photosynthesis in autumn for Douglas-fir. However, this prolonged period of photosynthetic activity does not appear to bear a trade-off of impaired freezing tolerance.
How to cite: Noordermeer, D., Velasco, V., and Ensminger, I.: Autumn warming delays downregulation of photosynthesis and does not increase risk of freezing damage in interior and coastal Douglas-fir seedlings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8568, https://doi.org/10.5194/egusphere-egu2020-8568, 2020.
EGU2020-10517 | Displays | BG3.10
Wood diurnal capacitance, water storage and their anatomical drivers across 30 temperate angiosperm tree species.Kasia Zieminska, Emily Rosa, Sean Gleason, and N. Michele Holbrook
Water released from storage into the transpiration stream (termed: capacitance) can play an important role in tree every day hydraulic functioning as well as in tree drought response. However, anatomical underpinnings of capacitance and water storage remain unclear, impeding better understanding of capacitance mechanisms. Across 30 temperate angiosperm tree species, we measured in natura twig wood diurnal capacitance and water content, wood density and anatomical properties: vessel dimensions, tissue fractions and vessel-tissue contact fractions (proportion of vessel circumference in contact with other tissues). We found that wood density and predawn lumen volumetric water content (proportion of wood volume that is occupied by water in lumen) together were the strongest predictors of capacitance (radj2=0.44***). Vessel-tissue contact fractions—vessel-ray, vessel-axial parenchyma and vessel-fibre—each explained an additional ∼10% of variation in capacitance. Parenchyma fraction did not correlate with capacitance challenging the common assumption that parenchyma acts as the main source of capacitance water. Anatomical structure, water content and capacitance relationships differed significantly between diffuse-porous and ring-porous species. Predawn relative water content (water in a fresh sample relative to saturated sample) was on average 0.65±0.13 implying that parts of wood were devoid of water.
How to cite: Zieminska, K., Rosa, E., Gleason, S., and Holbrook, N. M.: Wood diurnal capacitance, water storage and their anatomical drivers across 30 temperate angiosperm tree species. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10517, https://doi.org/10.5194/egusphere-egu2020-10517, 2020.
Water released from storage into the transpiration stream (termed: capacitance) can play an important role in tree every day hydraulic functioning as well as in tree drought response. However, anatomical underpinnings of capacitance and water storage remain unclear, impeding better understanding of capacitance mechanisms. Across 30 temperate angiosperm tree species, we measured in natura twig wood diurnal capacitance and water content, wood density and anatomical properties: vessel dimensions, tissue fractions and vessel-tissue contact fractions (proportion of vessel circumference in contact with other tissues). We found that wood density and predawn lumen volumetric water content (proportion of wood volume that is occupied by water in lumen) together were the strongest predictors of capacitance (radj2=0.44***). Vessel-tissue contact fractions—vessel-ray, vessel-axial parenchyma and vessel-fibre—each explained an additional ∼10% of variation in capacitance. Parenchyma fraction did not correlate with capacitance challenging the common assumption that parenchyma acts as the main source of capacitance water. Anatomical structure, water content and capacitance relationships differed significantly between diffuse-porous and ring-porous species. Predawn relative water content (water in a fresh sample relative to saturated sample) was on average 0.65±0.13 implying that parts of wood were devoid of water.
How to cite: Zieminska, K., Rosa, E., Gleason, S., and Holbrook, N. M.: Wood diurnal capacitance, water storage and their anatomical drivers across 30 temperate angiosperm tree species. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10517, https://doi.org/10.5194/egusphere-egu2020-10517, 2020.
EGU2020-10851 | Displays | BG3.10
Mitigating climate change effects on forest growth using planting stock with high adaptive genetic capacity: results from Abies alba (Mill.) provenance trials at the southeastern distribution limitGeorgeta Mihai, Alin-Madalin Alexandru, Marius-Victor Birsan, Ionel Mirancea, Paula Garbacea, and Emanuel Stoica
European silver fir (Abies alba Mill.) is among the most important forestry species in Europe. In Romanian Carpathians, it covers about 5% of the forests area and almost two-thirds of its distribution is located in Eastern Carpathians, which is the southeastern edge of its distribution in Europe.
The most recent climate change scenarios for Europe suggest increases in mean annual temperature of 1-4 °C by the end of this century (Meinshausen et al. 2011). In the context of global warming, the populations living at the edge of the species distribution will be the first facing the climate change effects. In these regions, as the southeastern Europe, the main constrains are increasing the temperature, extended drought events and water availability. Forest species are particularly sensitive to climate change because the long life-span of trees does not allow for rapid adaptation to environmental changes (Lindner et al. 2010).
In this context, the aim of this study was to analyze the drought response of 51 European silver fir populations from: Romanian Carpathians (26), Austria (4), Germany (3), France (3), Italy (4), Slovakia (3), Czech Republic (3), Poland (1) and Bulgaria (4) to strong drought events which have occurred in this region, in the last 30 years. The populations are tested in three provenances trials established in Romania, in 1980; two of them being located outside and one within the optimum climatic of species. The most drought years, with severe or extreme drought periods, have been identified based on the standardized precipitation index (McKee et al. 1993). The growth response of the silver fir populations to the drought events was evaluated by calculating four parameters, namely: resistance, recovery, resilience, relative resilience (Lloret et al. 2011). Results reveled that the general trend was towards decrease the stem radial growth of silver fir during the last 30 years. The provenance x year interaction was not significant which means high provenances stability over time. Significant differences were found among silver fir provenances in terms of ring width, latewood proportion, resistance, recovery and resilience in drought years. There are provenances which have highlighted high productivity and high tolerance to drought, which could be used in reforestation work, breeding and conservation programs. The radial growth of silver fir provenances was negative affected by the temperature increase during vegetation period and positive by previous autumn-spring precipitations. Therefore, the forest management strategy to mitigate negative impacts of climate change should be based on the knowledge of the intraspecific genetic variation and selection of the best performing and adapted planting stock for each region.
How to cite: Mihai, G., Alexandru, A.-M., Birsan, M.-V., Mirancea, I., Garbacea, P., and Stoica, E.: Mitigating climate change effects on forest growth using planting stock with high adaptive genetic capacity: results from Abies alba (Mill.) provenance trials at the southeastern distribution limit, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10851, https://doi.org/10.5194/egusphere-egu2020-10851, 2020.
European silver fir (Abies alba Mill.) is among the most important forestry species in Europe. In Romanian Carpathians, it covers about 5% of the forests area and almost two-thirds of its distribution is located in Eastern Carpathians, which is the southeastern edge of its distribution in Europe.
The most recent climate change scenarios for Europe suggest increases in mean annual temperature of 1-4 °C by the end of this century (Meinshausen et al. 2011). In the context of global warming, the populations living at the edge of the species distribution will be the first facing the climate change effects. In these regions, as the southeastern Europe, the main constrains are increasing the temperature, extended drought events and water availability. Forest species are particularly sensitive to climate change because the long life-span of trees does not allow for rapid adaptation to environmental changes (Lindner et al. 2010).
In this context, the aim of this study was to analyze the drought response of 51 European silver fir populations from: Romanian Carpathians (26), Austria (4), Germany (3), France (3), Italy (4), Slovakia (3), Czech Republic (3), Poland (1) and Bulgaria (4) to strong drought events which have occurred in this region, in the last 30 years. The populations are tested in three provenances trials established in Romania, in 1980; two of them being located outside and one within the optimum climatic of species. The most drought years, with severe or extreme drought periods, have been identified based on the standardized precipitation index (McKee et al. 1993). The growth response of the silver fir populations to the drought events was evaluated by calculating four parameters, namely: resistance, recovery, resilience, relative resilience (Lloret et al. 2011). Results reveled that the general trend was towards decrease the stem radial growth of silver fir during the last 30 years. The provenance x year interaction was not significant which means high provenances stability over time. Significant differences were found among silver fir provenances in terms of ring width, latewood proportion, resistance, recovery and resilience in drought years. There are provenances which have highlighted high productivity and high tolerance to drought, which could be used in reforestation work, breeding and conservation programs. The radial growth of silver fir provenances was negative affected by the temperature increase during vegetation period and positive by previous autumn-spring precipitations. Therefore, the forest management strategy to mitigate negative impacts of climate change should be based on the knowledge of the intraspecific genetic variation and selection of the best performing and adapted planting stock for each region.
How to cite: Mihai, G., Alexandru, A.-M., Birsan, M.-V., Mirancea, I., Garbacea, P., and Stoica, E.: Mitigating climate change effects on forest growth using planting stock with high adaptive genetic capacity: results from Abies alba (Mill.) provenance trials at the southeastern distribution limit, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10851, https://doi.org/10.5194/egusphere-egu2020-10851, 2020.
EGU2020-15175 | Displays | BG3.10
Multi-temporal analysis of post-fire vegetation spectral recovery over European forestsMaria Floriana Spatola, Angelo Rita, Marco Borghetti, Francesco Ripullone, Agostino Ferrara, and Angelo Nolè
The disturbance and recovery of European Forest ecosystems are greatly affected by wildfires, requiring continued monitoring to observe vegetational structure altered over time. One of the most important parameters is “fire severity” defined as magnitude of environmental change caused by wildfires. Due to correlation between severity and post-fire recovery vegetation, fire severity is an important indicator to define operations in the burned areas. Satellite based-data is becoming a key information for near real-time mapping and monitoring burned area after wildfire disturbances. Moderate resolution Imaging Spectroradiometer (MODIS) time-series data allows for both the capture of the initial disturbance and the ability to monitor the subsequent vegetation regeneration with spectral vegetation indices. In this study, the Google Earth Engine (GEE) platform, was used to analyse post-fire spectral recovery of European forests through the Normalized Difference Vegetation Index (NDVI) and the Relative Recovery Indicator (RRI) based on the Normalized Burn Ratio (NBR). We assessed Normalized Burn Ratio time series in order to determine trends in the short term rates of spectral recovery for three forest land cover classes and European Biogeographic regions disturbed by wildfire (2004-2013), using a series of 5-year post-disturbance time window. NBR pattern of mixed forests showed a lower variability than broadleaved and coniferous forest, indicating high resilience to environmental disturbances. Results indicate different trends of forest recovery according to different spectral indices analysed for European forest ecosystems. During the analysis period (2004-2013) we found that post-fire spectral recovery rates decreased over ten years of observation in each land cover classes and Biogeographic regions. These trends could be related to on-going climate changes affecting the Mediterranean region.
Keywords: Fire severity, Forest, Google Earth Engine, Modis (time series), Recovery, Spectral index, Wildfire.
How to cite: Spatola, M. F., Rita, A., Borghetti, M., Ripullone, F., Ferrara, A., and Nolè, A.: Multi-temporal analysis of post-fire vegetation spectral recovery over European forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15175, https://doi.org/10.5194/egusphere-egu2020-15175, 2020.
The disturbance and recovery of European Forest ecosystems are greatly affected by wildfires, requiring continued monitoring to observe vegetational structure altered over time. One of the most important parameters is “fire severity” defined as magnitude of environmental change caused by wildfires. Due to correlation between severity and post-fire recovery vegetation, fire severity is an important indicator to define operations in the burned areas. Satellite based-data is becoming a key information for near real-time mapping and monitoring burned area after wildfire disturbances. Moderate resolution Imaging Spectroradiometer (MODIS) time-series data allows for both the capture of the initial disturbance and the ability to monitor the subsequent vegetation regeneration with spectral vegetation indices. In this study, the Google Earth Engine (GEE) platform, was used to analyse post-fire spectral recovery of European forests through the Normalized Difference Vegetation Index (NDVI) and the Relative Recovery Indicator (RRI) based on the Normalized Burn Ratio (NBR). We assessed Normalized Burn Ratio time series in order to determine trends in the short term rates of spectral recovery for three forest land cover classes and European Biogeographic regions disturbed by wildfire (2004-2013), using a series of 5-year post-disturbance time window. NBR pattern of mixed forests showed a lower variability than broadleaved and coniferous forest, indicating high resilience to environmental disturbances. Results indicate different trends of forest recovery according to different spectral indices analysed for European forest ecosystems. During the analysis period (2004-2013) we found that post-fire spectral recovery rates decreased over ten years of observation in each land cover classes and Biogeographic regions. These trends could be related to on-going climate changes affecting the Mediterranean region.
Keywords: Fire severity, Forest, Google Earth Engine, Modis (time series), Recovery, Spectral index, Wildfire.
How to cite: Spatola, M. F., Rita, A., Borghetti, M., Ripullone, F., Ferrara, A., and Nolè, A.: Multi-temporal analysis of post-fire vegetation spectral recovery over European forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15175, https://doi.org/10.5194/egusphere-egu2020-15175, 2020.
EGU2020-17113 | Displays | BG3.10
Assessing and monitoring the vulnerability to drought and climate anomalies of Mediterranenan oak forests by using NDVIMaria Castellaneta, Angelo Rita, J. Julio Camarero, Michele Colangelo, Angelo Nolè, and Francesco Ripullone
Several die-off episodes related to heat weaves and drought spells have evidenced the high vulnerability of Mediterranean oak forests. These events consisted in the loss in tree vitality and manifested as growths decline, elevated crown transparency (defoliation) and rising tree mortality rate. In this context, the changes in vegetation productivity and canopy greenness may represent valuable proxies to analyze how extreme climatic events trigger forest die-off. Such changes in vegetation status may be analyzed using remote-sensing data, specifically multi-temporal spectral information. For instance, the Normalized Difference Vegetation Index (NDVI) measures changes in vegetation greenness and is a proxy of changes in leaf area index (LAI), forest aboveground biomass and productivity. In this study, we analyzed the temporal patterns of vegetation in three Mediterranean oak forests showing recent die-off in response to the 2017 severe summer drought. For this purpose, we used an open-source platform (Google Earth Engine) to extract collections of MODIS NDVI time-series from 2000 to 2019. The analysis of both NDVI trends and anomalies were used to infer differential patterns of vegetation phenology among sites comparing plots where most trees were declining and showed high defoliation (test) versus plots were most trees were considered healthy (ctrl) and showed low or no defoliation. Here we discuss: i) the likely offset in NDVI time-series between test- versus ctrl- sites; and ii) the impact of summer droughts on NDVI.
Keywords: climate change, forest vulnerability, time series, remote sensing.
How to cite: Castellaneta, M., Rita, A., Camarero, J. J., Colangelo, M., Nolè, A., and Ripullone, F.: Assessing and monitoring the vulnerability to drought and climate anomalies of Mediterranenan oak forests by using NDVI, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17113, https://doi.org/10.5194/egusphere-egu2020-17113, 2020.
Several die-off episodes related to heat weaves and drought spells have evidenced the high vulnerability of Mediterranean oak forests. These events consisted in the loss in tree vitality and manifested as growths decline, elevated crown transparency (defoliation) and rising tree mortality rate. In this context, the changes in vegetation productivity and canopy greenness may represent valuable proxies to analyze how extreme climatic events trigger forest die-off. Such changes in vegetation status may be analyzed using remote-sensing data, specifically multi-temporal spectral information. For instance, the Normalized Difference Vegetation Index (NDVI) measures changes in vegetation greenness and is a proxy of changes in leaf area index (LAI), forest aboveground biomass and productivity. In this study, we analyzed the temporal patterns of vegetation in three Mediterranean oak forests showing recent die-off in response to the 2017 severe summer drought. For this purpose, we used an open-source platform (Google Earth Engine) to extract collections of MODIS NDVI time-series from 2000 to 2019. The analysis of both NDVI trends and anomalies were used to infer differential patterns of vegetation phenology among sites comparing plots where most trees were declining and showed high defoliation (test) versus plots were most trees were considered healthy (ctrl) and showed low or no defoliation. Here we discuss: i) the likely offset in NDVI time-series between test- versus ctrl- sites; and ii) the impact of summer droughts on NDVI.
Keywords: climate change, forest vulnerability, time series, remote sensing.
How to cite: Castellaneta, M., Rita, A., Camarero, J. J., Colangelo, M., Nolè, A., and Ripullone, F.: Assessing and monitoring the vulnerability to drought and climate anomalies of Mediterranenan oak forests by using NDVI, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17113, https://doi.org/10.5194/egusphere-egu2020-17113, 2020.
EGU2020-17320 | Displays | BG3.10
The relative importance of environmental drivers on the growth of Norway spruce depends on soil types: A case study from Saxony and Thuringia, GermanyChristian Torsten Seltmann, Jakob Wernicke, Rainer Petzold, Martin Baumann, Kristian Münder, and Sven Martens
In forest management and sience it is important to determine the drivers of tree growth and to quantify their relative importance with regard to forest site characteristics. The growth of individual trees depends on complex interactions between biotic and environmental drivers. Forest management can make use or buffer the effects of biotic drivers, e. g. through thinning strategies. However, large uncertainties emerge from environmental drivers and its effects on tree growth.
The aim of this study is to quantify the relative importance of environmental drivers (climate, soil, and terrain attributes) on the growth of Norway spruce trees (Picea abies (L.) Karst.). For that purpose we distinguished three common soil types of Saxony and Thuringia, Germany (Cambisols, Podzols and water-influenced soils, i.e. Gleysol, Planosol, Stagnosol). We used national forest inventory data, regionalized climate data and terrain inferred parameters with a Boosted Regression Tree (BRT) approach. The approach is particularly suitable, since BRT quantify the relative predictor importance, considering non-linearities and interactions among predictors.
The results of this study clearly demonstrate the importance of soil properties on the growth of Norway spruce trees. Terrain attributes and temperature are similarly important for Norway spruce growth on Cambisols and Podzols, whereas spruce growth is mainly influenced by the relative sand content of the soil, the available field capacity and terrain attributes on water-influenced soils. Interactions among environmental drivers are most relevant on Cambisols and Podzols but not on water-influenced soils. Thus, the implementation of the results in growth models of high spatial resolution will support decision making in forest management.
How to cite: Seltmann, C. T., Wernicke, J., Petzold, R., Baumann, M., Münder, K., and Martens, S.: The relative importance of environmental drivers on the growth of Norway spruce depends on soil types: A case study from Saxony and Thuringia, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17320, https://doi.org/10.5194/egusphere-egu2020-17320, 2020.
In forest management and sience it is important to determine the drivers of tree growth and to quantify their relative importance with regard to forest site characteristics. The growth of individual trees depends on complex interactions between biotic and environmental drivers. Forest management can make use or buffer the effects of biotic drivers, e. g. through thinning strategies. However, large uncertainties emerge from environmental drivers and its effects on tree growth.
The aim of this study is to quantify the relative importance of environmental drivers (climate, soil, and terrain attributes) on the growth of Norway spruce trees (Picea abies (L.) Karst.). For that purpose we distinguished three common soil types of Saxony and Thuringia, Germany (Cambisols, Podzols and water-influenced soils, i.e. Gleysol, Planosol, Stagnosol). We used national forest inventory data, regionalized climate data and terrain inferred parameters with a Boosted Regression Tree (BRT) approach. The approach is particularly suitable, since BRT quantify the relative predictor importance, considering non-linearities and interactions among predictors.
The results of this study clearly demonstrate the importance of soil properties on the growth of Norway spruce trees. Terrain attributes and temperature are similarly important for Norway spruce growth on Cambisols and Podzols, whereas spruce growth is mainly influenced by the relative sand content of the soil, the available field capacity and terrain attributes on water-influenced soils. Interactions among environmental drivers are most relevant on Cambisols and Podzols but not on water-influenced soils. Thus, the implementation of the results in growth models of high spatial resolution will support decision making in forest management.
How to cite: Seltmann, C. T., Wernicke, J., Petzold, R., Baumann, M., Münder, K., and Martens, S.: The relative importance of environmental drivers on the growth of Norway spruce depends on soil types: A case study from Saxony and Thuringia, Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17320, https://doi.org/10.5194/egusphere-egu2020-17320, 2020.
EGU2020-17762 | Displays | BG3.10
Impact of climate anomalies on the functionality of beech trees in a mixed forest in the Italian south-eastern AlpsLuca Belelli Marchesini, Riccardo Valentini, Lorenzo Frizzera, Mauro Cavagna, Isaac Chini, Roberto Zampedri, and Damiano Gianelle
The increased frequency and severity of extremes climatic events determined by the current and predicted scenarios of global climate changes have a large potential impact on the functionality of forest ecosystems and on their capacity of providing ecosystem services. These include climate warming mitigation capacity of forests which is exerted through carbon sequestration, carbon storage and the regulation of the energy balance by allocating incoming solar energy into transpiration rather than thermal energy. Assessing the size of the effects of increasing atmospheric temperature and climate anomalies on the functionality of forests, both in the short and mid-term, as well as their resilience capacity, is therefore of utmost importance in ecological research. European beech (Fagus sylvatica L.) forests, extensively represented over the continent, are known to be particularly vulnerable to late frosts, which limit their distribution into continental areas, and droughts, especially in the southernmost area of their geographical distribution.
The object of this study is an alpine mixed forest at the site of Cembra (46.20N; 11.12E, 1250 m a.s.l) in the Trentino province (Italy). In May 2019 the forest experienced a late spring frost during the early development stage of beech leaves with resulting damage to canopies differing remarkably among individual plants. The ecological monitoring of beech trees started in June 2019 and has been since then carried out by means of clusters of traditional and Internet of Things based devices (Valentini et al. 2019) recording trees radial growth, sap flow density and characterizing the forest microclimatic space. The adopted experimental design consisted in the formation of two groups of trees (n=18) featuring contrasting damaged/undamaged canopies, all selected from the dominant or subdominant layer of the forest canopy structure.
Here we present the rates and the seasonal patterns of beech trees stem radial growth and transpiration from June to November 2019, highlighting the differences among plants directly dependent on the damage conditions and interpreting the total observed tree level variability in relation to microclimate, surrounding forest structure and microtopography. The functional recovery dynamics of transpiration and stem growth in damaged plants will be addressed as an initial evaluation of short-term resilience capacity of the beech forest .
How to cite: Belelli Marchesini, L., Valentini, R., Frizzera, L., Cavagna, M., Chini, I., Zampedri, R., and Gianelle, D.: Impact of climate anomalies on the functionality of beech trees in a mixed forest in the Italian south-eastern Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17762, https://doi.org/10.5194/egusphere-egu2020-17762, 2020.
The increased frequency and severity of extremes climatic events determined by the current and predicted scenarios of global climate changes have a large potential impact on the functionality of forest ecosystems and on their capacity of providing ecosystem services. These include climate warming mitigation capacity of forests which is exerted through carbon sequestration, carbon storage and the regulation of the energy balance by allocating incoming solar energy into transpiration rather than thermal energy. Assessing the size of the effects of increasing atmospheric temperature and climate anomalies on the functionality of forests, both in the short and mid-term, as well as their resilience capacity, is therefore of utmost importance in ecological research. European beech (Fagus sylvatica L.) forests, extensively represented over the continent, are known to be particularly vulnerable to late frosts, which limit their distribution into continental areas, and droughts, especially in the southernmost area of their geographical distribution.
The object of this study is an alpine mixed forest at the site of Cembra (46.20N; 11.12E, 1250 m a.s.l) in the Trentino province (Italy). In May 2019 the forest experienced a late spring frost during the early development stage of beech leaves with resulting damage to canopies differing remarkably among individual plants. The ecological monitoring of beech trees started in June 2019 and has been since then carried out by means of clusters of traditional and Internet of Things based devices (Valentini et al. 2019) recording trees radial growth, sap flow density and characterizing the forest microclimatic space. The adopted experimental design consisted in the formation of two groups of trees (n=18) featuring contrasting damaged/undamaged canopies, all selected from the dominant or subdominant layer of the forest canopy structure.
Here we present the rates and the seasonal patterns of beech trees stem radial growth and transpiration from June to November 2019, highlighting the differences among plants directly dependent on the damage conditions and interpreting the total observed tree level variability in relation to microclimate, surrounding forest structure and microtopography. The functional recovery dynamics of transpiration and stem growth in damaged plants will be addressed as an initial evaluation of short-term resilience capacity of the beech forest .
How to cite: Belelli Marchesini, L., Valentini, R., Frizzera, L., Cavagna, M., Chini, I., Zampedri, R., and Gianelle, D.: Impact of climate anomalies on the functionality of beech trees in a mixed forest in the Italian south-eastern Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17762, https://doi.org/10.5194/egusphere-egu2020-17762, 2020.
EGU2020-18443 | Displays | BG3.10
Drought-induced decline in oak Mediterranean forests: insights from wood anatomical traitsMichele Colangelo, Angelo Rita, Marco Borghetti, Jesus Julio Camarero, Tiziana Gentilesca, Osvaldo Pericolo, and Francesco Ripullone
Increased forest vulnerability to drought and heat spells is being reflected as more widespread and severe dieback events. In this regard, the Mediterranean Basin is revealing a high susceptibility to these phenomena across several tree taxa with a high ecological and socio-economic importance, particularly pines and oaks. For instance, oaks are particularly vulnerable to spring-summer droughts with important losses in term of growth and productivity accompanied by rising mortality rates and declining growth rates, despite some of these species are theoretically considered well-adapted to tolerate drought stress. Dendroecological studies using retrospective analysis of wood anatomical traits and tree-rings have demonstrated their potential to supply useful information on the long-term patterns of forest dieback in several oak species.
In this study, we explored the xylem anatomical plasticity through time by performing a long-term (1980-2017) reconstruction of wood anatomical traits, aiming at investigate the drought stress effects on dieback of oak species.To this aim, we carried out some field experiments in Italy on four oak species differing in drought tolerance, i.e. Quercus robur, Quercus cerris, Quercus frainetto and Quercus pubescens, considered to have low to high tolerance, respectively, but showing recent decline phenomena. We cored asymptomatic (ND) and symptomatic (D) coexisting trees showing low and high defoliation levels, respectively, and for all sampled species we measured the following anatomical traits in the xylem: vessel area, Dh, vessel density.
Climate-traits relationships over the last century explained the recent growth divergence observed between D and ND trees because D trees were more sensitive[U1] to drought stress and summer warm temperatures leading to high evapotranspiration rates. Here, we discuss: i) the relationships between radial growth, changes in wood anatomy and hydraulic functioning of trees to highlight the triggers of oak dieback; ii) the associations between climate, growth and anatomy data to explain likely the differences in acclimation/plasticity to short/long-term changes in environmental conditions.
How to cite: Colangelo, M., Rita, A., Borghetti, M., Camarero, J. J., Gentilesca, T., Pericolo, O., and Ripullone, F.: Drought-induced decline in oak Mediterranean forests: insights from wood anatomical traits , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18443, https://doi.org/10.5194/egusphere-egu2020-18443, 2020.
Increased forest vulnerability to drought and heat spells is being reflected as more widespread and severe dieback events. In this regard, the Mediterranean Basin is revealing a high susceptibility to these phenomena across several tree taxa with a high ecological and socio-economic importance, particularly pines and oaks. For instance, oaks are particularly vulnerable to spring-summer droughts with important losses in term of growth and productivity accompanied by rising mortality rates and declining growth rates, despite some of these species are theoretically considered well-adapted to tolerate drought stress. Dendroecological studies using retrospective analysis of wood anatomical traits and tree-rings have demonstrated their potential to supply useful information on the long-term patterns of forest dieback in several oak species.
In this study, we explored the xylem anatomical plasticity through time by performing a long-term (1980-2017) reconstruction of wood anatomical traits, aiming at investigate the drought stress effects on dieback of oak species.To this aim, we carried out some field experiments in Italy on four oak species differing in drought tolerance, i.e. Quercus robur, Quercus cerris, Quercus frainetto and Quercus pubescens, considered to have low to high tolerance, respectively, but showing recent decline phenomena. We cored asymptomatic (ND) and symptomatic (D) coexisting trees showing low and high defoliation levels, respectively, and for all sampled species we measured the following anatomical traits in the xylem: vessel area, Dh, vessel density.
Climate-traits relationships over the last century explained the recent growth divergence observed between D and ND trees because D trees were more sensitive[U1] to drought stress and summer warm temperatures leading to high evapotranspiration rates. Here, we discuss: i) the relationships between radial growth, changes in wood anatomy and hydraulic functioning of trees to highlight the triggers of oak dieback; ii) the associations between climate, growth and anatomy data to explain likely the differences in acclimation/plasticity to short/long-term changes in environmental conditions.
How to cite: Colangelo, M., Rita, A., Borghetti, M., Camarero, J. J., Gentilesca, T., Pericolo, O., and Ripullone, F.: Drought-induced decline in oak Mediterranean forests: insights from wood anatomical traits , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18443, https://doi.org/10.5194/egusphere-egu2020-18443, 2020.
EGU2020-19446 | Displays | BG3.10
A novel approach for fast prediction of hydraulic vulnerability in conifersSabine Rosner, Klara Voggeneder, and Sebastian Nöbauer
Global warming calls for fast and easily applicable methods to measure hydraulic vulnerability in conifers since they are one of the most sensitive plant groups regarding drought stress. Classical methods to determine P50, i.e. the water potential resulting in 50% conductivity loss, are labor intensive and prone to errors. In this study, the empirical relationship between percent loss of hydraulic conductivity and relative water loss in sapwood of six conifer species was used to establish a novel proxy for P50. Our new proxy P25W, defined as 25% of relative water loss induced by air injection, is easy and fast to measure and correlates strongly with P50 (r = 0.95) as well as with functional wood traits such as the tracheid wall/lumen ratio (r = -0.87). The method is regarded as a strong new phenotyping tool for screening trees for drought sensitivity.
How to cite: Rosner, S., Voggeneder, K., and Nöbauer, S.: A novel approach for fast prediction of hydraulic vulnerability in conifers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19446, https://doi.org/10.5194/egusphere-egu2020-19446, 2020.
Global warming calls for fast and easily applicable methods to measure hydraulic vulnerability in conifers since they are one of the most sensitive plant groups regarding drought stress. Classical methods to determine P50, i.e. the water potential resulting in 50% conductivity loss, are labor intensive and prone to errors. In this study, the empirical relationship between percent loss of hydraulic conductivity and relative water loss in sapwood of six conifer species was used to establish a novel proxy for P50. Our new proxy P25W, defined as 25% of relative water loss induced by air injection, is easy and fast to measure and correlates strongly with P50 (r = 0.95) as well as with functional wood traits such as the tracheid wall/lumen ratio (r = -0.87). The method is regarded as a strong new phenotyping tool for screening trees for drought sensitivity.
How to cite: Rosner, S., Voggeneder, K., and Nöbauer, S.: A novel approach for fast prediction of hydraulic vulnerability in conifers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19446, https://doi.org/10.5194/egusphere-egu2020-19446, 2020.
EGU2020-20097 | Displays | BG3.10
Feeding preference of cockchafer populations and response of oak regeneration: a case study in GermanyAikaterini Dounavi, Frederike Caroline Creyaufmüller, Isabelle Chassignet, Ludger Leinemann, Horst Delb, Oliver Gailing, Juergen Kreuzwieser, Julia Teply-Szymanski, and Barbara Vornam
In view of climate change the risk of biotic stressors in the forests is expected to be enhanced in addition to severe abiotic stress events, like drought. One biotic stress considered to be increased for oak regeneration is the root feeding of young plants from cockchafer. The cockchafers (Melolontha spp.) belong to the scarab beetles (Scarabaeidae) and are widespread pest species throughout Central Europe. In Germany, the most common species is the European cockchafer (Melolontha melolontha Linnaeus), whereby the forest cockchafer (Melolontha hippocastani Fabricius) is also present, mainly on sandy soils. Specifically, in south-western Germany both European and forest cockchafers cause economic losses in agricultural and forest areas. Besides drought, the feeding of roots from cockchafer larvae, act as an additional stress factor for young oak plants. In the present case study, geographically distant oak stands are infested with different intensity.
In the present study, population genetic analysis was used to differentiate the two cockchafer species and was used to estimate population dynamics, as well as possible consequences of climatic changes to the life cycle of forest cockchafer. Additionally, seedlings of two distant oak provenances were exposed to forest cockchafer larvae in a greenhouse experiment and their population genetic and root-based VOC profiles were studied. Larvae preferences for the different plants/populations were estimated and terpene synthase gene expression of the plants was measured.
Chloroplast haplotypes showed patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.
How to cite: Dounavi, A., Creyaufmüller, F. C., Chassignet, I., Leinemann, L., Delb, H., Gailing, O., Kreuzwieser, J., Teply-Szymanski, J., and Vornam, B.: Feeding preference of cockchafer populations and response of oak regeneration: a case study in Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20097, https://doi.org/10.5194/egusphere-egu2020-20097, 2020.
In view of climate change the risk of biotic stressors in the forests is expected to be enhanced in addition to severe abiotic stress events, like drought. One biotic stress considered to be increased for oak regeneration is the root feeding of young plants from cockchafer. The cockchafers (Melolontha spp.) belong to the scarab beetles (Scarabaeidae) and are widespread pest species throughout Central Europe. In Germany, the most common species is the European cockchafer (Melolontha melolontha Linnaeus), whereby the forest cockchafer (Melolontha hippocastani Fabricius) is also present, mainly on sandy soils. Specifically, in south-western Germany both European and forest cockchafers cause economic losses in agricultural and forest areas. Besides drought, the feeding of roots from cockchafer larvae, act as an additional stress factor for young oak plants. In the present case study, geographically distant oak stands are infested with different intensity.
In the present study, population genetic analysis was used to differentiate the two cockchafer species and was used to estimate population dynamics, as well as possible consequences of climatic changes to the life cycle of forest cockchafer. Additionally, seedlings of two distant oak provenances were exposed to forest cockchafer larvae in a greenhouse experiment and their population genetic and root-based VOC profiles were studied. Larvae preferences for the different plants/populations were estimated and terpene synthase gene expression of the plants was measured.
Chloroplast haplotypes showed patterns of migration from different refugial regions. However, no clear association between genetic constitution of the different provenances and the abundance of cockchafer populations on site was observed. TPS gene expression patterns in response to larval feeding revealed geographic variation rather than genotypic variation. Our results support the assumption that root-released VOC are influencing the perception of roots by herbivores.
How to cite: Dounavi, A., Creyaufmüller, F. C., Chassignet, I., Leinemann, L., Delb, H., Gailing, O., Kreuzwieser, J., Teply-Szymanski, J., and Vornam, B.: Feeding preference of cockchafer populations and response of oak regeneration: a case study in Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20097, https://doi.org/10.5194/egusphere-egu2020-20097, 2020.
EGU2020-20591 | Displays | BG3.10
The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate changeSimona Castaldi, Serena Antonucci, Shahla Asgharina, Giovanna Battipaglia, Luca Belelli Marchesini, Mauro Cavagna, Isaac Chini, Claudia Cocozza, Damiano Gianelle, Tommaso La Mantia, Antonio Motisi, Francesco Niccoli, Arturo Pacheco Solana, Giovanna Sala, Giovanni Santopuoli, Giustino Tonon, Roberto Tognetti, Roberto Zampedri, Ilaria Zorzi, and Riccardo Valentini
The Italian TREETALKER NETWORK (ITT-Net) aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience.
With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.
To have an overview of the ITT Network you can visit www.globaltreetalker.org
How to cite: Castaldi, S., Antonucci, S., Asgharina, S., Battipaglia, G., Belelli Marchesini, L., Cavagna, M., Chini, I., Cocozza, C., Gianelle, D., La Mantia, T., Motisi, A., Niccoli, F., Pacheco Solana, A., Sala, G., Santopuoli, G., Tonon, G., Tognetti, R., Zampedri, R., Zorzi, I., and Valentini, R.: The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20591, https://doi.org/10.5194/egusphere-egu2020-20591, 2020.
The Italian TREETALKER NETWORK (ITT-Net) aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience.
With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.
To have an overview of the ITT Network you can visit www.globaltreetalker.org
How to cite: Castaldi, S., Antonucci, S., Asgharina, S., Battipaglia, G., Belelli Marchesini, L., Cavagna, M., Chini, I., Cocozza, C., Gianelle, D., La Mantia, T., Motisi, A., Niccoli, F., Pacheco Solana, A., Sala, G., Santopuoli, G., Tonon, G., Tognetti, R., Zampedri, R., Zorzi, I., and Valentini, R.: The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20591, https://doi.org/10.5194/egusphere-egu2020-20591, 2020.
EGU2020-20738 | Displays | BG3.10
The forest of San Rossore (Tuscany, Italy): a call for its conservation through a multidisciplinary approachIduna Arduini, Roberto Cardelli, and Andrea Bertacchi
The forest of San Rossore, extending for approximately 3,500 ha along the coast of Tuscany (central Italy), is the heart of the “Selve costiere di Toscana”, included in the World Network of Biosphere Reserves (UNESCO). This forest is a mosaic of patches of mixed hygrophilous broadleaves, Mediterranean sclerophyllous and conifers, and old stone pine plantations. With its more than 600 plant species this forest system is a recognized reservoir of high landscape and biological value, nevertheless it is highly vulnerable to antrophogenic disturbance and climate change. The primary reason is that it grows on a succession of old sand dunes alternated with wet hollows and, therefore, the soil is characterized by a very thin organic layer which is prone to erosion and mineralization once the integrity of the vegetation cover is disturbed. Secondly, the forest is surrounded by a highly urbanized area and undergoes touristic pressure, both facilitating the introduction of alien species into the natural vegetation. Investigations demonstrated that the soil seed bank is generally poor and contains an appreciable proportion of alien species. Forest clearings are often invaded by alien trees, first by Ailanthus altissima (Mill.) Swingle, whereas Amorpha fruticosa L. diffuses along channels and ditches.
In the foregone decades the forest of San Rossore underwent several threats: i) the progressive dieback of the forest front nearest to the seashore caused by both the massive coastal erosion and the foliar deposition of marine aerosol-borne pollutants, and ii) the attack of Leptoglossus occidentalis Heidemann and Matsucoccus feytaudi Ducasse, two insect pests that caused a diffuse decay of Pinus pinea L. and Pinus pinaster Aiton stands, respectively. In addition to the above damages on the standing plants, a high density of ungulates impairs the regeneration of forest trees, primarily that of broadleaves.
In recent years, an increased crash down of isolated trees belonging to both the hygrophilous and the Mediterranean forest associations, and the dieback of entire Fraxinus angustifolia Auct. patches were observed. While the former events can be attributed to windstorms, which increased frequency and strength is associated with climate change, the latter are still unexplained, but multiple, interacting factors can be hypothesized. Among these, the infiltration of saline rich seawater in consequence of coastal erosion, the accumulation of pollutants in the soil, the attack of a specific pathogen, but also changes in the seasonal fluctuations of soil humidity, due to either changes in the amount and distribution of rainfall or to changes in forest management. The forest of San Rossore is, indeed, crossed by a system of artificial channels which provided to drain the soil of stone pine plantations in the past, but are no more maintained today. This could have reduced the water flux in the subsurface water table causing soil hypoxia, which weakens the root systems and reduces tree vigor, thus increasing their susceptibility to diseases and crash down.
The forest of San Rossore is a model for complex forest systems subjected to several pressures, which health conservation urgently needs the joint effort of multidisciplinary knowledge.
How to cite: Arduini, I., Cardelli, R., and Bertacchi, A.: The forest of San Rossore (Tuscany, Italy): a call for its conservation through a multidisciplinary approach , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20738, https://doi.org/10.5194/egusphere-egu2020-20738, 2020.
The forest of San Rossore, extending for approximately 3,500 ha along the coast of Tuscany (central Italy), is the heart of the “Selve costiere di Toscana”, included in the World Network of Biosphere Reserves (UNESCO). This forest is a mosaic of patches of mixed hygrophilous broadleaves, Mediterranean sclerophyllous and conifers, and old stone pine plantations. With its more than 600 plant species this forest system is a recognized reservoir of high landscape and biological value, nevertheless it is highly vulnerable to antrophogenic disturbance and climate change. The primary reason is that it grows on a succession of old sand dunes alternated with wet hollows and, therefore, the soil is characterized by a very thin organic layer which is prone to erosion and mineralization once the integrity of the vegetation cover is disturbed. Secondly, the forest is surrounded by a highly urbanized area and undergoes touristic pressure, both facilitating the introduction of alien species into the natural vegetation. Investigations demonstrated that the soil seed bank is generally poor and contains an appreciable proportion of alien species. Forest clearings are often invaded by alien trees, first by Ailanthus altissima (Mill.) Swingle, whereas Amorpha fruticosa L. diffuses along channels and ditches.
In the foregone decades the forest of San Rossore underwent several threats: i) the progressive dieback of the forest front nearest to the seashore caused by both the massive coastal erosion and the foliar deposition of marine aerosol-borne pollutants, and ii) the attack of Leptoglossus occidentalis Heidemann and Matsucoccus feytaudi Ducasse, two insect pests that caused a diffuse decay of Pinus pinea L. and Pinus pinaster Aiton stands, respectively. In addition to the above damages on the standing plants, a high density of ungulates impairs the regeneration of forest trees, primarily that of broadleaves.
In recent years, an increased crash down of isolated trees belonging to both the hygrophilous and the Mediterranean forest associations, and the dieback of entire Fraxinus angustifolia Auct. patches were observed. While the former events can be attributed to windstorms, which increased frequency and strength is associated with climate change, the latter are still unexplained, but multiple, interacting factors can be hypothesized. Among these, the infiltration of saline rich seawater in consequence of coastal erosion, the accumulation of pollutants in the soil, the attack of a specific pathogen, but also changes in the seasonal fluctuations of soil humidity, due to either changes in the amount and distribution of rainfall or to changes in forest management. The forest of San Rossore is, indeed, crossed by a system of artificial channels which provided to drain the soil of stone pine plantations in the past, but are no more maintained today. This could have reduced the water flux in the subsurface water table causing soil hypoxia, which weakens the root systems and reduces tree vigor, thus increasing their susceptibility to diseases and crash down.
The forest of San Rossore is a model for complex forest systems subjected to several pressures, which health conservation urgently needs the joint effort of multidisciplinary knowledge.
How to cite: Arduini, I., Cardelli, R., and Bertacchi, A.: The forest of San Rossore (Tuscany, Italy): a call for its conservation through a multidisciplinary approach , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20738, https://doi.org/10.5194/egusphere-egu2020-20738, 2020.
EGU2020-22307 | Displays | BG3.10
The effect of extreme drought events on Pinus sylvestris (L.) xylem plasticity in pure and mixed forests and contrasting climatic conditionsGiulia Silvia Giberti, Giustino Tonon, Francesco Giammarchi, Alessio Giovannelli, Kamil Bielak, Ana Martín Ariza, Cristobal Ordóñez Alonso, Felipe Bravo, Ben du Toit, Enno Uhl, and Wellstein Camilla
Forest ecosystems are known to be vulnerable to climate change. Climate extremes, such as drought
events, are expected to increase in duration and frequency in many areas across the globe. Unexpected
and prolonged drought events already caused forests dieback all over the world in the last decades,
leading to dramatic consequences, such as biodiversity loss, ecosystem services alteration and reduction
of carbon sequestration potential. Indeed, in Central Europe, monocultures consisting mostly of
secondary conifer forests, showed low resistance to such events, and their viability is further threatened
by the interaction with other biotic and abiotic factors. In this context, the need of a deeper understanding
of the physiological mechanisms behind the tree response to extreme drought eventsis fundamental. The
present study, developed under the network of the CARE4C Project (Carbon smart forestry under climate
change GA 778322), aims at investigating Pinus sylvestris xylem plasticity in response to extreme drought.
We selected P. sylvestris pure forests in contrasting climatic zones of Europe, i.e. continental (Poland) and
Mediterranean (Spain), to study P. sylvestris xylem plasticity to extreme drought events under different
climatic conditions. Contemporarily, this study aims at comparing the xylem plasticity of P. sylvestris in
mono-specific and mixed forests. In the latter, the admixture is with Quercus petraea and Quercus
pyrenaica, in Poland and Spain respectively. The responses of P. sylvestris wood anatomical traits, such as
tracheid lumen area, cell wall thickness and parenchyma ray area, will be quantified along the entire treering chronologies. Short-term and legacy effects of extreme drought on P. sylvestris wood anatomical
traits will be evaluated in order to provide insights about the vulnerability of this speciesin a future climate
scenario. Locally, the comparison between P. sylvestris wood anatomical traitsin mono-specific and mixed
forests will highlight whether the mixing of species with different ecological needs can affect P. sylvestris
performance, ameliorating the resilience of this species to extreme drought events.
How to cite: Giberti, G. S., Tonon, G., Giammarchi, F., Giovannelli, A., Bielak, K., Ariza, A. M., Alonso, C. O., Bravo, F., du Toit, B., Uhl, E., and Camilla, W.: The effect of extreme drought events on Pinus sylvestris (L.) xylem plasticity in pure and mixed forests and contrasting climatic conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22307, https://doi.org/10.5194/egusphere-egu2020-22307, 2020.
Forest ecosystems are known to be vulnerable to climate change. Climate extremes, such as drought
events, are expected to increase in duration and frequency in many areas across the globe. Unexpected
and prolonged drought events already caused forests dieback all over the world in the last decades,
leading to dramatic consequences, such as biodiversity loss, ecosystem services alteration and reduction
of carbon sequestration potential. Indeed, in Central Europe, monocultures consisting mostly of
secondary conifer forests, showed low resistance to such events, and their viability is further threatened
by the interaction with other biotic and abiotic factors. In this context, the need of a deeper understanding
of the physiological mechanisms behind the tree response to extreme drought eventsis fundamental. The
present study, developed under the network of the CARE4C Project (Carbon smart forestry under climate
change GA 778322), aims at investigating Pinus sylvestris xylem plasticity in response to extreme drought.
We selected P. sylvestris pure forests in contrasting climatic zones of Europe, i.e. continental (Poland) and
Mediterranean (Spain), to study P. sylvestris xylem plasticity to extreme drought events under different
climatic conditions. Contemporarily, this study aims at comparing the xylem plasticity of P. sylvestris in
mono-specific and mixed forests. In the latter, the admixture is with Quercus petraea and Quercus
pyrenaica, in Poland and Spain respectively. The responses of P. sylvestris wood anatomical traits, such as
tracheid lumen area, cell wall thickness and parenchyma ray area, will be quantified along the entire treering chronologies. Short-term and legacy effects of extreme drought on P. sylvestris wood anatomical
traits will be evaluated in order to provide insights about the vulnerability of this speciesin a future climate
scenario. Locally, the comparison between P. sylvestris wood anatomical traitsin mono-specific and mixed
forests will highlight whether the mixing of species with different ecological needs can affect P. sylvestris
performance, ameliorating the resilience of this species to extreme drought events.
How to cite: Giberti, G. S., Tonon, G., Giammarchi, F., Giovannelli, A., Bielak, K., Ariza, A. M., Alonso, C. O., Bravo, F., du Toit, B., Uhl, E., and Camilla, W.: The effect of extreme drought events on Pinus sylvestris (L.) xylem plasticity in pure and mixed forests and contrasting climatic conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22307, https://doi.org/10.5194/egusphere-egu2020-22307, 2020.
EGU2020-22572 | Displays | BG3.10
Metereological factors modulating coffee rust in the central area of Veracruz, MexicoMaria del Carmen Calderon-Ezquerro, Adriana Guerrero Parra, and Benjamin Martinez-Lopez
Coffee rust is the most destructive disease for coffee crops and the most economically important worldwide. This disease causes the premature fall of the leaves, as well as the weakening of the trees, which translates into significant decreases in the production of coffee beans, representing thus a serious danger for the coffee activity of Mexico, which is the ninth world producer. The aggressiveness of the disease is related to the meteorological conditions that favor, or not, the germination, development, and production of the spores of the fungus causing this disease, as well as its transport in the air inside and outside of the canopy of coffee crops. The objective of this work was to determine the meteorological conditions that modulate the development, release, and transport of spores by using aerobiological methods at two locations with different orographic conditions in the center of the state of Veracruz, Mexico, during the years of 2014 and 2015. In both locations, Pacho Viejo and Teocelo, spores were detected in passive traps placed at 1.5, 3, 6 and 9 meters high, registering the highest concentrations in July and August of both years, coinciding with the period of rainfall decrease known as the Canicula. The spore concentrations in Teocelo increased considerably in 2015, probably due to a decrease in temperature during the months of February and March, which led to preconditioning of the spores favoring their germination in the subsequent months. During July and August 2015, high spore concentrations were present in Teocelo at 9 m high, but not in Pacho Viejo. An analysis of the winds of the region, suggests that wind conditions of 2015 favored the dispersion of the spores above the canopy in Teocelo.
How to cite: Calderon-Ezquerro, M. C., Guerrero Parra, A., and Martinez-Lopez, B.: Metereological factors modulating coffee rust in the central area of Veracruz, Mexico , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22572, https://doi.org/10.5194/egusphere-egu2020-22572, 2020.
Coffee rust is the most destructive disease for coffee crops and the most economically important worldwide. This disease causes the premature fall of the leaves, as well as the weakening of the trees, which translates into significant decreases in the production of coffee beans, representing thus a serious danger for the coffee activity of Mexico, which is the ninth world producer. The aggressiveness of the disease is related to the meteorological conditions that favor, or not, the germination, development, and production of the spores of the fungus causing this disease, as well as its transport in the air inside and outside of the canopy of coffee crops. The objective of this work was to determine the meteorological conditions that modulate the development, release, and transport of spores by using aerobiological methods at two locations with different orographic conditions in the center of the state of Veracruz, Mexico, during the years of 2014 and 2015. In both locations, Pacho Viejo and Teocelo, spores were detected in passive traps placed at 1.5, 3, 6 and 9 meters high, registering the highest concentrations in July and August of both years, coinciding with the period of rainfall decrease known as the Canicula. The spore concentrations in Teocelo increased considerably in 2015, probably due to a decrease in temperature during the months of February and March, which led to preconditioning of the spores favoring their germination in the subsequent months. During July and August 2015, high spore concentrations were present in Teocelo at 9 m high, but not in Pacho Viejo. An analysis of the winds of the region, suggests that wind conditions of 2015 favored the dispersion of the spores above the canopy in Teocelo.
How to cite: Calderon-Ezquerro, M. C., Guerrero Parra, A., and Martinez-Lopez, B.: Metereological factors modulating coffee rust in the central area of Veracruz, Mexico , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22572, https://doi.org/10.5194/egusphere-egu2020-22572, 2020.
BG3.11 – Land use and land cover change effects on surface biogeophysics, biogeochemistry and climate
EGU2020-18199 | Displays | BG3.11 | Highlight
What open data tells us - Reconstructing 55 years of global land use/cover changeKarina Winkler, Richard Fuchs, Martin Herold, and Mark Rounsevell
People have increasingly been shaping the surface of our planet. Land use/cover change – the most visible human footprint on Earth – is one of the main contributors to greenhouse gas emissions and biodiversity loss and, hence, is a key topic for current sustainability debates and climate change mitigation. To understand these land surface dynamics and its impacts, accurate reconstructions of global land use/cover change are necessary. Although more and more observational data sets are publicly available (e.g. from remote sensing), current land change assessments are still incomplete and either lack temporal consistency, spatial explicitness or thematic detail. Here, we show a consistent reconstruction of global land use/cover change from 1960-2015, using an open data-driven approach that combines national land use statistics with earth observation data of multiple sources and scales. Our land change reconstruction model HILDA+ (Historic Land Dynamics Assessment) accounts for data-derived gross changes within six main land use/cover classes at 1 km spatial resolution: Urban areas, cropland, pastures and rangeland, forest, (semi-)natural grass- or shrubland, other land. As a result, we present yearly land use/cover maps at 1 km spatial resolution, magnitudes and hot spot areas of change. Globally, around 20 % of the land surface – almost three times the size of Brazil - has undergone change within the last 55 years. Further, gross change is about seven times as high as yearly net change extent for forest, cropland and pasture dynamics. We prove that land change studies accounting for net change only can lead to severe underestimations of change extent and frequency. With this purely data-driven approach, we address current research needs of the earth system modelling community by providing new layers of land use/cover change with unprecedented level of detail. Learning from the recent past, understanding how management and land cover dynamics interactively affect the climate is essential for implementing measures of mitigation and sustainable land use policies. In this context, a solid information base can support informed decision-making.
How to cite: Winkler, K., Fuchs, R., Herold, M., and Rounsevell, M.: What open data tells us - Reconstructing 55 years of global land use/cover change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18199, https://doi.org/10.5194/egusphere-egu2020-18199, 2020.
People have increasingly been shaping the surface of our planet. Land use/cover change – the most visible human footprint on Earth – is one of the main contributors to greenhouse gas emissions and biodiversity loss and, hence, is a key topic for current sustainability debates and climate change mitigation. To understand these land surface dynamics and its impacts, accurate reconstructions of global land use/cover change are necessary. Although more and more observational data sets are publicly available (e.g. from remote sensing), current land change assessments are still incomplete and either lack temporal consistency, spatial explicitness or thematic detail. Here, we show a consistent reconstruction of global land use/cover change from 1960-2015, using an open data-driven approach that combines national land use statistics with earth observation data of multiple sources and scales. Our land change reconstruction model HILDA+ (Historic Land Dynamics Assessment) accounts for data-derived gross changes within six main land use/cover classes at 1 km spatial resolution: Urban areas, cropland, pastures and rangeland, forest, (semi-)natural grass- or shrubland, other land. As a result, we present yearly land use/cover maps at 1 km spatial resolution, magnitudes and hot spot areas of change. Globally, around 20 % of the land surface – almost three times the size of Brazil - has undergone change within the last 55 years. Further, gross change is about seven times as high as yearly net change extent for forest, cropland and pasture dynamics. We prove that land change studies accounting for net change only can lead to severe underestimations of change extent and frequency. With this purely data-driven approach, we address current research needs of the earth system modelling community by providing new layers of land use/cover change with unprecedented level of detail. Learning from the recent past, understanding how management and land cover dynamics interactively affect the climate is essential for implementing measures of mitigation and sustainable land use policies. In this context, a solid information base can support informed decision-making.
How to cite: Winkler, K., Fuchs, R., Herold, M., and Rounsevell, M.: What open data tells us - Reconstructing 55 years of global land use/cover change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18199, https://doi.org/10.5194/egusphere-egu2020-18199, 2020.
EGU2020-20310 | Displays | BG3.11
Reconciling global land model estimates and country reporting of anthropogenic land CO2 sources and sinks with the CMIP6 LUMIP NOAA/GFDL LM4.1 simulationsElena Shevliakova, Sergey Malyshev, Richard Houghton, and Louis Verchot
Global land models, which often served as components Earth system models, and national GHG inventories rely on different methods and produce different estimates of anthropogenic CO2 emissions and uptakes from land use land cover changes throughout historical period. For example, for 2005 -2014, the sum of the national GHG inventories net emission estimates is 0.1 ± 1.0 GtCO2 yr–1 while the bookkeeping models is 5.2 ± 2.6 GtCO2 yr–1 (IPCC SPM 2019). Previous estimates with the 16 global stand-alone land models produced an estimate of the net land sink of 11.2 ± 2.6 GtCO2 yr–1 during 2007– 2016 for the natural response of land to human-induced environmental changes such as increasing atmospheric CO2 concentration, nitrogen deposition, and climate change (IPCC SPM 2019). However, these 16 models do not provide separate estimates for the managed and unmanaged lands.
Here we use results from simulations with the NOAA/GFDL new land model LM4.1 from the CMIP6 Land Use Model Inercomparison Project (LUMIP) to demonstrate how to reconcile the discrepancy between the inventories and land models estimates of the anthropogenic CO2 land emissions by using bookkeeping accounting approach applied to the model results. In addition, we separate estimates of land fluxes on managed and unmanaged lands. Key features of this model include advanced, second generation dynamic vegetation representation and canopy competition, fire, and land use representation driven by full set of gross transitions from the CMIP6 land use scenarios. We demonstrate how bookkeeping accounting combined with the LUMIP experiments can enhance understanding of land sector net emission estimates and their applications.
How to cite: Shevliakova, E., Malyshev, S., Houghton, R., and Verchot, L.: Reconciling global land model estimates and country reporting of anthropogenic land CO2 sources and sinks with the CMIP6 LUMIP NOAA/GFDL LM4.1 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20310, https://doi.org/10.5194/egusphere-egu2020-20310, 2020.
Global land models, which often served as components Earth system models, and national GHG inventories rely on different methods and produce different estimates of anthropogenic CO2 emissions and uptakes from land use land cover changes throughout historical period. For example, for 2005 -2014, the sum of the national GHG inventories net emission estimates is 0.1 ± 1.0 GtCO2 yr–1 while the bookkeeping models is 5.2 ± 2.6 GtCO2 yr–1 (IPCC SPM 2019). Previous estimates with the 16 global stand-alone land models produced an estimate of the net land sink of 11.2 ± 2.6 GtCO2 yr–1 during 2007– 2016 for the natural response of land to human-induced environmental changes such as increasing atmospheric CO2 concentration, nitrogen deposition, and climate change (IPCC SPM 2019). However, these 16 models do not provide separate estimates for the managed and unmanaged lands.
Here we use results from simulations with the NOAA/GFDL new land model LM4.1 from the CMIP6 Land Use Model Inercomparison Project (LUMIP) to demonstrate how to reconcile the discrepancy between the inventories and land models estimates of the anthropogenic CO2 land emissions by using bookkeeping accounting approach applied to the model results. In addition, we separate estimates of land fluxes on managed and unmanaged lands. Key features of this model include advanced, second generation dynamic vegetation representation and canopy competition, fire, and land use representation driven by full set of gross transitions from the CMIP6 land use scenarios. We demonstrate how bookkeeping accounting combined with the LUMIP experiments can enhance understanding of land sector net emission estimates and their applications.
How to cite: Shevliakova, E., Malyshev, S., Houghton, R., and Verchot, L.: Reconciling global land model estimates and country reporting of anthropogenic land CO2 sources and sinks with the CMIP6 LUMIP NOAA/GFDL LM4.1 simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20310, https://doi.org/10.5194/egusphere-egu2020-20310, 2020.
EGU2020-21654 | Displays | BG3.11
Variation in canopy energy exchange characteristics across an ecosystem mosaic in the dry Mediterranean regionMadi Amer, Rafael Stern, Eyal Rotenberg, and Dan Yakir
Assessment of the plant-climatic interactions in the land biosphere requires a combined perspective of both the biogeochemical effects (BGC; such as the carbon sink), and the biogeophysical effects (BGP; such as the vegetation albedo and radiative balance), which can often have contrasting consequences for ecosystem functioning and climate. Aiming to increase our knowledge on semi-arid ecosystems that are insufficiently represented in global studies, we examine the variations in key BGP features among different vegetation types in a dry Mediterranean region in southern Israel.
The study included planted pine forest (pinus halepensis), natural broad-leaf oak maquis (Quercus calliprinos), wheat field and a managed grassland, located in close proximity (within 2 km) under the same climatic conditions (mean annual temperature = 20.8C, annual mean precipitation, P= 403 mm, aridity index = 0.4). Using a state-of-the-art mobile laboratory, we carried out measurement campaigns of eddy covariance fluxes of CO2, sensible, H, and latent, LE, heat fluxes, and the radiation balance (incoming and outgoing short- and long-wave radiations) between the ecosystems and the atmosphere in different seasons during 2016-2018.
The results showed significant differences in net radiation and in albedo among the ecosystem, with net radiation values of ~666, ~582, ~443 and 456 W m-2 and albedo values of ~0.13, ~0.16, ~0.19 and ~0.20 for pines, maquis, wheat and grassland, respectively. The lowest albedo of the pine stand was associated with the largest H (a ‘convector effect’) of ~583 W m-2 compared to ~313, ~198 and ~176 W m-2 in the maquis, wheat and grassland ecosystems (midday means of peak activity season). The pine stand was also more adjusted to stress conditions than the oak maquis ecosystem through ‘avoidance’ of high activities during extreme conditions of heat and drought (reducing canopy conductance and associated fluxes). It is likely that the observed differences between the pine and oak maquis stand help explain the greater expansion of pine stands into the semi-arid regions, even to areas with mean annual P of 290 mm (aridity index = 0.2) where oak maquis cannot be found.
How to cite: Amer, M., Stern, R., Rotenberg, E., and Yakir, D.: Variation in canopy energy exchange characteristics across an ecosystem mosaic in the dry Mediterranean region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21654, https://doi.org/10.5194/egusphere-egu2020-21654, 2020.
Assessment of the plant-climatic interactions in the land biosphere requires a combined perspective of both the biogeochemical effects (BGC; such as the carbon sink), and the biogeophysical effects (BGP; such as the vegetation albedo and radiative balance), which can often have contrasting consequences for ecosystem functioning and climate. Aiming to increase our knowledge on semi-arid ecosystems that are insufficiently represented in global studies, we examine the variations in key BGP features among different vegetation types in a dry Mediterranean region in southern Israel.
The study included planted pine forest (pinus halepensis), natural broad-leaf oak maquis (Quercus calliprinos), wheat field and a managed grassland, located in close proximity (within 2 km) under the same climatic conditions (mean annual temperature = 20.8C, annual mean precipitation, P= 403 mm, aridity index = 0.4). Using a state-of-the-art mobile laboratory, we carried out measurement campaigns of eddy covariance fluxes of CO2, sensible, H, and latent, LE, heat fluxes, and the radiation balance (incoming and outgoing short- and long-wave radiations) between the ecosystems and the atmosphere in different seasons during 2016-2018.
The results showed significant differences in net radiation and in albedo among the ecosystem, with net radiation values of ~666, ~582, ~443 and 456 W m-2 and albedo values of ~0.13, ~0.16, ~0.19 and ~0.20 for pines, maquis, wheat and grassland, respectively. The lowest albedo of the pine stand was associated with the largest H (a ‘convector effect’) of ~583 W m-2 compared to ~313, ~198 and ~176 W m-2 in the maquis, wheat and grassland ecosystems (midday means of peak activity season). The pine stand was also more adjusted to stress conditions than the oak maquis ecosystem through ‘avoidance’ of high activities during extreme conditions of heat and drought (reducing canopy conductance and associated fluxes). It is likely that the observed differences between the pine and oak maquis stand help explain the greater expansion of pine stands into the semi-arid regions, even to areas with mean annual P of 290 mm (aridity index = 0.2) where oak maquis cannot be found.
How to cite: Amer, M., Stern, R., Rotenberg, E., and Yakir, D.: Variation in canopy energy exchange characteristics across an ecosystem mosaic in the dry Mediterranean region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21654, https://doi.org/10.5194/egusphere-egu2020-21654, 2020.
EGU2020-9612 | Displays | BG3.11
Revealing the impact of deforestation on hydrology using remote sensing and land surface modelingMichiel Maertens, Gabrielle De Lannoy, Sebastian Apers, and Sujay Kumar
This study aims at better understanding the impact of deforestation on the local hydrology over the Argentinian Chaco, using land surface modeling and remote sensing data. The Chaco is an ecoregion characterized by unprecedented deforestation since the 1980s, mainly for cattle ranging and soybean production. More specifically, default climatological vegetation parameters (LAI, GVF) and static land cover in state-of-the-art land surface models (LSM), grouped within the NASA Land Information System (LIS), are updated using satellite-based dynamic vegetation parameters and yearly land use maps to feed the models with deforestation.
The presentation will show a spatio-temporal analysis of long-term water budget simulations using a range of LSMs (Noah, CLM, CLSM) in which dynamically updated vegetation and land cover parameters are included. Our simulations indicate that different LSMs result in a different partitioning of the total water budget, but all indicate an increase in soil moisture and percolation over the deforested areas. Model output is evaluated using in situ soil moisture data, and various soil moisture retrieval products from SMOS (operational Level 2 and SMOS-IC) and SMAP (operational Level 2) and evapotranspiration data from GLEAM.
How to cite: Maertens, M., De Lannoy, G., Apers, S., and Kumar, S.: Revealing the impact of deforestation on hydrology using remote sensing and land surface modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9612, https://doi.org/10.5194/egusphere-egu2020-9612, 2020.
This study aims at better understanding the impact of deforestation on the local hydrology over the Argentinian Chaco, using land surface modeling and remote sensing data. The Chaco is an ecoregion characterized by unprecedented deforestation since the 1980s, mainly for cattle ranging and soybean production. More specifically, default climatological vegetation parameters (LAI, GVF) and static land cover in state-of-the-art land surface models (LSM), grouped within the NASA Land Information System (LIS), are updated using satellite-based dynamic vegetation parameters and yearly land use maps to feed the models with deforestation.
The presentation will show a spatio-temporal analysis of long-term water budget simulations using a range of LSMs (Noah, CLM, CLSM) in which dynamically updated vegetation and land cover parameters are included. Our simulations indicate that different LSMs result in a different partitioning of the total water budget, but all indicate an increase in soil moisture and percolation over the deforested areas. Model output is evaluated using in situ soil moisture data, and various soil moisture retrieval products from SMOS (operational Level 2 and SMOS-IC) and SMAP (operational Level 2) and evapotranspiration data from GLEAM.
How to cite: Maertens, M., De Lannoy, G., Apers, S., and Kumar, S.: Revealing the impact of deforestation on hydrology using remote sensing and land surface modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9612, https://doi.org/10.5194/egusphere-egu2020-9612, 2020.
EGU2020-19483 | Displays | BG3.11 | Highlight
The albedo-climate penalty of hydropowerAlbin Hammerle, Enrico Tomelleri, and Georg Wohlfahrt
Limiting global warming to less than 2°C relative to preindustrial times by the end of this century requires a rapid and long-lasting decarbonization. In contrast to the other major renewable energy sources, solar and wind, hydropower reservoirs allow storing energy and releasing it when required, a significant advantage for stabilizing electrical grids. The establishment of hydropower reservoirs typically involves a land-use change when formerly terrestrial ecosystems are inundated. One, hitherto overlooked, consequence of this land-use change is a decrease in surface albedo, as waterbodies are characterized by a lower albedo compared to most terrestrial ecosystems. The main objective of this study is to quantify the positive radiative forcing resulting from this albedo change and to oppose it with the negative radiative forcing resulting from the fossil fuel displacement by the hydropower electricity generation. To that end, we compiled, on the basis of publicly available datasets, a global database of hydropower reservoirs. The hypothetical change in albedo associated with their construction was assessed on the basis of the difference in remotely sensed albedo (MODIS MCD43A1) between the hydropower reservoir and the surrounding landscape. We then calculated the break-even point, that is the time required for the time-integrated negative radiative resulting from the fossil fuel displacement to offset the positive radiative forcing from the albedo difference. The major result from this study is that break-even times range from less than a year up to several years and even a few decades. The key metric governing these differences is the annual electricity generation to reservoir surface area ratio, low ratios resulting in unfavorably long break-even times. Additional influence factors having a modulating influence are latitude, governing the incident solar radiation, and the magnitude of the albedo difference. We conclude that the displacement of fossil fuels by hydropower wins over the albedo penalty in the long-term. In the short-term, and thus for contributing towards the goal of a rapid decarbonization, the albedo penalty may be dominating and needs to be considered in the design of hydropower plants.
How to cite: Hammerle, A., Tomelleri, E., and Wohlfahrt, G.: The albedo-climate penalty of hydropower, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19483, https://doi.org/10.5194/egusphere-egu2020-19483, 2020.
Limiting global warming to less than 2°C relative to preindustrial times by the end of this century requires a rapid and long-lasting decarbonization. In contrast to the other major renewable energy sources, solar and wind, hydropower reservoirs allow storing energy and releasing it when required, a significant advantage for stabilizing electrical grids. The establishment of hydropower reservoirs typically involves a land-use change when formerly terrestrial ecosystems are inundated. One, hitherto overlooked, consequence of this land-use change is a decrease in surface albedo, as waterbodies are characterized by a lower albedo compared to most terrestrial ecosystems. The main objective of this study is to quantify the positive radiative forcing resulting from this albedo change and to oppose it with the negative radiative forcing resulting from the fossil fuel displacement by the hydropower electricity generation. To that end, we compiled, on the basis of publicly available datasets, a global database of hydropower reservoirs. The hypothetical change in albedo associated with their construction was assessed on the basis of the difference in remotely sensed albedo (MODIS MCD43A1) between the hydropower reservoir and the surrounding landscape. We then calculated the break-even point, that is the time required for the time-integrated negative radiative resulting from the fossil fuel displacement to offset the positive radiative forcing from the albedo difference. The major result from this study is that break-even times range from less than a year up to several years and even a few decades. The key metric governing these differences is the annual electricity generation to reservoir surface area ratio, low ratios resulting in unfavorably long break-even times. Additional influence factors having a modulating influence are latitude, governing the incident solar radiation, and the magnitude of the albedo difference. We conclude that the displacement of fossil fuels by hydropower wins over the albedo penalty in the long-term. In the short-term, and thus for contributing towards the goal of a rapid decarbonization, the albedo penalty may be dominating and needs to be considered in the design of hydropower plants.
How to cite: Hammerle, A., Tomelleri, E., and Wohlfahrt, G.: The albedo-climate penalty of hydropower, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19483, https://doi.org/10.5194/egusphere-egu2020-19483, 2020.
EGU2020-8595 | Displays | BG3.11
Anthropogenic land cover change impact on climate extremes during the 21st centuryBenjamin Quesada and Souleymane Sy
Beyond global mean temperatures, anthropogenic land cover change (LCC) can have significant impacts at regional and seasonal scales but also on extreme weather events to which human, natural and economical systems are highly vulnerable. However, the effects of LCC on extreme events remain either largely unexplored at global and regional scale and/or without consensus. Here, using several Earth System Models under two different LCC scenarios (the RCP8.5 and RCP2.6 Representative Concentration Pathways) and analyzing 20 extreme weather indices, we find future LCC substantially modulates projected weather extremes particularly at regional level.
On average by the end of the 21st century, under RCP8.5 and RCP2.6 scenarios, future LCC robustly lessens global projections of high rainfall extremes. Accounting for LCC diminishes regional projections of heavy precipitation days or consecutive wet days by more than 50% in southern Africa or northeastern Brazil but intensifies projected dry days in eastern Africa by 30%. LCC do not substantially affect projections of global and regional temperature extremes projections (<5%), but it can impact global rainfall extremes 2.5 times more than global mean rainfall projections.
Under RCP2.6 scenario, global LCC impacts are similar but of lesser magnitude while at regional scale in Amazon or Asia, LCC enhances drought projections. We investigate the underlying biophysical drivers behind those projected changes.
We stress here that multi-coupled modelling frameworks incorporating all aspects of land use-land cover change and more model-data benchmarking are needed for reliable projections of extreme events.
How to cite: Quesada, B. and Sy, S.: Anthropogenic land cover change impact on climate extremes during the 21st century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8595, https://doi.org/10.5194/egusphere-egu2020-8595, 2020.
Beyond global mean temperatures, anthropogenic land cover change (LCC) can have significant impacts at regional and seasonal scales but also on extreme weather events to which human, natural and economical systems are highly vulnerable. However, the effects of LCC on extreme events remain either largely unexplored at global and regional scale and/or without consensus. Here, using several Earth System Models under two different LCC scenarios (the RCP8.5 and RCP2.6 Representative Concentration Pathways) and analyzing 20 extreme weather indices, we find future LCC substantially modulates projected weather extremes particularly at regional level.
On average by the end of the 21st century, under RCP8.5 and RCP2.6 scenarios, future LCC robustly lessens global projections of high rainfall extremes. Accounting for LCC diminishes regional projections of heavy precipitation days or consecutive wet days by more than 50% in southern Africa or northeastern Brazil but intensifies projected dry days in eastern Africa by 30%. LCC do not substantially affect projections of global and regional temperature extremes projections (<5%), but it can impact global rainfall extremes 2.5 times more than global mean rainfall projections.
Under RCP2.6 scenario, global LCC impacts are similar but of lesser magnitude while at regional scale in Amazon or Asia, LCC enhances drought projections. We investigate the underlying biophysical drivers behind those projected changes.
We stress here that multi-coupled modelling frameworks incorporating all aspects of land use-land cover change and more model-data benchmarking are needed for reliable projections of extreme events.
How to cite: Quesada, B. and Sy, S.: Anthropogenic land cover change impact on climate extremes during the 21st century, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8595, https://doi.org/10.5194/egusphere-egu2020-8595, 2020.
EGU2020-18838 | Displays | BG3.11 | Highlight
Afforestation for climate change mitigation: Potentials, risks and trade-offs, and the role of biophysical climate effectsJonathan Doelman, Elke Stehfest, Detlef van Vuuren, Andrzej Tabeau, Andries Hof, Maarten Braakhekke, David Gernaat, Maarten van den Berg, Willem-Jan van Zeist, Vassilis Daioglou, Hans van Meijl, and Paul Lucas
Afforestation is considered a cost-effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade-offs with food security are often not considered. Here, we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework (Doelman et al., 2019). In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2/yr at 200 US$/tCO2 in 2050 leading to large-scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock-in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub-Saharan Africa. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade-offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade-offs in order to achieve mitigation sustainably.
The afforestation study published as Doelman et al. (2019) excluded biophysical climate effects of land use and land cover change on climate, even though this is shown to have a substantial effect especially locally (Alkama & Cescatti, 2016). As a follow-up to this study we implement the grid-specific temperature effects as derived by Duveiller et al. (2020) to the mitigation scenarios with large-scale afforestation to assess the effectiveness of afforestation for climate change mitigation as increased or reduced effectiveness may change cost-optimal climate policy. Notably in the boreal regions this can have a major effect, as transitions from agricultural land to forest are shown to have a substantial warming effect due to reduced albedo limiting the mitigation potential in these regions. Conversely, in the tropical areas the already high mitigation potential of afforestation could be even more efficient, as increased evapotranspiration from forests leads to additional cooling. However, it is uncertain whether the high efficiency of afforestation in tropical regions can be utilized as these are also the regions with high risks to implementation and permanence.
References
Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604.
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., . . . Lucas, P. L. (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology
Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., & Cescatti, A. (2020). Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers. Land Use Policy, 91, 104382.
How to cite: Doelman, J., Stehfest, E., van Vuuren, D., Tabeau, A., Hof, A., Braakhekke, M., Gernaat, D., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., and Lucas, P.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, and the role of biophysical climate effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18838, https://doi.org/10.5194/egusphere-egu2020-18838, 2020.
Afforestation is considered a cost-effective and readily available climate change mitigation option. In recent studies afforestation is presented as a major solution to limit climate change. However, estimates of afforestation potential vary widely. Moreover, the risks in global mitigation policy and the negative trade-offs with food security are often not considered. Here, we present a new approach to assess the economic potential of afforestation with the IMAGE 3.0 integrated assessment model framework (Doelman et al., 2019). In addition, we discuss the role of afforestation in mitigation pathways and the effects of afforestation on the food system under increasingly ambitious climate targets. We show that afforestation has a mitigation potential of 4.9 GtCO2/yr at 200 US$/tCO2 in 2050 leading to large-scale application in an SSP2 scenario aiming for 2°C (410 GtCO2 cumulative up to 2100). Afforestation reduces the overall costs of mitigation policy. However, it may lead to lower mitigation ambition and lock-in situations in other sectors. Moreover, it bears risks to implementation and permanence as the negative emissions are increasingly located in regions with high investment risks and weak governance, for example in Sub-Saharan Africa. Our results confirm that afforestation has substantial potential for mitigation. At the same time, we highlight that major risks and trade-offs are involved. Pathways aiming to limit climate change to 2°C or even 1.5°C need to minimize these risks and trade-offs in order to achieve mitigation sustainably.
The afforestation study published as Doelman et al. (2019) excluded biophysical climate effects of land use and land cover change on climate, even though this is shown to have a substantial effect especially locally (Alkama & Cescatti, 2016). As a follow-up to this study we implement the grid-specific temperature effects as derived by Duveiller et al. (2020) to the mitigation scenarios with large-scale afforestation to assess the effectiveness of afforestation for climate change mitigation as increased or reduced effectiveness may change cost-optimal climate policy. Notably in the boreal regions this can have a major effect, as transitions from agricultural land to forest are shown to have a substantial warming effect due to reduced albedo limiting the mitigation potential in these regions. Conversely, in the tropical areas the already high mitigation potential of afforestation could be even more efficient, as increased evapotranspiration from forests leads to additional cooling. However, it is uncertain whether the high efficiency of afforestation in tropical regions can be utilized as these are also the regions with high risks to implementation and permanence.
References
Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science, 351(6273), 600-604.
Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., . . . Lucas, P. L. (2019). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology
Duveiller, G., Caporaso, L., Abad-Viñas, R., Perugini, L., Grassi, G., Arneth, A., & Cescatti, A. (2020). Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers. Land Use Policy, 91, 104382.
How to cite: Doelman, J., Stehfest, E., van Vuuren, D., Tabeau, A., Hof, A., Braakhekke, M., Gernaat, D., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., and Lucas, P.: Afforestation for climate change mitigation: Potentials, risks and trade-offs, and the role of biophysical climate effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18838, https://doi.org/10.5194/egusphere-egu2020-18838, 2020.
EGU2020-10295 | Displays | BG3.11
Model intercomparison of idealized global deforestation experimentsVictor Brovkin, Lena Boysen, Julia Pongratz, Nicolas Vuichard, Philippe Peylin, and David Lawrence
We present first results of idealized deforestation experiment designed within the Land Use Model Intercomparison Project (LUMIP). In order to obtain a robust signal-to-noise ratio and to harmonize deforestation implementation across participating ESMs, global forest extent is linearly decreased by 20 million km2 for the 30% of most forested grid cells over a period of 50 years starting from pre-industrial climate conditions. This experimental setup is in favor of predominantly tropical deforestation patterns, however, there is also substantial boreal deforestation. In this experiment, atmospheric and oceanic physical processes respond to large-scale deforestation while other forcings such as atmospheric CO2 concentration and aerosol load are kept constant at the pre-industrial level.
First analysis of results from ESMs participating in the LUMIP experiments reveal a general cooling trend in response to deforestation, although a spread in an amplitude of response is substantial. In boreal region there is significant cooling effect, presumably due to an increase in surface albedo, while tropical deforestation results in a regional warming in most of models. A sensitivity of temperature change per forest fraction change on a grid cell level, ∂T/∂F, likely could be used as a generic response for any forest change scenario, although it is complicated by mixing together local and non-local effects. We also quantified so-called “zero effect latitude” at which forest cover change does not have pronounced biogeophysical effect. It is located in northern subtropics in most models.
Analyses of ensemble-members of three models (MPI-ESM1.2-LR, IPSL-CM6A-LR, and CESM2) indicate that the “time of emergence” of climate response, when signal becomes larger than a noise, is quite different among the models. However, when we compare the “deforested fraction of emergence”, the model responses become much more coherent. Biomass and soil carbon storages are decreasing with time, and their “time of emergence” is much shorter comparing to the temperature and precipitation. More results of biogeophysical and biogeochemical responses to deforestation will be presented.
How to cite: Brovkin, V., Boysen, L., Pongratz, J., Vuichard, N., Peylin, P., and Lawrence, D.: Model intercomparison of idealized global deforestation experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10295, https://doi.org/10.5194/egusphere-egu2020-10295, 2020.
We present first results of idealized deforestation experiment designed within the Land Use Model Intercomparison Project (LUMIP). In order to obtain a robust signal-to-noise ratio and to harmonize deforestation implementation across participating ESMs, global forest extent is linearly decreased by 20 million km2 for the 30% of most forested grid cells over a period of 50 years starting from pre-industrial climate conditions. This experimental setup is in favor of predominantly tropical deforestation patterns, however, there is also substantial boreal deforestation. In this experiment, atmospheric and oceanic physical processes respond to large-scale deforestation while other forcings such as atmospheric CO2 concentration and aerosol load are kept constant at the pre-industrial level.
First analysis of results from ESMs participating in the LUMIP experiments reveal a general cooling trend in response to deforestation, although a spread in an amplitude of response is substantial. In boreal region there is significant cooling effect, presumably due to an increase in surface albedo, while tropical deforestation results in a regional warming in most of models. A sensitivity of temperature change per forest fraction change on a grid cell level, ∂T/∂F, likely could be used as a generic response for any forest change scenario, although it is complicated by mixing together local and non-local effects. We also quantified so-called “zero effect latitude” at which forest cover change does not have pronounced biogeophysical effect. It is located in northern subtropics in most models.
Analyses of ensemble-members of three models (MPI-ESM1.2-LR, IPSL-CM6A-LR, and CESM2) indicate that the “time of emergence” of climate response, when signal becomes larger than a noise, is quite different among the models. However, when we compare the “deforested fraction of emergence”, the model responses become much more coherent. Biomass and soil carbon storages are decreasing with time, and their “time of emergence” is much shorter comparing to the temperature and precipitation. More results of biogeophysical and biogeochemical responses to deforestation will be presented.
How to cite: Brovkin, V., Boysen, L., Pongratz, J., Vuichard, N., Peylin, P., and Lawrence, D.: Model intercomparison of idealized global deforestation experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10295, https://doi.org/10.5194/egusphere-egu2020-10295, 2020.
EGU2020-18586 | Displays | BG3.11
The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycleTao Hong and Dong Ji
The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon–climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P − E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.
How to cite: Hong, T. and Ji, D.: The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18586, https://doi.org/10.5194/egusphere-egu2020-18586, 2020.
The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon–climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P − E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.
How to cite: Hong, T. and Ji, D.: The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18586, https://doi.org/10.5194/egusphere-egu2020-18586, 2020.
EGU2020-631 | Displays | BG3.11
Impact of different and time-varying land cover data sets in a regional climate model on regional and local climate over EuropeMingyue Zhang, Jürgen Helmert, and Merja Tölle
According to IPCC, Land use and Land Cover (LC) changes have a key role to adapt and mitigate future climate change aiming to stabilize temperature rise up to 2°C. Land surface change at regional scale is associated to global climate change, such as global warming. It influences the earth’s water and energy cycles via influences on the heat, moisture and momentum transfer, and on the chemical composition of the atmosphere. These effects show variations due to different LC types, and due to their spatial and temporal resolutions. Thus, we incorporate a new time-varying land cover data set based on ESACCI into the regional climate model COSMO-CLM(v5.0). Further, the impact on the regional and local climate is compared to the standard operational LC data of GLC2000 and GlobCover 2009. Convection-permitting simulations with the three land cover data sets are performed at 0.0275° horizontal resolution over Europe for the time period from 1992 to 2015.
Overall, the simulation results show comparable agreement to observations. However, the simulation results based on GLC2000 and GlobCover 2009 (with 23 LC types) LC data sets show a fluctuation of 0.5K in temperature and 5% of precipitation. Even though the LC is classified into the same types, the difference in LC distribution and fraction leads to variations in climate simulation results. Using all of the 37 LC types of the ESACCI-LC data set show noticeable differences in distribution of temperature and precipitation compared to the simulations with GLC2000 and GlobCover 2009. Especially in forest areas, slight differences of the plant cover type (e.g. Evergreen or Deciduous) could result in up to 10% differences (increase or decrease) in temperature and precipitation over the simulation domain. Our results demonstrate how LC changes as well as different land cover type effect regional climate. There is need for proper and time-varying land cover data sets for regional climate model studies. The approach of including ESACCI-LC data set into regional climate model simulations also improved the external data generation system.
We anticipate this research to be a starting point for involving time-varying LC data sets into regional climate models. Furthermore, it will give us a possibility to quantify the effect of time-varying LC data on regional climate accurately.
Acknowledgement:
1: Computational resources were made available by the German Climate Computing Center (DKRZ) through support from the Federal Ministry of Education and Research in Germany (BMBF). We acknowledge the funding of the German Research Foundation (DFG) through grant NR. 401857120.
2: Appreciation for the support of Jürg Luterbacher and Eva Nowatzki.
How to cite: Zhang, M., Helmert, J., and Tölle, M.: Impact of different and time-varying land cover data sets in a regional climate model on regional and local climate over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-631, https://doi.org/10.5194/egusphere-egu2020-631, 2020.
According to IPCC, Land use and Land Cover (LC) changes have a key role to adapt and mitigate future climate change aiming to stabilize temperature rise up to 2°C. Land surface change at regional scale is associated to global climate change, such as global warming. It influences the earth’s water and energy cycles via influences on the heat, moisture and momentum transfer, and on the chemical composition of the atmosphere. These effects show variations due to different LC types, and due to their spatial and temporal resolutions. Thus, we incorporate a new time-varying land cover data set based on ESACCI into the regional climate model COSMO-CLM(v5.0). Further, the impact on the regional and local climate is compared to the standard operational LC data of GLC2000 and GlobCover 2009. Convection-permitting simulations with the three land cover data sets are performed at 0.0275° horizontal resolution over Europe for the time period from 1992 to 2015.
Overall, the simulation results show comparable agreement to observations. However, the simulation results based on GLC2000 and GlobCover 2009 (with 23 LC types) LC data sets show a fluctuation of 0.5K in temperature and 5% of precipitation. Even though the LC is classified into the same types, the difference in LC distribution and fraction leads to variations in climate simulation results. Using all of the 37 LC types of the ESACCI-LC data set show noticeable differences in distribution of temperature and precipitation compared to the simulations with GLC2000 and GlobCover 2009. Especially in forest areas, slight differences of the plant cover type (e.g. Evergreen or Deciduous) could result in up to 10% differences (increase or decrease) in temperature and precipitation over the simulation domain. Our results demonstrate how LC changes as well as different land cover type effect regional climate. There is need for proper and time-varying land cover data sets for regional climate model studies. The approach of including ESACCI-LC data set into regional climate model simulations also improved the external data generation system.
We anticipate this research to be a starting point for involving time-varying LC data sets into regional climate models. Furthermore, it will give us a possibility to quantify the effect of time-varying LC data on regional climate accurately.
Acknowledgement:
1: Computational resources were made available by the German Climate Computing Center (DKRZ) through support from the Federal Ministry of Education and Research in Germany (BMBF). We acknowledge the funding of the German Research Foundation (DFG) through grant NR. 401857120.
2: Appreciation for the support of Jürg Luterbacher and Eva Nowatzki.
How to cite: Zhang, M., Helmert, J., and Tölle, M.: Impact of different and time-varying land cover data sets in a regional climate model on regional and local climate over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-631, https://doi.org/10.5194/egusphere-egu2020-631, 2020.
EGU2020-9237 | Displays | BG3.11 | Highlight
Adapting afforestation patterns considering their local biogeophysical induced cooling and warmingMichael Windisch, Florian Humpenöder, and Alexander Popp
Afforestation is expected to take on a key role in the fight against climate change. A quarter of the emission reductions pledged by countries under the Paris Agreement are to be provided by newly established forests. Low emission scenarios equally rely heavily on land-based mitigation options to remove hundreds of gigatons of carbon dioxide from the atmosphere within this century. This proposed extensive change of the terrestrial land-cover will exert a biogeophysical (BGP) impact on climate by altering the surface albedo as well as the evapotranspiration capacity. These BGP processes are mostly absent in the land-use components of Integrated Assessment Models which currently only focus on carbon sequestration. Hence, their afforestation prospect does not take into account the local BGP induced cooling or warming that either enhances or counteracts the mitigation effort. Neglecting BGP processes can lead to under- or overestimating the benefits of afforestation depending on the location of the forest. In the worst case it even risks proposing afforestation in regions where new forests would warm the climate. We incorporate observation-based estimates of the BGP effect of afforestation into the land-use model MAgPIE (Model of Agricultural Production and its Impact on the Environment). MAgPIE is a land-use optimization model driven by the cost of agricultural production. It produces cost optimal land-use patterns for a set of climatic (Representative Concentration Pathways) and societal (Shared Socioeconomic Pathways) developments and has already been used to investigate afforestation and forest protection as mitigation options. We translate the BGP induced local cooling or warming to a carbon equivalent metric by using the local climate sensitivity and add it to the mitigation benefit of carbon sequestration. The mitigation incentive for afforestation will be enhanced or reduced by considering the local cooling or warming. Hence, the model will be able to endogenously judge afforestation decisions regarding both their carbon sequestration potential and BGP impact. We will report the changes in afforestation patterns imposed by considering their combined BGP and biogeochemical effects.
How to cite: Windisch, M., Humpenöder, F., and Popp, A.: Adapting afforestation patterns considering their local biogeophysical induced cooling and warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9237, https://doi.org/10.5194/egusphere-egu2020-9237, 2020.
Afforestation is expected to take on a key role in the fight against climate change. A quarter of the emission reductions pledged by countries under the Paris Agreement are to be provided by newly established forests. Low emission scenarios equally rely heavily on land-based mitigation options to remove hundreds of gigatons of carbon dioxide from the atmosphere within this century. This proposed extensive change of the terrestrial land-cover will exert a biogeophysical (BGP) impact on climate by altering the surface albedo as well as the evapotranspiration capacity. These BGP processes are mostly absent in the land-use components of Integrated Assessment Models which currently only focus on carbon sequestration. Hence, their afforestation prospect does not take into account the local BGP induced cooling or warming that either enhances or counteracts the mitigation effort. Neglecting BGP processes can lead to under- or overestimating the benefits of afforestation depending on the location of the forest. In the worst case it even risks proposing afforestation in regions where new forests would warm the climate. We incorporate observation-based estimates of the BGP effect of afforestation into the land-use model MAgPIE (Model of Agricultural Production and its Impact on the Environment). MAgPIE is a land-use optimization model driven by the cost of agricultural production. It produces cost optimal land-use patterns for a set of climatic (Representative Concentration Pathways) and societal (Shared Socioeconomic Pathways) developments and has already been used to investigate afforestation and forest protection as mitigation options. We translate the BGP induced local cooling or warming to a carbon equivalent metric by using the local climate sensitivity and add it to the mitigation benefit of carbon sequestration. The mitigation incentive for afforestation will be enhanced or reduced by considering the local cooling or warming. Hence, the model will be able to endogenously judge afforestation decisions regarding both their carbon sequestration potential and BGP impact. We will report the changes in afforestation patterns imposed by considering their combined BGP and biogeochemical effects.
How to cite: Windisch, M., Humpenöder, F., and Popp, A.: Adapting afforestation patterns considering their local biogeophysical induced cooling and warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9237, https://doi.org/10.5194/egusphere-egu2020-9237, 2020.
EGU2020-3119 | Displays | BG3.11
Forestation effects on soil temperature across the European continent.Giannis Sofiadis, Eleni Katragkou, Edouard Davin, Ronny Meier, Diana Rechid, Peter Hoffmann, Susanna Strada, Kirsten Warrach-Sagi, Lisa Jach, Pedro Soares, Daniela Lima, Rita Margarida Cardoso, Merja Tolle, Marcus Breil, and Gustav Standberg
Land-Use and Land Cover Changes (LULCC) play a fundamental role in land-atmosphere interactions, since they mainly regulate the exchange of latent and sensible heat between the ground and the upper air, while they control the amount of shortwave radiation absorbed by the ground. In this study, we make an attempt to investigate the biogeophysical effects of extreme land cover changes on soil variables, such as soil temperature and soil moisture. In particular, we analyze a multi-model ensemble of nine different regional climate model simulations, which had been performed over the Euro-CORDEX domain in the frame of the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use and Climate Across Scales). We compare two idealized experiments: a maximally forested (called FOREST) and a fully grassed Europe (called GRASS). According to our results, the soil temperature response to forestation varies among the climate models. They show a profound seasonality and dependence by latitude. In winter, the magnitude of soil temperature changes is considered weak, showing a warming in high latitudes (around +1oC on average) and a weak cooling over the Mediterranean region. During the summertime, in contrast, soil temperatures are higher in the GRASS experiment, especially in Central and Southern Europe (ranging from +1oC to +3oC depending to the model), underlying the essential role of soil moisture in determining the land-atmosphere feedbacks during the summer. In our contribution, we will present in detail the role of forest and grass characteristics and its effects on seasonal soil conditions across Europe[DR1] .
How to cite: Sofiadis, G., Katragkou, E., Davin, E., Meier, R., Rechid, D., Hoffmann, P., Strada, S., Warrach-Sagi, K., Jach, L., Soares, P., Lima, D., Cardoso, R. M., Tolle, M., Breil, M., and Standberg, G.: Forestation effects on soil temperature across the European continent., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3119, https://doi.org/10.5194/egusphere-egu2020-3119, 2020.
Land-Use and Land Cover Changes (LULCC) play a fundamental role in land-atmosphere interactions, since they mainly regulate the exchange of latent and sensible heat between the ground and the upper air, while they control the amount of shortwave radiation absorbed by the ground. In this study, we make an attempt to investigate the biogeophysical effects of extreme land cover changes on soil variables, such as soil temperature and soil moisture. In particular, we analyze a multi-model ensemble of nine different regional climate model simulations, which had been performed over the Euro-CORDEX domain in the frame of the WCRP CORDEX Flagship Pilot Study LUCAS (Land Use and Climate Across Scales). We compare two idealized experiments: a maximally forested (called FOREST) and a fully grassed Europe (called GRASS). According to our results, the soil temperature response to forestation varies among the climate models. They show a profound seasonality and dependence by latitude. In winter, the magnitude of soil temperature changes is considered weak, showing a warming in high latitudes (around +1oC on average) and a weak cooling over the Mediterranean region. During the summertime, in contrast, soil temperatures are higher in the GRASS experiment, especially in Central and Southern Europe (ranging from +1oC to +3oC depending to the model), underlying the essential role of soil moisture in determining the land-atmosphere feedbacks during the summer. In our contribution, we will present in detail the role of forest and grass characteristics and its effects on seasonal soil conditions across Europe[DR1] .
How to cite: Sofiadis, G., Katragkou, E., Davin, E., Meier, R., Rechid, D., Hoffmann, P., Strada, S., Warrach-Sagi, K., Jach, L., Soares, P., Lima, D., Cardoso, R. M., Tolle, M., Breil, M., and Standberg, G.: Forestation effects on soil temperature across the European continent., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3119, https://doi.org/10.5194/egusphere-egu2020-3119, 2020.
EGU2020-4649 | Displays | BG3.11
The regionally varying effects of forests on cloud cover based on satellite observationsYan Li, Ru Xu, Adriaan J. Teuling, and Zhao Lei
Forests cover changes impact regional and global climate by altering surface roughness, albedo, and evapotranspiration. While previous research mainly focused on the impact on temperature, there has been evidence of cloud enhancement over forests at the regional level. However, how forests affect cloud cover at a global scale is unclear. In this paper, we utilized long-term cloud data from MODIS in junction with other satellite data sources to investigate the effects of forests on cloud cover in boreal summer months across the globe. Results show that forests either increase or decrease cloud cover depending on the region and such effect exhibits considerable spatial heterogeneity. We found that forests in the southern edge of tropical Amazon decreased cloud cover as much as 6%. In contrast, forests can significantly increase cloud coverage in southern part of China in temperate region. Furthermore, the cloud increase was also observed in boreal forests but with a smaller magnitude than temperate forests. Our study provides new evidence for understanding the impact of forest cover change on cloud and water cycle.
How to cite: Li, Y., Xu, R., Teuling, A. J., and Lei, Z.: The regionally varying effects of forests on cloud cover based on satellite observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4649, https://doi.org/10.5194/egusphere-egu2020-4649, 2020.
Forests cover changes impact regional and global climate by altering surface roughness, albedo, and evapotranspiration. While previous research mainly focused on the impact on temperature, there has been evidence of cloud enhancement over forests at the regional level. However, how forests affect cloud cover at a global scale is unclear. In this paper, we utilized long-term cloud data from MODIS in junction with other satellite data sources to investigate the effects of forests on cloud cover in boreal summer months across the globe. Results show that forests either increase or decrease cloud cover depending on the region and such effect exhibits considerable spatial heterogeneity. We found that forests in the southern edge of tropical Amazon decreased cloud cover as much as 6%. In contrast, forests can significantly increase cloud coverage in southern part of China in temperate region. Furthermore, the cloud increase was also observed in boreal forests but with a smaller magnitude than temperate forests. Our study provides new evidence for understanding the impact of forest cover change on cloud and water cycle.
How to cite: Li, Y., Xu, R., Teuling, A. J., and Lei, Z.: The regionally varying effects of forests on cloud cover based on satellite observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4649, https://doi.org/10.5194/egusphere-egu2020-4649, 2020.
EGU2020-4976 | Displays | BG3.11
Land cover change detection in Crete Island, Greece, using different combinations of biophysical indices in change vector analysisChristos Polykretis, Manolis G. Grillakis, and Dimitrios D. Alexakis
Land cover describes the general biophysical state of the surface providing also information about other aspects of the land, such as soils and water. Changes in land cover may have noticeable impact on the ecosystem biodiversity, water resources, climate system and socio-economic sectors. Therefore, the need for detecting these changes is more and more imperative, especially given the emergence of unbalances caused by natural and anthropogenic driving forces like climate change, intensive agriculture and wrong land management decisions. Land cover changes are mainly represented by changes in the biophysical properties of land surface. These properties can be measured by remote sensing-derived indices representing both the vegetation and soil conditions of a given region. In this research effort, by applying a change detection technique like change vector analysis (CVA), the relationship between the dynamic changes in such indices and land cover changes in Crete Island, Greece, was assessed and mapped for the time periods of 1999–2009 and 2009–2019. Vegetation indices such as normalized difference vegetation index (NDVI) and tasseled cap greenness (TCG), and soil indices such as albedo and tasseled cap brightness (TCB), were estimated by Landsat satellite images captured in 1999, 2009 and 2019. Based on two different index combinations (NDVI–albedo and TCG–TCB), CVA produced change results for each of the periods indicating the magnitude and type (direction) of changes, respectively. The most appropriate combination for land cover change detection in the study area was determined by an evaluation process resulting to the estimation of accuracy statistics (kappa index and overall accuracy). Although promising accuracy results were provided for both examined combinations, the change maps produced by the combination of NDVI–albedo were found to be more accurate.
Acknowledgments: This research has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology Hellas (GSRT), under Agreement No 651.
How to cite: Polykretis, C., Grillakis, M. G., and Alexakis, D. D.: Land cover change detection in Crete Island, Greece, using different combinations of biophysical indices in change vector analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4976, https://doi.org/10.5194/egusphere-egu2020-4976, 2020.
Land cover describes the general biophysical state of the surface providing also information about other aspects of the land, such as soils and water. Changes in land cover may have noticeable impact on the ecosystem biodiversity, water resources, climate system and socio-economic sectors. Therefore, the need for detecting these changes is more and more imperative, especially given the emergence of unbalances caused by natural and anthropogenic driving forces like climate change, intensive agriculture and wrong land management decisions. Land cover changes are mainly represented by changes in the biophysical properties of land surface. These properties can be measured by remote sensing-derived indices representing both the vegetation and soil conditions of a given region. In this research effort, by applying a change detection technique like change vector analysis (CVA), the relationship between the dynamic changes in such indices and land cover changes in Crete Island, Greece, was assessed and mapped for the time periods of 1999–2009 and 2009–2019. Vegetation indices such as normalized difference vegetation index (NDVI) and tasseled cap greenness (TCG), and soil indices such as albedo and tasseled cap brightness (TCB), were estimated by Landsat satellite images captured in 1999, 2009 and 2019. Based on two different index combinations (NDVI–albedo and TCG–TCB), CVA produced change results for each of the periods indicating the magnitude and type (direction) of changes, respectively. The most appropriate combination for land cover change detection in the study area was determined by an evaluation process resulting to the estimation of accuracy statistics (kappa index and overall accuracy). Although promising accuracy results were provided for both examined combinations, the change maps produced by the combination of NDVI–albedo were found to be more accurate.
Acknowledgments: This research has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology Hellas (GSRT), under Agreement No 651.
How to cite: Polykretis, C., Grillakis, M. G., and Alexakis, D. D.: Land cover change detection in Crete Island, Greece, using different combinations of biophysical indices in change vector analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4976, https://doi.org/10.5194/egusphere-egu2020-4976, 2020.
EGU2020-18699 | Displays | BG3.11
The future of soil biochemistry and services in the UK under plausible climate, land use and land management scenariosDmitry Yumashev, Victoria Janes-Bassett, and Jess Davies
In this study, we explore plausible future states of soil organic matter, biomass, food production and soil greenhouse gas emissions across the UK under a range of climate, land use and land management scenarios. We use state-of-the-art soil biochemistry model, N14CP-Ag, combined with UKCP18 climate scenarios and ASSET land cover change and crop scenarios mapped onto a UK-wide grid with around 100,000 land parcels. Historic runs cover the period from the start of the Holocene interglacial (-12 kyr BP) to 2015; scenarios run from 2016 out to 2100. The results show variations of soil organic carbon (SOC) of around 10% between 2016 and 2100 relative to the simulated starting value of 1.4 Gton in 2015, with reductions of up to 7% under arable expansion scenarios and increases of up to 3% under grassland restoration scenarios. The effect of changing cropping patterns on UK-wide SOC is comparatively small. As climate scenarios move from lower to higher global emissions, the SOC reductions under arable expansion become more pronounced, while the SOC increases under grassland restoration diminish and eventually turn into losses. UK-wide crop yields show resilience to climate change and are maximised for the arable expansion scenario with protected sites of special scientific interest. Soil CO2 and nitrogen emissions get progressively higher in warmer climates. The results of this study are expected to contribute to a future UK agricultural policy aimed at rewarding farmers for sustainable land management practices.
How to cite: Yumashev, D., Janes-Bassett, V., and Davies, J.: The future of soil biochemistry and services in the UK under plausible climate, land use and land management scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18699, https://doi.org/10.5194/egusphere-egu2020-18699, 2020.
In this study, we explore plausible future states of soil organic matter, biomass, food production and soil greenhouse gas emissions across the UK under a range of climate, land use and land management scenarios. We use state-of-the-art soil biochemistry model, N14CP-Ag, combined with UKCP18 climate scenarios and ASSET land cover change and crop scenarios mapped onto a UK-wide grid with around 100,000 land parcels. Historic runs cover the period from the start of the Holocene interglacial (-12 kyr BP) to 2015; scenarios run from 2016 out to 2100. The results show variations of soil organic carbon (SOC) of around 10% between 2016 and 2100 relative to the simulated starting value of 1.4 Gton in 2015, with reductions of up to 7% under arable expansion scenarios and increases of up to 3% under grassland restoration scenarios. The effect of changing cropping patterns on UK-wide SOC is comparatively small. As climate scenarios move from lower to higher global emissions, the SOC reductions under arable expansion become more pronounced, while the SOC increases under grassland restoration diminish and eventually turn into losses. UK-wide crop yields show resilience to climate change and are maximised for the arable expansion scenario with protected sites of special scientific interest. Soil CO2 and nitrogen emissions get progressively higher in warmer climates. The results of this study are expected to contribute to a future UK agricultural policy aimed at rewarding farmers for sustainable land management practices.
How to cite: Yumashev, D., Janes-Bassett, V., and Davies, J.: The future of soil biochemistry and services in the UK under plausible climate, land use and land management scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18699, https://doi.org/10.5194/egusphere-egu2020-18699, 2020.
EGU2020-21919 | Displays | BG3.11
Land-use change and climate change mitigation potential of agricultural soils in FinlandBoris Tupek, Aleksi Lehtonen, Raisa Mäkipää, Pirjo Peltonen-Sainio, Saija Huuskonen, Taru Palosuo, Jakko Heikkinen, and Kristiina Regina
We aimed to estimate a nation-wide potential to improve the carbon balance of the land use sector by removing part of the current croplands on mineral soil from food and feed production to extensive grasslands or afforestation in Finland. We combined the existing data on forest and agricultural production, and climate with predictive capacity of YASSO07 soil carbon model to estimate changes of soil carbon stock (SOC) in Finland over the past land use change (LUC) from forest to agriculture in comparison with alternative LUC or continuous agriculture in future.
The model analysis revealed that SOC loss after deforestation during the cultivation period originated mainly from the absence of woody litter input. The non-woody litter input of the forest was comparable to that of the agricultural residues thus the SOC originating from non-woody litter has not changed much during cultivation. The model estimated approximately a 30 year delay in positive soil carbon balance after the afforestation. Longer for Norway spruce than for the Pubescent birch. The comparison of two dominant tree species used for afforestation highlighted a difference in soil versus biomass carbon sequestration. The total forest biomass production and total carbon stock was larger for spruce stands than for birch stands. However, due to larger foliar and fineroot litter input birch stands sequestered more carbon into the soil than spruce stands. The analysis further revealed that extensification of cropland to grassland would not meet 4 per mill soil carbon sequestration criterion needed for achieving Paris climate CO2 reduction target and due to the spatial limitation of afforestation other management measures need to be considered e.g. adding biochar to soils for successful and more permanent CO2 offsetting.
How to cite: Tupek, B., Lehtonen, A., Mäkipää, R., Peltonen-Sainio, P., Huuskonen, S., Palosuo, T., Heikkinen, J., and Regina, K.: Land-use change and climate change mitigation potential of agricultural soils in Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21919, https://doi.org/10.5194/egusphere-egu2020-21919, 2020.
We aimed to estimate a nation-wide potential to improve the carbon balance of the land use sector by removing part of the current croplands on mineral soil from food and feed production to extensive grasslands or afforestation in Finland. We combined the existing data on forest and agricultural production, and climate with predictive capacity of YASSO07 soil carbon model to estimate changes of soil carbon stock (SOC) in Finland over the past land use change (LUC) from forest to agriculture in comparison with alternative LUC or continuous agriculture in future.
The model analysis revealed that SOC loss after deforestation during the cultivation period originated mainly from the absence of woody litter input. The non-woody litter input of the forest was comparable to that of the agricultural residues thus the SOC originating from non-woody litter has not changed much during cultivation. The model estimated approximately a 30 year delay in positive soil carbon balance after the afforestation. Longer for Norway spruce than for the Pubescent birch. The comparison of two dominant tree species used for afforestation highlighted a difference in soil versus biomass carbon sequestration. The total forest biomass production and total carbon stock was larger for spruce stands than for birch stands. However, due to larger foliar and fineroot litter input birch stands sequestered more carbon into the soil than spruce stands. The analysis further revealed that extensification of cropland to grassland would not meet 4 per mill soil carbon sequestration criterion needed for achieving Paris climate CO2 reduction target and due to the spatial limitation of afforestation other management measures need to be considered e.g. adding biochar to soils for successful and more permanent CO2 offsetting.
How to cite: Tupek, B., Lehtonen, A., Mäkipää, R., Peltonen-Sainio, P., Huuskonen, S., Palosuo, T., Heikkinen, J., and Regina, K.: Land-use change and climate change mitigation potential of agricultural soils in Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21919, https://doi.org/10.5194/egusphere-egu2020-21919, 2020.
EGU2020-9342 | Displays | BG3.11
Analysis of carbon sequestration sensitivity to recent changes in land use patterns over Belgium using a combination of models and remote sensing techniquesArpita Verma, Ingrid Jacquemin, Louis Francois, Nicolas Dendoncker, Veronique Beckers, Rafiq Hamdi, Julie Berckmans, and Eric Hallot
Changes in land use/land cover (LU/LC) practices are critical to determine and this is one of the crucial driving forces of terrestrial ecosystem productivity and carbon sink variability. However, relatively few studies have quantified the impact of LU/LC change on the terrestrial carbon cycle. In the present study, we developed a workflow for quantifying and assessing changes in terrestrial carbon stocks due to land use change using a dynamic vegetation model. The main objectives are to assess status and variation in carbon stocks across land covers, towards the quantification of spatial distribution and dynamic variation of terrestrial carbon sinks in response to LU/LC change. Here, with the CARAIB dynamic vegetation model, we perform simulations using several sets of LU/LC data to analyse the sensitivity of the carbon sink. We propose a new method of using satellite – and machine learning-based observation to reconstruct historical LU/LC change and compare it with static data from the cadastral map and dynamic data from an agent-based model coupled with CARAIB. It will quantify the spatial and temporal variability of land use during the 2000-2019 period over Belgium at high resolution. This study will give the space to analyse past information and hence calibrate the dynamic vegetation model to minimize uncertainty in the future projection (until 2035). Overall, this study allows us to understand the effect of changing land use pattern and identify the input dataset which minimizes the uncertainty in model estimation.
How to cite: Verma, A., Jacquemin, I., Francois, L., Dendoncker, N., Beckers, V., Hamdi, R., Berckmans, J., and Hallot, E.: Analysis of carbon sequestration sensitivity to recent changes in land use patterns over Belgium using a combination of models and remote sensing techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9342, https://doi.org/10.5194/egusphere-egu2020-9342, 2020.
Changes in land use/land cover (LU/LC) practices are critical to determine and this is one of the crucial driving forces of terrestrial ecosystem productivity and carbon sink variability. However, relatively few studies have quantified the impact of LU/LC change on the terrestrial carbon cycle. In the present study, we developed a workflow for quantifying and assessing changes in terrestrial carbon stocks due to land use change using a dynamic vegetation model. The main objectives are to assess status and variation in carbon stocks across land covers, towards the quantification of spatial distribution and dynamic variation of terrestrial carbon sinks in response to LU/LC change. Here, with the CARAIB dynamic vegetation model, we perform simulations using several sets of LU/LC data to analyse the sensitivity of the carbon sink. We propose a new method of using satellite – and machine learning-based observation to reconstruct historical LU/LC change and compare it with static data from the cadastral map and dynamic data from an agent-based model coupled with CARAIB. It will quantify the spatial and temporal variability of land use during the 2000-2019 period over Belgium at high resolution. This study will give the space to analyse past information and hence calibrate the dynamic vegetation model to minimize uncertainty in the future projection (until 2035). Overall, this study allows us to understand the effect of changing land use pattern and identify the input dataset which minimizes the uncertainty in model estimation.
How to cite: Verma, A., Jacquemin, I., Francois, L., Dendoncker, N., Beckers, V., Hamdi, R., Berckmans, J., and Hallot, E.: Analysis of carbon sequestration sensitivity to recent changes in land use patterns over Belgium using a combination of models and remote sensing techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9342, https://doi.org/10.5194/egusphere-egu2020-9342, 2020.
EGU2020-10265 | Displays | BG3.11
Integrating LCLM feedbacks into climate models: an emulator approachShruti Nath, Quentin Lejeune, Lea Beusch, Carl Schleussner, and Sonia I. Seneviratne
The role of Land Cover and Land Management (LCLM) changes in shaping the climate has garnered increasing interest, particularly in light of its potential for climate adaptation and mitigation. Earth System Models (ESMs), however, have hitherto handled LCLM-climate interactions as a unidirectional process, lacking explicit treatment of LCLM-Climate feedbacks. Consequences of these feedbacks nevertheless hold social relevance, affecting agricultural systems, food provision and prices. Furthermore, LCLM can be linked to extreme climate events such as heat waves and drought, which in turn carry economic costs through loss in worker productivity. It is thus essential to integrate LCLM processes and their feedbacks into ESMs, in order to build consistent storylines for future development pathways that take into account their potential for adaptation and mitigation. Moreover, to ensure robustness in the detected LCLM signals, such integration should be done over a range of ESMs.
Emulators represent a computationally cheap but effective way of approximating ESMs. Here we outline an emulator approach to represent LCLM-Climate feedbacks based on a framework developed by Beusch et al. (2019). This framework provides spatially explicit data by translating annual global mean temperatures into local temperatures and can be extended to use for other relevant variables. The emulator is developed as part of the LAnd MAnagement for CLImate Mitigation and Adaptation (LAMACLIMA) project, and is trained on dedicated ESM simulations that isolate the effects of key land management practices focussed on by LAMACLIMA: irrigation, de/reforestation and wood. Variables considered include temperature, evapotranspiration, runoff, crop yields, carbon storage and heat stress. Besides providing spatially explicit representation of these variables, the emulator also allows flexibility in prescribing land-use scenarios under which their responses are explored.
Beusch, L. Gudmundsson, and S. I. Seneviratne: Emulating Earth System Model Temperatures: from Global Mean Temperature Trajectories to Grid-point Level Realizations on Land, doi: 10.5194/esd-2019-34, 2019 (accepted for ESD).
How to cite: Nath, S., Lejeune, Q., Beusch, L., Schleussner, C., and Seneviratne, S. I.: Integrating LCLM feedbacks into climate models: an emulator approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10265, https://doi.org/10.5194/egusphere-egu2020-10265, 2020.
The role of Land Cover and Land Management (LCLM) changes in shaping the climate has garnered increasing interest, particularly in light of its potential for climate adaptation and mitigation. Earth System Models (ESMs), however, have hitherto handled LCLM-climate interactions as a unidirectional process, lacking explicit treatment of LCLM-Climate feedbacks. Consequences of these feedbacks nevertheless hold social relevance, affecting agricultural systems, food provision and prices. Furthermore, LCLM can be linked to extreme climate events such as heat waves and drought, which in turn carry economic costs through loss in worker productivity. It is thus essential to integrate LCLM processes and their feedbacks into ESMs, in order to build consistent storylines for future development pathways that take into account their potential for adaptation and mitigation. Moreover, to ensure robustness in the detected LCLM signals, such integration should be done over a range of ESMs.
Emulators represent a computationally cheap but effective way of approximating ESMs. Here we outline an emulator approach to represent LCLM-Climate feedbacks based on a framework developed by Beusch et al. (2019). This framework provides spatially explicit data by translating annual global mean temperatures into local temperatures and can be extended to use for other relevant variables. The emulator is developed as part of the LAnd MAnagement for CLImate Mitigation and Adaptation (LAMACLIMA) project, and is trained on dedicated ESM simulations that isolate the effects of key land management practices focussed on by LAMACLIMA: irrigation, de/reforestation and wood. Variables considered include temperature, evapotranspiration, runoff, crop yields, carbon storage and heat stress. Besides providing spatially explicit representation of these variables, the emulator also allows flexibility in prescribing land-use scenarios under which their responses are explored.
Beusch, L. Gudmundsson, and S. I. Seneviratne: Emulating Earth System Model Temperatures: from Global Mean Temperature Trajectories to Grid-point Level Realizations on Land, doi: 10.5194/esd-2019-34, 2019 (accepted for ESD).
How to cite: Nath, S., Lejeune, Q., Beusch, L., Schleussner, C., and Seneviratne, S. I.: Integrating LCLM feedbacks into climate models: an emulator approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10265, https://doi.org/10.5194/egusphere-egu2020-10265, 2020.
EGU2020-4150 | Displays | BG3.11
Reconstruction of cropland cover changes in the European part of Tsarist Russia from 1500 to 1914 based on historical documentsZhilong Zhao, Xiuqi Fang, Yu Ye, Chengpeng Zhang, and Diyang Zhang
To evaluate the climatic and ecological impacts of anthropogenic activities in global change research, it is essential to reconstruct historical land use and land cover change on regional and global scales. In this study, we reconstructed cropland areas for 54 provinces within the European part of Tsarist Russia (ETR) over the periods of 1500-1914 using historical data, including cropland area, population, grain consumption, and grain yield per unit area. The main results are as follows. (1) Total cropland areas and fractional cropland areas of ETR for 11 time sections (1500 AD, 1540 AD, 1585 AD, 1696 AD, 1719 AD, 1725 AD, 1763 AD, 1796 AD, 1856 AD, 1887 AD and 1914 AD) during 1500-1914 were reconstructed, respectively. The total cropland area of ETR increased from 4.26×104 km2 in 1500 AD to 147.40×104 km2 in 1914 AD. The fractional cropland area increased from 2.40% to 29.20%, and the per capita cropland area decreased from 2.58 ha to 1.13 ha during 1500-1914. (2) Cropland expanded from the central and southwest of ETR to the black soil region, surrounding area of the Volga River, Ukraine region, the new Russia region, and the vicinity of Ural for the increase and migration of population. While in the northern region of ETR, cropland area remained stable due to unfavorable climatic conditions throughout the study period. (3) In 1914 AD, the cropland area and fractional cropland area of each province varied from 0.16×104 km2 and 0.76% to 5.65×104 km2 and 76.68%, respectively. (4) The comparisons show that the cropland areas on the ETR in this study for 1500-1914 are higher than those of the HYDE 3.2 dataset. The main reason might come from the underestimation of per capita cropland areas in HYDE 3.2 dataset, which values remained about 1 ha from 1500 to 1920 in that dataset.
How to cite: Zhao, Z., Fang, X., Ye, Y., Zhang, C., and Zhang, D.: Reconstruction of cropland cover changes in the European part of Tsarist Russia from 1500 to 1914 based on historical documents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4150, https://doi.org/10.5194/egusphere-egu2020-4150, 2020.
To evaluate the climatic and ecological impacts of anthropogenic activities in global change research, it is essential to reconstruct historical land use and land cover change on regional and global scales. In this study, we reconstructed cropland areas for 54 provinces within the European part of Tsarist Russia (ETR) over the periods of 1500-1914 using historical data, including cropland area, population, grain consumption, and grain yield per unit area. The main results are as follows. (1) Total cropland areas and fractional cropland areas of ETR for 11 time sections (1500 AD, 1540 AD, 1585 AD, 1696 AD, 1719 AD, 1725 AD, 1763 AD, 1796 AD, 1856 AD, 1887 AD and 1914 AD) during 1500-1914 were reconstructed, respectively. The total cropland area of ETR increased from 4.26×104 km2 in 1500 AD to 147.40×104 km2 in 1914 AD. The fractional cropland area increased from 2.40% to 29.20%, and the per capita cropland area decreased from 2.58 ha to 1.13 ha during 1500-1914. (2) Cropland expanded from the central and southwest of ETR to the black soil region, surrounding area of the Volga River, Ukraine region, the new Russia region, and the vicinity of Ural for the increase and migration of population. While in the northern region of ETR, cropland area remained stable due to unfavorable climatic conditions throughout the study period. (3) In 1914 AD, the cropland area and fractional cropland area of each province varied from 0.16×104 km2 and 0.76% to 5.65×104 km2 and 76.68%, respectively. (4) The comparisons show that the cropland areas on the ETR in this study for 1500-1914 are higher than those of the HYDE 3.2 dataset. The main reason might come from the underestimation of per capita cropland areas in HYDE 3.2 dataset, which values remained about 1 ha from 1500 to 1920 in that dataset.
How to cite: Zhao, Z., Fang, X., Ye, Y., Zhang, C., and Zhang, D.: Reconstruction of cropland cover changes in the European part of Tsarist Russia from 1500 to 1914 based on historical documents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4150, https://doi.org/10.5194/egusphere-egu2020-4150, 2020.
EGU2020-11712 | Displays | BG3.11
Impacts of Tropical Deforestation on Local ClimateCallum Smith, Dominick Spracklen, and Jessica Baker
Tropical forests play a critical role in maintaining the balance of biophysical surface fluxes and strongly influence the local and regional climate. Tropical deforestation is therefore increasingly recognised as an issue of global importance as the environmental and climatic consequences of prolific land-cover changes are beginning to be better understood. Using remotely sensed atmospheric and land-surface datasets from 2000 to 2016, climate impacts of deforestation were analysed over three tropical forest domains; the Amazon basin, the Congo basin and South-East Asia (SEA). Trends in local climate responses were observed with increasing deforestation across all tropical regions. Climate analysis was conducted on co-located pixels to ensure geographical differences were accounted for. Land that was deforested over the analysis period showed a decrease in evapotranspiration (ET) and leaf area index (LAI) and a significant increase in daytime land surface temperature (T). Whilst the Amazon saw the greatest relative decrease in LAI (0.2 m2/ m2), SEA showed the largest decrease in ET (1.5 mm/month) over the period. The climate response in Africa to deforestation is muted, with T increases of only 0.1◦C compared with 0.18◦C and 0.4◦C for SEA and the Amazon respectively. In all regions the response of precipitation was not significant. Increasing temperatures will heighten ecosystem stress for the remaining vegetation and forest adjacent to regions of deforestation will be more susceptible further degradation. The results of this study highlight the differences in climate responses between the tropical regions and the need to consider each separately when conducting future analysis.
How to cite: Smith, C., Spracklen, D., and Baker, J.: Impacts of Tropical Deforestation on Local Climate , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11712, https://doi.org/10.5194/egusphere-egu2020-11712, 2020.
Tropical forests play a critical role in maintaining the balance of biophysical surface fluxes and strongly influence the local and regional climate. Tropical deforestation is therefore increasingly recognised as an issue of global importance as the environmental and climatic consequences of prolific land-cover changes are beginning to be better understood. Using remotely sensed atmospheric and land-surface datasets from 2000 to 2016, climate impacts of deforestation were analysed over three tropical forest domains; the Amazon basin, the Congo basin and South-East Asia (SEA). Trends in local climate responses were observed with increasing deforestation across all tropical regions. Climate analysis was conducted on co-located pixels to ensure geographical differences were accounted for. Land that was deforested over the analysis period showed a decrease in evapotranspiration (ET) and leaf area index (LAI) and a significant increase in daytime land surface temperature (T). Whilst the Amazon saw the greatest relative decrease in LAI (0.2 m2/ m2), SEA showed the largest decrease in ET (1.5 mm/month) over the period. The climate response in Africa to deforestation is muted, with T increases of only 0.1◦C compared with 0.18◦C and 0.4◦C for SEA and the Amazon respectively. In all regions the response of precipitation was not significant. Increasing temperatures will heighten ecosystem stress for the remaining vegetation and forest adjacent to regions of deforestation will be more susceptible further degradation. The results of this study highlight the differences in climate responses between the tropical regions and the need to consider each separately when conducting future analysis.
How to cite: Smith, C., Spracklen, D., and Baker, J.: Impacts of Tropical Deforestation on Local Climate , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11712, https://doi.org/10.5194/egusphere-egu2020-11712, 2020.
EGU2020-19737 | Displays | BG3.11
Biogeochemical effects of land cover and land managementSuqi Guo, Julia Pongratz, Felix Havermann, Andrea Alessandri, Dim Coumou, Edouard L Davin, Steven De Hertog, Quentin Lejeune, Iris Manola, Inga Menke, Carl Schleussner, Sonia I Seneviratne, and Wim Thiery
Land cover and land management (LCLM) changes are important sources of anthropogenic CO2 emissions, constituting about 10% of current annual CO2 emissions, or about one third of cumulative emissions over the industrial era. However, simulations with Earth system models (ESMs) show a large range of CO2 emissions from LCLM. Several reasons for the divergence in estimates have been identified, in particular differences in simulated biomass and soil carbon stocks, and if and which land management practices are included in models. The divergence of model estimates is particularly worrisome since LCLM practices are discussed as key mitigation tools or “negative emission technologies” to reach the temperature goals of Paris Agreement. In the LAMACLIMA project (land management for climate mitigation and adaptation) we therefore conduct a detailed analysis of several LCLM practices across three ESMs to improve our understanding about model uncertainties. The present study aims to quantify the effects of forest cover changes and wood harvesting on the global carbon cycle, globally important LCLM practices with relevance also for physical climate and economic production.
We conduct idealized global experiments of deforestation, afforestation and wood harvesting over a 150-year simulation period under present climate. All forcings (solar, trace gases, aerosols) are held constant at present-day levels to isolate the climatic effects from different LCLM scenarios on the carbon cycle. All experiments are conducted by three different Earth system models (MPI-ESM, EC-EARTH and CESM) to quantify inter-model uncertainty and potentially uncover specific model biases. The analysis focuses on the transient response of carbon fluxes after the LCLM practice is in order to unravel model differences concerning temporal dynamics of LCLM effects and to show how quickly signals emerge that could potentially mitigate climate change.
With this research, we will provide a deeper understanding about simulated LCLM effects on the carbon cycle and also report model uncertainties. Together with parallel efforts to quantify biogeophysical effects of LCLM, our study will also lead to assess the overall potential of LCLM as a means for land-based climate mitigation.
How to cite: Guo, S., Pongratz, J., Havermann, F., Alessandri, A., Coumou, D., Davin, E. L., Hertog, S. D., Lejeune, Q., Manola, I., Menke, I., Schleussner, C., Seneviratne, S. I., and Thiery, W.: Biogeochemical effects of land cover and land management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19737, https://doi.org/10.5194/egusphere-egu2020-19737, 2020.
Land cover and land management (LCLM) changes are important sources of anthropogenic CO2 emissions, constituting about 10% of current annual CO2 emissions, or about one third of cumulative emissions over the industrial era. However, simulations with Earth system models (ESMs) show a large range of CO2 emissions from LCLM. Several reasons for the divergence in estimates have been identified, in particular differences in simulated biomass and soil carbon stocks, and if and which land management practices are included in models. The divergence of model estimates is particularly worrisome since LCLM practices are discussed as key mitigation tools or “negative emission technologies” to reach the temperature goals of Paris Agreement. In the LAMACLIMA project (land management for climate mitigation and adaptation) we therefore conduct a detailed analysis of several LCLM practices across three ESMs to improve our understanding about model uncertainties. The present study aims to quantify the effects of forest cover changes and wood harvesting on the global carbon cycle, globally important LCLM practices with relevance also for physical climate and economic production.
We conduct idealized global experiments of deforestation, afforestation and wood harvesting over a 150-year simulation period under present climate. All forcings (solar, trace gases, aerosols) are held constant at present-day levels to isolate the climatic effects from different LCLM scenarios on the carbon cycle. All experiments are conducted by three different Earth system models (MPI-ESM, EC-EARTH and CESM) to quantify inter-model uncertainty and potentially uncover specific model biases. The analysis focuses on the transient response of carbon fluxes after the LCLM practice is in order to unravel model differences concerning temporal dynamics of LCLM effects and to show how quickly signals emerge that could potentially mitigate climate change.
With this research, we will provide a deeper understanding about simulated LCLM effects on the carbon cycle and also report model uncertainties. Together with parallel efforts to quantify biogeophysical effects of LCLM, our study will also lead to assess the overall potential of LCLM as a means for land-based climate mitigation.
How to cite: Guo, S., Pongratz, J., Havermann, F., Alessandri, A., Coumou, D., Davin, E. L., Hertog, S. D., Lejeune, Q., Manola, I., Menke, I., Schleussner, C., Seneviratne, S. I., and Thiery, W.: Biogeochemical effects of land cover and land management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19737, https://doi.org/10.5194/egusphere-egu2020-19737, 2020.
EGU2020-6827 | Displays | BG3.11
Evaluating the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation and improved forest management in NorwayRyan Bright, Micky Allen, Clara Anton-Fernandez, Lise Dalsgaard, Stephanie Eisner, Aksel Granhus, Gunnhild Søgaard, and Rasmus Astrup
As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on non-forested lands (i.e., aff-/reforestation) and secondary forested lands dominated by early successional broadleaved tree species (i.e., improved forest management). Given the need to achieve net zero emissions in the latter half of the 21st century in effort to limit the global mean temperature rise to “well below” 2 °C, the mitigation potential of such a policy is unclear given relatively slow tree growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counter the benefits of an enhanced forest CO2 sink in high latitude regions. Here, we carry out a rigorous empirical assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation (AR) and improved forest management (IFM) projects in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting the carbon cycle benefit of tCDR, yet given slow forest growth rates in the region, meaningful tCDR benefits from AR and IFM projects would not be realized until the end of the 21st century, with maximum benefits occurring around 2150. We estimate Norway’s total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (± 240) and 852 (± 295) Mt CO2-eq. at mean costs of US$ 29 (± 18) and US$ 26 (± 14) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway’s total current annual production-based (i.e., territorial) CO2-eq. emissions.
How to cite: Bright, R., Allen, M., Anton-Fernandez, C., Dalsgaard, L., Eisner, S., Granhus, A., Søgaard, G., and Astrup, R.: Evaluating the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation and improved forest management in Norway, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6827, https://doi.org/10.5194/egusphere-egu2020-6827, 2020.
As a carbon dioxide removal measure, the Norwegian government is currently considering a policy of large-scale planting of spruce (Picea abies (L) H. Karst) on non-forested lands (i.e., aff-/reforestation) and secondary forested lands dominated by early successional broadleaved tree species (i.e., improved forest management). Given the need to achieve net zero emissions in the latter half of the 21st century in effort to limit the global mean temperature rise to “well below” 2 °C, the mitigation potential of such a policy is unclear given relatively slow tree growth rates in the region. Further convoluting the picture is the magnitude and relevance of surface albedo changes linked to such projects, which typically counter the benefits of an enhanced forest CO2 sink in high latitude regions. Here, we carry out a rigorous empirical assessment of the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation (AR) and improved forest management (IFM) projects in Norway, taking into account transient developments in both terrestrial carbon sinks and surface albedo over the 21st century and beyond. We find that surface albedo changes would likely play a negligible role in counteracting the carbon cycle benefit of tCDR, yet given slow forest growth rates in the region, meaningful tCDR benefits from AR and IFM projects would not be realized until the end of the 21st century, with maximum benefits occurring around 2150. We estimate Norway’s total accumulated tCDR potential at 2100 and 2150 (including surface albedo changes) to be 447 (± 240) and 852 (± 295) Mt CO2-eq. at mean costs of US$ 29 (± 18) and US$ 26 (± 14) per ton CDR, respectively. For perspective, the accumulated tCDR potential at 2100 represents around 8 years of Norway’s total current annual production-based (i.e., territorial) CO2-eq. emissions.
How to cite: Bright, R., Allen, M., Anton-Fernandez, C., Dalsgaard, L., Eisner, S., Granhus, A., Søgaard, G., and Astrup, R.: Evaluating the terrestrial carbon dioxide removal (tCDR) potential of large-scale aff-/reforestation and improved forest management in Norway, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6827, https://doi.org/10.5194/egusphere-egu2020-6827, 2020.
EGU2020-14730 | Displays | BG3.11
A systematic evaluation of surface albedo prediction error in high latitude forest environments: The case of the Community Land Model (CLM)Hui Tang, Ryan Bright, and Frode Stordal
Land surface models (LSMs) employed in global climate research continue to struggle to predict surface albedo in high latitude forests. Persistent sources of error in LSMs may originate from one or more of the following: a) the underlying land cover mapping and PFT classification; b) the parameterization of forest structure; c) canopy-snow dynamics and snow physical attributes; d) canopy radiative transfer. Among the more sophisticated, the surface albedo scheme in the Community Land Model has undergone several updates over the past decade, although it remains unclear which updates – and to what extent -- they may have contributed to improved surface albedo prediction accuracy in high latitude forest environments. Here, using Fennoscandia (Norway, Sweden, and Finland) as a case study region and a 5-year MODIS-based surface albedo time series as an empirical benchmark, we carry out a series of offline simulations using CLM versions 4.5, 5.0, and FATES (formerly ED) combined with novel land cover and structure mapping to systematically quantify errors attributable to the aforementioned sources, as well as improvements (or degradations) to predictive performance associated with incremental model developments in time. Preliminary results using CLM v. 4.5 & 5.0 suggest that both the underlying land cover mapping and the representation of forest structure contribute equally to prediction error and outweigh the error attributable to the parameterization of canopy-snow processes. As for canopy radiative transfer, the extent to which the multi-layer canopy radiative transfer scheme introduced in FATES reduces surface albedo prediction error over the single-layer scheme employed in all other CLM versions remains to be quantified.
How to cite: Tang, H., Bright, R., and Stordal, F.: A systematic evaluation of surface albedo prediction error in high latitude forest environments: The case of the Community Land Model (CLM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14730, https://doi.org/10.5194/egusphere-egu2020-14730, 2020.
Land surface models (LSMs) employed in global climate research continue to struggle to predict surface albedo in high latitude forests. Persistent sources of error in LSMs may originate from one or more of the following: a) the underlying land cover mapping and PFT classification; b) the parameterization of forest structure; c) canopy-snow dynamics and snow physical attributes; d) canopy radiative transfer. Among the more sophisticated, the surface albedo scheme in the Community Land Model has undergone several updates over the past decade, although it remains unclear which updates – and to what extent -- they may have contributed to improved surface albedo prediction accuracy in high latitude forest environments. Here, using Fennoscandia (Norway, Sweden, and Finland) as a case study region and a 5-year MODIS-based surface albedo time series as an empirical benchmark, we carry out a series of offline simulations using CLM versions 4.5, 5.0, and FATES (formerly ED) combined with novel land cover and structure mapping to systematically quantify errors attributable to the aforementioned sources, as well as improvements (or degradations) to predictive performance associated with incremental model developments in time. Preliminary results using CLM v. 4.5 & 5.0 suggest that both the underlying land cover mapping and the representation of forest structure contribute equally to prediction error and outweigh the error attributable to the parameterization of canopy-snow processes. As for canopy radiative transfer, the extent to which the multi-layer canopy radiative transfer scheme introduced in FATES reduces surface albedo prediction error over the single-layer scheme employed in all other CLM versions remains to be quantified.
How to cite: Tang, H., Bright, R., and Stordal, F.: A systematic evaluation of surface albedo prediction error in high latitude forest environments: The case of the Community Land Model (CLM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14730, https://doi.org/10.5194/egusphere-egu2020-14730, 2020.
EGU2020-17982 | Displays | BG3.11
Coupling the dynamic vegetation model LPJmL5.1 to an Earth system model – towards POEM1.0Markus Drüke, Werner von Bloh, Stefan Petri, Sibyll Schaphoff, Boris Sakschewski, Matthias Forkel, Willem Huiskamp, Georg Feulner, and Kirsten Thonicke
Feedbacks between biosphere and other components of the Earth system are challenging to model accurately and therefore are often omitted or oversimplified in Earth system models (ESMs). However, their importance is increasingly recognized as rapid disturbances due to anthropogenic (e.g., deforestation) or natural (e.g. regional increase in fires) drivers are already observed.
Here we couple the well established and comprehensively validated dynamic global vegetation model LPJmL5.1 (von Bloh et al., 2018) to an Earth System model CM2Mc (MOM5/AM2, Galbraith et al. 2011). We replace the simple static vegetation model LaD with LPJmL5.1 and couple the water- and energy cycle by using GFDL’s Flexible Modeling System (FMS). In order to stabilize the model performance, several adjustments to LPJmL5.1 had to be done, including the introduction of a subdaily cycle for the energy and water calculations, the implementation of a conductance of the soil evaporation and plant interception, the calculation of a canopy layer humidity, and the surface energy balance in order to calculate the surface and canopy layer temperature within LPJmL5.1.
The coupled system allows us to answer questions regarding ecosystem stability with a complete energy and water cycle. For example, changes in the vegetation have a large impact on atmosphere dynamics, which in turn affects precipitation and feeds back into vegetation growth and mortality. To examine this feedback a simple experiment is performed by deforesting the whole Amazon basin and replacing it with grassland. Our results show decreasing precipitation and increasing canopy temperature which becomes a stable climate state in this treeless scenario. Future applications of the coupled model may include the investigation of tipping points in the biosphere, the impact of different atmospheric CO2 concentrations or climate change and land-use change scenarios.
How to cite: Drüke, M., von Bloh, W., Petri, S., Schaphoff, S., Sakschewski, B., Forkel, M., Huiskamp, W., Feulner, G., and Thonicke, K.: Coupling the dynamic vegetation model LPJmL5.1 to an Earth system model – towards POEM1.0, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17982, https://doi.org/10.5194/egusphere-egu2020-17982, 2020.
Feedbacks between biosphere and other components of the Earth system are challenging to model accurately and therefore are often omitted or oversimplified in Earth system models (ESMs). However, their importance is increasingly recognized as rapid disturbances due to anthropogenic (e.g., deforestation) or natural (e.g. regional increase in fires) drivers are already observed.
Here we couple the well established and comprehensively validated dynamic global vegetation model LPJmL5.1 (von Bloh et al., 2018) to an Earth System model CM2Mc (MOM5/AM2, Galbraith et al. 2011). We replace the simple static vegetation model LaD with LPJmL5.1 and couple the water- and energy cycle by using GFDL’s Flexible Modeling System (FMS). In order to stabilize the model performance, several adjustments to LPJmL5.1 had to be done, including the introduction of a subdaily cycle for the energy and water calculations, the implementation of a conductance of the soil evaporation and plant interception, the calculation of a canopy layer humidity, and the surface energy balance in order to calculate the surface and canopy layer temperature within LPJmL5.1.
The coupled system allows us to answer questions regarding ecosystem stability with a complete energy and water cycle. For example, changes in the vegetation have a large impact on atmosphere dynamics, which in turn affects precipitation and feeds back into vegetation growth and mortality. To examine this feedback a simple experiment is performed by deforesting the whole Amazon basin and replacing it with grassland. Our results show decreasing precipitation and increasing canopy temperature which becomes a stable climate state in this treeless scenario. Future applications of the coupled model may include the investigation of tipping points in the biosphere, the impact of different atmospheric CO2 concentrations or climate change and land-use change scenarios.
How to cite: Drüke, M., von Bloh, W., Petri, S., Schaphoff, S., Sakschewski, B., Forkel, M., Huiskamp, W., Feulner, G., and Thonicke, K.: Coupling the dynamic vegetation model LPJmL5.1 to an Earth system model – towards POEM1.0, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17982, https://doi.org/10.5194/egusphere-egu2020-17982, 2020.
EGU2020-22238 | Displays | BG3.11
Sensitivity of the ECMWF Land surface model to vegetation and LU/LC mapsSouhail Boussetta, Gianpaolo Balsamo, Emanuel Arduini, Miguel Nogueira, Gabriele Arduini, Margarita Choulga, Nils Wedi, and Joaquin Munoz Sabater
The effects of vegetation and land use/land cover maps on surface energy and carbon fluxes predictions from land surface model are investigated. The model is applied at global scale and a comparison between two configurations using different land cover maps is performed. In the first configuration, the land cover is based on the operational GLCCv1.2 map, in the second the ESA-CCI land cover map is used.
Based on these two configurations, the observation operator that disaggregates the satellite-based leaf area index into high and low vegetation components is also modified to ensure optimal conservation of the observed LAI. The Seasonal variability of the vegetation cover is also investigated by introducing a modified lamber-beer formulation that allows varying the vegetation cover as a function of the LAI.
How to cite: Boussetta, S., Balsamo, G., Arduini, E., Nogueira, M., Arduini, G., Choulga, M., Wedi, N., and Munoz Sabater, J.: Sensitivity of the ECMWF Land surface model to vegetation and LU/LC maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22238, https://doi.org/10.5194/egusphere-egu2020-22238, 2020.
The effects of vegetation and land use/land cover maps on surface energy and carbon fluxes predictions from land surface model are investigated. The model is applied at global scale and a comparison between two configurations using different land cover maps is performed. In the first configuration, the land cover is based on the operational GLCCv1.2 map, in the second the ESA-CCI land cover map is used.
Based on these two configurations, the observation operator that disaggregates the satellite-based leaf area index into high and low vegetation components is also modified to ensure optimal conservation of the observed LAI. The Seasonal variability of the vegetation cover is also investigated by introducing a modified lamber-beer formulation that allows varying the vegetation cover as a function of the LAI.
How to cite: Boussetta, S., Balsamo, G., Arduini, E., Nogueira, M., Arduini, G., Choulga, M., Wedi, N., and Munoz Sabater, J.: Sensitivity of the ECMWF Land surface model to vegetation and LU/LC maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22238, https://doi.org/10.5194/egusphere-egu2020-22238, 2020.
EGU2020-4071 | Displays | BG3.11
Biophysical climate effects of changing forest cover across scalesGensuo Jia
Changes of forest cover regulate climate system directly through the alteration of water vapor, energy, and momentum exchange between land surface and the atmosphere. These land-based biophysical effects vary with locations and seasons and cause regional cooling or warming, which enhances or diminishes the climatic benefits of forest carbon drawdown in different cases. Biophysical climate effects of forest conversion exhibit the largest uncertainty in the mid-latitudes. The sign and magnitude of biophysical effect in temperate zones are still under hot debate. Over the past two decades, most of our understandings on how forest affects climate through biophysical processes came from sensitivity analysis of climate modeling, by comparing paired model simulations of forest and short vegetation covers. However, much remains unknown in the real world due to the complicated process and uncertainty in magnitude, especially in the temperate bioclimate regions. Here we reviewed complex results and debates from model simulation, field measurements, and satellite observation, and then applied satellite-based observation to investigate the biophysical climate response to potential forest conversion in temperate regions, especially on the spatial and temporal patterns and underlying mechanisms. We also interpret some key findings on land-climate interactions from recent IPCC special report on climate change and land (SRCCL).
Readings:
Jia, G., E. Shevliakova, P. Artaxo, et al. (2019): Land-climate interactions, in Skea J. et al. (eds.) IPCC Special report on climate change and land. Intergovernmental Panel on Climate Change. IPCC, Geneva (in press) https://www.ipcc.ch/srccl/chapter/chapter-2/
Ma, W., G. Jia, and A. Zhang (2017): Multiple satellite-based analysis reveals complex climate effects of temperate forests and related energy budget, J. Geophys. Res. Atmos., 122, 3806–3820, doi:10.1002/2016JD026278
Web: green.tea.ac.cn
How to cite: Jia, G.: Biophysical climate effects of changing forest cover across scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4071, https://doi.org/10.5194/egusphere-egu2020-4071, 2020.
Changes of forest cover regulate climate system directly through the alteration of water vapor, energy, and momentum exchange between land surface and the atmosphere. These land-based biophysical effects vary with locations and seasons and cause regional cooling or warming, which enhances or diminishes the climatic benefits of forest carbon drawdown in different cases. Biophysical climate effects of forest conversion exhibit the largest uncertainty in the mid-latitudes. The sign and magnitude of biophysical effect in temperate zones are still under hot debate. Over the past two decades, most of our understandings on how forest affects climate through biophysical processes came from sensitivity analysis of climate modeling, by comparing paired model simulations of forest and short vegetation covers. However, much remains unknown in the real world due to the complicated process and uncertainty in magnitude, especially in the temperate bioclimate regions. Here we reviewed complex results and debates from model simulation, field measurements, and satellite observation, and then applied satellite-based observation to investigate the biophysical climate response to potential forest conversion in temperate regions, especially on the spatial and temporal patterns and underlying mechanisms. We also interpret some key findings on land-climate interactions from recent IPCC special report on climate change and land (SRCCL).
Readings:
Jia, G., E. Shevliakova, P. Artaxo, et al. (2019): Land-climate interactions, in Skea J. et al. (eds.) IPCC Special report on climate change and land. Intergovernmental Panel on Climate Change. IPCC, Geneva (in press) https://www.ipcc.ch/srccl/chapter/chapter-2/
Ma, W., G. Jia, and A. Zhang (2017): Multiple satellite-based analysis reveals complex climate effects of temperate forests and related energy budget, J. Geophys. Res. Atmos., 122, 3806–3820, doi:10.1002/2016JD026278
Web: green.tea.ac.cn
How to cite: Jia, G.: Biophysical climate effects of changing forest cover across scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4071, https://doi.org/10.5194/egusphere-egu2020-4071, 2020.
BG3.12 – Carbon allocation in plants and ecosystems: mechanisms, responses and biogeochemical implications
EGU2020-10751 | Displays | BG3.12
Unrevealing tree carbon allocation beyond the stress – a case study of heat and drought impacts on Pinus sylvestrisRomy Rehschuh, Andreas Gast, Andrea-Livia Jakab, Marco Lehmann, Matthias Saurer, Arthur Gessler, and Nadine Ruehr
The resistance of trees to stress events has been studied intensively, however we know little on underlying processes affecting the recovery of trees following stress release. Hence, this clearly impairs our ability to project the resilience of trees and forests to an intensification of heatwaves and drought spells.
Here we studied the legacy effects of heat and heat-drought stress on carbon (C) allocation dynamics in Scots pine. We were particularly interested in how C allocation changes post heat and heat-drought stress and how this change in allocation affects tree growth. We exposed Pinus sylvestris seedlings to increasing temperatures from 30 to 40°C within 18 days either under well-watered or drought conditions and measured stem growth, leaf water potential and above- and belowground gas exchange. Two days after stress release, we conducted a 13CO2 pulse-labelling experiment in custom build single tree cuvettes (n=18) allowing us to continuously monitor 13CO2 shoot and root gas exchange. We then chased the fate of the newly assimilated C from leaves to roots via soluble sugars, starch and cellulose.
Our results showed that Pinus sylvestris is able to recover gas exchange following heat release immediately in the well-watered trees, while drought-treated trees recovered slightly slower. We found indications for a stress compensatory response of the previously heat-treated trees, which tended to translocate recent assimilates faster compared to the control trees as identified in the dynamics of water-soluble carbon in the phloem and root 13CO2 efflux. In addition, we found larger stem growth rates in the heat-treated trees which was also reflected by a larger investment of new assimilates to cellulose. In the trees that experienced both, heat and drought stress, C allocation differed strongly from the control trees as apparent in a half as fast C translocation from leaves to root respiration and large investments of new assimilates into starch. This delayed translocation but enhanced allocation towards C storage in needle tissues was reflected in a delayed recovery of stem growth and very low detection of the 13C signal in twig, root and stem cellulose. We can conclude that heatwaves of 40°C have relatively moderate responses on C allocation post-stress, whereas hot drought stress clearly affects C allocation as indicated by a delayed C transport capacity and a preferential allocation towards C storage in needle tissues. This could indicate that C allocation following hot drought stress is affected by an impaired phloem functionality, which only slowly recovers post-stress.
How to cite: Rehschuh, R., Gast, A., Jakab, A.-L., Lehmann, M., Saurer, M., Gessler, A., and Ruehr, N.: Unrevealing tree carbon allocation beyond the stress – a case study of heat and drought impacts on Pinus sylvestris , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10751, https://doi.org/10.5194/egusphere-egu2020-10751, 2020.
The resistance of trees to stress events has been studied intensively, however we know little on underlying processes affecting the recovery of trees following stress release. Hence, this clearly impairs our ability to project the resilience of trees and forests to an intensification of heatwaves and drought spells.
Here we studied the legacy effects of heat and heat-drought stress on carbon (C) allocation dynamics in Scots pine. We were particularly interested in how C allocation changes post heat and heat-drought stress and how this change in allocation affects tree growth. We exposed Pinus sylvestris seedlings to increasing temperatures from 30 to 40°C within 18 days either under well-watered or drought conditions and measured stem growth, leaf water potential and above- and belowground gas exchange. Two days after stress release, we conducted a 13CO2 pulse-labelling experiment in custom build single tree cuvettes (n=18) allowing us to continuously monitor 13CO2 shoot and root gas exchange. We then chased the fate of the newly assimilated C from leaves to roots via soluble sugars, starch and cellulose.
Our results showed that Pinus sylvestris is able to recover gas exchange following heat release immediately in the well-watered trees, while drought-treated trees recovered slightly slower. We found indications for a stress compensatory response of the previously heat-treated trees, which tended to translocate recent assimilates faster compared to the control trees as identified in the dynamics of water-soluble carbon in the phloem and root 13CO2 efflux. In addition, we found larger stem growth rates in the heat-treated trees which was also reflected by a larger investment of new assimilates to cellulose. In the trees that experienced both, heat and drought stress, C allocation differed strongly from the control trees as apparent in a half as fast C translocation from leaves to root respiration and large investments of new assimilates into starch. This delayed translocation but enhanced allocation towards C storage in needle tissues was reflected in a delayed recovery of stem growth and very low detection of the 13C signal in twig, root and stem cellulose. We can conclude that heatwaves of 40°C have relatively moderate responses on C allocation post-stress, whereas hot drought stress clearly affects C allocation as indicated by a delayed C transport capacity and a preferential allocation towards C storage in needle tissues. This could indicate that C allocation following hot drought stress is affected by an impaired phloem functionality, which only slowly recovers post-stress.
How to cite: Rehschuh, R., Gast, A., Jakab, A.-L., Lehmann, M., Saurer, M., Gessler, A., and Ruehr, N.: Unrevealing tree carbon allocation beyond the stress – a case study of heat and drought impacts on Pinus sylvestris , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10751, https://doi.org/10.5194/egusphere-egu2020-10751, 2020.
EGU2020-19100 | Displays | BG3.12
Contribution of the carbon sources involved in latex regeneration in rubber trees (Hevea brasiliensis): an in situ 13CO2 labelling experimentDorine Desalme, Ornuma Duangngam, Philippe Thaler, Poonpipope Kasemsap, Jate Sathornkich, Duangrat Satakhun, Chompunut Chayawat, Nicolas Angeli, Pisamai Chantuma, and Daniel Epron
Rubber trees (Hevea brasiliensis) are the main source of natural rubber, extracted from latex, which exudes from the trunk after tapping. Tapped trees require large amounts of carbon (C) to regenerate the latex after its collection. Knowing the contribution of C sources involved in latex biosynthesis will help understand how rubber trees face this additional C demand. Whole crown 13CO2 pulse labelling was performed on 4-year-old rubber trees in June when latex production was low and in October, when it was high. 13C contents were quantified in the foliage, phloem sap, wood and latex. In both labelling periods, 13C was recovered in latex just after labelling, indicating that part of the carbohydrates was directly allocated to latex. However, significant 13C amounts were still recovered in latex after 100 days and the peak was reached significantly later than in phloem sap, demonstrating the contribution of a reserve pool as a source of latex C. The contribution of new photosynthates to latex regeneration was faster and higher when latex metabolism was well established, in October than in June. An improved understanding of C dynamics and source-sink relationship in rubber tree is crucial to adapt tapping system practices and ensure sustainable latex production.
How to cite: Desalme, D., Duangngam, O., Thaler, P., Kasemsap, P., Sathornkich, J., Satakhun, D., Chayawat, C., Angeli, N., Chantuma, P., and Epron, D.: Contribution of the carbon sources involved in latex regeneration in rubber trees (Hevea brasiliensis): an in situ 13CO2 labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19100, https://doi.org/10.5194/egusphere-egu2020-19100, 2020.
Rubber trees (Hevea brasiliensis) are the main source of natural rubber, extracted from latex, which exudes from the trunk after tapping. Tapped trees require large amounts of carbon (C) to regenerate the latex after its collection. Knowing the contribution of C sources involved in latex biosynthesis will help understand how rubber trees face this additional C demand. Whole crown 13CO2 pulse labelling was performed on 4-year-old rubber trees in June when latex production was low and in October, when it was high. 13C contents were quantified in the foliage, phloem sap, wood and latex. In both labelling periods, 13C was recovered in latex just after labelling, indicating that part of the carbohydrates was directly allocated to latex. However, significant 13C amounts were still recovered in latex after 100 days and the peak was reached significantly later than in phloem sap, demonstrating the contribution of a reserve pool as a source of latex C. The contribution of new photosynthates to latex regeneration was faster and higher when latex metabolism was well established, in October than in June. An improved understanding of C dynamics and source-sink relationship in rubber tree is crucial to adapt tapping system practices and ensure sustainable latex production.
How to cite: Desalme, D., Duangngam, O., Thaler, P., Kasemsap, P., Sathornkich, J., Satakhun, D., Chayawat, C., Angeli, N., Chantuma, P., and Epron, D.: Contribution of the carbon sources involved in latex regeneration in rubber trees (Hevea brasiliensis): an in situ 13CO2 labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19100, https://doi.org/10.5194/egusphere-egu2020-19100, 2020.
EGU2020-7391 | Displays | BG3.12
Probability distributions of non-structural carbon ages and transit times provide insights in carbon allocation dynamics of mature treesDavid Herrera, Jan Muhr, Henrik Hartman, Christine Römermann, Susan Trumbore, and Carlos Sierra
In trees, the use of non-structural carbon (NSC) under limiting conditions impacts the age structure of the NSC pools. We compared model predictions of NSC ages and transit times for Pinus halepensis Mill., Acer rubrum L. and Pinus taeda L., to understand differences in carbon storage dynamics in species with different leaf phenology and growth environments. We used two carbon allocation models from the literature to estimate the NSC age and transit time distributions, to simulate carbon limitation, and to evaluate the sensitivity of the mean ages to changes in allocation fluxes. Differences in allocation resulted in different NSC age and transit time distributions. The simulated starvation flattened the NSC age distribution and increased the mean NSC transit time, which can be used to estimate the age of the NSC used, the NSC remaining in the system, and the time it would take to consume the reserves. Mean NSC ages and transit times were sensitive to carbon fluxes in roots and allocation of carbon from wood storage. Our results demonstrate how trees with different storage traits are expected to react differently to starvation. They also provide a probabilistic explanation for the “last-in, first-out” pattern of NSC mobilization from well-mixed carbon pools. In addition, they unveil determinant sink fluxes in NSC dynamics for mature trees. These findings open the possibility to better understand NSC dynamics in mature trees based on estimated NSC ages and transit times in different tree organs of species with contrasting life strategies and growth environments.
How to cite: Herrera, D., Muhr, J., Hartman, H., Römermann, C., Trumbore, S., and Sierra, C.: Probability distributions of non-structural carbon ages and transit times provide insights in carbon allocation dynamics of mature trees , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7391, https://doi.org/10.5194/egusphere-egu2020-7391, 2020.
In trees, the use of non-structural carbon (NSC) under limiting conditions impacts the age structure of the NSC pools. We compared model predictions of NSC ages and transit times for Pinus halepensis Mill., Acer rubrum L. and Pinus taeda L., to understand differences in carbon storage dynamics in species with different leaf phenology and growth environments. We used two carbon allocation models from the literature to estimate the NSC age and transit time distributions, to simulate carbon limitation, and to evaluate the sensitivity of the mean ages to changes in allocation fluxes. Differences in allocation resulted in different NSC age and transit time distributions. The simulated starvation flattened the NSC age distribution and increased the mean NSC transit time, which can be used to estimate the age of the NSC used, the NSC remaining in the system, and the time it would take to consume the reserves. Mean NSC ages and transit times were sensitive to carbon fluxes in roots and allocation of carbon from wood storage. Our results demonstrate how trees with different storage traits are expected to react differently to starvation. They also provide a probabilistic explanation for the “last-in, first-out” pattern of NSC mobilization from well-mixed carbon pools. In addition, they unveil determinant sink fluxes in NSC dynamics for mature trees. These findings open the possibility to better understand NSC dynamics in mature trees based on estimated NSC ages and transit times in different tree organs of species with contrasting life strategies and growth environments.
How to cite: Herrera, D., Muhr, J., Hartman, H., Römermann, C., Trumbore, S., and Sierra, C.: Probability distributions of non-structural carbon ages and transit times provide insights in carbon allocation dynamics of mature trees , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7391, https://doi.org/10.5194/egusphere-egu2020-7391, 2020.
EGU2020-13469 | Displays | BG3.12
Respiration and C dynamics in Poplar rootsBoaz Hilman, Jan Muhr, Juliane Helm, Iris Kuhlmann, and Susan Trumbore
Large amounts of C are allocated to tree roots, but little is known about the age and dynamics of their non-structural C (NSC). We measured bomb-radiocarbon (14C) in respired CO2, non-structural (mainly sugars), and structural (cellulose) C in roots. The steady decline of Δ14C in atmospheric CO2 since the 1960s indicates the mean time elapsed since the C in these pools was fixed. We measured coarse (>2 mm, mean 2.91 mm) and fine (<2 mm) roots from 12 German poplar trees sampled before and after girdling of 6 of the trees. All samples were taken in 2018, an exceptionally dry summer in Europe. The mean Δ14C ±SD of root-respired CO2 (4.1 ± 3.6 ‰) in June-July was equal to current atmospheric Δ14CO2 (1.2 ‰), irrespective of the mean age of root cellulose. During extended incubations, the Δ14C of root-respired CO2 increased to ~10 ‰ 8 days after harvesting and up to 42 ‰ 17 days after harvesting. The mean Δ14C of soluble sugars in the roots was ~21 ‰. In September-October, almost three months after girdling, roots from girdled trees respired CO2 with Δ14C of 7.9 ± 6.6 ‰ vs. 2.3 ± 6.1 ‰ in the ungirdled control trees. However, in both groups the respired CO2-Δ14C correlated with cellulose-Δ14C (R2 = 0.37, 0.26 for girdled and control trees, respectively), suggesting that roots respired more stored C in the later growing season in this drought year, independent of treatment. The Δ14C values of soluble sugars were correlated with the Δ14C values of the cellulose (R2=0.83). On average, C in sugars was fixed more recently than cellulose, suggesting mixing of young C from other parts of the tree into the roots. Stem girdling did not affect the Δ14C of soluble sugars. Average total sugar concentrations (sucrose+ glucose+ fructose) were ~42 mg g-1 and did not vary with sampling date, root class or treatment. Starch, measured only in September-October, was higher in coarse than in fine roots (12 vs. 3.8 mg g-1). Respiratory loss of C was higher in the fine roots (~4 mgC g-1 day-1) than coarse roots (~2.4 mgC g-1 day-1), with no effect of girdling or sampling month. When normalize (expressed per gram dry root material), the NSC reservoirs and C loss rates suggest C turnover rates are 2-fold higher in fine roots than in coarse roots. The extended incubations indicate that detached roots are able to quickly utilize stored NSC, as indicated by the sharp Δ14CO2 increase. In comparison, stem girdling had no measurable effect on respired CO2-Δ14C, suggesting internal re-allocation of C from the lower stem base or large roots to smaller roots, and/or lower than expected metabolic consumption of C in reaction to girdling or because of the exceptional drought.
How to cite: Hilman, B., Muhr, J., Helm, J., Kuhlmann, I., and Trumbore, S.: Respiration and C dynamics in Poplar roots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13469, https://doi.org/10.5194/egusphere-egu2020-13469, 2020.
Large amounts of C are allocated to tree roots, but little is known about the age and dynamics of their non-structural C (NSC). We measured bomb-radiocarbon (14C) in respired CO2, non-structural (mainly sugars), and structural (cellulose) C in roots. The steady decline of Δ14C in atmospheric CO2 since the 1960s indicates the mean time elapsed since the C in these pools was fixed. We measured coarse (>2 mm, mean 2.91 mm) and fine (<2 mm) roots from 12 German poplar trees sampled before and after girdling of 6 of the trees. All samples were taken in 2018, an exceptionally dry summer in Europe. The mean Δ14C ±SD of root-respired CO2 (4.1 ± 3.6 ‰) in June-July was equal to current atmospheric Δ14CO2 (1.2 ‰), irrespective of the mean age of root cellulose. During extended incubations, the Δ14C of root-respired CO2 increased to ~10 ‰ 8 days after harvesting and up to 42 ‰ 17 days after harvesting. The mean Δ14C of soluble sugars in the roots was ~21 ‰. In September-October, almost three months after girdling, roots from girdled trees respired CO2 with Δ14C of 7.9 ± 6.6 ‰ vs. 2.3 ± 6.1 ‰ in the ungirdled control trees. However, in both groups the respired CO2-Δ14C correlated with cellulose-Δ14C (R2 = 0.37, 0.26 for girdled and control trees, respectively), suggesting that roots respired more stored C in the later growing season in this drought year, independent of treatment. The Δ14C values of soluble sugars were correlated with the Δ14C values of the cellulose (R2=0.83). On average, C in sugars was fixed more recently than cellulose, suggesting mixing of young C from other parts of the tree into the roots. Stem girdling did not affect the Δ14C of soluble sugars. Average total sugar concentrations (sucrose+ glucose+ fructose) were ~42 mg g-1 and did not vary with sampling date, root class or treatment. Starch, measured only in September-October, was higher in coarse than in fine roots (12 vs. 3.8 mg g-1). Respiratory loss of C was higher in the fine roots (~4 mgC g-1 day-1) than coarse roots (~2.4 mgC g-1 day-1), with no effect of girdling or sampling month. When normalize (expressed per gram dry root material), the NSC reservoirs and C loss rates suggest C turnover rates are 2-fold higher in fine roots than in coarse roots. The extended incubations indicate that detached roots are able to quickly utilize stored NSC, as indicated by the sharp Δ14CO2 increase. In comparison, stem girdling had no measurable effect on respired CO2-Δ14C, suggesting internal re-allocation of C from the lower stem base or large roots to smaller roots, and/or lower than expected metabolic consumption of C in reaction to girdling or because of the exceptional drought.
How to cite: Hilman, B., Muhr, J., Helm, J., Kuhlmann, I., and Trumbore, S.: Respiration and C dynamics in Poplar roots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13469, https://doi.org/10.5194/egusphere-egu2020-13469, 2020.
EGU2020-21669 | Displays | BG3.12 | Highlight
Common mycorrhizal networks of European Beech trees drive belowground allocation and distribution of plant-derived C in soilBruna Imai, Stefan Gorka, Julia Wiesenbauer, Werner Mayerhofer, and Christina Kaiser
Mycorrhizal fungi are an important partner of almost all land plants, who trade soil nutrients, such as Phosphorus or Nitrogen, for photosynthetic Carbon (C). Moreover, mycorrhizal fungi connect multiple plants with their mycelium in so called Common Mycorrhizal Networks (CMNs). CMNs formed by ectomycorrhizal (EM) fungi are an inherent part of boreal and temperate forests, often termed the ‘wood-wide web’. However, the role of these networks for plant belowground C allocation and distribution is not well known.
Here, we examined how plant photosynthates are distributed within EM mycelium networks connecting pairs of young beech trees, addressing the following questions: (1) Is the total belowground C allocation of plant photosynthates influenced by the size of the mycorrhizal network and its access to resources? (2) Is the belowground C distribution within a CMN altered if trees have unequal access to C from photosynthesis? (3) Do CMNs amplify or alleviate competition for nutrients between connected trees?
We planted young beech trees in pots in a special two-plant box set-up which allows to control the establishment of mycorrhizal networks between them. For this, two plant pots, penetrable by fungal hyphae but not by roots, were placed inside of plastic boxes and the interstitial space was filled with quartz sand. In addition, a hyphal-exclusive N source consisting of 15N labeled peat (‘peat bag’), was buried within each plant pot. Two treatments were applied in a fully factorial design: 1) Allowing/preventing the establishment of a CMN between the pots (some pots were turned around at a regular interval to prevent the establishment of CMNs) and 2) inequality of access to photoassimilated C (in part of the boxes one of the two plants was shaded). In a 13C-CO2 labeling approach, we traced 13C assimilated by one plant of each tree pair into belowground pools of both plants by isotope ratio mass spectrometry (EA-IRMS) and 13C phospholipid fatty acid (PLFAs) analysis (GC-IRMS). At the same time, we investigated plant uptake of 15N via mycorrhiza by EA-IRMS.
Our results demonstrate that plants relied mostly on their fungal partners to acquire nutrients (63% of plant N was derived from mycorrhiza-exclusive peat bags), and also directed the majority of the C allocated belowground to their mycorrhizal partners. The presence of a larger mycorrhizal network connecting to another plant and an additional N source almost doubled photosynthetic CO2 assimilation and belowground C allocation by plants. Fungi translocated carbon via hyphal linkages preferentially into mycorrhiza-exclusive nutrient patches, even when they were located within the realm of a neighboring plant and this necessitates to cross a nutrient-poor zone of sand. Shading did not affect the belowground distribution of C.
We conclude that belowground ectomycorrhizal networks represent a significant sink strength for plant photosynthates and may thus be a major driver of C sequestration in beech forest soils. The belowground distribution of C via fungal networks is mainly related to the distribution of nutrient-rich patches in the soil and less to differences in the photosynthetic capacity of the host plants.
How to cite: Imai, B., Gorka, S., Wiesenbauer, J., Mayerhofer, W., and Kaiser, C.: Common mycorrhizal networks of European Beech trees drive belowground allocation and distribution of plant-derived C in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21669, https://doi.org/10.5194/egusphere-egu2020-21669, 2020.
Mycorrhizal fungi are an important partner of almost all land plants, who trade soil nutrients, such as Phosphorus or Nitrogen, for photosynthetic Carbon (C). Moreover, mycorrhizal fungi connect multiple plants with their mycelium in so called Common Mycorrhizal Networks (CMNs). CMNs formed by ectomycorrhizal (EM) fungi are an inherent part of boreal and temperate forests, often termed the ‘wood-wide web’. However, the role of these networks for plant belowground C allocation and distribution is not well known.
Here, we examined how plant photosynthates are distributed within EM mycelium networks connecting pairs of young beech trees, addressing the following questions: (1) Is the total belowground C allocation of plant photosynthates influenced by the size of the mycorrhizal network and its access to resources? (2) Is the belowground C distribution within a CMN altered if trees have unequal access to C from photosynthesis? (3) Do CMNs amplify or alleviate competition for nutrients between connected trees?
We planted young beech trees in pots in a special two-plant box set-up which allows to control the establishment of mycorrhizal networks between them. For this, two plant pots, penetrable by fungal hyphae but not by roots, were placed inside of plastic boxes and the interstitial space was filled with quartz sand. In addition, a hyphal-exclusive N source consisting of 15N labeled peat (‘peat bag’), was buried within each plant pot. Two treatments were applied in a fully factorial design: 1) Allowing/preventing the establishment of a CMN between the pots (some pots were turned around at a regular interval to prevent the establishment of CMNs) and 2) inequality of access to photoassimilated C (in part of the boxes one of the two plants was shaded). In a 13C-CO2 labeling approach, we traced 13C assimilated by one plant of each tree pair into belowground pools of both plants by isotope ratio mass spectrometry (EA-IRMS) and 13C phospholipid fatty acid (PLFAs) analysis (GC-IRMS). At the same time, we investigated plant uptake of 15N via mycorrhiza by EA-IRMS.
Our results demonstrate that plants relied mostly on their fungal partners to acquire nutrients (63% of plant N was derived from mycorrhiza-exclusive peat bags), and also directed the majority of the C allocated belowground to their mycorrhizal partners. The presence of a larger mycorrhizal network connecting to another plant and an additional N source almost doubled photosynthetic CO2 assimilation and belowground C allocation by plants. Fungi translocated carbon via hyphal linkages preferentially into mycorrhiza-exclusive nutrient patches, even when they were located within the realm of a neighboring plant and this necessitates to cross a nutrient-poor zone of sand. Shading did not affect the belowground distribution of C.
We conclude that belowground ectomycorrhizal networks represent a significant sink strength for plant photosynthates and may thus be a major driver of C sequestration in beech forest soils. The belowground distribution of C via fungal networks is mainly related to the distribution of nutrient-rich patches in the soil and less to differences in the photosynthetic capacity of the host plants.
How to cite: Imai, B., Gorka, S., Wiesenbauer, J., Mayerhofer, W., and Kaiser, C.: Common mycorrhizal networks of European Beech trees drive belowground allocation and distribution of plant-derived C in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21669, https://doi.org/10.5194/egusphere-egu2020-21669, 2020.
EGU2020-12925 | Displays | BG3.12 | Highlight
The mycorrhizal tragedy of the commonsOskar Franklin, Torgny Näsholm, and Nils Henriksson
The mycorrhizal tragedy of the commons
It is increasingly recognized that plant C allocation to mycorrhizal symbionts plays a critical role for plant nutrition and the future global CO2 fertilization effect on plants (Terrer et al., 2019). At the same time its future impacts are hard to predict because we do not fully understand the mechanisms underlying the symbiosis. The traditional view of mycorrhizal symbiosis always helping plants has been challenged by observations of negative effects, e.g. on tree N uptake (Näsholm et al., 2013), which makes it difficult to understand why the symbiosis has evolved and why it is so widespread.
We propose, and tested, a theory explaining the contrasting findings by showing that mycorrhizal symbiosis can be both mutualistic and parasitic at the same time. Plants and fungi are connected in a mycorrhizal network where each fungus has multiple plant partners and vice versa. Each plant can gain additional N at the expense of the other plants by supplying more C to the fungi, i.e. paying a higher C price for N. At the same time the additional C supply increases N immobilization in fungal biomass, which reduces the total N export to all plants. Thus, an individual plant can gain N at the expense of its neighbors while the negative side effects are shared among all, resulting in a tragedy of the commons effect that reduces plant N uptake and drives N immobilization in the soil.
While some observations support this hypothesis, it had not yet been thoroughly tested experimentally – until now. Based on laboratory and field experiments in boreal pine forest we tested both key components of this hypothesis - individual level mutualism and the community parasitism (decline in plant N uptake). We also estimated the strength of the fungal discrimination among its plant partners, which drives the competitive C for N trading. Finally, we highlight potential consequences of these mechanisms for boreal forest C allocation and responses to rising CO2.
References
Näsholm, T. et al., 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist, 198(1): 214-221.
Terrer, C. et al., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9(9): 684-689.
How to cite: Franklin, O., Näsholm, T., and Henriksson, N.: The mycorrhizal tragedy of the commons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12925, https://doi.org/10.5194/egusphere-egu2020-12925, 2020.
The mycorrhizal tragedy of the commons
It is increasingly recognized that plant C allocation to mycorrhizal symbionts plays a critical role for plant nutrition and the future global CO2 fertilization effect on plants (Terrer et al., 2019). At the same time its future impacts are hard to predict because we do not fully understand the mechanisms underlying the symbiosis. The traditional view of mycorrhizal symbiosis always helping plants has been challenged by observations of negative effects, e.g. on tree N uptake (Näsholm et al., 2013), which makes it difficult to understand why the symbiosis has evolved and why it is so widespread.
We propose, and tested, a theory explaining the contrasting findings by showing that mycorrhizal symbiosis can be both mutualistic and parasitic at the same time. Plants and fungi are connected in a mycorrhizal network where each fungus has multiple plant partners and vice versa. Each plant can gain additional N at the expense of the other plants by supplying more C to the fungi, i.e. paying a higher C price for N. At the same time the additional C supply increases N immobilization in fungal biomass, which reduces the total N export to all plants. Thus, an individual plant can gain N at the expense of its neighbors while the negative side effects are shared among all, resulting in a tragedy of the commons effect that reduces plant N uptake and drives N immobilization in the soil.
While some observations support this hypothesis, it had not yet been thoroughly tested experimentally – until now. Based on laboratory and field experiments in boreal pine forest we tested both key components of this hypothesis - individual level mutualism and the community parasitism (decline in plant N uptake). We also estimated the strength of the fungal discrimination among its plant partners, which drives the competitive C for N trading. Finally, we highlight potential consequences of these mechanisms for boreal forest C allocation and responses to rising CO2.
References
Näsholm, T. et al., 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist, 198(1): 214-221.
Terrer, C. et al., 2019. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nature Climate Change, 9(9): 684-689.
How to cite: Franklin, O., Näsholm, T., and Henriksson, N.: The mycorrhizal tragedy of the commons, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12925, https://doi.org/10.5194/egusphere-egu2020-12925, 2020.
EGU2020-21153 | Displays | BG3.12
Long turnover time and large sequestration potentials in a dry pine forest based on 15-year flux and inventory recordsRafat Qubaja, Jose Grünzweig, Eyal Rotenberg, and Dan Yakir
A large terrestrial carbon sink significantly influences the rate of change in atmospheric CO2 concentrations, but uncertainties associated with its estimate are considerable. Here we combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001-2016) in a 55-year-old 30 km2 pine forest growing at the semi-arid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semi-arid lands, which cover ~18 % of the global land area. Annual integrated carbon accumulation was 145-160 g C m-2 y-1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m-2 y-1 indicating 20 % uncertainty in carbon uptake estimates. This carbon uptake reflect high carbon use efficiency NEP/GPP of 29 compared to ~21 in temperate forests, leading to the current ecosystem stocks of 7943 ± 323 g carbon m-2 and 372 g nitrogen m-2. In addition, carbon is mostly stored in the soil (~71 % of the current ecosystem C stock), with a long C turnover time of 59 ± 4 y (compared to mean value of 18 years in temperate forests). It is also estimated that soil carbon at the study site constitutes only ~25 % of the estimated soil saturation capacity. Irrespective of un-expected disturbances beyond those observed at the study site, the results support considerable C sink potential in semi-arid soils and forest plantations, and imply that afforestation of even 10 % of semi-arid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C y-1 over several decades.
How to cite: Qubaja, R., Grünzweig, J., Rotenberg, E., and Yakir, D.: Long turnover time and large sequestration potentials in a dry pine forest based on 15-year flux and inventory records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21153, https://doi.org/10.5194/egusphere-egu2020-21153, 2020.
A large terrestrial carbon sink significantly influences the rate of change in atmospheric CO2 concentrations, but uncertainties associated with its estimate are considerable. Here we combined carbon stock (CS) and eddy covariance (EC) flux measurements that were collected over a period of 15 years (2001-2016) in a 55-year-old 30 km2 pine forest growing at the semi-arid timberline (with no irrigating or fertilization). The objective was to constrain estimates of the carbon (C) storage potential in forest plantations in such semi-arid lands, which cover ~18 % of the global land area. Annual integrated carbon accumulation was 145-160 g C m-2 y-1 over the study period based on the EC and CS approaches, with a mean value of 152.5 ± 30.1 g C m-2 y-1 indicating 20 % uncertainty in carbon uptake estimates. This carbon uptake reflect high carbon use efficiency NEP/GPP of 29 compared to ~21 in temperate forests, leading to the current ecosystem stocks of 7943 ± 323 g carbon m-2 and 372 g nitrogen m-2. In addition, carbon is mostly stored in the soil (~71 % of the current ecosystem C stock), with a long C turnover time of 59 ± 4 y (compared to mean value of 18 years in temperate forests). It is also estimated that soil carbon at the study site constitutes only ~25 % of the estimated soil saturation capacity. Irrespective of un-expected disturbances beyond those observed at the study site, the results support considerable C sink potential in semi-arid soils and forest plantations, and imply that afforestation of even 10 % of semi-arid land area under conditions similar to that of the study site, could sequester ~0.4 Pg C y-1 over several decades.
How to cite: Qubaja, R., Grünzweig, J., Rotenberg, E., and Yakir, D.: Long turnover time and large sequestration potentials in a dry pine forest based on 15-year flux and inventory records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21153, https://doi.org/10.5194/egusphere-egu2020-21153, 2020.
EGU2020-1070 | Displays | BG3.12
High temporal resolution 13C tracing to link xylem – phloem pathways of carbon in oak treesAkira L. Yoshikawa, Jasper Bloemen, Johannes Ingrisch, Henrik Hartmann, and Michael Bahn
Carbon (C) assimilated in the canopy of trees is transported downwards via phloem to fuel metabolic processes, such as respiration of above- and below-ground tissues. Part of the respired CO2 can be dissolved into xylem water and transported along the trunk up to the canopy, causing a CO2 efflux which is dislocated from the site of respiration. While the individual processes of C transport in the phloem and xylem in trees have been comparatively well described, little is known on the linkage of xylem–phloem pathways of C and the potential of re-assimilation of root-respired C in the canopy.
In this study, we randomly assigned a set of five-year-old oak trees (Quercus rubra) to stem infusion of 13CO2 dissolved water (n=4) or 13CO2 canopy labeling treatment (n=3), thereby labeling xylem C flow and phloem C flow, respectively. Using high temporal resolution isotope ratio measurement by laser spectroscopy, we monitored 13C in tissue and in respiratory CO2 efflux resulting from phloem- and xylem-transported C to trace the fate of C from photosynthesis through the phloem and xylem to respiration and re-assimilation. We observed that CO2 efflux was related to both phloem and xylem transport of 13C and that a quick lateral transport of sugars occurred from phloem to xylem. Furthermore, we found evidence for re-assimilation of CO2 transported through the xylem in branches and leaf petioles. The re-assimilated 13C transported by the xylem was also found in stem tissues at various heights, 24 to 96 hours after labeling. Moreover, stem 13CO2 efflux showed a diurnal variation, suggesting a potential incorporation of recycled C into respiratory substrate at different stem heights shortly upon re-assimilation. Our results demonstrate a phloem–xylem C linkage leading to repeated coupling of assimilation and respiration, with consequences for whole tree C dynamics.
How to cite: Yoshikawa, A. L., Bloemen, J., Ingrisch, J., Hartmann, H., and Bahn, M.: High temporal resolution 13C tracing to link xylem – phloem pathways of carbon in oak trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1070, https://doi.org/10.5194/egusphere-egu2020-1070, 2020.
Carbon (C) assimilated in the canopy of trees is transported downwards via phloem to fuel metabolic processes, such as respiration of above- and below-ground tissues. Part of the respired CO2 can be dissolved into xylem water and transported along the trunk up to the canopy, causing a CO2 efflux which is dislocated from the site of respiration. While the individual processes of C transport in the phloem and xylem in trees have been comparatively well described, little is known on the linkage of xylem–phloem pathways of C and the potential of re-assimilation of root-respired C in the canopy.
In this study, we randomly assigned a set of five-year-old oak trees (Quercus rubra) to stem infusion of 13CO2 dissolved water (n=4) or 13CO2 canopy labeling treatment (n=3), thereby labeling xylem C flow and phloem C flow, respectively. Using high temporal resolution isotope ratio measurement by laser spectroscopy, we monitored 13C in tissue and in respiratory CO2 efflux resulting from phloem- and xylem-transported C to trace the fate of C from photosynthesis through the phloem and xylem to respiration and re-assimilation. We observed that CO2 efflux was related to both phloem and xylem transport of 13C and that a quick lateral transport of sugars occurred from phloem to xylem. Furthermore, we found evidence for re-assimilation of CO2 transported through the xylem in branches and leaf petioles. The re-assimilated 13C transported by the xylem was also found in stem tissues at various heights, 24 to 96 hours after labeling. Moreover, stem 13CO2 efflux showed a diurnal variation, suggesting a potential incorporation of recycled C into respiratory substrate at different stem heights shortly upon re-assimilation. Our results demonstrate a phloem–xylem C linkage leading to repeated coupling of assimilation and respiration, with consequences for whole tree C dynamics.
How to cite: Yoshikawa, A. L., Bloemen, J., Ingrisch, J., Hartmann, H., and Bahn, M.: High temporal resolution 13C tracing to link xylem – phloem pathways of carbon in oak trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1070, https://doi.org/10.5194/egusphere-egu2020-1070, 2020.
EGU2020-4839 | Displays | BG3.12
Potassium application to alleviate drought stress in cassava production: A growth chamber based carbon-13 pulse labelling experimentJonas Van Laere, Annemie Willemen, Yang Ding, Hami Said, Christian Resch, Rebecca Hood-Nowotny, Roel Merckx, and Gerd Dercon
It is predicted that climate change will cause an increase in frequency and duration of dry spells in Central Africa. This will lower yields of cassava (Manihot esculenta Crantz), a starchy root crop consumed daily by almost 800 million people in the tropics. Potassium has been considered as an important plant nutrient in mitigating the impact of drought stress because of its critical role in stomatal regulation, as an osmolyte, as well as in starch synthesis and assimilate translocation. This study aims to quantify the effects of potassium fertilizer on water use efficiency and translocation speed of new assimilates in water-stressed cassava plants at early bulking stage.
Cassava cuttings (Bailo variety), originating from the Eastern Democratic Republic of Congo, were grown in pots filled with 5 kg of calcium carbonate free sand substrate and fertilized with a complete nutrient solution either high (+K; 1.437 mM K+) or low (-K; 0.359 mM K+) in potassium. All pots were weighed every other to each day to monitor water use and were watered to field capacity. A drought treatment was imposed on half of the plants two months after planting by reducing irrigation amounts by half. Plants were put in an airtight walk-in growth chamber enriched with 13C-CO2 (for 8 h) to trace the translocation of new assimilates. One, nine and twenty-four days after labelling, plants were harvested and δ13C values for different plant organs were analysed.
Plant water use was higher in plants under low potassium nutrition (-K) in the period prior to imposition of drought. Data on biomass production and δ13C and δ18O values of these plants will further help understand whether the observed difference in water use also leads to a difference in water use efficiency. Further, a 13C mass balance will be composed. These data, to be presented at EGU 2020, will provide information on the translocation speed of new assimilates from shoot to root and confirm whether potassium positively affects this process under dry conditions.
How to cite: Van Laere, J., Willemen, A., Ding, Y., Said, H., Resch, C., Hood-Nowotny, R., Merckx, R., and Dercon, G.: Potassium application to alleviate drought stress in cassava production: A growth chamber based carbon-13 pulse labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4839, https://doi.org/10.5194/egusphere-egu2020-4839, 2020.
It is predicted that climate change will cause an increase in frequency and duration of dry spells in Central Africa. This will lower yields of cassava (Manihot esculenta Crantz), a starchy root crop consumed daily by almost 800 million people in the tropics. Potassium has been considered as an important plant nutrient in mitigating the impact of drought stress because of its critical role in stomatal regulation, as an osmolyte, as well as in starch synthesis and assimilate translocation. This study aims to quantify the effects of potassium fertilizer on water use efficiency and translocation speed of new assimilates in water-stressed cassava plants at early bulking stage.
Cassava cuttings (Bailo variety), originating from the Eastern Democratic Republic of Congo, were grown in pots filled with 5 kg of calcium carbonate free sand substrate and fertilized with a complete nutrient solution either high (+K; 1.437 mM K+) or low (-K; 0.359 mM K+) in potassium. All pots were weighed every other to each day to monitor water use and were watered to field capacity. A drought treatment was imposed on half of the plants two months after planting by reducing irrigation amounts by half. Plants were put in an airtight walk-in growth chamber enriched with 13C-CO2 (for 8 h) to trace the translocation of new assimilates. One, nine and twenty-four days after labelling, plants were harvested and δ13C values for different plant organs were analysed.
Plant water use was higher in plants under low potassium nutrition (-K) in the period prior to imposition of drought. Data on biomass production and δ13C and δ18O values of these plants will further help understand whether the observed difference in water use also leads to a difference in water use efficiency. Further, a 13C mass balance will be composed. These data, to be presented at EGU 2020, will provide information on the translocation speed of new assimilates from shoot to root and confirm whether potassium positively affects this process under dry conditions.
How to cite: Van Laere, J., Willemen, A., Ding, Y., Said, H., Resch, C., Hood-Nowotny, R., Merckx, R., and Dercon, G.: Potassium application to alleviate drought stress in cassava production: A growth chamber based carbon-13 pulse labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4839, https://doi.org/10.5194/egusphere-egu2020-4839, 2020.
EGU2020-1311 | Displays | BG3.12
Does carbon allocation determine the timing of autumn leaf senescence in deciduous trees?Matteo Campioli, Bertold Mariën, and Inge Dox
Carbon allocation is a crucial process in plants and ecosystems. However, does carbon allocation also impact plant phenology, in particular during autumn? Elucidation of autumn tree phenology is essential as autumn leaf senescence affects leaf nutrient resorption, next year tree growth potential and the seasonal exchange of energy and material (e.g. CO2, H2O, VOCs) between vegetation canopy and the atmosphere. Environmental manipulative experiments clearly show that the onset of leaf senescence in deciduous trees is not only controlled by internal cues but also that is crucially affected by environmental factors. Yet, we have not understood which are the environmental drivers of leaf senescence onset as, for example, day length, temperature, water and nutrient availability, all showed to impact autumn phenology in a given species, sites, years and experimental setting. The knowledge gap around the environmental drivers of leaf senescence might be due to the fact that, up to date, we have investigated autumn dynamics of leaves (carbon sources) but overlooked the autumn activity of branches, stem and roots (carbon sink). Are leaves in autumn needed for the tree if no sinks are active? In other words, is leaf senescence triggered by the cessation of tree growth in autumn? In more detailed, we expected that: (i) in the absence of growth-limiting environmental conditions, tree growth cessation directly controls leaf-senescence onset, and (ii) in the presence of growth-limiting conditions, photoperiod controls leaf-senescence onset – this prevents trees from starting to senesce too early. These hypotheses have been the topic of three years of monitoring and experimental campaigns in different deciduous species and European locations within the ERC project LEAF-FALL, and of ancillary data analysis work. The presentation aims to show key results and the most novel aspect of this line of research.
How to cite: Campioli, M., Mariën, B., and Dox, I.: Does carbon allocation determine the timing of autumn leaf senescence in deciduous trees? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1311, https://doi.org/10.5194/egusphere-egu2020-1311, 2020.
Carbon allocation is a crucial process in plants and ecosystems. However, does carbon allocation also impact plant phenology, in particular during autumn? Elucidation of autumn tree phenology is essential as autumn leaf senescence affects leaf nutrient resorption, next year tree growth potential and the seasonal exchange of energy and material (e.g. CO2, H2O, VOCs) between vegetation canopy and the atmosphere. Environmental manipulative experiments clearly show that the onset of leaf senescence in deciduous trees is not only controlled by internal cues but also that is crucially affected by environmental factors. Yet, we have not understood which are the environmental drivers of leaf senescence onset as, for example, day length, temperature, water and nutrient availability, all showed to impact autumn phenology in a given species, sites, years and experimental setting. The knowledge gap around the environmental drivers of leaf senescence might be due to the fact that, up to date, we have investigated autumn dynamics of leaves (carbon sources) but overlooked the autumn activity of branches, stem and roots (carbon sink). Are leaves in autumn needed for the tree if no sinks are active? In other words, is leaf senescence triggered by the cessation of tree growth in autumn? In more detailed, we expected that: (i) in the absence of growth-limiting environmental conditions, tree growth cessation directly controls leaf-senescence onset, and (ii) in the presence of growth-limiting conditions, photoperiod controls leaf-senescence onset – this prevents trees from starting to senesce too early. These hypotheses have been the topic of three years of monitoring and experimental campaigns in different deciduous species and European locations within the ERC project LEAF-FALL, and of ancillary data analysis work. The presentation aims to show key results and the most novel aspect of this line of research.
How to cite: Campioli, M., Mariën, B., and Dox, I.: Does carbon allocation determine the timing of autumn leaf senescence in deciduous trees? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1311, https://doi.org/10.5194/egusphere-egu2020-1311, 2020.
EGU2020-1086 | Displays | BG3.12
Carbon allocation to wood formation in an unmanaged deciduous forest in Thuringia (Germany)-a case study of biomass production efficiencyJingshu Wei, Maria Karamihalaki, Georg von Arx, and Flurin Babst
Carbon allocation to wood formation is the key process that drives biomass accumulation in forest ecosystems. Particularly important from a carbon balance perspective is the fraction of carbon taken up through photosynthesis (i.e. gross primary productivity) that is allocated to and sequestered in long-lasting wood tissues. This fraction is known as “biomass production efficiency” and a comprehensive understanding of its inter- and intra-annual variability in response to climatic fluctuations and ecosystem dynamics is still lacking. In this study, we assessed and reconstructed the above-ground biomass increment of three deciduous tree species, European beech (Fagus sylvatica), Sessile oak (Quercus petraea) and European hornbeam (Carpinus betulus) in Hainich National Park, Thuringia (Germany). Trees were sampled in a fixed plot design within the footprint area of a long-term eddy-covariance site (DE-Hai). We applied allometric equations to estimate tree volume and combined them with tree-ring width and wood density measurement to quantify and reconstruct the carbon stored as above-ground biomass in wood tissues. We scaled these measurements from the tree to the plot level and integrated the annual biomass increment with the carbon fluxes from the tower to quantify biomass production efficiency. Finally, we correlated species-specific growth with carbon fluxes and various climate parameters at daily, monthly, seasonal, and annual resolution to better understand, how climate variations affect carbon allocation to wood growth at this site. Our study represents a well-constrained observational framework to provide both quantitative and qualitative information on forest carbon cycling that can be used, e.g., to better parameterize tree-centered mechanistic vegetation models.
How to cite: Wei, J., Karamihalaki, M., von Arx, G., and Babst, F.: Carbon allocation to wood formation in an unmanaged deciduous forest in Thuringia (Germany)-a case study of biomass production efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1086, https://doi.org/10.5194/egusphere-egu2020-1086, 2020.
Carbon allocation to wood formation is the key process that drives biomass accumulation in forest ecosystems. Particularly important from a carbon balance perspective is the fraction of carbon taken up through photosynthesis (i.e. gross primary productivity) that is allocated to and sequestered in long-lasting wood tissues. This fraction is known as “biomass production efficiency” and a comprehensive understanding of its inter- and intra-annual variability in response to climatic fluctuations and ecosystem dynamics is still lacking. In this study, we assessed and reconstructed the above-ground biomass increment of three deciduous tree species, European beech (Fagus sylvatica), Sessile oak (Quercus petraea) and European hornbeam (Carpinus betulus) in Hainich National Park, Thuringia (Germany). Trees were sampled in a fixed plot design within the footprint area of a long-term eddy-covariance site (DE-Hai). We applied allometric equations to estimate tree volume and combined them with tree-ring width and wood density measurement to quantify and reconstruct the carbon stored as above-ground biomass in wood tissues. We scaled these measurements from the tree to the plot level and integrated the annual biomass increment with the carbon fluxes from the tower to quantify biomass production efficiency. Finally, we correlated species-specific growth with carbon fluxes and various climate parameters at daily, monthly, seasonal, and annual resolution to better understand, how climate variations affect carbon allocation to wood growth at this site. Our study represents a well-constrained observational framework to provide both quantitative and qualitative information on forest carbon cycling that can be used, e.g., to better parameterize tree-centered mechanistic vegetation models.
How to cite: Wei, J., Karamihalaki, M., von Arx, G., and Babst, F.: Carbon allocation to wood formation in an unmanaged deciduous forest in Thuringia (Germany)-a case study of biomass production efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1086, https://doi.org/10.5194/egusphere-egu2020-1086, 2020.
EGU2020-3868 | Displays | BG3.12
Photosynthesis in a desert tree is driven by the highest light and temperatureDaphna Uni, Efrat Sheffer, Gidon Winters, and Tamir Klein
Among living tree species, Acacia raddiana (Savi) and Acacia tortilis (Forssk), species of the legume family, populate some of the hottest and driest places on earth. Our research investigates the physiological processes underlying the unique survival of these trees in their extreme environmental conditions. We measured Acacia trees in their natural habitat once a month for two years to unravel the photosynthesis dynamics and water relations. Leaf gas exchange and leaf water potential were measured, as well as atmospheric and soil parameters. Daily and annual gas-exchange curves showed higher carbon assimilation during noon and in summer, when temperature and radiation were maximal (44°C, 2000 µmol m-2 s-1), and the air was dry (21% RH). Additionally, we found that the maximum rate of carbon assimilation was at PAR (photosynthetic active radiation) of 3000 µmol m-2 s-1. Our results suggest that water did not drive net carbon assimilation but rather light and temperature, which are already close to their maximum in our hyper-arid ecosystem.
How to cite: Uni, D., Sheffer, E., Winters, G., and Klein, T.: Photosynthesis in a desert tree is driven by the highest light and temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3868, https://doi.org/10.5194/egusphere-egu2020-3868, 2020.
Among living tree species, Acacia raddiana (Savi) and Acacia tortilis (Forssk), species of the legume family, populate some of the hottest and driest places on earth. Our research investigates the physiological processes underlying the unique survival of these trees in their extreme environmental conditions. We measured Acacia trees in their natural habitat once a month for two years to unravel the photosynthesis dynamics and water relations. Leaf gas exchange and leaf water potential were measured, as well as atmospheric and soil parameters. Daily and annual gas-exchange curves showed higher carbon assimilation during noon and in summer, when temperature and radiation were maximal (44°C, 2000 µmol m-2 s-1), and the air was dry (21% RH). Additionally, we found that the maximum rate of carbon assimilation was at PAR (photosynthetic active radiation) of 3000 µmol m-2 s-1. Our results suggest that water did not drive net carbon assimilation but rather light and temperature, which are already close to their maximum in our hyper-arid ecosystem.
How to cite: Uni, D., Sheffer, E., Winters, G., and Klein, T.: Photosynthesis in a desert tree is driven by the highest light and temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3868, https://doi.org/10.5194/egusphere-egu2020-3868, 2020.
EGU2020-5947 | Displays | BG3.12
Sensitivity of global gross primary production to environmental driversWenjia Cai and Iain Colin Prentice
Terrestrial Gross Primary Production (GPP), the total amount of carbon taken up by terrestrial plants, is one of the largest fluxes in the global carbon cycle – and a key process governing the capacity of terrestrial ecosystems to partly offset continuing anthropogenic CO2 emissions. Accurate simulation of land carbon uptake and its response to environmental change is therefore essential for reliable future projections of the terrestrial carbon sink. However, there are still large uncertainties in the sensitivity of global GPP to environmental drivers. Here we use a recently developed and extensively tested generic model of GPP (the ‘P-model’), which uses satellite-derived green vegetation cover as an input, to simulate (a) trends in site-level GPP, as observed at eddy-covariance flux sites; (b) trends in global GPP, for comparison with independent geophysical estimates; and (c) quantitative spatial patterns of the sensitivity of grid-based GPP to green vegetation cover, vapour pressure deficit, temperature, solar radiation, soil moisture and atmospheric CO2.
How to cite: Cai, W. and Prentice, I. C.: Sensitivity of global gross primary production to environmental drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5947, https://doi.org/10.5194/egusphere-egu2020-5947, 2020.
Terrestrial Gross Primary Production (GPP), the total amount of carbon taken up by terrestrial plants, is one of the largest fluxes in the global carbon cycle – and a key process governing the capacity of terrestrial ecosystems to partly offset continuing anthropogenic CO2 emissions. Accurate simulation of land carbon uptake and its response to environmental change is therefore essential for reliable future projections of the terrestrial carbon sink. However, there are still large uncertainties in the sensitivity of global GPP to environmental drivers. Here we use a recently developed and extensively tested generic model of GPP (the ‘P-model’), which uses satellite-derived green vegetation cover as an input, to simulate (a) trends in site-level GPP, as observed at eddy-covariance flux sites; (b) trends in global GPP, for comparison with independent geophysical estimates; and (c) quantitative spatial patterns of the sensitivity of grid-based GPP to green vegetation cover, vapour pressure deficit, temperature, solar radiation, soil moisture and atmospheric CO2.
How to cite: Cai, W. and Prentice, I. C.: Sensitivity of global gross primary production to environmental drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5947, https://doi.org/10.5194/egusphere-egu2020-5947, 2020.
EGU2020-18385 | Displays | BG3.12
Using a novel electrical measurement approach to measure the effects of liming on rooting parameters in German beech forestsOliver van Straaten, Jan Čermák, Larissa Kulp, and Ulrike Talkner
Hundreds of thousands of hectares have been limed in German forests in the last three decades to mitigate the effects of soil acidification. To understand the long-term impacts of liming on tree rooting behaviour and the implications for soil organic matter, we used a novel electrical approach to quantify rooting parameters of mature beech forests and compared it to the standard monolith excavation approach. At each of the three experiment sites located in northern Germany, we looked at rooting behaviour in limed plots (overall eight tons of lime per hectare applied in the 1980s and 1990s) in comparison to adjacent control plots. First, we used the standard monolith excavation approach to determine fine root biomass at the stand level. With an electrical approach called the “earth impedance method” (EIM) we subsequently estimated tree absorbing root surface area (ARSA; this is the contact area where roots take up nutrients and water). This experimental, non-destructive approach uses a low frequency alternating electric current that flows from the roots to the soil and vice versa, and the electrical impedance (resistivity) is recalculated to estimate ARSA for the sample tree. We measured the ARSA of six mature trees per plot (12 trees per site).
To summarize the results of the sampling approaches, (1) both root estimation approach measurements were positively correlated, validating the EIM; (2) the ARSA was positively correlated with tree size at each site, further substantiating the rapid and cost effective EIM; (3) however this method is vulnerable to variables that effect electrical conductivity, such as soil moisture and the thickness and makeup of the organic horizons.
Overall, no significant differences between limed and control plots were detected with either measurement approach, suggesting that despite improved soil pH conditions the tree root systems in limed plots remain relatively constant in size and capacity to take up nutrients and water.
How to cite: van Straaten, O., Čermák, J., Kulp, L., and Talkner, U.: Using a novel electrical measurement approach to measure the effects of liming on rooting parameters in German beech forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18385, https://doi.org/10.5194/egusphere-egu2020-18385, 2020.
Hundreds of thousands of hectares have been limed in German forests in the last three decades to mitigate the effects of soil acidification. To understand the long-term impacts of liming on tree rooting behaviour and the implications for soil organic matter, we used a novel electrical approach to quantify rooting parameters of mature beech forests and compared it to the standard monolith excavation approach. At each of the three experiment sites located in northern Germany, we looked at rooting behaviour in limed plots (overall eight tons of lime per hectare applied in the 1980s and 1990s) in comparison to adjacent control plots. First, we used the standard monolith excavation approach to determine fine root biomass at the stand level. With an electrical approach called the “earth impedance method” (EIM) we subsequently estimated tree absorbing root surface area (ARSA; this is the contact area where roots take up nutrients and water). This experimental, non-destructive approach uses a low frequency alternating electric current that flows from the roots to the soil and vice versa, and the electrical impedance (resistivity) is recalculated to estimate ARSA for the sample tree. We measured the ARSA of six mature trees per plot (12 trees per site).
To summarize the results of the sampling approaches, (1) both root estimation approach measurements were positively correlated, validating the EIM; (2) the ARSA was positively correlated with tree size at each site, further substantiating the rapid and cost effective EIM; (3) however this method is vulnerable to variables that effect electrical conductivity, such as soil moisture and the thickness and makeup of the organic horizons.
Overall, no significant differences between limed and control plots were detected with either measurement approach, suggesting that despite improved soil pH conditions the tree root systems in limed plots remain relatively constant in size and capacity to take up nutrients and water.
How to cite: van Straaten, O., Čermák, J., Kulp, L., and Talkner, U.: Using a novel electrical measurement approach to measure the effects of liming on rooting parameters in German beech forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18385, https://doi.org/10.5194/egusphere-egu2020-18385, 2020.
EGU2020-22060 | Displays | BG3.12
Effect of biomass cutting on soil CO2 efflux in a sandy grasslandMarianna Papp, Szilvia Fóti, Krisztina Pintér, Zoltán Nagy, and János Balogh
Carbon storage in grassland ecosystems is realized mostly belowground. The changes in the management activities of grasslands also influence the below-ground carbon stocks. Soil carbon-dioxide efflux (Rs) takes a major part of the ecosystem’s carbon cycle. Rs includes the respiration of different components. Rs gives 60-80% of ecosystem respiration or 40-60% of gross primary production. It is known from the literature that respiration is affected by abiotic (temperature (Ts), soil water content (SWC)) and the biotic factors.
In our study we investigated the biotic one, namely the belowground carbon allocation on soil respiration. The study was performed in a semi-arid sandy grassland at Bugac (Kiskunság National Park, Hungary). The vegetation of the pasture was dominated by Festuca pseudovina, Carex stenophylla and Cynodon dactylon and the soil is a chernozem type soil with high organic carbon content.
The soil CO2 effluxes were measured continuously by an automated soil respiration system consisted of 10 soil respiration chambers. The chambers measured 3 different experimental plots. Data was collected in every half-hour from each chamber for 6 days before the cutting event. After the cutting data was recorded from 1) non-cut, 2) half cut and 3) completely removed treatments also for 6 days. The study was repeated under laboratory conditions (constant temperature, illumination, humidity) on grass patches planted in pots. We observed that the respiration in half cut and completely removed treatments increased after they were cut off. The proportion of respiration after cutting in the completely removed treatment reduced to 85% compared to the control one. Our results highlight that the soil respiration is largely affected by belowground carbon allocation.
How to cite: Papp, M., Fóti, S., Pintér, K., Nagy, Z., and Balogh, J.: Effect of biomass cutting on soil CO2 efflux in a sandy grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22060, https://doi.org/10.5194/egusphere-egu2020-22060, 2020.
Carbon storage in grassland ecosystems is realized mostly belowground. The changes in the management activities of grasslands also influence the below-ground carbon stocks. Soil carbon-dioxide efflux (Rs) takes a major part of the ecosystem’s carbon cycle. Rs includes the respiration of different components. Rs gives 60-80% of ecosystem respiration or 40-60% of gross primary production. It is known from the literature that respiration is affected by abiotic (temperature (Ts), soil water content (SWC)) and the biotic factors.
In our study we investigated the biotic one, namely the belowground carbon allocation on soil respiration. The study was performed in a semi-arid sandy grassland at Bugac (Kiskunság National Park, Hungary). The vegetation of the pasture was dominated by Festuca pseudovina, Carex stenophylla and Cynodon dactylon and the soil is a chernozem type soil with high organic carbon content.
The soil CO2 effluxes were measured continuously by an automated soil respiration system consisted of 10 soil respiration chambers. The chambers measured 3 different experimental plots. Data was collected in every half-hour from each chamber for 6 days before the cutting event. After the cutting data was recorded from 1) non-cut, 2) half cut and 3) completely removed treatments also for 6 days. The study was repeated under laboratory conditions (constant temperature, illumination, humidity) on grass patches planted in pots. We observed that the respiration in half cut and completely removed treatments increased after they were cut off. The proportion of respiration after cutting in the completely removed treatment reduced to 85% compared to the control one. Our results highlight that the soil respiration is largely affected by belowground carbon allocation.
How to cite: Papp, M., Fóti, S., Pintér, K., Nagy, Z., and Balogh, J.: Effect of biomass cutting on soil CO2 efflux in a sandy grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22060, https://doi.org/10.5194/egusphere-egu2020-22060, 2020.
EGU2020-22452 | Displays | BG3.12
Elevated CO2 increases plant growth but reduces soil C storage under N limiting conditionsLucia M. Eder, Enrico Weber, Johannes Rousk, Marion Schrumpf, and Sönke Zaehle
Rising atmospheric CO2 concentrations may induce or aggravate nitrogen (N) limitation to plant growth. To overcome this limitation, plants may invest their newly assimilated carbon (C) into N acquiring strategies, such as root growth, root exudation or C allocation to mycorrhizal symbionts. These shifts in C allocation can increase the turnover of soil organic matter by stimulating microbial activity. As these processes are poorly quantified, their net effects on ecosystem C storage remain uncertain.
To gain a better quantitative understanding of these processes, we assessed the effect of elevated CO2 on plant C and N allocation in a mesocosm experiment. For four months of one growing season, 64 saplings of Fagus sylvatica L. were grown in a natural beech forest topsoil. Plants were exposed to near ambient (390 ppm) or elevated (560 ppm, eCO2) CO2 concentrations at two levels of continuous 13CO2 enrichment (δ13C +50 or +150‰). At the end of the experiment, we determined dry biomass, C and N concentrations and isotopic compositions for all leaves, buds, twigs, stems and fine and coarse roots for all plants. For all plants, C and N budgets and the amount of newly incorporated C were evaluated.
We found a positive effect of eCO2 on tree growth, with the highest growth response in fine root biomass. In both CO2 treatments, newly fixed C was preferentially allocated to roots compared to other plant compartments, but under eCO2, we found a shift in C allocation patterns towards higher belowground C allocation. These results suggest enhanced plant investments into belowground resource acquisition. Decreased N concentrations in all plant organs of these trees under eCO2 may indicate plant N limitation and suggest that the effect of increased belowground C allocation was insufficient to fulfil the plants N demand. Still, the observed increase in C allocation to microbial biomass in these soils may be a mechanism to enhance plant N nutrition. CO2 concentrations also affected C allocation within the whole plant-soil-system: Under eCO2, more C was stored in tree biomass and less C was stored in soils. Overall, there was no effect of CO2 treatment on total mesocosm C. We will discuss these findings with regard to the N mining hypothesis.
How to cite: Eder, L. M., Weber, E., Rousk, J., Schrumpf, M., and Zaehle, S.: Elevated CO2 increases plant growth but reduces soil C storage under N limiting conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22452, https://doi.org/10.5194/egusphere-egu2020-22452, 2020.
Rising atmospheric CO2 concentrations may induce or aggravate nitrogen (N) limitation to plant growth. To overcome this limitation, plants may invest their newly assimilated carbon (C) into N acquiring strategies, such as root growth, root exudation or C allocation to mycorrhizal symbionts. These shifts in C allocation can increase the turnover of soil organic matter by stimulating microbial activity. As these processes are poorly quantified, their net effects on ecosystem C storage remain uncertain.
To gain a better quantitative understanding of these processes, we assessed the effect of elevated CO2 on plant C and N allocation in a mesocosm experiment. For four months of one growing season, 64 saplings of Fagus sylvatica L. were grown in a natural beech forest topsoil. Plants were exposed to near ambient (390 ppm) or elevated (560 ppm, eCO2) CO2 concentrations at two levels of continuous 13CO2 enrichment (δ13C +50 or +150‰). At the end of the experiment, we determined dry biomass, C and N concentrations and isotopic compositions for all leaves, buds, twigs, stems and fine and coarse roots for all plants. For all plants, C and N budgets and the amount of newly incorporated C were evaluated.
We found a positive effect of eCO2 on tree growth, with the highest growth response in fine root biomass. In both CO2 treatments, newly fixed C was preferentially allocated to roots compared to other plant compartments, but under eCO2, we found a shift in C allocation patterns towards higher belowground C allocation. These results suggest enhanced plant investments into belowground resource acquisition. Decreased N concentrations in all plant organs of these trees under eCO2 may indicate plant N limitation and suggest that the effect of increased belowground C allocation was insufficient to fulfil the plants N demand. Still, the observed increase in C allocation to microbial biomass in these soils may be a mechanism to enhance plant N nutrition. CO2 concentrations also affected C allocation within the whole plant-soil-system: Under eCO2, more C was stored in tree biomass and less C was stored in soils. Overall, there was no effect of CO2 treatment on total mesocosm C. We will discuss these findings with regard to the N mining hypothesis.
How to cite: Eder, L. M., Weber, E., Rousk, J., Schrumpf, M., and Zaehle, S.: Elevated CO2 increases plant growth but reduces soil C storage under N limiting conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22452, https://doi.org/10.5194/egusphere-egu2020-22452, 2020.
EGU2020-18374 | Displays | BG3.12 | Highlight
Effect of soil warming and N availability on the fate of recent carbon in subarctic grasslandKathiravan Meeran, Niel Verbrigghe, Lucia Fuchslueger, Johannes Ingrisch, Sara Vicca, Jennifer Soong, Lena Müller, Bjarni D. Sigurdsson, Ivan Janssens, and Michael Bahn
Climate warming has been suggested to impact high latitude grasslands severely, causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts soil C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. We hypothesized that warming would increase belowground C allocation, while enhanced N availability would decrease it, and that their interactive effects would be additive.
We studied a subarctic grassland located at a natural geothermal soil warming gradient close to Hveragerði, Iceland, which was established by an earthquake in 2008. We chose 14 plots along the gradient with soil warming temperatures ranging from 0 to 10°C above ambient, and fertilized a subset of plots with 50kg ha-1 y-1 of NH4NO3 twice a year prior to the study. We performed 13CO2 canopy pulse labeling for an hour and tracked the 13C pulse through the plant-microbe-soil system and into soil respiration for ten days after labeling.
Our preliminary results show that at higher temperatures microbial activity increased, causing higher C turnover and a higher respiration of recently assimilated C from the soil. Warming significantly decreased microbial biomass, however, the recent C allocated from roots to microbes increased. This indicates a higher microbial C-limitation and a tighter root-microbe coupling under warming. Nitrogen addition increased the allocation of recent C to roots, microbial biomass, and soil respiration. The effects of N addition and warming were additive with no interaction. Our results indicate that the microbes in warmed soil may not be N limited, but could be C limited and depend more on the supply of recent C from plants. We conclude that in a future climate with warmer soils, more C may be allocated belowground, however, its residence time may decrease.
How to cite: Meeran, K., Verbrigghe, N., Fuchslueger, L., Ingrisch, J., Vicca, S., Soong, J., Müller, L., Sigurdsson, B. D., Janssens, I., and Bahn, M.: Effect of soil warming and N availability on the fate of recent carbon in subarctic grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18374, https://doi.org/10.5194/egusphere-egu2020-18374, 2020.
Climate warming has been suggested to impact high latitude grasslands severely, causing considerable carbon (C) losses from soil. Warming can also stimulate nitrogen (N) turnover, but it is largely unclear whether and how altered N availability impacts soil C dynamics. Even less is known about the individual and interactive effects of warming and N availability on the fate of recently photosynthesized C in soil. We hypothesized that warming would increase belowground C allocation, while enhanced N availability would decrease it, and that their interactive effects would be additive.
We studied a subarctic grassland located at a natural geothermal soil warming gradient close to Hveragerði, Iceland, which was established by an earthquake in 2008. We chose 14 plots along the gradient with soil warming temperatures ranging from 0 to 10°C above ambient, and fertilized a subset of plots with 50kg ha-1 y-1 of NH4NO3 twice a year prior to the study. We performed 13CO2 canopy pulse labeling for an hour and tracked the 13C pulse through the plant-microbe-soil system and into soil respiration for ten days after labeling.
Our preliminary results show that at higher temperatures microbial activity increased, causing higher C turnover and a higher respiration of recently assimilated C from the soil. Warming significantly decreased microbial biomass, however, the recent C allocated from roots to microbes increased. This indicates a higher microbial C-limitation and a tighter root-microbe coupling under warming. Nitrogen addition increased the allocation of recent C to roots, microbial biomass, and soil respiration. The effects of N addition and warming were additive with no interaction. Our results indicate that the microbes in warmed soil may not be N limited, but could be C limited and depend more on the supply of recent C from plants. We conclude that in a future climate with warmer soils, more C may be allocated belowground, however, its residence time may decrease.
How to cite: Meeran, K., Verbrigghe, N., Fuchslueger, L., Ingrisch, J., Vicca, S., Soong, J., Müller, L., Sigurdsson, B. D., Janssens, I., and Bahn, M.: Effect of soil warming and N availability on the fate of recent carbon in subarctic grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18374, https://doi.org/10.5194/egusphere-egu2020-18374, 2020.
BG3.13 – Advancing mechanistic understanding of vegetation ecosystem processes
EGU2020-3963 | Displays | BG3.13 | Highlight
Potential consequences of water limitation and drought-induced tree mortality on carbon and nitrogen cyclingEmily F. Solly, Astrid C. H. Jaeger, Johan Six, and Martin Hartmann
Water limiting conditions for the growth and physiology of trees as well as episodes of tree mortality triggered by drought have recently been documented in several bioregions across the world. In parallel to these major vegetation alterations, the impact of water scarcity also has prominent effects on soil processes mediated by the microbiome such as the transformation of organic matter, heterotrophic respiration, microbial uptake as well as nutrient mineralization. Although currently little explored, shifts in the interplay occurring between tree functioning and soil microbial processes may be crucial during tree mortality events and may feed back on ecosystem carbon and nitrogen cycling. We will present a multidisciplinary setup to mechanistically explore how water limitation acts synergistically on the interplay between trees and soil microorganisms, with potential consequences for ecosystem biogeochemical fluxes.
The experimental setup focusses on a key temperate forest species, Scots pine (Pinus sylvestris L.), which is currently facing high mortality rates in several inner-Alpine valleys of Europe due to drier climatic conditions during parts of the year. We make use of small scale mesocosms featuring young trees and soil collected from a drought-affected natural forest. The mesocosms are treated with different levels of water availability under controlled conditions. Plant growth and physiological changes related to water limitation are investigated in parallel to various soil properties. State-of-the-art isotopic labelling techniques are used to trace alterations in carbon and nitrogen transfers within the plant-soil-microbe continuum. We will specifically test whether extended periods of drought suppress the flux of carbon from plants to soil and lead plants to invest more in the maintenance of fine root systems. Moreover, we will follow the potential changes in the rates of decomposition, mineralization and incorporation of plant debris into soil organic matter over time and link them to potential alterations of the soil microbiota. These experimental observations will be validated by measurements in drought-affected Scots pine forests in inner-Alpine valleys. We expect the outcomes of this work to advance the fundamental understanding of the alterations occurring in the plant-soil-microbe system related to drought as well as to improve the detection of mechanisms leading to Scots pine mortality.
How to cite: Solly, E. F., Jaeger, A. C. H., Six, J., and Hartmann, M.: Potential consequences of water limitation and drought-induced tree mortality on carbon and nitrogen cycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3963, https://doi.org/10.5194/egusphere-egu2020-3963, 2020.
Water limiting conditions for the growth and physiology of trees as well as episodes of tree mortality triggered by drought have recently been documented in several bioregions across the world. In parallel to these major vegetation alterations, the impact of water scarcity also has prominent effects on soil processes mediated by the microbiome such as the transformation of organic matter, heterotrophic respiration, microbial uptake as well as nutrient mineralization. Although currently little explored, shifts in the interplay occurring between tree functioning and soil microbial processes may be crucial during tree mortality events and may feed back on ecosystem carbon and nitrogen cycling. We will present a multidisciplinary setup to mechanistically explore how water limitation acts synergistically on the interplay between trees and soil microorganisms, with potential consequences for ecosystem biogeochemical fluxes.
The experimental setup focusses on a key temperate forest species, Scots pine (Pinus sylvestris L.), which is currently facing high mortality rates in several inner-Alpine valleys of Europe due to drier climatic conditions during parts of the year. We make use of small scale mesocosms featuring young trees and soil collected from a drought-affected natural forest. The mesocosms are treated with different levels of water availability under controlled conditions. Plant growth and physiological changes related to water limitation are investigated in parallel to various soil properties. State-of-the-art isotopic labelling techniques are used to trace alterations in carbon and nitrogen transfers within the plant-soil-microbe continuum. We will specifically test whether extended periods of drought suppress the flux of carbon from plants to soil and lead plants to invest more in the maintenance of fine root systems. Moreover, we will follow the potential changes in the rates of decomposition, mineralization and incorporation of plant debris into soil organic matter over time and link them to potential alterations of the soil microbiota. These experimental observations will be validated by measurements in drought-affected Scots pine forests in inner-Alpine valleys. We expect the outcomes of this work to advance the fundamental understanding of the alterations occurring in the plant-soil-microbe system related to drought as well as to improve the detection of mechanisms leading to Scots pine mortality.
How to cite: Solly, E. F., Jaeger, A. C. H., Six, J., and Hartmann, M.: Potential consequences of water limitation and drought-induced tree mortality on carbon and nitrogen cycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3963, https://doi.org/10.5194/egusphere-egu2020-3963, 2020.
EGU2020-4984 | Displays | BG3.13
Understanding and quantifying carbon cycling in managed grasslands through model-data fusionVasileios Myrgiotis, Rob Clement, Stephanie K. Jones, Ben Keane, Mark Lee, Peter E. Levy, Robert M. Rees, Ute M. Skiba, Luke T. Smallman, Sylvia Toet, Mathew Williams, and Emanuel Blei
Managed grasslands are extensive terrestrial ecosystems that provide a range of services. In addition to supporting the world’s various livestock production systems they contain climatically significant amounts of carbon (C). Understanding and quantifying the C dynamics of managed grasslands is complicated yet crucial.This presentation describes a process-model of C dynamics in managed grasslands (DALEC-Grass). DALEC-Grass is a model of intermediate complexity, which calculates primary productivity, dynamicallyallocates C to biomass tissues and describes the impacts of grazing/harvesting activities. The model is integrated into a Bayesian model-data fusion framework (CARDAMOM). CARDAMOM uses observations of ecosystem functioning (e.g. leaf area, biomass, C fluxes) to optimise the model’s parameters while respecting a set of biogeochemical and physiological rules. The model evaluation results presented demonstrate the model’s skill in predicting primary productivity and C allocation patterns in UK grasslands using both ground and satellite based leaf area index (LAI) time series as observational constraints.
How to cite: Myrgiotis, V., Clement, R., Jones, S. K., Keane, B., Lee, M., Levy, P. E., Rees, R. M., Skiba, U. M., Smallman, L. T., Toet, S., Williams, M., and Blei, E.: Understanding and quantifying carbon cycling in managed grasslands through model-data fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4984, https://doi.org/10.5194/egusphere-egu2020-4984, 2020.
Managed grasslands are extensive terrestrial ecosystems that provide a range of services. In addition to supporting the world’s various livestock production systems they contain climatically significant amounts of carbon (C). Understanding and quantifying the C dynamics of managed grasslands is complicated yet crucial.This presentation describes a process-model of C dynamics in managed grasslands (DALEC-Grass). DALEC-Grass is a model of intermediate complexity, which calculates primary productivity, dynamicallyallocates C to biomass tissues and describes the impacts of grazing/harvesting activities. The model is integrated into a Bayesian model-data fusion framework (CARDAMOM). CARDAMOM uses observations of ecosystem functioning (e.g. leaf area, biomass, C fluxes) to optimise the model’s parameters while respecting a set of biogeochemical and physiological rules. The model evaluation results presented demonstrate the model’s skill in predicting primary productivity and C allocation patterns in UK grasslands using both ground and satellite based leaf area index (LAI) time series as observational constraints.
How to cite: Myrgiotis, V., Clement, R., Jones, S. K., Keane, B., Lee, M., Levy, P. E., Rees, R. M., Skiba, U. M., Smallman, L. T., Toet, S., Williams, M., and Blei, E.: Understanding and quantifying carbon cycling in managed grasslands through model-data fusion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4984, https://doi.org/10.5194/egusphere-egu2020-4984, 2020.
EGU2020-5571 | Displays | BG3.13
On sensitivity of natural vegetation and rainfed crops to soil textureSurya Gupta, Peter Lehmann, Sara Bonetti, and Dani Or
Crop sensitivity to soil texture guides many agronomic operations, especially under water-limited conditions. Unlike annual and mono-cultured crops, natural vegetation is subject to continuous selection of species and traits for adaptation to local climatic conditions. We report here a systematic evaluation of natural and rainfed cropped vegetation sensitivity to soil texture across biomes, rainfall anomalies, and scales using field observations and remote sensing products. Across biomes and annual precipitation amounts, natural vegetation productivity (GPP) shows no variations with soil texture. In contrast, crops (yields at small scales and GPP at large scales) exhibit sensitivity to soil texture that varies with annual rainfall anomaly and scale. Local measurements at field scale unambiguously show correlation in dry years (in agreement with conventional agronomic practices), while the strong correlation with soil texture vanishes at large scales (250 x 250 km) using remote sensing products. Subsampling of crop GPP at smaller scale (25 x 25 km) reveals a sensitivity of crop GPP to soil texture that becomes prominent in dry years. We conclude that natural vegetation across biomes represents a condition of climatic equilibrium via trait adaptation to overcome soil texture limitations, whereas annual crops retain dependency on soil texture (in rainfed agriculture) manifested at small scales, but obscured at larger scales where topography, aspect and soil map uncertainty dominate. The study provides new insights into gauging vegetation climatic adaptation via sensitivity to soil texture and the roles of scale in expressing such sensitivities in Earth Surface Models.
How to cite: Gupta, S., Lehmann, P., Bonetti, S., and Or, D.: On sensitivity of natural vegetation and rainfed crops to soil texture , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5571, https://doi.org/10.5194/egusphere-egu2020-5571, 2020.
Crop sensitivity to soil texture guides many agronomic operations, especially under water-limited conditions. Unlike annual and mono-cultured crops, natural vegetation is subject to continuous selection of species and traits for adaptation to local climatic conditions. We report here a systematic evaluation of natural and rainfed cropped vegetation sensitivity to soil texture across biomes, rainfall anomalies, and scales using field observations and remote sensing products. Across biomes and annual precipitation amounts, natural vegetation productivity (GPP) shows no variations with soil texture. In contrast, crops (yields at small scales and GPP at large scales) exhibit sensitivity to soil texture that varies with annual rainfall anomaly and scale. Local measurements at field scale unambiguously show correlation in dry years (in agreement with conventional agronomic practices), while the strong correlation with soil texture vanishes at large scales (250 x 250 km) using remote sensing products. Subsampling of crop GPP at smaller scale (25 x 25 km) reveals a sensitivity of crop GPP to soil texture that becomes prominent in dry years. We conclude that natural vegetation across biomes represents a condition of climatic equilibrium via trait adaptation to overcome soil texture limitations, whereas annual crops retain dependency on soil texture (in rainfed agriculture) manifested at small scales, but obscured at larger scales where topography, aspect and soil map uncertainty dominate. The study provides new insights into gauging vegetation climatic adaptation via sensitivity to soil texture and the roles of scale in expressing such sensitivities in Earth Surface Models.
How to cite: Gupta, S., Lehmann, P., Bonetti, S., and Or, D.: On sensitivity of natural vegetation and rainfed crops to soil texture , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5571, https://doi.org/10.5194/egusphere-egu2020-5571, 2020.
EGU2020-7190 | Displays | BG3.13
Disentangling the relative contributions of atmospheric demand for water and soil water availability on the stomatal limitation of photosynthesisAliénor Lavergne, Heather Graven, and Iain Colin Prentice
Plants open and close their stomata in response to changes in the environment, so they can absorb the CO2 they need to grow, while also avoid drying out. Since the activities of leaf stomata determine the exchanges of carbon and water between the vegetation and the atmosphere, it is crucial to incorporate their responses to environmental pressure into the vegetation models predicting carbon and water fluxes on broad spatial and temporal scales. The least-cost optimality theory proposes a simple way to predict leaf behaviour, in particular changes in the ratio of leaf internal (ci) to ambient (ca) partial pressure of CO2, from four environmental variables, i.e. ca, growing-season temperature (Tg), atmospheric vapour pressure deficit (Dg), and atmospheric pressure (as indexed by elevation, z). However, even though the theory considers the effect of atmospheric demand for water on ci/ca, it does not predict how dry soils with reduced soil water availability further influence ci/ca. Recent research has shown that independent of the individual effects of Tg, Dg, ca and z on ci/ca, the model tends to underestimate ci/ca values at high soil moisture and to overestimate ci/ca values at low soil moisture. Here, we will try to disentangle the relative contribution of Dg and soil moisture on changes in ci/ca and test a new implementation of soil moisture effect in the framework of the least-cost hypothesis. To achieve this goal, we will use stable carbon isotopes measurements in leaves and in tree rings at sites with different soil water availability and different evaporative demand. We will then incorporate the improved model based on the least-cost hypothesis into the UK vegetation model JULES and investigate leaf stomatal responses to recent environmental changes across regions.
How to cite: Lavergne, A., Graven, H., and Prentice, I. C.: Disentangling the relative contributions of atmospheric demand for water and soil water availability on the stomatal limitation of photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7190, https://doi.org/10.5194/egusphere-egu2020-7190, 2020.
Plants open and close their stomata in response to changes in the environment, so they can absorb the CO2 they need to grow, while also avoid drying out. Since the activities of leaf stomata determine the exchanges of carbon and water between the vegetation and the atmosphere, it is crucial to incorporate their responses to environmental pressure into the vegetation models predicting carbon and water fluxes on broad spatial and temporal scales. The least-cost optimality theory proposes a simple way to predict leaf behaviour, in particular changes in the ratio of leaf internal (ci) to ambient (ca) partial pressure of CO2, from four environmental variables, i.e. ca, growing-season temperature (Tg), atmospheric vapour pressure deficit (Dg), and atmospheric pressure (as indexed by elevation, z). However, even though the theory considers the effect of atmospheric demand for water on ci/ca, it does not predict how dry soils with reduced soil water availability further influence ci/ca. Recent research has shown that independent of the individual effects of Tg, Dg, ca and z on ci/ca, the model tends to underestimate ci/ca values at high soil moisture and to overestimate ci/ca values at low soil moisture. Here, we will try to disentangle the relative contribution of Dg and soil moisture on changes in ci/ca and test a new implementation of soil moisture effect in the framework of the least-cost hypothesis. To achieve this goal, we will use stable carbon isotopes measurements in leaves and in tree rings at sites with different soil water availability and different evaporative demand. We will then incorporate the improved model based on the least-cost hypothesis into the UK vegetation model JULES and investigate leaf stomatal responses to recent environmental changes across regions.
How to cite: Lavergne, A., Graven, H., and Prentice, I. C.: Disentangling the relative contributions of atmospheric demand for water and soil water availability on the stomatal limitation of photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7190, https://doi.org/10.5194/egusphere-egu2020-7190, 2020.
EGU2020-7746 | Displays | BG3.13
Unraveling the mechanisms of below- and aboveground liana-tree competition in tropical forestsDavid Medvigy, Chris Smith-Martin, Seth Parker, Alyssa Willson, Isabelle Marechaux, Peter Tiffin, Jerome Chave, and Jennifer Powers
Lianas, or woody vines, are abundant throughout forests worldwide, but are especially common in the tropics. Their presence can strongly suppress tree wood production, and presumably also reduce the strength of the tropical forest carbon sink. In intact neotropical forests, liana presence has been increasing over the past few decades, though the mechanisms remain under debate. Vexingly, lianas are not represented at all in current-day climate models. Better knowledge of liana morphology and allocation is required to unravel the mechanisms of below- and aboveground liana-tree competition in tropical forests. Such knowledge is also an essential step toward incorporating lianas into mechanistic forest dynamics models. To address these liana knowledge gaps, we have initiated a new project that integrates empirical and modeling work. Our objectives in this presentation are to compare observed liana allocation patterns to allocation patterns predicted by theory, and then to demonstrate how these results can be integrated into a numerical model.
Empirical measurements are being carried out in tropical dry forests in Guanacaste, Costa Rica. These measurements will eventually include excavations of ~80 entire trees and lianas, which will enable measurements of belowground and aboveground biomass of co-occurring trees and lianas, coarse and fine root vertical distribution, and lateral root spread. Also being measured are liana traits (including several critical hydraulic traits), above- and belowground productivity, and species-level fine root productivity. The modeling work includes the incorporation of lianas into the TROLL model, which is a mechanistic, individual-based forest dynamics model. The model will simulate the unique features of lianas, accounting for their structural parasitism and their different allocation strategies and morphology compared to trees. The simulated trees and lianas will compete aboveground for light and belowground for water. Thus, the model will integrate above- and belowground processes and couple the carbon and water cycles. Traits measured as part of this project are being used to parameterize the model.
Thus far, 33 mature, canopy-exposed individuals (18 trees and 15 lianas) have been harvested and analyzed. For both trees and lianas, biomass partitioning to roots, stems, and leaves were consistent with the predictions of allometric biomass partitioning theory. This result thwarted our initial expectation that lianas, with their narrow-diameter stems, would allocate proportionally less to stems than trees. We also found that vertical root profiles varied across life forms: lianas had the shallowest roots, evergreen trees had the deepest roots, and deciduous trees had intermediate rooting depths. The liana root systems also had notably broader lateral extents than the tree root systems. These results run contrary to previous work that reported that lianas were relatively deeply-rooted.
Our empirical results have helped to motivate model development. Each of our modeled liana individuals is assigned a laterally-widespread root system that can potentially extend beneath many trees. The liana root system is then permitted to put up aboveground shoots that associate with trees within the footprint of the root system. Comparisons of simulated and observed above- and belowground productivity are currently being conducted to help evaluate model assumptions.
How to cite: Medvigy, D., Smith-Martin, C., Parker, S., Willson, A., Marechaux, I., Tiffin, P., Chave, J., and Powers, J.: Unraveling the mechanisms of below- and aboveground liana-tree competition in tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7746, https://doi.org/10.5194/egusphere-egu2020-7746, 2020.
Lianas, or woody vines, are abundant throughout forests worldwide, but are especially common in the tropics. Their presence can strongly suppress tree wood production, and presumably also reduce the strength of the tropical forest carbon sink. In intact neotropical forests, liana presence has been increasing over the past few decades, though the mechanisms remain under debate. Vexingly, lianas are not represented at all in current-day climate models. Better knowledge of liana morphology and allocation is required to unravel the mechanisms of below- and aboveground liana-tree competition in tropical forests. Such knowledge is also an essential step toward incorporating lianas into mechanistic forest dynamics models. To address these liana knowledge gaps, we have initiated a new project that integrates empirical and modeling work. Our objectives in this presentation are to compare observed liana allocation patterns to allocation patterns predicted by theory, and then to demonstrate how these results can be integrated into a numerical model.
Empirical measurements are being carried out in tropical dry forests in Guanacaste, Costa Rica. These measurements will eventually include excavations of ~80 entire trees and lianas, which will enable measurements of belowground and aboveground biomass of co-occurring trees and lianas, coarse and fine root vertical distribution, and lateral root spread. Also being measured are liana traits (including several critical hydraulic traits), above- and belowground productivity, and species-level fine root productivity. The modeling work includes the incorporation of lianas into the TROLL model, which is a mechanistic, individual-based forest dynamics model. The model will simulate the unique features of lianas, accounting for their structural parasitism and their different allocation strategies and morphology compared to trees. The simulated trees and lianas will compete aboveground for light and belowground for water. Thus, the model will integrate above- and belowground processes and couple the carbon and water cycles. Traits measured as part of this project are being used to parameterize the model.
Thus far, 33 mature, canopy-exposed individuals (18 trees and 15 lianas) have been harvested and analyzed. For both trees and lianas, biomass partitioning to roots, stems, and leaves were consistent with the predictions of allometric biomass partitioning theory. This result thwarted our initial expectation that lianas, with their narrow-diameter stems, would allocate proportionally less to stems than trees. We also found that vertical root profiles varied across life forms: lianas had the shallowest roots, evergreen trees had the deepest roots, and deciduous trees had intermediate rooting depths. The liana root systems also had notably broader lateral extents than the tree root systems. These results run contrary to previous work that reported that lianas were relatively deeply-rooted.
Our empirical results have helped to motivate model development. Each of our modeled liana individuals is assigned a laterally-widespread root system that can potentially extend beneath many trees. The liana root system is then permitted to put up aboveground shoots that associate with trees within the footprint of the root system. Comparisons of simulated and observed above- and belowground productivity are currently being conducted to help evaluate model assumptions.
How to cite: Medvigy, D., Smith-Martin, C., Parker, S., Willson, A., Marechaux, I., Tiffin, P., Chave, J., and Powers, J.: Unraveling the mechanisms of below- and aboveground liana-tree competition in tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7746, https://doi.org/10.5194/egusphere-egu2020-7746, 2020.
EGU2020-10067 | Displays | BG3.13
Testing across vegetation types for common environmental dependencies of Gross Primary ProductionKeith Bloomfield, Benjamin Stocker, and Colin Prentice
Accurate simulations of gross primary production (GPP) are vital for Earth System Models that must inform public policy decisions. The instantaneous controls of leaf-level photosynthesis, which can be measured in manipulative experiments, are well established. At the canopy scale, however, there is no consensus on how GPP depends on (a) light or (b) other aspects of the physical environment such as temperature and CO2. Models of GPP make a variety of different assumptions when ‘scaling-up’ the standard model of photosynthesis. As a troublesome consequence, they make a variety of different predictions about how GPP responds to contemporary environmental change.
This problem can be tackled by theoretically based modelling, or by empirical analysis of GPP as reconstructed from eddy-covariance flux measurements. Theoretical modelling has provided an explanation for why ‘light-use efficiency’ (LUE) models work well at time scales of a week or longer. The same logic provides a justification for the use of LUE as a key metric in an empirical analysis. By focusing on LUE, we can isolate the controls of GPP that are distinct from its over-riding control by absorbed light. We have used open-access eddy covariance data from over 100 sites, collated over 20 years (the number of sites has grown with time). These sites, located in a wide range of biomes and climate zones, form part of the FLUXNET network. We have combined the flux data with a satellite product (FPAR from MODIS) that provides spatial estimates of the fraction of incident light absorbed by green vegetation. Soil moisture at flux sites was estimated using the SPLASH model, with appropriate meteorological inputs, and soil water-holding capacity derived using SoilGrids. LUE was then calculated as the amount of carbon fixed per unit of absorbed light. We then considered additive models (incorporating multiple explanatory factors) that support non-linear responses, including a peaked response to temperature. Recognising that our longitudinal data are not fully independent, we controlled for the hierarchical nature of the dataset through a variance structure that nests measurement year within site location.
In arriving at a final parsimonious model, we show that daytime air temperature and vapour pressure deficit, and soil moisture content, are all salient predictors of LUE. The same explanatory terms are retained in iterations of this analysis run at timescales from weeks to months. Model performance was not significantly improved by inclusion of additional variables such as rainfall, site elevation or vegetation category (e.g. Plant Functional Type, PFT). This empirical analysis supports the notion that GPP is predictable using a single model structure that is common to different PFTs.
How to cite: Bloomfield, K., Stocker, B., and Prentice, C.: Testing across vegetation types for common environmental dependencies of Gross Primary Production , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10067, https://doi.org/10.5194/egusphere-egu2020-10067, 2020.
Accurate simulations of gross primary production (GPP) are vital for Earth System Models that must inform public policy decisions. The instantaneous controls of leaf-level photosynthesis, which can be measured in manipulative experiments, are well established. At the canopy scale, however, there is no consensus on how GPP depends on (a) light or (b) other aspects of the physical environment such as temperature and CO2. Models of GPP make a variety of different assumptions when ‘scaling-up’ the standard model of photosynthesis. As a troublesome consequence, they make a variety of different predictions about how GPP responds to contemporary environmental change.
This problem can be tackled by theoretically based modelling, or by empirical analysis of GPP as reconstructed from eddy-covariance flux measurements. Theoretical modelling has provided an explanation for why ‘light-use efficiency’ (LUE) models work well at time scales of a week or longer. The same logic provides a justification for the use of LUE as a key metric in an empirical analysis. By focusing on LUE, we can isolate the controls of GPP that are distinct from its over-riding control by absorbed light. We have used open-access eddy covariance data from over 100 sites, collated over 20 years (the number of sites has grown with time). These sites, located in a wide range of biomes and climate zones, form part of the FLUXNET network. We have combined the flux data with a satellite product (FPAR from MODIS) that provides spatial estimates of the fraction of incident light absorbed by green vegetation. Soil moisture at flux sites was estimated using the SPLASH model, with appropriate meteorological inputs, and soil water-holding capacity derived using SoilGrids. LUE was then calculated as the amount of carbon fixed per unit of absorbed light. We then considered additive models (incorporating multiple explanatory factors) that support non-linear responses, including a peaked response to temperature. Recognising that our longitudinal data are not fully independent, we controlled for the hierarchical nature of the dataset through a variance structure that nests measurement year within site location.
In arriving at a final parsimonious model, we show that daytime air temperature and vapour pressure deficit, and soil moisture content, are all salient predictors of LUE. The same explanatory terms are retained in iterations of this analysis run at timescales from weeks to months. Model performance was not significantly improved by inclusion of additional variables such as rainfall, site elevation or vegetation category (e.g. Plant Functional Type, PFT). This empirical analysis supports the notion that GPP is predictable using a single model structure that is common to different PFTs.
How to cite: Bloomfield, K., Stocker, B., and Prentice, C.: Testing across vegetation types for common environmental dependencies of Gross Primary Production , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10067, https://doi.org/10.5194/egusphere-egu2020-10067, 2020.
EGU2020-10282 | Displays | BG3.13
New Vegetation Radiative Transfer Schemes for Land Surface ModelsTristan Quaife
The land surface components of climate and Earth system models tend to utilise relatively simple representations of vegetation radiative transfer processes to determine key land surface properties such as albedo, land surface temperature and the absorption of sunlight for photosynthesis. This simplicity is driven, in large part, by a need for computational efficiency. However, a growing number of studies have pointed to the need for more complex radiative transfer in these models.
An almost ubiquitous assumption in such radiative transfer schemes is that a vegetation canopy can be represented by a plane-parallel, turbid medium – a perfectly flat box in which scattering elements (i.e. leaves, branches, trunks, etc.) are randomly distributed. Real canopies typically exhibit quite complex, non-random structures often involving the clumping of leaves and branches at multiple scales. Furthermore, the optical properties of canopies are typically assumed to be vertically and horizontally homogeneous which does not allow for realistic representation of, for example, forest stands with mixed species or understory vegetation.
This presentation examines recent developments that have the potential to overcome these and other deficiencies in land surface model radiative transfer schemes, whilst maintaining sufficient computational efficiency to make them viable for inclusion in climate and Earth system models. This is achieved by using the same solutions to the transfer problem as currently employed in climate models as the building blocks to construct canopies that can vary both vertically and horizontally.
How to cite: Quaife, T.: New Vegetation Radiative Transfer Schemes for Land Surface Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10282, https://doi.org/10.5194/egusphere-egu2020-10282, 2020.
The land surface components of climate and Earth system models tend to utilise relatively simple representations of vegetation radiative transfer processes to determine key land surface properties such as albedo, land surface temperature and the absorption of sunlight for photosynthesis. This simplicity is driven, in large part, by a need for computational efficiency. However, a growing number of studies have pointed to the need for more complex radiative transfer in these models.
An almost ubiquitous assumption in such radiative transfer schemes is that a vegetation canopy can be represented by a plane-parallel, turbid medium – a perfectly flat box in which scattering elements (i.e. leaves, branches, trunks, etc.) are randomly distributed. Real canopies typically exhibit quite complex, non-random structures often involving the clumping of leaves and branches at multiple scales. Furthermore, the optical properties of canopies are typically assumed to be vertically and horizontally homogeneous which does not allow for realistic representation of, for example, forest stands with mixed species or understory vegetation.
This presentation examines recent developments that have the potential to overcome these and other deficiencies in land surface model radiative transfer schemes, whilst maintaining sufficient computational efficiency to make them viable for inclusion in climate and Earth system models. This is achieved by using the same solutions to the transfer problem as currently employed in climate models as the building blocks to construct canopies that can vary both vertically and horizontally.
How to cite: Quaife, T.: New Vegetation Radiative Transfer Schemes for Land Surface Models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10282, https://doi.org/10.5194/egusphere-egu2020-10282, 2020.
EGU2020-16583 | Displays | BG3.13
The role of non-structural carbohydrates in simulations of ecosystem carbon fluxes.Simon Jones, Lucy Rowland, Peter Cox, Debbie Hemming, Andy Wiltshire, Karina Williams, Nicolas Parazoo, Junie Liu, Antonio da Costa, Patrick Meir, Maurizio Mencuccini, and Anna Harper
Accurately representing the response of ecosystems to environmental change in land surface models (LSM) is crucial to making accurate predictions of future climate. Many LSMs do not correctly capture plant respiration and growth fluxes, particularly in response to extreme climatic events. This is in part due to the unrealistic assumption that total plant carbon expenditure (PCE) is always equal to gross carbon accumulation by photosynthesis. We present and evaluate a simple model of labile carbon storage and utilisation (SUGAR), designed to be integrated into an LSM, that allows simulated plant respiration and growth to vary independently of photosynthesis. SUGAR buffers simulated PCE against seasonal variation in photosynthesis, producing more constant (less variable) predictions of plant growth and respiration relative to an LSM that does not represent labile carbon storage. This allows the model to more accurately capture observed carbon fluxes at a large-scale drought experiment in a tropical moist forest in the Amazon, relative to the Joint UK Land Environment Simulator LSM (JULES). SUGAR is designed to improve the representation of carbon storage in LSMs and provides a simple framework that allows new processes to be integrated as the empirical understanding of carbon storage in plants improves. The study highlights the need for future research into carbon storage and allocation in plants, particularly in response to extreme climate events such as drought.
How to cite: Jones, S., Rowland, L., Cox, P., Hemming, D., Wiltshire, A., Williams, K., Parazoo, N., Liu, J., da Costa, A., Meir, P., Mencuccini, M., and Harper, A.: The role of non-structural carbohydrates in simulations of ecosystem carbon fluxes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16583, https://doi.org/10.5194/egusphere-egu2020-16583, 2020.
Accurately representing the response of ecosystems to environmental change in land surface models (LSM) is crucial to making accurate predictions of future climate. Many LSMs do not correctly capture plant respiration and growth fluxes, particularly in response to extreme climatic events. This is in part due to the unrealistic assumption that total plant carbon expenditure (PCE) is always equal to gross carbon accumulation by photosynthesis. We present and evaluate a simple model of labile carbon storage and utilisation (SUGAR), designed to be integrated into an LSM, that allows simulated plant respiration and growth to vary independently of photosynthesis. SUGAR buffers simulated PCE against seasonal variation in photosynthesis, producing more constant (less variable) predictions of plant growth and respiration relative to an LSM that does not represent labile carbon storage. This allows the model to more accurately capture observed carbon fluxes at a large-scale drought experiment in a tropical moist forest in the Amazon, relative to the Joint UK Land Environment Simulator LSM (JULES). SUGAR is designed to improve the representation of carbon storage in LSMs and provides a simple framework that allows new processes to be integrated as the empirical understanding of carbon storage in plants improves. The study highlights the need for future research into carbon storage and allocation in plants, particularly in response to extreme climate events such as drought.
How to cite: Jones, S., Rowland, L., Cox, P., Hemming, D., Wiltshire, A., Williams, K., Parazoo, N., Liu, J., da Costa, A., Meir, P., Mencuccini, M., and Harper, A.: The role of non-structural carbohydrates in simulations of ecosystem carbon fluxes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16583, https://doi.org/10.5194/egusphere-egu2020-16583, 2020.
EGU2020-18337 | Displays | BG3.13
Seasonal dynamics of spectral vegetation indices at leaf, ecosystem and satellite scales for a boreal evergreen coniferous forestChao Zhang, Jon Atherton, Paulina Rajewicz, Anu Riikonen, Pasi Kolari, Beatriz Fernández-Marín, José Ignacio Garcia-Plazaola, and Albert Porcar-Castell
The spectral vegetation indices (VIs) are widely used in ecology and ecosystem modelling to study carbon uptake and plant responses to climate change. VIs can potentially be used the learn about ecosystem processes at the large scale and used to inform and constrain mechanistic understanding and models. Key VIs such as Normalized Difference Vegetation Index (NDVI) reflects the chlorophyll contents, biomass, and canopy structural changes. The Photochemical Reflectance Index (PRI) and the Chlorophyll Carotenoid Index (CCI) relate to photosynthetic light-use efficiency (LUE) and also capture longer-term pigment changes of the vegetation at leaf and canopy scales, particularly for evergreen species. The Near-Infrared Reflectance of the vegetation (NIRv) relates to the canopy structure. The Water Index (WI) provides leaf water content information. However, the factors that control the seasonal changes of these VIs at different spatial-temporal scales is unclear, hence the question of whether VIs can successfully be scaled from leaf to satellite level remains to be answered. The main objective of this study is to examine, how and why the key VIs (NDVI, PRI, CCI, NIRv and WI etc.) change at the seasonal scale across leaf, ecosystem and satellite data.
We use leaf-level measurements, continuous ecosystem observations and satellite data (atmospheric corrected MODIS products-MAIAC) across the spring recovery period of Scots pine (two years data) and Norway spruce (one year data) in a boreal site in Finland to answer: (1) how do VIs change during the photosynthetic spring recovery of the vegetation at leaf, ecosystem and satellite scales? (2) How do environmental and bio-physiological factors affect the seasonal dynamics of VIs? (3) do the main affecting factors change between canopy position and species? (4) whether the main factors change between spatial scales?
Our preliminary results show that at the leaf level of Scots pine, both PRI and CCI are more strongly correlated with LUE at top-canopy (r = 0.92 and 0.93, respectively) than at low-canopy (r = 0.63 and 0.72) positions. At the leaf level in Norway spruce, only top-canopy PRI and CCI are significantly correlated with LUE (r > 0.75). When focusing on the correlations with PRI and CCI with pigments, we found that in Scots pine needles and for both top and low canopy, more than 80% of variation in PRI and CCI are explained by Car/Chl ratio and de-epoxidation state of xanthophyll cycle pigments (DEPS), respectively. However, in spruce for both canopy positions, the strongest correlation with PRI and CCI is lutein/Chl ratio (r is between -0.97 and -0.85), respectively), followed by Car/Chl ratio (r is between -0.84 and -0.72). At the ecosystem level, the PRI is correlated with GPP (gross primary productivity) when winter data and low PAR (<350 μmol m−2 s−1) is not considered (r = 0.63). The other VIs are under investigation and will also be presented. As a tentative conclusion, although optical properties covary with photosynthesis, mechanisms of variation appear species and light environment specific.
How to cite: Zhang, C., Atherton, J., Rajewicz, P., Riikonen, A., Kolari, P., Fernández-Marín, B., Garcia-Plazaola, J. I., and Porcar-Castell, A.: Seasonal dynamics of spectral vegetation indices at leaf, ecosystem and satellite scales for a boreal evergreen coniferous forest , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18337, https://doi.org/10.5194/egusphere-egu2020-18337, 2020.
The spectral vegetation indices (VIs) are widely used in ecology and ecosystem modelling to study carbon uptake and plant responses to climate change. VIs can potentially be used the learn about ecosystem processes at the large scale and used to inform and constrain mechanistic understanding and models. Key VIs such as Normalized Difference Vegetation Index (NDVI) reflects the chlorophyll contents, biomass, and canopy structural changes. The Photochemical Reflectance Index (PRI) and the Chlorophyll Carotenoid Index (CCI) relate to photosynthetic light-use efficiency (LUE) and also capture longer-term pigment changes of the vegetation at leaf and canopy scales, particularly for evergreen species. The Near-Infrared Reflectance of the vegetation (NIRv) relates to the canopy structure. The Water Index (WI) provides leaf water content information. However, the factors that control the seasonal changes of these VIs at different spatial-temporal scales is unclear, hence the question of whether VIs can successfully be scaled from leaf to satellite level remains to be answered. The main objective of this study is to examine, how and why the key VIs (NDVI, PRI, CCI, NIRv and WI etc.) change at the seasonal scale across leaf, ecosystem and satellite data.
We use leaf-level measurements, continuous ecosystem observations and satellite data (atmospheric corrected MODIS products-MAIAC) across the spring recovery period of Scots pine (two years data) and Norway spruce (one year data) in a boreal site in Finland to answer: (1) how do VIs change during the photosynthetic spring recovery of the vegetation at leaf, ecosystem and satellite scales? (2) How do environmental and bio-physiological factors affect the seasonal dynamics of VIs? (3) do the main affecting factors change between canopy position and species? (4) whether the main factors change between spatial scales?
Our preliminary results show that at the leaf level of Scots pine, both PRI and CCI are more strongly correlated with LUE at top-canopy (r = 0.92 and 0.93, respectively) than at low-canopy (r = 0.63 and 0.72) positions. At the leaf level in Norway spruce, only top-canopy PRI and CCI are significantly correlated with LUE (r > 0.75). When focusing on the correlations with PRI and CCI with pigments, we found that in Scots pine needles and for both top and low canopy, more than 80% of variation in PRI and CCI are explained by Car/Chl ratio and de-epoxidation state of xanthophyll cycle pigments (DEPS), respectively. However, in spruce for both canopy positions, the strongest correlation with PRI and CCI is lutein/Chl ratio (r is between -0.97 and -0.85), respectively), followed by Car/Chl ratio (r is between -0.84 and -0.72). At the ecosystem level, the PRI is correlated with GPP (gross primary productivity) when winter data and low PAR (<350 μmol m−2 s−1) is not considered (r = 0.63). The other VIs are under investigation and will also be presented. As a tentative conclusion, although optical properties covary with photosynthesis, mechanisms of variation appear species and light environment specific.
How to cite: Zhang, C., Atherton, J., Rajewicz, P., Riikonen, A., Kolari, P., Fernández-Marín, B., Garcia-Plazaola, J. I., and Porcar-Castell, A.: Seasonal dynamics of spectral vegetation indices at leaf, ecosystem and satellite scales for a boreal evergreen coniferous forest , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18337, https://doi.org/10.5194/egusphere-egu2020-18337, 2020.
BG3.15 – Present and future global vegetation dynamics and carbon stocks from observations and models
EGU2020-11676 | Displays | BG3.15 | Highlight
Forest structure and vegetation dynamics as a driver of global carbon uptakeBen Poulter, Leo Calle, Thomas Pugh, Nathan McDowell, Philippe Ciais, Simon Besnard, Nuno Carvalhais, Christopher Neigh, and Paul Montensano
The drivers for terrestrial carbon uptake remain unclear despite a clear signal that the land removes the equivalent of up to 25-30% of fossil fuel CO2 emissions each year. Recent work has confirmed sustained carbon uptake by the land that is proportional to anthropogenic emissions, meaning that the land 'sink' has strengthened over the past five decades, and with interannual variability driven by climate. Drivers responsible for sustained uptake include hypotheses related to lengthening growing season length, increasing nitrogen deposition, changes in the ratio of diffuse to direct radiation, and land-use and land cover change. More recently, land-use and land-cover change has been investigated as a driver of land carbon uptake owing to an emergence of global-scale datasets related to canopy disturbance, land use, and forest age. At the same time, land-surface models have increased their realism in terms of moving beyond 'big-leaf' model representation of ecosystems to including vertical structure and horizontal heteorogeneity via size-and-age structured approaches. This presentation will address recent work identified forest structure and vegetation dynamics as a driver for global carbon uptake and provide examples of how remote sensing observations have led to new datasets for initialization land-surface models. Compared to inventory-based approaches, land-surface models initialized with forest age show a lessor role in explaining net terrestrial carbon uptake at global scales, but at regional scales, vegetation structure is a key determinant of carbon exchange. New satellite missions improving forest structure observations are expected to reduce uncertainties and contribute substantially to ongoing land-surface model development.
How to cite: Poulter, B., Calle, L., Pugh, T., McDowell, N., Ciais, P., Besnard, S., Carvalhais, N., Neigh, C., and Montensano, P.: Forest structure and vegetation dynamics as a driver of global carbon uptake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11676, https://doi.org/10.5194/egusphere-egu2020-11676, 2020.
The drivers for terrestrial carbon uptake remain unclear despite a clear signal that the land removes the equivalent of up to 25-30% of fossil fuel CO2 emissions each year. Recent work has confirmed sustained carbon uptake by the land that is proportional to anthropogenic emissions, meaning that the land 'sink' has strengthened over the past five decades, and with interannual variability driven by climate. Drivers responsible for sustained uptake include hypotheses related to lengthening growing season length, increasing nitrogen deposition, changes in the ratio of diffuse to direct radiation, and land-use and land cover change. More recently, land-use and land-cover change has been investigated as a driver of land carbon uptake owing to an emergence of global-scale datasets related to canopy disturbance, land use, and forest age. At the same time, land-surface models have increased their realism in terms of moving beyond 'big-leaf' model representation of ecosystems to including vertical structure and horizontal heteorogeneity via size-and-age structured approaches. This presentation will address recent work identified forest structure and vegetation dynamics as a driver for global carbon uptake and provide examples of how remote sensing observations have led to new datasets for initialization land-surface models. Compared to inventory-based approaches, land-surface models initialized with forest age show a lessor role in explaining net terrestrial carbon uptake at global scales, but at regional scales, vegetation structure is a key determinant of carbon exchange. New satellite missions improving forest structure observations are expected to reduce uncertainties and contribute substantially to ongoing land-surface model development.
How to cite: Poulter, B., Calle, L., Pugh, T., McDowell, N., Ciais, P., Besnard, S., Carvalhais, N., Neigh, C., and Montensano, P.: Forest structure and vegetation dynamics as a driver of global carbon uptake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11676, https://doi.org/10.5194/egusphere-egu2020-11676, 2020.
EGU2020-1589 | Displays | BG3.15
Exploring the effects of biodiversity and elemental stoichiometry on terrestrial carbon balanceMarcos Fernández-Martínez, Jordi Sardans, Josep Peñuelas, and Ivan Janssens
Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.
How to cite: Fernández-Martínez, M., Sardans, J., Peñuelas, J., and Janssens, I.: Exploring the effects of biodiversity and elemental stoichiometry on terrestrial carbon balance , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1589, https://doi.org/10.5194/egusphere-egu2020-1589, 2020.
Global change is affecting the capacity of terrestrial ecosystems to sequester carbon. While the effect of climate on ecosystem carbon balance has largely been explored, the role of other potentially important factors that may shift with global change, such as biodiversity and the concentration of nutrients remains elusive. More diverse ecosystems have been shown to be more productive and stable over time and differences in foliar concentrations of N and P are related to large differences in how primary producers function. Here, we used 89 eddy-covariance sites included in the FLUXNET 2015 database, from which we compiled information on climate, species abundance and elemental composition of the main species. With these data, we assessed the relative importance of climate, endogenous factors, biodiversity and community-weighted concentrations of foliar N and P on terrestrial carbon balance. Climate and endogenous factors, such as stand age, are the main determinants of terrestrial C balance and their interannual variability in all types of ecosystems. Elemental stoichiometry, though, played a significant role affecting photosynthesis, an effect that propagates through ecosystem respiration and carbon sequestration. Biodiversity, instead, had a very limited effect on terrestrial carbon balance. We found increased respiration rates and more stable gross primary production with increasing diversity. Our results are the first attempt to investigate the role of biodiversity and the elemental composition of terrestrial ecosystems in ecosystem carbon balance.
How to cite: Fernández-Martínez, M., Sardans, J., Peñuelas, J., and Janssens, I.: Exploring the effects of biodiversity and elemental stoichiometry on terrestrial carbon balance , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1589, https://doi.org/10.5194/egusphere-egu2020-1589, 2020.
EGU2020-11069 | Displays | BG3.15 | Highlight
The past and the future of the tropical forest carbon sink: insights from permanent forest inventory plotsWannes Hubau, Simon L. Lewis, Oliver L. Phillips, and Hans Beeckman and the AfriTRON consortium & the RAINFOR consortium
Structurally intact tropical forests sequestered ~1 Pg C yr-1 over the 1990s and early 2000s, equivalent to ~15% of fossil fuel emissions. Climate-driven vegetation models typically predict that this carbon sink will continue for the remainder of the 21st century. However, recent plot inventories from Amazonia show a declining rate of carbon sequestration, potentially signaling an imminent end to the sink. Here we assess whether the African tropical forest sink is also declining.
Records from 244 multi-census plots across 11 countries reveal that the African tropical forest sink in aboveground live biomass has been stable for three decades, at 0.66 Mg C ha-1 yr-1, from 1985-2015 (95% CI, 0.53-0.79). Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged over recent decades. A statistical model including CO2, temperature, drought, and forest dynamics can account for the trends. Despite the past stability of the African carbon sink, our data and model show that very recently the sink has begun decreasing, and that it will continue to decline in the future. This implies that the intact tropical forest carbon sink on both continents is set to end decades sooner than even the most extreme vegetation model estimates.
Published independent observations of inter-hemispheric atmospheric CO2 concentration indicate increasing carbon uptake into the Northern hemisphere landmass, offsetting a weakening of the tropical forest sink, which reinforces our conclusion that the intact tropical forest carbon sink has already saturated. Nevertheless, continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required to test our prediction that the intact tropical forest carbon sink will continue to decline. Our findings were recently published in Nature (March 2020) and have important policy implications: given tropical forests are likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to limit the global heating of Earth.
How to cite: Hubau, W., Lewis, S. L., Phillips, O. L., and Beeckman, H. and the AfriTRON consortium & the RAINFOR consortium: The past and the future of the tropical forest carbon sink: insights from permanent forest inventory plots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11069, https://doi.org/10.5194/egusphere-egu2020-11069, 2020.
Structurally intact tropical forests sequestered ~1 Pg C yr-1 over the 1990s and early 2000s, equivalent to ~15% of fossil fuel emissions. Climate-driven vegetation models typically predict that this carbon sink will continue for the remainder of the 21st century. However, recent plot inventories from Amazonia show a declining rate of carbon sequestration, potentially signaling an imminent end to the sink. Here we assess whether the African tropical forest sink is also declining.
Records from 244 multi-census plots across 11 countries reveal that the African tropical forest sink in aboveground live biomass has been stable for three decades, at 0.66 Mg C ha-1 yr-1, from 1985-2015 (95% CI, 0.53-0.79). Thus, the carbon sink responses of Earth’s two largest expanses of tropical forest have diverged over recent decades. A statistical model including CO2, temperature, drought, and forest dynamics can account for the trends. Despite the past stability of the African carbon sink, our data and model show that very recently the sink has begun decreasing, and that it will continue to decline in the future. This implies that the intact tropical forest carbon sink on both continents is set to end decades sooner than even the most extreme vegetation model estimates.
Published independent observations of inter-hemispheric atmospheric CO2 concentration indicate increasing carbon uptake into the Northern hemisphere landmass, offsetting a weakening of the tropical forest sink, which reinforces our conclusion that the intact tropical forest carbon sink has already saturated. Nevertheless, continued on-the-ground monitoring of the world’s remaining intact tropical forests will be required to test our prediction that the intact tropical forest carbon sink will continue to decline. Our findings were recently published in Nature (March 2020) and have important policy implications: given tropical forests are likely to sequester less carbon in the future than Earth System Models predict, an earlier date to reach net zero anthropogenic greenhouse gas emissions will be required to meet any given commitment to limit the global heating of Earth.
How to cite: Hubau, W., Lewis, S. L., Phillips, O. L., and Beeckman, H. and the AfriTRON consortium & the RAINFOR consortium: The past and the future of the tropical forest carbon sink: insights from permanent forest inventory plots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11069, https://doi.org/10.5194/egusphere-egu2020-11069, 2020.
EGU2020-7770 | Displays | BG3.15
Sensitivity of tropical tree growth to climatic variation: a global meta-analysis of tree-ring dataPieter Zuidema, Peter Groenendijk, Valerie Trouet, and Flurin Babst
Tropical forests are a crucial component of the global carbon cycle and importantly contribute to the global carbon land sink. Stem growth of tropical trees is a key component of carbon dynamics in tropical forests, but our understanding of how this is driven by climatic variation is poor. Such understanding is needed for predictive vegetation modelling of climate change effects.
Here, we help to fill this knowledge gap by conducting a meta-analysis of published tropical tree-ring width chronologies. We compiled >350 tropical chronologies (30°N - 30°S) from all tropical climate zones. We used this data set to explore i) common patterns in the tree-growth responses to monthly rainfall and temperature (Tmax) patterns (cluster analysis), ii) the relative importance of temperature and rainfall in determining tropical tree growth (glm), iii) how these climatic drivers shift along gradients of temperature and precipitation.
Our cluster analysis revealed 6-8 primary types of responses to monthly climate variables. These clusters are associated with mean climate, elevation, or geographic location. The seasonality of growth responses to temperature and rainfall differed clearly among clusters, but the signs of responses were consistent: higher Tmax reduces growth, more precipitation increases growth. Multiple regression analyses of growth responses to seasonal climate further confirmed the negative effects of temperature and positive effects of rainfall. Rainfall during the dry season had the strongest relative importance. Finally, we found that seasonal drivers of tropical tree growth are modified by mean climate. In drier regions, growth sensitivity to temperature increases; in warmer regions, growth sensitivity to rainfall increases. The latter may imply that global warming leads to stronger drought effects on tree growth and possibly enhances mortality risks of tropical trees.
Our meta-analysis shows that tree-ring studies help to improve understanding of climate-driven carbon dynamics in tropical forests. Insights from this study can be used to benchmark global vegetation modelling and to better understand responses of tropical tree species to climate change.
How to cite: Zuidema, P., Groenendijk, P., Trouet, V., and Babst, F.: Sensitivity of tropical tree growth to climatic variation: a global meta-analysis of tree-ring data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7770, https://doi.org/10.5194/egusphere-egu2020-7770, 2020.
Tropical forests are a crucial component of the global carbon cycle and importantly contribute to the global carbon land sink. Stem growth of tropical trees is a key component of carbon dynamics in tropical forests, but our understanding of how this is driven by climatic variation is poor. Such understanding is needed for predictive vegetation modelling of climate change effects.
Here, we help to fill this knowledge gap by conducting a meta-analysis of published tropical tree-ring width chronologies. We compiled >350 tropical chronologies (30°N - 30°S) from all tropical climate zones. We used this data set to explore i) common patterns in the tree-growth responses to monthly rainfall and temperature (Tmax) patterns (cluster analysis), ii) the relative importance of temperature and rainfall in determining tropical tree growth (glm), iii) how these climatic drivers shift along gradients of temperature and precipitation.
Our cluster analysis revealed 6-8 primary types of responses to monthly climate variables. These clusters are associated with mean climate, elevation, or geographic location. The seasonality of growth responses to temperature and rainfall differed clearly among clusters, but the signs of responses were consistent: higher Tmax reduces growth, more precipitation increases growth. Multiple regression analyses of growth responses to seasonal climate further confirmed the negative effects of temperature and positive effects of rainfall. Rainfall during the dry season had the strongest relative importance. Finally, we found that seasonal drivers of tropical tree growth are modified by mean climate. In drier regions, growth sensitivity to temperature increases; in warmer regions, growth sensitivity to rainfall increases. The latter may imply that global warming leads to stronger drought effects on tree growth and possibly enhances mortality risks of tropical trees.
Our meta-analysis shows that tree-ring studies help to improve understanding of climate-driven carbon dynamics in tropical forests. Insights from this study can be used to benchmark global vegetation modelling and to better understand responses of tropical tree species to climate change.
How to cite: Zuidema, P., Groenendijk, P., Trouet, V., and Babst, F.: Sensitivity of tropical tree growth to climatic variation: a global meta-analysis of tree-ring data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7770, https://doi.org/10.5194/egusphere-egu2020-7770, 2020.
EGU2020-16130 | Displays | BG3.15
Alpha- and beta- diversity of woody species across environmental gradients in African and Australian tropical savannasFelix Trotter and Caroline Lehmann and the Contributors
Patterns of woody plant diversity in the tropical savanna biome has received little research attention but is relevant to understanding the complex vegetation dynamics of a biome that have remained contentious for almost a century. Tropical savannas of Africa and Australia are defined by the co-existence of woody plants and grasses, and the evolution and assembly of the savanna biome trace back 3-10 million years. Here, we explored patterns of local (alpha-) diversity and species turnover (beta-diversity) of woody plant species across African and Australian savannas. We aimed test the relative role of the environmental gradients of rainfall, temperature, fire and soil in shaping the relative abundance of all of woody species, genera, and families. Using generalized additive models (GAMs) and generalised dissimilarity models (GDMs) of field inventory data from vegetation plots across sub-Saharan Africa and Northern Australia we analysed changes in alpha- and beta-diversity. Environmental gradients were characterised as effective rainfall (ER), rainfall seasonality (coefficient of variation of monthly rainfall), mean annual temperature (MAT), temperature seasonality, fire frequency, and cation exchange capacity (CEC) in soils.
Savannas in Australia are on average drier and hotter than in Africa likely as a product of lower altitude. Crucially, diversity across all taxonomic levels is approximately two to three times greater in Africa compared with Australia. Within each continent, rainfall seasonality was the strongest environmental correlate of both alpha- and beta-diversity. In Africa, there is a strongly negative relationship between alpha-diversity at all taxonomic levels and rainfall seasonality. In contrast, in Australia, the relationship between alpha-diversity and rainfall seasonality while relevant is non-linear. Surprisingly within continents, rainfall, temperature, soils and fire had little bearing in these data on patterns of alpha diversity.
In terms of beta-diversity, and likely linked to the overall differences in diversity between continents, the geographic distance equalling total species turnover is greater in Australia than in Africa. Effective rainfall was the only additional significant correlate of woody species turnover in Australia, but only in arid regions. In Australia, at higher taxonomic levels the capacity of GDMs to explain variation in the data diminished substantially as a product of low diversity in genera and families. When compared to Australia, species turnover in Africa increases when geographic distance, rainfall seasonality and mean annual temperature are relatively low.
Our findings highlight that with ongoing climate change specifically with shifts in rainfall distribution that will also affect local drought regimes, rainfall seasonality could substantially alter patterns of diversity, specifically in Africa. There have been persistent attempts to explain ecosystem dynamics in savannas with respect to climate, soils and fire with emphasis often on total rainfall, but our findings suggest that rainfall seasonality can have strong effects on diversity that may interact with other environmental correlates such as fire.
How to cite: Trotter, F. and Lehmann, C. and the Contributors: Alpha- and beta- diversity of woody species across environmental gradients in African and Australian tropical savannas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16130, https://doi.org/10.5194/egusphere-egu2020-16130, 2020.
Patterns of woody plant diversity in the tropical savanna biome has received little research attention but is relevant to understanding the complex vegetation dynamics of a biome that have remained contentious for almost a century. Tropical savannas of Africa and Australia are defined by the co-existence of woody plants and grasses, and the evolution and assembly of the savanna biome trace back 3-10 million years. Here, we explored patterns of local (alpha-) diversity and species turnover (beta-diversity) of woody plant species across African and Australian savannas. We aimed test the relative role of the environmental gradients of rainfall, temperature, fire and soil in shaping the relative abundance of all of woody species, genera, and families. Using generalized additive models (GAMs) and generalised dissimilarity models (GDMs) of field inventory data from vegetation plots across sub-Saharan Africa and Northern Australia we analysed changes in alpha- and beta-diversity. Environmental gradients were characterised as effective rainfall (ER), rainfall seasonality (coefficient of variation of monthly rainfall), mean annual temperature (MAT), temperature seasonality, fire frequency, and cation exchange capacity (CEC) in soils.
Savannas in Australia are on average drier and hotter than in Africa likely as a product of lower altitude. Crucially, diversity across all taxonomic levels is approximately two to three times greater in Africa compared with Australia. Within each continent, rainfall seasonality was the strongest environmental correlate of both alpha- and beta-diversity. In Africa, there is a strongly negative relationship between alpha-diversity at all taxonomic levels and rainfall seasonality. In contrast, in Australia, the relationship between alpha-diversity and rainfall seasonality while relevant is non-linear. Surprisingly within continents, rainfall, temperature, soils and fire had little bearing in these data on patterns of alpha diversity.
In terms of beta-diversity, and likely linked to the overall differences in diversity between continents, the geographic distance equalling total species turnover is greater in Australia than in Africa. Effective rainfall was the only additional significant correlate of woody species turnover in Australia, but only in arid regions. In Australia, at higher taxonomic levels the capacity of GDMs to explain variation in the data diminished substantially as a product of low diversity in genera and families. When compared to Australia, species turnover in Africa increases when geographic distance, rainfall seasonality and mean annual temperature are relatively low.
Our findings highlight that with ongoing climate change specifically with shifts in rainfall distribution that will also affect local drought regimes, rainfall seasonality could substantially alter patterns of diversity, specifically in Africa. There have been persistent attempts to explain ecosystem dynamics in savannas with respect to climate, soils and fire with emphasis often on total rainfall, but our findings suggest that rainfall seasonality can have strong effects on diversity that may interact with other environmental correlates such as fire.
How to cite: Trotter, F. and Lehmann, C. and the Contributors: Alpha- and beta- diversity of woody species across environmental gradients in African and Australian tropical savannas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16130, https://doi.org/10.5194/egusphere-egu2020-16130, 2020.
EGU2020-11085 | Displays | BG3.15
Recent vegetation composition and above ground biomass change in north-eastern SiberiaIuliia Shevtsova, Stefan Kruse, Birgit Heim, and Ulrike Herzschuh
Climate change is especially prominent in Arctic and sub-Arctic regions. Therefore, it is of great importance to investigate ecosystem processes and the dynamics of its components in the Siberian high latitudes. Plant biomass assessment is essential for estimating carbon stocks and further carbon balance and wildlife habitat modeling. Our study region in central Chukotka (north-eastern Siberia) is one of the least investigated sub-Arctic regions in terms of vegetation dynamics. We quantified changes in four vegetation classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra, and, (4) prostrate herb tundra and barren areas. We used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), Normalised Difference Snow Index (NDSI)) to map the vegetation classes in four focus areas in 2000/2001 and 2016/2017. In 2016, we collected field data on foliage projective cover (percentage cover) of dominant taxa from 52 sites along the tundra–taiga gradient. We applied constrained ordination for coupling projective cover with corresponding Landsat spectral indices from 2016/2017. Ordination scores were used in a k-means classification. We inferred significant shrubification in the tundra–taiga zone (20%) and in the northern taiga (40%), as well as notable tree infilling in the northern taiga (9%), and, no significant changes in the treeless tundra area. To estimate carbon stocks and its changes within and between differentiated vegetation classes, we aim to upscale above ground biomass across tundra, tundra-taiga and northern taiga zones and derive above ground biomass change for the 15 investigated years. In 2018, another expedition took part to this region with new 38 sites at witch we described projective cover and representatively harvested total above ground biomass (dominant taxa and rest). This data can be projected in the created previously ordination space with the use of projective cover similarities. Using interpolation, we plan to predict above ground biomass in the whole ordination space. We will further use Landsat data and interpolation results to produce above ground biomass maps for the four focus areas in central Chukotka and derive difference maps from 2000/2001 to 2016/2017.
How to cite: Shevtsova, I., Kruse, S., Heim, B., and Herzschuh, U.: Recent vegetation composition and above ground biomass change in north-eastern Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11085, https://doi.org/10.5194/egusphere-egu2020-11085, 2020.
Climate change is especially prominent in Arctic and sub-Arctic regions. Therefore, it is of great importance to investigate ecosystem processes and the dynamics of its components in the Siberian high latitudes. Plant biomass assessment is essential for estimating carbon stocks and further carbon balance and wildlife habitat modeling. Our study region in central Chukotka (north-eastern Siberia) is one of the least investigated sub-Arctic regions in terms of vegetation dynamics. We quantified changes in four vegetation classes: (1) larch closed-canopy forest, (2) forest tundra and shrub tundra, (3) graminoid tundra, and, (4) prostrate herb tundra and barren areas. We used Landsat spectral indices (Normalised Difference Vegetation Index (NDVI), Normalised Difference Water Index (NDWI), Normalised Difference Snow Index (NDSI)) to map the vegetation classes in four focus areas in 2000/2001 and 2016/2017. In 2016, we collected field data on foliage projective cover (percentage cover) of dominant taxa from 52 sites along the tundra–taiga gradient. We applied constrained ordination for coupling projective cover with corresponding Landsat spectral indices from 2016/2017. Ordination scores were used in a k-means classification. We inferred significant shrubification in the tundra–taiga zone (20%) and in the northern taiga (40%), as well as notable tree infilling in the northern taiga (9%), and, no significant changes in the treeless tundra area. To estimate carbon stocks and its changes within and between differentiated vegetation classes, we aim to upscale above ground biomass across tundra, tundra-taiga and northern taiga zones and derive above ground biomass change for the 15 investigated years. In 2018, another expedition took part to this region with new 38 sites at witch we described projective cover and representatively harvested total above ground biomass (dominant taxa and rest). This data can be projected in the created previously ordination space with the use of projective cover similarities. Using interpolation, we plan to predict above ground biomass in the whole ordination space. We will further use Landsat data and interpolation results to produce above ground biomass maps for the four focus areas in central Chukotka and derive difference maps from 2000/2001 to 2016/2017.
How to cite: Shevtsova, I., Kruse, S., Heim, B., and Herzschuh, U.: Recent vegetation composition and above ground biomass change in north-eastern Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11085, https://doi.org/10.5194/egusphere-egu2020-11085, 2020.
EGU2020-14992 | Displays | BG3.15
Coupling an individual-based boreal forest model with a permafrost land-surface model to forecast biomass development in boreal larch forests at the Siberian treelineSimone Stünzi, Stefan Kruse, Julia Boike, Ulrike Herzschuh, and Moritz Langer
The fate of boreal forests under global warming and forced rapid environmental changes is still highly uncertain, in terms of remaining a carbon sink or becoming a future carbon source. Forest dynamics and resulting ecosystem services are strongly interlinked in the vast permafrost-covered regions of the Siberian treeline ecotone. Consequently, understanding the role of current and future active layer dynamics is crucial for the prediction of aboveground biomass and thus carbon stock developments.
We present a coupled model version combining CryoGrid, a sophisticated one-dimensional permafrost land surface model adapted for the use in forest ecosystems, with LAVESI, a detailed, individual-based and spatially explicit larch forest model. Subsequently, parameterizing against an extensive field data set of >100 forest inventories conducted along the treeline of larch-dominated boreal forests in Siberia (97-169° E), we run simulations covering the upcoming decades under contrasting climatic change scenarios.
The model setup can reproduce the energy transfer and thermal regime in permafrost ground as well as the radiation budget, nitrogen and photosynthetic profiles, canopy turbulence and leaf fluxes and predict the expected establishment, die-off and treeline movements of larch forests. Our results will show vegetation and permafrost dynamics, quantify the magnitudes of different feedback processes between permafrost, vegetation, and climate and reveal their impact on carbon stocks in Northern Siberia.
How to cite: Stünzi, S., Kruse, S., Boike, J., Herzschuh, U., and Langer, M.: Coupling an individual-based boreal forest model with a permafrost land-surface model to forecast biomass development in boreal larch forests at the Siberian treeline, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14992, https://doi.org/10.5194/egusphere-egu2020-14992, 2020.
The fate of boreal forests under global warming and forced rapid environmental changes is still highly uncertain, in terms of remaining a carbon sink or becoming a future carbon source. Forest dynamics and resulting ecosystem services are strongly interlinked in the vast permafrost-covered regions of the Siberian treeline ecotone. Consequently, understanding the role of current and future active layer dynamics is crucial for the prediction of aboveground biomass and thus carbon stock developments.
We present a coupled model version combining CryoGrid, a sophisticated one-dimensional permafrost land surface model adapted for the use in forest ecosystems, with LAVESI, a detailed, individual-based and spatially explicit larch forest model. Subsequently, parameterizing against an extensive field data set of >100 forest inventories conducted along the treeline of larch-dominated boreal forests in Siberia (97-169° E), we run simulations covering the upcoming decades under contrasting climatic change scenarios.
The model setup can reproduce the energy transfer and thermal regime in permafrost ground as well as the radiation budget, nitrogen and photosynthetic profiles, canopy turbulence and leaf fluxes and predict the expected establishment, die-off and treeline movements of larch forests. Our results will show vegetation and permafrost dynamics, quantify the magnitudes of different feedback processes between permafrost, vegetation, and climate and reveal their impact on carbon stocks in Northern Siberia.
How to cite: Stünzi, S., Kruse, S., Boike, J., Herzschuh, U., and Langer, M.: Coupling an individual-based boreal forest model with a permafrost land-surface model to forecast biomass development in boreal larch forests at the Siberian treeline, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14992, https://doi.org/10.5194/egusphere-egu2020-14992, 2020.
EGU2020-13412 | Displays | BG3.15
Integrating multi-source data and model projections to address carbon cycling in central European forestsKatarina Merganicova, Roland Hollos, Zoltan Barcza, Jan Merganic, Zuzana Sitkova, Daniel Kurjak, Martin Mokros, Peter Fleischer, Hrvoje Marjanovic, Dora Hidy, Katarina Strelcova, and Tomas Hlasny
Carbon cycling in forest ecosystems is affected by a number of interacting environmental factors. Here we analyse carbon sequestration in temperate forests composed of three common Central European species: Norway spruce, European beech and oak along an extended environmental gradient across Central Europe using long-term monitoring data and process-based modelling of forest dynamics. For the analyses we used selected ICP forest monitoring plots, long-term forest research plots from thinning trials, and highly-equipped intensively monitored plots from five central European countries: Croatia, Hungary, Slovakia, Poland and the Czech Republic. Their temporal development was simulated using a process-based model Biome-BGCMuSo, which is sensitive to soil and climate conditions. Since such models of forest growth dynamics implicitly describe relationships between forest productivity and environmental conditions, their implementation can reveal the main factors affecting carbon cycling in forests along the gradients of latitude, altitude, or other environmental factors as long as they are included in the models. The study indicates that by linking long-term monitoring data and forest growth modelling we can not only test the model capacity to simulate forest dynamics, but above all we can increase our capacity to address main challenges faced by the central European forestry with respect to the global climate change.
How to cite: Merganicova, K., Hollos, R., Barcza, Z., Merganic, J., Sitkova, Z., Kurjak, D., Mokros, M., Fleischer, P., Marjanovic, H., Hidy, D., Strelcova, K., and Hlasny, T.: Integrating multi-source data and model projections to address carbon cycling in central European forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13412, https://doi.org/10.5194/egusphere-egu2020-13412, 2020.
Carbon cycling in forest ecosystems is affected by a number of interacting environmental factors. Here we analyse carbon sequestration in temperate forests composed of three common Central European species: Norway spruce, European beech and oak along an extended environmental gradient across Central Europe using long-term monitoring data and process-based modelling of forest dynamics. For the analyses we used selected ICP forest monitoring plots, long-term forest research plots from thinning trials, and highly-equipped intensively monitored plots from five central European countries: Croatia, Hungary, Slovakia, Poland and the Czech Republic. Their temporal development was simulated using a process-based model Biome-BGCMuSo, which is sensitive to soil and climate conditions. Since such models of forest growth dynamics implicitly describe relationships between forest productivity and environmental conditions, their implementation can reveal the main factors affecting carbon cycling in forests along the gradients of latitude, altitude, or other environmental factors as long as they are included in the models. The study indicates that by linking long-term monitoring data and forest growth modelling we can not only test the model capacity to simulate forest dynamics, but above all we can increase our capacity to address main challenges faced by the central European forestry with respect to the global climate change.
How to cite: Merganicova, K., Hollos, R., Barcza, Z., Merganic, J., Sitkova, Z., Kurjak, D., Mokros, M., Fleischer, P., Marjanovic, H., Hidy, D., Strelcova, K., and Hlasny, T.: Integrating multi-source data and model projections to address carbon cycling in central European forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13412, https://doi.org/10.5194/egusphere-egu2020-13412, 2020.
EGU2020-10523 | Displays | BG3.15
Constraining carbon allocation in a terrestrial ecosystem model using long-term forest biomass time seriesSimon Besnard, Sujan Koirala, Maurizio Santoro, Shanning Bao, Oliver Cartus, Fabian Gans, Martin Jung, Tina Trautmann, and Nuno Carvalhais
Forests cover about 30% of the terrestrial surface of our planet and store a large part of the terrestrial carbon (C), indicating their fundamental role in terrestrial C dynamics. In recent years, significant advances have been made in understanding terrestrial C cycling across scales, albeit uncertainties remain about fundamental processes, such as photosynthesis, allocation, and mortality, which exert dominant controls on vegetation C dynamics. Allocation plays a critical role in forest ecosystem C cycling by partitioning the products of net photosynthesis into leaves, wood, and below-ground components but is still poorly represented mostly given limitations in process understanding as well as in both suitable and commensurate observations.
Here, we explore different approaches in constraining C allocation alongside processes driving assimilation and out fluxes in a terrestrial ecosystem model based on novel forest biomass datasets. More specifically, we use a series of temporally changing above-ground biomass (AGB) data from local (i.e. in-situ forest inventory data) to global (i.e. long-term C-band satellite retrievals from 1992 to 2018) scales, in a multi-constraint approach. We explore the information contained in a novel AGB time series to diagnose the potential of using changes in vegetation C stocks, jointly with C and water fluxes, to constrain and parameterize different C allocation modeling approaches. Both at FLUXNET site level and global scale, we will: i) present these novel AGB datasets, their strengths and limitations, ii) demonstrate the relevance of constraining C allocation with such temporally changing AGB estimates, and iii) provide a comparison of different C allocation approaches (i.e. fixed versus dynamic allocation, and an hybrid modeling approach) and their implications in representing ecosystem dynamics.
How to cite: Besnard, S., Koirala, S., Santoro, M., Bao, S., Cartus, O., Gans, F., Jung, M., Trautmann, T., and Carvalhais, N.: Constraining carbon allocation in a terrestrial ecosystem model using long-term forest biomass time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10523, https://doi.org/10.5194/egusphere-egu2020-10523, 2020.
Forests cover about 30% of the terrestrial surface of our planet and store a large part of the terrestrial carbon (C), indicating their fundamental role in terrestrial C dynamics. In recent years, significant advances have been made in understanding terrestrial C cycling across scales, albeit uncertainties remain about fundamental processes, such as photosynthesis, allocation, and mortality, which exert dominant controls on vegetation C dynamics. Allocation plays a critical role in forest ecosystem C cycling by partitioning the products of net photosynthesis into leaves, wood, and below-ground components but is still poorly represented mostly given limitations in process understanding as well as in both suitable and commensurate observations.
Here, we explore different approaches in constraining C allocation alongside processes driving assimilation and out fluxes in a terrestrial ecosystem model based on novel forest biomass datasets. More specifically, we use a series of temporally changing above-ground biomass (AGB) data from local (i.e. in-situ forest inventory data) to global (i.e. long-term C-band satellite retrievals from 1992 to 2018) scales, in a multi-constraint approach. We explore the information contained in a novel AGB time series to diagnose the potential of using changes in vegetation C stocks, jointly with C and water fluxes, to constrain and parameterize different C allocation modeling approaches. Both at FLUXNET site level and global scale, we will: i) present these novel AGB datasets, their strengths and limitations, ii) demonstrate the relevance of constraining C allocation with such temporally changing AGB estimates, and iii) provide a comparison of different C allocation approaches (i.e. fixed versus dynamic allocation, and an hybrid modeling approach) and their implications in representing ecosystem dynamics.
How to cite: Besnard, S., Koirala, S., Santoro, M., Bao, S., Cartus, O., Gans, F., Jung, M., Trautmann, T., and Carvalhais, N.: Constraining carbon allocation in a terrestrial ecosystem model using long-term forest biomass time series, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10523, https://doi.org/10.5194/egusphere-egu2020-10523, 2020.
EGU2020-10722 | Displays | BG3.15
Optimal model complexity for terrestrial carbon cycle prediction using data assimilationCaroline A. Famiglietti, T. Luke Smallman, Sophie Flack-Prain, Rong Ge, Victoria Meyer, Nicholas C. Parazoo, Gregory R. Quetin, Andrew Revill, Stephanie G. Stettz, Yan Yang, Yuan Zhao, Penghui Zhu, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
The future role of the terrestrial biosphere in the global carbon cycle is highly uncertain. Modeling and predicting the terrestrial net carbon balance is difficult due to the numerous processes driving variability of gross fluxes. Many approaches to reducing this model uncertainty have focused on model structure, namely by adding additional processes (e.g., nutrient dynamics or vegetation demography) and thus increasing complexity. While these developments seek to achieve greater structural realism by mirroring the complexity of the natural world, they often rely, by necessity, on poorly-determined or over-generalized parameters. Furthermore, increased structural complexity may increase the risk that parameters with compensating errors are found during model development, thereby reducing model accuracy in prediction. It is not clear whether or to what extent carbon cycle predictability scales with structural complexity, or whether an intermediate, optimum level of complexity exists that may balance the costs of a low (more biased) or high (more variant) complexity model. Here, we explore and define the relationship between carbon cycle model complexity and prediction accuracy. To do so, we leverage the CARbon Data MOdel fraMework (CARDAMOM), a Bayesian data assimilation system that retrieves terrestrial carbon cycle variables (including pools, fluxes, and static parameters) by combining multiple observations with a relatively simple ecosystem carbon balance model. CARDAMOM includes several ecological and dynamical constraints that can prevent ecologically unrealistic parameter combinations and reduce compensating errors between parameters (also known as equifinality). Furthermore, it is a flexible framework to which process representations, parameters, and constraints can easily be added and removed. We used CARDAMOM to develop a suite of model versions spanning a broad range of structural complexity, including the number of carbon pools and the allocation of carbon to the canopy. We assessed a model’s complexity based on its inherent dimensionality, determined via a principal component analysis that reduces the parameter space to its principal components. We tested and compared the training and forecast accuracies of net ecosystem exchange predictions using 14 increasingly complex versions of CARDAMOM, each with 48 different experimental designs (i.e., combinations of data constraints and error assumptions) at 5 globally-distributed eddy covariance sites representing a range of biomes and vegetation types across a total of 70 site-years. We also compared the model performance values against a range of machine learning approaches, which are assumed to represent the limit of infinite model complexity due to their large number of underlying parameters. In this presentation, we use this population to demonstrate and explain patterns in the mapping of model complexity and other assimilation choices to prediction accuracy, offering theoretical and empirical insights into the optimal structure of a carbon cycle model.
How to cite: Famiglietti, C. A., Smallman, T. L., Flack-Prain, S., Ge, R., Meyer, V., Parazoo, N. C., Quetin, G. R., Revill, A., Stettz, S. G., Yang, Y., Zhao, Y., Zhu, P., Bloom, A. A., Williams, M., and Konings, A. G.: Optimal model complexity for terrestrial carbon cycle prediction using data assimilation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10722, https://doi.org/10.5194/egusphere-egu2020-10722, 2020.
The future role of the terrestrial biosphere in the global carbon cycle is highly uncertain. Modeling and predicting the terrestrial net carbon balance is difficult due to the numerous processes driving variability of gross fluxes. Many approaches to reducing this model uncertainty have focused on model structure, namely by adding additional processes (e.g., nutrient dynamics or vegetation demography) and thus increasing complexity. While these developments seek to achieve greater structural realism by mirroring the complexity of the natural world, they often rely, by necessity, on poorly-determined or over-generalized parameters. Furthermore, increased structural complexity may increase the risk that parameters with compensating errors are found during model development, thereby reducing model accuracy in prediction. It is not clear whether or to what extent carbon cycle predictability scales with structural complexity, or whether an intermediate, optimum level of complexity exists that may balance the costs of a low (more biased) or high (more variant) complexity model. Here, we explore and define the relationship between carbon cycle model complexity and prediction accuracy. To do so, we leverage the CARbon Data MOdel fraMework (CARDAMOM), a Bayesian data assimilation system that retrieves terrestrial carbon cycle variables (including pools, fluxes, and static parameters) by combining multiple observations with a relatively simple ecosystem carbon balance model. CARDAMOM includes several ecological and dynamical constraints that can prevent ecologically unrealistic parameter combinations and reduce compensating errors between parameters (also known as equifinality). Furthermore, it is a flexible framework to which process representations, parameters, and constraints can easily be added and removed. We used CARDAMOM to develop a suite of model versions spanning a broad range of structural complexity, including the number of carbon pools and the allocation of carbon to the canopy. We assessed a model’s complexity based on its inherent dimensionality, determined via a principal component analysis that reduces the parameter space to its principal components. We tested and compared the training and forecast accuracies of net ecosystem exchange predictions using 14 increasingly complex versions of CARDAMOM, each with 48 different experimental designs (i.e., combinations of data constraints and error assumptions) at 5 globally-distributed eddy covariance sites representing a range of biomes and vegetation types across a total of 70 site-years. We also compared the model performance values against a range of machine learning approaches, which are assumed to represent the limit of infinite model complexity due to their large number of underlying parameters. In this presentation, we use this population to demonstrate and explain patterns in the mapping of model complexity and other assimilation choices to prediction accuracy, offering theoretical and empirical insights into the optimal structure of a carbon cycle model.
How to cite: Famiglietti, C. A., Smallman, T. L., Flack-Prain, S., Ge, R., Meyer, V., Parazoo, N. C., Quetin, G. R., Revill, A., Stettz, S. G., Yang, Y., Zhao, Y., Zhu, P., Bloom, A. A., Williams, M., and Konings, A. G.: Optimal model complexity for terrestrial carbon cycle prediction using data assimilation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10722, https://doi.org/10.5194/egusphere-egu2020-10722, 2020.
EGU2020-21936 | Displays | BG3.15
The Dynamic Vegetation Model HUMBOLDT (LSMbio) The role of biodiversity and nutrient limitation in driving ecosystem processes on a tropical altitudinal gradientMateus Dantas de Paula and Thomas Hickler
The HUMBOLDT-LSMbio component is an expansion of the LPJ-GUESS dynamic vegetation model , including local diversity of plant traits and an organic matter module representing the Nitrogen and Phosphorus cycles. In the new trait variation module the initial full range of possible traits is filtered along the altitudinal gradient with the aim to predict the trait distribution of communities observed in the field. The model was parameterized using local trait data per species collected by field campaigns along the whole altitudinal gradient, considering the leaf and wood economics spectrum and tissue nutrient concentrations, and locally measured N and P flux data, in which we were able to use deposition and weathering rates, as well as soil organic and mineral layer nutrient concentrations. In order to evaluate the model with regards to nutrient limitation, the simulation experiment was designed with the NUMEX nutrient manipulation experiment in mind, meaning that the reference nutrient limited community was compared to simulations in which N or/and P limitations were deactivated (i.e. plants could grow independent of their N or P demands being met). Results in NUMEX suggested that the removal of nutrient limitation would produce more biotically homogenous communites, and taller trees with higher productivity and more allocation to belowground biomass.
Our results indicate that including trait diversity and nutrient limitation provide a significant improvement in relation to ecosystem representation especially at higher elevations. Deactivation of nutrient limitation suggests reduced community trait differentiation along the elevation gradient (e.g. specific leaf area), and increased productivity (i.e. Carbon and NPP values). Deactivation of trait diversity impels plant survival at higher altitudes. Significant model improvements are expected in the future with further field trait measurements from the RESPECT subprojects, and the inclusion of other significant processes such as leaf herbivory, seed dispersal and of course the coupled model runs with LSMatmo and LSMhydro.
How to cite: Dantas de Paula, M. and Hickler, T.: The Dynamic Vegetation Model HUMBOLDT (LSMbio) The role of biodiversity and nutrient limitation in driving ecosystem processes on a tropical altitudinal gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21936, https://doi.org/10.5194/egusphere-egu2020-21936, 2020.
The HUMBOLDT-LSMbio component is an expansion of the LPJ-GUESS dynamic vegetation model , including local diversity of plant traits and an organic matter module representing the Nitrogen and Phosphorus cycles. In the new trait variation module the initial full range of possible traits is filtered along the altitudinal gradient with the aim to predict the trait distribution of communities observed in the field. The model was parameterized using local trait data per species collected by field campaigns along the whole altitudinal gradient, considering the leaf and wood economics spectrum and tissue nutrient concentrations, and locally measured N and P flux data, in which we were able to use deposition and weathering rates, as well as soil organic and mineral layer nutrient concentrations. In order to evaluate the model with regards to nutrient limitation, the simulation experiment was designed with the NUMEX nutrient manipulation experiment in mind, meaning that the reference nutrient limited community was compared to simulations in which N or/and P limitations were deactivated (i.e. plants could grow independent of their N or P demands being met). Results in NUMEX suggested that the removal of nutrient limitation would produce more biotically homogenous communites, and taller trees with higher productivity and more allocation to belowground biomass.
Our results indicate that including trait diversity and nutrient limitation provide a significant improvement in relation to ecosystem representation especially at higher elevations. Deactivation of nutrient limitation suggests reduced community trait differentiation along the elevation gradient (e.g. specific leaf area), and increased productivity (i.e. Carbon and NPP values). Deactivation of trait diversity impels plant survival at higher altitudes. Significant model improvements are expected in the future with further field trait measurements from the RESPECT subprojects, and the inclusion of other significant processes such as leaf herbivory, seed dispersal and of course the coupled model runs with LSMatmo and LSMhydro.
How to cite: Dantas de Paula, M. and Hickler, T.: The Dynamic Vegetation Model HUMBOLDT (LSMbio) The role of biodiversity and nutrient limitation in driving ecosystem processes on a tropical altitudinal gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21936, https://doi.org/10.5194/egusphere-egu2020-21936, 2020.
EGU2020-21790 | Displays | BG3.15
Uncertainties of climate and CO2 impacts on carbon stocks and biome distribution in AfricaCarola Martens, Thomas Hickler, Claire Davis-Reddy, Francois Engelbrecht, Steven I. Higgins, Graham P. von Maltitz, Guy F. Midgley, Mirjam Pfeiffer, and Simon Scheiter
Climate change is expected to cause vegetation change in Africa, with profound impacts on ecosystems and biodiversity. Projections of future ecosystem states are constrained by uncertainties regarding relative impacts of climate change and CO2 fertilisation effects. Rising atmospheric CO2 drives climate change, but also directly affects plant physiological functions via carbon uptake, carbon allocation, water use efficiency, and growth. We use the adaptive Dynamic Global Vegetation Model (aDGVM) to quantify uncertainties in projected African vegetation until 2099. High-resolution climate forcing for the aDGVM, was generated by regional climate modelling. An ensemble of 24 aDGVM simulations based on six downscaled General Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5) with plant-physiological CO2 effects enabled and disabled was implemented.
Under strong climatic change with high CO2 increases (RCP 8.5), almost a third of terrestrial Africa is projected to experience biome changes with woody encroachment into grassy biomes dominating biome changes. Projections under medium-impact scenarios (RCP 4.5) still predict biome changes for around a quarter of Africa. With climate change only and elevated-CO2 effects disabled, woody encroachment is weak and reduction of forest cover in favour of savannas prevails. Change in aboveground vegetation carbon until 2099 varied from a strong increase under elevated CO2 (61.5%, RCP 8.5; 33.9%, RCP 4.5) to a small increase of 5.4% (RCP 4.5) and a decrease of -13.6% (RCP 8.5) without CO2 effects.
CO2 effects in combination with RCP scenarios caused the greatest uncertainty in projected ecosystem changes. Downscaled GCM projections caused weaker uncertainties in the simulations. Future biome changes due to climate and CO2 change are therefore likely in large parts of Africa. Their magnitude and location often remain uncertain. Climate mitigation and adaptation response measures that rely upon vegetation-derived ecosystem services will need to account for alternative climate futures.
How to cite: Martens, C., Hickler, T., Davis-Reddy, C., Engelbrecht, F., Higgins, S. I., von Maltitz, G. P., Midgley, G. F., Pfeiffer, M., and Scheiter, S.: Uncertainties of climate and CO2 impacts on carbon stocks and biome distribution in Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21790, https://doi.org/10.5194/egusphere-egu2020-21790, 2020.
Climate change is expected to cause vegetation change in Africa, with profound impacts on ecosystems and biodiversity. Projections of future ecosystem states are constrained by uncertainties regarding relative impacts of climate change and CO2 fertilisation effects. Rising atmospheric CO2 drives climate change, but also directly affects plant physiological functions via carbon uptake, carbon allocation, water use efficiency, and growth. We use the adaptive Dynamic Global Vegetation Model (aDGVM) to quantify uncertainties in projected African vegetation until 2099. High-resolution climate forcing for the aDGVM, was generated by regional climate modelling. An ensemble of 24 aDGVM simulations based on six downscaled General Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5) with plant-physiological CO2 effects enabled and disabled was implemented.
Under strong climatic change with high CO2 increases (RCP 8.5), almost a third of terrestrial Africa is projected to experience biome changes with woody encroachment into grassy biomes dominating biome changes. Projections under medium-impact scenarios (RCP 4.5) still predict biome changes for around a quarter of Africa. With climate change only and elevated-CO2 effects disabled, woody encroachment is weak and reduction of forest cover in favour of savannas prevails. Change in aboveground vegetation carbon until 2099 varied from a strong increase under elevated CO2 (61.5%, RCP 8.5; 33.9%, RCP 4.5) to a small increase of 5.4% (RCP 4.5) and a decrease of -13.6% (RCP 8.5) without CO2 effects.
CO2 effects in combination with RCP scenarios caused the greatest uncertainty in projected ecosystem changes. Downscaled GCM projections caused weaker uncertainties in the simulations. Future biome changes due to climate and CO2 change are therefore likely in large parts of Africa. Their magnitude and location often remain uncertain. Climate mitigation and adaptation response measures that rely upon vegetation-derived ecosystem services will need to account for alternative climate futures.
How to cite: Martens, C., Hickler, T., Davis-Reddy, C., Engelbrecht, F., Higgins, S. I., von Maltitz, G. P., Midgley, G. F., Pfeiffer, M., and Scheiter, S.: Uncertainties of climate and CO2 impacts on carbon stocks and biome distribution in Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21790, https://doi.org/10.5194/egusphere-egu2020-21790, 2020.
EGU2020-8031 | Displays | BG3.15
Legacy effects from historical environmental changes dominate future terrestrial carbon uptakeAndreas Krause, Almut Arneth, and Anja Rammig
The carbon balance of terrestrial ecosystems is determined by environmental drivers (chiefly related to climate and land use) which interact with each other and change over time. In particular, ecosystems are presently still affected by past environmental changes because they have not yet reached equilibrium with their environment. However, the magnitude and drivers of this legacy effect for the upcoming decades are still unclear. Here, we use the dynamic global vegetation model LPJ-GUESS to calculate the effects of historical (1850-2015) and future (2015-2099, exemplarily for the high emission/moderate deforestation scenario SSP5-8.5) environmental changes on historical and future terrestrial carbon cycling and to quantify the contributions of the following environmental drivers: climate change, CO2 fertilization, agricultural expansion, shifting cultivation frequency, wood harvest, nitrogen deposition, and nitrogen fertilization.
According to our simulations, the land represented a cumulative net carbon source (-154 GtC) over the historical period mainly due to deforestation, wood harvest, and negative climate change impacts partly offset by carbon uptake via increased CO2 levels and nitrogen input. In contrast, the land is simulated to act as a net carbon sink (+118 GtC) over the 21st century. This is mostly a result of historical environmental changes as ecosystems still adapt to present-day CO2 and nitrogen availability as well as long-term vegetation regrowth following agricultural abandonment and wood harvest. The net impact of future environmental changes on future carbon cycling is much smaller because effects from individual environmental drivers largely compensate. Historical environmental changes dominate future terrestrial carbon cycling at least until mid-century when legacy effects gradually diminish and future environmental changes start to trigger carbon accumulation. Our results suggest that legacy effects persist even many decades after environmental changes occurred and need to be considered when interpreting alterations of the terrestrial carbon cycle.
How to cite: Krause, A., Arneth, A., and Rammig, A.: Legacy effects from historical environmental changes dominate future terrestrial carbon uptake , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8031, https://doi.org/10.5194/egusphere-egu2020-8031, 2020.
The carbon balance of terrestrial ecosystems is determined by environmental drivers (chiefly related to climate and land use) which interact with each other and change over time. In particular, ecosystems are presently still affected by past environmental changes because they have not yet reached equilibrium with their environment. However, the magnitude and drivers of this legacy effect for the upcoming decades are still unclear. Here, we use the dynamic global vegetation model LPJ-GUESS to calculate the effects of historical (1850-2015) and future (2015-2099, exemplarily for the high emission/moderate deforestation scenario SSP5-8.5) environmental changes on historical and future terrestrial carbon cycling and to quantify the contributions of the following environmental drivers: climate change, CO2 fertilization, agricultural expansion, shifting cultivation frequency, wood harvest, nitrogen deposition, and nitrogen fertilization.
According to our simulations, the land represented a cumulative net carbon source (-154 GtC) over the historical period mainly due to deforestation, wood harvest, and negative climate change impacts partly offset by carbon uptake via increased CO2 levels and nitrogen input. In contrast, the land is simulated to act as a net carbon sink (+118 GtC) over the 21st century. This is mostly a result of historical environmental changes as ecosystems still adapt to present-day CO2 and nitrogen availability as well as long-term vegetation regrowth following agricultural abandonment and wood harvest. The net impact of future environmental changes on future carbon cycling is much smaller because effects from individual environmental drivers largely compensate. Historical environmental changes dominate future terrestrial carbon cycling at least until mid-century when legacy effects gradually diminish and future environmental changes start to trigger carbon accumulation. Our results suggest that legacy effects persist even many decades after environmental changes occurred and need to be considered when interpreting alterations of the terrestrial carbon cycle.
How to cite: Krause, A., Arneth, A., and Rammig, A.: Legacy effects from historical environmental changes dominate future terrestrial carbon uptake , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8031, https://doi.org/10.5194/egusphere-egu2020-8031, 2020.
EGU2020-10830 | Displays | BG3.15
Emergent constraints on global carbon-climate feedbacks from regional atmospheric aridityArmineh Barkhordarian, Kevin W. Bowman, Noel Cressie, Jeffrey Jewell, and Johanna Baehr
The vulnerability of terrestrial carbon sequestration to increases in fossil fuel emissions is one of the most important feedbacks in the Earth System. However, the relative importance of temperature and moisture controls on regional terrestrial CO2 fluxes varies substantially and yet critical to unraveling their roles in carbon-climate feedbacks. Here, we employ the Hierarchical Emergent Constraint (HEC) to quantify an emergent relationship between spatially- explicit sensitivities of carbon fluxes to atmospheric aridity across an ensemble of Earth System Models (ESMs) and the long-term sensitivity of tropical land-carbon storage to atmospheric aridity. Our results show that interannual fluctuations in atmospheric aridity, as an important driver of atmospheric water demand for plants, substantially impact the terrestrial carbon sink. However, this analysis, which is conditioned on observations, leads to a substantially lower feedback than predicted by ESMs alone. Furthermore, we show that a relatively small number of regions have an out-sized impact on global carbon climate-feedbacks. These findings underscore the role of both water and temperature on carbon-climate feedbacks while the regional attribution provided by HEC points to areas for further process-based research.
How to cite: Barkhordarian, A., Bowman, K. W., Cressie, N., Jewell, J., and Baehr, J.: Emergent constraints on global carbon-climate feedbacks from regional atmospheric aridity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10830, https://doi.org/10.5194/egusphere-egu2020-10830, 2020.
The vulnerability of terrestrial carbon sequestration to increases in fossil fuel emissions is one of the most important feedbacks in the Earth System. However, the relative importance of temperature and moisture controls on regional terrestrial CO2 fluxes varies substantially and yet critical to unraveling their roles in carbon-climate feedbacks. Here, we employ the Hierarchical Emergent Constraint (HEC) to quantify an emergent relationship between spatially- explicit sensitivities of carbon fluxes to atmospheric aridity across an ensemble of Earth System Models (ESMs) and the long-term sensitivity of tropical land-carbon storage to atmospheric aridity. Our results show that interannual fluctuations in atmospheric aridity, as an important driver of atmospheric water demand for plants, substantially impact the terrestrial carbon sink. However, this analysis, which is conditioned on observations, leads to a substantially lower feedback than predicted by ESMs alone. Furthermore, we show that a relatively small number of regions have an out-sized impact on global carbon climate-feedbacks. These findings underscore the role of both water and temperature on carbon-climate feedbacks while the regional attribution provided by HEC points to areas for further process-based research.
How to cite: Barkhordarian, A., Bowman, K. W., Cressie, N., Jewell, J., and Baehr, J.: Emergent constraints on global carbon-climate feedbacks from regional atmospheric aridity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10830, https://doi.org/10.5194/egusphere-egu2020-10830, 2020.
EGU2020-3437 | Displays | BG3.15
Utility of hyperspectral remote sensing data in estimating biomass and structure variables in boreal forest of FinlandEelis Halme, Petri Pellikka, and Matti Mõttus
Three-quarters of Finland’s land surface area (22.8 million hectares) is filled with forests. The role of remote sensing in large area inventories is crucial. The forests of Finland serve as an important resource for the nation’s nature conservation as well as for the forestry industry. Furthermore, forests are significant carbon sinks and play a great role in climate change mitigation. Research on vegetation parameter retrieval is of special relevance in order to extend our knowledge about the vegetation dynamics and terrestrial carbon stocks at regional and global scales.
In future in addition to multispectral satellites, hyperspectral satellite missions will start to provide remote sensing data to support the needs of forestry and other natural resource management practices. We investigated the influence of spectral and spatial resolution of remote sensing data on retrieval of biomass and other forest properties. The study contributed to better information productivity on forest variables in boreal forest ecosystem.
We used the remote sensing data by Sentinel-2 (10 bands, resolution 10 m) and hyperspectral AISA imager (128 bands, 400–1000 nm, resolution 0.7 m). As reference data, we used new forest resource dataset provided by the Finnish Forest Centre and additional independent in situ measurements. We applied kernel-based regression methods to relate the forest variables of interest with the remotely sensed data. Based on recent studies, we selected Gaussian process regression (GPR) and support vector regression (SVR), which have proven to work well with hyperspectral and multispectral remote sensing data. Regression estimations were performed for stem biomass, basal area, mean height, leaf area index (LAI) and main tree species. The estimation accuracies were examined with absolute and relative root-mean-square errors.
Successful forest variable estimations showed that kernel-based regression algorithms are suitable tools for quantification of forest structure and assessment of its change. The estimation accuracies between the two algorithms were similar. However, the faster SVR algorithm was found to be more practical, especially considering large scale mapping and future near real-time applications. Based on the study results, the additional value of hyperspectral remote sensing data in forest variable estimation in Finnish boreal forest is mainly related to variables with species-specific information, such as main tree species and LAI. The more interesting variables for forestry industry, such as basal area or stem biomass, can also be estimated accurately with more traditional multispectral remote sensing data.
How to cite: Halme, E., Pellikka, P., and Mõttus, M.: Utility of hyperspectral remote sensing data in estimating biomass and structure variables in boreal forest of Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3437, https://doi.org/10.5194/egusphere-egu2020-3437, 2020.
Three-quarters of Finland’s land surface area (22.8 million hectares) is filled with forests. The role of remote sensing in large area inventories is crucial. The forests of Finland serve as an important resource for the nation’s nature conservation as well as for the forestry industry. Furthermore, forests are significant carbon sinks and play a great role in climate change mitigation. Research on vegetation parameter retrieval is of special relevance in order to extend our knowledge about the vegetation dynamics and terrestrial carbon stocks at regional and global scales.
In future in addition to multispectral satellites, hyperspectral satellite missions will start to provide remote sensing data to support the needs of forestry and other natural resource management practices. We investigated the influence of spectral and spatial resolution of remote sensing data on retrieval of biomass and other forest properties. The study contributed to better information productivity on forest variables in boreal forest ecosystem.
We used the remote sensing data by Sentinel-2 (10 bands, resolution 10 m) and hyperspectral AISA imager (128 bands, 400–1000 nm, resolution 0.7 m). As reference data, we used new forest resource dataset provided by the Finnish Forest Centre and additional independent in situ measurements. We applied kernel-based regression methods to relate the forest variables of interest with the remotely sensed data. Based on recent studies, we selected Gaussian process regression (GPR) and support vector regression (SVR), which have proven to work well with hyperspectral and multispectral remote sensing data. Regression estimations were performed for stem biomass, basal area, mean height, leaf area index (LAI) and main tree species. The estimation accuracies were examined with absolute and relative root-mean-square errors.
Successful forest variable estimations showed that kernel-based regression algorithms are suitable tools for quantification of forest structure and assessment of its change. The estimation accuracies between the two algorithms were similar. However, the faster SVR algorithm was found to be more practical, especially considering large scale mapping and future near real-time applications. Based on the study results, the additional value of hyperspectral remote sensing data in forest variable estimation in Finnish boreal forest is mainly related to variables with species-specific information, such as main tree species and LAI. The more interesting variables for forestry industry, such as basal area or stem biomass, can also be estimated accurately with more traditional multispectral remote sensing data.
How to cite: Halme, E., Pellikka, P., and Mõttus, M.: Utility of hyperspectral remote sensing data in estimating biomass and structure variables in boreal forest of Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3437, https://doi.org/10.5194/egusphere-egu2020-3437, 2020.
EGU2020-10261 | Displays | BG3.15
Influence of spatial coherence of temperature anomalies on the supposed breakdown of the warmer spring – larger carbon uptake mechanism in northern high latitudesPeter Joyce, Manuel Gloor, Roel Brienen, and Wolfgang Buermann
Land vegetation growth in the northern high latitudes (north of 50˚N) is strongly temperature limited, thus anomalously warm years are expected to result in an increased drawdown of Carbon Dioxide (CO2) and vice versa. Piao et al (2017) concluded in an analysis of climate and CO2 data from Point Barrow, Alaska that there was a weakening response of northern high latitude spring carbon uptake to temperature anomalies over the last 40 years. They proposed that this is due to a weakening control of temperature on productivity. We have analysed northern high latitude climate and remote sensing vegetation indices, as well as atmospheric CO2 data at Point Barrow, with atmospheric transport analyses of the footprint seen at Barrow. Our results show no large-scale significant change in the spring NDVI-temperature relationship inside the footprint of Barrow, and across the high northern latitudes as a whole. This casts doubt on the assertion that the changing relationship between CO2 uptake and temperature is driven by a change in vegetation response to temperature. We thus tested several alternative mechanisms that could explain the apparent weakening, including a change in interannual variability of atmospheric transport (i.e. the footprint seen by Barrow) and the spatial agreement of temperature anomalies. We find that the heterogeneity of temperature anomalies increased over time, whereas there is no significant change in interannual variation in the footprint seen by Barrow. These results offer an additional explanation for the apparent decrease in spring temperature sensitivity of northern high latitude CO2 uptake.
How to cite: Joyce, P., Gloor, M., Brienen, R., and Buermann, W.: Influence of spatial coherence of temperature anomalies on the supposed breakdown of the warmer spring – larger carbon uptake mechanism in northern high latitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10261, https://doi.org/10.5194/egusphere-egu2020-10261, 2020.
Land vegetation growth in the northern high latitudes (north of 50˚N) is strongly temperature limited, thus anomalously warm years are expected to result in an increased drawdown of Carbon Dioxide (CO2) and vice versa. Piao et al (2017) concluded in an analysis of climate and CO2 data from Point Barrow, Alaska that there was a weakening response of northern high latitude spring carbon uptake to temperature anomalies over the last 40 years. They proposed that this is due to a weakening control of temperature on productivity. We have analysed northern high latitude climate and remote sensing vegetation indices, as well as atmospheric CO2 data at Point Barrow, with atmospheric transport analyses of the footprint seen at Barrow. Our results show no large-scale significant change in the spring NDVI-temperature relationship inside the footprint of Barrow, and across the high northern latitudes as a whole. This casts doubt on the assertion that the changing relationship between CO2 uptake and temperature is driven by a change in vegetation response to temperature. We thus tested several alternative mechanisms that could explain the apparent weakening, including a change in interannual variability of atmospheric transport (i.e. the footprint seen by Barrow) and the spatial agreement of temperature anomalies. We find that the heterogeneity of temperature anomalies increased over time, whereas there is no significant change in interannual variation in the footprint seen by Barrow. These results offer an additional explanation for the apparent decrease in spring temperature sensitivity of northern high latitude CO2 uptake.
How to cite: Joyce, P., Gloor, M., Brienen, R., and Buermann, W.: Influence of spatial coherence of temperature anomalies on the supposed breakdown of the warmer spring – larger carbon uptake mechanism in northern high latitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10261, https://doi.org/10.5194/egusphere-egu2020-10261, 2020.
EGU2020-20245 | Displays | BG3.15 | Highlight
On the significance of global greening trends with multiple testing – an application to five data productsJosé Cortés, Miguel Mahecha, Markus Reichstein, and Alexander Brenning
The statistical analysis of environmental data from remote sensing and Earth system simulations often entails the analysis of gridded spatio-temporal data, where a hypothesis test is performed for each grid cell. When the whole image or set of grid cells is analyzed for a global effect, the problem of multiple testing arises – this applies to the study of global greening trends, which have been widely reported. Although there is a consensus on the greening patterns, there is still much debate about the attribution to CO2 fertilization, temperature rise, and land use intensification. We argue that none of the studies uses a proper statistical methodology and hence fail to identify the hotspots of “real greening". To perform statistical inference, we need to account for this multiplicity of hypothesis tests. In this work, we demonstrate how to address this issue with a permutation method based on clustering, which allows us to make robust inference on regions or patterns, using the Mann-Kendall Test as the basis. The method is illustrated by comparing global greening trends derived from five different data products which contain global data for Leaf Area Index and/or Fraction of Absorbed Photosynthetically Active Radiation: GIMMS 3g, NOAA CDR, Land Long Term Data Record, LTDR MOD15A2, and SPOT/PROBA-V data. We find that many greening trends detected in earlier studies do not withstand our rigorous significance testing. Yet we do find consistent greening trends in South East China. Our results show substantial differences in statistically significant patterns of greening and browning among the products used, but greatly reduce the focal areas of greening that should be investigated in detail with proper trend-attribution methods.
How to cite: Cortés, J., Mahecha, M., Reichstein, M., and Brenning, A.: On the significance of global greening trends with multiple testing – an application to five data products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20245, https://doi.org/10.5194/egusphere-egu2020-20245, 2020.
The statistical analysis of environmental data from remote sensing and Earth system simulations often entails the analysis of gridded spatio-temporal data, where a hypothesis test is performed for each grid cell. When the whole image or set of grid cells is analyzed for a global effect, the problem of multiple testing arises – this applies to the study of global greening trends, which have been widely reported. Although there is a consensus on the greening patterns, there is still much debate about the attribution to CO2 fertilization, temperature rise, and land use intensification. We argue that none of the studies uses a proper statistical methodology and hence fail to identify the hotspots of “real greening". To perform statistical inference, we need to account for this multiplicity of hypothesis tests. In this work, we demonstrate how to address this issue with a permutation method based on clustering, which allows us to make robust inference on regions or patterns, using the Mann-Kendall Test as the basis. The method is illustrated by comparing global greening trends derived from five different data products which contain global data for Leaf Area Index and/or Fraction of Absorbed Photosynthetically Active Radiation: GIMMS 3g, NOAA CDR, Land Long Term Data Record, LTDR MOD15A2, and SPOT/PROBA-V data. We find that many greening trends detected in earlier studies do not withstand our rigorous significance testing. Yet we do find consistent greening trends in South East China. Our results show substantial differences in statistically significant patterns of greening and browning among the products used, but greatly reduce the focal areas of greening that should be investigated in detail with proper trend-attribution methods.
How to cite: Cortés, J., Mahecha, M., Reichstein, M., and Brenning, A.: On the significance of global greening trends with multiple testing – an application to five data products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20245, https://doi.org/10.5194/egusphere-egu2020-20245, 2020.
EGU2020-18660 | Displays | BG3.15
Time-scale dependent relations of vegetation productivity with Earth Observation based proxies and with climate driversNora Linscheid, Nuno Carvalhais, Miguel Mahecha, Anja Rammig, and Markus Reichstein
New satellite products hold promise to improve our understanding of terrestrial ecosystem functioning, yet it remains a key challenge to measure global gross primary productivity (GPP) and its climate-induced fluctuations. While global estimates of GPP exist and several new satellite products hold potential for better GPP estimation, the best proxy of GPP may depend on the temporal and spatial scale considered, because available satellite products may differentially represent different time scales of vegetation dynamics. For example, vegetation indices such as NDVI and EVI may capture seasonal phenology well, while sun-induced fluorescence (SIF) may be more sensitive to short-term fluctuations of photosynthesis, and vegetation optical depth (VOD) may best represent slower changes in aboveground biomass. SIF in particular is proposed as a promising proxy for GPP as they show linear relationships with ecosystem-dependent slopes, but this may not be the case at all time scales.
In this study, we compare different Earth Observation vegetation proxies to FLUXCOM GPP in order to understand which vegetation proxy best represents GPP at sub-annual, annual and long-term scales with the aim to enable more accurate short- and long-term prediction of GPP and its drivers. We further assess the dominant climatic drivers of vegetation productivity and the vegetation’s sensitivity from sub-annual to inter-annual time scales using a multiple linear regression approach. We find the dominant drivers of vegetation productivity to differ across time scales in relation to land cover and climate.
In summary, depending on the time-scale, different satellite products best represent GPP and its climatic drivers. Considering this may help improve GPP estimates and predictions of long-term land carbon sink dynamics in the future.
How to cite: Linscheid, N., Carvalhais, N., Mahecha, M., Rammig, A., and Reichstein, M.: Time-scale dependent relations of vegetation productivity with Earth Observation based proxies and with climate drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18660, https://doi.org/10.5194/egusphere-egu2020-18660, 2020.
New satellite products hold promise to improve our understanding of terrestrial ecosystem functioning, yet it remains a key challenge to measure global gross primary productivity (GPP) and its climate-induced fluctuations. While global estimates of GPP exist and several new satellite products hold potential for better GPP estimation, the best proxy of GPP may depend on the temporal and spatial scale considered, because available satellite products may differentially represent different time scales of vegetation dynamics. For example, vegetation indices such as NDVI and EVI may capture seasonal phenology well, while sun-induced fluorescence (SIF) may be more sensitive to short-term fluctuations of photosynthesis, and vegetation optical depth (VOD) may best represent slower changes in aboveground biomass. SIF in particular is proposed as a promising proxy for GPP as they show linear relationships with ecosystem-dependent slopes, but this may not be the case at all time scales.
In this study, we compare different Earth Observation vegetation proxies to FLUXCOM GPP in order to understand which vegetation proxy best represents GPP at sub-annual, annual and long-term scales with the aim to enable more accurate short- and long-term prediction of GPP and its drivers. We further assess the dominant climatic drivers of vegetation productivity and the vegetation’s sensitivity from sub-annual to inter-annual time scales using a multiple linear regression approach. We find the dominant drivers of vegetation productivity to differ across time scales in relation to land cover and climate.
In summary, depending on the time-scale, different satellite products best represent GPP and its climatic drivers. Considering this may help improve GPP estimates and predictions of long-term land carbon sink dynamics in the future.
How to cite: Linscheid, N., Carvalhais, N., Mahecha, M., Rammig, A., and Reichstein, M.: Time-scale dependent relations of vegetation productivity with Earth Observation based proxies and with climate drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18660, https://doi.org/10.5194/egusphere-egu2020-18660, 2020.
EGU2020-13171 | Displays | BG3.15
Multi-scale Atmospheric CO2 Variabilities over Southern AfricaBoipelo B Thande, Gizaw Mengistu Tsidu, and Anteneh Getachew Mengistu
Carbon sinks play an important role in absorbing almost half of the CO2 emissions emanating from anthropogenic activities. However, regional contributions of atmospheric CO2 are not well known in Southern Africa. This is partly attributed to a shortage of in-situ data, data gaps, and limitation in the theory in modeling atmospheric CO2 dynamics. The shortage of in-situ observations and poor model skills have created a need for assimilation of observations into models to assess the variability of atmospheric levels in near real-time globally. In this study, we investigated the variabilities of XCO2 at multi-temporal scales based on reanalysis data from the carbon tracker (CT) assimilation model over Southern Africa from the year 2000 to 2016. The ensemble empirical mode decomposition (EEMD) statistical technique was used to decompose the CO2 time series into signals with different periodicities. The results demonstrate that the different component signals are driven by atmospheric, surface and oceanic forcings (e.g., rainfall, temperature, soil moisture, and SST).
How to cite: Thande, B. B., Mengistu Tsidu, G., and Getachew Mengistu, A.: Multi-scale Atmospheric CO2 Variabilities over Southern Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13171, https://doi.org/10.5194/egusphere-egu2020-13171, 2020.
Carbon sinks play an important role in absorbing almost half of the CO2 emissions emanating from anthropogenic activities. However, regional contributions of atmospheric CO2 are not well known in Southern Africa. This is partly attributed to a shortage of in-situ data, data gaps, and limitation in the theory in modeling atmospheric CO2 dynamics. The shortage of in-situ observations and poor model skills have created a need for assimilation of observations into models to assess the variability of atmospheric levels in near real-time globally. In this study, we investigated the variabilities of XCO2 at multi-temporal scales based on reanalysis data from the carbon tracker (CT) assimilation model over Southern Africa from the year 2000 to 2016. The ensemble empirical mode decomposition (EEMD) statistical technique was used to decompose the CO2 time series into signals with different periodicities. The results demonstrate that the different component signals are driven by atmospheric, surface and oceanic forcings (e.g., rainfall, temperature, soil moisture, and SST).
How to cite: Thande, B. B., Mengistu Tsidu, G., and Getachew Mengistu, A.: Multi-scale Atmospheric CO2 Variabilities over Southern Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13171, https://doi.org/10.5194/egusphere-egu2020-13171, 2020.
EGU2020-5335 | Displays | BG3.15
Combined analysis of tree rings and MODIS images to evaluate beech forest productivity along geographic gradientsLuca Di Fiore, Gianluca Piovesan, Michele Baliva, and Alfredo Di Filippo
Remote sensing is widely used for monitoring vegetation status and ecosystem productivity. The increasing interest in connecting satellite vegetation indices to actual forest productivity has led to explore their relationship mainly at coarse spatial resolution and continental scale. The aim of this study is to find a connection and predict tree growth using medium resolution multispectral images and tree ring data for a sample of Italian and Austrian beech forests along latitudinal and altitudinal gradients. Beech tree ring data were collected and analyzed during the last 20 years, recording tree positions with a GPS device. MODIS pre-composite 250 m 16 days images (MOD13Q1) from 2000 to 2018 were first re-projected and quality checked using the MODIS quality assessment. Vegetation indices (NDVI and EVI) were extracted within a distance of 750 meters from every site centroid. Only deciduous forests (assessed by Corine Land Cover) with a dense canopy cover (assessed by Global Forest Change tree cover) were selected. Eight different phenology metrics were calculated using a threshold method and a modified one and then correlated with tree ring data (Basal Area Increment, BAI). The overall network and the relationship between metrics were characterized first with a Principal Component Analysis (PCA), and then evaluating the mean phenology, exploring its relationship with environmental variables (elevation, temperature). Last, the model for predicting BAI at every site was calculated for the period 2000-2009 using the metrics as predictors in a multiple linear regression. Two group of metrics were identified from PCA: the first is made of metrics based on dates (named DOY, e.g. start of growing season), the second on the vegetation index values (named VALUE, e.g. peak value,). BAI was modeled using as predictors the highest correlate from each of the two groups of metrics. BAI predictions for every site were generally significant: the 61% of the sites had at least one significant predictor, with a mean R-squared of 0.55 over the 41 sampled sites. DOY metrics were significantly related to altitude and temperature. Because of the wide latitudinal gradient of the study sites, mean annual temperatures showed higher correlations than the altitude with the DOY metrics. The mean growing season was longer for warm sites at low altitude. The relation between multispectral images and beech populations actual growth at medium spatial resolution is consistent even for those sites that are in complex environmental conditions, making possible to predict the annual diameter growth.
How to cite: Di Fiore, L., Piovesan, G., Baliva, M., and Di Filippo, A.: Combined analysis of tree rings and MODIS images to evaluate beech forest productivity along geographic gradients , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5335, https://doi.org/10.5194/egusphere-egu2020-5335, 2020.
Remote sensing is widely used for monitoring vegetation status and ecosystem productivity. The increasing interest in connecting satellite vegetation indices to actual forest productivity has led to explore their relationship mainly at coarse spatial resolution and continental scale. The aim of this study is to find a connection and predict tree growth using medium resolution multispectral images and tree ring data for a sample of Italian and Austrian beech forests along latitudinal and altitudinal gradients. Beech tree ring data were collected and analyzed during the last 20 years, recording tree positions with a GPS device. MODIS pre-composite 250 m 16 days images (MOD13Q1) from 2000 to 2018 were first re-projected and quality checked using the MODIS quality assessment. Vegetation indices (NDVI and EVI) were extracted within a distance of 750 meters from every site centroid. Only deciduous forests (assessed by Corine Land Cover) with a dense canopy cover (assessed by Global Forest Change tree cover) were selected. Eight different phenology metrics were calculated using a threshold method and a modified one and then correlated with tree ring data (Basal Area Increment, BAI). The overall network and the relationship between metrics were characterized first with a Principal Component Analysis (PCA), and then evaluating the mean phenology, exploring its relationship with environmental variables (elevation, temperature). Last, the model for predicting BAI at every site was calculated for the period 2000-2009 using the metrics as predictors in a multiple linear regression. Two group of metrics were identified from PCA: the first is made of metrics based on dates (named DOY, e.g. start of growing season), the second on the vegetation index values (named VALUE, e.g. peak value,). BAI was modeled using as predictors the highest correlate from each of the two groups of metrics. BAI predictions for every site were generally significant: the 61% of the sites had at least one significant predictor, with a mean R-squared of 0.55 over the 41 sampled sites. DOY metrics were significantly related to altitude and temperature. Because of the wide latitudinal gradient of the study sites, mean annual temperatures showed higher correlations than the altitude with the DOY metrics. The mean growing season was longer for warm sites at low altitude. The relation between multispectral images and beech populations actual growth at medium spatial resolution is consistent even for those sites that are in complex environmental conditions, making possible to predict the annual diameter growth.
How to cite: Di Fiore, L., Piovesan, G., Baliva, M., and Di Filippo, A.: Combined analysis of tree rings and MODIS images to evaluate beech forest productivity along geographic gradients , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5335, https://doi.org/10.5194/egusphere-egu2020-5335, 2020.
EGU2020-8185 | Displays | BG3.15
Using vegetation dynamics to generate forest species and crop type maps as well as land-use intensity measures to support carbon stock estimationsDaniel Doktor, Maximilian Lange, and Sebastian Preidl
Land-cover / land-cover change together with varying land-use intensity are forces of global importance especially within the last decades. This concerns the conversion of natural ecosystems into agricultural land, but also the intensified use of agricultural areas which both translate into respective (decreasing) carbon stocks. Unfortunately, land-cover information at field level is often missing at larger scales. While there has been some progress for a more detailed spatial and thematic characterisation within the domain of arable land, especially forest and grassland ecosystems are largely rudimentarily described. Here we present a framework to address to above mentioned issues which provides field level information on crop types, tree species and land-use intensity in grasslands as well as the underlying phenology at a national scale (Germany).
We used Sentinel 2 a/b time series (all observations between 2016-2019) at 20 m spatial resolution. For training and validation InVeKoS (LPIS) data, forest inventories as well as farmland management data covering considerable parts of Germany were employed. The number of mowing and fertilisation events as well as livestock density served as indicators to estimate land-use intensity. Crop type and tree species classification relied on a novel compositing approach which is tailor-made to operate in temperate (often cloudy) climates and is easily scalable from a local to a national level. Land-use intensity in grasslands together with land-surface phenology could be inferred via time series analysis on the seasonal evolution of vegetation indices. Both classification as well as intensity estimates also included machine learning methods (randomForest).
We could achieve ca. 90 % overall classification accuracy for crops (19 types) and ca. 75 % for tree species (4 deciduous, 4 conifers) across Germany. Crop type and tree species specific phenology varied according to underlying topography and climate conditions. We identified between 1-5 annual mowing events across Germany, for most regions 2-3. Land-use intensity estimates were in line with areas typical of high/low livestock density. Altogether, this framework and its products can well serve as a basis to support robust carbon stock estimates for different ecosystem up to the national scale.
How to cite: Doktor, D., Lange, M., and Preidl, S.: Using vegetation dynamics to generate forest species and crop type maps as well as land-use intensity measures to support carbon stock estimations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8185, https://doi.org/10.5194/egusphere-egu2020-8185, 2020.
Land-cover / land-cover change together with varying land-use intensity are forces of global importance especially within the last decades. This concerns the conversion of natural ecosystems into agricultural land, but also the intensified use of agricultural areas which both translate into respective (decreasing) carbon stocks. Unfortunately, land-cover information at field level is often missing at larger scales. While there has been some progress for a more detailed spatial and thematic characterisation within the domain of arable land, especially forest and grassland ecosystems are largely rudimentarily described. Here we present a framework to address to above mentioned issues which provides field level information on crop types, tree species and land-use intensity in grasslands as well as the underlying phenology at a national scale (Germany).
We used Sentinel 2 a/b time series (all observations between 2016-2019) at 20 m spatial resolution. For training and validation InVeKoS (LPIS) data, forest inventories as well as farmland management data covering considerable parts of Germany were employed. The number of mowing and fertilisation events as well as livestock density served as indicators to estimate land-use intensity. Crop type and tree species classification relied on a novel compositing approach which is tailor-made to operate in temperate (often cloudy) climates and is easily scalable from a local to a national level. Land-use intensity in grasslands together with land-surface phenology could be inferred via time series analysis on the seasonal evolution of vegetation indices. Both classification as well as intensity estimates also included machine learning methods (randomForest).
We could achieve ca. 90 % overall classification accuracy for crops (19 types) and ca. 75 % for tree species (4 deciduous, 4 conifers) across Germany. Crop type and tree species specific phenology varied according to underlying topography and climate conditions. We identified between 1-5 annual mowing events across Germany, for most regions 2-3. Land-use intensity estimates were in line with areas typical of high/low livestock density. Altogether, this framework and its products can well serve as a basis to support robust carbon stock estimates for different ecosystem up to the national scale.
How to cite: Doktor, D., Lange, M., and Preidl, S.: Using vegetation dynamics to generate forest species and crop type maps as well as land-use intensity measures to support carbon stock estimations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8185, https://doi.org/10.5194/egusphere-egu2020-8185, 2020.
EGU2020-8637 | Displays | BG3.15
Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon inputChristoforos Pappas, Jason Maillet, Sharon Rakowski, Jennifer Baltzer, Alan Barr, Andrew Black, Simone Fatichi, Colin Laroque, Ashley Matheny, Alexandre Roy, Oliver Sonnentag, and Tianshan Zha
The boreal biome accounts for approximately one third of the terrestrial carbon (C) sink. However, estimates of its individual C pools remain uncertain and are often limited to specific points in time. Here, focusing on the southern edge of the boreal forest in central Canada, we quantified the magnitude and temporal dynamics of C allocation to aboveground tree growth at a mature black spruce (Picea mariana)-dominated forest stand in Saskatchewan. We reconstructed annual total live aboveground tree biomass increment (AGBi) using a biometric approach, i.e., species-specific allometry combined with forest stand characteristics and tree ring widths collected with a C-oriented sampling design. We explored the links between boreal tree growth and ecosystem C input by comparing AGBi with eddy-covariance-derived ecosystem C fluxes from 1999 to 2015. Mean AGBi at the study site was 71 ± 7 g C m–2 (1999–2015), which is only a minor fraction of gross ecosystem production (GEP; i.e., AGBi / GEP ≈ 9 %). Ecosystem C input and AGBi were decoupled, highlighting the potential role of direct sink limitations (temperature, water availability) on boreal tree wood formation. Moreover, C allocation to AGBi remained stable over time, with a temporal trend of near zero (–0.0001 yr–1; p-value=0.775), contrary to significant trends in GEP (+5.72 g C m–2 yr–2; p-value=0.02) and ecosystem C use efficiency (i.e., NPP / GEP; –0.0041 yr–1, p-value=0.007). These findings highlight the importance of belowground tree C investments, together with the substantial contribution of understory, ground cover and soil to the boreal forest C balance. Our quantitative insights into the magnitude and temporal dynamics of aboveground boreal tree C allocation offer additional observational constraints for terrestrial ecosystem models that, to date, are biased in converting C input to biomass, and can guide forest-management strategies for mitigating carbon dioxide emissions.
How to cite: Pappas, C., Maillet, J., Rakowski, S., Baltzer, J., Barr, A., Black, A., Fatichi, S., Laroque, C., Matheny, A., Roy, A., Sonnentag, O., and Zha, T.: Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon input, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8637, https://doi.org/10.5194/egusphere-egu2020-8637, 2020.
The boreal biome accounts for approximately one third of the terrestrial carbon (C) sink. However, estimates of its individual C pools remain uncertain and are often limited to specific points in time. Here, focusing on the southern edge of the boreal forest in central Canada, we quantified the magnitude and temporal dynamics of C allocation to aboveground tree growth at a mature black spruce (Picea mariana)-dominated forest stand in Saskatchewan. We reconstructed annual total live aboveground tree biomass increment (AGBi) using a biometric approach, i.e., species-specific allometry combined with forest stand characteristics and tree ring widths collected with a C-oriented sampling design. We explored the links between boreal tree growth and ecosystem C input by comparing AGBi with eddy-covariance-derived ecosystem C fluxes from 1999 to 2015. Mean AGBi at the study site was 71 ± 7 g C m–2 (1999–2015), which is only a minor fraction of gross ecosystem production (GEP; i.e., AGBi / GEP ≈ 9 %). Ecosystem C input and AGBi were decoupled, highlighting the potential role of direct sink limitations (temperature, water availability) on boreal tree wood formation. Moreover, C allocation to AGBi remained stable over time, with a temporal trend of near zero (–0.0001 yr–1; p-value=0.775), contrary to significant trends in GEP (+5.72 g C m–2 yr–2; p-value=0.02) and ecosystem C use efficiency (i.e., NPP / GEP; –0.0041 yr–1, p-value=0.007). These findings highlight the importance of belowground tree C investments, together with the substantial contribution of understory, ground cover and soil to the boreal forest C balance. Our quantitative insights into the magnitude and temporal dynamics of aboveground boreal tree C allocation offer additional observational constraints for terrestrial ecosystem models that, to date, are biased in converting C input to biomass, and can guide forest-management strategies for mitigating carbon dioxide emissions.
How to cite: Pappas, C., Maillet, J., Rakowski, S., Baltzer, J., Barr, A., Black, A., Fatichi, S., Laroque, C., Matheny, A., Roy, A., Sonnentag, O., and Zha, T.: Aboveground tree growth is a minor and decoupled fraction of boreal forest carbon input, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8637, https://doi.org/10.5194/egusphere-egu2020-8637, 2020.
EGU2020-12798 | Displays | BG3.15
Intra-annual stem growth of co-occurring temperate eucalypts in relation to climate variability, competition and fire historyNina Hinko-Najera, Julio C. Najera Umaña, Merryn G. Smith, Markus Löw, Anne Griebel, and Lauren T. Bennett
Forest growth is considered as an important global carbon sink but its responses to environmental changes remain uncertain. Tree stems are a predominant carbon pool in temperate eucalypt forests, representing a susbstantive component of their net productivity and carbon dynamics. Despite their importance, our understanding of factors controlling stem growth in these evergreen forests remains limited partly because the dominant eucalypts lack distinct growth rings. Unravelling eucalypt species' growth responses to climate from other factors, such as competition and disturbances like fire, is challenging due to the lack of long-term growth data. To address this gap, we present six years of monthly measurements of stem-diamter changes (as basal area increment, BAI) of two co-occurring dominant eucalypts from different sub-genera (Eucalyptus obliqua and E. rubida) across seven sites in a natural temperate forest of south-eastern Australia. We used linear mixed-effect models to examine the relative importance to monthly BAI of species, monthly climate indices and their potential lag effects (temperature and rainfall), inter-tree competition, and recent fire history (long-unburnt, prescribed fires, wildfire). Monthly BAI peaked in spring and autumn and was lowest in summer with signficant differences between species during spring and summer. Overall BAI variation was most clearly associated with maximum mean temperature, having a hyperbolic relationship with increases in BAI up to species-specific temperature optima and decreases thereafter. Rainfall, particularly autumn rainfall, influenced seasonal patterns in BAI, while inter-tree competition and recent fire history were of comparatively minor importance. BAI also varied strongly between years reflecting the opportunistic growth behaviour of eucalypts including higher annual growth rates during and after periods of high rainfall and transient decreases in BAI during extended drier periods. Our study provides field-based evidence of different growth niches for co-existing eucalypts in natural temperate mixed forests and highlights the importance of intra-annual climate variation to better understand overall productivity in temperate evergreen forests.
How to cite: Hinko-Najera, N., Najera Umaña, J. C., Smith, M. G., Löw, M., Griebel, A., and Bennett, L. T.: Intra-annual stem growth of co-occurring temperate eucalypts in relation to climate variability, competition and fire history, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12798, https://doi.org/10.5194/egusphere-egu2020-12798, 2020.
Forest growth is considered as an important global carbon sink but its responses to environmental changes remain uncertain. Tree stems are a predominant carbon pool in temperate eucalypt forests, representing a susbstantive component of their net productivity and carbon dynamics. Despite their importance, our understanding of factors controlling stem growth in these evergreen forests remains limited partly because the dominant eucalypts lack distinct growth rings. Unravelling eucalypt species' growth responses to climate from other factors, such as competition and disturbances like fire, is challenging due to the lack of long-term growth data. To address this gap, we present six years of monthly measurements of stem-diamter changes (as basal area increment, BAI) of two co-occurring dominant eucalypts from different sub-genera (Eucalyptus obliqua and E. rubida) across seven sites in a natural temperate forest of south-eastern Australia. We used linear mixed-effect models to examine the relative importance to monthly BAI of species, monthly climate indices and their potential lag effects (temperature and rainfall), inter-tree competition, and recent fire history (long-unburnt, prescribed fires, wildfire). Monthly BAI peaked in spring and autumn and was lowest in summer with signficant differences between species during spring and summer. Overall BAI variation was most clearly associated with maximum mean temperature, having a hyperbolic relationship with increases in BAI up to species-specific temperature optima and decreases thereafter. Rainfall, particularly autumn rainfall, influenced seasonal patterns in BAI, while inter-tree competition and recent fire history were of comparatively minor importance. BAI also varied strongly between years reflecting the opportunistic growth behaviour of eucalypts including higher annual growth rates during and after periods of high rainfall and transient decreases in BAI during extended drier periods. Our study provides field-based evidence of different growth niches for co-existing eucalypts in natural temperate mixed forests and highlights the importance of intra-annual climate variation to better understand overall productivity in temperate evergreen forests.
How to cite: Hinko-Najera, N., Najera Umaña, J. C., Smith, M. G., Löw, M., Griebel, A., and Bennett, L. T.: Intra-annual stem growth of co-occurring temperate eucalypts in relation to climate variability, competition and fire history, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12798, https://doi.org/10.5194/egusphere-egu2020-12798, 2020.
EGU2020-21912 | Displays | BG3.15
Diurnal and seasonal variations in carbon fluxes in bamboo forests during the growing season in Zhejiang province, ChinaLiang Chen
Bamboo forest is an important forest type in subtropical China and is characterized by fast growth and high carbon sequestration capacity. However, the dynamics of carbon fluxes during the fast growing period of bamboo shoots and their correlation with environment factors are poorly understood. We measured carbon dioxide exchange and climate variables using open-path eddy covariance methods during the 2011 growing season in a Moso bam-boo forest (MB, Phyllostchys edulis) and a Lei bamboo. forest (LB, Phyllostachys violascens) in Zhejiang province, China. The bamboo forests were carbon sinks during the growing season. The minimum diurnal net ecosystem exchange (NEE) at MB and LB sites were - 0.64 and - 0.66 mg C m-2 s-1, respectively. The minimum monthly NEE, ecosystem respiration (RE), and gross ecosystem exchange (GEE) were - 99.3 ± 4.03, 76.2 ± 2.46, and - 191.5 ± 4.98 g C m-2 month-1, respectively, at MB site, compared with - 31.8 ± 3.44, 70.4 ± 1.41, and - 157.9 ± 4.86 g C m-2 month-1, respectively, at LB site. Maximum RE was 92.1 ± 1.32 g C m-2 month-1 at MB site and 151.0 ± 2.38 g C m-2 month-1 at LB site. Key control factors varied by month during the growing season, but across the whole growing season, NEE and GEE at both sites showed similar trends in sensitivities to photosynthetic active radiation and vapor pressure deficit, and air temperature had the strongest correlation with RE at both sites. Carbon fluxes at LB site were more sensitive to soil water content compared to those at MB site. Both on-year (years when many new shoots are produced) and off-year (years when none or few new shoots are produced) should be studied in bamboo forests to better understand their role in global carbon cycling.
How to cite: Chen, L.: Diurnal and seasonal variations in carbon fluxes in bamboo forests during the growing season in Zhejiang province, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21912, https://doi.org/10.5194/egusphere-egu2020-21912, 2020.
Bamboo forest is an important forest type in subtropical China and is characterized by fast growth and high carbon sequestration capacity. However, the dynamics of carbon fluxes during the fast growing period of bamboo shoots and their correlation with environment factors are poorly understood. We measured carbon dioxide exchange and climate variables using open-path eddy covariance methods during the 2011 growing season in a Moso bam-boo forest (MB, Phyllostchys edulis) and a Lei bamboo. forest (LB, Phyllostachys violascens) in Zhejiang province, China. The bamboo forests were carbon sinks during the growing season. The minimum diurnal net ecosystem exchange (NEE) at MB and LB sites were - 0.64 and - 0.66 mg C m-2 s-1, respectively. The minimum monthly NEE, ecosystem respiration (RE), and gross ecosystem exchange (GEE) were - 99.3 ± 4.03, 76.2 ± 2.46, and - 191.5 ± 4.98 g C m-2 month-1, respectively, at MB site, compared with - 31.8 ± 3.44, 70.4 ± 1.41, and - 157.9 ± 4.86 g C m-2 month-1, respectively, at LB site. Maximum RE was 92.1 ± 1.32 g C m-2 month-1 at MB site and 151.0 ± 2.38 g C m-2 month-1 at LB site. Key control factors varied by month during the growing season, but across the whole growing season, NEE and GEE at both sites showed similar trends in sensitivities to photosynthetic active radiation and vapor pressure deficit, and air temperature had the strongest correlation with RE at both sites. Carbon fluxes at LB site were more sensitive to soil water content compared to those at MB site. Both on-year (years when many new shoots are produced) and off-year (years when none or few new shoots are produced) should be studied in bamboo forests to better understand their role in global carbon cycling.
How to cite: Chen, L.: Diurnal and seasonal variations in carbon fluxes in bamboo forests during the growing season in Zhejiang province, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21912, https://doi.org/10.5194/egusphere-egu2020-21912, 2020.
EGU2020-10430 | Displays | BG3.15
Admixing other tree species to European beech forests: Effects on soil organic carbon and total nitrogen stocks. A review.Stephanie Rehschuh and Michael Dannenmann
Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to summer drought. This might not only alter soil water dynamics and availability, but also soil organic carbon (SOC) and total nitrogen (TN) storage in soils. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of mixed beech stands as well as of other monocultures. We conducted a meta-analysis including 40 studies with 208, 231 and 166 observations for forest floor, mineral soil and the total soil profile, respectively. Pure conifer stands had higher SOC stocks compared to beech in general, especially in the forest floor with up to 200% (larch forests). Other broadleaved tree species (ash, oak, lime, maple, hornbeam) showed in comparison to beech lower SOC storage in the forest floor, with little impact on total stocks. Similarly, for mixed beech-conifer stands we found significantly increased SOC stocks of >10% and a small increase in TN stocks of approx. 4% compared to beech monocultures, which means a potential SOC storage increase of >0.1 t ha-1yr-1 (transformation of mineral soil to 100 cm depth). In contrast, mixed beech-broadleaved stands did not show a significant change in total SOC stocks. Currently, the influence climatic and soil parameters on SOC changes due to admixture of other tree species is analyzed based on this dataset. This is expected to facilitate an assessment which mixtures with beech have the largest potential towards increasing SOC stocks.
How to cite: Rehschuh, S. and Dannenmann, M.: Admixing other tree species to European beech forests: Effects on soil organic carbon and total nitrogen stocks. A review., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10430, https://doi.org/10.5194/egusphere-egu2020-10430, 2020.
Drought-sensitive European beech forests are increasingly challenged by climate change. Admixing other, preferably more deep-rooting, tree species has been proposed to increase the resilience of beech forests to summer drought. This might not only alter soil water dynamics and availability, but also soil organic carbon (SOC) and total nitrogen (TN) storage in soils. Since information of these effects is scattered, our aim was to synthesize results from studies that compared SOC/TN stocks of beech monocultures with those of mixed beech stands as well as of other monocultures. We conducted a meta-analysis including 40 studies with 208, 231 and 166 observations for forest floor, mineral soil and the total soil profile, respectively. Pure conifer stands had higher SOC stocks compared to beech in general, especially in the forest floor with up to 200% (larch forests). Other broadleaved tree species (ash, oak, lime, maple, hornbeam) showed in comparison to beech lower SOC storage in the forest floor, with little impact on total stocks. Similarly, for mixed beech-conifer stands we found significantly increased SOC stocks of >10% and a small increase in TN stocks of approx. 4% compared to beech monocultures, which means a potential SOC storage increase of >0.1 t ha-1yr-1 (transformation of mineral soil to 100 cm depth). In contrast, mixed beech-broadleaved stands did not show a significant change in total SOC stocks. Currently, the influence climatic and soil parameters on SOC changes due to admixture of other tree species is analyzed based on this dataset. This is expected to facilitate an assessment which mixtures with beech have the largest potential towards increasing SOC stocks.
How to cite: Rehschuh, S. and Dannenmann, M.: Admixing other tree species to European beech forests: Effects on soil organic carbon and total nitrogen stocks. A review., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10430, https://doi.org/10.5194/egusphere-egu2020-10430, 2020.
EGU2020-12784 | Displays | BG3.15
Positive feedback from climate warming to carbon sequestration in boreal forestsPekka Kauppi, Tomas Lundmark, and Annika Nordin
EGU Abstract, 3-8 May, Vienna 2020
Session BG3.19
Climate change and adaptive forest management: Effects, Methods, and Objectives
Positive feedback from climate warming to carbon sequestration in boreal forests
Pekka Kauppi1,2, Tomas Lundmark2 and Annika Nordin2
1University of Helsinki, Department of Forest Sciences, POBOX 27, Fin-00014 University of Helsinki, Finland
2 Swedish University of Agricultural Sciences, Dpt Forest Ecology and Management, 90183 Umeå, Sweden
pekka.kauppi@helsinki.fi
tomas.lundmark@slu.se
annika.nordin@slu.se
'Wovon man nicht sprechen kann, darüber muß man schweigen.' (“Whereof one cannot speak, thereof one must be silent.”). This quote of Ludwig Wittgenstein is thought-provoking regarding beneficial effects of climate change. Logically, climate warming must provoke favorable environmental effects in some regions and over certain periods of time despite the prospects of dramatic detrimental effects of global warming on the environment in the long term. Our focus is on boreal forests in recent past.
Devastating effects of climate warming on terrestrial ecosystems have been recorded in many parts of the world. Heat waves have enhanced wildfires. In Australia alone, wildfires disturbed more than six million hectares of land in 2019-2020. Will climate warming undermine the contribution of land use management to climate change mitigation? - Most surprisingly, we report here a reverse relationship from north Europe. Climate warming has amplified the favorable impacts of land management on carbon sequestration. This is a forest-climate paradox, maybe temporary and anecdotal but persistent and firmly documented in Finland, Norway and Sweden since 1990.
Springtime is the most interesting season for forest biota in north Europe. During spring in north Europe, soil is rich in moisture from the snow melt. Days are long as of the beginning of April. Cloudy weather is unusual in the springtime. When spring comes early, there is plenty of solar radiation and water available for photosynthesis and growth. Warm spring evokes an early bud burst. Conversely, cold spring delays the onset of the growing season. April and May temperatures were exceptionally high during the period 1990-2013 (Figs. 1a and 1b) . Similar patterns of climate warming were observed in Norway and Sweden.
Figure 1a. Average temperature in Finland in April during 1847-2013 (degrees centigrade).
Figure 1b. Average temperature in Finland in May during 1847-2013 (degrees centigrade).
Especially during 1990-2019 the growing seasons in north Europe turned out to be long. The Net Primary Production and forest carbon sink improved. Forest increment in north Europe approximately doubled from 1970 to 2010 responding to multiple drivers . A combination of successful forest management and environmental change created an interesting paradox promoting forest ecosystem services. Carbon sink improved concomitantly with increasing harvests for the forest industries, an important economic sector in the region.
In so far, climate warming specifically in north Europe has contributed significantly to the evolution and persistence of the carbon sink and to fossil fuel substitution. Future research is needed to monitor this feedback from climate warming to carbon sequestration.
How to cite: Kauppi, P., Lundmark, T., and Nordin, A.: Positive feedback from climate warming to carbon sequestration in boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12784, https://doi.org/10.5194/egusphere-egu2020-12784, 2020.
EGU Abstract, 3-8 May, Vienna 2020
Session BG3.19
Climate change and adaptive forest management: Effects, Methods, and Objectives
Positive feedback from climate warming to carbon sequestration in boreal forests
Pekka Kauppi1,2, Tomas Lundmark2 and Annika Nordin2
1University of Helsinki, Department of Forest Sciences, POBOX 27, Fin-00014 University of Helsinki, Finland
2 Swedish University of Agricultural Sciences, Dpt Forest Ecology and Management, 90183 Umeå, Sweden
pekka.kauppi@helsinki.fi
tomas.lundmark@slu.se
annika.nordin@slu.se
'Wovon man nicht sprechen kann, darüber muß man schweigen.' (“Whereof one cannot speak, thereof one must be silent.”). This quote of Ludwig Wittgenstein is thought-provoking regarding beneficial effects of climate change. Logically, climate warming must provoke favorable environmental effects in some regions and over certain periods of time despite the prospects of dramatic detrimental effects of global warming on the environment in the long term. Our focus is on boreal forests in recent past.
Devastating effects of climate warming on terrestrial ecosystems have been recorded in many parts of the world. Heat waves have enhanced wildfires. In Australia alone, wildfires disturbed more than six million hectares of land in 2019-2020. Will climate warming undermine the contribution of land use management to climate change mitigation? - Most surprisingly, we report here a reverse relationship from north Europe. Climate warming has amplified the favorable impacts of land management on carbon sequestration. This is a forest-climate paradox, maybe temporary and anecdotal but persistent and firmly documented in Finland, Norway and Sweden since 1990.
Springtime is the most interesting season for forest biota in north Europe. During spring in north Europe, soil is rich in moisture from the snow melt. Days are long as of the beginning of April. Cloudy weather is unusual in the springtime. When spring comes early, there is plenty of solar radiation and water available for photosynthesis and growth. Warm spring evokes an early bud burst. Conversely, cold spring delays the onset of the growing season. April and May temperatures were exceptionally high during the period 1990-2013 (Figs. 1a and 1b) . Similar patterns of climate warming were observed in Norway and Sweden.
Figure 1a. Average temperature in Finland in April during 1847-2013 (degrees centigrade).
Figure 1b. Average temperature in Finland in May during 1847-2013 (degrees centigrade).
Especially during 1990-2019 the growing seasons in north Europe turned out to be long. The Net Primary Production and forest carbon sink improved. Forest increment in north Europe approximately doubled from 1970 to 2010 responding to multiple drivers . A combination of successful forest management and environmental change created an interesting paradox promoting forest ecosystem services. Carbon sink improved concomitantly with increasing harvests for the forest industries, an important economic sector in the region.
In so far, climate warming specifically in north Europe has contributed significantly to the evolution and persistence of the carbon sink and to fossil fuel substitution. Future research is needed to monitor this feedback from climate warming to carbon sequestration.
How to cite: Kauppi, P., Lundmark, T., and Nordin, A.: Positive feedback from climate warming to carbon sequestration in boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12784, https://doi.org/10.5194/egusphere-egu2020-12784, 2020.
EGU2020-13465 | Displays | BG3.15
Emerging mechanisms of ecosystem functioning in a warmer and drier worldJosé M. Grünzweig, Hans J. De Boeck, Ana Rey, Omer Tzuk, Ehud Meron, Omar Flores, Maria J. Santos, and Michael Bahn
Ecosystems are expected to face a significantly warmer and drier climate in the coming decades. Experiments have tried to unravel drought responses of ecosystems in mesic and humid biomes, but the structure and functioning of these systems may change when climatic regime shifts occur. Here, we summarize major mechanisms typical of drylands and indicate how these may come into play when current mesic ecosystems face tipping points in a warmer and drier world.
These dryland mechanisms of ecosystem functioning encompass (i) processes of vegetation development, such as self-organization of vegetation patchiness and formation of biological soil crust, (ii) biologically driven biogeochemical and physiological processes, such as drying-wetting cycles and hydraulic redistribution, and (iii) abiotically driven biogeochemical processes, such as photochemical degradation of organic matter and soil hydrophobicity. We present insights from published studies and original model simulations and mapping, and formulate hypotheses on thresholds and spatial locations beyond which dryland mechanisms are expected to operate in non-xeric ecosystems. Notably, for dryland mechanisms to get activated elsewhere there is no need for non-xeric biomes to become actual drylands. With a globally increasing area exposed to gradually rising temperatures, moderate decline in precipitation, and increasing frequency, duration and intensity of extreme heat and drought events, we envision that dryland mechanisms will increasingly control ecosystem functioning in many regions of the world.
How to cite: Grünzweig, J. M., De Boeck, H. J., Rey, A., Tzuk, O., Meron, E., Flores, O., Santos, M. J., and Bahn, M.: Emerging mechanisms of ecosystem functioning in a warmer and drier world , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13465, https://doi.org/10.5194/egusphere-egu2020-13465, 2020.
Ecosystems are expected to face a significantly warmer and drier climate in the coming decades. Experiments have tried to unravel drought responses of ecosystems in mesic and humid biomes, but the structure and functioning of these systems may change when climatic regime shifts occur. Here, we summarize major mechanisms typical of drylands and indicate how these may come into play when current mesic ecosystems face tipping points in a warmer and drier world.
These dryland mechanisms of ecosystem functioning encompass (i) processes of vegetation development, such as self-organization of vegetation patchiness and formation of biological soil crust, (ii) biologically driven biogeochemical and physiological processes, such as drying-wetting cycles and hydraulic redistribution, and (iii) abiotically driven biogeochemical processes, such as photochemical degradation of organic matter and soil hydrophobicity. We present insights from published studies and original model simulations and mapping, and formulate hypotheses on thresholds and spatial locations beyond which dryland mechanisms are expected to operate in non-xeric ecosystems. Notably, for dryland mechanisms to get activated elsewhere there is no need for non-xeric biomes to become actual drylands. With a globally increasing area exposed to gradually rising temperatures, moderate decline in precipitation, and increasing frequency, duration and intensity of extreme heat and drought events, we envision that dryland mechanisms will increasingly control ecosystem functioning in many regions of the world.
How to cite: Grünzweig, J. M., De Boeck, H. J., Rey, A., Tzuk, O., Meron, E., Flores, O., Santos, M. J., and Bahn, M.: Emerging mechanisms of ecosystem functioning in a warmer and drier world , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13465, https://doi.org/10.5194/egusphere-egu2020-13465, 2020.
EGU2020-16276 | Displays | BG3.15
RED DGVM: simple approach to modelling vegetation with novel implications.Arthur Argles, Jonathan Moore, and Peter Cox
The modelled global vegetation for the end of the 21st century is currently is insufficiently constrained
by climate models. A significant proportion of that uncertainty has been attributed to the limitations
of current Dynamic Global Vegetation Models (DGVMs), and the misrepresentation of mortality, dis-
turbance and regrowth within forests. Improving the simulation of the underlying processes of de-
mographic change is of primary importance in the development of predictors of future climate.
Here we present the Robust Ecosystem Demography (RED), a new dynamical vegetation model which
simulates the size-structure of forests by partitioning the population of a Plant Functional Type (PFT)
into mass classes. Allometric scaling of mortality and growth across mass classes allows for a variety
of complex demographic processes to be captured, such as disturbances and regrowth. Competition
among PFTs is done purely through restricting the recruitment of new vegetation to unshaded space.
RED represents a reduction of complexity from more numerically unwieldy cohort DGVMs which
simulate both size and patch dimensions. The limited number of dimensions and simple competitive
regime allows the equilibrium state to be solved for analytically, providing two potential functions - (i)
Avoiding-spinning up by providing an equilibrium state for intilisation. (ii) Insights into the demog-
raphy of vegetated areas, arising from parameter tuning to fit observation, such as coverage or carbon
mass. When paired with a rate of mortality or carbon assimilate rate gives, respectfully, required as-
similate or mortality rates.
We demonstrate the model functionality using offline UKESM PFT carbon assimilate rates, paired
with observed vegetation cover from the ESA LC_CCI datasets for the 9 different PFTs. From this
dataset we calibrate a novel global equilibrium mortality map for each PFT and show the competitive
and successional behaviour of dynamical runs with convergence to the fitted equilibrium. Finally, we
explore underlying ecological questions that emerge from the equilibrium solutions.
How to cite: Argles, A., Moore, J., and Cox, P.: RED DGVM: simple approach to modelling vegetation with novel implications., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16276, https://doi.org/10.5194/egusphere-egu2020-16276, 2020.
The modelled global vegetation for the end of the 21st century is currently is insufficiently constrained
by climate models. A significant proportion of that uncertainty has been attributed to the limitations
of current Dynamic Global Vegetation Models (DGVMs), and the misrepresentation of mortality, dis-
turbance and regrowth within forests. Improving the simulation of the underlying processes of de-
mographic change is of primary importance in the development of predictors of future climate.
Here we present the Robust Ecosystem Demography (RED), a new dynamical vegetation model which
simulates the size-structure of forests by partitioning the population of a Plant Functional Type (PFT)
into mass classes. Allometric scaling of mortality and growth across mass classes allows for a variety
of complex demographic processes to be captured, such as disturbances and regrowth. Competition
among PFTs is done purely through restricting the recruitment of new vegetation to unshaded space.
RED represents a reduction of complexity from more numerically unwieldy cohort DGVMs which
simulate both size and patch dimensions. The limited number of dimensions and simple competitive
regime allows the equilibrium state to be solved for analytically, providing two potential functions - (i)
Avoiding-spinning up by providing an equilibrium state for intilisation. (ii) Insights into the demog-
raphy of vegetated areas, arising from parameter tuning to fit observation, such as coverage or carbon
mass. When paired with a rate of mortality or carbon assimilate rate gives, respectfully, required as-
similate or mortality rates.
We demonstrate the model functionality using offline UKESM PFT carbon assimilate rates, paired
with observed vegetation cover from the ESA LC_CCI datasets for the 9 different PFTs. From this
dataset we calibrate a novel global equilibrium mortality map for each PFT and show the competitive
and successional behaviour of dynamical runs with convergence to the fitted equilibrium. Finally, we
explore underlying ecological questions that emerge from the equilibrium solutions.
How to cite: Argles, A., Moore, J., and Cox, P.: RED DGVM: simple approach to modelling vegetation with novel implications., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16276, https://doi.org/10.5194/egusphere-egu2020-16276, 2020.
EGU2020-19730 | Displays | BG3.15
Effects of an advanced land-use scheme and dynamic vegetation on the terrestrial carbon cycle in EC-EarthLars Nieradzik, David Wårlind, Paul Miller, Mats Lindeskog, Peter Anthoni, Almut Arneth, and Ben Smith
With human land-use activities expected to increase in the future it is important to understand how LULCC (Land-Use Land-Cover Change) activities affect the Earth’s surface, climate and biogeochemical cycles. Here we use the CMIP6 version of the EC-Earth3 Earth System Model (ESM) to assess the impacts of LULCC on surface fluxes of carbon (C) and nitrogen (N). EC-Earth is one of the first ESMs to interactively couple a 2nd generation dynamical vegetation model (LPJ-GUESS) with mechanistic C-N dynamics in soil and vegetation to an atmospheric model. The size, age structure, temporal dynamics and spatial heterogeneity of the vegetated landscape are represented and simulated dynamically in LPJ-GUESS. Such functionality has been argued to be essential to correctly capture biogeochemical and biophysical land-atmosphere interactions on longer timescales and has been shown to improve their representation compared to more common area-based vegetation schemes. The patch based structure of LPJ-GUESS also makes it possible to represent the history (soil, litter status) of a single patch as it might have been involved in several land-use transitions. We focus on the effects of gross land-use transitions (“land-hist”), net land-use transitions (“land-noShiftcultivate”) and fixing land-use at 1850 levels (“land-noLu”).
Global carbon pools increase in simulations without LUC while they decline in those applying LUC, with gross-transitions resulting in values around 3% (or 75 Pg) lower than simulations with net-transitions. This is mainly driven by vegetation carbon changes in the tropical to mid-latitude regions where gross-transitions lead to a significantly higher decrease in high vegetation cover. Furthermore, this is reflected differently for different species, e.g. while there is no change in the LAI of boreal needleleaf trees in net-transitions, their presence is significantly reduced in gross transition scenarios giving way to the growth of fast-growing shade-intolerant species. Moreover, fire-fluxes, which in these experiments are mainly driven by fuel-availability, are also lowest in the gross-transition simulations.
Finally, we will show that the level of complexity with which shifting cultivation is treated has implications for the biogeophysical feedbacks in ESMs resulting from changes to surface albedo and latent heat exchange.
The experiments we conducted clearly indicate the benefits of dynamic vegetation and the importance of using gross transitions in land use-change (LUC) studies.
How to cite: Nieradzik, L., Wårlind, D., Miller, P., Lindeskog, M., Anthoni, P., Arneth, A., and Smith, B.: Effects of an advanced land-use scheme and dynamic vegetation on the terrestrial carbon cycle in EC-Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19730, https://doi.org/10.5194/egusphere-egu2020-19730, 2020.
With human land-use activities expected to increase in the future it is important to understand how LULCC (Land-Use Land-Cover Change) activities affect the Earth’s surface, climate and biogeochemical cycles. Here we use the CMIP6 version of the EC-Earth3 Earth System Model (ESM) to assess the impacts of LULCC on surface fluxes of carbon (C) and nitrogen (N). EC-Earth is one of the first ESMs to interactively couple a 2nd generation dynamical vegetation model (LPJ-GUESS) with mechanistic C-N dynamics in soil and vegetation to an atmospheric model. The size, age structure, temporal dynamics and spatial heterogeneity of the vegetated landscape are represented and simulated dynamically in LPJ-GUESS. Such functionality has been argued to be essential to correctly capture biogeochemical and biophysical land-atmosphere interactions on longer timescales and has been shown to improve their representation compared to more common area-based vegetation schemes. The patch based structure of LPJ-GUESS also makes it possible to represent the history (soil, litter status) of a single patch as it might have been involved in several land-use transitions. We focus on the effects of gross land-use transitions (“land-hist”), net land-use transitions (“land-noShiftcultivate”) and fixing land-use at 1850 levels (“land-noLu”).
Global carbon pools increase in simulations without LUC while they decline in those applying LUC, with gross-transitions resulting in values around 3% (or 75 Pg) lower than simulations with net-transitions. This is mainly driven by vegetation carbon changes in the tropical to mid-latitude regions where gross-transitions lead to a significantly higher decrease in high vegetation cover. Furthermore, this is reflected differently for different species, e.g. while there is no change in the LAI of boreal needleleaf trees in net-transitions, their presence is significantly reduced in gross transition scenarios giving way to the growth of fast-growing shade-intolerant species. Moreover, fire-fluxes, which in these experiments are mainly driven by fuel-availability, are also lowest in the gross-transition simulations.
Finally, we will show that the level of complexity with which shifting cultivation is treated has implications for the biogeophysical feedbacks in ESMs resulting from changes to surface albedo and latent heat exchange.
The experiments we conducted clearly indicate the benefits of dynamic vegetation and the importance of using gross transitions in land use-change (LUC) studies.
How to cite: Nieradzik, L., Wårlind, D., Miller, P., Lindeskog, M., Anthoni, P., Arneth, A., and Smith, B.: Effects of an advanced land-use scheme and dynamic vegetation on the terrestrial carbon cycle in EC-Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19730, https://doi.org/10.5194/egusphere-egu2020-19730, 2020.
EGU2020-9111 | Displays | BG3.15
Impact of climate change on biome distribution and productivity of the tropical ecosystems under RCP scenarios in South AsiaDushyant Kumar, Mirjam Pfeiffer, Camille Gaillard, Liam Langan, Carola Martens, and Simon Scheiter
South Asia is one of the world’s most vulnerable regions to climate change and provides a home to approximately 1.7 billion people. South Asian vegetation is essential for ecosystem services, biodiversity and carbon storage in the region. Vegetation distribution and biome niches are likely to be severely altered by future climate change and rising atmospheric CO2 concentration. Assessing how ecosystems will respond to these changes is of vital importance. We used the aDGVM2 to simulate vegetation patterns of South Asia under RCP4.5 and RCP8.5. We found good agreement between observed and simulated biomass, height and potential vegetation maps.
Model results show that large areas are susceptible to biome shift by the end of the 21st century. Woody encroachment is predicted in open savanna regions which are at high risk of transitioning into forest. We simulated vegetation under both scenarios with fixed CO2 concentration and found decreased tree dominance and biomass. Simulations under elevated CO2 concentrations predicted an increase in biomass, canopy cover, tree height and decrease in evapotranspiration. Changes in above ground biomass and canopy cover trigger biome shifts toward trees dominated the system. C3 vegetation is not saturated at current CO2 concentrations as the model simulated strong CO2 fertilization effect which will increase further with the rising CO2. Although there is considerable uncertainty in the biome projections, the geographic patterns of biomes are generally consistent across the RCP4.5 and RCP8.5 scenarios. The results provide potential future trajectories of the response of South Asian vegetation to the climate change. The results will help to understand the regional climate-vegetation interaction and to develop regional strategies for biodiversity conservation to cope with climate change.
How to cite: Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., Martens, C., and Scheiter, S.: Impact of climate change on biome distribution and productivity of the tropical ecosystems under RCP scenarios in South Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9111, https://doi.org/10.5194/egusphere-egu2020-9111, 2020.
South Asia is one of the world’s most vulnerable regions to climate change and provides a home to approximately 1.7 billion people. South Asian vegetation is essential for ecosystem services, biodiversity and carbon storage in the region. Vegetation distribution and biome niches are likely to be severely altered by future climate change and rising atmospheric CO2 concentration. Assessing how ecosystems will respond to these changes is of vital importance. We used the aDGVM2 to simulate vegetation patterns of South Asia under RCP4.5 and RCP8.5. We found good agreement between observed and simulated biomass, height and potential vegetation maps.
Model results show that large areas are susceptible to biome shift by the end of the 21st century. Woody encroachment is predicted in open savanna regions which are at high risk of transitioning into forest. We simulated vegetation under both scenarios with fixed CO2 concentration and found decreased tree dominance and biomass. Simulations under elevated CO2 concentrations predicted an increase in biomass, canopy cover, tree height and decrease in evapotranspiration. Changes in above ground biomass and canopy cover trigger biome shifts toward trees dominated the system. C3 vegetation is not saturated at current CO2 concentrations as the model simulated strong CO2 fertilization effect which will increase further with the rising CO2. Although there is considerable uncertainty in the biome projections, the geographic patterns of biomes are generally consistent across the RCP4.5 and RCP8.5 scenarios. The results provide potential future trajectories of the response of South Asian vegetation to the climate change. The results will help to understand the regional climate-vegetation interaction and to develop regional strategies for biodiversity conservation to cope with climate change.
How to cite: Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L., Martens, C., and Scheiter, S.: Impact of climate change on biome distribution and productivity of the tropical ecosystems under RCP scenarios in South Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9111, https://doi.org/10.5194/egusphere-egu2020-9111, 2020.
EGU2020-6491 | Displays | BG3.15
Two aspects of decadal ENSO variability modulating the long-term global carbon cycleSo-won Park, Jin-Soo Kim, Jong-Seong Kug, Malte F. Stuecker, In-Won Kim, and Mathew Williams
El Niño-Southern Oscillation (ENSO) is the primary cause of interannual variations in the global carbon cycle because ENSO-driven extensive teleconnection over continents affects the terrestrial ecosystem process. ENSO is an interannual phenomenon, but it also has decadal variability. The ENSO-like SST pattern and ENSO characteristic, e.g. ENSO amplitude, change on decadal timescales. However, the influence of decadal ENSO variability on global carbon cycle has not yet been fully examined. Here we examined the impacts of decadal ENSO variability on decadal variation of terrestrial carbon flux by analyzing fully coupled pre-industrial control simulation of the Community Earth System Model 1 large ensemble (CESM1-LE). Considerable decadal variability of atmosphere-to-land carbon flux exists and this terrestiral carbon flux is mainly modulated by the tropical biosphere on decadal timescales as well as on interannual timescales. We found that there are two different pathways, which can explain about 36% of the decadal variations in terrestrial carbon flux. First, long-term climate change over tropics induced by decadal tropical Pacific SST variability regulates the terrestrial productivity and hence atmospheric CO2 on decadal time scale. Second, decadal changes in asymmetric terrestrial ecosystem’s response to ENSO events, resulted from decadal modulation of ENSO amplitude, generate decadal variability of terrestrial carbon flux.
Key words: Global Carbon Cycle, El Niño-Southern Oscillation (ENSO), Pacific Decadal Variability, ENSO asymmetry, Decadal NBP variability
How to cite: Park, S., Kim, J.-S., Kug, J.-S., Stuecker, M. F., Kim, I.-W., and Williams, M.: Two aspects of decadal ENSO variability modulating the long-term global carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6491, https://doi.org/10.5194/egusphere-egu2020-6491, 2020.
El Niño-Southern Oscillation (ENSO) is the primary cause of interannual variations in the global carbon cycle because ENSO-driven extensive teleconnection over continents affects the terrestrial ecosystem process. ENSO is an interannual phenomenon, but it also has decadal variability. The ENSO-like SST pattern and ENSO characteristic, e.g. ENSO amplitude, change on decadal timescales. However, the influence of decadal ENSO variability on global carbon cycle has not yet been fully examined. Here we examined the impacts of decadal ENSO variability on decadal variation of terrestrial carbon flux by analyzing fully coupled pre-industrial control simulation of the Community Earth System Model 1 large ensemble (CESM1-LE). Considerable decadal variability of atmosphere-to-land carbon flux exists and this terrestiral carbon flux is mainly modulated by the tropical biosphere on decadal timescales as well as on interannual timescales. We found that there are two different pathways, which can explain about 36% of the decadal variations in terrestrial carbon flux. First, long-term climate change over tropics induced by decadal tropical Pacific SST variability regulates the terrestrial productivity and hence atmospheric CO2 on decadal time scale. Second, decadal changes in asymmetric terrestrial ecosystem’s response to ENSO events, resulted from decadal modulation of ENSO amplitude, generate decadal variability of terrestrial carbon flux.
Key words: Global Carbon Cycle, El Niño-Southern Oscillation (ENSO), Pacific Decadal Variability, ENSO asymmetry, Decadal NBP variability
How to cite: Park, S., Kim, J.-S., Kug, J.-S., Stuecker, M. F., Kim, I.-W., and Williams, M.: Two aspects of decadal ENSO variability modulating the long-term global carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6491, https://doi.org/10.5194/egusphere-egu2020-6491, 2020.
BG3.16 – Remote Sensing for forest applications
EGU2020-197 | Displays | BG3.16
Tree species classification by using computer vision and deep learning techniques for the analysis of drone images of mixed forests in JapanSarah Kentsch, Maximo Larry Lopez Caceres, and Yago Diez Donoso
Forests become more important in times of changing climate, increasing demand of renewable energies and natural resources, as well as the high demand of information for economical and management issues. Several previous studies were carried out in the field of forest plantations but there is still a gap in knowledge when it comes to natural mixed forests, which are ecological complex due to varying distributions and interaction of different species. The applicability of Unmanned Aerial Vehicles (UAVs) for forest applications by using image analysis became a common tool because it is cost-efficient, time-saving and usable on a large-scale. Additionally, technologies like Deep Learning (DL) fasten the proceeding of a high number of images. Deep learning is a relatively new tool in forest applications and especially in the case of natural dense mixed forests in Japan. Our approach is to introduce the DL-based ResNet50 network for automatic tree species classification and segmentation, which uses transfer learning to reduce the amount of required data. A comparison between the ResNet50 algorithm and the common UNet algorithm, as well as a quantitative analysis of model setups are presented in this study. Furthermore, the data were analysed regarding difficulties and opportunities. We showed the outperformance of UNet with a DICE coefficient of 0.6667 for deciduous trees and 0.892 for evergreen trees, while ResNet 50 was reaching 0.733 and 0.855. A refinement of the segmentation was performed by the watershed algorithm increasing the DICE coefficient to values of up to 0.777 and 0.873. The results of the transfer learning analysis confirmed the increasing accuracy by adding image classification data basis for the model training. We were able to reduce the number of images required for the application. Therefore, the study showed the applicability and effectiveness of those techniques for classification approaches. Furthermore, we were able to reduce the training time by 16 times for the ResNet 50 performance and by 3.6 times with the watershed approach in comparison to the UNet algorithm. To the best of our knowledge this is the first study using deep learning applications for forestry research in Japan and the first study dealing with images of natural dense mixed forests.
How to cite: Kentsch, S., Lopez Caceres, M. L., and Diez Donoso, Y.: Tree species classification by using computer vision and deep learning techniques for the analysis of drone images of mixed forests in Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-197, https://doi.org/10.5194/egusphere-egu2020-197, 2020.
Forests become more important in times of changing climate, increasing demand of renewable energies and natural resources, as well as the high demand of information for economical and management issues. Several previous studies were carried out in the field of forest plantations but there is still a gap in knowledge when it comes to natural mixed forests, which are ecological complex due to varying distributions and interaction of different species. The applicability of Unmanned Aerial Vehicles (UAVs) for forest applications by using image analysis became a common tool because it is cost-efficient, time-saving and usable on a large-scale. Additionally, technologies like Deep Learning (DL) fasten the proceeding of a high number of images. Deep learning is a relatively new tool in forest applications and especially in the case of natural dense mixed forests in Japan. Our approach is to introduce the DL-based ResNet50 network for automatic tree species classification and segmentation, which uses transfer learning to reduce the amount of required data. A comparison between the ResNet50 algorithm and the common UNet algorithm, as well as a quantitative analysis of model setups are presented in this study. Furthermore, the data were analysed regarding difficulties and opportunities. We showed the outperformance of UNet with a DICE coefficient of 0.6667 for deciduous trees and 0.892 for evergreen trees, while ResNet 50 was reaching 0.733 and 0.855. A refinement of the segmentation was performed by the watershed algorithm increasing the DICE coefficient to values of up to 0.777 and 0.873. The results of the transfer learning analysis confirmed the increasing accuracy by adding image classification data basis for the model training. We were able to reduce the number of images required for the application. Therefore, the study showed the applicability and effectiveness of those techniques for classification approaches. Furthermore, we were able to reduce the training time by 16 times for the ResNet 50 performance and by 3.6 times with the watershed approach in comparison to the UNet algorithm. To the best of our knowledge this is the first study using deep learning applications for forestry research in Japan and the first study dealing with images of natural dense mixed forests.
How to cite: Kentsch, S., Lopez Caceres, M. L., and Diez Donoso, Y.: Tree species classification by using computer vision and deep learning techniques for the analysis of drone images of mixed forests in Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-197, https://doi.org/10.5194/egusphere-egu2020-197, 2020.
EGU2020-4752 | Displays | BG3.16
New Opportunities for Highly Automated Countrywide Assessment of Trees Outside Forests in SwitzerlandEylul Malkoc and Lars T. Waser
Although various ways of defining forests exist, non of them is eligible on assessing every tree -growing outside forest- on the landscape. In the last decades, forestry and land management sectors have become increasingly aware that Trees Outside Forests (TOF) are critical non-forest tree resources to ensure environmental, economic, social and cultural services and functions. The importance of TOF varies in international, national and local levels. Recently, international programmes have been established to strengthen the services and functions of TOF: sustainable land management, carbon capturing and storage on climate change mitigation and improving local economies. Therefore, in the past years countries have started to take action for assesing their TOF resources on different scales.
Only little research has been conducted on TOF in Switzerland, yet the explicit spatial distribution of TOF in the landscape is poorly understood and their extent and tree biomass are unknown. Nowadays, remote sensing technologies have opened new opportunities to fill this knowledge gap, and countrywide data sets of TOF have become more feasible.
The present research aims to introduce a highly automated method to derive extent, spatial distribution and biomass of TOF in different land use classes: Agriculture, Urban, and Non- Agriculture/Urban for the whole of Switzerland.
The entire process of identifying TOF is done in Python using routinely acquired countrywide remote sensing data, i.e. Vegetation Height Model (Ginzler and Hobi 2015), CORINE Land Cover/Use map and the Forest Mask of Switzerland (Waser et al. 2015) and based on the decision tree algorithm developed by FAO-FRA (Foresta et.al., 2013). The primarily applied criterias are the Presence of Trees on the land, Land Use, and Spatial pattern of Trees. After the application of primary criterias, a set of thresholds were applied as following: the minimum canopy cover threshold: 5% (if trees only), 10% if combined cover is trees and shrubs, minimum area 0.05 ha., tree line lenght 25 m, and tree line width 3 m.
The present study aims to complement forest data obtained from the Swiss National Forest Inventory and enables to derived relevant TOF parameters such as tree species distribution, biomass and carbon sequestration potential. Moreover, the proposed method is relevant to help other countries to create their own data sets on non-forest tree resources as an input to energy, environment, forest policy making, and wood industry decision making and to contribute to better cope with the challenges of changing climate and environment. Currently, the potential of Sentinel-2 imagery is being tested.
Keywords: Trees Outside Forest, Wall-to-wall, Vegetation Height Model
Reference: Hubert de Foresta, Eduardo Somarriba, August Temu, Désirée Boulanger, Hélène Feuilly and Michelle Gauthier. 2013. Towards the Assessment of Trees Outside Forests. Resources Assessment Working Paper 183. FAO Rome.
Ginzler, C., Hobi, M.L., 2015. Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory. Remote Sensing, 7, 4343-4370.
Waser, L.T., Fischer, C., Wang, Z., Ginzler, C., 2015. Wall-to-Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition. Forests, 6, 4510-4528.
How to cite: Malkoc, E. and Waser, L. T.: New Opportunities for Highly Automated Countrywide Assessment of Trees Outside Forests in Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4752, https://doi.org/10.5194/egusphere-egu2020-4752, 2020.
Although various ways of defining forests exist, non of them is eligible on assessing every tree -growing outside forest- on the landscape. In the last decades, forestry and land management sectors have become increasingly aware that Trees Outside Forests (TOF) are critical non-forest tree resources to ensure environmental, economic, social and cultural services and functions. The importance of TOF varies in international, national and local levels. Recently, international programmes have been established to strengthen the services and functions of TOF: sustainable land management, carbon capturing and storage on climate change mitigation and improving local economies. Therefore, in the past years countries have started to take action for assesing their TOF resources on different scales.
Only little research has been conducted on TOF in Switzerland, yet the explicit spatial distribution of TOF in the landscape is poorly understood and their extent and tree biomass are unknown. Nowadays, remote sensing technologies have opened new opportunities to fill this knowledge gap, and countrywide data sets of TOF have become more feasible.
The present research aims to introduce a highly automated method to derive extent, spatial distribution and biomass of TOF in different land use classes: Agriculture, Urban, and Non- Agriculture/Urban for the whole of Switzerland.
The entire process of identifying TOF is done in Python using routinely acquired countrywide remote sensing data, i.e. Vegetation Height Model (Ginzler and Hobi 2015), CORINE Land Cover/Use map and the Forest Mask of Switzerland (Waser et al. 2015) and based on the decision tree algorithm developed by FAO-FRA (Foresta et.al., 2013). The primarily applied criterias are the Presence of Trees on the land, Land Use, and Spatial pattern of Trees. After the application of primary criterias, a set of thresholds were applied as following: the minimum canopy cover threshold: 5% (if trees only), 10% if combined cover is trees and shrubs, minimum area 0.05 ha., tree line lenght 25 m, and tree line width 3 m.
The present study aims to complement forest data obtained from the Swiss National Forest Inventory and enables to derived relevant TOF parameters such as tree species distribution, biomass and carbon sequestration potential. Moreover, the proposed method is relevant to help other countries to create their own data sets on non-forest tree resources as an input to energy, environment, forest policy making, and wood industry decision making and to contribute to better cope with the challenges of changing climate and environment. Currently, the potential of Sentinel-2 imagery is being tested.
Keywords: Trees Outside Forest, Wall-to-wall, Vegetation Height Model
Reference: Hubert de Foresta, Eduardo Somarriba, August Temu, Désirée Boulanger, Hélène Feuilly and Michelle Gauthier. 2013. Towards the Assessment of Trees Outside Forests. Resources Assessment Working Paper 183. FAO Rome.
Ginzler, C., Hobi, M.L., 2015. Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the Swiss National Forest Inventory. Remote Sensing, 7, 4343-4370.
Waser, L.T., Fischer, C., Wang, Z., Ginzler, C., 2015. Wall-to-Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition. Forests, 6, 4510-4528.
How to cite: Malkoc, E. and Waser, L. T.: New Opportunities for Highly Automated Countrywide Assessment of Trees Outside Forests in Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4752, https://doi.org/10.5194/egusphere-egu2020-4752, 2020.
EGU2020-5822 | Displays | BG3.16
SFM-Forest-Benchmark project: The benchmarking of image-based point cloud for forest inventoryMartin Mokros, Markus Hollaus, Yunsheng Wang, and Xinlian Liang
The benchmarking project of image-based point cloud for forest inventory (SFM-Forest-Benchmark) was initiated in 2019 and supported by ISPRS Scientific Initiative 2019. The main goal of the project was the evaluation of the applicability of terrestrial image-based point clouds for forest inventories, the clarification of the potential and limitations of the state-of-the-art techniques, and the exploration of the best practices in practical field inventories. In the project, related tree parameter (i.e. tree position diameter at breast height - DBH) were derived from 14 algorithms and evaluated using field inventory data as a reference. In order to clarify the potential of terrestrial image-based point clouds, the results from the image-based point clouds were also compared to results derived from the best available point clouds obtained by terrestrial laser scanning (TLS).
The project is consisted of two phases. In the first phase, we established two research plots in each country (Austria, China, Czech, Finland and Slovakia), ten plots in total. The stem density ranged from 272 to 875 stems/ha and plot size ranged approximately from 700 to 2500 m2. Dominant tree species across research plots were Norway spruce, European beech, bald cypress, Chinese tulip poplar, Scots pine, European silver fir and sessile oak. TLS, images and reference data acquisition were performed on each study site, where TLS data were acquired through multi-scan approach, images were taken in the stop-and-go mode, and tree positions and the DBHs were measured with a tachymeter and a calliper as field references. Images were processed with structure from motion algorithm within Agisoft Metashape software to final point clouds. The TLS data was pre-processed with RiProcess software. And, the co-registration of all three data sources (TLS, SFM, and reference data) was done with OPALS software.
In the benchmarking phase, we distributed point clouds to participants of the benchmark. Altogether 14 different research groups processed the data with own algorithms. The individual results are evaluated through the reference to clarify the applicability of the image-point clouds in deriving tree parameters, were compared to each other to reveal the state-of-the-art of technologies, and were benchmarked to the up-to-data the most accurate data from TLS to explore the strength and weakness of the image-based point cloud. In this presentation the first benchmark results will be presented and discussed.
All images and point clouds collected for this project will be available as open access data for non-commercial uses.
How to cite: Mokros, M., Hollaus, M., Wang, Y., and Liang, X.: SFM-Forest-Benchmark project: The benchmarking of image-based point cloud for forest inventory , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5822, https://doi.org/10.5194/egusphere-egu2020-5822, 2020.
The benchmarking project of image-based point cloud for forest inventory (SFM-Forest-Benchmark) was initiated in 2019 and supported by ISPRS Scientific Initiative 2019. The main goal of the project was the evaluation of the applicability of terrestrial image-based point clouds for forest inventories, the clarification of the potential and limitations of the state-of-the-art techniques, and the exploration of the best practices in practical field inventories. In the project, related tree parameter (i.e. tree position diameter at breast height - DBH) were derived from 14 algorithms and evaluated using field inventory data as a reference. In order to clarify the potential of terrestrial image-based point clouds, the results from the image-based point clouds were also compared to results derived from the best available point clouds obtained by terrestrial laser scanning (TLS).
The project is consisted of two phases. In the first phase, we established two research plots in each country (Austria, China, Czech, Finland and Slovakia), ten plots in total. The stem density ranged from 272 to 875 stems/ha and plot size ranged approximately from 700 to 2500 m2. Dominant tree species across research plots were Norway spruce, European beech, bald cypress, Chinese tulip poplar, Scots pine, European silver fir and sessile oak. TLS, images and reference data acquisition were performed on each study site, where TLS data were acquired through multi-scan approach, images were taken in the stop-and-go mode, and tree positions and the DBHs were measured with a tachymeter and a calliper as field references. Images were processed with structure from motion algorithm within Agisoft Metashape software to final point clouds. The TLS data was pre-processed with RiProcess software. And, the co-registration of all three data sources (TLS, SFM, and reference data) was done with OPALS software.
In the benchmarking phase, we distributed point clouds to participants of the benchmark. Altogether 14 different research groups processed the data with own algorithms. The individual results are evaluated through the reference to clarify the applicability of the image-point clouds in deriving tree parameters, were compared to each other to reveal the state-of-the-art of technologies, and were benchmarked to the up-to-data the most accurate data from TLS to explore the strength and weakness of the image-based point cloud. In this presentation the first benchmark results will be presented and discussed.
All images and point clouds collected for this project will be available as open access data for non-commercial uses.
How to cite: Mokros, M., Hollaus, M., Wang, Y., and Liang, X.: SFM-Forest-Benchmark project: The benchmarking of image-based point cloud for forest inventory , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5822, https://doi.org/10.5194/egusphere-egu2020-5822, 2020.
EGU2020-5305 | Displays | BG3.16
National-scale mangrove forest mapping by using Sentinel-1 SAR and Sentinel-2 MSI imagery on the Google Earth Engine PlatformLuojia Hu, Wei Yao, Zhitong Yu, and Lei Wang
Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?
Our results show that: (1) The highest producer’s accuracies (the reason why using producer’s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer’s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future.
How to cite: Hu, L., Yao, W., Yu, Z., and Wang, L.: National-scale mangrove forest mapping by using Sentinel-1 SAR and Sentinel-2 MSI imagery on the Google Earth Engine Platform, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5305, https://doi.org/10.5194/egusphere-egu2020-5305, 2020.
Mangrove forest is considered as one of the pivotal ecosystems to near-shore environment health, adjacent terrestrial ecosystems and even global climate change migration. However, for past two decades, they are declining rapidly. In order to take effective steps to prevent the extinction of mangroves, high spatial resolution information of large-scale mangrove distribution is urgent. Recent study has indicated that a suitable pixel size for extracting mangroves should be at least equal to 10 m. Hence, Sentinel imagery (Sentinel-1 C-band synthetic aperture radar (SAR) and Sentinel-2 Multi-Spectral Instrument (MSI) imagery) whose spatial resolution is 10 m may hold great potentials to achieve this goal, but there are limited researches investigating it. Therefore, in this study, we will explore the potential of Sentinel imagery to extract mangrove forests in China on the Google Earth Engine platform. Specifically, our study was mainly conducted around 3 questions: (1) Which Sentinel imagery provides a higher accuracy for mangrove forest mapping, Sentinel-1 SAR data or Sentinel-2 multi-spectral data? (2) which combination of features from Sentinel imagery provides the most accurate mangrove forest map? (3) Compared to 30-m resolution mangrove products derived from Landsat imagery, how does 10-m resolution map improve our knowledge about the distribution of mangrove forest in China?
Our results show that: (1) The highest producer’s accuracies (the reason why using producer’s accuracy as an accuracy evaluation indicator here is that the omission errors in mangrove forest extent map are much larger than commission errors) of mangrove forest maps derived from Sentinel-1 and Sentinel-2 imagery are 91.76% and 90.39%, respectively, which means that the contributions of Sentinel-1 SAR and Sentinel-2 MSI imagery to mangrove mapping are similar; (2) The highest producer’s accuracy of mangrove forest map at 10-m resolution is 95.4%. The mangrove forest map with the highest accuracy is obtained by combining quantiles of spectral and backscatter bands, spectral index, and texture index derived from time series of Sentinel-1 and Sentinel-2 imagery, indicating that the combination of Sentinel-1 SAR and Sentinel-2 MSI imagery is more useful in mangrove forest mapping than using them separately; (3) In China, the total area of mangrove forest extent at 10-m resolution is similar to that at 30-m resolution (20003 ha vs. 19220 ha). However, compared to 30-m resolution mangrove products, the 10-m resolution mangrove map identifies 1741 ha (occupying 8.7% of total mangrove forest area in China) mangrove forests in size smaller than 1 ha, which are especially important to low-lying coastal zone. This study demonstrates the feasibility of Sentinel imagery in large-scale mangrove forest mapping and gives guidance to map global mangrove forest at 10-m resolution in the future.
How to cite: Hu, L., Yao, W., Yu, Z., and Wang, L.: National-scale mangrove forest mapping by using Sentinel-1 SAR and Sentinel-2 MSI imagery on the Google Earth Engine Platform, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5305, https://doi.org/10.5194/egusphere-egu2020-5305, 2020.
EGU2020-7378 | Displays | BG3.16
Influence of ULS data acquisition characteristics on the achievable stem reconstruction accuraciesMoritz Bruggisser, Johannes Otepka, Norbert Pfeifer, and Markus Hollaus
Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation.
The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.
How to cite: Bruggisser, M., Otepka, J., Pfeifer, N., and Hollaus, M.: Influence of ULS data acquisition characteristics on the achievable stem reconstruction accuracies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7378, https://doi.org/10.5194/egusphere-egu2020-7378, 2020.
Unmanned aerial vehicles-borne laser scanning (ULS) allows time-efficient acquisition of high-resolution point clouds on regional extents at moderate costs. The quality of ULS-point clouds facilitates the 3D modelling of individual tree stems, what opens new possibilities in the context of forest monitoring and management. In our study, we developed and tested an algorithm which allows for i) the autonomous detection of potential stem locations within the point clouds, ii) the estimation of the diameter at breast height (DBH) and iii) the reconstruction of the tree stem. In our experiments on point clouds from both, a RIEGL miniVUX-1DL and a VUX-1UAV, respectively, we could detect 91.0 % and 77.6 % of the stems within our study area automatically. The DBH could be modelled with biases of 3.1 cm and 1.1 cm, respectively, from the two point cloud sets with respective detection rates of 80.6 % and 61.2 % of the trees present in the field inventory. The lowest 12 m of the tree stem could be reconstructed with absolute stem diameter differences below 5 cm and 2 cm, respectively, compared to stem diameters from a point cloud from terrestrial laser scanning. The accuracy of larger tree stems thereby was higher in general than the accuracy for smaller trees. Furthermore, we recognized a small influence only of the completeness with which a stem is covered with points, as long as half of the stem circumference was captured. Likewise, the absolute point count did not impact the accuracy, but, in contrast, was critical to the completeness with which a scene could be reconstructed. The precision of the laser scanner, on the other hand, was a key factor for the accuracy of the stem diameter estimation.
The findings of this study are highly relevant for the flight planning and the sensor selection of future ULS acquisition missions in the context of forest inventories.
How to cite: Bruggisser, M., Otepka, J., Pfeifer, N., and Hollaus, M.: Influence of ULS data acquisition characteristics on the achievable stem reconstruction accuracies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7378, https://doi.org/10.5194/egusphere-egu2020-7378, 2020.
EGU2020-10301 | Displays | BG3.16
UAV-based classification of tree-browsing intensity in open woodlandsIrene Marzolff, Robin Stephan, Mario Kirchhoff, Manuel Seeger, Ali Aït Hssaïne, and Johannes B. Ries
In semi-arid to arid South-west Morocco, the endemic argan tree (Argania spinosa) forms open woodlands that are the basis of a traditional agroforestry system involving rain-fed agriculture, pasturing of goats, sheep and camels, and oil production. Due to the high grazing pressure, the trees show various morphological traits and growth forms that are strongly related to browsing intensity. The overall appearance of Argania spinosa ranges from trees with a large, round crown and single trunk, over multi-stem, umbrella-shaped and hourglass-shaped trees to heavily condensed cone-shaped cushions.
30 test sites of 1 ha each in argan woodlands of different degradation stages were surveyed with an unmanned aerial vehicle (UAV) and RGB optical camera using a dedicated flight scheme for capturing full 3D tree shape at approx. 1 cm resolution. Structure-from-Motion (SfM)-photogrammetric processing yielded dense 3D point clouds as well as ultra-high resolution (1.5 cm) digital surface models (DSMs), terrain models (DTMs), crown-height models (CHMs) and orthophoto mosaics. Tree height and crown size were extracted from the CHMs, and 3D point-cloud characteristics (point density, profile shape/layer structure) and canopy structures were analysed within a geographical information system (GIS). Using field-based reference data on tree architecture and browsing features of 2494 trees, we were able to assign characteristic combinations of the GIS-derived structural parameters to three browsing-intensity classes and thus classify each argan tree via the architectural shape captured in its UAV-based 3D point cloud. We found that the majority of argan trees at the study sites are characterised by high browsing intensities. The small percentage of trees in the minimum browsing class are mostly inaccessible to grazing livestock. We conclude that UAV-based remote sensing has a high potential for mapping structural indicators of tree degradation by herbivore browsing in open woodland environments.
How to cite: Marzolff, I., Stephan, R., Kirchhoff, M., Seeger, M., Aït Hssaïne, A., and Ries, J. B.: UAV-based classification of tree-browsing intensity in open woodlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10301, https://doi.org/10.5194/egusphere-egu2020-10301, 2020.
In semi-arid to arid South-west Morocco, the endemic argan tree (Argania spinosa) forms open woodlands that are the basis of a traditional agroforestry system involving rain-fed agriculture, pasturing of goats, sheep and camels, and oil production. Due to the high grazing pressure, the trees show various morphological traits and growth forms that are strongly related to browsing intensity. The overall appearance of Argania spinosa ranges from trees with a large, round crown and single trunk, over multi-stem, umbrella-shaped and hourglass-shaped trees to heavily condensed cone-shaped cushions.
30 test sites of 1 ha each in argan woodlands of different degradation stages were surveyed with an unmanned aerial vehicle (UAV) and RGB optical camera using a dedicated flight scheme for capturing full 3D tree shape at approx. 1 cm resolution. Structure-from-Motion (SfM)-photogrammetric processing yielded dense 3D point clouds as well as ultra-high resolution (1.5 cm) digital surface models (DSMs), terrain models (DTMs), crown-height models (CHMs) and orthophoto mosaics. Tree height and crown size were extracted from the CHMs, and 3D point-cloud characteristics (point density, profile shape/layer structure) and canopy structures were analysed within a geographical information system (GIS). Using field-based reference data on tree architecture and browsing features of 2494 trees, we were able to assign characteristic combinations of the GIS-derived structural parameters to three browsing-intensity classes and thus classify each argan tree via the architectural shape captured in its UAV-based 3D point cloud. We found that the majority of argan trees at the study sites are characterised by high browsing intensities. The small percentage of trees in the minimum browsing class are mostly inaccessible to grazing livestock. We conclude that UAV-based remote sensing has a high potential for mapping structural indicators of tree degradation by herbivore browsing in open woodland environments.
How to cite: Marzolff, I., Stephan, R., Kirchhoff, M., Seeger, M., Aït Hssaïne, A., and Ries, J. B.: UAV-based classification of tree-browsing intensity in open woodlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10301, https://doi.org/10.5194/egusphere-egu2020-10301, 2020.
EGU2020-10673 | Displays | BG3.16
Is more data better? A comparison of multi- and hyperspectral imaging in phenotyping.Marja Haagsma, Gerald Page, Jeremy Johnson, Christopher Still, Kristen Waring, Richard Sniezko, and John Selker
Spectral imaging of vegetation for phenotyping is a fast-developing field that enables fast, objective and automated assessment of plant traits. Advances in instrumentation allow collection of ever more detailed observations using hyperspectral imaging. This technique captures the reflected light in 100+ wavelengths, compared to multispectral sensors which typically obtain 3 to 5 wavelengths. With machine learning and careful statistical analysis these data can be efficiently transformed into predictions of crop health, yield, etc. However, these instruments are costly to acquire and produce volumes of data which are expensive to handle and archive, and therefore we must ask the question whether/when the investment is worth it. In this case study, we assess the implications of using hyperspectral vs multispectral imaging when monitoring the effects of an invasive fungal pathogen on seedlings of southwestern white pine. We discuss the impacts in terms of the complexity level of the research goals. Firstly, we discuss the impact on the accuracy and timing of infection detection. Pre-symptomatic detection of infection is possible using hyperspectral. To what extent is this possible using multispectral? Next, what is the trade-off between the two spectral methods when predicting for symptom severity? And lastly, the study contains a third level of complexity, a variety in genotypes. Using hyperspectral we can successfully separate the genotypes. However, is there still a significant difference in reflectance between genotypes when using multispectral data? This study shows that the need for hyperspectral depends on the complexity of the research goal, and therefore collecting more data might not always be useful.
How to cite: Haagsma, M., Page, G., Johnson, J., Still, C., Waring, K., Sniezko, R., and Selker, J.: Is more data better? A comparison of multi- and hyperspectral imaging in phenotyping., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10673, https://doi.org/10.5194/egusphere-egu2020-10673, 2020.
Spectral imaging of vegetation for phenotyping is a fast-developing field that enables fast, objective and automated assessment of plant traits. Advances in instrumentation allow collection of ever more detailed observations using hyperspectral imaging. This technique captures the reflected light in 100+ wavelengths, compared to multispectral sensors which typically obtain 3 to 5 wavelengths. With machine learning and careful statistical analysis these data can be efficiently transformed into predictions of crop health, yield, etc. However, these instruments are costly to acquire and produce volumes of data which are expensive to handle and archive, and therefore we must ask the question whether/when the investment is worth it. In this case study, we assess the implications of using hyperspectral vs multispectral imaging when monitoring the effects of an invasive fungal pathogen on seedlings of southwestern white pine. We discuss the impacts in terms of the complexity level of the research goals. Firstly, we discuss the impact on the accuracy and timing of infection detection. Pre-symptomatic detection of infection is possible using hyperspectral. To what extent is this possible using multispectral? Next, what is the trade-off between the two spectral methods when predicting for symptom severity? And lastly, the study contains a third level of complexity, a variety in genotypes. Using hyperspectral we can successfully separate the genotypes. However, is there still a significant difference in reflectance between genotypes when using multispectral data? This study shows that the need for hyperspectral depends on the complexity of the research goal, and therefore collecting more data might not always be useful.
How to cite: Haagsma, M., Page, G., Johnson, J., Still, C., Waring, K., Sniezko, R., and Selker, J.: Is more data better? A comparison of multi- and hyperspectral imaging in phenotyping., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10673, https://doi.org/10.5194/egusphere-egu2020-10673, 2020.
EGU2020-11896 | Displays | BG3.16
UAV-derived Estimates of Vertical and Horizontal Structure across Forest Density GradientsTemuulen Sankey and Adam Belmonte
Restoring forest ecosystems and predicting forest response to projected climate change have become an increasingly high priority for land managers. Restoration and management goals require accurate, quantitative estimates of vertical and horizontal forest structure, which has relied upon either field-based measurements, manned airborne, or satellite remote sensing datasets. We use unmanned aerial vehicle (UAV) image-derived structure from motion (SfM) models and high resolution multispectral and thermal orthoimagery to: 1) quantify vertical and horizontal forest structure at both fine- (< 4 ha) and mid-scales (4-400 ha) across a forest density gradient, and 2) quantify horizontal structure, health, and survival rates in a genetics experimental garden also with a density gradient. In both cases, we find that UAV multispectral and thermal image-derived SfM model estimates of individual tree height and canopy diameter are most accurate in low-density conditions, with accuracies degrading significantly in high-density conditions. In addition, UAV thermal images demonstrate significant differences in tree health and survival rates among various populations and genotypes within a single species. Mid-scale estimates of canopy cover and forest density follow a similar pattern across the density gradient, demonstrating the effectiveness of UAV image-derived estimates in low to medium-density conditions as well as the challenges associated with high-density conditions.
How to cite: Sankey, T. and Belmonte, A.: UAV-derived Estimates of Vertical and Horizontal Structure across Forest Density Gradients, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11896, https://doi.org/10.5194/egusphere-egu2020-11896, 2020.
Restoring forest ecosystems and predicting forest response to projected climate change have become an increasingly high priority for land managers. Restoration and management goals require accurate, quantitative estimates of vertical and horizontal forest structure, which has relied upon either field-based measurements, manned airborne, or satellite remote sensing datasets. We use unmanned aerial vehicle (UAV) image-derived structure from motion (SfM) models and high resolution multispectral and thermal orthoimagery to: 1) quantify vertical and horizontal forest structure at both fine- (< 4 ha) and mid-scales (4-400 ha) across a forest density gradient, and 2) quantify horizontal structure, health, and survival rates in a genetics experimental garden also with a density gradient. In both cases, we find that UAV multispectral and thermal image-derived SfM model estimates of individual tree height and canopy diameter are most accurate in low-density conditions, with accuracies degrading significantly in high-density conditions. In addition, UAV thermal images demonstrate significant differences in tree health and survival rates among various populations and genotypes within a single species. Mid-scale estimates of canopy cover and forest density follow a similar pattern across the density gradient, demonstrating the effectiveness of UAV image-derived estimates in low to medium-density conditions as well as the challenges associated with high-density conditions.
How to cite: Sankey, T. and Belmonte, A.: UAV-derived Estimates of Vertical and Horizontal Structure across Forest Density Gradients, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11896, https://doi.org/10.5194/egusphere-egu2020-11896, 2020.
EGU2020-13834 | Displays | BG3.16
High-resolution mapping of tropical moist forest cover dynamics over the last 30 yearschristelle vancutsem, Fréderic Achard, Jean-Francois Pekel, Ghislain Vieilledent, Silvia Carboni, Dario Simonetti, and Javier Gallego
Tropical moist forest (TMF) provide essential ecosystem services1,2. Fine-scale mapping and characterization of their disturbances are needed to support global conservation policies3 and to accurately quantify their contribution to global carbon fluxes4. However, limited information exists on their remaining extent and long-term historical changes.
We produced a wall-to-wall map of TMF cover dynamics at 30-meter resolution from 1990 to 2019. Each individual image of the full Landsat archive (~1 200 000 scenes) has been mapped using an expert system to allow all disturbances in the forest cover - including from selective logging activities and fires that are visible during a short period - to be depicted and characterized in terms of timing (dates and duration), sequential dynamics, intensity, and extent.
The performance of our disturbance classifier has been validated against 12 235 reference sample plots resulting in 9.4% omissions, 8.1% false detections and 91.4% overall accuracy.
Our dataset depicts the TMF extent and patterns of disturbances through two complementary layers: a transition map and an annual change dataset. The transition map captures the resulting disturbance dynamics over the 30 years by depicting (i) remaining undisturbed forests, (ii) two types of degraded forests (corresponding mostly to either logged or burned forests), (iii) young forest regrowth, and (iv) deforested land that includes four subcategories of converted land cover: (a) water bodies (new dams and river flow changes); (b) tree plantations; and (c) other land cover that includes infrastructure, agriculture, and mining. The annual change dataset is a collection of 30 maps depicting - for each year between 1990 and 2019 - the spatial extents of undisturbed forests and disturbances.
We found that pan-tropical forest disturbances have been underestimated so far. For the first time at this scale, we discriminate deforestation from degradation and we underline the importance of the degradation process in tropical forest ecosystems. Our analysis shows the trends of deforestation and degradation by country, sub-region, and continent. Finally, we extrapolated the recent average rates of disturbances to predict the extent of the undisturbed TMF by 2050.
We will continue to update the TMF dataset with future Landsat data and intend to adapt the methodology to Sentinel 2 data (available since 2015) towards near real-time monitoring of TMF with a higher frequency of observations and finer spatial resolution.
1. Gibson et al. 2011 doi:10.1038/nature10425
2. Watson et al. 2018 Doi:10.1038/s41559-018-0490-x
3. Mackey et al. 2015 doi:10.1111/conl.12120
4. Mitchard E.T.A. 2018 doi
How to cite: vancutsem, C., Achard, F., Pekel, J.-F., Vieilledent, G., Carboni, S., Simonetti, D., and Gallego, J.: High-resolution mapping of tropical moist forest cover dynamics over the last 30 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13834, https://doi.org/10.5194/egusphere-egu2020-13834, 2020.
Tropical moist forest (TMF) provide essential ecosystem services1,2. Fine-scale mapping and characterization of their disturbances are needed to support global conservation policies3 and to accurately quantify their contribution to global carbon fluxes4. However, limited information exists on their remaining extent and long-term historical changes.
We produced a wall-to-wall map of TMF cover dynamics at 30-meter resolution from 1990 to 2019. Each individual image of the full Landsat archive (~1 200 000 scenes) has been mapped using an expert system to allow all disturbances in the forest cover - including from selective logging activities and fires that are visible during a short period - to be depicted and characterized in terms of timing (dates and duration), sequential dynamics, intensity, and extent.
The performance of our disturbance classifier has been validated against 12 235 reference sample plots resulting in 9.4% omissions, 8.1% false detections and 91.4% overall accuracy.
Our dataset depicts the TMF extent and patterns of disturbances through two complementary layers: a transition map and an annual change dataset. The transition map captures the resulting disturbance dynamics over the 30 years by depicting (i) remaining undisturbed forests, (ii) two types of degraded forests (corresponding mostly to either logged or burned forests), (iii) young forest regrowth, and (iv) deforested land that includes four subcategories of converted land cover: (a) water bodies (new dams and river flow changes); (b) tree plantations; and (c) other land cover that includes infrastructure, agriculture, and mining. The annual change dataset is a collection of 30 maps depicting - for each year between 1990 and 2019 - the spatial extents of undisturbed forests and disturbances.
We found that pan-tropical forest disturbances have been underestimated so far. For the first time at this scale, we discriminate deforestation from degradation and we underline the importance of the degradation process in tropical forest ecosystems. Our analysis shows the trends of deforestation and degradation by country, sub-region, and continent. Finally, we extrapolated the recent average rates of disturbances to predict the extent of the undisturbed TMF by 2050.
We will continue to update the TMF dataset with future Landsat data and intend to adapt the methodology to Sentinel 2 data (available since 2015) towards near real-time monitoring of TMF with a higher frequency of observations and finer spatial resolution.
1. Gibson et al. 2011 doi:10.1038/nature10425
2. Watson et al. 2018 Doi:10.1038/s41559-018-0490-x
3. Mackey et al. 2015 doi:10.1111/conl.12120
4. Mitchard E.T.A. 2018 doi
How to cite: vancutsem, C., Achard, F., Pekel, J.-F., Vieilledent, G., Carboni, S., Simonetti, D., and Gallego, J.: High-resolution mapping of tropical moist forest cover dynamics over the last 30 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13834, https://doi.org/10.5194/egusphere-egu2020-13834, 2020.
EGU2020-13334 | Displays | BG3.16
Drone-based remote sensing shows no effect of stand density on canopy temperature in semi-arid pine forest during droughtEyal Rotenberg, Jonathan D. Müller, Lior Segev, and Dan Yakir
High radiation, low albedo, and limited evaporative cooling greatly affect canopy temperature in many semi-arid ecosystems. This makes the dissipation of excess energy essential to tree survival. Remote sensing has the potential to optimise management and better understanding of tree survival mechanisms in this zone. Stand density is thought to affect canopy and soil temperature through shading, change in overall albedo, evapotranspiration, and its effect on convective cooling through wind penetration into the canopy layer. Our objective was to assess the effect of stand density on the canopy and the mean plot temperature as a basis to optimize energy management of a severely water-limited forest.
We used a drone equipped with RGB, thermal (FLIR) and multispectral cameras (Parrot Sequoia, bands: 550nm, 660nm, 735nm & 790nm) alongside independent Lidar measurements in a set of five replicate plots of three different stand density treatments (100, 200 & 300 trees/ha) alongside ground-based measurements. Drone flights were performed during midday throughout the peak of the summer drought (lasting ~8 months) in our semi-arid Aleppo Pine forest research site in southern Israel (sun near NADIR & midday solar radiation >800 W·m-2, air temperature >30°C). Finally, a set of techniques were developed to automatically identify and extract data of individual tree canopies from the aerial images.
Initial results highlight the importance of partitioning the forest into exposed and shaded soil and tree canopy: The canopy-to-air and exposed soil-to-air temperature differences reached up to 5°C and 35°C, respectively, while shaded soils were in the same temperature range as canopies. Ground-based measurements of DBH and photosynthetic activity increased with decreasing stand density. This is in spite of up to 30% more longwave radiation reaching the canopies through exposure to the hot soil and lack of shading from neighbouring trees in the lower density plots. Unexpectedly, there was a lack of significant canopy temperature differences among density plots, indicating that trees in all treatments dissipated the excess energy equally efficiently. Therefore, mean plot-scale forest surface (skin) temperatures (including both soil and canopy) were affected by the fraction of canopy cover rather than canopy temperature differences among different stand density plots. The results highlight the limitation of interpreting low-resolution satellite data in open canopy forests. Our results will allow us to assess the stand density effects on the balance between carbon sequestration (biogeochemical effects) and surface energy balance (biogeophysical effects).
How to cite: Rotenberg, E., Müller, J. D., Segev, L., and Yakir, D.: Drone-based remote sensing shows no effect of stand density on canopy temperature in semi-arid pine forest during drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13334, https://doi.org/10.5194/egusphere-egu2020-13334, 2020.
High radiation, low albedo, and limited evaporative cooling greatly affect canopy temperature in many semi-arid ecosystems. This makes the dissipation of excess energy essential to tree survival. Remote sensing has the potential to optimise management and better understanding of tree survival mechanisms in this zone. Stand density is thought to affect canopy and soil temperature through shading, change in overall albedo, evapotranspiration, and its effect on convective cooling through wind penetration into the canopy layer. Our objective was to assess the effect of stand density on the canopy and the mean plot temperature as a basis to optimize energy management of a severely water-limited forest.
We used a drone equipped with RGB, thermal (FLIR) and multispectral cameras (Parrot Sequoia, bands: 550nm, 660nm, 735nm & 790nm) alongside independent Lidar measurements in a set of five replicate plots of three different stand density treatments (100, 200 & 300 trees/ha) alongside ground-based measurements. Drone flights were performed during midday throughout the peak of the summer drought (lasting ~8 months) in our semi-arid Aleppo Pine forest research site in southern Israel (sun near NADIR & midday solar radiation >800 W·m-2, air temperature >30°C). Finally, a set of techniques were developed to automatically identify and extract data of individual tree canopies from the aerial images.
Initial results highlight the importance of partitioning the forest into exposed and shaded soil and tree canopy: The canopy-to-air and exposed soil-to-air temperature differences reached up to 5°C and 35°C, respectively, while shaded soils were in the same temperature range as canopies. Ground-based measurements of DBH and photosynthetic activity increased with decreasing stand density. This is in spite of up to 30% more longwave radiation reaching the canopies through exposure to the hot soil and lack of shading from neighbouring trees in the lower density plots. Unexpectedly, there was a lack of significant canopy temperature differences among density plots, indicating that trees in all treatments dissipated the excess energy equally efficiently. Therefore, mean plot-scale forest surface (skin) temperatures (including both soil and canopy) were affected by the fraction of canopy cover rather than canopy temperature differences among different stand density plots. The results highlight the limitation of interpreting low-resolution satellite data in open canopy forests. Our results will allow us to assess the stand density effects on the balance between carbon sequestration (biogeochemical effects) and surface energy balance (biogeophysical effects).
How to cite: Rotenberg, E., Müller, J. D., Segev, L., and Yakir, D.: Drone-based remote sensing shows no effect of stand density on canopy temperature in semi-arid pine forest during drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13334, https://doi.org/10.5194/egusphere-egu2020-13334, 2020.
EGU2020-20303 | Displays | BG3.16
Estimating biomass using SAR Altimetry data onboard the Copernicus Sentinel-3 Mission: the ALBIOM projectMaria Paola Clarizia, Nazzareno Pierdicca, Leila Guerriero, Jennifer Reynolds, Alireza Taravat, Giuseppina De Felice-Proia, Cristina Vittucci, Davide Comite, Marco Restano, and Jérôme Benveniste
The ALtimetry for BIOMass project (ALBIOM) is ESA-funded Permanent Open Call Project that proposes to derive forest biomass using Copernicus Sentinel-3 (S3) SAR altimeter data. The project targets the need to improve our current global observations of biomass as an Essential Climate Variable (ECV) and crucial for bioenergy, risk mitigation activities, and sustainable management of forests. The overall goal is to estimate biomass with sufficient accuracy to be able to increase the existing satellite data for biomass retrieval and to improve the global mapping and monitoring of this fundamental variable.
The project originates from evidence that radar altimetry backscatter over land responds to a variety of land parameters, including vegetation-related parameters, at the different bands used by past and existing altimeters.
To achieve the scientific objectives, the project is structured into six conceptual tasks. After a review of the literature and of the existing user needs, a sensitivity analysis is performed to understand the relationship between SAR altimetry backscatter data and land parameters themselves. This is followed by the development of a Sentinel-3 SAR altimeter backscatter simulator over vegetated areas, and then by the development of a biomass inversion algorithm, testing different retrieval methodologies, both theoretical and empirical. A validation task for both the model and the algorithm is carried out over specific test sites of boreal and tropical forests, to finally generate a prototype of biomass product to be reviewed by potential users.
The sensitivity analysis allows to understand how the S3 Level 1 backscatter power waveforms change with respect to varying biomass, but also how they are affected by other land parameters such as soil moisture, land cover, topography and roughness. This analysis is carried out considering both the single-looked and the multi-looked waveforms, and considering primarily the high-resolution SAR mode, but also the Pseudo Low Resolution Mode (PLRM). The outcome of the sensitivity analysis provides indication of what waveforms, acquisition mode, observables derived from the waveforms and characteristics of the waveforms themselves respond more strongly to biomass variations, and on the degree of influence of the other auxiliary parameters, informing on the best strategies and approaches to adopt for the development of the retrieval algorithm.
Subsequent to the sensitivity analysis, the S3 altimetry backscatter simulator is developed over vegetated areas, reproducing both the coherent scattering component, which represents the echo from the ground, and incoherent scattering component arising from the forest layers between the ground and the top of canopy. The approach followed is similar to that of the SAVERS simulator, developed for GNSS-Reflectometry, with the signal backscatter attenuation introduced by branches, leaves and trunks modelled through the discrete approach of the Tor Vergata Scattering Model.
Results from the sensitivity analysis and the initial stages of the simulation development will be presented and discussed at the conference, together with the foreseen approaches for the development of the biomass retrieval algorithm.
How to cite: Clarizia, M. P., Pierdicca, N., Guerriero, L., Reynolds, J., Taravat, A., De Felice-Proia, G., Vittucci, C., Comite, D., Restano, M., and Benveniste, J.: Estimating biomass using SAR Altimetry data onboard the Copernicus Sentinel-3 Mission: the ALBIOM project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20303, https://doi.org/10.5194/egusphere-egu2020-20303, 2020.
The ALtimetry for BIOMass project (ALBIOM) is ESA-funded Permanent Open Call Project that proposes to derive forest biomass using Copernicus Sentinel-3 (S3) SAR altimeter data. The project targets the need to improve our current global observations of biomass as an Essential Climate Variable (ECV) and crucial for bioenergy, risk mitigation activities, and sustainable management of forests. The overall goal is to estimate biomass with sufficient accuracy to be able to increase the existing satellite data for biomass retrieval and to improve the global mapping and monitoring of this fundamental variable.
The project originates from evidence that radar altimetry backscatter over land responds to a variety of land parameters, including vegetation-related parameters, at the different bands used by past and existing altimeters.
To achieve the scientific objectives, the project is structured into six conceptual tasks. After a review of the literature and of the existing user needs, a sensitivity analysis is performed to understand the relationship between SAR altimetry backscatter data and land parameters themselves. This is followed by the development of a Sentinel-3 SAR altimeter backscatter simulator over vegetated areas, and then by the development of a biomass inversion algorithm, testing different retrieval methodologies, both theoretical and empirical. A validation task for both the model and the algorithm is carried out over specific test sites of boreal and tropical forests, to finally generate a prototype of biomass product to be reviewed by potential users.
The sensitivity analysis allows to understand how the S3 Level 1 backscatter power waveforms change with respect to varying biomass, but also how they are affected by other land parameters such as soil moisture, land cover, topography and roughness. This analysis is carried out considering both the single-looked and the multi-looked waveforms, and considering primarily the high-resolution SAR mode, but also the Pseudo Low Resolution Mode (PLRM). The outcome of the sensitivity analysis provides indication of what waveforms, acquisition mode, observables derived from the waveforms and characteristics of the waveforms themselves respond more strongly to biomass variations, and on the degree of influence of the other auxiliary parameters, informing on the best strategies and approaches to adopt for the development of the retrieval algorithm.
Subsequent to the sensitivity analysis, the S3 altimetry backscatter simulator is developed over vegetated areas, reproducing both the coherent scattering component, which represents the echo from the ground, and incoherent scattering component arising from the forest layers between the ground and the top of canopy. The approach followed is similar to that of the SAVERS simulator, developed for GNSS-Reflectometry, with the signal backscatter attenuation introduced by branches, leaves and trunks modelled through the discrete approach of the Tor Vergata Scattering Model.
Results from the sensitivity analysis and the initial stages of the simulation development will be presented and discussed at the conference, together with the foreseen approaches for the development of the biomass retrieval algorithm.
How to cite: Clarizia, M. P., Pierdicca, N., Guerriero, L., Reynolds, J., Taravat, A., De Felice-Proia, G., Vittucci, C., Comite, D., Restano, M., and Benveniste, J.: Estimating biomass using SAR Altimetry data onboard the Copernicus Sentinel-3 Mission: the ALBIOM project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20303, https://doi.org/10.5194/egusphere-egu2020-20303, 2020.
EGU2020-18430 | Displays | BG3.16
UAV-based dead wood mapping in a natural deciduous forest in mid-GermanyChristian Thiel, Marlin Müller, Lea Epple, Sören Hese, Christian Berger, and Michael Voltersen
The utilization of UAVs for the acquisition of ultra-high resolution imagery has heavily increased during the past decade. Once the hardware is purchased, images can be recorded almost at any time and at low cost. The image parameters can be determined in terms of spectral channels, image overlap, and geometric resolution. The overlap between the images enables stereoscopic image processing, the delineation of point clouds, and the generation of seamless image mosaics. UAV image data products have gathered high interest in the forestry community, as structural and spectral features can be delineated. Accordingly, regular forest monitoring and inventory can be supported using UAV data.
In this study, the potential of DJI Phantom 4 Pro RTK imagery based orthomosaics and point clouds to map dead wood on the forest floor is investigated. The test site is located in the center of the Hainich national park. The Hainich national park is an unmanaged forest comprising deciduous tree species such as Fagus sylvatica (beech), Fraxinus excelsior (ash), Acer pseudoplatanus (sycamore maple), and Carpinus betulus (hornbeam). The flight campaigns were controlled from the Hainich flux tower in the central part of the park area. RGB image data was captured in March 2019 during leaf-off conditions. Agisoft Metashape was used for processing the imagery to orthomosaics and point clouds. The living/standing trees were virtually removed from the point clouds as follows: 1.) normalizing the point cloud for topography, 2.) dropping all points above 5 m height. The remaining points were converted to an orthorectified RGB raster file, which solely contains the forest floor including the deadwood (lying stems) and tree stumps of the virtually cut trees. This raster was eventually used for dead wood mapping. The mapping task was accomplished using the OBIA software eCognition using the line extraction function as major method. The detection rate of the automatic mapping was approximately 70%. The dead wood mapping was complicated dead wood of several years of age featuring almost the same color and elevation level as the surrounding forest floor. Due to the latter, no elevation information was used. For regular monitoring considering recent dead wood only elevation information can be implemented and higher detection rates are feasible.
How to cite: Thiel, C., Müller, M., Epple, L., Hese, S., Berger, C., and Voltersen, M.: UAV-based dead wood mapping in a natural deciduous forest in mid-Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18430, https://doi.org/10.5194/egusphere-egu2020-18430, 2020.
The utilization of UAVs for the acquisition of ultra-high resolution imagery has heavily increased during the past decade. Once the hardware is purchased, images can be recorded almost at any time and at low cost. The image parameters can be determined in terms of spectral channels, image overlap, and geometric resolution. The overlap between the images enables stereoscopic image processing, the delineation of point clouds, and the generation of seamless image mosaics. UAV image data products have gathered high interest in the forestry community, as structural and spectral features can be delineated. Accordingly, regular forest monitoring and inventory can be supported using UAV data.
In this study, the potential of DJI Phantom 4 Pro RTK imagery based orthomosaics and point clouds to map dead wood on the forest floor is investigated. The test site is located in the center of the Hainich national park. The Hainich national park is an unmanaged forest comprising deciduous tree species such as Fagus sylvatica (beech), Fraxinus excelsior (ash), Acer pseudoplatanus (sycamore maple), and Carpinus betulus (hornbeam). The flight campaigns were controlled from the Hainich flux tower in the central part of the park area. RGB image data was captured in March 2019 during leaf-off conditions. Agisoft Metashape was used for processing the imagery to orthomosaics and point clouds. The living/standing trees were virtually removed from the point clouds as follows: 1.) normalizing the point cloud for topography, 2.) dropping all points above 5 m height. The remaining points were converted to an orthorectified RGB raster file, which solely contains the forest floor including the deadwood (lying stems) and tree stumps of the virtually cut trees. This raster was eventually used for dead wood mapping. The mapping task was accomplished using the OBIA software eCognition using the line extraction function as major method. The detection rate of the automatic mapping was approximately 70%. The dead wood mapping was complicated dead wood of several years of age featuring almost the same color and elevation level as the surrounding forest floor. Due to the latter, no elevation information was used. For regular monitoring considering recent dead wood only elevation information can be implemented and higher detection rates are feasible.
How to cite: Thiel, C., Müller, M., Epple, L., Hese, S., Berger, C., and Voltersen, M.: UAV-based dead wood mapping in a natural deciduous forest in mid-Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18430, https://doi.org/10.5194/egusphere-egu2020-18430, 2020.
EGU2020-18629 | Displays | BG3.16
Multi-angular observation of forest canopy reflectance based on a hyperspectral UAV imaging platformFeng Qiu and Qian Zhang
Forest canopy reflectance varies with solar and observation geometries and shows distinct anisotropic characteristics. The bidirectional reflectance distribution function (BRDF) of forest canopies is influenced by canopy structure, leaf biochemistry and background reflectance. Multi-angular remote sensing observations of forest canopies provide much more information about canopy structure and background information compared with the nadir observations. The development of unmanned aerial vehicle (UAV) provides great opportunities for multi-angular observations in forests. We developed a solid method to obtained bidirectional reflectance of forest canopies based on a hyperspectral UAV imaging platform in this study. With this multi-angular observation method, we obtained canopy reflectance images with the view zenith angle (VZA) varying from 60° (forward) to 60° (backward) at fixed interval (10°), as well as the hotspot and darkspot images in the principle plane in conifer forests. Since the single pixel with very high spatial resolution (around 10 cm) in the UAV images are not representative for the study of the whole forest canopy, several pixels in the central of each images were selected and averaged to determine the canopy reflectance. Variations of the averaged reflectance with ground distance represented by the selected pixels were analyzed and the optimum ground distance for study the multi-angular forest canopy reflectance was determined. The observed canopy reflectance peaks at the hotspot and clear images of the hotspot are observed. The sensitivities of canopy reflectance to VZAs vary with spectral bands. The reflectance at red bands near 680 nm are most sensitive to VZA. Some common used vegetation indices, such as NDVI, EVI, MTCI, PRI, also vary greatly with VZAs and demonstrate different spatial distribution patterns. The observations fit well with the 4-Scale geometric-optical model simulations. The multi-angular observation methods based on UAV platform have the advantages of efficient and effective in multi-angular observation with higher flexibility in VZA adjustment and lower cost, compared with the airborne or spaceborne sensors. This multi-angular observation method is very useful for study the BRDF and canopy structural and biochemical characteristics of forests and has great potential in forestry and ecological studies.
How to cite: Qiu, F. and Zhang, Q.: Multi-angular observation of forest canopy reflectance based on a hyperspectral UAV imaging platform, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18629, https://doi.org/10.5194/egusphere-egu2020-18629, 2020.
Forest canopy reflectance varies with solar and observation geometries and shows distinct anisotropic characteristics. The bidirectional reflectance distribution function (BRDF) of forest canopies is influenced by canopy structure, leaf biochemistry and background reflectance. Multi-angular remote sensing observations of forest canopies provide much more information about canopy structure and background information compared with the nadir observations. The development of unmanned aerial vehicle (UAV) provides great opportunities for multi-angular observations in forests. We developed a solid method to obtained bidirectional reflectance of forest canopies based on a hyperspectral UAV imaging platform in this study. With this multi-angular observation method, we obtained canopy reflectance images with the view zenith angle (VZA) varying from 60° (forward) to 60° (backward) at fixed interval (10°), as well as the hotspot and darkspot images in the principle plane in conifer forests. Since the single pixel with very high spatial resolution (around 10 cm) in the UAV images are not representative for the study of the whole forest canopy, several pixels in the central of each images were selected and averaged to determine the canopy reflectance. Variations of the averaged reflectance with ground distance represented by the selected pixels were analyzed and the optimum ground distance for study the multi-angular forest canopy reflectance was determined. The observed canopy reflectance peaks at the hotspot and clear images of the hotspot are observed. The sensitivities of canopy reflectance to VZAs vary with spectral bands. The reflectance at red bands near 680 nm are most sensitive to VZA. Some common used vegetation indices, such as NDVI, EVI, MTCI, PRI, also vary greatly with VZAs and demonstrate different spatial distribution patterns. The observations fit well with the 4-Scale geometric-optical model simulations. The multi-angular observation methods based on UAV platform have the advantages of efficient and effective in multi-angular observation with higher flexibility in VZA adjustment and lower cost, compared with the airborne or spaceborne sensors. This multi-angular observation method is very useful for study the BRDF and canopy structural and biochemical characteristics of forests and has great potential in forestry and ecological studies.
How to cite: Qiu, F. and Zhang, Q.: Multi-angular observation of forest canopy reflectance based on a hyperspectral UAV imaging platform, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18629, https://doi.org/10.5194/egusphere-egu2020-18629, 2020.
EGU2020-20688 | Displays | BG3.16
Towards the automatic 3D characterization of forest plotsCarlos Cabo, Celestino Ordoñez, Covadonga Prendes, Stefan Doerr, Jose V. Roces-Diaz, and Cristina Santin
Ground-based point clouds (from laser scanning or photogrammetry, and from static or mobile devices) give very detailed 3D information of forest plots. Also, if this information is complemented with data gathered from aerial vehicles, some parts of the forest structure that are not visible from the terrain can be represented (e.g. treetops). However, the heterogeneity of the point clouds, the complexity of some forest plots and the limitations of some data gathering/processing techniques lead to some occlusions and misrepresentations of the features in the plot. Therefore, complete automation of very detailed characterizations of all the items/features/structures in a forest plot is, most of the times, not possible yet.
On one hand, single trees (or small groups of them) can be modelled in detail from dense point clouds (e.g. using quantitative structure models), but this processes usually require complete absence of leaves and intense and/or active operator labouring. On the other hand, many methods automate the location of the trees in a plot and the estimation of basic parameters, like the diameters and, sometimes, the total tree height.
We are developing a fully automatic method that lies in between some very accurate but labour-intensive single-tree models, and the mere location and diameter calculation of the trees in a plot. Our method is able to automatically detect and locate the trees in a plot and calculate diameters, but it is also able to characterize the 3D tree structure: stem model, inclination and curvature; inclination and location of the main branches (in some cases); and tree crown individualization and diameter estimation. In addition, our method also classifies the points on understory vegetation.
Our method relies on the integration of algorithms that have been developed by our team, and includes the development of new modules. The first step consists in an initial classification of the point cloud using a multiscale approach based on local shapes. As a result, the point cloud is preliminarily classified into three classes: stems, branches and leaves, and ground. After that, a series of geometric operations lead to the final 3D characterization of the plot structure: (i) stem axes and section modelling (from the pre-classified points on the stems), (ii) distance points-closest stem axis and tree individualization, (iii) extraction and characterization of the main branches, and (iv) final classification of the points laying on stems, main branches, rest of the canopy, understory and ground.
We are testing the algorithm in several forest plots with coniferous and broadleaf trees. Initial results show values of completeness and correctness for tree detection and point classification over 90%.
Currently, there are already several cross-cutting projects using our method´s results as inputs: (i) Automatic calculation of taper functions (use: diameters along the stem and tree height), (ii) wood quality based on shape (use: diameters along the stem and insertion of main branches), and (iii) wildfire behaviour models (use: fuel classification and 3D structure to adapt the data to the format of the existing 3D fuel standard models).
How to cite: Cabo, C., Ordoñez, C., Prendes, C., Doerr, S., Roces-Diaz, J. V., and Santin, C.: Towards the automatic 3D characterization of forest plots , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20688, https://doi.org/10.5194/egusphere-egu2020-20688, 2020.
Ground-based point clouds (from laser scanning or photogrammetry, and from static or mobile devices) give very detailed 3D information of forest plots. Also, if this information is complemented with data gathered from aerial vehicles, some parts of the forest structure that are not visible from the terrain can be represented (e.g. treetops). However, the heterogeneity of the point clouds, the complexity of some forest plots and the limitations of some data gathering/processing techniques lead to some occlusions and misrepresentations of the features in the plot. Therefore, complete automation of very detailed characterizations of all the items/features/structures in a forest plot is, most of the times, not possible yet.
On one hand, single trees (or small groups of them) can be modelled in detail from dense point clouds (e.g. using quantitative structure models), but this processes usually require complete absence of leaves and intense and/or active operator labouring. On the other hand, many methods automate the location of the trees in a plot and the estimation of basic parameters, like the diameters and, sometimes, the total tree height.
We are developing a fully automatic method that lies in between some very accurate but labour-intensive single-tree models, and the mere location and diameter calculation of the trees in a plot. Our method is able to automatically detect and locate the trees in a plot and calculate diameters, but it is also able to characterize the 3D tree structure: stem model, inclination and curvature; inclination and location of the main branches (in some cases); and tree crown individualization and diameter estimation. In addition, our method also classifies the points on understory vegetation.
Our method relies on the integration of algorithms that have been developed by our team, and includes the development of new modules. The first step consists in an initial classification of the point cloud using a multiscale approach based on local shapes. As a result, the point cloud is preliminarily classified into three classes: stems, branches and leaves, and ground. After that, a series of geometric operations lead to the final 3D characterization of the plot structure: (i) stem axes and section modelling (from the pre-classified points on the stems), (ii) distance points-closest stem axis and tree individualization, (iii) extraction and characterization of the main branches, and (iv) final classification of the points laying on stems, main branches, rest of the canopy, understory and ground.
We are testing the algorithm in several forest plots with coniferous and broadleaf trees. Initial results show values of completeness and correctness for tree detection and point classification over 90%.
Currently, there are already several cross-cutting projects using our method´s results as inputs: (i) Automatic calculation of taper functions (use: diameters along the stem and tree height), (ii) wood quality based on shape (use: diameters along the stem and insertion of main branches), and (iii) wildfire behaviour models (use: fuel classification and 3D structure to adapt the data to the format of the existing 3D fuel standard models).
How to cite: Cabo, C., Ordoñez, C., Prendes, C., Doerr, S., Roces-Diaz, J. V., and Santin, C.: Towards the automatic 3D characterization of forest plots , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20688, https://doi.org/10.5194/egusphere-egu2020-20688, 2020.
EGU2020-21257 | Displays | BG3.16
Estimation of forest vegetation height using Landsat dataMina Hong, Boyoung Ham, Soo Jeong Lee, Halim Lee, and Woo-Kyun Lee
As climate change progresses, the form of forests has been changing. Developmental studies of remote sensing methods are needed to accurately estimate the changing form of forests. Recently, studies for estimating the forest vegetation height of forest area using Landsat data have been actively conducted. Therefore, this study calculated the SLAVI index composed of 4 (red), 5 (NIR), 7 (SWIR2) band combinations of Landsat 8. The relationship between the height of trees was estimated by linear regression analysis. Based on the result, a comparison in the height of the forest stands measured by the National Forest Inventory (NFI) shows a very high accuracy by the height of trees over 9 meters. The applicability of the study was investigated with the results, and the accuracy of the study will be compared through field surveys. The estimated accuracy of the height of trees in this study is not as high as 0.5-0.6 (R2), but it has an advantage of low cost and less effort to estimate the height of trees in a large area and to acquire image data easily. Information about the height of trees is an important parameter for estimating forest biomass and carbon stocks, which is significant in studies of forest under climate change.
How to cite: Hong, M., Ham, B., Lee, S. J., Lee, H., and Lee, W.-K.: Estimation of forest vegetation height using Landsat data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21257, https://doi.org/10.5194/egusphere-egu2020-21257, 2020.
As climate change progresses, the form of forests has been changing. Developmental studies of remote sensing methods are needed to accurately estimate the changing form of forests. Recently, studies for estimating the forest vegetation height of forest area using Landsat data have been actively conducted. Therefore, this study calculated the SLAVI index composed of 4 (red), 5 (NIR), 7 (SWIR2) band combinations of Landsat 8. The relationship between the height of trees was estimated by linear regression analysis. Based on the result, a comparison in the height of the forest stands measured by the National Forest Inventory (NFI) shows a very high accuracy by the height of trees over 9 meters. The applicability of the study was investigated with the results, and the accuracy of the study will be compared through field surveys. The estimated accuracy of the height of trees in this study is not as high as 0.5-0.6 (R2), but it has an advantage of low cost and less effort to estimate the height of trees in a large area and to acquire image data easily. Information about the height of trees is an important parameter for estimating forest biomass and carbon stocks, which is significant in studies of forest under climate change.
How to cite: Hong, M., Ham, B., Lee, S. J., Lee, H., and Lee, W.-K.: Estimation of forest vegetation height using Landsat data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21257, https://doi.org/10.5194/egusphere-egu2020-21257, 2020.
EGU2020-21466 | Displays | BG3.16
Extrapolating a spatially explicit tree root reinforcement model with field and LiDAR-derived stand dataEdoardo Alterio, Andrea Rizzi, Paolo Fogliata, Niccolò Marchi, Alessio Cislaghi, Emanuele Lingua, Tommaso Sitzia, and Gian Battista Bischetti
Protection from landslides is one of the most important regulating services provided by forest ecosystems. Tree roots provide an increase in tensile strength, compression and shear resistance, compared to that uniquely due to the soil properties. This additional effect is known as root reinforcement. The degree of soil reinforcement given by roots have been modeled using laboratory and field data. The great spatial and temporal variability of root distribution is one of the main sources of uncertainty for the development of accurate and reliable models to quantify root reinforcement. The relative importance of stand structure remains poorly known. Here, we analyze the relationships between observed stand structure from a sample of spruce, beech, chestnut and mixed stands of the Southeastern Alps, and a spatially explicit model of root reinforcement. Data were collected in 20-m radius sampling units inclined 15-40° and covered by a low-resolution airborne LiDAR-derived canopy height model. Tree size and position were used to calculate root reinforcement through commonly used and calibrated models. Then, we studied the relationships between root reinforcement, stand structural indexes and area-based stand metrics from canopy height model. In specific conditions, the three groups of variables were correlated. Therefore, root reinforcement values might be spatially extrapolated through available canopy height models. Final step is to integrate the extrapolated values into a landslide susceptibility model, which combines other data available from forest plans, digital elevation models, geological and meteorological data. This study provides managers with a tool to periodically update maps of the service given by forest trees to protection of humans from landslides.
How to cite: Alterio, E., Rizzi, A., Fogliata, P., Marchi, N., Cislaghi, A., Lingua, E., Sitzia, T., and Bischetti, G. B.: Extrapolating a spatially explicit tree root reinforcement model with field and LiDAR-derived stand data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21466, https://doi.org/10.5194/egusphere-egu2020-21466, 2020.
Protection from landslides is one of the most important regulating services provided by forest ecosystems. Tree roots provide an increase in tensile strength, compression and shear resistance, compared to that uniquely due to the soil properties. This additional effect is known as root reinforcement. The degree of soil reinforcement given by roots have been modeled using laboratory and field data. The great spatial and temporal variability of root distribution is one of the main sources of uncertainty for the development of accurate and reliable models to quantify root reinforcement. The relative importance of stand structure remains poorly known. Here, we analyze the relationships between observed stand structure from a sample of spruce, beech, chestnut and mixed stands of the Southeastern Alps, and a spatially explicit model of root reinforcement. Data were collected in 20-m radius sampling units inclined 15-40° and covered by a low-resolution airborne LiDAR-derived canopy height model. Tree size and position were used to calculate root reinforcement through commonly used and calibrated models. Then, we studied the relationships between root reinforcement, stand structural indexes and area-based stand metrics from canopy height model. In specific conditions, the three groups of variables were correlated. Therefore, root reinforcement values might be spatially extrapolated through available canopy height models. Final step is to integrate the extrapolated values into a landslide susceptibility model, which combines other data available from forest plans, digital elevation models, geological and meteorological data. This study provides managers with a tool to periodically update maps of the service given by forest trees to protection of humans from landslides.
How to cite: Alterio, E., Rizzi, A., Fogliata, P., Marchi, N., Cislaghi, A., Lingua, E., Sitzia, T., and Bischetti, G. B.: Extrapolating a spatially explicit tree root reinforcement model with field and LiDAR-derived stand data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21466, https://doi.org/10.5194/egusphere-egu2020-21466, 2020.
EGU2020-679 | Displays | BG3.16
Monitoring of forest health using spectral unmixing of multispectral satellite dataVolha Siliuk, Leonid Katkovsky, and Boris Beliaev
Forests play an important role in global carbon, hydrological and atmospheric cycles. Current environmental issues have a strong impact on forest health. Satellite remote sensing is widely used for forest state monitoring due to increasing availability of satellite data and high temporal resolution. However, a spatial resolution of satellite data is often insufficient to detect small areas of forest drying. For a clearer detection of affected forest areas, spectral unmixing is required.
The results of spectral unmixing of Belarusian spacecraft data (4 bands: blue, green, red, NIR; spatial resolution 10 meters) are performed. To detect affected forest areas that need to be specified, the vegetation index NDVI is calculated. Then, spectral mixture analysis is running for these areas. The library of endmembers (pure spectral signatures) was created by ground measurements using spectral instruments that were developed in the department of aerospace researches of Belarusian state university. Comparison of spectral unmixing results and airborne measurements shows high agreement. Airborne measurements of study forest area was carried out using Leica airborne digital sensor. Spatial resolution of airborne data is around 40 centimeters. The developed spectral unmixing approach can be used for other tasks, such as burned area mapping, crop monitoring, etc.
How to cite: Siliuk, V., Katkovsky, L., and Beliaev, B.: Monitoring of forest health using spectral unmixing of multispectral satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-679, https://doi.org/10.5194/egusphere-egu2020-679, 2020.
Forests play an important role in global carbon, hydrological and atmospheric cycles. Current environmental issues have a strong impact on forest health. Satellite remote sensing is widely used for forest state monitoring due to increasing availability of satellite data and high temporal resolution. However, a spatial resolution of satellite data is often insufficient to detect small areas of forest drying. For a clearer detection of affected forest areas, spectral unmixing is required.
The results of spectral unmixing of Belarusian spacecraft data (4 bands: blue, green, red, NIR; spatial resolution 10 meters) are performed. To detect affected forest areas that need to be specified, the vegetation index NDVI is calculated. Then, spectral mixture analysis is running for these areas. The library of endmembers (pure spectral signatures) was created by ground measurements using spectral instruments that were developed in the department of aerospace researches of Belarusian state university. Comparison of spectral unmixing results and airborne measurements shows high agreement. Airborne measurements of study forest area was carried out using Leica airborne digital sensor. Spatial resolution of airborne data is around 40 centimeters. The developed spectral unmixing approach can be used for other tasks, such as burned area mapping, crop monitoring, etc.
How to cite: Siliuk, V., Katkovsky, L., and Beliaev, B.: Monitoring of forest health using spectral unmixing of multispectral satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-679, https://doi.org/10.5194/egusphere-egu2020-679, 2020.
EGU2020-1176 | Displays | BG3.16
Improving assessments of forest carbon cycling by integrating terrestrial LiDAR with dendrochronological and flux tower dataMaria Karamihalaki, Jingshu Wei, Mauro Marty, and Flurin Babst
As the societal need to mitigate anthropogenic CO2 emissions aggravates, scientists are challenged to improve climate projections, which in turn calls for better estimates of terrestrial carbon (C) stocks and fluxes. In order to meet this growing demand, we are developing a novel methodology for the production of precise annually-resolved C estimates in forest ecosystems, by integrating Terrestrial Laser Scanning (TLS), flux-tower data, forest inventories, and tree-ring measurements. By coupling C estimates in the sampling year with radial growth and wood density data from tree cores, we are able to precisely reconstruct forest biomass in mature forest stands across Europe and create new insight into historical C dynamics. Here, we present our first results of biomass estimates in a Fagus sylvatica dominated tree stand in Hainich National Park, Thuringia, Germany. We provide an overview of the methodology that was developed for the extraction of biomass information from TLS point clouds. Furthermore, we discuss the challenges introduced at different processing steps and highlight the opportunities that the TLS provides for C cycle research. Ultimately, we aim at reducing uncertainties in the scaling of annual C stock changes and at advancing our understanding of C cycling in temperate forests. We expect that this information will create a refined empirical baseline for vegetation (and by extent climate) model parameterization across multiple spatiotemporal domains and thus improve our understanding of carbon sink trajectories and carbon allocation dynamics and drivers in temperate forests.
How to cite: Karamihalaki, M., Wei, J., Marty, M., and Babst, F.: Improving assessments of forest carbon cycling by integrating terrestrial LiDAR with dendrochronological and flux tower data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1176, https://doi.org/10.5194/egusphere-egu2020-1176, 2020.
As the societal need to mitigate anthropogenic CO2 emissions aggravates, scientists are challenged to improve climate projections, which in turn calls for better estimates of terrestrial carbon (C) stocks and fluxes. In order to meet this growing demand, we are developing a novel methodology for the production of precise annually-resolved C estimates in forest ecosystems, by integrating Terrestrial Laser Scanning (TLS), flux-tower data, forest inventories, and tree-ring measurements. By coupling C estimates in the sampling year with radial growth and wood density data from tree cores, we are able to precisely reconstruct forest biomass in mature forest stands across Europe and create new insight into historical C dynamics. Here, we present our first results of biomass estimates in a Fagus sylvatica dominated tree stand in Hainich National Park, Thuringia, Germany. We provide an overview of the methodology that was developed for the extraction of biomass information from TLS point clouds. Furthermore, we discuss the challenges introduced at different processing steps and highlight the opportunities that the TLS provides for C cycle research. Ultimately, we aim at reducing uncertainties in the scaling of annual C stock changes and at advancing our understanding of C cycling in temperate forests. We expect that this information will create a refined empirical baseline for vegetation (and by extent climate) model parameterization across multiple spatiotemporal domains and thus improve our understanding of carbon sink trajectories and carbon allocation dynamics and drivers in temperate forests.
How to cite: Karamihalaki, M., Wei, J., Marty, M., and Babst, F.: Improving assessments of forest carbon cycling by integrating terrestrial LiDAR with dendrochronological and flux tower data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1176, https://doi.org/10.5194/egusphere-egu2020-1176, 2020.
EGU2020-4194 | Displays | BG3.16
Delineating monitoring Network in Biodiversity Hotspot based on Land Surface Phenology. The case of Tropical Montane Cloud ForestDavid Aragones, Victor F. Rodriguez-Galiano, Jose A. Caparros-Santiago, and Marco A. Espinoza-Guzman
Land Surface Phenology (LSP) is the study of the phenology through satellite sensors. It integrates phenological patterns (mainly spatial) and processes (mainly temporal) within heterogeneous biophysical environments across multiple scales. It is a very useful tool for the characterization and monitoring of forests. Tropical montane cloud forest is the most diverse type of vegetation per unit area, since it occupies less than 1% of Mexico but harbours 10% of the country’s plant biodiversity. It is a critical priority for biodiversity conservation, its permanence in the medium and long term is threatened by habitat destruction and climate change. A regional conservation approach, which values all fragments of this type of forest as contributing to regional biodiversity, will be required to conserve plant biodiversity in central Veracruz. This area is one of the Rare forest ecoregions within biodiversity hotspots. Our primary aim was to identify priority zones for stablishing a Tropical montane cloud forest monitoring network in Central Veracruz based on its phenological responses at multiples scales. Our methodology can be applied in other tropical biodiversity zones, even in the absence of adequate cartography. We start from homogeneous and reliable pixels and automatically calculate the number of pheno-regions that exist within this type of vegetation in the study area, based on different LSP pheno-metrics extracted from different MODIS vegetation index time-series (NDVI & EVI) with Timesat and BFAST algorithm. We extract Fraction cover subpixels homogeneus from MODIS and Sentinel 2 LC map with Random Forest classification and success rate analysis curve ensures the reliability of the LC map. We identify 4 statistically different representative pheno-regions through cluster analysis in this type of forest within the study area and we obtained 351 priority areas where a phenological monitoring network could be located.
How to cite: Aragones, D., Rodriguez-Galiano, V. F., Caparros-Santiago, J. A., and Espinoza-Guzman, M. A.: Delineating monitoring Network in Biodiversity Hotspot based on Land Surface Phenology. The case of Tropical Montane Cloud Forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4194, https://doi.org/10.5194/egusphere-egu2020-4194, 2020.
Land Surface Phenology (LSP) is the study of the phenology through satellite sensors. It integrates phenological patterns (mainly spatial) and processes (mainly temporal) within heterogeneous biophysical environments across multiple scales. It is a very useful tool for the characterization and monitoring of forests. Tropical montane cloud forest is the most diverse type of vegetation per unit area, since it occupies less than 1% of Mexico but harbours 10% of the country’s plant biodiversity. It is a critical priority for biodiversity conservation, its permanence in the medium and long term is threatened by habitat destruction and climate change. A regional conservation approach, which values all fragments of this type of forest as contributing to regional biodiversity, will be required to conserve plant biodiversity in central Veracruz. This area is one of the Rare forest ecoregions within biodiversity hotspots. Our primary aim was to identify priority zones for stablishing a Tropical montane cloud forest monitoring network in Central Veracruz based on its phenological responses at multiples scales. Our methodology can be applied in other tropical biodiversity zones, even in the absence of adequate cartography. We start from homogeneous and reliable pixels and automatically calculate the number of pheno-regions that exist within this type of vegetation in the study area, based on different LSP pheno-metrics extracted from different MODIS vegetation index time-series (NDVI & EVI) with Timesat and BFAST algorithm. We extract Fraction cover subpixels homogeneus from MODIS and Sentinel 2 LC map with Random Forest classification and success rate analysis curve ensures the reliability of the LC map. We identify 4 statistically different representative pheno-regions through cluster analysis in this type of forest within the study area and we obtained 351 priority areas where a phenological monitoring network could be located.
How to cite: Aragones, D., Rodriguez-Galiano, V. F., Caparros-Santiago, J. A., and Espinoza-Guzman, M. A.: Delineating monitoring Network in Biodiversity Hotspot based on Land Surface Phenology. The case of Tropical Montane Cloud Forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4194, https://doi.org/10.5194/egusphere-egu2020-4194, 2020.
EGU2020-5808 | Displays | BG3.16
Identifying Intensively Managed Coffee Forests in Southwest Ethiopia using Satellite ImageryByongjun Hwang, Kitessa Hundera, Bizuneh Mekuria, Adrian Wood, and Andinet Asfaw
The high forests in southwest Ethiopia, some of the last remaining Afromontane forests in the country, are home to significant forest coffee production. While considered as beneficial in maintaining forests, there have been growing concerns about the degradation caused by intensive coffee production in the forests. However, yet no suitable methods have been developed to map the intensively managed coffee forests. In this study, we explore the feasibility of monitoring the extent of the degradation within the intensively managed coffee forests by using satellite imagery (Landsat-8 and Sentinel-2). For this, we conducted in-situ field canopy photo and tree surveys, and the results were analysed with satellite-derived vegetation indices such as NDVI and NBR. This feasibility study informed us that the detection of the intensively managed forest coffee areas (disturbances caused by this practice) using satellite imagery can be possible, as the dry-season forest structure (canopy, undergrowth) and vegetation indices in the intensively managed coffee forests are significantly distinctive from those in natural forests. This study will contribute to the long-term sustainable management of the coffee forest.
How to cite: Hwang, B., Hundera, K., Mekuria, B., Wood, A., and Asfaw, A.: Identifying Intensively Managed Coffee Forests in Southwest Ethiopia using Satellite Imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5808, https://doi.org/10.5194/egusphere-egu2020-5808, 2020.
The high forests in southwest Ethiopia, some of the last remaining Afromontane forests in the country, are home to significant forest coffee production. While considered as beneficial in maintaining forests, there have been growing concerns about the degradation caused by intensive coffee production in the forests. However, yet no suitable methods have been developed to map the intensively managed coffee forests. In this study, we explore the feasibility of monitoring the extent of the degradation within the intensively managed coffee forests by using satellite imagery (Landsat-8 and Sentinel-2). For this, we conducted in-situ field canopy photo and tree surveys, and the results were analysed with satellite-derived vegetation indices such as NDVI and NBR. This feasibility study informed us that the detection of the intensively managed forest coffee areas (disturbances caused by this practice) using satellite imagery can be possible, as the dry-season forest structure (canopy, undergrowth) and vegetation indices in the intensively managed coffee forests are significantly distinctive from those in natural forests. This study will contribute to the long-term sustainable management of the coffee forest.
How to cite: Hwang, B., Hundera, K., Mekuria, B., Wood, A., and Asfaw, A.: Identifying Intensively Managed Coffee Forests in Southwest Ethiopia using Satellite Imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5808, https://doi.org/10.5194/egusphere-egu2020-5808, 2020.
EGU2020-6548 | Displays | BG3.16
Estimation of aboveground biomass in North China using Sentinel-1 and 2 datasetsYueting Wang and Xiaoli Zhang
Forest aboveground biomass (AGB) plays an important role in measuring forest carbon reserves. Accurate mapping AGB is important for monitoring carbon stocks and will contribute to achieve the goal of sustainable development. In this study, we explored the potential of mapping AGB in north China using a three-year monthly time series of Senitinel-1 (S1) and Sentinel-2 (S2) data. The backscattering and indices of SAR S1 combined with spectral reflectance, vegetation indices and biophysical parameters from multispectral S2 imagery were evaluated for AGB prediction in a Random Forest regression. Three scenarios were conducted with different datasets to determine: (1) the potential of using S1 and S2 to estimate AGB, (2) optimal variables selection for AGB mapping, (3) contribution of time series datasets to improving the accuracy of AGB mapping. Random forest regression was used to develop forest AGB estimation models, which was divided into three types of modeling using only S1, only S2, and a combination of S1 and S2. Compared to S1 (RMSE = 65.7 Mg/ha), S2 achieved better prediction accuracy (RMSE = 58.4 Mg/ha), although the combination of S1 and S2 time series datasets estimated the best AGB results (RMSE = 42.3 Mg/ha). The research implied that incorporation of SAR and multispetral data considerably improved AGB mapping performance when compared with the use of SAR or multispectral data alone. This proposed approach provides a new insight in improving the estimation accuracy of forest AGB in north China.
How to cite: Wang, Y. and Zhang, X.: Estimation of aboveground biomass in North China using Sentinel-1 and 2 datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6548, https://doi.org/10.5194/egusphere-egu2020-6548, 2020.
Forest aboveground biomass (AGB) plays an important role in measuring forest carbon reserves. Accurate mapping AGB is important for monitoring carbon stocks and will contribute to achieve the goal of sustainable development. In this study, we explored the potential of mapping AGB in north China using a three-year monthly time series of Senitinel-1 (S1) and Sentinel-2 (S2) data. The backscattering and indices of SAR S1 combined with spectral reflectance, vegetation indices and biophysical parameters from multispectral S2 imagery were evaluated for AGB prediction in a Random Forest regression. Three scenarios were conducted with different datasets to determine: (1) the potential of using S1 and S2 to estimate AGB, (2) optimal variables selection for AGB mapping, (3) contribution of time series datasets to improving the accuracy of AGB mapping. Random forest regression was used to develop forest AGB estimation models, which was divided into three types of modeling using only S1, only S2, and a combination of S1 and S2. Compared to S1 (RMSE = 65.7 Mg/ha), S2 achieved better prediction accuracy (RMSE = 58.4 Mg/ha), although the combination of S1 and S2 time series datasets estimated the best AGB results (RMSE = 42.3 Mg/ha). The research implied that incorporation of SAR and multispetral data considerably improved AGB mapping performance when compared with the use of SAR or multispectral data alone. This proposed approach provides a new insight in improving the estimation accuracy of forest AGB in north China.
How to cite: Wang, Y. and Zhang, X.: Estimation of aboveground biomass in North China using Sentinel-1 and 2 datasets, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6548, https://doi.org/10.5194/egusphere-egu2020-6548, 2020.
EGU2020-11227 | Displays | BG3.16
20 years of forest change in Natura 2000 protected areas networkMarinela-Adriana Chețan and Andrei Dornik
Natura 2000 network, the world's largest network of protected areas, is considered a success for habitat and biodiversity protection, in the last decades. Our objective is to develop an algorithm for satellite data temporal analysis of protected areas, and to apply subsequently this algorithm for analysis of all Natura 2000 sites in Europe. We have developed an algorithm for satellite data temporal analysis of protected areas using JavaScript in Google Earth Engine, which is a web interface for the massive analysis of geospatial data, providing access to huge amount of data and facilitating development of complex workflows. This work focused on analysis of Global Forest Change dataset representing forest change, at 30 meters resolution, globally, between 2000 and 2018. Our results show that at least regarding forest protection, the network is not very successful, the 25350 sites losing 35246.8 km2 of forest cover between 2000 and 2018, gaining only 9862.1 km2. All 28 countries recorded a negative forest net change, with a mean value of -906.6 km2, the largest forest area change recording Spain (-5106.4 km2 in 1631 sites), Poland (-4529 km2 in 962 sites), Portugal (-2781.9 km2 in 120 sites), Romania (-1601.4 km2 in 569 sites), Germany (-1365.7 km2 in 5049 sites) and France (-1270.9 km2 in 1520 sites). Among countries with the lowest values in net forest change is Ireland (-17.4 km2 in 447 sites), Estonia (-104.1 km2 in 518 sites), Netherlands (-132.3 km2 in 152 sites), Finland (-268.6 km2 in 1722 sites) and Sweden (-341.6 km2 in 3786 sites).
How to cite: Chețan, M.-A. and Dornik, A.: 20 years of forest change in Natura 2000 protected areas network , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11227, https://doi.org/10.5194/egusphere-egu2020-11227, 2020.
Natura 2000 network, the world's largest network of protected areas, is considered a success for habitat and biodiversity protection, in the last decades. Our objective is to develop an algorithm for satellite data temporal analysis of protected areas, and to apply subsequently this algorithm for analysis of all Natura 2000 sites in Europe. We have developed an algorithm for satellite data temporal analysis of protected areas using JavaScript in Google Earth Engine, which is a web interface for the massive analysis of geospatial data, providing access to huge amount of data and facilitating development of complex workflows. This work focused on analysis of Global Forest Change dataset representing forest change, at 30 meters resolution, globally, between 2000 and 2018. Our results show that at least regarding forest protection, the network is not very successful, the 25350 sites losing 35246.8 km2 of forest cover between 2000 and 2018, gaining only 9862.1 km2. All 28 countries recorded a negative forest net change, with a mean value of -906.6 km2, the largest forest area change recording Spain (-5106.4 km2 in 1631 sites), Poland (-4529 km2 in 962 sites), Portugal (-2781.9 km2 in 120 sites), Romania (-1601.4 km2 in 569 sites), Germany (-1365.7 km2 in 5049 sites) and France (-1270.9 km2 in 1520 sites). Among countries with the lowest values in net forest change is Ireland (-17.4 km2 in 447 sites), Estonia (-104.1 km2 in 518 sites), Netherlands (-132.3 km2 in 152 sites), Finland (-268.6 km2 in 1722 sites) and Sweden (-341.6 km2 in 3786 sites).
How to cite: Chețan, M.-A. and Dornik, A.: 20 years of forest change in Natura 2000 protected areas network , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11227, https://doi.org/10.5194/egusphere-egu2020-11227, 2020.
EGU2020-13046 | Displays | BG3.16
Comparison of remote sensing-based indices for ash vitality detection in North-East GermanyMichael Förster, Anne Clasen, Kai Jütte, Veronika Döpper, and Birgit Kleinschmit
The north-East of Europe is affected by the ash (Fraxinus excelsior) dieback caused by the fungal pathogen Hymenoscyphus pseudoalbidus. A great variety of studies utilize remote sensing data and subsequently derived spectral indices to estimate the magnitude and spatial distribution of the damage for different tree types.
Often, structural indices, such as the NDVI are applied to detect already affected tree (sometimes even for early detection). However, there are differences in the suitability of an index. While a structural index, might have advantages when the canopy is not closed, pigment-based indices can show more variation within a full crown coverage forest. Therefore, the season of data acquisition might define the preferred index-selection. The same accounts not just for seasonal but for inter-annual changes, too. Here, the pigment indices show a higher sensitivity towards changes due to damages than structural indices.
To show these differences, the presented study is evaluating a variety of indices derived by hyperspectral imagery for affected ash trees in north-east Germany. This includes images from different phenological stages within one year (2015) and a comparison between 2011, 2015, and 2019 because the decline increased severely within this timespan for the observed trees. The indices were compared with tree damage estimations from the regional forest administration.
Preliminary results show a better relation for structural indices in autumn, but higher relation for pigment-based indices in spring and summer, once the crown is closed. A higher sensitivity to changes between 2011 and 2019 can be shown for pigment-based indices.
How to cite: Förster, M., Clasen, A., Jütte, K., Döpper, V., and Kleinschmit, B.: Comparison of remote sensing-based indices for ash vitality detection in North-East Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13046, https://doi.org/10.5194/egusphere-egu2020-13046, 2020.
The north-East of Europe is affected by the ash (Fraxinus excelsior) dieback caused by the fungal pathogen Hymenoscyphus pseudoalbidus. A great variety of studies utilize remote sensing data and subsequently derived spectral indices to estimate the magnitude and spatial distribution of the damage for different tree types.
Often, structural indices, such as the NDVI are applied to detect already affected tree (sometimes even for early detection). However, there are differences in the suitability of an index. While a structural index, might have advantages when the canopy is not closed, pigment-based indices can show more variation within a full crown coverage forest. Therefore, the season of data acquisition might define the preferred index-selection. The same accounts not just for seasonal but for inter-annual changes, too. Here, the pigment indices show a higher sensitivity towards changes due to damages than structural indices.
To show these differences, the presented study is evaluating a variety of indices derived by hyperspectral imagery for affected ash trees in north-east Germany. This includes images from different phenological stages within one year (2015) and a comparison between 2011, 2015, and 2019 because the decline increased severely within this timespan for the observed trees. The indices were compared with tree damage estimations from the regional forest administration.
Preliminary results show a better relation for structural indices in autumn, but higher relation for pigment-based indices in spring and summer, once the crown is closed. A higher sensitivity to changes between 2011 and 2019 can be shown for pigment-based indices.
How to cite: Förster, M., Clasen, A., Jütte, K., Döpper, V., and Kleinschmit, B.: Comparison of remote sensing-based indices for ash vitality detection in North-East Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13046, https://doi.org/10.5194/egusphere-egu2020-13046, 2020.
EGU2020-15579 | Displays | BG3.16
Detecting drought effects on tree mortality in forests of Franconia (Germany)Johannes Heisig and Cyrus Samimi
Central European forests face challenges with climate changing much faster than they can adapt. Extremely hot and dry summers like in 2018 deprive forests of soil moisture, leaving them with low ground water levels. While individuals with deep and well-established root systems survive, young individuals and shallow-rooted species perish.
In southern Germany, die-off of single trees or small groups got noticeable recently. Such effects of harsher conditions rarely occur over large areas, but more in a spotted, irregular manner. This makes the phenomenon difficult to detect and to estimate its extent. The share of trees lately deteriorated may be larger than expected and represent a considerable portion of forests. Therefore, we see the great need for monitoring. Remote sensing data is suitable to examine inaccessible areas at a large scale. To quantify mortality of individual trees among a majority of vital ones, sensor platforms and respective data have to fulfill certain criteria regarding spatial, temporal and spectral resolution. Dead trees can be distinguished from others due to discoloration and defoliation. This change in appearance affects the spectral response, even in pixels larger than the tree’s extent.
This study aims at recommending a suitable spatial scale for space-borne multispectral imagery products to achieve this task. We evaluate commercial and free remote sensing data products and their ability to estimate fractional cover of dead vegetation. Satellite data employed in this study comes from Landsat 8 (30 m), Sentinel-2 (10 m), RapidEye (6.5 m) and PlanetScope (3 m). Classification performance is tested against high-resolution multispectral aerial imagery (17 cm) acquired with a Micasense RedEdge-M camera.
High-resolution Micasense images are capable of detecting single dead trees, even after downgrading the resolution from 17 cm to 3 m. For all data products tested, fraction of dead trees per pixel did not differ significantly among land cover types (dead vegetation, vital vegetation, pavement, open soil). This indicates that individual dead trees may not be detectable in vital forest stands. The finding even seems to be valid for a resolution of 3 m (PlanetScope), which is identical to the downgraded Micasense data. In the near future the detection of this phenomenon might profit from technical developments towards even higher spatial detail of space-borne sensors. Alternatively, high resolution images from aerial campaigns, manned or unmanned, could bridge this gap when flight time and spatial coverage are increased significantly and facilitating policies are in place.
How to cite: Heisig, J. and Samimi, C.: Detecting drought effects on tree mortality in forests of Franconia (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15579, https://doi.org/10.5194/egusphere-egu2020-15579, 2020.
Central European forests face challenges with climate changing much faster than they can adapt. Extremely hot and dry summers like in 2018 deprive forests of soil moisture, leaving them with low ground water levels. While individuals with deep and well-established root systems survive, young individuals and shallow-rooted species perish.
In southern Germany, die-off of single trees or small groups got noticeable recently. Such effects of harsher conditions rarely occur over large areas, but more in a spotted, irregular manner. This makes the phenomenon difficult to detect and to estimate its extent. The share of trees lately deteriorated may be larger than expected and represent a considerable portion of forests. Therefore, we see the great need for monitoring. Remote sensing data is suitable to examine inaccessible areas at a large scale. To quantify mortality of individual trees among a majority of vital ones, sensor platforms and respective data have to fulfill certain criteria regarding spatial, temporal and spectral resolution. Dead trees can be distinguished from others due to discoloration and defoliation. This change in appearance affects the spectral response, even in pixels larger than the tree’s extent.
This study aims at recommending a suitable spatial scale for space-borne multispectral imagery products to achieve this task. We evaluate commercial and free remote sensing data products and their ability to estimate fractional cover of dead vegetation. Satellite data employed in this study comes from Landsat 8 (30 m), Sentinel-2 (10 m), RapidEye (6.5 m) and PlanetScope (3 m). Classification performance is tested against high-resolution multispectral aerial imagery (17 cm) acquired with a Micasense RedEdge-M camera.
High-resolution Micasense images are capable of detecting single dead trees, even after downgrading the resolution from 17 cm to 3 m. For all data products tested, fraction of dead trees per pixel did not differ significantly among land cover types (dead vegetation, vital vegetation, pavement, open soil). This indicates that individual dead trees may not be detectable in vital forest stands. The finding even seems to be valid for a resolution of 3 m (PlanetScope), which is identical to the downgraded Micasense data. In the near future the detection of this phenomenon might profit from technical developments towards even higher spatial detail of space-borne sensors. Alternatively, high resolution images from aerial campaigns, manned or unmanned, could bridge this gap when flight time and spatial coverage are increased significantly and facilitating policies are in place.
How to cite: Heisig, J. and Samimi, C.: Detecting drought effects on tree mortality in forests of Franconia (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15579, https://doi.org/10.5194/egusphere-egu2020-15579, 2020.
EGU2020-21268 | Displays | BG3.16
Aspen detection in boreal forests: Capturing a key component of biodiversity using airborne hyperspectral, lidar, and UAV dataTimo Kumpula, Arto Viinikka, Janne Mäyrä, Anton Kuzmin, Pekka Hurskainen, Topi Tanhuanpää, Sonja Kivinen, peter Kullberg, Laura Poikolainen, Pasi Korpelainen, Max Stranden, Aleksi Ritakallio, and Petteri Vihervaara
Importance of biodiversity is increasingly highlighted as an essential part of sustainable forest management. As direct monitoring of biodiversity is not possible, proxy variables have been used to indicate site’s species richness and quality. In boreal forests, European aspen (Populus tremula L.) is one of the most significant proxies for biodiversity. Aspen is a keystone species, hosting a range of endangered species, hence having a high importance in maintaining forest biodiversity. Still, reliable and fine-scale spatial data on aspen occurrence remains scarce and incomprehensive. Although remote sensing-based species classification has been used for decades for the needs of forestry, commercially less significant species (e.g., aspen) have typically been excluded from the studies. This creates a need for developing general methods for tree species classification covering also ecologically significant species.
Our study area, located in Evo, Southern Finland, covers approximately 83km2, and contains both managed and protected southern boreal forests. The main tree species in the area are Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), with relatively sparse and scattered occurrence of aspen. Along with a thorough field data, airborne hyperspectral and LiDAR data have been acquired from the study area. We also collected ultra high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors.
Our aim is to gather fundamental data on hyperspectral and multispectral species classification, that can be utilized to produce detailed aspen data at large scale. For this, we first analyze species detection at tree-level. We test and compare different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks), with specific emphasis on accurate and feasible aspen detection. The results will show, how accurately aspen can be detected from the forest canopy, and which bandwidths have the largest importance for aspen. This information can be utilized for aspen detection from satellite images at large scale.
How to cite: Kumpula, T., Viinikka, A., Mäyrä, J., Kuzmin, A., Hurskainen, P., Tanhuanpää, T., Kivinen, S., Kullberg, P., Poikolainen, L., Korpelainen, P., Stranden, M., Ritakallio, A., and Vihervaara, P.: Aspen detection in boreal forests: Capturing a key component of biodiversity using airborne hyperspectral, lidar, and UAV data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21268, https://doi.org/10.5194/egusphere-egu2020-21268, 2020.
Importance of biodiversity is increasingly highlighted as an essential part of sustainable forest management. As direct monitoring of biodiversity is not possible, proxy variables have been used to indicate site’s species richness and quality. In boreal forests, European aspen (Populus tremula L.) is one of the most significant proxies for biodiversity. Aspen is a keystone species, hosting a range of endangered species, hence having a high importance in maintaining forest biodiversity. Still, reliable and fine-scale spatial data on aspen occurrence remains scarce and incomprehensive. Although remote sensing-based species classification has been used for decades for the needs of forestry, commercially less significant species (e.g., aspen) have typically been excluded from the studies. This creates a need for developing general methods for tree species classification covering also ecologically significant species.
Our study area, located in Evo, Southern Finland, covers approximately 83km2, and contains both managed and protected southern boreal forests. The main tree species in the area are Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst), and birch (Betula pendula and pubescens L.), with relatively sparse and scattered occurrence of aspen. Along with a thorough field data, airborne hyperspectral and LiDAR data have been acquired from the study area. We also collected ultra high resolution unmanned aerial vehicle (UAV) data with RGB and multispectral sensors.
Our aim is to gather fundamental data on hyperspectral and multispectral species classification, that can be utilized to produce detailed aspen data at large scale. For this, we first analyze species detection at tree-level. We test and compare different machine learning methods (Support Vector Machines, Random Forest, Gradient Boosting Machine) and deep learning methods (3D convolutional neural networks), with specific emphasis on accurate and feasible aspen detection. The results will show, how accurately aspen can be detected from the forest canopy, and which bandwidths have the largest importance for aspen. This information can be utilized for aspen detection from satellite images at large scale.
How to cite: Kumpula, T., Viinikka, A., Mäyrä, J., Kuzmin, A., Hurskainen, P., Tanhuanpää, T., Kivinen, S., Kullberg, P., Poikolainen, L., Korpelainen, P., Stranden, M., Ritakallio, A., and Vihervaara, P.: Aspen detection in boreal forests: Capturing a key component of biodiversity using airborne hyperspectral, lidar, and UAV data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21268, https://doi.org/10.5194/egusphere-egu2020-21268, 2020.
EGU2020-2173 | Displays | BG3.16
Quantifying the Influences of Various Ecological Factors on Land Surface Temperature of Urban ForestsYin Ren, Luying Deng, Shudi Zuo, Xiaodong Song, Yinlan Liao, Chengdu Xu, Qi Chen, Lizhong Hua, and Zhengwei Li
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST.
How to cite: Ren, Y., Deng, L., Zuo, S., Song, X., Liao, Y., Xu, C., Chen, Q., Hua, L., and Li, Z.: Quantifying the Influences of Various Ecological Factors on Land Surface Temperature of Urban Forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2173, https://doi.org/10.5194/egusphere-egu2020-2173, 2020.
Identifying factors that influence the land surface temperature (LST) of urban forests can help improve simulations and predictions of spatial patterns of urban cool islands. This requires a quantitative analytical method that combines spatial statistical analysis with multi-source observational data. The purpose of this study was to reveal how human activities and ecological factors jointly influence LST in clustering regions (hot or cool spots) of urban forests. Using Xiamen City, China from 1996 to 2006 as a case study, we explored the interactions between human activities and ecological factors, as well as their influences on urban forest LST. Population density was selected as a proxy for human activity. We integrated multi-source data (forest inventory, digital elevation models (DEM), population, and remote sensing imagery) to develop a database on a unified urban scale. The driving mechanism of urban forest LST was revealed through a combination of multi-source spatial data and spatial statistical analysis of clustering regions. The results showed that the main factors contributing to urban forest LST were dominant tree species and elevation. The interactions between human activity and specific ecological factors linearly or nonlinearly increased LST in urban forests. Strong interactions between elevation and dominant species were generally observed and were prevalent in either hot or cold spots areas in different years. In conclusion, quantitative studies based on spatial statistics and GeogDetector models should be conducted in urban areas to reveal interactions between human activities, ecological factors, and LST.
How to cite: Ren, Y., Deng, L., Zuo, S., Song, X., Liao, Y., Xu, C., Chen, Q., Hua, L., and Li, Z.: Quantifying the Influences of Various Ecological Factors on Land Surface Temperature of Urban Forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2173, https://doi.org/10.5194/egusphere-egu2020-2173, 2020.
EGU2020-3854 | Displays | BG3.16
Deep Neural Networks FOR forest Growing stock volume retrieval: a compartive analysis for L-band SAR dataMihai A. Tanase, Miguel A. Belenguer-Plomer, Gheorghe Marin, and Ovidiu Badea
The aim of this study was to evaluate the utility of deep learning (DL) approaches to estimate forest growing stock volume from L-band SAR data over areas characterized by diverse species composition. For comparison, parametric models were also used. When using one independent variable (i.e. HV backscatter coefficient) the lowest estimation errors were observed for the empirical model followed by Random Forests (RF). Increasing the number of independent variables resulted in marginally more accurate results for the machine learning approaches. However, for the studied area, DL approaches did not improve GSV retrieval when compared to RF or empirical modelling suggesting that L-band data sensitivity to GSV values is the main limiting factor.
How to cite: Tanase, M. A., Belenguer-Plomer, M. A., Marin, G., and Badea, O.: Deep Neural Networks FOR forest Growing stock volume retrieval: a compartive analysis for L-band SAR data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3854, https://doi.org/10.5194/egusphere-egu2020-3854, 2020.
The aim of this study was to evaluate the utility of deep learning (DL) approaches to estimate forest growing stock volume from L-band SAR data over areas characterized by diverse species composition. For comparison, parametric models were also used. When using one independent variable (i.e. HV backscatter coefficient) the lowest estimation errors were observed for the empirical model followed by Random Forests (RF). Increasing the number of independent variables resulted in marginally more accurate results for the machine learning approaches. However, for the studied area, DL approaches did not improve GSV retrieval when compared to RF or empirical modelling suggesting that L-band data sensitivity to GSV values is the main limiting factor.
How to cite: Tanase, M. A., Belenguer-Plomer, M. A., Marin, G., and Badea, O.: Deep Neural Networks FOR forest Growing stock volume retrieval: a compartive analysis for L-band SAR data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3854, https://doi.org/10.5194/egusphere-egu2020-3854, 2020.
EGU2020-13453 | Displays | BG3.16
Forecasting forest dynamics with the individual-based model LAVESI across the Siberian treeline: from UAV surveys to simulationsStefan Kruse, Iuliia Shevtsova, Frederic Brieger, Mareike Wieczorek, Luidmila A. Pestryakova, and Ulrike Herzschuh
Boreal forests in Siberia store huge amounts of aboveground carbon. Global warming potentially threatens this carbon storage due to more frequent droughts or other disturbances such as fires. These disturbances can change recruitment patterns, and thus may have long-lasting impacts on population dynamics. Assessing high-resolution forest stand structures and forecasting their response for the upcoming decades with detailed models is needed to understand the involved key processes and consequences of global change.
We present forest stand inventories derived from UAV imagery and a developed processing chain including Individual Tree Detection (ITD) and species determination for 56 sites on a bioclimatic gradient at the Tundra-Taiga-Ecotone in Northeastern Siberia. We will use these and further 58 traditional count and measurement data as starting points for the detailed individual-based spatially explicit forest model LAVESI to predict future forest dynamics covering multiple sites across the Siberian treeline.
In our analyses, we will focus on assessing future structural changes of the forests and their aboveground biomass dynamics. For our discussion, we will evaluate the reliability of UAV-derived forest inventories by measuring the impact strength of error sources introduced in the methodology on the forecasts.
How to cite: Kruse, S., Shevtsova, I., Brieger, F., Wieczorek, M., Pestryakova, L. A., and Herzschuh, U.: Forecasting forest dynamics with the individual-based model LAVESI across the Siberian treeline: from UAV surveys to simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13453, https://doi.org/10.5194/egusphere-egu2020-13453, 2020.
Boreal forests in Siberia store huge amounts of aboveground carbon. Global warming potentially threatens this carbon storage due to more frequent droughts or other disturbances such as fires. These disturbances can change recruitment patterns, and thus may have long-lasting impacts on population dynamics. Assessing high-resolution forest stand structures and forecasting their response for the upcoming decades with detailed models is needed to understand the involved key processes and consequences of global change.
We present forest stand inventories derived from UAV imagery and a developed processing chain including Individual Tree Detection (ITD) and species determination for 56 sites on a bioclimatic gradient at the Tundra-Taiga-Ecotone in Northeastern Siberia. We will use these and further 58 traditional count and measurement data as starting points for the detailed individual-based spatially explicit forest model LAVESI to predict future forest dynamics covering multiple sites across the Siberian treeline.
In our analyses, we will focus on assessing future structural changes of the forests and their aboveground biomass dynamics. For our discussion, we will evaluate the reliability of UAV-derived forest inventories by measuring the impact strength of error sources introduced in the methodology on the forecasts.
How to cite: Kruse, S., Shevtsova, I., Brieger, F., Wieczorek, M., Pestryakova, L. A., and Herzschuh, U.: Forecasting forest dynamics with the individual-based model LAVESI across the Siberian treeline: from UAV surveys to simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13453, https://doi.org/10.5194/egusphere-egu2020-13453, 2020.
EGU2020-17759 | Displays | BG3.16
Tree species detection and identification from UAV imagery to support tropical forest monitoringLoïc Dutrieux, Radhouene Azzabi, Sébastien Bauwens, Ulrich Gaël Bouka Dipelet, Olivier Chenoz, Antoine Couturier, Pierre Dérian, Charles Doumenge, Hubert Dubois, Valéry Gond, Arnaud Laverdunt, Julien Olé, Juliana Prosperi, Laurent Rivière, and Tom van Loon
As part of a project aiming to support FSC certified logging concessions in their tasks of forest inventory and management, we collected aerial imagery over 9000 ha of tropical forests in Northern Congo using long range Unmanned Aerial Vehicles (UAVs). Once processed into orthomosaics, the aerial imagery is used in combination with reference training samples to train a deep learning object detection model (FasterRCNN) capable of detecting and predicting tree species. The remoteness and diversity of these forests make both data acquisition and generation of a training dataset challenging. Unlike natural images containing common objects like cars, bicycles, cats and dogs, there is no easy way to create a training dataset of tree species from overhead imagery of tropical forests. The first reason is that a human operator cannot as easily recognize and label objects. The second reason is that the polymorphism of tree species, phenological variations and uncertainty associated with visual recognition makes the exhaustive labeling of all instances of each class very difficult. Such exhaustive labeling is required to successfully train any object detection model. To overcome these challenges we built an interactive and ergonomic interface that allows a human operator to work in a spatial context, being guided by the approximate geographic location of already inventoried trees. We solved the issue of non-exhaustive instance labeling by building synthetic images, hence allowing full control of the training data. In addition to these specific developments related to training data generation, we will present details of the UAV missions, modelling results on synthetic images, and finally preliminary results of model transfer to aerial imagery.
How to cite: Dutrieux, L., Azzabi, R., Bauwens, S., Bouka Dipelet, U. G., Chenoz, O., Couturier, A., Dérian, P., Doumenge, C., Dubois, H., Gond, V., Laverdunt, A., Olé, J., Prosperi, J., Rivière, L., and van Loon, T.: Tree species detection and identification from UAV imagery to support tropical forest monitoring, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17759, https://doi.org/10.5194/egusphere-egu2020-17759, 2020.
As part of a project aiming to support FSC certified logging concessions in their tasks of forest inventory and management, we collected aerial imagery over 9000 ha of tropical forests in Northern Congo using long range Unmanned Aerial Vehicles (UAVs). Once processed into orthomosaics, the aerial imagery is used in combination with reference training samples to train a deep learning object detection model (FasterRCNN) capable of detecting and predicting tree species. The remoteness and diversity of these forests make both data acquisition and generation of a training dataset challenging. Unlike natural images containing common objects like cars, bicycles, cats and dogs, there is no easy way to create a training dataset of tree species from overhead imagery of tropical forests. The first reason is that a human operator cannot as easily recognize and label objects. The second reason is that the polymorphism of tree species, phenological variations and uncertainty associated with visual recognition makes the exhaustive labeling of all instances of each class very difficult. Such exhaustive labeling is required to successfully train any object detection model. To overcome these challenges we built an interactive and ergonomic interface that allows a human operator to work in a spatial context, being guided by the approximate geographic location of already inventoried trees. We solved the issue of non-exhaustive instance labeling by building synthetic images, hence allowing full control of the training data. In addition to these specific developments related to training data generation, we will present details of the UAV missions, modelling results on synthetic images, and finally preliminary results of model transfer to aerial imagery.
How to cite: Dutrieux, L., Azzabi, R., Bauwens, S., Bouka Dipelet, U. G., Chenoz, O., Couturier, A., Dérian, P., Doumenge, C., Dubois, H., Gond, V., Laverdunt, A., Olé, J., Prosperi, J., Rivière, L., and van Loon, T.: Tree species detection and identification from UAV imagery to support tropical forest monitoring, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17759, https://doi.org/10.5194/egusphere-egu2020-17759, 2020.
BG3.17 – The Role of Fire in the Earth System: Understanding Interactions with the Land, Atmosphere, and Society
EGU2020-22123 | Displays | BG3.17 | Highlight
What paleofire records can say about the present and future of fire on EarthJennifer Marlon, Anne-Laure Daniau, Patrick Bartlein, and Andry Rajaoberison
Sedimentary charcoal records typically provide information about variations in wildfire activity over thousands of years, and a few even span millions of years. Such long, continuous measurements of combustion products offer a rare opportunity to understand the response of fire to both rapid and gradual climate forcings, whether from human-caused global warming, volcanic activity, atmosphere-ocean circulation changes, or Milankovitch cycles. Here we use paleofire records from the Global Charcoal Database to demonstrate the dynamic nature of wildfire activity in response to varied forcings, particularly the role that relatively small temperature and precipitation shifts have on patterns of burning across space and time. Paleodata from areas currently experiencing severe wildfires are also examined in order to provide context for events that appear unprecedented in modern times.
How to cite: Marlon, J., Daniau, A.-L., Bartlein, P., and Rajaoberison, A.: What paleofire records can say about the present and future of fire on Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22123, https://doi.org/10.5194/egusphere-egu2020-22123, 2020.
Sedimentary charcoal records typically provide information about variations in wildfire activity over thousands of years, and a few even span millions of years. Such long, continuous measurements of combustion products offer a rare opportunity to understand the response of fire to both rapid and gradual climate forcings, whether from human-caused global warming, volcanic activity, atmosphere-ocean circulation changes, or Milankovitch cycles. Here we use paleofire records from the Global Charcoal Database to demonstrate the dynamic nature of wildfire activity in response to varied forcings, particularly the role that relatively small temperature and precipitation shifts have on patterns of burning across space and time. Paleodata from areas currently experiencing severe wildfires are also examined in order to provide context for events that appear unprecedented in modern times.
How to cite: Marlon, J., Daniau, A.-L., Bartlein, P., and Rajaoberison, A.: What paleofire records can say about the present and future of fire on Earth, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22123, https://doi.org/10.5194/egusphere-egu2020-22123, 2020.
EGU2020-20587 | Displays | BG3.17
High frequency fire drives forest species change: impacts on ecohydrology and ecosystem functioningPatrick Lane, Richard Benyon, Shyanika Lakmali, Assaf Inbar, and Gary Sheridan
Fire as a hydrologic agent has been most frequently examined in terms of erosion and water quality, with studies on the ecohydrology expressed as evapotranspiration/streamflow often focussing on short term perturbation that relaxes with vegetation recovery. Far more dramatic ecohydrologic impacts are possible if repeated fire disturbance leads to species change. Such a scenario occurs in some forests in south-eastern Australia, a region that is among the most flammable in global terms due to the confluence of climatic and stand productivity factors. The most vulnerable of these forests are the “ash” type – mainly Eucalyptus regnans and E. delegatensis. The E.regnans ecology has evolved with long fire intervals as medium/hot fire kill the trees, which then regenerate as single aged strands. However there have been several large short interval fire events in mountain forests (eg. 1926-1939, 2003-2006-2009-2019) in the past decades that overlap in area. E.regnans, and the other ash-type species, require 15-20 years to develop seed. If re-burnt, the stands cannot naturally regenerate. Frequently acacia and other understorey species colonise the sites, resulting in a dramatic change in forest structure and biomass.
The implications of this change are significant, with potentially high magnitude changes in ecohydrologic functioning. Further, these areas are the principal water supply catchments the city of Melbourne (> 4 M pop.) and a number of other towns. The impact of high frequency fire that is predicted to increase under climate change therefore has the potential to change ecology, hydrology and essential ecosystem services, in this case, water supply.
An extensive field experimentation and modelling program set out to (a) investigate the climatic conditions under which these wet forests burn and the sensitivity of these drivers to predicted climate change; and (b) evaluate the eco-hydrologic impact of a species change from E.regnans to acacia species over an age sequence of 80 years.
Results revealed there is an envelope of dry surface soil and maximum vapour pressure deficit (VPD) within which there is a 50% chance of uncontrolled fire. The most damaging fires occurred when VPD was within the upper 0.01% of values and available surface soil water below 55%. Modelling suggests this conjunction of drivers will increase significantly in the future.
Stand structure, particularly sapwood area, diverged between the eucalypts and acacias at age 10-20 years, with the difference increasing until acacia death at age 80. This structural parameter scales with ET, with acacias exhibiting a marked decline over time relative to E. regnans. This ET change is principally driven by sapwood area. These differences increase as the stands age, resulting in A.dealbata using around 30% of an E.regnans stand at age 80. This represents a fundamental change in eco-hydrology, and suggests a system pushed to a state of disequilibrium. The stand structural attributes over the age sequence indicate a large change in carbon stocks, resulting in significant alteration of both carbon and water cycles under this disturbance. The results have significant implications for water supply, forest ecosystem services, and system feedbacks of flammability-fire-ecohydrology.
How to cite: Lane, P., Benyon, R., Lakmali, S., Inbar, A., and Sheridan, G.: High frequency fire drives forest species change: impacts on ecohydrology and ecosystem functioning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20587, https://doi.org/10.5194/egusphere-egu2020-20587, 2020.
Fire as a hydrologic agent has been most frequently examined in terms of erosion and water quality, with studies on the ecohydrology expressed as evapotranspiration/streamflow often focussing on short term perturbation that relaxes with vegetation recovery. Far more dramatic ecohydrologic impacts are possible if repeated fire disturbance leads to species change. Such a scenario occurs in some forests in south-eastern Australia, a region that is among the most flammable in global terms due to the confluence of climatic and stand productivity factors. The most vulnerable of these forests are the “ash” type – mainly Eucalyptus regnans and E. delegatensis. The E.regnans ecology has evolved with long fire intervals as medium/hot fire kill the trees, which then regenerate as single aged strands. However there have been several large short interval fire events in mountain forests (eg. 1926-1939, 2003-2006-2009-2019) in the past decades that overlap in area. E.regnans, and the other ash-type species, require 15-20 years to develop seed. If re-burnt, the stands cannot naturally regenerate. Frequently acacia and other understorey species colonise the sites, resulting in a dramatic change in forest structure and biomass.
The implications of this change are significant, with potentially high magnitude changes in ecohydrologic functioning. Further, these areas are the principal water supply catchments the city of Melbourne (> 4 M pop.) and a number of other towns. The impact of high frequency fire that is predicted to increase under climate change therefore has the potential to change ecology, hydrology and essential ecosystem services, in this case, water supply.
An extensive field experimentation and modelling program set out to (a) investigate the climatic conditions under which these wet forests burn and the sensitivity of these drivers to predicted climate change; and (b) evaluate the eco-hydrologic impact of a species change from E.regnans to acacia species over an age sequence of 80 years.
Results revealed there is an envelope of dry surface soil and maximum vapour pressure deficit (VPD) within which there is a 50% chance of uncontrolled fire. The most damaging fires occurred when VPD was within the upper 0.01% of values and available surface soil water below 55%. Modelling suggests this conjunction of drivers will increase significantly in the future.
Stand structure, particularly sapwood area, diverged between the eucalypts and acacias at age 10-20 years, with the difference increasing until acacia death at age 80. This structural parameter scales with ET, with acacias exhibiting a marked decline over time relative to E. regnans. This ET change is principally driven by sapwood area. These differences increase as the stands age, resulting in A.dealbata using around 30% of an E.regnans stand at age 80. This represents a fundamental change in eco-hydrology, and suggests a system pushed to a state of disequilibrium. The stand structural attributes over the age sequence indicate a large change in carbon stocks, resulting in significant alteration of both carbon and water cycles under this disturbance. The results have significant implications for water supply, forest ecosystem services, and system feedbacks of flammability-fire-ecohydrology.
How to cite: Lane, P., Benyon, R., Lakmali, S., Inbar, A., and Sheridan, G.: High frequency fire drives forest species change: impacts on ecohydrology and ecosystem functioning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20587, https://doi.org/10.5194/egusphere-egu2020-20587, 2020.
EGU2020-18049 | Displays | BG3.17 | Highlight
The contribution of fire to a global increase in forest lossDave van Wees and Guido van der Werf
Fire is one of the main drivers of forest loss worldwide and its role varies depending on natural and anthropogenic drivers, ranging from large boreal wildfires to smallholder shifting agriculture. The emergence of higher resolution satellite data creates new opportunities for studying the spatial and temporal relatedness of fires and forest loss. We have quantified this relatedness by overlapping global forest loss for 2001-2018 with fire detections from burned area and active fire satellite products at 500 m resolution. Previous studies have shown that global burned area is decreasing, mostly caused by increased human influence in savanna ecosystems. However, the opposite is true for forests: our study of trends and variability shows that forest loss has increased substantially over the last two decades in many parts of the world and that its dynamics are strongly linked to fire. Striking increases in forest loss were found for rapidly developing regions such as Africa and Southeast Asia, where commodity-driven deforestation and shifting agriculture have led to increased land clearing, often with the use of fire. Besides, stand-replacing wildfire activity has increased in boreal, temperate and tropical forests. The increase in fire activity in forests and decrease in savannas shows that the global balance is shifting because of both natural and anthropogenic factors, with important consequences for the future carbon cycle.
How to cite: van Wees, D. and van der Werf, G.: The contribution of fire to a global increase in forest loss, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18049, https://doi.org/10.5194/egusphere-egu2020-18049, 2020.
Fire is one of the main drivers of forest loss worldwide and its role varies depending on natural and anthropogenic drivers, ranging from large boreal wildfires to smallholder shifting agriculture. The emergence of higher resolution satellite data creates new opportunities for studying the spatial and temporal relatedness of fires and forest loss. We have quantified this relatedness by overlapping global forest loss for 2001-2018 with fire detections from burned area and active fire satellite products at 500 m resolution. Previous studies have shown that global burned area is decreasing, mostly caused by increased human influence in savanna ecosystems. However, the opposite is true for forests: our study of trends and variability shows that forest loss has increased substantially over the last two decades in many parts of the world and that its dynamics are strongly linked to fire. Striking increases in forest loss were found for rapidly developing regions such as Africa and Southeast Asia, where commodity-driven deforestation and shifting agriculture have led to increased land clearing, often with the use of fire. Besides, stand-replacing wildfire activity has increased in boreal, temperate and tropical forests. The increase in fire activity in forests and decrease in savannas shows that the global balance is shifting because of both natural and anthropogenic factors, with important consequences for the future carbon cycle.
How to cite: van Wees, D. and van der Werf, G.: The contribution of fire to a global increase in forest loss, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18049, https://doi.org/10.5194/egusphere-egu2020-18049, 2020.
EGU2020-10650 | Displays | BG3.17
Underestimated Role of Fires in Providing Nutrients for Biogeochemical CyclesDouglas Hamilton, Anne Barkley, J. Keith Moore, Almut Arneth, Tami Bond, Kenneth Carslaw, Cassandra Gaston, Stijn Hantson, Akinori Ito, Jed Kaplan, Keith Lindsay, Lars Nieradzik, Joseph Prospero, Sagar Rathod, Rachel Scanza, and Natalie Mahowald
Fire regimes respond to both climate and human land management practice changes, in turn modifying land cover distributions, surface albedo, carbon storage, and emissions. Much attention has recently been given to the health and climate impacts of fires, but fires are also an important source of nutrients, such as iron and phosphorus, to both land and ocean biospheres. Fires therefore create important feedbacks within the Earth system. Here we discuss recent developments showing how fires are a previously underestimated source of limiting nutrients, providing up to half the annual deposited amount of soluble iron and soluble phosphorus to southern oceans and the Amazon, respectively. Fire can therefore stimulate ocean productivity by providing long range transport of essential nutrients, released from the vegetation burned and entrained with dust from the surrounding environment, to remote regions. We considered the impact of human activity on soluble iron deposition for the past (c.1750 CE), present (c.2010 CE), and future (c.2100 CE). We find that the global carbon cycle and climate response is dominated by changes to primary productivity within the Southern Ocean (>30ºS) and that the carbon export efficiency (gram of carbon sequestered per gram of soluble iron added) for this region is 43% larger when altering fire emissions compared to altering dust emissions. Results suggest that modelling past and future changes in biogeochemical cycles should incorporate information on how fires, and the nutrients carried within their plumes, respond to changes in climate.
How to cite: Hamilton, D., Barkley, A., Moore, J. K., Arneth, A., Bond, T., Carslaw, K., Gaston, C., Hantson, S., Ito, A., Kaplan, J., Lindsay, K., Nieradzik, L., Prospero, J., Rathod, S., Scanza, R., and Mahowald, N.: Underestimated Role of Fires in Providing Nutrients for Biogeochemical Cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10650, https://doi.org/10.5194/egusphere-egu2020-10650, 2020.
Fire regimes respond to both climate and human land management practice changes, in turn modifying land cover distributions, surface albedo, carbon storage, and emissions. Much attention has recently been given to the health and climate impacts of fires, but fires are also an important source of nutrients, such as iron and phosphorus, to both land and ocean biospheres. Fires therefore create important feedbacks within the Earth system. Here we discuss recent developments showing how fires are a previously underestimated source of limiting nutrients, providing up to half the annual deposited amount of soluble iron and soluble phosphorus to southern oceans and the Amazon, respectively. Fire can therefore stimulate ocean productivity by providing long range transport of essential nutrients, released from the vegetation burned and entrained with dust from the surrounding environment, to remote regions. We considered the impact of human activity on soluble iron deposition for the past (c.1750 CE), present (c.2010 CE), and future (c.2100 CE). We find that the global carbon cycle and climate response is dominated by changes to primary productivity within the Southern Ocean (>30ºS) and that the carbon export efficiency (gram of carbon sequestered per gram of soluble iron added) for this region is 43% larger when altering fire emissions compared to altering dust emissions. Results suggest that modelling past and future changes in biogeochemical cycles should incorporate information on how fires, and the nutrients carried within their plumes, respond to changes in climate.
How to cite: Hamilton, D., Barkley, A., Moore, J. K., Arneth, A., Bond, T., Carslaw, K., Gaston, C., Hantson, S., Ito, A., Kaplan, J., Lindsay, K., Nieradzik, L., Prospero, J., Rathod, S., Scanza, R., and Mahowald, N.: Underestimated Role of Fires in Providing Nutrients for Biogeochemical Cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10650, https://doi.org/10.5194/egusphere-egu2020-10650, 2020.
EGU2020-10180 | Displays | BG3.17
Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacksYiquan Jiang, Xiu-Qun Yang, and Xiaohong Liu
Aerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasizing the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be -0.78±0.29 W m-2, which is mostly from shortwave RE due to aerosol-cloud interactions (REaci, -0.70±0.20 W m-2). The associated global-annual mean surface air temperature (SAT) change (∆T) is -0.64±0.16K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to re-amplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N), but increases in Southern Hemisphere tropical ocean, which is associated with the southward shift of the Inter-Tropical Convergence Zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal-forest fire aerosol indirect effect, through intensifying the cross-equator atmospheric heat transport.
How to cite: Jiang, Y., Yang, X.-Q., and Liu, X.: Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10180, https://doi.org/10.5194/egusphere-egu2020-10180, 2020.
Aerosols emitted from wildfires could significantly affect global climate through perturbing global radiation balance. In this study, Community Earth System Model with prescribed daily fire aerosol emissions is used to investigate fire aerosols’ impacts on global climate with emphasizing the role of climate feedbacks. The total global fire aerosol radiative effect (RE) is estimated to be -0.78±0.29 W m-2, which is mostly from shortwave RE due to aerosol-cloud interactions (REaci, -0.70±0.20 W m-2). The associated global-annual mean surface air temperature (SAT) change (∆T) is -0.64±0.16K with the largest reduction in the Arctic regions where the shortwave REaci is strong. Associated with the cooling, the Arctic sea ice is increased, which acts to re-amplify the Arctic cooling through a positive ice-albedo feedback. The fast response (irrelevant to ∆T) tends to decrease surface latent heat flux into atmosphere in the tropics to balance strong atmospheric fire black carbon absorption, which reduces the precipitation in the tropical land regions (southern Africa and South America). The climate feedback processes (associated with ∆T) lead to a significant surface latent heat flux reduction over global ocean areas, which could explain most (~80%) of the global precipitation reduction. The precipitation significantly decreases in deep tropical regions (5°N), but increases in Southern Hemisphere tropical ocean, which is associated with the southward shift of the Inter-Tropical Convergence Zone and the weakening of Southern Hemisphere Hadley cell. Such changes could partly compensate the interhemispheric temperature asymmetry induced by boreal-forest fire aerosol indirect effect, through intensifying the cross-equator atmospheric heat transport.
How to cite: Jiang, Y., Yang, X.-Q., and Liu, X.: Impacts of wildfire aerosols on global energy budget and climate: The role of climate feedbacks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10180, https://doi.org/10.5194/egusphere-egu2020-10180, 2020.
EGU2020-18190 | Displays | BG3.17
Re-assessment of pre-industrial fires in CMIP6 models and the implications for radiative forcingKen Carslaw, Cat Scott, Masaru Yoshioka, Douglas Hamilton, Fiona O’Connor, Gerd Folberth, Jane Mulcahy, Mohit Dalvi, Yves Balkanski, Ramiro Checa-Garcia, Dirk Olivie, Michael Schulz, Martine Michou, Pierre Nabat, Lars Nieradzik, Twan van Noije, and Tommi Bergman
Assessment of anthropogenic radiative forcing requires a robust understanding of the composition of the pre-industrial baseline atmosphere from which calculations are made
It is often assumed that fire activity and the associated aerosol emissions were lower in the pre-industrial period than in the present day. However, some lines of evidence suggest that fire activity may have halved since the pre-industrial period.
Here we compare the simulated ratio of pre-industrial (c.1750CE and c.1850CE) to present-day black carbon surface concentrations in five ESMs (CNRM-ESM2-1, EC-Earth3, IPSL-CM6, NorESM1.2, UKESM1), using historical fire emissions from the Sixth Coupled Model Intercomparison Project (CMIP6), to the ratio in Northern Hemisphere ice-core records.
We find that when forced with CMIP6 fire emissions all ESMs overestimate the present-day to pre-industrial black carbon ratio. This is consistent with previous studies and suggests that the contribution of fire to the composition of the pre-industrial atmosphere may be too low. If the contrast between the pre-industrial and present-day atmospheres in these models is too great, they are likely to overestimate the strength of the anthropogenic aerosol radiative forcing.
We extend our analysis to include additional ESMs providing historical simulations for CMIP6, as included in the IPCC’s Sixth Assessment Report.
How to cite: Carslaw, K., Scott, C., Yoshioka, M., Hamilton, D., O’Connor, F., Folberth, G., Mulcahy, J., Dalvi, M., Balkanski, Y., Checa-Garcia, R., Olivie, D., Schulz, M., Michou, M., Nabat, P., Nieradzik, L., van Noije, T., and Bergman, T.: Re-assessment of pre-industrial fires in CMIP6 models and the implications for radiative forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18190, https://doi.org/10.5194/egusphere-egu2020-18190, 2020.
Assessment of anthropogenic radiative forcing requires a robust understanding of the composition of the pre-industrial baseline atmosphere from which calculations are made
It is often assumed that fire activity and the associated aerosol emissions were lower in the pre-industrial period than in the present day. However, some lines of evidence suggest that fire activity may have halved since the pre-industrial period.
Here we compare the simulated ratio of pre-industrial (c.1750CE and c.1850CE) to present-day black carbon surface concentrations in five ESMs (CNRM-ESM2-1, EC-Earth3, IPSL-CM6, NorESM1.2, UKESM1), using historical fire emissions from the Sixth Coupled Model Intercomparison Project (CMIP6), to the ratio in Northern Hemisphere ice-core records.
We find that when forced with CMIP6 fire emissions all ESMs overestimate the present-day to pre-industrial black carbon ratio. This is consistent with previous studies and suggests that the contribution of fire to the composition of the pre-industrial atmosphere may be too low. If the contrast between the pre-industrial and present-day atmospheres in these models is too great, they are likely to overestimate the strength of the anthropogenic aerosol radiative forcing.
We extend our analysis to include additional ESMs providing historical simulations for CMIP6, as included in the IPCC’s Sixth Assessment Report.
How to cite: Carslaw, K., Scott, C., Yoshioka, M., Hamilton, D., O’Connor, F., Folberth, G., Mulcahy, J., Dalvi, M., Balkanski, Y., Checa-Garcia, R., Olivie, D., Schulz, M., Michou, M., Nabat, P., Nieradzik, L., van Noije, T., and Bergman, T.: Re-assessment of pre-industrial fires in CMIP6 models and the implications for radiative forcing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18190, https://doi.org/10.5194/egusphere-egu2020-18190, 2020.
EGU2020-3750 | Displays | BG3.17
Biomass burning decline causes large reductions in NO2 burden over north equatorial Africa in spite of growing fossil fuel useJonathan Hickman, Niels Andela, Money Ossohou, Corinne Galy-Lacaux, Kostas Tsigaridis, and Susanne Bauer
Socio-economic development in low and middle-income countries has been accompanied by increased emissions of air pollutants such as nitrogen oxides (NOx: nitrogen dioxide (NO2) + nitric oxide (NO)), which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, biomass burning—another important NOx source—has declined in Africa’s northern biomass burning region, attributed to changes in climate and anthropogenic fire management associated with agricultural development. Here we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs—home to over 350 million people—mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the biomass burning season of November through February. Reductions in burned area explained the majority of these change in NO2 VCDs, but there were also weaker relationships between changes in NO2 VCDs and fossil fuel emissions over parts of West Africa, which were stronger during rainy season. Over Africa’s biomass burning regions, NO2 VCDs tended to decrease with increasing population density up to a threshold of approximately 180 people per km2, suggesting that anthropogenic activity causes a net reduction in NO2 emissions across roughly 90% of the continent’s biomass burning regions. In contrast to the widely-held perception that socio-economic development worsens air quality in low and middle-income nations, our results suggest that countries in Africa’s northern biomass burning region are following a different pathway, resulting in regional air quality benefits. However, these benefits may be lost with increasing fossil fuel use.
How to cite: Hickman, J., Andela, N., Ossohou, M., Galy-Lacaux, C., Tsigaridis, K., and Bauer, S.: Biomass burning decline causes large reductions in NO2 burden over north equatorial Africa in spite of growing fossil fuel use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3750, https://doi.org/10.5194/egusphere-egu2020-3750, 2020.
Socio-economic development in low and middle-income countries has been accompanied by increased emissions of air pollutants such as nitrogen oxides (NOx: nitrogen dioxide (NO2) + nitric oxide (NO)), which affect human health. In sub-Saharan Africa, fossil fuel combustion has nearly doubled since 2000. At the same time, biomass burning—another important NOx source—has declined in Africa’s northern biomass burning region, attributed to changes in climate and anthropogenic fire management associated with agricultural development. Here we use satellite observations of tropospheric NO2 vertical column densities (VCDs) and burned area to identify NO2 trends and drivers over Africa. Across the northern ecosystems where biomass burning occurs—home to over 350 million people—mean annual tropospheric NO2 VCDs decreased by 4.5% from 2005 through 2017 during the biomass burning season of November through February. Reductions in burned area explained the majority of these change in NO2 VCDs, but there were also weaker relationships between changes in NO2 VCDs and fossil fuel emissions over parts of West Africa, which were stronger during rainy season. Over Africa’s biomass burning regions, NO2 VCDs tended to decrease with increasing population density up to a threshold of approximately 180 people per km2, suggesting that anthropogenic activity causes a net reduction in NO2 emissions across roughly 90% of the continent’s biomass burning regions. In contrast to the widely-held perception that socio-economic development worsens air quality in low and middle-income nations, our results suggest that countries in Africa’s northern biomass burning region are following a different pathway, resulting in regional air quality benefits. However, these benefits may be lost with increasing fossil fuel use.
How to cite: Hickman, J., Andela, N., Ossohou, M., Galy-Lacaux, C., Tsigaridis, K., and Bauer, S.: Biomass burning decline causes large reductions in NO2 burden over north equatorial Africa in spite of growing fossil fuel use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3750, https://doi.org/10.5194/egusphere-egu2020-3750, 2020.
EGU2020-15693 | Displays | BG3.17
The 2019/20 eastern Australian mega forest fires - a global forest perspectiveMatthias Boer, Víctor Resco De Dios, and Ross Bradstock
The 2019/20 forest fires in eastern Australia burned over 5.8 million hectares of mainly temperate broadleaf forest between September 2019 and January 2020. This burned area figure is expected to rise over the remainder of the austral summer, but is already an order of magnitude larger than the mean annual burned area for Australian forest fires over the last 20 years, which is ~0.59 Mha per year. Here we show that this forest fire event is of a record-breaking scale, both nationally and globally, and was pre-conditioned by wide-spread prolonged drought and extreme heat.
We analysed global remotely sensed burned area data for 2000-2019 to estimate annual burned area fractions of all continental forest biomes. The annual burned area fraction, which is related to the length of fire intervals and other aspects of fire regimes, allows us to compare levels of fire activity across different forest biomes and continents.
Though very large fires occur in some forest biomes, such as the boreal forests of North-America and Asia, over the 20 years covered by our data set, annual burned area fractions have been very small (<0.03) for nearly all continental forest biomes including Australia’s temperate broadleaf forest biome. These findings provide a global historical reference for the interpretation of the scale of the 2019/20 eastern Australian mega forest fires.
With fire activity in all forest biomes strongly constrained by the moisture content of the fuels, explanations for the unconstrained burning of millions of hectares of temperate broadleaf forest in a single season must be sought in the extreme drought that has affected eastern Australia for the last two years. We use gridded daily soil moisture predictions for the continent to show how widespread and prolonged dryness set the stage for the unprecedented forest fire event of 2019/20.
How to cite: Boer, M., Resco De Dios, V., and Bradstock, R.: The 2019/20 eastern Australian mega forest fires - a global forest perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15693, https://doi.org/10.5194/egusphere-egu2020-15693, 2020.
The 2019/20 forest fires in eastern Australia burned over 5.8 million hectares of mainly temperate broadleaf forest between September 2019 and January 2020. This burned area figure is expected to rise over the remainder of the austral summer, but is already an order of magnitude larger than the mean annual burned area for Australian forest fires over the last 20 years, which is ~0.59 Mha per year. Here we show that this forest fire event is of a record-breaking scale, both nationally and globally, and was pre-conditioned by wide-spread prolonged drought and extreme heat.
We analysed global remotely sensed burned area data for 2000-2019 to estimate annual burned area fractions of all continental forest biomes. The annual burned area fraction, which is related to the length of fire intervals and other aspects of fire regimes, allows us to compare levels of fire activity across different forest biomes and continents.
Though very large fires occur in some forest biomes, such as the boreal forests of North-America and Asia, over the 20 years covered by our data set, annual burned area fractions have been very small (<0.03) for nearly all continental forest biomes including Australia’s temperate broadleaf forest biome. These findings provide a global historical reference for the interpretation of the scale of the 2019/20 eastern Australian mega forest fires.
With fire activity in all forest biomes strongly constrained by the moisture content of the fuels, explanations for the unconstrained burning of millions of hectares of temperate broadleaf forest in a single season must be sought in the extreme drought that has affected eastern Australia for the last two years. We use gridded daily soil moisture predictions for the continent to show how widespread and prolonged dryness set the stage for the unprecedented forest fire event of 2019/20.
How to cite: Boer, M., Resco De Dios, V., and Bradstock, R.: The 2019/20 eastern Australian mega forest fires - a global forest perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15693, https://doi.org/10.5194/egusphere-egu2020-15693, 2020.
EGU2020-1586 | Displays | BG3.17
Mapping and comparing wildfire progressions using freely available, multi-source satellite dataMorgan Crowley, Jeffrey Cardille, Joanne White, and Michael Wulder
Extreme wildfire seasons are becoming the new normal in Canada, and satellite imagery is a useful way to map these fires as they grow across the vast, fire-prone regions of the country. However, single-date and single-sourced imagery of active fires often contain clouds, flares, smoke, and haze that can create challenges for monitoring burned areas over time. To address this gap, we applied rapid and scalable methods for synthesizing information on fire progressions using freely available satellite imagery, novel image fusion algorithms, and cloud-based data processing platforms. We identified images from Landsat-7, -8, Sentinel-2, and MODIS (MCD64A1 burned-area dataset) for the 2017 and 2018 British Columbia fire seasons that intersect the buffered extents of Canadian wildfires as determined by Canadian National Fire Database. We classified each raw image individually using a standard burned-area classification protocol related to each data source. We used the Bayesian Updating of Land Cover Classifications (BULC) algorithm to create coherent time series from the single-date classifications of optical data sources in Google Earth Engine. From the BULC classification stack, we calculated within-year, intra-annual fire progression metrics to compare satellite-derived fire behaviours between the 2017 and 2018 fire seasons, both at the whole fire season and the individual fire level. End-of-season burned-area estimates corresponded with estimates derived from the National Burned Area Composite (NBAC) product that is generated retrospectively from best-available fire mapping approaches. Additionally, we compared the BULC time series with fire progression estimates from MCD64A1 burned-area dataset to evaluate the influence of spatial resolution on burned-area estimates. Information outputs from this research enable cross-validation of fire behaviour models for different fire seasons and comparison of fire progression metrics between historic fires and fire seasons in Canada. The approach presented can be used to provide rapid and reliable information about active wildland fire progressions to better understand fire growth and associated drivers.
How to cite: Crowley, M., Cardille, J., White, J., and Wulder, M.: Mapping and comparing wildfire progressions using freely available, multi-source satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1586, https://doi.org/10.5194/egusphere-egu2020-1586, 2020.
Extreme wildfire seasons are becoming the new normal in Canada, and satellite imagery is a useful way to map these fires as they grow across the vast, fire-prone regions of the country. However, single-date and single-sourced imagery of active fires often contain clouds, flares, smoke, and haze that can create challenges for monitoring burned areas over time. To address this gap, we applied rapid and scalable methods for synthesizing information on fire progressions using freely available satellite imagery, novel image fusion algorithms, and cloud-based data processing platforms. We identified images from Landsat-7, -8, Sentinel-2, and MODIS (MCD64A1 burned-area dataset) for the 2017 and 2018 British Columbia fire seasons that intersect the buffered extents of Canadian wildfires as determined by Canadian National Fire Database. We classified each raw image individually using a standard burned-area classification protocol related to each data source. We used the Bayesian Updating of Land Cover Classifications (BULC) algorithm to create coherent time series from the single-date classifications of optical data sources in Google Earth Engine. From the BULC classification stack, we calculated within-year, intra-annual fire progression metrics to compare satellite-derived fire behaviours between the 2017 and 2018 fire seasons, both at the whole fire season and the individual fire level. End-of-season burned-area estimates corresponded with estimates derived from the National Burned Area Composite (NBAC) product that is generated retrospectively from best-available fire mapping approaches. Additionally, we compared the BULC time series with fire progression estimates from MCD64A1 burned-area dataset to evaluate the influence of spatial resolution on burned-area estimates. Information outputs from this research enable cross-validation of fire behaviour models for different fire seasons and comparison of fire progression metrics between historic fires and fire seasons in Canada. The approach presented can be used to provide rapid and reliable information about active wildland fire progressions to better understand fire growth and associated drivers.
How to cite: Crowley, M., Cardille, J., White, J., and Wulder, M.: Mapping and comparing wildfire progressions using freely available, multi-source satellite data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1586, https://doi.org/10.5194/egusphere-egu2020-1586, 2020.
EGU2020-8385 | Displays | BG3.17
Inter-comparison of four operational satellite Fire Radiative Power (FRP) products: A spatial and temporal consistency assessment.Bernardo Mota, Nadine Gobron, and Martin Wooster
We inter-compare four remotely sensed Fire Radiative Power (FRP) products, the polar-orbiter products derived from active fires detected using the Moderate Resolution Imaging Spectroradiometer data (MCD14ML) and VIIRS (VNP14ML and VNP14IMGML), and geostationary products derived from data collected by Meteosat’s Spinning Enhanced Visible and Infrared Imager (the LSA-SAF FRP-PIXEL product). We focus on seven years of data (January 2012 to December 2018), and using the ability of the geostationary product to capture the daily fire cycle we quantify for each polar-orbiter FRP product the proportion of daily fire energy release that they capture and that which they miss, and also identify the areas where their overpass times successfully capture the diurnal fire activity peak, and where they do not. In addition, by analysing frequency density (f-D) distributions of FRP at a 0.5° grid cell resolution we evaluate each products minimum FRP detection limit, which typically precludes detection of a proportion of the highly numerous but individually relatively small and/or low intensity fires. Results are summarized by biome type based on the ESA CCI Land Cover product. Our inter-comparison allows for the identification and quantification of some of the key non-fire effects causing FRP underestimation in satellite FRP products: pixel size, pixel area growth off-nadir, and the low temporal resolution of polar-orbiting sensors. Our results and the methodology developed herein should serve to evaluate and cross-calibrate FRP estimates obtained by the future Copernicus Climate Change Services (C3S) FRP products, which initially at least will be based only on SLSTR data collected by the Sentinel-3 satellite.
How to cite: Mota, B., Gobron, N., and Wooster, M.: Inter-comparison of four operational satellite Fire Radiative Power (FRP) products: A spatial and temporal consistency assessment. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8385, https://doi.org/10.5194/egusphere-egu2020-8385, 2020.
We inter-compare four remotely sensed Fire Radiative Power (FRP) products, the polar-orbiter products derived from active fires detected using the Moderate Resolution Imaging Spectroradiometer data (MCD14ML) and VIIRS (VNP14ML and VNP14IMGML), and geostationary products derived from data collected by Meteosat’s Spinning Enhanced Visible and Infrared Imager (the LSA-SAF FRP-PIXEL product). We focus on seven years of data (January 2012 to December 2018), and using the ability of the geostationary product to capture the daily fire cycle we quantify for each polar-orbiter FRP product the proportion of daily fire energy release that they capture and that which they miss, and also identify the areas where their overpass times successfully capture the diurnal fire activity peak, and where they do not. In addition, by analysing frequency density (f-D) distributions of FRP at a 0.5° grid cell resolution we evaluate each products minimum FRP detection limit, which typically precludes detection of a proportion of the highly numerous but individually relatively small and/or low intensity fires. Results are summarized by biome type based on the ESA CCI Land Cover product. Our inter-comparison allows for the identification and quantification of some of the key non-fire effects causing FRP underestimation in satellite FRP products: pixel size, pixel area growth off-nadir, and the low temporal resolution of polar-orbiting sensors. Our results and the methodology developed herein should serve to evaluate and cross-calibrate FRP estimates obtained by the future Copernicus Climate Change Services (C3S) FRP products, which initially at least will be based only on SLSTR data collected by the Sentinel-3 satellite.
How to cite: Mota, B., Gobron, N., and Wooster, M.: Inter-comparison of four operational satellite Fire Radiative Power (FRP) products: A spatial and temporal consistency assessment. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8385, https://doi.org/10.5194/egusphere-egu2020-8385, 2020.
EGU2020-6013 | Displays | BG3.17
Fires can overwinter in boreal forests of North AmericaRebecca Scholten and Sander Veraverbeke
How to cite: Scholten, R. and Veraverbeke, S.: Fires can overwinter in boreal forests of North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6013, https://doi.org/10.5194/egusphere-egu2020-6013, 2020.
How to cite: Scholten, R. and Veraverbeke, S.: Fires can overwinter in boreal forests of North America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6013, https://doi.org/10.5194/egusphere-egu2020-6013, 2020.
EGU2020-6135 | Displays | BG3.17
The imprints of Indian Ocean Monsoon and West Pacific Monsoon on the spatial and temporal patterns of forest fires in Yunnan, Southwest ChinaZehao Shen and Lingxiao Ying
Wildfire is a widespread natural disturbance and internal ecological process, critical in shaping ecosystem structure and function across scales. The Indo-China Peninsula and its surrounding areas is a global hotspot of fires initiated by natural and anthropogenic drives. Studies indicated that both the Indian Ocean monsoon and the Pacific Ocean monsoon significantly influence the climate in this region, and the precipitation seasonality regulated by monsoon is a critical driver of prevalent wildfires. However, the relative importance of the two monsoon systems on the terrestrial ecosystems in this region, specifically via their effects on vegetation burnings, has rarely been estimated. Yunnan Province in Southwest China comprises the northeast corner of this region, and shares the intensive impacts of the two monsoon systems in terms of the characteristics of climate and wildfire activity. The present study integrated multiple data sources of the forest fires during 2003~2015 in Yunnan, detected the spatial and interannual variations of the fire occurrence and burnt area, and related the fire activities with the dynamics of the Indian Ocean Monsoon (IOM) and West Pacific Ocean Monsoon (WPOM). The monthly time sequence analysis of the forest fire events in Yunnan Province showed that, a significant, synchronous teleconnection can be detected between the forest fire dynamics and Indian Ocean Warm Pool intensity, while an opposite temporal pace was revealed for the West Pacific Ocean Warm Pool. During the study period, IOM dominated the wildfire seasonality in Yunnan in eight years, in contrast to the dominance of WPOM in five years. A borderline can roughly divides Yunnan into the west and the east climatic regions, which were dominated by IOM and WPOM, respectively. Humidity and the forest area ratio were the dominant factors for the mean annual fire number and burnt area in the IOM affected region; but in the WPOM region, rural road density was the most important factor. It was suggested that the fire regime of the IOM region was climate-driven for fire number and fuel-driven for burnt area, while the fire regime was dominant with human activities in the WPOM region in Yunnan
How to cite: Shen, Z. and Ying, L.: The imprints of Indian Ocean Monsoon and West Pacific Monsoon on the spatial and temporal patterns of forest fires in Yunnan, Southwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6135, https://doi.org/10.5194/egusphere-egu2020-6135, 2020.
Wildfire is a widespread natural disturbance and internal ecological process, critical in shaping ecosystem structure and function across scales. The Indo-China Peninsula and its surrounding areas is a global hotspot of fires initiated by natural and anthropogenic drives. Studies indicated that both the Indian Ocean monsoon and the Pacific Ocean monsoon significantly influence the climate in this region, and the precipitation seasonality regulated by monsoon is a critical driver of prevalent wildfires. However, the relative importance of the two monsoon systems on the terrestrial ecosystems in this region, specifically via their effects on vegetation burnings, has rarely been estimated. Yunnan Province in Southwest China comprises the northeast corner of this region, and shares the intensive impacts of the two monsoon systems in terms of the characteristics of climate and wildfire activity. The present study integrated multiple data sources of the forest fires during 2003~2015 in Yunnan, detected the spatial and interannual variations of the fire occurrence and burnt area, and related the fire activities with the dynamics of the Indian Ocean Monsoon (IOM) and West Pacific Ocean Monsoon (WPOM). The monthly time sequence analysis of the forest fire events in Yunnan Province showed that, a significant, synchronous teleconnection can be detected between the forest fire dynamics and Indian Ocean Warm Pool intensity, while an opposite temporal pace was revealed for the West Pacific Ocean Warm Pool. During the study period, IOM dominated the wildfire seasonality in Yunnan in eight years, in contrast to the dominance of WPOM in five years. A borderline can roughly divides Yunnan into the west and the east climatic regions, which were dominated by IOM and WPOM, respectively. Humidity and the forest area ratio were the dominant factors for the mean annual fire number and burnt area in the IOM affected region; but in the WPOM region, rural road density was the most important factor. It was suggested that the fire regime of the IOM region was climate-driven for fire number and fuel-driven for burnt area, while the fire regime was dominant with human activities in the WPOM region in Yunnan
How to cite: Shen, Z. and Ying, L.: The imprints of Indian Ocean Monsoon and West Pacific Monsoon on the spatial and temporal patterns of forest fires in Yunnan, Southwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6135, https://doi.org/10.5194/egusphere-egu2020-6135, 2020.
EGU2020-6502 | Displays | BG3.17
Extensive fires in southeastern Siberian permafrost linked to preceding Arctic OscillationJin-Soo Kim, Jong-Seong Kug, Su-Jong Jeong, Hotaek Park, and Gabriela Schaepman-Strub
Terrestrial Arctic is a critical region for positive carbon-climate feedback because of the release of considerable organic carbon from the permafrost buried in the soil. Fires rapidly transfer carbon to the atmosphere. Thus, carbon release through boreal fires could considerably accelerate Arctic warming; however, boreal fire occurrence mechanisms and dynamics remain largely unknown. Here, we analyze fire activity and relevant large-scale atmospheric conditions over southeastern Siberia, which has the largest burned area fraction in the circumboreal and high-level carbon emissions due to high-density peatlands. It is found that the annual burned area increased when a positive Arctic Oscillation (AO) takes place in early months of the year, despite peak fire season occurring 1 to 2 months later. A local high-pressure system linked to the AO drives a high-temperature anomaly in late winter, causing premature snowmelt. This causes earlier ground surface exposure and drier ground in spring due to enhanced evaporation, promoting fire spreading. Recently, southeastern Siberia has experienced warming and snow retreat; therefore, southeastern Siberia requires appropriate fire management strategies to prevent massive carbon release and accelerated global warming.
How to cite: Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H., and Schaepman-Strub, G.: Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6502, https://doi.org/10.5194/egusphere-egu2020-6502, 2020.
Terrestrial Arctic is a critical region for positive carbon-climate feedback because of the release of considerable organic carbon from the permafrost buried in the soil. Fires rapidly transfer carbon to the atmosphere. Thus, carbon release through boreal fires could considerably accelerate Arctic warming; however, boreal fire occurrence mechanisms and dynamics remain largely unknown. Here, we analyze fire activity and relevant large-scale atmospheric conditions over southeastern Siberia, which has the largest burned area fraction in the circumboreal and high-level carbon emissions due to high-density peatlands. It is found that the annual burned area increased when a positive Arctic Oscillation (AO) takes place in early months of the year, despite peak fire season occurring 1 to 2 months later. A local high-pressure system linked to the AO drives a high-temperature anomaly in late winter, causing premature snowmelt. This causes earlier ground surface exposure and drier ground in spring due to enhanced evaporation, promoting fire spreading. Recently, southeastern Siberia has experienced warming and snow retreat; therefore, southeastern Siberia requires appropriate fire management strategies to prevent massive carbon release and accelerated global warming.
How to cite: Kim, J.-S., Kug, J.-S., Jeong, S.-J., Park, H., and Schaepman-Strub, G.: Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6502, https://doi.org/10.5194/egusphere-egu2020-6502, 2020.
EGU2020-13840 | Displays | BG3.17
The role of plant traits in shaping fire regimes in different ecosystems across the worldMara Baudena, Rubén Diaz-Sierra, Antonello Provenzale, Luke Sweeney, and Marta Magnani
Fire is an important disturbance process, having significant socio-economic consequences on the one hand, while fulfilling a vital ecological role on the other. Across fire-prone ecosystems, different fire regimes can be found, reflecting a combination of climatic factors and of different plant species characteristics. Ecosystem flammability and fuel load are the most evident and well-studied aspects of fire regime, with only recently attention being devoted to plant traits associated with fire adaptation and post-fire response. The aim of this research is to understand the role that plant traits have in driving fire regimes in different fire-prone ecosystems across the world. A mathematical, mechanistic model was developed representing vegetation dynamics, including stochastic fires and different plant fire-responses. We observe that differences in combinations of plant traits are an important factor in determining alternative ecological states. This is driven by differences in how plants determine fire occurrence and in relation to competition between plant species. Differing plant communities under the same climatic conditions can occur when the most competitive plant types do not have a strong resistance to fires, leading to different ecological and fire regime states for example in some tropical savannas and forests, or in Boreal forests. Conversely, when the dominant plant type has a very strong, post-fire response (at individual level), as e.g. in Mediterranean forests, only one ecological state is possible. This research can help improving understanding of changes in fire regime in the future to assist in fire management efforts, and underlines the importance of including plant fire-responses when modelling fire ecosystems under climate-change scenarios.
How to cite: Baudena, M., Diaz-Sierra, R., Provenzale, A., Sweeney, L., and Magnani, M.: The role of plant traits in shaping fire regimes in different ecosystems across the world, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13840, https://doi.org/10.5194/egusphere-egu2020-13840, 2020.
Fire is an important disturbance process, having significant socio-economic consequences on the one hand, while fulfilling a vital ecological role on the other. Across fire-prone ecosystems, different fire regimes can be found, reflecting a combination of climatic factors and of different plant species characteristics. Ecosystem flammability and fuel load are the most evident and well-studied aspects of fire regime, with only recently attention being devoted to plant traits associated with fire adaptation and post-fire response. The aim of this research is to understand the role that plant traits have in driving fire regimes in different fire-prone ecosystems across the world. A mathematical, mechanistic model was developed representing vegetation dynamics, including stochastic fires and different plant fire-responses. We observe that differences in combinations of plant traits are an important factor in determining alternative ecological states. This is driven by differences in how plants determine fire occurrence and in relation to competition between plant species. Differing plant communities under the same climatic conditions can occur when the most competitive plant types do not have a strong resistance to fires, leading to different ecological and fire regime states for example in some tropical savannas and forests, or in Boreal forests. Conversely, when the dominant plant type has a very strong, post-fire response (at individual level), as e.g. in Mediterranean forests, only one ecological state is possible. This research can help improving understanding of changes in fire regime in the future to assist in fire management efforts, and underlines the importance of including plant fire-responses when modelling fire ecosystems under climate-change scenarios.
How to cite: Baudena, M., Diaz-Sierra, R., Provenzale, A., Sweeney, L., and Magnani, M.: The role of plant traits in shaping fire regimes in different ecosystems across the world, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13840, https://doi.org/10.5194/egusphere-egu2020-13840, 2020.
EGU2020-387 | Displays | BG3.17
Disentangling the effect of thermal and microbial degradation on the distribution pattern of n-alkanes in sediments: Implication for paleo-fire studiesVijayananda Sarangi, Sayak Basu, and Prasanta Sanyal
Biomass burning is an important component of major biomes as it acts as an ecological forcing factor in controlling the vegetation composition as well as biomass production. Thus long-term paleo-fire records are required to understand the extent to which future fire regimes will affect ecosystem health and the global carbon balance. Unfortunately, paleo-fire proxies such as charcoal analysis, dendrochronology and archaeological relicts are often fragmented and difficult to interpret owing to their poor preservation in the natural archives. To resolve the uncertainties associated with the existing paleo-fire proxies, biomarker-based investigations (n-alkanes) provide a new avenue for gaining insight into the paleo-fire events due to their relatively stable chemical property and source-specific distribution in sediments. For instance, laboratory and field-based experiments have shown that a significant amount of short-chain n-alkanes (predominantly C18) are produced at the expense of long-chain n-alkanes during thermal degradation of plant-derived organic matter. This modification of primary carbon chain-length can thus be used as a tool to decipher paleo-fire events. However, this characteristic distribution pattern of n-alkane in the soil can also result from microbial degradation of plant-derived organic matter. Therefore, it is vital to disentangle the effect of thermal and microbial degradation on the distribution pattern of n-alkane before using it for paleo-fire reconstructions. For this purpose, published n-alkane distribution records from two distinct climatic settings have been compared. The site-A is located in arid Banni grassland, western India (with a history of repeated fire events) whereas, site-B is situated at the sub-humid region of southern peninsular India (Lake Ennamangalam). The n-alkane distribution in both the sites exhibits a dominance of short-chain homologues with prominent even-over-odd preference (EOP). The cross-plot between the relative concentration of C18 (dominant in short-chain) and C29 (dominant in long-chain) homologues shows positive and significant correlation (R2 = 0.9, p < 0.05, n=19) at site-A, whereas statistically insignificant correlation (R2 = 0.2, p < 0.05, n=19) has been obtained from site-B. In case of thermal events, production of short-chain n-alkanes (predominantly C18) is related to the temperature-dependent breakdown of long-chain n-alkanes. Subsequently, the concentration of C18 and C29 homologues are expected to be well correlated, as observed in site-A. On the contrary, in a depositional setting dominated by microbial activity, multiple sources of C18 homologue may produce an insignificant correlation, as observed from site-B. Therefore, it can be suggested that short-chain n-alkanes at site-A are a product of thermal degradation while microbial activity controlled the distribution of short-chain n-alkanes at site-B. This claim is further supported by the ratio between the relative concentration of C18 and C19 homologues (PFactor) which are much higher at site-A (11 to 62) compared to that of the site-B (1 to 10). Higher production of C18 homologue during thermal degradation perhaps is producing the offset in the PFactor values for site-A and B. Our observations will be useful to recognise paleo-fire events that have been previously overlooked owing to the fragmentary nature and limited preservation of existing proxies.
How to cite: Sarangi, V., Basu, S., and Sanyal, P.: Disentangling the effect of thermal and microbial degradation on the distribution pattern of n-alkanes in sediments: Implication for paleo-fire studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-387, https://doi.org/10.5194/egusphere-egu2020-387, 2020.
Biomass burning is an important component of major biomes as it acts as an ecological forcing factor in controlling the vegetation composition as well as biomass production. Thus long-term paleo-fire records are required to understand the extent to which future fire regimes will affect ecosystem health and the global carbon balance. Unfortunately, paleo-fire proxies such as charcoal analysis, dendrochronology and archaeological relicts are often fragmented and difficult to interpret owing to their poor preservation in the natural archives. To resolve the uncertainties associated with the existing paleo-fire proxies, biomarker-based investigations (n-alkanes) provide a new avenue for gaining insight into the paleo-fire events due to their relatively stable chemical property and source-specific distribution in sediments. For instance, laboratory and field-based experiments have shown that a significant amount of short-chain n-alkanes (predominantly C18) are produced at the expense of long-chain n-alkanes during thermal degradation of plant-derived organic matter. This modification of primary carbon chain-length can thus be used as a tool to decipher paleo-fire events. However, this characteristic distribution pattern of n-alkane in the soil can also result from microbial degradation of plant-derived organic matter. Therefore, it is vital to disentangle the effect of thermal and microbial degradation on the distribution pattern of n-alkane before using it for paleo-fire reconstructions. For this purpose, published n-alkane distribution records from two distinct climatic settings have been compared. The site-A is located in arid Banni grassland, western India (with a history of repeated fire events) whereas, site-B is situated at the sub-humid region of southern peninsular India (Lake Ennamangalam). The n-alkane distribution in both the sites exhibits a dominance of short-chain homologues with prominent even-over-odd preference (EOP). The cross-plot between the relative concentration of C18 (dominant in short-chain) and C29 (dominant in long-chain) homologues shows positive and significant correlation (R2 = 0.9, p < 0.05, n=19) at site-A, whereas statistically insignificant correlation (R2 = 0.2, p < 0.05, n=19) has been obtained from site-B. In case of thermal events, production of short-chain n-alkanes (predominantly C18) is related to the temperature-dependent breakdown of long-chain n-alkanes. Subsequently, the concentration of C18 and C29 homologues are expected to be well correlated, as observed in site-A. On the contrary, in a depositional setting dominated by microbial activity, multiple sources of C18 homologue may produce an insignificant correlation, as observed from site-B. Therefore, it can be suggested that short-chain n-alkanes at site-A are a product of thermal degradation while microbial activity controlled the distribution of short-chain n-alkanes at site-B. This claim is further supported by the ratio between the relative concentration of C18 and C19 homologues (PFactor) which are much higher at site-A (11 to 62) compared to that of the site-B (1 to 10). Higher production of C18 homologue during thermal degradation perhaps is producing the offset in the PFactor values for site-A and B. Our observations will be useful to recognise paleo-fire events that have been previously overlooked owing to the fragmentary nature and limited preservation of existing proxies.
How to cite: Sarangi, V., Basu, S., and Sanyal, P.: Disentangling the effect of thermal and microbial degradation on the distribution pattern of n-alkanes in sediments: Implication for paleo-fire studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-387, https://doi.org/10.5194/egusphere-egu2020-387, 2020.
EGU2020-788 | Displays | BG3.17
First evidence of prehistoric humans-induced fire in India: clues from macro-charcoal, biomarkers distribution and compound-specific stable isotopesDeepak Kumar Jha, Rahul Samrat, and Prasanta Sanyal
Fire disturbance appears to be one of the vital processes in shaping vegetation composition and landscape dynamics of an area. It is an essential driver of ecosystem structure, in close association with environmental conditions. Environmental factors, as well as human, can equally induce the fire at the stand. Untying the natural vs. anthropogenic factors is important to comprehend the paleoclimatic conditions at a regional and global scale. Therefore, identifying the fire events from chronologically well-constrained archaeological sites would provide an ideal opportunity to decode its cause and impact on the terrestrial environment. Hence, the present study is conducted on the fluvial cliff sections, which preserved the tools and artefacts from Lower Paleolithic (~100 ka) to Neolithic (~3 ka) phases in the Belan valley, north-central India.
In this study, paleosols samples (n=49) were collected from six sedimentary sections of archaeological sites. Paleosols were analysed for n-alkane distribution pattern, n-alkane ratio (C16/C29 and C16/C31), δDn-alkane values, δ13Cn-alkane values and macro-charcoal (CHAR) to reconstruct the vegetation, climate and fire events. The n-alkane (C15 to C35) distribution signature, average chain length (ACL15-33) and carbon preference index (CPI25-33) values are used to distinguish the aquatic vs. terrestrial contribution in the organic matter (OM). The higher CPI25-33 and ACL15-33 values suggest terrestrial plants derived OM dominance in the paleosols. Four samples with lower CPI25-33 (~1.0) and ACL15-33 (~23.0) suggests higher degradation of OM. Moreover, the lower CPI25-33 samples also showed a dominance of short-chain even-numbered alkanes (maximum at C16 or C18). A similar observation in short-chain n-alkanes was reported from the archaeological site with known fire events (Eckmeier and Wiesenberg, 2009). Also, the CHAR analyses (n=40) suggests that the degraded paleosols (lower CPI and ACL) have suffered thermal alteration. The CHAR and n-alkane ratio suggest paleofire events in the Belan valley during i) ~100 to 95 ka, ii) ~60 to 55 ka, iii) ~42 to 37 ka, iv) ~26 to 20 ka and v) ~8 to 3 ka. δDn-alkane values suggested lower rainfall conditions during Large Glacial Maximum (LGM; ~25 to 18 ka). The intensification in rainfall observed during i) ~100 to 75 ka and iii) ~18 to 3 ka, which also corresponds to some fire events. The δ13Cn-alkane values suggest the dominance of grassland during LGM, which was favourable for wildfires. Further, the fire event during ~26 to 20 ka identified at Main Belan temporarily overlays with Mahagara and Koldihwa site. The lack of any significant signature of thermal degradation of paleosols (supported by n-alkanes) in Koldihwa and Mahagara suggests the extra-local nature of the fire. The higher rainfall is an unfavourable condition for natural wildfires. Further, the fire disturbance increases in the early-Holocene, which overlaps with the timing of high rainfall condition and agricultural activity in the Belan valley. Therefore, this study postulates that the prehistoric humans-induced fire from ~60 ka onwards.
Eckmeier, E. and Wiesenberg, G.L., 2009. Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. Journal of Archaeological Science, 36(7), 1590-1596.
How to cite: Jha, D. K., Samrat, R., and Sanyal, P.: First evidence of prehistoric humans-induced fire in India: clues from macro-charcoal, biomarkers distribution and compound-specific stable isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-788, https://doi.org/10.5194/egusphere-egu2020-788, 2020.
Fire disturbance appears to be one of the vital processes in shaping vegetation composition and landscape dynamics of an area. It is an essential driver of ecosystem structure, in close association with environmental conditions. Environmental factors, as well as human, can equally induce the fire at the stand. Untying the natural vs. anthropogenic factors is important to comprehend the paleoclimatic conditions at a regional and global scale. Therefore, identifying the fire events from chronologically well-constrained archaeological sites would provide an ideal opportunity to decode its cause and impact on the terrestrial environment. Hence, the present study is conducted on the fluvial cliff sections, which preserved the tools and artefacts from Lower Paleolithic (~100 ka) to Neolithic (~3 ka) phases in the Belan valley, north-central India.
In this study, paleosols samples (n=49) were collected from six sedimentary sections of archaeological sites. Paleosols were analysed for n-alkane distribution pattern, n-alkane ratio (C16/C29 and C16/C31), δDn-alkane values, δ13Cn-alkane values and macro-charcoal (CHAR) to reconstruct the vegetation, climate and fire events. The n-alkane (C15 to C35) distribution signature, average chain length (ACL15-33) and carbon preference index (CPI25-33) values are used to distinguish the aquatic vs. terrestrial contribution in the organic matter (OM). The higher CPI25-33 and ACL15-33 values suggest terrestrial plants derived OM dominance in the paleosols. Four samples with lower CPI25-33 (~1.0) and ACL15-33 (~23.0) suggests higher degradation of OM. Moreover, the lower CPI25-33 samples also showed a dominance of short-chain even-numbered alkanes (maximum at C16 or C18). A similar observation in short-chain n-alkanes was reported from the archaeological site with known fire events (Eckmeier and Wiesenberg, 2009). Also, the CHAR analyses (n=40) suggests that the degraded paleosols (lower CPI and ACL) have suffered thermal alteration. The CHAR and n-alkane ratio suggest paleofire events in the Belan valley during i) ~100 to 95 ka, ii) ~60 to 55 ka, iii) ~42 to 37 ka, iv) ~26 to 20 ka and v) ~8 to 3 ka. δDn-alkane values suggested lower rainfall conditions during Large Glacial Maximum (LGM; ~25 to 18 ka). The intensification in rainfall observed during i) ~100 to 75 ka and iii) ~18 to 3 ka, which also corresponds to some fire events. The δ13Cn-alkane values suggest the dominance of grassland during LGM, which was favourable for wildfires. Further, the fire event during ~26 to 20 ka identified at Main Belan temporarily overlays with Mahagara and Koldihwa site. The lack of any significant signature of thermal degradation of paleosols (supported by n-alkanes) in Koldihwa and Mahagara suggests the extra-local nature of the fire. The higher rainfall is an unfavourable condition for natural wildfires. Further, the fire disturbance increases in the early-Holocene, which overlaps with the timing of high rainfall condition and agricultural activity in the Belan valley. Therefore, this study postulates that the prehistoric humans-induced fire from ~60 ka onwards.
Eckmeier, E. and Wiesenberg, G.L., 2009. Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. Journal of Archaeological Science, 36(7), 1590-1596.
How to cite: Jha, D. K., Samrat, R., and Sanyal, P.: First evidence of prehistoric humans-induced fire in India: clues from macro-charcoal, biomarkers distribution and compound-specific stable isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-788, https://doi.org/10.5194/egusphere-egu2020-788, 2020.
EGU2020-1018 | Displays | BG3.17
Late Holocene fire history documented at Lake Khamra, SW Yakutia (Eastern Siberia)Ramesh Glückler, Ulrike Herzschuh, Luidmila Pestryakova, Stefan Kruse, Stuart Vyse, Andrei Andreev, and Elisabeth Dietze
Recent large-scale fire events in Siberia have drawn increased attention to boreal forest fire history. Boreal forests contain about 25% of all global biomass and act as an enormous carbon storage. Fire events are important ecological disturbances connected to the overarching environmental changes that face the Arctic and Subarctic, like vegetation dynamics, permafrost degradation, changes in soil nutrient cycling and global warming, and act as the dominant driver behind boreal forest’s landscape carbon balance. By looking into past fire regimes we can learn about fire frequency and potential linkages to other environmental factors, e.g. fuel types, reconstructed temperature/humidity or geomorphologic landscape dynamics. Unfortunately, fire history data is still very sparse in large parts of Siberia, a region strongly influenced by climate change. The Global Charcoal Database (www.paleofire.org) lists only a handful of continuous charcoal records for all of Siberia, with only three of those featuring published data from macroscopic charcoal as opposed to microscopic charcoal from pollen slides.
We aim to reconstruct the late Holocene fire history using lacustrine sediments of Lake Khamra (SW Yakutia at N 59.99°, E 112.98°). It covers an area of c. 4.6 km² with about 22 m maximum water depth, located within the zone of transition from summer-green and larch-dominated to evergreen boreal forest. We present the first continuous, high-resolution (c. 10 years/sample) macroscopic charcoal record (> 150 μm) including information on particle size and morphology for the past c. 2200 years. We compare this to complementary information from microscopic charcoal in pollen slides, a pollen and non-pollen palynomorph record as well as μXRF data. This multi-proxy approach adds valuable data about fire activity in the region and allows a comparison of different prevalent fire reconstruction methods. As the first record of its kind from Siberia, it provides a long-term context for current fire activity in central Siberian boreal forests and enables a better understanding of the environmental interactions occurring in the changing subarctic landscape.
How to cite: Glückler, R., Herzschuh, U., Pestryakova, L., Kruse, S., Vyse, S., Andreev, A., and Dietze, E.: Late Holocene fire history documented at Lake Khamra, SW Yakutia (Eastern Siberia) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1018, https://doi.org/10.5194/egusphere-egu2020-1018, 2020.
Recent large-scale fire events in Siberia have drawn increased attention to boreal forest fire history. Boreal forests contain about 25% of all global biomass and act as an enormous carbon storage. Fire events are important ecological disturbances connected to the overarching environmental changes that face the Arctic and Subarctic, like vegetation dynamics, permafrost degradation, changes in soil nutrient cycling and global warming, and act as the dominant driver behind boreal forest’s landscape carbon balance. By looking into past fire regimes we can learn about fire frequency and potential linkages to other environmental factors, e.g. fuel types, reconstructed temperature/humidity or geomorphologic landscape dynamics. Unfortunately, fire history data is still very sparse in large parts of Siberia, a region strongly influenced by climate change. The Global Charcoal Database (www.paleofire.org) lists only a handful of continuous charcoal records for all of Siberia, with only three of those featuring published data from macroscopic charcoal as opposed to microscopic charcoal from pollen slides.
We aim to reconstruct the late Holocene fire history using lacustrine sediments of Lake Khamra (SW Yakutia at N 59.99°, E 112.98°). It covers an area of c. 4.6 km² with about 22 m maximum water depth, located within the zone of transition from summer-green and larch-dominated to evergreen boreal forest. We present the first continuous, high-resolution (c. 10 years/sample) macroscopic charcoal record (> 150 μm) including information on particle size and morphology for the past c. 2200 years. We compare this to complementary information from microscopic charcoal in pollen slides, a pollen and non-pollen palynomorph record as well as μXRF data. This multi-proxy approach adds valuable data about fire activity in the region and allows a comparison of different prevalent fire reconstruction methods. As the first record of its kind from Siberia, it provides a long-term context for current fire activity in central Siberian boreal forests and enables a better understanding of the environmental interactions occurring in the changing subarctic landscape.
How to cite: Glückler, R., Herzschuh, U., Pestryakova, L., Kruse, S., Vyse, S., Andreev, A., and Dietze, E.: Late Holocene fire history documented at Lake Khamra, SW Yakutia (Eastern Siberia) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1018, https://doi.org/10.5194/egusphere-egu2020-1018, 2020.
EGU2020-1593 | Displays | BG3.17
Photo- and Biolability of Pyrogenic Dissolved Organic Matter: A Laboratory study of Thermal Series of Laboratory-Prepared Char LeachatesAndrew R. Zimmerman, Kyle Bostick, Aleksandar Goranov, Siddhartha Mitra, Patrick Hatcher, and Andrew Wozniak
Pyrogenic carbon (pyC) or fire-derived organic C (e.g., charcoal and soot), while generally considered stable in soils and sediments, can leach into pore waters forming dissolved pyrogenic organic carbon (pyDOC). This pyDOC may be exported to the ocean (about 10% riverine DOC may be pyrogenic). Yet, the processes which control this export and how pyrogenic dissolved organic matter (pyDOM) lability is related to its chemical composition are poorly understood. Thus, pyDOM was leached from a thermal series of oak and grass chars (250-650 °C) and photoirradiated in a solar simulator. About 10-20% of oak char leachate pyDOC was mineralized over five days, with greater proportions lost from leachates of higher temperature parent chars. Proton NMR revealed decreased relative amounts of aryl-C and increased low molecular weight C1 and alkyl-C components during the photo-incubation. Quantification of benzenepolycarboxylic acid (BPCA), molecular markers for condensed aromatic carbon (ConAC), indicated that 75-94% of ConAC was lost during the first five days of photoincubation, the majority of which occurred within the first 2 days, with a preference toward loss of ConAC of larger cluster sizes. Over 96-day microbial incubations, 37 to 48% of pyDOC was lost with modelled half-lives of about 13 days. Much of this was low molecular weight C1 compounds, while only 1 to 2% of ConAC was lost, with a preference for losses of smaller cluster size ConAC. Slightly greater proportions of both total pyC and ConAC was lost from pre-photodegraded pyDOM leachates. These results highlight the large portion of pyDOM that is potentially remineralized or transformed in aquatic systems at short timescales, and the need to examine both condensed and non-condensed portions of pyDOM to understand the effects of fires on aquatic biogeochemistry.
How to cite: Zimmerman, A. R., Bostick, K., Goranov, A., Mitra, S., Hatcher, P., and Wozniak, A.: Photo- and Biolability of Pyrogenic Dissolved Organic Matter: A Laboratory study of Thermal Series of Laboratory-Prepared Char Leachates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1593, https://doi.org/10.5194/egusphere-egu2020-1593, 2020.
Pyrogenic carbon (pyC) or fire-derived organic C (e.g., charcoal and soot), while generally considered stable in soils and sediments, can leach into pore waters forming dissolved pyrogenic organic carbon (pyDOC). This pyDOC may be exported to the ocean (about 10% riverine DOC may be pyrogenic). Yet, the processes which control this export and how pyrogenic dissolved organic matter (pyDOM) lability is related to its chemical composition are poorly understood. Thus, pyDOM was leached from a thermal series of oak and grass chars (250-650 °C) and photoirradiated in a solar simulator. About 10-20% of oak char leachate pyDOC was mineralized over five days, with greater proportions lost from leachates of higher temperature parent chars. Proton NMR revealed decreased relative amounts of aryl-C and increased low molecular weight C1 and alkyl-C components during the photo-incubation. Quantification of benzenepolycarboxylic acid (BPCA), molecular markers for condensed aromatic carbon (ConAC), indicated that 75-94% of ConAC was lost during the first five days of photoincubation, the majority of which occurred within the first 2 days, with a preference toward loss of ConAC of larger cluster sizes. Over 96-day microbial incubations, 37 to 48% of pyDOC was lost with modelled half-lives of about 13 days. Much of this was low molecular weight C1 compounds, while only 1 to 2% of ConAC was lost, with a preference for losses of smaller cluster size ConAC. Slightly greater proportions of both total pyC and ConAC was lost from pre-photodegraded pyDOM leachates. These results highlight the large portion of pyDOM that is potentially remineralized or transformed in aquatic systems at short timescales, and the need to examine both condensed and non-condensed portions of pyDOM to understand the effects of fires on aquatic biogeochemistry.
How to cite: Zimmerman, A. R., Bostick, K., Goranov, A., Mitra, S., Hatcher, P., and Wozniak, A.: Photo- and Biolability of Pyrogenic Dissolved Organic Matter: A Laboratory study of Thermal Series of Laboratory-Prepared Char Leachates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1593, https://doi.org/10.5194/egusphere-egu2020-1593, 2020.
EGU2020-2730 | Displays | BG3.17
Spatial variability in biomass burning in the northern extratropics since the Last Glacial MaximumDavid Kesner, Sandy Harrison, Tatiana Blyakharchuk, Mary Edwards, Michelle Garneau, Gabriel Magnan, and Colin Prentice
Fire is an important environmental and ecological process in northern high latitude environments. It is currently unclear how fire regimes will change in response to current environmental change in this region and the implications this may have for ecosystem processes and human societies. We reconstruct changes in biomass burning since the Last Glacial Maximum in the northern extratropics (>45°N), using data from the Global Charcoal Database complemented by new records from Canada, Beringia and Russia. A clustering machine-learning algorithm (K-means) is used to delimit regions that show similar burning histories. Comparison of the regional trajectories of change in biomass burning provides insights into the environmental drivers of fire. Generalised linear modelling is then used to explore the independent roles of climate, vegetation changes and human activities on changes in fire regimes for each region and for the northern extratropics as a whole. This study provides quantitive information about the differential importance of the drivers of changes in fire regimes in different regions and at different timescales since the Last Glacial Maximum, and provides insights about how these may influence future fire regimes across this region.
How to cite: Kesner, D., Harrison, S., Blyakharchuk, T., Edwards, M., Garneau, M., Magnan, G., and Prentice, C.: Spatial variability in biomass burning in the northern extratropics since the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2730, https://doi.org/10.5194/egusphere-egu2020-2730, 2020.
Fire is an important environmental and ecological process in northern high latitude environments. It is currently unclear how fire regimes will change in response to current environmental change in this region and the implications this may have for ecosystem processes and human societies. We reconstruct changes in biomass burning since the Last Glacial Maximum in the northern extratropics (>45°N), using data from the Global Charcoal Database complemented by new records from Canada, Beringia and Russia. A clustering machine-learning algorithm (K-means) is used to delimit regions that show similar burning histories. Comparison of the regional trajectories of change in biomass burning provides insights into the environmental drivers of fire. Generalised linear modelling is then used to explore the independent roles of climate, vegetation changes and human activities on changes in fire regimes for each region and for the northern extratropics as a whole. This study provides quantitive information about the differential importance of the drivers of changes in fire regimes in different regions and at different timescales since the Last Glacial Maximum, and provides insights about how these may influence future fire regimes across this region.
How to cite: Kesner, D., Harrison, S., Blyakharchuk, T., Edwards, M., Garneau, M., Magnan, G., and Prentice, C.: Spatial variability in biomass burning in the northern extratropics since the Last Glacial Maximum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2730, https://doi.org/10.5194/egusphere-egu2020-2730, 2020.
EGU2020-8019 | Displays | BG3.17
What do anhydrosugars in up to 420 kyrs old Lake El’gygytgyn sediments tell us about low-temperature fires of northeastern Siberia?Elisabeth Dietze, Kai Mangelsdorf, Andrei Andreev, Georg Schwamborn, Martin Melles, Volker Wennrich, Grigory Fedorov, Stuart Vyse, and Ulrike Herzschuh
Forest fires are an important factor of the global carbon cycle and high latitude ecosystems. Eastern Siberian tundra, summergreen larch-dominated boreal forest on permafrost and evergreen spruce- and pine-dominated boreal forest have characteristic fire regimes with varying fire frequencies and intensities. However, it is unknown which role fire plays in climate-vegetation-permafrost feedbacks and how high-latitude fire regimes and ecosystems will change in a warmer world – questions that are crucial considering that boreal and permafrost regions have been identified as tipping elements in the climate system (Lenton et al., 2008, PNAS).
Here, we investigate fire regime shifts during previous warmer-than-present interglacials, i.e. marine isotope stages (MIS) 5e and 11c, which were not influenced by human activity. We use specific biomass burning residues, i.e. monosaccharide anhydrides (anhydrosugars), that are a rather chemically reactive group of pyrogenic carbon. These molecules are mainly produced by low-temperature fires, but their pathways through the Earth system from source to sink and their stability in sedimentary deposits are very poorly constrained (Suciu et al. 2019, Biogeochemistry). A recent study (Dietze et al., 2020, ClimPastDisc) found anhydrosugars in up to 420 kyr old sediment of Lake El’gygytgyn (ICDP Site 5011-1), northeastern Siberia, and suggest that these molecular markers are suitable proxies for fires in Siberian summergreen boreal forests. Surprisingly, the ratios of the anhydrosugars levoglucosan to its isomers mannosan and galactosan were exceptionally low compared to published emission ratios from modern biomass burning, pointing to either a specific local biomass source and/or isomer-specific preservation.
To understand what anhydrosugars from interglacial Arctic lake sediments tell us about fire regime changes, we studied modern sediment samples from Lake El’gygytgyn, its catchment and from other lakes located in East Siberian summergreen and evergreen boreal forest. The latter lake systems represent spatial analogues to the conditions at Lake El’gygytgyn during MIS 5e and 11c, respectively. We analyzed anhydrosugars using ultra high-performance liquid chromatography coupled to a high-resolution mass spectrometer. We discuss the modern anhydrosugar concentrations and isomer ratios in context of (1) well-explored modern lake and catchment configurations and (2) multiple late glacial to interglacial results of Lake El’gygytgyn sediment cores. By better constraining the sources and (degradation) pathways that determine the proxy meaning of sedimentary anhydrosugars in northeastern Siberia, we provide a step forward to understand the regional pyrogenic carbon cycle and long-term feedbacks that are crucial for model predictions of future fire regime shifts in the high northern latitudes.
How to cite: Dietze, E., Mangelsdorf, K., Andreev, A., Schwamborn, G., Melles, M., Wennrich, V., Fedorov, G., Vyse, S., and Herzschuh, U.: What do anhydrosugars in up to 420 kyrs old Lake El’gygytgyn sediments tell us about low-temperature fires of northeastern Siberia?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8019, https://doi.org/10.5194/egusphere-egu2020-8019, 2020.
Forest fires are an important factor of the global carbon cycle and high latitude ecosystems. Eastern Siberian tundra, summergreen larch-dominated boreal forest on permafrost and evergreen spruce- and pine-dominated boreal forest have characteristic fire regimes with varying fire frequencies and intensities. However, it is unknown which role fire plays in climate-vegetation-permafrost feedbacks and how high-latitude fire regimes and ecosystems will change in a warmer world – questions that are crucial considering that boreal and permafrost regions have been identified as tipping elements in the climate system (Lenton et al., 2008, PNAS).
Here, we investigate fire regime shifts during previous warmer-than-present interglacials, i.e. marine isotope stages (MIS) 5e and 11c, which were not influenced by human activity. We use specific biomass burning residues, i.e. monosaccharide anhydrides (anhydrosugars), that are a rather chemically reactive group of pyrogenic carbon. These molecules are mainly produced by low-temperature fires, but their pathways through the Earth system from source to sink and their stability in sedimentary deposits are very poorly constrained (Suciu et al. 2019, Biogeochemistry). A recent study (Dietze et al., 2020, ClimPastDisc) found anhydrosugars in up to 420 kyr old sediment of Lake El’gygytgyn (ICDP Site 5011-1), northeastern Siberia, and suggest that these molecular markers are suitable proxies for fires in Siberian summergreen boreal forests. Surprisingly, the ratios of the anhydrosugars levoglucosan to its isomers mannosan and galactosan were exceptionally low compared to published emission ratios from modern biomass burning, pointing to either a specific local biomass source and/or isomer-specific preservation.
To understand what anhydrosugars from interglacial Arctic lake sediments tell us about fire regime changes, we studied modern sediment samples from Lake El’gygytgyn, its catchment and from other lakes located in East Siberian summergreen and evergreen boreal forest. The latter lake systems represent spatial analogues to the conditions at Lake El’gygytgyn during MIS 5e and 11c, respectively. We analyzed anhydrosugars using ultra high-performance liquid chromatography coupled to a high-resolution mass spectrometer. We discuss the modern anhydrosugar concentrations and isomer ratios in context of (1) well-explored modern lake and catchment configurations and (2) multiple late glacial to interglacial results of Lake El’gygytgyn sediment cores. By better constraining the sources and (degradation) pathways that determine the proxy meaning of sedimentary anhydrosugars in northeastern Siberia, we provide a step forward to understand the regional pyrogenic carbon cycle and long-term feedbacks that are crucial for model predictions of future fire regime shifts in the high northern latitudes.
How to cite: Dietze, E., Mangelsdorf, K., Andreev, A., Schwamborn, G., Melles, M., Wennrich, V., Fedorov, G., Vyse, S., and Herzschuh, U.: What do anhydrosugars in up to 420 kyrs old Lake El’gygytgyn sediments tell us about low-temperature fires of northeastern Siberia?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8019, https://doi.org/10.5194/egusphere-egu2020-8019, 2020.
EGU2020-11726 | Displays | BG3.17
Charcoals as archives of soils pyrogenic eventsAlexandra Golyeva and Dmitry Petrov
The fires themselves have become important factor, which controls ecosystems, pedological processes and climate.
Our work are aimed as the decoding of the soil archives, which contain unique information about the direction and rates of the soil formation; the interactions between fire and vegetation composition and studying the long-term dynamics of vegetation.
The primary study objects are charcoal layers in pyrogenic soils, preserved in particular geomorphological traps of various karst landscapes in the North part of European Russia. Such layers, as pyrogenic archives are represented by several (up to dozens) interlayers, that are separated by buried soil profiles.
The main method is pedoanthracological. About 100 charcoal particles from all interlayers in different podzol soils were studied. The age interval was between early Holocene and modern time.
Results. The bulk of all coals was represented by pine, the rest by spruce. Coals belonging to other tree species (for example, birch) were absent. That is, only indigenous coniferous forest always burned.
Conclusions. Over the entire period of soil and sediment formation, the vegetation cover in the region has not changed. It is possible that the time period required to restore indigenous forests and the chronology of the cyclicality of fires are interconnected.
The study was supported by the Russian Foundation for Basic Research. Project No. 19-23-05238.
How to cite: Golyeva, A. and Petrov, D.: Charcoals as archives of soils pyrogenic events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11726, https://doi.org/10.5194/egusphere-egu2020-11726, 2020.
The fires themselves have become important factor, which controls ecosystems, pedological processes and climate.
Our work are aimed as the decoding of the soil archives, which contain unique information about the direction and rates of the soil formation; the interactions between fire and vegetation composition and studying the long-term dynamics of vegetation.
The primary study objects are charcoal layers in pyrogenic soils, preserved in particular geomorphological traps of various karst landscapes in the North part of European Russia. Such layers, as pyrogenic archives are represented by several (up to dozens) interlayers, that are separated by buried soil profiles.
The main method is pedoanthracological. About 100 charcoal particles from all interlayers in different podzol soils were studied. The age interval was between early Holocene and modern time.
Results. The bulk of all coals was represented by pine, the rest by spruce. Coals belonging to other tree species (for example, birch) were absent. That is, only indigenous coniferous forest always burned.
Conclusions. Over the entire period of soil and sediment formation, the vegetation cover in the region has not changed. It is possible that the time period required to restore indigenous forests and the chronology of the cyclicality of fires are interconnected.
The study was supported by the Russian Foundation for Basic Research. Project No. 19-23-05238.
How to cite: Golyeva, A. and Petrov, D.: Charcoals as archives of soils pyrogenic events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11726, https://doi.org/10.5194/egusphere-egu2020-11726, 2020.
EGU2020-7697 | Displays | BG3.17
Fire history in China during the Holocene and its response to the changes in environmental and anthropogenic factorsXin Xu, Fang Li, Zhongda Lin, and Xiang Song
Fire is an intrinsic feature of terrestrial ecosystem, and a key Earth system process that strongly affects ecosystem structure and functioning , carbon and nutrient cycles, climate, air quality and society. Although local and regional paleo-fires in China have been investigated based on one or several fire-proxy records, so far China’s fire history at the country level and its driving forces remain unknown. The present study, for the first time, reconstructs China’s fire history based on charcoal and black carbon records at 107 sites through the Holocene (12 ka BP to the present in this study), and investigates fire historical changes and dominant drivers. Results show that fire activity over China gradually decline from the Early Holocene (12 ka BP) to the Middle Holocene (7.3 ka BP), followed by a sharp rise till the present age. The historical changes are mainly regulated by moisture change through the whole Holocene, and also affected by population growth and agriculture expansion over the past 2 ka.
How to cite: Xu, X., Li, F., Lin, Z., and Song, X.: Fire history in China during the Holocene and its response to the changes in environmental and anthropogenic factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7697, https://doi.org/10.5194/egusphere-egu2020-7697, 2020.
Fire is an intrinsic feature of terrestrial ecosystem, and a key Earth system process that strongly affects ecosystem structure and functioning , carbon and nutrient cycles, climate, air quality and society. Although local and regional paleo-fires in China have been investigated based on one or several fire-proxy records, so far China’s fire history at the country level and its driving forces remain unknown. The present study, for the first time, reconstructs China’s fire history based on charcoal and black carbon records at 107 sites through the Holocene (12 ka BP to the present in this study), and investigates fire historical changes and dominant drivers. Results show that fire activity over China gradually decline from the Early Holocene (12 ka BP) to the Middle Holocene (7.3 ka BP), followed by a sharp rise till the present age. The historical changes are mainly regulated by moisture change through the whole Holocene, and also affected by population growth and agriculture expansion over the past 2 ka.
How to cite: Xu, X., Li, F., Lin, Z., and Song, X.: Fire history in China during the Holocene and its response to the changes in environmental and anthropogenic factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7697, https://doi.org/10.5194/egusphere-egu2020-7697, 2020.
EGU2020-2914 | Displays | BG3.17
Role of vegetation on fire behaviour in Fennoscandia forests during the HoloceneChiara Molinari, Richard H.W. Bradshaw, Christopher Carcaillet, Gina Hannon, and Veiko Lehsten
The relationship between Holocene changes in Fennoscandia biomass burning (reconstructed by means of sedimentary charcoal records from lake and peat bogs) and main forest composition (based on pollen reconstructions from the same sites) divided into three different fire sensitivity classes is explored based on the hypothesis that fire-prone species are more abundant during periods characterized by higher fire disturbance, while fire-intolerant species dominate when biomass burning is low.
The overall patterns found across Fennoscandia suggest that there was low but increasing fire activity during the early Holocene, while a low and decreasing trend characterized the middle Holocene. During the late Holocene biomass burning increased, with a peak around 500 cal yr BP. This maximum is then followed by a downturn during the last centuries.
Generally, fire-prone species are strongly positively correlated with multi-millennial variability of biomass burning in Fennoscandia forests. A positive - but much weaker - relationship also exists between fire-tolerant species and long-term fire trends. On the contrary, a quite strong negative correlation is detected between biomass burning and fire-intolerant species.
The results presented in this large-scale analysis demonstrate that biomass burning was highly linked to fuel type (according to different fire sensitivity classes) during the Holocene, underlying the fact that all past fire-climate studies must consider key functional interactions between fuel type and long-term changes in fire regime.
How to cite: Molinari, C., Bradshaw, R. H. W., Carcaillet, C., Hannon, G., and Lehsten, V.: Role of vegetation on fire behaviour in Fennoscandia forests during the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2914, https://doi.org/10.5194/egusphere-egu2020-2914, 2020.
The relationship between Holocene changes in Fennoscandia biomass burning (reconstructed by means of sedimentary charcoal records from lake and peat bogs) and main forest composition (based on pollen reconstructions from the same sites) divided into three different fire sensitivity classes is explored based on the hypothesis that fire-prone species are more abundant during periods characterized by higher fire disturbance, while fire-intolerant species dominate when biomass burning is low.
The overall patterns found across Fennoscandia suggest that there was low but increasing fire activity during the early Holocene, while a low and decreasing trend characterized the middle Holocene. During the late Holocene biomass burning increased, with a peak around 500 cal yr BP. This maximum is then followed by a downturn during the last centuries.
Generally, fire-prone species are strongly positively correlated with multi-millennial variability of biomass burning in Fennoscandia forests. A positive - but much weaker - relationship also exists between fire-tolerant species and long-term fire trends. On the contrary, a quite strong negative correlation is detected between biomass burning and fire-intolerant species.
The results presented in this large-scale analysis demonstrate that biomass burning was highly linked to fuel type (according to different fire sensitivity classes) during the Holocene, underlying the fact that all past fire-climate studies must consider key functional interactions between fuel type and long-term changes in fire regime.
How to cite: Molinari, C., Bradshaw, R. H. W., Carcaillet, C., Hannon, G., and Lehsten, V.: Role of vegetation on fire behaviour in Fennoscandia forests during the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2914, https://doi.org/10.5194/egusphere-egu2020-2914, 2020.
EGU2020-8938 | Displays | BG3.17
Oxidation kinetics of Jurassic coal in Northwest China at low temperature by TG and FTIR analysisKai Wang, Haohao Fan, Yunzhong He, Jun Deng, and Yanni Zhang
The spontaneous combustion risk of Jurassic coal in Northwest China is special and different from that of permo-carboniferous coal. TG-FTIR experiments of a typical Jurassic coal sample in north Shaanxi was carried out to identify the grading, gas graduating and oxidation kinetics characteristic, under four heating rates of 5, 10, 15, and 20 ℃·min–1 in an air atmosphere. The coal oxidation process of Jurassic coal at low temperature could be divided into two stages, mass loss stage and mass gain stage. The changing rules of apparent activation energy in the coal oxidation process at low temperature were determined by FWO and Kissinger methods. The model-fitting mathematical approach was used to identify the reaction kinetics mechanism functions at two oxidation stages of Jurassic coal in northwest China.
How to cite: Wang, K., Fan, H., He, Y., Deng, J., and Zhang, Y.: Oxidation kinetics of Jurassic coal in Northwest China at low temperature by TG and FTIR analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8938, https://doi.org/10.5194/egusphere-egu2020-8938, 2020.
The spontaneous combustion risk of Jurassic coal in Northwest China is special and different from that of permo-carboniferous coal. TG-FTIR experiments of a typical Jurassic coal sample in north Shaanxi was carried out to identify the grading, gas graduating and oxidation kinetics characteristic, under four heating rates of 5, 10, 15, and 20 ℃·min–1 in an air atmosphere. The coal oxidation process of Jurassic coal at low temperature could be divided into two stages, mass loss stage and mass gain stage. The changing rules of apparent activation energy in the coal oxidation process at low temperature were determined by FWO and Kissinger methods. The model-fitting mathematical approach was used to identify the reaction kinetics mechanism functions at two oxidation stages of Jurassic coal in northwest China.
How to cite: Wang, K., Fan, H., He, Y., Deng, J., and Zhang, Y.: Oxidation kinetics of Jurassic coal in Northwest China at low temperature by TG and FTIR analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8938, https://doi.org/10.5194/egusphere-egu2020-8938, 2020.
EGU2020-12758 | Displays | BG3.17
Fire frequency influenced grazed grasslands' resistance and resilience to extreme droughtXiran Li, Olivia Hajek, Jillian LaRoe, Kate Wilkins, Alan Knapp, and Melinda D. Smith
Grasslands provide critical ecosystem functions and services globally, including forage production for livestock and other animals. As frequency and intensity of disturbances, including fire and drought, are increasing globally, grasslands and the services they provide are particularly vulnerable. In this changing environment, resistance, the capacity to withstand disturbance, and resilience, the capability to recover from disturbance, are important for the stability of grassland ecosystems during and after extreme climate events. Quantifying how grazed grassland’s resistance and resilience respond to these disturbances provides important information of stability of grassland function under forecast climate change.
In this study, we focus on fire experiments in grasslands located in the Kruger National Park in South Africa (tropical savanna grassland) and the Konza Prairie Biological Station in the US (mesic temperate grassland). Both sites experienced extreme drought (SPEI <-2) this past decade, in 2015 and 2012, respectively. Further, both sites have long-term fire frequency treatments (annually burned, burned every 3-4 years and unburned) that are grazed by large native herbivores (~14 species at Kruger and bison at Konza), which allows us to explore influences of fire frequency on grazed grassland’s resistance and resilience to extreme drought. Using Landsat remote sensing data, we generated 30 m x 30 m NDVI monthly time series for each fire frequency treatment and conducted repeated measures ANOVA to compare the vegetation productivity two years before, during, and two years after the extreme one-year drought events.
Although large reductions in productivity occurred during the extreme drought at both sites and across the grazed fire frequency treatments, full recovery of production was observed the following year, consistent with trends observed in ungrazed grasslands at the study sites. These results suggest that grazed grasslands show high resilience, but low resistance to extreme drought. However, the degree of resistance and resilience was influenced by fire frequency. At Konza, during and after extreme drought in 2012, unburned grassland showed the lowest resistance but higher resilience, while grassland burned every four years and annually had higher resistance but relatively lower resilience. The anomaly of NDVI at Kruger exhibited an opposite pattern. These differences in resistance and resilience of production to extreme drought across the fire frequency treatments are likely due to changes in species composition or ecosystem structure (i.e., increased density of woody species in the absence of fire). Ultimately, these results suggest that fire frequency plays an important role in grazed grassland ecosystems’ vulnerability to extreme drought.
How to cite: Li, X., Hajek, O., LaRoe, J., Wilkins, K., Knapp, A., and Smith, M. D.: Fire frequency influenced grazed grasslands' resistance and resilience to extreme drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12758, https://doi.org/10.5194/egusphere-egu2020-12758, 2020.
Grasslands provide critical ecosystem functions and services globally, including forage production for livestock and other animals. As frequency and intensity of disturbances, including fire and drought, are increasing globally, grasslands and the services they provide are particularly vulnerable. In this changing environment, resistance, the capacity to withstand disturbance, and resilience, the capability to recover from disturbance, are important for the stability of grassland ecosystems during and after extreme climate events. Quantifying how grazed grassland’s resistance and resilience respond to these disturbances provides important information of stability of grassland function under forecast climate change.
In this study, we focus on fire experiments in grasslands located in the Kruger National Park in South Africa (tropical savanna grassland) and the Konza Prairie Biological Station in the US (mesic temperate grassland). Both sites experienced extreme drought (SPEI <-2) this past decade, in 2015 and 2012, respectively. Further, both sites have long-term fire frequency treatments (annually burned, burned every 3-4 years and unburned) that are grazed by large native herbivores (~14 species at Kruger and bison at Konza), which allows us to explore influences of fire frequency on grazed grassland’s resistance and resilience to extreme drought. Using Landsat remote sensing data, we generated 30 m x 30 m NDVI monthly time series for each fire frequency treatment and conducted repeated measures ANOVA to compare the vegetation productivity two years before, during, and two years after the extreme one-year drought events.
Although large reductions in productivity occurred during the extreme drought at both sites and across the grazed fire frequency treatments, full recovery of production was observed the following year, consistent with trends observed in ungrazed grasslands at the study sites. These results suggest that grazed grasslands show high resilience, but low resistance to extreme drought. However, the degree of resistance and resilience was influenced by fire frequency. At Konza, during and after extreme drought in 2012, unburned grassland showed the lowest resistance but higher resilience, while grassland burned every four years and annually had higher resistance but relatively lower resilience. The anomaly of NDVI at Kruger exhibited an opposite pattern. These differences in resistance and resilience of production to extreme drought across the fire frequency treatments are likely due to changes in species composition or ecosystem structure (i.e., increased density of woody species in the absence of fire). Ultimately, these results suggest that fire frequency plays an important role in grazed grassland ecosystems’ vulnerability to extreme drought.
How to cite: Li, X., Hajek, O., LaRoe, J., Wilkins, K., Knapp, A., and Smith, M. D.: Fire frequency influenced grazed grasslands' resistance and resilience to extreme drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12758, https://doi.org/10.5194/egusphere-egu2020-12758, 2020.
EGU2020-20289 | Displays | BG3.17
Effects of prescribed burning on soil fertility and carbon dynamics in pre-littoral Mediterranean mountain pasturesJosé Manjón-Cabeza, Mercedes Ibáñez, Antonio Rodríguez, Maria Josep Broncano, Josepa Plaixats, and Maria Teresa Sebastià
Prescribed burning is a management tool used in the last years to prevent the invasion of woody vegetation in pastureland, decreasing the risk of extensive wildfires in vulnerable areas. Nevertheless, the effect of this practice in the soil is not yet fully understood, and more information is needed to ameliorate management practices. In order to understand how prescribed fire affect soil fertility, and the carbon (C) and nitrogen (N) cycles in pastures invaded by shrubs in Mediterranean areas, we carried out an experiment in Montseny, an acidic pre-littoral mountain range northern Barcelona (NE Iberian Peninsula). This area has experienced a decrease in traditional sheep stocks and therefore pastures endure strong shrub encroachment. We wanted to know: 1) what are the effects of prescribed burning on soil fertility in acidic Mediterranean pastures? and 2) are there legacy effects of the previous vegetation patches on the soil C and N cycles after prescribed burning? To answer those questions, we sampled soils before and after prescribed burning of a pasture heavily invaded by shrubs. Soils were sampled under six canopy types: Erica scoparia-dominated patches, Calluna vulgaris-dominated patches, Cytisus scoparius-dominated patches, Pteridium aquilinum-dominated patches and Cladonia-dominated biological crusts. The exact soil sampling point was recorded by a highly precise GPS, and each point resampled few days and six months after burning. As expected, soil fertility parameters varied with burning, including losses in soil phosphorus and nitrogen. In addition, several soil C and N parameters responded to the previous vegetation patches, including shifts in soil C and N concentration.
How to cite: Manjón-Cabeza, J., Ibáñez, M., Rodríguez, A., Broncano, M. J., Plaixats, J., and Sebastià, M. T.: Effects of prescribed burning on soil fertility and carbon dynamics in pre-littoral Mediterranean mountain pastures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20289, https://doi.org/10.5194/egusphere-egu2020-20289, 2020.
Prescribed burning is a management tool used in the last years to prevent the invasion of woody vegetation in pastureland, decreasing the risk of extensive wildfires in vulnerable areas. Nevertheless, the effect of this practice in the soil is not yet fully understood, and more information is needed to ameliorate management practices. In order to understand how prescribed fire affect soil fertility, and the carbon (C) and nitrogen (N) cycles in pastures invaded by shrubs in Mediterranean areas, we carried out an experiment in Montseny, an acidic pre-littoral mountain range northern Barcelona (NE Iberian Peninsula). This area has experienced a decrease in traditional sheep stocks and therefore pastures endure strong shrub encroachment. We wanted to know: 1) what are the effects of prescribed burning on soil fertility in acidic Mediterranean pastures? and 2) are there legacy effects of the previous vegetation patches on the soil C and N cycles after prescribed burning? To answer those questions, we sampled soils before and after prescribed burning of a pasture heavily invaded by shrubs. Soils were sampled under six canopy types: Erica scoparia-dominated patches, Calluna vulgaris-dominated patches, Cytisus scoparius-dominated patches, Pteridium aquilinum-dominated patches and Cladonia-dominated biological crusts. The exact soil sampling point was recorded by a highly precise GPS, and each point resampled few days and six months after burning. As expected, soil fertility parameters varied with burning, including losses in soil phosphorus and nitrogen. In addition, several soil C and N parameters responded to the previous vegetation patches, including shifts in soil C and N concentration.
How to cite: Manjón-Cabeza, J., Ibáñez, M., Rodríguez, A., Broncano, M. J., Plaixats, J., and Sebastià, M. T.: Effects of prescribed burning on soil fertility and carbon dynamics in pre-littoral Mediterranean mountain pastures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20289, https://doi.org/10.5194/egusphere-egu2020-20289, 2020.
EGU2020-6490 | Displays | BG3.17
Post-fire regeneration strategies contribute to plant growth dynamics and habitat selection in subtropical monsoon fire-prone ecosystemCaifang Luo, Yiying Li, Kang Yang, Jie Han, Youxu Jiang, and Zehao Shen
In fire-prone ecosystems subjected to frequent fires, trees species with different post-fire regeneration strategies (PFRS) coexist at local scale. Different growth dynamics and habitat selection of species account for their coexistence. To explore how much variety is decided by the PFRS, we selected four co-occurring tree species including one Facultative seeders (FS) species and three obligate resprouters (OR) species, conducted a field investigation to measure growth dynamics at sites with different time since last fire (TSF) and recorded its living environment information in Central Yunnan Plateau. We also measured the burl size of OR species to subclassify PFRS into obligate resprouters-resprouts number (OR-N) and obligate resprouters-resprouts height (OR-H) by the growth priority to quantity or height. Generally, FS and OR species exhibited different seedlings clump density and height growth rate (HGR) and showed different temporal dynamics. OR-N species occupied post-fire gaps with rapid canopy growth and were more predominant than OR-H species and FS species at the early period of post-fire regeneration, while OR-H species had the highest HGR. However, such difference was not well explained by environmental factors (R2 < 20%) except seedlings growth rate, while explanation increased when subclassfication was considered as random factor in linear mixed models (LMMs). Moreover, species habitat selection was also associated tightly with regeneration strategies. The result of Redundancy Analysis (RDA) indicated that Pinus (FS) dominated on sunny slope was consistent with gap-dependence model and environment-variability model, and Cyclobalanopsi (OR-H) are favored in the fertile sites that can facilitate its height growth. Resprouters species Lithocarpus which prefer growing on sunny slope in unburned areas but showed preference on shade slope in post-fire regeneration. Therefore, the impacts of regeneration strategies caused some species shift their normal distribution ranges after fire. In conclusion, different growth dynamics and habitat selection of the four tree species during the post-fire regeneration enable their coexistence. Our study provides a novel perspective that by using subclassification of regeneration strategies, the prediction power of species performance and niche partitioning can significantly increased.
How to cite: Luo, C., Li, Y., Yang, K., Han, J., Jiang, Y., and Shen, Z.: Post-fire regeneration strategies contribute to plant growth dynamics and habitat selection in subtropical monsoon fire-prone ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6490, https://doi.org/10.5194/egusphere-egu2020-6490, 2020.
In fire-prone ecosystems subjected to frequent fires, trees species with different post-fire regeneration strategies (PFRS) coexist at local scale. Different growth dynamics and habitat selection of species account for their coexistence. To explore how much variety is decided by the PFRS, we selected four co-occurring tree species including one Facultative seeders (FS) species and three obligate resprouters (OR) species, conducted a field investigation to measure growth dynamics at sites with different time since last fire (TSF) and recorded its living environment information in Central Yunnan Plateau. We also measured the burl size of OR species to subclassify PFRS into obligate resprouters-resprouts number (OR-N) and obligate resprouters-resprouts height (OR-H) by the growth priority to quantity or height. Generally, FS and OR species exhibited different seedlings clump density and height growth rate (HGR) and showed different temporal dynamics. OR-N species occupied post-fire gaps with rapid canopy growth and were more predominant than OR-H species and FS species at the early period of post-fire regeneration, while OR-H species had the highest HGR. However, such difference was not well explained by environmental factors (R2 < 20%) except seedlings growth rate, while explanation increased when subclassfication was considered as random factor in linear mixed models (LMMs). Moreover, species habitat selection was also associated tightly with regeneration strategies. The result of Redundancy Analysis (RDA) indicated that Pinus (FS) dominated on sunny slope was consistent with gap-dependence model and environment-variability model, and Cyclobalanopsi (OR-H) are favored in the fertile sites that can facilitate its height growth. Resprouters species Lithocarpus which prefer growing on sunny slope in unburned areas but showed preference on shade slope in post-fire regeneration. Therefore, the impacts of regeneration strategies caused some species shift their normal distribution ranges after fire. In conclusion, different growth dynamics and habitat selection of the four tree species during the post-fire regeneration enable their coexistence. Our study provides a novel perspective that by using subclassification of regeneration strategies, the prediction power of species performance and niche partitioning can significantly increased.
How to cite: Luo, C., Li, Y., Yang, K., Han, J., Jiang, Y., and Shen, Z.: Post-fire regeneration strategies contribute to plant growth dynamics and habitat selection in subtropical monsoon fire-prone ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6490, https://doi.org/10.5194/egusphere-egu2020-6490, 2020.
EGU2020-18380 | Displays | BG3.17
Fire-vegetation feedbacks in JULES-INFERNOChantelle Burton, Richard Betts, Chris Jones, and Douglas Kelley
Fire has an important impact on the terrestrial carbon cycle, affecting the growth and distribution of vegetation, and altering carbon stores in vegetation and soils. This is further complicated by the interaction with people, through land-use change, ignitions and fire management. This work presents the latest results from the recently coupled JULES-INFERNO fire enabled land surface model, and the interaction of fire, dynamic vegetation and varying land use. The results of historical and present-day global simulations are evaluated using observations of burned area and emissions, and through use of tools such as ilamb. The model performs well globally compared to observations, and improves the simulation of vegetation especially in the tropics. The model is also used to address how fire may change under different climate scenarios, including El Niño events, and future simulations of climate change. Results show that burned area increases in some areas with El Niño conditions such as those of 2015/16, especially in South America where a 13% increase in burned area and emitted carbon is simulated. This negatively impacts carbon uptake in this region, and reduces the terrestrial carbon sink.
How to cite: Burton, C., Betts, R., Jones, C., and Kelley, D.: Fire-vegetation feedbacks in JULES-INFERNO, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18380, https://doi.org/10.5194/egusphere-egu2020-18380, 2020.
Fire has an important impact on the terrestrial carbon cycle, affecting the growth and distribution of vegetation, and altering carbon stores in vegetation and soils. This is further complicated by the interaction with people, through land-use change, ignitions and fire management. This work presents the latest results from the recently coupled JULES-INFERNO fire enabled land surface model, and the interaction of fire, dynamic vegetation and varying land use. The results of historical and present-day global simulations are evaluated using observations of burned area and emissions, and through use of tools such as ilamb. The model performs well globally compared to observations, and improves the simulation of vegetation especially in the tropics. The model is also used to address how fire may change under different climate scenarios, including El Niño events, and future simulations of climate change. Results show that burned area increases in some areas with El Niño conditions such as those of 2015/16, especially in South America where a 13% increase in burned area and emitted carbon is simulated. This negatively impacts carbon uptake in this region, and reduces the terrestrial carbon sink.
How to cite: Burton, C., Betts, R., Jones, C., and Kelley, D.: Fire-vegetation feedbacks in JULES-INFERNO, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18380, https://doi.org/10.5194/egusphere-egu2020-18380, 2020.
EGU2020-16359 | Displays | BG3.17
The Importance of Vegetation Build Up for Burnt Area SeasonalityAlexander Kuhn-Regnier, Apostolos Voulgarakis, Sandy Harrison, and Colin Prentice
Vegetation build up is a major controlling factor for wildfires globally. The exact nature of the dependency of wildfire activity on past vegetation productivity is still under debate, however. Given the potential future rise in conditions conducive to extremely damaging fires in many regions of the world, controlling factors like this need to be investigated urgently to better understand and manage especially extreme wildfire events.
To improve our understanding of wildfires and the advice given to policy makers, a comprehensive understanding of all contributing factors is required. Changes to land management can be controversial and thus concrete evidence is required to assess and modify longstanding management practices and regulations if needed.
We therefore used global satellite datasets extending from 2005 to 2011 to assess the relationship between burnt area and various biophysical variables. Vegetation proxy data included vegetation optical depth and the fraction of absorbed photosynthetically activate radiation. Different regions and time periods were analysed separately to isolate regional and temporal effects respectively. The relationship between pre-season vegetation productivity and burnt area was modelled as a regionally and temporally varying weighted sum of past monthly productivity proxies.
As expected, significant differences in fire regimes were found across biomes, signified for example by significant shifts in the seasonality of burnt area. Understanding these shifts in the seasonality of both burnt area and the accompanying temporal dependence on past vegetation growth is key to reproducing observed wildfire regimes in fire models. As these relationships were found to vary both temporally and regionally, judicious inclusion of biophysical variables in fire models coupled with algorithms able to capture these relationships is necessary.
However, remotely sensed observations were of different quality in different areas due to inhomogeneous cloud cover patterns, making assessments for much-affected regions like South America and South East Asia especially difficult. Likewise, the found correlation between decreasing cloud cover and increasing burnt area biased our results. Due also to the short time span of the data available in this investigation, these factors warrant further investigation to more fully quantify the temporal and regional relationships at work.
How to cite: Kuhn-Regnier, A., Voulgarakis, A., Harrison, S., and Prentice, C.: The Importance of Vegetation Build Up for Burnt Area Seasonality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16359, https://doi.org/10.5194/egusphere-egu2020-16359, 2020.
Vegetation build up is a major controlling factor for wildfires globally. The exact nature of the dependency of wildfire activity on past vegetation productivity is still under debate, however. Given the potential future rise in conditions conducive to extremely damaging fires in many regions of the world, controlling factors like this need to be investigated urgently to better understand and manage especially extreme wildfire events.
To improve our understanding of wildfires and the advice given to policy makers, a comprehensive understanding of all contributing factors is required. Changes to land management can be controversial and thus concrete evidence is required to assess and modify longstanding management practices and regulations if needed.
We therefore used global satellite datasets extending from 2005 to 2011 to assess the relationship between burnt area and various biophysical variables. Vegetation proxy data included vegetation optical depth and the fraction of absorbed photosynthetically activate radiation. Different regions and time periods were analysed separately to isolate regional and temporal effects respectively. The relationship between pre-season vegetation productivity and burnt area was modelled as a regionally and temporally varying weighted sum of past monthly productivity proxies.
As expected, significant differences in fire regimes were found across biomes, signified for example by significant shifts in the seasonality of burnt area. Understanding these shifts in the seasonality of both burnt area and the accompanying temporal dependence on past vegetation growth is key to reproducing observed wildfire regimes in fire models. As these relationships were found to vary both temporally and regionally, judicious inclusion of biophysical variables in fire models coupled with algorithms able to capture these relationships is necessary.
However, remotely sensed observations were of different quality in different areas due to inhomogeneous cloud cover patterns, making assessments for much-affected regions like South America and South East Asia especially difficult. Likewise, the found correlation between decreasing cloud cover and increasing burnt area biased our results. Due also to the short time span of the data available in this investigation, these factors warrant further investigation to more fully quantify the temporal and regional relationships at work.
How to cite: Kuhn-Regnier, A., Voulgarakis, A., Harrison, S., and Prentice, C.: The Importance of Vegetation Build Up for Burnt Area Seasonality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16359, https://doi.org/10.5194/egusphere-egu2020-16359, 2020.
EGU2020-19112 | Displays | BG3.17
Unusual fire seasons in a changing climate - A Bayesian approach.Douglas Ian Kelley, Chantelle Burton, Rhys Whitley, Chris Huntingford, Ioannis Bistinas, Megan Brown, Ning Dong, and Toby R. Marthews
A series of fire events have captured the attention of the public and press in the last couple of years. South America, for example, saw the largest increase in fire count in nearly 10 years, mainly in areas historically associated with deforestation in Amazonia. Meanwhile, South Eastern Australia has seen a number of devastating bush fires in recent months, resulting in (at time of writing) 27 deaths and the destruction of over 2000 properties. These two fire events, in particular, have sparked debates about whether the levels of burning were unprecedented, and if so, whether they were driven by changes in human ignitions or land management, or if the fire season was drier than normal and whether climate change played a role. However, confidently determining the main drivers of fire events such as these often remains challenging. There is an ever-increasing availability of near-real-time meteorological and fire activity data that could be used to determine drivers, but the complex interplay of different fire controls makes teasing apart drivers of fire difficult from observations alone. Many coarse-scale fire-enabled terrestrial biosphere models account for some interplay of controls. However, most fail to reliably reproduce trends in fire, and often rely on inputs that are not available for some time after these fire seasons have passed.
Here, we have developed a Bayesian framework which addresses this by inferring fire drivers directly from observations and tracking uncertainty in a simple fire model. The model uses coarse resolution, monthly data that is available at near-real-time and emulates most fire-enabled land surface schemes by summarizing drivers as controls describing fuel continuity; moisture; lightning and human ignitions; and human suppression. The framework can be trained on different fire-related variables and finds a posterior probability distribution of both the model parameters and the expected fire activity from the model as a whole. This allows us to determine the probability of a particular fire season event within the context of the historical meteorological record, as well as the main drivers of unusual fire events.
This framework is first applied globally, identifying tropical forests and woodland ecosystems as key hotspots of long term fire regime shifts. In South Eastern Australian woodland, changes in fuel continuity and moisture point to a weak, long term decline in fire activity, but with increased variability, indicating a higher probability of extreme fire years. The arc of deforestation in the Amazon shows long-term increased susceptibility to fire due to drying conditions from changes in land cover. However, when focusing the framework specifically on Amazonia, we show lower meteorologically driven fire counts than we see in the observations for 2019, and that it is extremely likely (>95% probability) that the weather conditions have not triggered the very high levels of fire seen in the Amazon this last year. This demonstrates the potential of the framework for use in rapid attribution of drivers in future extreme fire seasons.
How to cite: Kelley, D. I., Burton, C., Whitley, R., Huntingford, C., Bistinas, I., Brown, M., Dong, N., and Marthews, T. R.: Unusual fire seasons in a changing climate - A Bayesian approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19112, https://doi.org/10.5194/egusphere-egu2020-19112, 2020.
A series of fire events have captured the attention of the public and press in the last couple of years. South America, for example, saw the largest increase in fire count in nearly 10 years, mainly in areas historically associated with deforestation in Amazonia. Meanwhile, South Eastern Australia has seen a number of devastating bush fires in recent months, resulting in (at time of writing) 27 deaths and the destruction of over 2000 properties. These two fire events, in particular, have sparked debates about whether the levels of burning were unprecedented, and if so, whether they were driven by changes in human ignitions or land management, or if the fire season was drier than normal and whether climate change played a role. However, confidently determining the main drivers of fire events such as these often remains challenging. There is an ever-increasing availability of near-real-time meteorological and fire activity data that could be used to determine drivers, but the complex interplay of different fire controls makes teasing apart drivers of fire difficult from observations alone. Many coarse-scale fire-enabled terrestrial biosphere models account for some interplay of controls. However, most fail to reliably reproduce trends in fire, and often rely on inputs that are not available for some time after these fire seasons have passed.
Here, we have developed a Bayesian framework which addresses this by inferring fire drivers directly from observations and tracking uncertainty in a simple fire model. The model uses coarse resolution, monthly data that is available at near-real-time and emulates most fire-enabled land surface schemes by summarizing drivers as controls describing fuel continuity; moisture; lightning and human ignitions; and human suppression. The framework can be trained on different fire-related variables and finds a posterior probability distribution of both the model parameters and the expected fire activity from the model as a whole. This allows us to determine the probability of a particular fire season event within the context of the historical meteorological record, as well as the main drivers of unusual fire events.
This framework is first applied globally, identifying tropical forests and woodland ecosystems as key hotspots of long term fire regime shifts. In South Eastern Australian woodland, changes in fuel continuity and moisture point to a weak, long term decline in fire activity, but with increased variability, indicating a higher probability of extreme fire years. The arc of deforestation in the Amazon shows long-term increased susceptibility to fire due to drying conditions from changes in land cover. However, when focusing the framework specifically on Amazonia, we show lower meteorologically driven fire counts than we see in the observations for 2019, and that it is extremely likely (>95% probability) that the weather conditions have not triggered the very high levels of fire seen in the Amazon this last year. This demonstrates the potential of the framework for use in rapid attribution of drivers in future extreme fire seasons.
How to cite: Kelley, D. I., Burton, C., Whitley, R., Huntingford, C., Bistinas, I., Brown, M., Dong, N., and Marthews, T. R.: Unusual fire seasons in a changing climate - A Bayesian approach., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19112, https://doi.org/10.5194/egusphere-egu2020-19112, 2020.
EGU2020-8323 | Displays | BG3.17
Influence of Atmospheric Teleconnections on Interannual Variability of Boreal FiresZhiyi Zhao, Zhongda Lin, and Fang Li
Wildfires are common in boreal forests around the world and strongly affect regional ecosystem processes and global carbon cycle. Previous studies have suggested that local climate is a dominant driver of boreal fires. However, the impacts of large-scale atmospheric teleconnection patterns on boreal fires and related physical processes remain largely unclear. This study investigates the influence of nine leading atmospheric teleconnection modes and El Niño-Southern Oscillation (ENSO) on the interannual variability of simultaneous summer fires in the boreal regions based on 1997-2015 GFED4s burned area, NCEP/NCAR atmospheric reanalysis, and HadISST sea surface temperature. Results show that ENSO has only a weak effect on boreal fires, distinct from its robust influence on the tropical fires. Instead, the interannual variability of burned area in the boreal regions is significantly regulated by five teleconnection patterns. Specifically, East Pacific-North Pacific (EP/NP) and East Atlantic/West Russia (EA/WR) patterns affect the burned area in North America, North Atlantic Oscillation (NAO) and East Atlantic (EA) patterns for Asia, and the Pacific-North American (PNA) pattern for Europe. Related to the teleconnections, the larger burned area is attributable to warmer surface by an anomalous high-pressure above and drier surface due to less moisture transport from the neighboring oceans. The results improve our understanding of driving forces of interannual variability of boreal fires and then regional and global carbon budgets.
How to cite: Zhao, Z., Lin, Z., and Li, F.: Influence of Atmospheric Teleconnections on Interannual Variability of Boreal Fires, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8323, https://doi.org/10.5194/egusphere-egu2020-8323, 2020.
Wildfires are common in boreal forests around the world and strongly affect regional ecosystem processes and global carbon cycle. Previous studies have suggested that local climate is a dominant driver of boreal fires. However, the impacts of large-scale atmospheric teleconnection patterns on boreal fires and related physical processes remain largely unclear. This study investigates the influence of nine leading atmospheric teleconnection modes and El Niño-Southern Oscillation (ENSO) on the interannual variability of simultaneous summer fires in the boreal regions based on 1997-2015 GFED4s burned area, NCEP/NCAR atmospheric reanalysis, and HadISST sea surface temperature. Results show that ENSO has only a weak effect on boreal fires, distinct from its robust influence on the tropical fires. Instead, the interannual variability of burned area in the boreal regions is significantly regulated by five teleconnection patterns. Specifically, East Pacific-North Pacific (EP/NP) and East Atlantic/West Russia (EA/WR) patterns affect the burned area in North America, North Atlantic Oscillation (NAO) and East Atlantic (EA) patterns for Asia, and the Pacific-North American (PNA) pattern for Europe. Related to the teleconnections, the larger burned area is attributable to warmer surface by an anomalous high-pressure above and drier surface due to less moisture transport from the neighboring oceans. The results improve our understanding of driving forces of interannual variability of boreal fires and then regional and global carbon budgets.
How to cite: Zhao, Z., Lin, Z., and Li, F.: Influence of Atmospheric Teleconnections on Interannual Variability of Boreal Fires, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8323, https://doi.org/10.5194/egusphere-egu2020-8323, 2020.
EGU2020-18317 | Displays | BG3.17
Effects of meteorology on forest fires in India: A modeling studyAnasuya Barik and Somnath Baidya Roy
Meteorology has a strong impact on forest fires. Meteorological parameters such as temperature, relative humidity, wind speed and precipitation alter the fuel loading in forests, control the changes in spatial distribution, intensity and frequency of forest fires and changes in forest fire season. Hence, it is important to understand the relationship between forest fires and meteorological factors and build models that can simulate these relationships.
The Canadian Forest Fire Danger Rating System (CFFDRS) has been used globally to assess and predict the fire behavior in various forest ecosystems. The Fire Weather Index (FWI) of CFFDRS models the relationship between meteorology and forest fires. In this study we calibrate the FWI over Indian forests using percentile analysis and logistic regression technique and test the performance using satellite-derived (MODIS daily fire data from 2003-2018) fire count and Fire Radiative Power (FRP). As the Indian forest landscape is highly heterogeneous, we calibrate the FWI over 4 FWI zones namely Himalayan, Deciduous, Western Ghats and Thorn forests based on IGBP forest classification and Koppen climatic zones. Five fire danger classes having thresholds of 99th, 95th, 90th, 80th and 70thof FWI percentiles have been defined with decreasing severity. Results show that the calibrated FWI is capable of simulating the forest fire behavior over India. Sensitivity studies show that temperature and relative humidity are the key controlling factors of forest fires over India.
This study is one of the first attempts to use fire models to simulate fire behavior over India. It can serve as a launchpad for further work on fire hazard prediction and effects of climate change on fire hazard in India.
How to cite: Barik, A. and Baidya Roy, S.: Effects of meteorology on forest fires in India: A modeling study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18317, https://doi.org/10.5194/egusphere-egu2020-18317, 2020.
Meteorology has a strong impact on forest fires. Meteorological parameters such as temperature, relative humidity, wind speed and precipitation alter the fuel loading in forests, control the changes in spatial distribution, intensity and frequency of forest fires and changes in forest fire season. Hence, it is important to understand the relationship between forest fires and meteorological factors and build models that can simulate these relationships.
The Canadian Forest Fire Danger Rating System (CFFDRS) has been used globally to assess and predict the fire behavior in various forest ecosystems. The Fire Weather Index (FWI) of CFFDRS models the relationship between meteorology and forest fires. In this study we calibrate the FWI over Indian forests using percentile analysis and logistic regression technique and test the performance using satellite-derived (MODIS daily fire data from 2003-2018) fire count and Fire Radiative Power (FRP). As the Indian forest landscape is highly heterogeneous, we calibrate the FWI over 4 FWI zones namely Himalayan, Deciduous, Western Ghats and Thorn forests based on IGBP forest classification and Koppen climatic zones. Five fire danger classes having thresholds of 99th, 95th, 90th, 80th and 70thof FWI percentiles have been defined with decreasing severity. Results show that the calibrated FWI is capable of simulating the forest fire behavior over India. Sensitivity studies show that temperature and relative humidity are the key controlling factors of forest fires over India.
This study is one of the first attempts to use fire models to simulate fire behavior over India. It can serve as a launchpad for further work on fire hazard prediction and effects of climate change on fire hazard in India.
How to cite: Barik, A. and Baidya Roy, S.: Effects of meteorology on forest fires in India: A modeling study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18317, https://doi.org/10.5194/egusphere-egu2020-18317, 2020.
EGU2020-2281 | Displays | BG3.17
The spatio-temporal characteristics of forest fires in China: observations from hybrid remote sensing dataLei Fang, Zeyu Qiao, and Jian Yang
Forest fire is a natural disaster threatening global human well-beings as well as a crucial disturbance agent driving forest landscape changes. The remotely sensed burned area (BA) products can provide spatially and temporally continuous monitoring of global fires, but the accuracies remain to be improved. We firstly developed a hybrid burned area mapping approach, which integrated the advantages of a 250 m global BA product (CCI_Fire) and a 30 m global forest change (GFC) product, to generate an improved 250 m BA product (so-called CCI_GFC product). Based on 248 fire patches derived from Landsat imagery, the results showed that the CCI_GFC product improved the CCI_Fire product substantially, which are significantly better than MCD64A1 product. According to the CCI_GFC, we found the total BA in the past 17 years was about 12.1 million ha in China, which approximately covered 6.1% of the total forested areas with a significantly decreased trend through Mann-Kendall test (Tau= -0.47, P<0.05) . We conducted a grid analysis (0.05°×0.05°) to determine the hot spots of forest fire from 2001 to 2017. We also quantified fire characteristics on frequency, spatial distribution, and seasonality in terms of Burned Forest Rate (BFR), hot spot areas, and fire seasons, respectively. We found that low frequency burns with a 0<BFR≤20% in 17 years covered 64% of total grids; the medium-low frequency burns (20%<BFR≤40%), the medium frequency burns (40%<BFR≤60%), the medium-high frequency burns (60%< BFR≤80%) accounted for 15%, 7%, 4% respectively; the high frequency burns (80%<BFR≤100%) and extremely high burns (100%<BFR≤120%) together occupy 10% of total grids which mainly distributed in Xiao Hinggan mountains, south China, and southwest China. The seasonality of forest fires differed substantially among eco-regions. The fire seasons of two temperate forest eco-regions are spring and autumn. The two peak fire months are May and October, in which about 22% and 37% of the total burned area were founded respectively. As a comparison, fire seasons in tropical and subtropical eco-regions are spring and winter (i.e., November to March of the next year), which accounted 88% of the total burned area. Our study clearly illustrated the characteristics of forest fire patterns in the past 17 years, which highlighted the remarkable achievements due to a nationwide implementation of fire prevention policy. At the same time, we emphasized that it is critically important to regard the long-term forest fire dynamics to design scientific and reasonable strategies or methods for fire management and controlling, which will be of sound significance to optimize the allocation of financial resources on fire management, and to achieve sustainable management of forests.
How to cite: Fang, L., Qiao, Z., and Yang, J.: The spatio-temporal characteristics of forest fires in China: observations from hybrid remote sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2281, https://doi.org/10.5194/egusphere-egu2020-2281, 2020.
Forest fire is a natural disaster threatening global human well-beings as well as a crucial disturbance agent driving forest landscape changes. The remotely sensed burned area (BA) products can provide spatially and temporally continuous monitoring of global fires, but the accuracies remain to be improved. We firstly developed a hybrid burned area mapping approach, which integrated the advantages of a 250 m global BA product (CCI_Fire) and a 30 m global forest change (GFC) product, to generate an improved 250 m BA product (so-called CCI_GFC product). Based on 248 fire patches derived from Landsat imagery, the results showed that the CCI_GFC product improved the CCI_Fire product substantially, which are significantly better than MCD64A1 product. According to the CCI_GFC, we found the total BA in the past 17 years was about 12.1 million ha in China, which approximately covered 6.1% of the total forested areas with a significantly decreased trend through Mann-Kendall test (Tau= -0.47, P<0.05) . We conducted a grid analysis (0.05°×0.05°) to determine the hot spots of forest fire from 2001 to 2017. We also quantified fire characteristics on frequency, spatial distribution, and seasonality in terms of Burned Forest Rate (BFR), hot spot areas, and fire seasons, respectively. We found that low frequency burns with a 0<BFR≤20% in 17 years covered 64% of total grids; the medium-low frequency burns (20%<BFR≤40%), the medium frequency burns (40%<BFR≤60%), the medium-high frequency burns (60%< BFR≤80%) accounted for 15%, 7%, 4% respectively; the high frequency burns (80%<BFR≤100%) and extremely high burns (100%<BFR≤120%) together occupy 10% of total grids which mainly distributed in Xiao Hinggan mountains, south China, and southwest China. The seasonality of forest fires differed substantially among eco-regions. The fire seasons of two temperate forest eco-regions are spring and autumn. The two peak fire months are May and October, in which about 22% and 37% of the total burned area were founded respectively. As a comparison, fire seasons in tropical and subtropical eco-regions are spring and winter (i.e., November to March of the next year), which accounted 88% of the total burned area. Our study clearly illustrated the characteristics of forest fire patterns in the past 17 years, which highlighted the remarkable achievements due to a nationwide implementation of fire prevention policy. At the same time, we emphasized that it is critically important to regard the long-term forest fire dynamics to design scientific and reasonable strategies or methods for fire management and controlling, which will be of sound significance to optimize the allocation of financial resources on fire management, and to achieve sustainable management of forests.
How to cite: Fang, L., Qiao, Z., and Yang, J.: The spatio-temporal characteristics of forest fires in China: observations from hybrid remote sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2281, https://doi.org/10.5194/egusphere-egu2020-2281, 2020.
EGU2020-20907 | Displays | BG3.17
Burned area trends in the Brazilian Cerrado: the roles of climate and anthropogenic driversPatrícia S. Silva, Julia A. Rodrigues, Filippe L. M. Santos, Joana Nogueira, Allan A. Pereira, Leonardo F. Peres, Duarte Oom, Carlos C. DaCamara, José M. C. Pereira, and Renata Libonati
Fire is a natural disturbance in the Brazilian savannas, Cerrado, with substantial ecological and economic impacts. Most studies have characterized the fire regime in this biome using climate drivers but neglected the geographical variation of anthropogenic activities. These factors can trigger inappropriate fire-fighting decisions and biodiversity conservation policies. This takes special relevance in fire-prone biomes with recent fire management policies as Cerrado, which have been highly modified over the last decades due to changes in land use and climate.
Here, we aim to identify how variations in climate and anthropogenic drivers influence burned area (BA) trends at the regional level (microregions) in Cerrado. We evaluated satellite-derived BA (MCD64, collection 6) for 172 microregions from 2001 to 2018 across the entire biome. The Canadian Forest Fire Weather Index (FWI) was used as a proxy of climate using meteorological variables from ECMWF’s ERA5 reanalysis product. The human leverage, considered here as population density (PD) and land use (LU), were derived, respectively, from the annual census of the Brazillian Institute of Geography and Statistics (IBGE) and from a Brazilian platform of annual land use/cover mapping (MapBiomas). Recent BA trends considering the drivers FWI, LU and PD, were estimated using the non-parametric Theil-Sen regression and the modified Mann-Kendall test.
Results showed BA trends over the last 18 years were significant and spatially contrasted along Cerrado: positive trends were found in the north-eastern region (in particular, the most recent agricultural frontier in Brazil: MATOPIBA) whereas the south-western region showed negative trends. PD showed positive trends in all microregions and, similarly, LU obtained positive trends over most of Cerrado. Positive FWI trends were also found over the central and north-eastern regions and FWI was the driver that explained most of BA variance in Cerrado. LU and PD were found to have much more complex relations with BA. Moreover, regarding the seasonal variability of microregions with positive and negative trends, the former were found to begin earlier in June and last longer, indicating that the overall fire season in Cerrado may be extending.
The approach presented here allows the exploration of recent trends affecting fires, crucial to inform and support better allocation of resources in fire management under current and future conditions.
The study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPQ) through grants 305159/2018-6 and 441971/2018-0. P. Silva is funded by Fundação para a Ciência e a Tecnologia (FCT), grant number SFRH/BD/146646/2019.
How to cite: Silva, P. S., Rodrigues, J. A., Santos, F. L. M., Nogueira, J., Pereira, A. A., Peres, L. F., Oom, D., DaCamara, C. C., Pereira, J. M. C., and Libonati, R.: Burned area trends in the Brazilian Cerrado: the roles of climate and anthropogenic drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20907, https://doi.org/10.5194/egusphere-egu2020-20907, 2020.
Fire is a natural disturbance in the Brazilian savannas, Cerrado, with substantial ecological and economic impacts. Most studies have characterized the fire regime in this biome using climate drivers but neglected the geographical variation of anthropogenic activities. These factors can trigger inappropriate fire-fighting decisions and biodiversity conservation policies. This takes special relevance in fire-prone biomes with recent fire management policies as Cerrado, which have been highly modified over the last decades due to changes in land use and climate.
Here, we aim to identify how variations in climate and anthropogenic drivers influence burned area (BA) trends at the regional level (microregions) in Cerrado. We evaluated satellite-derived BA (MCD64, collection 6) for 172 microregions from 2001 to 2018 across the entire biome. The Canadian Forest Fire Weather Index (FWI) was used as a proxy of climate using meteorological variables from ECMWF’s ERA5 reanalysis product. The human leverage, considered here as population density (PD) and land use (LU), were derived, respectively, from the annual census of the Brazillian Institute of Geography and Statistics (IBGE) and from a Brazilian platform of annual land use/cover mapping (MapBiomas). Recent BA trends considering the drivers FWI, LU and PD, were estimated using the non-parametric Theil-Sen regression and the modified Mann-Kendall test.
Results showed BA trends over the last 18 years were significant and spatially contrasted along Cerrado: positive trends were found in the north-eastern region (in particular, the most recent agricultural frontier in Brazil: MATOPIBA) whereas the south-western region showed negative trends. PD showed positive trends in all microregions and, similarly, LU obtained positive trends over most of Cerrado. Positive FWI trends were also found over the central and north-eastern regions and FWI was the driver that explained most of BA variance in Cerrado. LU and PD were found to have much more complex relations with BA. Moreover, regarding the seasonal variability of microregions with positive and negative trends, the former were found to begin earlier in June and last longer, indicating that the overall fire season in Cerrado may be extending.
The approach presented here allows the exploration of recent trends affecting fires, crucial to inform and support better allocation of resources in fire management under current and future conditions.
The study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPQ) through grants 305159/2018-6 and 441971/2018-0. P. Silva is funded by Fundação para a Ciência e a Tecnologia (FCT), grant number SFRH/BD/146646/2019.
How to cite: Silva, P. S., Rodrigues, J. A., Santos, F. L. M., Nogueira, J., Pereira, A. A., Peres, L. F., Oom, D., DaCamara, C. C., Pereira, J. M. C., and Libonati, R.: Burned area trends in the Brazilian Cerrado: the roles of climate and anthropogenic drivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20907, https://doi.org/10.5194/egusphere-egu2020-20907, 2020.
EGU2020-20755 | Displays | BG3.17 | Highlight
The FIREX-AQ 2019 Dataset Is PublicJoshua Schwarz and the FIREX-AQ Science Team
Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) was the most comprehensive investigation on the impact of wildfire and biomass smoke on air quality and weather in the continental United States, and took place in the late summer of 2019. FIREX-AQ explored the chemistry and fate of trace gases and aerosols in smoke with four instrumented research aircraft, satellites, ground-based fixed and mobile laboratories, modeling/forecasting, and coordinated airborne and ground-based fuels information gathering. It focused on both northwestern wildfires and the southeastern U.S. agricultural/prescribed burning.
FIREX-AQ was primarily funded by the US public, hence, the quality-assured dataset acquired from all aspects of the mission has become available to the public, including to the international community. FIREX-AQ data is available for use by researchers around the globe to advance understanding of all the impacts of fire on the atmosphere and on humanity.
Both in-situ and remote sensing data sets were acquired with the NASA DC-8 flying laboratory, while the NASA ER-2 supported several satellite emulators, the NOAA Chem-Otter Twin Otter focused on in situ measurements close to fires and in the dark, and the NOAA Met-Otter Twin Otter supported fire radiative power measurements and wind-profiler measurements to assess fire feedbacks on dynamics. NASA and Aerodyne, Inc. mobile labs focused measurements at very young plume age and in areas (for example valley drainage flow) relevant to air quality, and multiple temporary NASA AERONET sun photometer/lidar observations sites and mobile measurement platforms (“DRAGON”) were deployed to assess vertically resolved influences of smoke on light.
Extensive modeling efforts and meteorological forecasting efforts associated with the measurements resulted in reports that are also public. Coordination with the US Department of Agriculture and various academic institutions enabled inclusion of detailed fuels information including fuel type and density as well as post-fire information in some cases. Coordination on prescribed burns of different fuels and in different regions in the US provide case studies for connecting emissions to fuels.
A detailed overview of the entire effort is available on-line at: https://www.esrl.noaa.gov/csd/projects/firex-aq/
How to cite: Schwarz, J. and the FIREX-AQ Science Team: The FIREX-AQ 2019 Dataset Is Public, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20755, https://doi.org/10.5194/egusphere-egu2020-20755, 2020.
Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) was the most comprehensive investigation on the impact of wildfire and biomass smoke on air quality and weather in the continental United States, and took place in the late summer of 2019. FIREX-AQ explored the chemistry and fate of trace gases and aerosols in smoke with four instrumented research aircraft, satellites, ground-based fixed and mobile laboratories, modeling/forecasting, and coordinated airborne and ground-based fuels information gathering. It focused on both northwestern wildfires and the southeastern U.S. agricultural/prescribed burning.
FIREX-AQ was primarily funded by the US public, hence, the quality-assured dataset acquired from all aspects of the mission has become available to the public, including to the international community. FIREX-AQ data is available for use by researchers around the globe to advance understanding of all the impacts of fire on the atmosphere and on humanity.
Both in-situ and remote sensing data sets were acquired with the NASA DC-8 flying laboratory, while the NASA ER-2 supported several satellite emulators, the NOAA Chem-Otter Twin Otter focused on in situ measurements close to fires and in the dark, and the NOAA Met-Otter Twin Otter supported fire radiative power measurements and wind-profiler measurements to assess fire feedbacks on dynamics. NASA and Aerodyne, Inc. mobile labs focused measurements at very young plume age and in areas (for example valley drainage flow) relevant to air quality, and multiple temporary NASA AERONET sun photometer/lidar observations sites and mobile measurement platforms (“DRAGON”) were deployed to assess vertically resolved influences of smoke on light.
Extensive modeling efforts and meteorological forecasting efforts associated with the measurements resulted in reports that are also public. Coordination with the US Department of Agriculture and various academic institutions enabled inclusion of detailed fuels information including fuel type and density as well as post-fire information in some cases. Coordination on prescribed burns of different fuels and in different regions in the US provide case studies for connecting emissions to fuels.
A detailed overview of the entire effort is available on-line at: https://www.esrl.noaa.gov/csd/projects/firex-aq/
How to cite: Schwarz, J. and the FIREX-AQ Science Team: The FIREX-AQ 2019 Dataset Is Public, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20755, https://doi.org/10.5194/egusphere-egu2020-20755, 2020.
EGU2020-9220 | Displays | BG3.17
New simple approach to understand the spatial and vertical distribution of biomass burning CO emission based on the MOPITT vertical measurementsChuyong Lin and Jason Cohen
A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.
How to cite: Lin, C. and Cohen, J.: New simple approach to understand the spatial and vertical distribution of biomass burning CO emission based on the MOPITT vertical measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9220, https://doi.org/10.5194/egusphere-egu2020-9220, 2020.
A simple variance-maximization approach, based on 19 years of weekly Moderate Resolution Imaging spectroradiometer (MOPITT) CO vertical measurements, was employed to quantify the spatial distribution of the global seasonal biomass burning region. Results demonstrate there are a few large-scale and typical biomass burning regions responsible for most of the biomass burning emissions throughout the world, with the largest of these such regions located in Amazonian South America, Western Africa, Indonesia, and Northern Southeast Asia (Eastern India, Northern Myanmar, Laos, Vietnam and Eastern Bangladesh), which are highly associated with the results of Global Fire Emission Database(GFED). The CO is primarily lofted to and spreads downwind at 800mb or 700mb with three exceptions: The Maritime Continent and South America where there is significant spread at 300mb consistent with known deep- and pyro-convection; and Southern Africa where there is significant spread at 600mb. The total mass of CO lofted into the free troposphere ranges from 46% over Central Africa to 92% over Australia.
How to cite: Lin, C. and Cohen, J.: New simple approach to understand the spatial and vertical distribution of biomass burning CO emission based on the MOPITT vertical measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9220, https://doi.org/10.5194/egusphere-egu2020-9220, 2020.
EGU2020-6185 | Displays | BG3.17
Historical (1700-2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)Fang Li and the FireMIP
Fire emissions are a critical component of carbon and nutrient cycles and strongly affect climate and air quality. Dynamic global vegetation models (DGVMs) with interactive fire modeling provide important estimates for long-term and large-scale changes in fire emissions. Here we present the first multi-model estimates of global gridded historical fire emissions for 1700-2012, including carbon and 33 species of trace gases and aerosols. The dataset is based on simulations of nine DGVMs with different state-of-the-art global fire models that participated in the Fire Modeling Intercomparison Project (FireMIP), using the same and standardized protocols and forcing data, and the most up-to-date fire emission factor table based on field and laboratory studies in various land cover types. We evaluate the simulations of present-day fire emissions by comparing them with satellite-based products. The evaluation results show that most DGVMs simulate present-day global fire emission totals within the range of satellite-based products. They can capture the high emissions over the tropical savannas and low emissions over the arid and sparsely vegetated regions, and the main features of seasonality. However, most models fail to simulate the interannual variability, partly due to a lack of modeling peat fires and tropical deforestation fires. Before the 1850s, all models show only a weak trend in global fire emissions, which is consistent with the multi-source merged historical reconstructions used as input data for CMIP6. On the other hand, the trends are quite different among DGVMs for the 20th century, with some models showing an increase and others a decrease in fire emissions, mainly as a result of the discrepancy in their simulated responses to human population density change and land use and land cover change (LULCC). Our study provides an important dataset for further development of regional and global multi-source merged historical reconstructions, analyses of the historical changes in fire emissions and their uncertainties, and quantification of the role of fire emissions in the Earth system. It also highlights the importance of accurately modeling the responses of fire emissions to LULCC and population density change in reducing uncertainties in historical reconstructions of fire emissions and providing more reliable future projections.
How to cite: Li, F. and the FireMIP: Historical (1700-2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6185, https://doi.org/10.5194/egusphere-egu2020-6185, 2020.
Fire emissions are a critical component of carbon and nutrient cycles and strongly affect climate and air quality. Dynamic global vegetation models (DGVMs) with interactive fire modeling provide important estimates for long-term and large-scale changes in fire emissions. Here we present the first multi-model estimates of global gridded historical fire emissions for 1700-2012, including carbon and 33 species of trace gases and aerosols. The dataset is based on simulations of nine DGVMs with different state-of-the-art global fire models that participated in the Fire Modeling Intercomparison Project (FireMIP), using the same and standardized protocols and forcing data, and the most up-to-date fire emission factor table based on field and laboratory studies in various land cover types. We evaluate the simulations of present-day fire emissions by comparing them with satellite-based products. The evaluation results show that most DGVMs simulate present-day global fire emission totals within the range of satellite-based products. They can capture the high emissions over the tropical savannas and low emissions over the arid and sparsely vegetated regions, and the main features of seasonality. However, most models fail to simulate the interannual variability, partly due to a lack of modeling peat fires and tropical deforestation fires. Before the 1850s, all models show only a weak trend in global fire emissions, which is consistent with the multi-source merged historical reconstructions used as input data for CMIP6. On the other hand, the trends are quite different among DGVMs for the 20th century, with some models showing an increase and others a decrease in fire emissions, mainly as a result of the discrepancy in their simulated responses to human population density change and land use and land cover change (LULCC). Our study provides an important dataset for further development of regional and global multi-source merged historical reconstructions, analyses of the historical changes in fire emissions and their uncertainties, and quantification of the role of fire emissions in the Earth system. It also highlights the importance of accurately modeling the responses of fire emissions to LULCC and population density change in reducing uncertainties in historical reconstructions of fire emissions and providing more reliable future projections.
How to cite: Li, F. and the FireMIP: Historical (1700-2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6185, https://doi.org/10.5194/egusphere-egu2020-6185, 2020.
EGU2020-6045 | Displays | BG3.17
Assessment of the impacts of PM10 due to wildfires on human mortality in PortugalPedro Jiménez-Guerrero, Sofia Augusto, Laura Palacios-Peña, Nuno Ratola, and Patricia Tarín-Carrasco
Wildfires are a major environmental problem that the current society must face and climate change will increase the number and intensity of wildfires during the next years. One of the problems is the toxicity of the pollutants emitted from biomass burning, including particulate matter (PM), carbon monoxide, methane, nitrogen oxides, volatile organic carbon, and some secondary pollutants. Some of these chemicals have demonstrated to impact human health, being responsible for increases on cardiovascular and respiratory morbidity and mortality (Johnston et al., 2012). These facts contribute to the deterioration of the air quality, therefore causing afflictions that may even end up in death. Wildfires are a worldwide concern, but in Europe the southern countries are the most affected. Thus, the estimation of the effects of wildfires on human health due to PM exposure is fundamental to manage health resources and public funds. Portugal was one of the European countries most affected by wildfires in the last decade, yet there is a lack of knowledge regarding impacts of the wildfire-related pollutants on the population mortality.
This study aims to describe the pattern of wildfires occurring in a period of 16 years (2001-2016) during the fire season (June, July, August and September) and to assess the impact of wildfire-generated PM10 on the Portuguese population mortality, considering the fires that produced a burned area equal or above 1000 ha.
Data for PM10 measured in background air quality monitoring stations was obtained from the Portuguese Environment Agency. All-cause (excluding injuries, poisoning and external causes) and cause-specific mortality (circulatory and respiratory) data was provided by Statistics Portugal. PM10 concentrations were correlated with the burned area. Associations between PM10 exposure and all-cause and cause-specific mortalities were studied using Poisson regression models. We found significant correlation between burned area and mortality in some NUTS, in particular, inland and north of Portugal mainland. Also, a good and significant correlation between burned area and PM10 is found. This means that big fires have an impact on the dwellers health due to Particulate Matter causing diseases and even provoking the death.
Acknowledgements
This work was financially supported by project UID/EQU/00511/2019 - Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by national funds through FCT/MCTES (PIDDAC). S. Augusto was supported by FCT-MCTES (SFRH/BPD/109382/2015). L. Palacios-Peña thanks to the scholarship FPU14/05505 of the Education, Culture and Sport Ministry. We acknowledge the project ACEX (CGL-2017-87921-R) of the Spanish Ministry of Economy and Competitiveness, the Fundación Biodiversidad of the Spanish Ministry for the Ecological Transition, and the FEDER European program, for support to conduct this research.
How to cite: Jiménez-Guerrero, P., Augusto, S., Palacios-Peña, L., Ratola, N., and Tarín-Carrasco, P.: Assessment of the impacts of PM10 due to wildfires on human mortality in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6045, https://doi.org/10.5194/egusphere-egu2020-6045, 2020.
Wildfires are a major environmental problem that the current society must face and climate change will increase the number and intensity of wildfires during the next years. One of the problems is the toxicity of the pollutants emitted from biomass burning, including particulate matter (PM), carbon monoxide, methane, nitrogen oxides, volatile organic carbon, and some secondary pollutants. Some of these chemicals have demonstrated to impact human health, being responsible for increases on cardiovascular and respiratory morbidity and mortality (Johnston et al., 2012). These facts contribute to the deterioration of the air quality, therefore causing afflictions that may even end up in death. Wildfires are a worldwide concern, but in Europe the southern countries are the most affected. Thus, the estimation of the effects of wildfires on human health due to PM exposure is fundamental to manage health resources and public funds. Portugal was one of the European countries most affected by wildfires in the last decade, yet there is a lack of knowledge regarding impacts of the wildfire-related pollutants on the population mortality.
This study aims to describe the pattern of wildfires occurring in a period of 16 years (2001-2016) during the fire season (June, July, August and September) and to assess the impact of wildfire-generated PM10 on the Portuguese population mortality, considering the fires that produced a burned area equal or above 1000 ha.
Data for PM10 measured in background air quality monitoring stations was obtained from the Portuguese Environment Agency. All-cause (excluding injuries, poisoning and external causes) and cause-specific mortality (circulatory and respiratory) data was provided by Statistics Portugal. PM10 concentrations were correlated with the burned area. Associations between PM10 exposure and all-cause and cause-specific mortalities were studied using Poisson regression models. We found significant correlation between burned area and mortality in some NUTS, in particular, inland and north of Portugal mainland. Also, a good and significant correlation between burned area and PM10 is found. This means that big fires have an impact on the dwellers health due to Particulate Matter causing diseases and even provoking the death.
Acknowledgements
This work was financially supported by project UID/EQU/00511/2019 - Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE funded by national funds through FCT/MCTES (PIDDAC). S. Augusto was supported by FCT-MCTES (SFRH/BPD/109382/2015). L. Palacios-Peña thanks to the scholarship FPU14/05505 of the Education, Culture and Sport Ministry. We acknowledge the project ACEX (CGL-2017-87921-R) of the Spanish Ministry of Economy and Competitiveness, the Fundación Biodiversidad of the Spanish Ministry for the Ecological Transition, and the FEDER European program, for support to conduct this research.
How to cite: Jiménez-Guerrero, P., Augusto, S., Palacios-Peña, L., Ratola, N., and Tarín-Carrasco, P.: Assessment of the impacts of PM10 due to wildfires on human mortality in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6045, https://doi.org/10.5194/egusphere-egu2020-6045, 2020.
EGU2020-11097 | Displays | BG3.17
Comparing Wildfire GOES-based Stereo-Plume Heights, Winds, and Aerosol Property from 3D-Wind and MAGARA Algorithms to CMAQ simulations: A 2018 Camp Fire StudyMariel Friberg, Yufei Zou, James Limbacher, Dong Wu, James Carr, and Susan O’Neill
Science Question: How can we use two new geostationary satellite-based algorithms to constrain wildfire plume modeling simulations?
Method: Our approach is twofold. Combining NASA’s legacy MODIS products with the GOES Advanced Baseline Imager imagery, the state-of-the-art 3D-Wind algorithm, we first compare satellite-based detected wildfire plume injection heights with CMAQ, a chemical transport model. The validated GOES-MODIS 3D-Wind algorithm provides plume dynamics data with < 200 m vertical resolution for plume height and < 0.5 m/s for plume speed. Secondly, we compare aerosol type observations from the novel Multi-Angle Geostationary Aerosol Research Algorithm (MAGARA) to constrain modeled smoke hotspots and dispersion patterns of aerosols. Consistently modeled meteorology and extensive satellite coverage combine to produce more accurate plume injection heights and dispersion patterns, especially in areas where ground measurements are limited or absent. We compare the results of the two novel algorithms, 3D-Wind and MAGARA, to the 2018 Camp Fire event CMAQ runs.
Impact: Geostationary satellite wildfire plume-attribute products provide spatiotemporal context and can decrease errors in plume characterization.
Why It Matters: According to the EPA, wildland fires contributed approximately 30 percent of directly emitted fine particulate matter, linked to premature death from heart and lung disease. By capturing the dynamic wildfire plume dispersion, height, and winds, we can determine if fire plumes stay within or shoot above the planetary boundary layer and constrain modeling results. Improved accuracy, coverage, and characterization of plume injection height data increase the effectiveness of management methods that reduce and estimate smoke exposure.
How to cite: Friberg, M., Zou, Y., Limbacher, J., Wu, D., Carr, J., and O’Neill, S.: Comparing Wildfire GOES-based Stereo-Plume Heights, Winds, and Aerosol Property from 3D-Wind and MAGARA Algorithms to CMAQ simulations: A 2018 Camp Fire Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11097, https://doi.org/10.5194/egusphere-egu2020-11097, 2020.
Science Question: How can we use two new geostationary satellite-based algorithms to constrain wildfire plume modeling simulations?
Method: Our approach is twofold. Combining NASA’s legacy MODIS products with the GOES Advanced Baseline Imager imagery, the state-of-the-art 3D-Wind algorithm, we first compare satellite-based detected wildfire plume injection heights with CMAQ, a chemical transport model. The validated GOES-MODIS 3D-Wind algorithm provides plume dynamics data with < 200 m vertical resolution for plume height and < 0.5 m/s for plume speed. Secondly, we compare aerosol type observations from the novel Multi-Angle Geostationary Aerosol Research Algorithm (MAGARA) to constrain modeled smoke hotspots and dispersion patterns of aerosols. Consistently modeled meteorology and extensive satellite coverage combine to produce more accurate plume injection heights and dispersion patterns, especially in areas where ground measurements are limited or absent. We compare the results of the two novel algorithms, 3D-Wind and MAGARA, to the 2018 Camp Fire event CMAQ runs.
Impact: Geostationary satellite wildfire plume-attribute products provide spatiotemporal context and can decrease errors in plume characterization.
Why It Matters: According to the EPA, wildland fires contributed approximately 30 percent of directly emitted fine particulate matter, linked to premature death from heart and lung disease. By capturing the dynamic wildfire plume dispersion, height, and winds, we can determine if fire plumes stay within or shoot above the planetary boundary layer and constrain modeling results. Improved accuracy, coverage, and characterization of plume injection height data increase the effectiveness of management methods that reduce and estimate smoke exposure.
How to cite: Friberg, M., Zou, Y., Limbacher, J., Wu, D., Carr, J., and O’Neill, S.: Comparing Wildfire GOES-based Stereo-Plume Heights, Winds, and Aerosol Property from 3D-Wind and MAGARA Algorithms to CMAQ simulations: A 2018 Camp Fire Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11097, https://doi.org/10.5194/egusphere-egu2020-11097, 2020.
EGU2020-12112 | Displays | BG3.17
In situ ammonia measurements in wildfire and agricultural fire plumes in the USLaura Tomsche, Tomas Mikoviny, John B. Nowak, Felix Piel, and Armin Wisthaler
Emissions of trace gases and particles from fires have a major impact on climate, visibility, air quality, and public health. Biomass burning emissions include reactive nitrogen gases, in particular, ammonia (NH3). NH3 is a short-lived gas that acts as precursor for secondary aerosols formed in the downwind plume. This process is still poorly constrained.
In summer 2019, NASA and NOAA carried out the joint airborne FIREX-AQ (Fire Influence on Regional to global Environments and Air Quality) mission over the continental US to sample plumes from wildfires and agricultural fires. On board the NASA DC-8, we used a modified PTR-ToF-MS instrument for measuring NH3 in situ and at high time resolution. Over the course of the mission, we collected a large set of NH3 data in plumes associated with different fire types and burning conditions. Herein, we will present exemplary data and show results of our initial analyses.
How to cite: Tomsche, L., Mikoviny, T., Nowak, J. B., Piel, F., and Wisthaler, A.: In situ ammonia measurements in wildfire and agricultural fire plumes in the US, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12112, https://doi.org/10.5194/egusphere-egu2020-12112, 2020.
Emissions of trace gases and particles from fires have a major impact on climate, visibility, air quality, and public health. Biomass burning emissions include reactive nitrogen gases, in particular, ammonia (NH3). NH3 is a short-lived gas that acts as precursor for secondary aerosols formed in the downwind plume. This process is still poorly constrained.
In summer 2019, NASA and NOAA carried out the joint airborne FIREX-AQ (Fire Influence on Regional to global Environments and Air Quality) mission over the continental US to sample plumes from wildfires and agricultural fires. On board the NASA DC-8, we used a modified PTR-ToF-MS instrument for measuring NH3 in situ and at high time resolution. Over the course of the mission, we collected a large set of NH3 data in plumes associated with different fire types and burning conditions. Herein, we will present exemplary data and show results of our initial analyses.
How to cite: Tomsche, L., Mikoviny, T., Nowak, J. B., Piel, F., and Wisthaler, A.: In situ ammonia measurements in wildfire and agricultural fire plumes in the US, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12112, https://doi.org/10.5194/egusphere-egu2020-12112, 2020.
EGU2020-15886 | Displays | BG3.17
Airborne measurements of trace gas emissions from African biomass burning during the MOYA CampaignPatrick Barker, Grant Allen, Thomas Bannan, Joseph Pitt, Stephane Bauguitte, Euan Nisbet, and James Lee
Biomass burning (BB) is known to contribute significantly to the global budgets of atmospheric trace gases and aerosols. Approximately 1.6–4.1 Pg of CO2, 11–53 Tg CH4 and 0.1–0.3 Tg of N2O is emitted to the atmosphere per year as a result of biomass burning on a global scale (Crutzen and Andreae, 2016). The contribution of BB to global GHG budgets is likely to increase over time due to climate feedback of warming and more widespread drought conditions increasing the likelihood and spread of wildfire events (Liu et al., 2014).
It is estimated that Africa accounts for approximately 52% of all BB carbon emissions, with the Northern Sub-Saharan African region alone accounting for 20-25% of global BB carbon emissions (van der Werf et al. 2010; Ichoku et al. 2016). Many of these fires are anthropogenic in origin, and occur for reasons such as clearing land for agricultural use, management of natural savannah vegetation, or as pest control (Andreae, 1991). Despite the African contribution to global BB emissions, there are limited in situ studies of African wildfire emissions.
In situ measurements of CH4, CO2 and N2O and CO in biomass burning plumes were carried out in Senegal in February 2017 and in Uganda in January 2019 during the Methane Observations and Yearly Assessments (MOYA) project. These observations were carried out using the Facility for Airborne Atmospheric Measurements BAe-146 Atmospheric Research Aircraft (ARA), which is fitted with a range of specialist instrumentation for in situ trace gas sampling. Emission factors for these species were calculated for both near-field and far-field biomass burning plumes. A notable difference in the linear trend between methane emission factors and completeness-of-combustion was identified between Senegalese and Ugandan fires.
How to cite: Barker, P., Allen, G., Bannan, T., Pitt, J., Bauguitte, S., Nisbet, E., and Lee, J.: Airborne measurements of trace gas emissions from African biomass burning during the MOYA Campaign, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15886, https://doi.org/10.5194/egusphere-egu2020-15886, 2020.
Biomass burning (BB) is known to contribute significantly to the global budgets of atmospheric trace gases and aerosols. Approximately 1.6–4.1 Pg of CO2, 11–53 Tg CH4 and 0.1–0.3 Tg of N2O is emitted to the atmosphere per year as a result of biomass burning on a global scale (Crutzen and Andreae, 2016). The contribution of BB to global GHG budgets is likely to increase over time due to climate feedback of warming and more widespread drought conditions increasing the likelihood and spread of wildfire events (Liu et al., 2014).
It is estimated that Africa accounts for approximately 52% of all BB carbon emissions, with the Northern Sub-Saharan African region alone accounting for 20-25% of global BB carbon emissions (van der Werf et al. 2010; Ichoku et al. 2016). Many of these fires are anthropogenic in origin, and occur for reasons such as clearing land for agricultural use, management of natural savannah vegetation, or as pest control (Andreae, 1991). Despite the African contribution to global BB emissions, there are limited in situ studies of African wildfire emissions.
In situ measurements of CH4, CO2 and N2O and CO in biomass burning plumes were carried out in Senegal in February 2017 and in Uganda in January 2019 during the Methane Observations and Yearly Assessments (MOYA) project. These observations were carried out using the Facility for Airborne Atmospheric Measurements BAe-146 Atmospheric Research Aircraft (ARA), which is fitted with a range of specialist instrumentation for in situ trace gas sampling. Emission factors for these species were calculated for both near-field and far-field biomass burning plumes. A notable difference in the linear trend between methane emission factors and completeness-of-combustion was identified between Senegalese and Ugandan fires.
How to cite: Barker, P., Allen, G., Bannan, T., Pitt, J., Bauguitte, S., Nisbet, E., and Lee, J.: Airborne measurements of trace gas emissions from African biomass burning during the MOYA Campaign, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15886, https://doi.org/10.5194/egusphere-egu2020-15886, 2020.
EGU2020-17829 | Displays | BG3.17
Climatological Biomass Burning CO – Where it comes from and where it goes.Nikos Daskalakis, Maria Kanakidou, Mihalis Vrekoussis, and Laura Gallardo
Carbon Monoxide (CO) is an important atmospheric trace gas, and among the key O3 precursors in the troposphere, alongside NOx and VOCs. It is among the most important sinks of OH radical in the atmosphere, which controls lifetime of CH4 — a major greenhouse gas. Biomass burning sources contribute about 25% to the global emissions of CO, with the remaining CO being either emitted from anthropogenic sources, or being chemically formed in the atmosphere. Because of CO tropospheric lifetime is about two months; it can be transported in the atmosphere thus its sources have a hemispheric impact on atmospheric composition.
The extent of the impact of biomass burning to remote areas of the world through long range transport is here investigated using the global 3-dimensional chemistry transport model TM4-ECPL. For this, tagged biomass burning CO tracers from the 13 different HTAP (land) source regions are used in the model in order to evaluate the contribution of each source region to the CO concentrations in the 170 HTAP receptor regions that originate from biomass burning. The global simulations cover the period 1994—2015 in order to derive climatological transport patterns for CO and assess the contribution of each of the source regions to each of the receptor regions in the global troposphere. The CO simulations are evaluated by comparison with satellite observations from MOPITT and ground based observations from WDCGG. We show the significant impact of biomass burning emissions to the most remote regions of the world.
How to cite: Daskalakis, N., Kanakidou, M., Vrekoussis, M., and Gallardo, L.: Climatological Biomass Burning CO – Where it comes from and where it goes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17829, https://doi.org/10.5194/egusphere-egu2020-17829, 2020.
Carbon Monoxide (CO) is an important atmospheric trace gas, and among the key O3 precursors in the troposphere, alongside NOx and VOCs. It is among the most important sinks of OH radical in the atmosphere, which controls lifetime of CH4 — a major greenhouse gas. Biomass burning sources contribute about 25% to the global emissions of CO, with the remaining CO being either emitted from anthropogenic sources, or being chemically formed in the atmosphere. Because of CO tropospheric lifetime is about two months; it can be transported in the atmosphere thus its sources have a hemispheric impact on atmospheric composition.
The extent of the impact of biomass burning to remote areas of the world through long range transport is here investigated using the global 3-dimensional chemistry transport model TM4-ECPL. For this, tagged biomass burning CO tracers from the 13 different HTAP (land) source regions are used in the model in order to evaluate the contribution of each source region to the CO concentrations in the 170 HTAP receptor regions that originate from biomass burning. The global simulations cover the period 1994—2015 in order to derive climatological transport patterns for CO and assess the contribution of each of the source regions to each of the receptor regions in the global troposphere. The CO simulations are evaluated by comparison with satellite observations from MOPITT and ground based observations from WDCGG. We show the significant impact of biomass burning emissions to the most remote regions of the world.
How to cite: Daskalakis, N., Kanakidou, M., Vrekoussis, M., and Gallardo, L.: Climatological Biomass Burning CO – Where it comes from and where it goes., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17829, https://doi.org/10.5194/egusphere-egu2020-17829, 2020.
EGU2020-19800 | Displays | BG3.17
Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model (UKESM)João Teixeira, Fiona O'Connor, Nadine Unger, and Apostolos Voulgarakis
Fires constitutes a key process in the Earth system (ES), being driven by climate as well as affecting the climate by changing atmospheric composition and its impact on the terrestrial carbon cycle. However, global modelling studies on the effects of fires on atmospheric composition, radiative forcing and climate have been very limited to date. The aim of this work is the development and application of a fully coupled vegetation-fire-chemistry-climate ES model in order to quantify the impacts of fire variability on atmospheric composition-climate interactions in the present day. For this, the INFERNO fire model is coupled to the atmosphere-only configuration of the UK’s Earth System Model (UKESM). This fire-atmosphere interaction through atmospheric chemistry and aerosols allows for fire emissions to feedback on radiation and clouds changing weather which can consequently feedback on the atmospheric drivers of fire. Additionally, INFERNO was updated based on recent developments in the literature to improve the representation of human/economic factors in the anthropogenic ignition and suppression of fire. This work presents an assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 configuration which has prescribed fire emissions. Results show a satisfactory performance when using the fire-atmosphere coupling (the “online” version of the model) when compared to the offline UKESM that uses prescribed fire. The model can reproduce observed present day global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional scale there is an overestimation of fire emissions over Africa due to the miss-representation of the underlying vegetation types and an underestimation over Equatorial Asia due to a lack of representation of peat fires.
How to cite: Teixeira, J., O'Connor, F., Unger, N., and Voulgarakis, A.: Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model (UKESM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19800, https://doi.org/10.5194/egusphere-egu2020-19800, 2020.
Fires constitutes a key process in the Earth system (ES), being driven by climate as well as affecting the climate by changing atmospheric composition and its impact on the terrestrial carbon cycle. However, global modelling studies on the effects of fires on atmospheric composition, radiative forcing and climate have been very limited to date. The aim of this work is the development and application of a fully coupled vegetation-fire-chemistry-climate ES model in order to quantify the impacts of fire variability on atmospheric composition-climate interactions in the present day. For this, the INFERNO fire model is coupled to the atmosphere-only configuration of the UK’s Earth System Model (UKESM). This fire-atmosphere interaction through atmospheric chemistry and aerosols allows for fire emissions to feedback on radiation and clouds changing weather which can consequently feedback on the atmospheric drivers of fire. Additionally, INFERNO was updated based on recent developments in the literature to improve the representation of human/economic factors in the anthropogenic ignition and suppression of fire. This work presents an assessment of the effects of interactive fire coupling on atmospheric composition and climate compared to the standard UKESM1 configuration which has prescribed fire emissions. Results show a satisfactory performance when using the fire-atmosphere coupling (the “online” version of the model) when compared to the offline UKESM that uses prescribed fire. The model can reproduce observed present day global fire emissions of carbon monoxide (CO) and aerosols, despite underestimating the global average burnt area. However, at a regional scale there is an overestimation of fire emissions over Africa due to the miss-representation of the underlying vegetation types and an underestimation over Equatorial Asia due to a lack of representation of peat fires.
How to cite: Teixeira, J., O'Connor, F., Unger, N., and Voulgarakis, A.: Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model (UKESM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19800, https://doi.org/10.5194/egusphere-egu2020-19800, 2020.
EGU2020-7653 | Displays | BG3.17
Characterizing two distinct biomass burning regimes over Southeast Asia and their impacts on regional air qualityMargaret Marvin, Paul Palmer, Fei Yao, Barry Latter, Richard Siddans, and Brian Kerridge
Mainland and maritime Southeast Asia is home to more than 655 million people, representing nearly 10% of the global population. The dry season in this region is typically associated with intense biomass burning activity, which leads to a significant increase in surface air pollutants that are harmful to human health, including ozone (O3) and fine (radii smaller than 2.5 microns) particulate matter (PM2.5). Latitude-based differences in dry season timing and land use distinguish two regional biomass burning regimes: (1) agricultural waste burning on the peninsular mainland from February through April and (2) coastal peat burning across the equatorial islands in September and October. The type and amount of material burned determines the chemical composition of emissions and subsequently their impact on regional air quality. Understanding the individual and collective roles of these biomass burning regimes is a crucial step towards developing effective air quality mitigation strategies for Southeast Asia. Here, we use the nested GEOS-Chem atmospheric chemistry transport model (horizontal resolution of 0.25° x 0.3125°) to simulate fire-atmosphere interactions over Southeast Asia during March and September of 2014, when emissions peak from the two regional burning seasons. Based on our analysis of model output, we report how these two distinct biomass burning regimes impact the photochemical environment over Southeast Asia and what the resulting consequences are for surface air quality. We will also present a critical evaluation of our model using ground-based and satellite observations of atmospheric composition across the region.
How to cite: Marvin, M., Palmer, P., Yao, F., Latter, B., Siddans, R., and Kerridge, B.: Characterizing two distinct biomass burning regimes over Southeast Asia and their impacts on regional air quality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7653, https://doi.org/10.5194/egusphere-egu2020-7653, 2020.
Mainland and maritime Southeast Asia is home to more than 655 million people, representing nearly 10% of the global population. The dry season in this region is typically associated with intense biomass burning activity, which leads to a significant increase in surface air pollutants that are harmful to human health, including ozone (O3) and fine (radii smaller than 2.5 microns) particulate matter (PM2.5). Latitude-based differences in dry season timing and land use distinguish two regional biomass burning regimes: (1) agricultural waste burning on the peninsular mainland from February through April and (2) coastal peat burning across the equatorial islands in September and October. The type and amount of material burned determines the chemical composition of emissions and subsequently their impact on regional air quality. Understanding the individual and collective roles of these biomass burning regimes is a crucial step towards developing effective air quality mitigation strategies for Southeast Asia. Here, we use the nested GEOS-Chem atmospheric chemistry transport model (horizontal resolution of 0.25° x 0.3125°) to simulate fire-atmosphere interactions over Southeast Asia during March and September of 2014, when emissions peak from the two regional burning seasons. Based on our analysis of model output, we report how these two distinct biomass burning regimes impact the photochemical environment over Southeast Asia and what the resulting consequences are for surface air quality. We will also present a critical evaluation of our model using ground-based and satellite observations of atmospheric composition across the region.
How to cite: Marvin, M., Palmer, P., Yao, F., Latter, B., Siddans, R., and Kerridge, B.: Characterizing two distinct biomass burning regimes over Southeast Asia and their impacts on regional air quality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7653, https://doi.org/10.5194/egusphere-egu2020-7653, 2020.
EGU2020-1939 | Displays | BG3.17
Carbon emissions from wildfires in larch forest ecosystems of Northeast SiberiaClement J. Delcourt, Brian Izbicki, Elena A. Kukavskaya, Michelle C. Mack, Trofim C. Maximov, Roman E. Petrov, Brendan M. Rogers, Rebecca Scholten, Tatiana Shestakova, Guido van der Werf, Dave van Wees, and Sander Veraverbeke
The boreal forest is one of the largest terrestrial carbon reservoirs on Earth and accounts for approximately 30% of the world’s forest cover. The boreal carbon balance is thus of global significance. Wildfires affect the boreal carbon balance, releasing large amounts of carbon into the atmosphere when soil organic layers and aboveground biomass are combusted. The boreal forest is warming faster than the global average. These higher temperatures lead to increases in the frequency and severity of wildfire disturbance in boreal regions.
Significant progress has been made in quantifying carbon combustion in North American boreal forests, yet few measurements have been conducted in the larch dominated boreal forests of Northeast Siberia. Deciduous needleleaf larch forest growing on continuous permafrost is a unique ecosystem of Siberia. Although these larch forests cover approximately 20% of the boreal biome, the consequences of intensifying fire regimes on the carbon stocks and vegetation dynamics of these ecosystems remain poorly understood.
We conducted a field campaign in larch forests around Yakutsk, Northeast Siberia, during the summer of 2019 with the goal of filling parts of these knowledge and data gaps by collecting ground measurements of carbon combustion from two large fire events in 2017 and 2018. During this campaign, we sampled 42 burned sites in two fire scars that cover gradients of fire severity, vegetation composition and landscape position. Within these sites, we performed a wide range of measurements to quantify aboveground and belowground carbon emissions, constrained by data from 12 unburned sites. We also assessed post-fire recovery and active layer deepening. We investigated major drivers of pre-fire carbon stocks and subsequent combustion at the site level. Our results will reduce uncertainties in larger scale estimates of carbon emissions from Siberian fires which is in turn essential for assessing the implications of the climate-induced intensification of fire regimes for the global carbon cycle.
How to cite: Delcourt, C. J., Izbicki, B., Kukavskaya, E. A., Mack, M. C., Maximov, T. C., Petrov, R. E., Rogers, B. M., Scholten, R., Shestakova, T., van der Werf, G., van Wees, D., and Veraverbeke, S.: Carbon emissions from wildfires in larch forest ecosystems of Northeast Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1939, https://doi.org/10.5194/egusphere-egu2020-1939, 2020.
The boreal forest is one of the largest terrestrial carbon reservoirs on Earth and accounts for approximately 30% of the world’s forest cover. The boreal carbon balance is thus of global significance. Wildfires affect the boreal carbon balance, releasing large amounts of carbon into the atmosphere when soil organic layers and aboveground biomass are combusted. The boreal forest is warming faster than the global average. These higher temperatures lead to increases in the frequency and severity of wildfire disturbance in boreal regions.
Significant progress has been made in quantifying carbon combustion in North American boreal forests, yet few measurements have been conducted in the larch dominated boreal forests of Northeast Siberia. Deciduous needleleaf larch forest growing on continuous permafrost is a unique ecosystem of Siberia. Although these larch forests cover approximately 20% of the boreal biome, the consequences of intensifying fire regimes on the carbon stocks and vegetation dynamics of these ecosystems remain poorly understood.
We conducted a field campaign in larch forests around Yakutsk, Northeast Siberia, during the summer of 2019 with the goal of filling parts of these knowledge and data gaps by collecting ground measurements of carbon combustion from two large fire events in 2017 and 2018. During this campaign, we sampled 42 burned sites in two fire scars that cover gradients of fire severity, vegetation composition and landscape position. Within these sites, we performed a wide range of measurements to quantify aboveground and belowground carbon emissions, constrained by data from 12 unburned sites. We also assessed post-fire recovery and active layer deepening. We investigated major drivers of pre-fire carbon stocks and subsequent combustion at the site level. Our results will reduce uncertainties in larger scale estimates of carbon emissions from Siberian fires which is in turn essential for assessing the implications of the climate-induced intensification of fire regimes for the global carbon cycle.
How to cite: Delcourt, C. J., Izbicki, B., Kukavskaya, E. A., Mack, M. C., Maximov, T. C., Petrov, R. E., Rogers, B. M., Scholten, R., Shestakova, T., van der Werf, G., van Wees, D., and Veraverbeke, S.: Carbon emissions from wildfires in larch forest ecosystems of Northeast Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1939, https://doi.org/10.5194/egusphere-egu2020-1939, 2020.
EGU2020-8347 | Displays | BG3.17
Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire RecordsLingxiao Ying, Zehao Shen, Mingzheng Yang, and Shilong Piao
The Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used for wildfire occurrence and distribution detecting and fire risk assessments. Compared with its commission error, the omission error of MODIS wildfire detection has been revealed as a much more challenging, unsolved issue, and ground-level environmental factors influencing the detection capacity are also variable. This study compared the multiple MODIS fire products and the records of ground wildfire investigations during December 2002–November 2015 in Yunnan Province, Southwest China, in an attempt to reveal the difference in the spatiotemporal patterns of regional wildfire detected by the two approaches, to estimate the omission error of MODIS fire products based on confirmed ground wildfire records, and to explore how instantaneous and local environmental factors influenced the wildfire detection probability of MODIS. The results indicated that across the province, the total number of wildfire events recorded by MODIS was at least twice as many as that in the ground records, while the wildfire distribution patterns revealed by the two approaches were inconsistent. For the 5145 confirmed ground records, however, only 11.10% of them could be detected using multiple MODIS fire products (i.e., MOD14A1, MYD14A1, and MCD64A1). Opposing trends during the studied period were found between the yearly occurrence of ground-based wildfire records and the corresponding proportion detected by MODIS. Moreover, the wildfire detection proportion by MODIS was 11.36% in forest, 9.58% in shrubs, and 5.56% in grassland, respectively. Random forest modeling suggested that fire size was a primary limiting factor for MODIS fire detecting capacity, where a small fire size could likely result in MODIS omission errors at a threshold of 1 ha, while MODIS had a 50% probability of detecting a wildfire whose size was at least 18 ha. Aside from fire size, the wildfire detection probability of MODIS was also markedly influenced by weather factors, especially the daily relative humidity and the daily wind speed, and the altitude of wildfire occurrence. Considering the environmental factors’ contribution to the omission error in MODIS wildfire detection, we emphasized the importance of attention to the local conditions as well as ground inspection in practical wildfire monitoring and management and global wildfire simulations.
How to cite: Ying, L., Shen, Z., Yang, M., and Piao, S.: Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8347, https://doi.org/10.5194/egusphere-egu2020-8347, 2020.
The Moderate Resolution Imaging Spectroradiometer (MODIS) has been widely used for wildfire occurrence and distribution detecting and fire risk assessments. Compared with its commission error, the omission error of MODIS wildfire detection has been revealed as a much more challenging, unsolved issue, and ground-level environmental factors influencing the detection capacity are also variable. This study compared the multiple MODIS fire products and the records of ground wildfire investigations during December 2002–November 2015 in Yunnan Province, Southwest China, in an attempt to reveal the difference in the spatiotemporal patterns of regional wildfire detected by the two approaches, to estimate the omission error of MODIS fire products based on confirmed ground wildfire records, and to explore how instantaneous and local environmental factors influenced the wildfire detection probability of MODIS. The results indicated that across the province, the total number of wildfire events recorded by MODIS was at least twice as many as that in the ground records, while the wildfire distribution patterns revealed by the two approaches were inconsistent. For the 5145 confirmed ground records, however, only 11.10% of them could be detected using multiple MODIS fire products (i.e., MOD14A1, MYD14A1, and MCD64A1). Opposing trends during the studied period were found between the yearly occurrence of ground-based wildfire records and the corresponding proportion detected by MODIS. Moreover, the wildfire detection proportion by MODIS was 11.36% in forest, 9.58% in shrubs, and 5.56% in grassland, respectively. Random forest modeling suggested that fire size was a primary limiting factor for MODIS fire detecting capacity, where a small fire size could likely result in MODIS omission errors at a threshold of 1 ha, while MODIS had a 50% probability of detecting a wildfire whose size was at least 18 ha. Aside from fire size, the wildfire detection probability of MODIS was also markedly influenced by weather factors, especially the daily relative humidity and the daily wind speed, and the altitude of wildfire occurrence. Considering the environmental factors’ contribution to the omission error in MODIS wildfire detection, we emphasized the importance of attention to the local conditions as well as ground inspection in practical wildfire monitoring and management and global wildfire simulations.
How to cite: Ying, L., Shen, Z., Yang, M., and Piao, S.: Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8347, https://doi.org/10.5194/egusphere-egu2020-8347, 2020.
EGU2020-10860 | Displays | BG3.17
Characterising vegetation fuel moisture conditions from microwave satellite observations for fire danger prediction at continental to global scalesMatthias Forkel, Niels Andela, Wouter A. Dorigo, Markus Drüke, Sandy P. Harrison, Leander Moesinger, Luisa Schmidt, and Marta Yebra
Spatial patterns and temporal changes in live fuel moisture content (LFMC) have been intensively estimated from satellite observations in the optical domain of the electromagnetic spectrum. Such estimates are valuable to predict regional to local variations in fire danger (Yebra et al., 2018). However, optical satellite measurements saturate fast in dense canopies and are generally hampered during cloud cover. Microwave satellite observations can penetrate clouds and the canopy (dependent on the wavelength) and hence have been intensively used to derive surface soil moisture (SSM) or vegetation optical depth (VOD), which is a proxy for vegetation water content (Moesinger et al., 2019). However, the relationship of microwave VOD to LFMC and the predictive capabilities of VOD for fire dynamics have not yet been investigated at large scales. Here we aim to assess how VOD reflects changes in LFMC and the sensitivity of VOD to different properties of fire dynamics such as fire occurrence, size, burned area, and fire radiative power.
We compared VOD in different microwave bands (Ku-, X-, and C-band) from the VODCA dataset (Moesinger et al., 2019) with LFMC from MODIS retrievals (Yebra et al., 2018). Our results demonstrate that VOD and LFMC are moderately to highly correlated but the strength and shape of the relationship depends on land cover type. In a preliminary analysis, we then predicted the probability of fire occurrence (Andela et al., 2019) and fire radiative power (Kaiser et al., 2012) from VOD, SSM, and climate data using the random forest machine learning approach. The initial results show that VOD is a skilful predictor for continental-scale fire dynamics. Furthermore, our results suggest that the combination of LFMC from optical satellites with microwave SSM and VOD might allow to comprehensively estimate ecosystem fuel moisture conditions. Hence microwave satellite observations will be valuable for the development of integrated fire danger prediction systems.
References
Andela, N., Morton, D.C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., Werf, G.R. van der, Randerson, J.T., 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552. https://doi.org/10.5194/essd-11-529-2019
Kaiser, J.W., Heil, A., Andreae, M.O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M.G., Suttie, M., van der Werf, G.R., 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554. https://doi.org/10.5194/bg-9-527-2012
Moesinger, L., Dorigo, W., Jeu, R. de, Schalie, R. van der, Scanlon, T., Teubner, I., Forkel, M., 2019. The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA. Earth Syst. Sci. Data Discuss. 1–26. https://doi.org/10.5194/essd-2019-42
Yebra, M., Quan, X., Riaño, D., Rozas Larraondo, P., van Dijk, A.I.J.M., Cary, G.J., 2018. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 212, 260–272. https://doi.org/10.1016/j.rse.2018.04.053
How to cite: Forkel, M., Andela, N., Dorigo, W. A., Drüke, M., Harrison, S. P., Moesinger, L., Schmidt, L., and Yebra, M.: Characterising vegetation fuel moisture conditions from microwave satellite observations for fire danger prediction at continental to global scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10860, https://doi.org/10.5194/egusphere-egu2020-10860, 2020.
Spatial patterns and temporal changes in live fuel moisture content (LFMC) have been intensively estimated from satellite observations in the optical domain of the electromagnetic spectrum. Such estimates are valuable to predict regional to local variations in fire danger (Yebra et al., 2018). However, optical satellite measurements saturate fast in dense canopies and are generally hampered during cloud cover. Microwave satellite observations can penetrate clouds and the canopy (dependent on the wavelength) and hence have been intensively used to derive surface soil moisture (SSM) or vegetation optical depth (VOD), which is a proxy for vegetation water content (Moesinger et al., 2019). However, the relationship of microwave VOD to LFMC and the predictive capabilities of VOD for fire dynamics have not yet been investigated at large scales. Here we aim to assess how VOD reflects changes in LFMC and the sensitivity of VOD to different properties of fire dynamics such as fire occurrence, size, burned area, and fire radiative power.
We compared VOD in different microwave bands (Ku-, X-, and C-band) from the VODCA dataset (Moesinger et al., 2019) with LFMC from MODIS retrievals (Yebra et al., 2018). Our results demonstrate that VOD and LFMC are moderately to highly correlated but the strength and shape of the relationship depends on land cover type. In a preliminary analysis, we then predicted the probability of fire occurrence (Andela et al., 2019) and fire radiative power (Kaiser et al., 2012) from VOD, SSM, and climate data using the random forest machine learning approach. The initial results show that VOD is a skilful predictor for continental-scale fire dynamics. Furthermore, our results suggest that the combination of LFMC from optical satellites with microwave SSM and VOD might allow to comprehensively estimate ecosystem fuel moisture conditions. Hence microwave satellite observations will be valuable for the development of integrated fire danger prediction systems.
References
Andela, N., Morton, D.C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., Werf, G.R. van der, Randerson, J.T., 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 11, 529–552. https://doi.org/10.5194/essd-11-529-2019
Kaiser, J.W., Heil, A., Andreae, M.O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M.G., Suttie, M., van der Werf, G.R., 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554. https://doi.org/10.5194/bg-9-527-2012
Moesinger, L., Dorigo, W., Jeu, R. de, Schalie, R. van der, Scanlon, T., Teubner, I., Forkel, M., 2019. The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA. Earth Syst. Sci. Data Discuss. 1–26. https://doi.org/10.5194/essd-2019-42
Yebra, M., Quan, X., Riaño, D., Rozas Larraondo, P., van Dijk, A.I.J.M., Cary, G.J., 2018. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 212, 260–272. https://doi.org/10.1016/j.rse.2018.04.053
How to cite: Forkel, M., Andela, N., Dorigo, W. A., Drüke, M., Harrison, S. P., Moesinger, L., Schmidt, L., and Yebra, M.: Characterising vegetation fuel moisture conditions from microwave satellite observations for fire danger prediction at continental to global scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10860, https://doi.org/10.5194/egusphere-egu2020-10860, 2020.
EGU2020-5347 | Displays | BG3.17
Wildfires promoted by contrasting soil moisture anomalies in humid versus arid regionsSungmin Oh, Xinyuan Hou, and Rene Orth
Wildfires are essential for ecosystem development, thereby affecting the global carbon cycle. Soil moisture is a major driver of wildfires, however, due to a lack of large-scale observations it remains unclear which spatio-temporal soil moisture patterns promote wildfires. Using satellite-based soil moisture data, we show contrasting soil moisture anomalies preceding the locally largest wildfires in space and time. In arid regions wetter-than-average soils enable sufficient biomass growth required to fuel fires. By contrast, in humid regions fires are typically preceded by dry soil moisture anomalies inducing suitable ignition conditions and flammability in an otherwise too wet environment. In both regions, soil moisture anomalies are continuously decreasing over the months before the fire occurrence, often from above-normal to below-normal. These signals are most pronounced for larger fires in sparsely populated areas with low human influence. Resolving natural soil moisture-fire interactions supports fire modelling and enables improved fire forecasts and early warning.
How to cite: Oh, S., Hou, X., and Orth, R.: Wildfires promoted by contrasting soil moisture anomalies in humid versus arid regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5347, https://doi.org/10.5194/egusphere-egu2020-5347, 2020.
Wildfires are essential for ecosystem development, thereby affecting the global carbon cycle. Soil moisture is a major driver of wildfires, however, due to a lack of large-scale observations it remains unclear which spatio-temporal soil moisture patterns promote wildfires. Using satellite-based soil moisture data, we show contrasting soil moisture anomalies preceding the locally largest wildfires in space and time. In arid regions wetter-than-average soils enable sufficient biomass growth required to fuel fires. By contrast, in humid regions fires are typically preceded by dry soil moisture anomalies inducing suitable ignition conditions and flammability in an otherwise too wet environment. In both regions, soil moisture anomalies are continuously decreasing over the months before the fire occurrence, often from above-normal to below-normal. These signals are most pronounced for larger fires in sparsely populated areas with low human influence. Resolving natural soil moisture-fire interactions supports fire modelling and enables improved fire forecasts and early warning.
How to cite: Oh, S., Hou, X., and Orth, R.: Wildfires promoted by contrasting soil moisture anomalies in humid versus arid regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5347, https://doi.org/10.5194/egusphere-egu2020-5347, 2020.
EGU2020-19634 | Displays | BG3.17
Assessment of the relationship between pre-fire fuel estimates and Fire Radiative Power in PortugalCatarina Alonso, Célia M. Gouveia, and Patrícia Páscoa
Forest fires are recurrent in Portugal, either due to climate conditions, to land use change, or to a combination of both. Wet and mild winters, together with dry and warm summers, favour the growth of vegetation and its subsequent low moisture content, increasing fuel availability. The assessment and management of fuel loads is essential to understand and minimize fire risk. The structural risk depends on the type of available fuel and on the age of vegetation. Therefore, reducing fuel loads is often required to mitigate fire severity.
Active fire observations of fire radiative power (FRP) have been shown to be correlated to rates of biomass combustion. The Meteosat FRP-PIXEL product is delivered in near real-time by the EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF), since 2004 with 15-min temporal resolution. We propose to do the first assessment, for Portugal, of the relationship between Fire Radiative Energy (FRE) per fire and pre-fire fuel load estimates, as obtained from Dry Matter Productivity (DMP), disseminated by Copernicus Global Land Service (CGLS) at 1km spatial resolution since 1999. The analysis is performed for the main land cover types in Portugal that show high sensitivity to wildfires. The severest wildfire events in Portugal since 2004 are also analysed with detail, namely the fires of 2005, 2012 and 2017 and the obtained results related with soil moisture, fuel type and fire size.
Acknowledgements: This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under projects FIRECAST (PCIF/GRF/0204/2017) and IMPECAF (PTDC/CTA-CLI/28902/2017).
How to cite: Alonso, C., Gouveia, C. M., and Páscoa, P.: Assessment of the relationship between pre-fire fuel estimates and Fire Radiative Power in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19634, https://doi.org/10.5194/egusphere-egu2020-19634, 2020.
Forest fires are recurrent in Portugal, either due to climate conditions, to land use change, or to a combination of both. Wet and mild winters, together with dry and warm summers, favour the growth of vegetation and its subsequent low moisture content, increasing fuel availability. The assessment and management of fuel loads is essential to understand and minimize fire risk. The structural risk depends on the type of available fuel and on the age of vegetation. Therefore, reducing fuel loads is often required to mitigate fire severity.
Active fire observations of fire radiative power (FRP) have been shown to be correlated to rates of biomass combustion. The Meteosat FRP-PIXEL product is delivered in near real-time by the EUMETSAT Land Surface Analysis Satellite Applications Facility (LSA SAF), since 2004 with 15-min temporal resolution. We propose to do the first assessment, for Portugal, of the relationship between Fire Radiative Energy (FRE) per fire and pre-fire fuel load estimates, as obtained from Dry Matter Productivity (DMP), disseminated by Copernicus Global Land Service (CGLS) at 1km spatial resolution since 1999. The analysis is performed for the main land cover types in Portugal that show high sensitivity to wildfires. The severest wildfire events in Portugal since 2004 are also analysed with detail, namely the fires of 2005, 2012 and 2017 and the obtained results related with soil moisture, fuel type and fire size.
Acknowledgements: This study was performed within the framework of the LSA-SAF, co-funded by EUMETSAT This work was partially supported by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under projects FIRECAST (PCIF/GRF/0204/2017) and IMPECAF (PTDC/CTA-CLI/28902/2017).
How to cite: Alonso, C., Gouveia, C. M., and Páscoa, P.: Assessment of the relationship between pre-fire fuel estimates and Fire Radiative Power in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19634, https://doi.org/10.5194/egusphere-egu2020-19634, 2020.
EGU2020-19823 | Displays | BG3.17
Toward a UK fire danger rating system: Understanding fuels, fire behaviour, and impactsGareth Clay, Claire Belcher, Stefan Doerr, Andy Elliott, Mark Hardiman, Nick Kettridge, Gail Millin-Chalabi, James Morison, Cristina Santin, and Thomas Smith
Wildfires in temperate regions like the UK can cause major impacts for ecosystems, society and human health and wellbeing. Under changing climate and land use patterns it is therefore important to better understand how we can assess the danger posed by fires in the landscape. Major wildfire events in the UK over recent years have highlighted the risk posed by wildfires, and has led to recognition of wildfire as an environmental hazard in the UK National Risk Register.
Fire Danger Rating Systems (FDRS) are designed to assess the fuel and weather to provide estimates of flammability and likely fire behaviour under those conditions. These danger ratings can inform management decisions for land managers, direct resourcing plans for FRS teams, and feed into strategic planning for local and national governments. However, the UK does not yet have a fit-for-purpose FDRS and we lack the fundamental scientific and end-user understanding to predict effectively the likelihood, behaviour and impact of wildfire incidents in the UK at present and under future climate and land use scenarios.
This poster will present the outline and structure of a new NERC-funded, multi-institution, 4-year project that will develop the underpinning knowledge and tools to develop a UK FDRS. We are very keen to hear from the wildfire community about ways in which this work could help you with your activities and to link up with other projects.
How to cite: Clay, G., Belcher, C., Doerr, S., Elliott, A., Hardiman, M., Kettridge, N., Millin-Chalabi, G., Morison, J., Santin, C., and Smith, T.: Toward a UK fire danger rating system: Understanding fuels, fire behaviour, and impacts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19823, https://doi.org/10.5194/egusphere-egu2020-19823, 2020.
Wildfires in temperate regions like the UK can cause major impacts for ecosystems, society and human health and wellbeing. Under changing climate and land use patterns it is therefore important to better understand how we can assess the danger posed by fires in the landscape. Major wildfire events in the UK over recent years have highlighted the risk posed by wildfires, and has led to recognition of wildfire as an environmental hazard in the UK National Risk Register.
Fire Danger Rating Systems (FDRS) are designed to assess the fuel and weather to provide estimates of flammability and likely fire behaviour under those conditions. These danger ratings can inform management decisions for land managers, direct resourcing plans for FRS teams, and feed into strategic planning for local and national governments. However, the UK does not yet have a fit-for-purpose FDRS and we lack the fundamental scientific and end-user understanding to predict effectively the likelihood, behaviour and impact of wildfire incidents in the UK at present and under future climate and land use scenarios.
This poster will present the outline and structure of a new NERC-funded, multi-institution, 4-year project that will develop the underpinning knowledge and tools to develop a UK FDRS. We are very keen to hear from the wildfire community about ways in which this work could help you with your activities and to link up with other projects.
How to cite: Clay, G., Belcher, C., Doerr, S., Elliott, A., Hardiman, M., Kettridge, N., Millin-Chalabi, G., Morison, J., Santin, C., and Smith, T.: Toward a UK fire danger rating system: Understanding fuels, fire behaviour, and impacts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19823, https://doi.org/10.5194/egusphere-egu2020-19823, 2020.
EGU2020-19641 | Displays | BG3.17
Numerical simulation of pyro-convection caused by intense wildfire in PortugalMartín Senande Rivera and Gonzalo Miguez-Macho
Weather has a major influence on wildfire behaviour, but heat and vapor fluxes produced by fuel consumption can also alter atmospheric conditions. Severe storms can develop from the intense convection that occurs in large wildfires. During Pedrógao Grande (Portugal) 17 June 2017 wildfire, atmospheric storm conditions played a decisive role in fire spread, with the fire becoming uncontrollable and ultimately causing 66 fatalities.
We present here preliminary simulations of the Pedrógrao Grande wildfire with the WRF-FIRE model, identifying the role that the fire could have played in the development of the storm and how the storm could have influenced the spread of the fire.
How to cite: Senande Rivera, M. and Miguez-Macho, G.: Numerical simulation of pyro-convection caused by intense wildfire in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19641, https://doi.org/10.5194/egusphere-egu2020-19641, 2020.
Weather has a major influence on wildfire behaviour, but heat and vapor fluxes produced by fuel consumption can also alter atmospheric conditions. Severe storms can develop from the intense convection that occurs in large wildfires. During Pedrógao Grande (Portugal) 17 June 2017 wildfire, atmospheric storm conditions played a decisive role in fire spread, with the fire becoming uncontrollable and ultimately causing 66 fatalities.
We present here preliminary simulations of the Pedrógrao Grande wildfire with the WRF-FIRE model, identifying the role that the fire could have played in the development of the storm and how the storm could have influenced the spread of the fire.
How to cite: Senande Rivera, M. and Miguez-Macho, G.: Numerical simulation of pyro-convection caused by intense wildfire in Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19641, https://doi.org/10.5194/egusphere-egu2020-19641, 2020.
EGU2020-22513 | Displays | BG3.17
Future fires in the Coupled Model Intercomparison Project (CMIP) phase 6Gitta Lasslop, Stijn Hantson, Victor Brovkin, Fang Li, David Lawrence, Sam Rabin, and Elena Shevliakova
Fires are an important component in Earth system models (ESMs), they impact vegetation carbon storage, vegetation distribution, atmospheric composition and cloud formation. The representation of fires in ESMs contributing to CMIP phase 5 was still very simplified. Several Earth system models updated their representation of fires in the meantime. Using the latest simulations of CMIP6 we investigate how fire regimes change in the future for different scenarios and how land use, climate and atmospheric CO2 concentration contribute to the fire regimes changes. We quantify changes in fire danger, burned area and carbon emissions on an annual and seasonal basis. Factorial model simulations allow to quantify the influence of land use, climate and atmospheric CO2 on fire regimes.
We complement the information on fire regime change supplied by ESMs that include a fire module with a statistical modelling approach for burned area. This will use information from simulated changes in climate, vegetation and socioeconomic changes (population density and land use) provided for a set of different future scenarios. This allows the integration of information provided by global satellite products on burned area with the process-based simulations of climate and vegetation changes and information from socioeconomic scenarios.
How to cite: Lasslop, G., Hantson, S., Brovkin, V., Li, F., Lawrence, D., Rabin, S., and Shevliakova, E.: Future fires in the Coupled Model Intercomparison Project (CMIP) phase 6 , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22513, https://doi.org/10.5194/egusphere-egu2020-22513, 2020.
Fires are an important component in Earth system models (ESMs), they impact vegetation carbon storage, vegetation distribution, atmospheric composition and cloud formation. The representation of fires in ESMs contributing to CMIP phase 5 was still very simplified. Several Earth system models updated their representation of fires in the meantime. Using the latest simulations of CMIP6 we investigate how fire regimes change in the future for different scenarios and how land use, climate and atmospheric CO2 concentration contribute to the fire regimes changes. We quantify changes in fire danger, burned area and carbon emissions on an annual and seasonal basis. Factorial model simulations allow to quantify the influence of land use, climate and atmospheric CO2 on fire regimes.
We complement the information on fire regime change supplied by ESMs that include a fire module with a statistical modelling approach for burned area. This will use information from simulated changes in climate, vegetation and socioeconomic changes (population density and land use) provided for a set of different future scenarios. This allows the integration of information provided by global satellite products on burned area with the process-based simulations of climate and vegetation changes and information from socioeconomic scenarios.
How to cite: Lasslop, G., Hantson, S., Brovkin, V., Li, F., Lawrence, D., Rabin, S., and Shevliakova, E.: Future fires in the Coupled Model Intercomparison Project (CMIP) phase 6 , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22513, https://doi.org/10.5194/egusphere-egu2020-22513, 2020.
BG3.18 – Modeling agricultural systems under global change
EGU2020-21698 | Displays | BG3.18
Impact of regional climate model input and soil map resolution on projected winter wheat production in SW GermanySebastian Gayler, Rajina Bajracharya, Tobias Weber, and Thilo Streck
Agricultural ecosystem models, driven by climate projections and fed with soil information and plausible management scenarios are frequently used tools to predict future developments in agricultural landscapes. On the regional scale, the required soil parameters must be derived from soil maps that are available in different spatial resolutions, ranging from grid cell sizes of 50 m up to 1 km and more. The typical spatial resolution of regional climate projections is currently around 12 km. Given the small-scale heterogeneity in soil properties, using the most accurate soil representation could be important for predictions of crop growth. However, simulations with very highly resolved soil data requires greater computing time and higher effort for data organization and storage. Moreover, the higher resolution may not necessarily lead to better simulations due to redundant information of the land surface and because the impact of climate forcing could dominate over the effect of soil variability. This leads to the question if the use of high-resolution soil data leads to significantly different predictions of future yields and grain protein trends compared to simulations in which soil data is adapted to the resolution of the climate input.
This study investigated the impact of weather and soil input on simulated crop growth in an intensively used agricultural region in Southwest Germany. For all areas classified as ‘arable land’ (CLC10), winter wheat growth was simulated over a 44-year period (2006 to 2050) using weather projections from three regional climate models and soil information at two spatial resolutions. The simulations were performed with the model system Expert-N 5.0, where the crop model Gecros was combined with the Richards equation and the CN turnover module of the model Daisy. Soil hydraulic parameters as well as initial values of soil organic matter pools were estimated from BK50 soil map information on soil texture and soil organic matter content, using pedo-transfer functions and SOM pool fractionation following Bruun and Jensen (2002). The coarser soil map is derived from BK50 soil map (50m x 50m) by selecting only the dominant soil type in a 12km × 12km grid to be representative for that grid cell. The crop model was calibrated with field data of crop phenology, leaf area, biomass, yield and crop nitrogen, which were collected at a research station within the study area between 2009 and 2018.
The predicted increase in temperatures during the growing season correlated with earlier maturity, lower yields and a higher grain protein content. The regional mean values varied by +/- 0.5 t/ha or +/-0.3 percentage points of protein content depending to the climate model used. On the regional scale, the simulated trends remained unchanged using high-resolution or coarse resolution soil data. However, there are strong differences in both the forecasted averages and the distribution of forecasts, as the coarser resolution captures neither the small-scale heterogeneity nor the average of the high-resolution results.
How to cite: Gayler, S., Bajracharya, R., Weber, T., and Streck, T.: Impact of regional climate model input and soil map resolution on projected winter wheat production in SW Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21698, https://doi.org/10.5194/egusphere-egu2020-21698, 2020.
Agricultural ecosystem models, driven by climate projections and fed with soil information and plausible management scenarios are frequently used tools to predict future developments in agricultural landscapes. On the regional scale, the required soil parameters must be derived from soil maps that are available in different spatial resolutions, ranging from grid cell sizes of 50 m up to 1 km and more. The typical spatial resolution of regional climate projections is currently around 12 km. Given the small-scale heterogeneity in soil properties, using the most accurate soil representation could be important for predictions of crop growth. However, simulations with very highly resolved soil data requires greater computing time and higher effort for data organization and storage. Moreover, the higher resolution may not necessarily lead to better simulations due to redundant information of the land surface and because the impact of climate forcing could dominate over the effect of soil variability. This leads to the question if the use of high-resolution soil data leads to significantly different predictions of future yields and grain protein trends compared to simulations in which soil data is adapted to the resolution of the climate input.
This study investigated the impact of weather and soil input on simulated crop growth in an intensively used agricultural region in Southwest Germany. For all areas classified as ‘arable land’ (CLC10), winter wheat growth was simulated over a 44-year period (2006 to 2050) using weather projections from three regional climate models and soil information at two spatial resolutions. The simulations were performed with the model system Expert-N 5.0, where the crop model Gecros was combined with the Richards equation and the CN turnover module of the model Daisy. Soil hydraulic parameters as well as initial values of soil organic matter pools were estimated from BK50 soil map information on soil texture and soil organic matter content, using pedo-transfer functions and SOM pool fractionation following Bruun and Jensen (2002). The coarser soil map is derived from BK50 soil map (50m x 50m) by selecting only the dominant soil type in a 12km × 12km grid to be representative for that grid cell. The crop model was calibrated with field data of crop phenology, leaf area, biomass, yield and crop nitrogen, which were collected at a research station within the study area between 2009 and 2018.
The predicted increase in temperatures during the growing season correlated with earlier maturity, lower yields and a higher grain protein content. The regional mean values varied by +/- 0.5 t/ha or +/-0.3 percentage points of protein content depending to the climate model used. On the regional scale, the simulated trends remained unchanged using high-resolution or coarse resolution soil data. However, there are strong differences in both the forecasted averages and the distribution of forecasts, as the coarser resolution captures neither the small-scale heterogeneity nor the average of the high-resolution results.
How to cite: Gayler, S., Bajracharya, R., Weber, T., and Streck, T.: Impact of regional climate model input and soil map resolution on projected winter wheat production in SW Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21698, https://doi.org/10.5194/egusphere-egu2020-21698, 2020.
EGU2020-5290 | Displays | BG3.18
From the field-scale Aquacrop model to a regional gridded crop model: initial evaluation over EuropeShannon de Roos, Gabriëlle de Lannoy, and Dirk Raes
The pressure on soil and water resources to support the demand for crop production calls for effective water management at the regional scale and a need for regional crop models.
In our study, the field-based Aquacrop v.6.1 is modified to a gridded crop model that is run spatially over the main part of Europe at 1-km resolution.
The gridded model simulates spatially distributed soil moisture, crop biomass and yield, given spatial input of meteorological forcings extracted from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and 1-km soil texture information from the Harmonized World Soil Database v1.2 (HWSD v1.2). For the first model evaluation, a hypothetical and uniform crop is implemented, and field management and irrigation practices are not included. We will present preliminary results over Europe by comparing the spatial soil moisture and biomass simulations with remote sensing data.
This work is part of the SHui project, a H2020 project that aims at improving stakeholder decision-making for water scarcity management in European and Chinese cropping systems.
How to cite: de Roos, S., de Lannoy, G., and Raes, D.: From the field-scale Aquacrop model to a regional gridded crop model: initial evaluation over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5290, https://doi.org/10.5194/egusphere-egu2020-5290, 2020.
The pressure on soil and water resources to support the demand for crop production calls for effective water management at the regional scale and a need for regional crop models.
In our study, the field-based Aquacrop v.6.1 is modified to a gridded crop model that is run spatially over the main part of Europe at 1-km resolution.
The gridded model simulates spatially distributed soil moisture, crop biomass and yield, given spatial input of meteorological forcings extracted from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) and 1-km soil texture information from the Harmonized World Soil Database v1.2 (HWSD v1.2). For the first model evaluation, a hypothetical and uniform crop is implemented, and field management and irrigation practices are not included. We will present preliminary results over Europe by comparing the spatial soil moisture and biomass simulations with remote sensing data.
This work is part of the SHui project, a H2020 project that aims at improving stakeholder decision-making for water scarcity management in European and Chinese cropping systems.
How to cite: de Roos, S., de Lannoy, G., and Raes, D.: From the field-scale Aquacrop model to a regional gridded crop model: initial evaluation over Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5290, https://doi.org/10.5194/egusphere-egu2020-5290, 2020.
EGU2020-11350 | Displays | BG3.18
Simulating and analysing climate change impacts on crop yields in Morocco using the CARAIB dynamic vegetation model driven by Med-CORDEX projectionsIliass Loudiyi, Ingrid Jacquemin, Bernard Tychon, Louis Francois, Mouanis Lahlou, Joost Wellens, and Riad Balaghi
Morocco, by its geographical position and its climate, is strongly affected by climate change and presents an ever-increasing vulnerability. In fact, the country's economy, being very dependent on agriculture, would be greatly affected. It is therefore necessary to further develop knowledge about climate change and strengthen forcasting systems for predicting the impacts of climate change.
The agriculture in Morocco is largely dominated by rainfed crops and therefore dependent on pluviometry.According to the report of the Moroccan Minister of Agriculture (Agriculture En Chiffres version 2019), about 59% of arable land is devoted to cereals, 16% to plantation crops (olives, almonds, citrus, grapes, dates), 5% to forage, 3% to vegetables, 5% to other crops (sugar beets, sugar cane, cotton and oilseeds), and 12% is fallow. In this project we are going to focus on cereals, olives, potatoes and sugar beets. Regarding the climate, Morocco is characterized by a wide variety of topographies ranging from mountains to plains, oasis and Saharan dunes. For this reason, the country experiences diverse climatic conditions with large spatial and intra- and inter-annual variability of precipitation. Morocco faces irregular rain patterns, cold spells and heat waves increasingly resulting in droughts, which significantly affects agriculture.
Our research, funded by a bilateral project of Wallonie-Bruxelles International, aims to study the response of Moroccan agriculture to climate change, using the dynamic vegetation model CARAIB (CARbon Assimilation In the Biosphere) developed within the Unit for Modelling of Climate and Biogeochemical Cycles (UMCCB) of the University of Liège. This spatial model includes crops and natural vegetation and may react dynamically to land use changes. Originally constructed to study vegetation dynamics and carbon cycle, it includes coupled hydrological, biogeochemical, biogeographical and fire modules. These modules respectively describe the exchange of water between the atmosphere, the soil and the vegetation, the photosynthetic production and the evolution of carbon stocks and fluxes in this vegetation-soil system. The biogeographical module describes, for natural vegetation, the establishment, growth, competition, mortality, and regeneration of plant species, as well as the occurrence and propagation of fires. For crops, a specific module describes basic management (sowing, harvest, rotation) and phenological phases.
Model simulations are performed across north-west Morocco, where the crops activities are important, by using different input data. The timeline of simulations is divided in two periods: past (from 1901 to 2018) and future (from 2019 to 2100). For the past period, we are using high resolution (30 arc sec) gridded climate data derived from WorldClim (climatology) and interpolated anomalies from Climate Research Unit CRU (trend and variability). For the future period, we use interpolated and bias-corrected fields from a regional climate model (ALADIN-Climate) from the Med-CORDEX initiative run at a spatial resolution of 12 km and for three different Representative Concentration Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5).
How to cite: Loudiyi, I., Jacquemin, I., Tychon, B., Francois, L., Lahlou, M., Wellens, J., and Balaghi, R.: Simulating and analysing climate change impacts on crop yields in Morocco using the CARAIB dynamic vegetation model driven by Med-CORDEX projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11350, https://doi.org/10.5194/egusphere-egu2020-11350, 2020.
Morocco, by its geographical position and its climate, is strongly affected by climate change and presents an ever-increasing vulnerability. In fact, the country's economy, being very dependent on agriculture, would be greatly affected. It is therefore necessary to further develop knowledge about climate change and strengthen forcasting systems for predicting the impacts of climate change.
The agriculture in Morocco is largely dominated by rainfed crops and therefore dependent on pluviometry.According to the report of the Moroccan Minister of Agriculture (Agriculture En Chiffres version 2019), about 59% of arable land is devoted to cereals, 16% to plantation crops (olives, almonds, citrus, grapes, dates), 5% to forage, 3% to vegetables, 5% to other crops (sugar beets, sugar cane, cotton and oilseeds), and 12% is fallow. In this project we are going to focus on cereals, olives, potatoes and sugar beets. Regarding the climate, Morocco is characterized by a wide variety of topographies ranging from mountains to plains, oasis and Saharan dunes. For this reason, the country experiences diverse climatic conditions with large spatial and intra- and inter-annual variability of precipitation. Morocco faces irregular rain patterns, cold spells and heat waves increasingly resulting in droughts, which significantly affects agriculture.
Our research, funded by a bilateral project of Wallonie-Bruxelles International, aims to study the response of Moroccan agriculture to climate change, using the dynamic vegetation model CARAIB (CARbon Assimilation In the Biosphere) developed within the Unit for Modelling of Climate and Biogeochemical Cycles (UMCCB) of the University of Liège. This spatial model includes crops and natural vegetation and may react dynamically to land use changes. Originally constructed to study vegetation dynamics and carbon cycle, it includes coupled hydrological, biogeochemical, biogeographical and fire modules. These modules respectively describe the exchange of water between the atmosphere, the soil and the vegetation, the photosynthetic production and the evolution of carbon stocks and fluxes in this vegetation-soil system. The biogeographical module describes, for natural vegetation, the establishment, growth, competition, mortality, and regeneration of plant species, as well as the occurrence and propagation of fires. For crops, a specific module describes basic management (sowing, harvest, rotation) and phenological phases.
Model simulations are performed across north-west Morocco, where the crops activities are important, by using different input data. The timeline of simulations is divided in two periods: past (from 1901 to 2018) and future (from 2019 to 2100). For the past period, we are using high resolution (30 arc sec) gridded climate data derived from WorldClim (climatology) and interpolated anomalies from Climate Research Unit CRU (trend and variability). For the future period, we use interpolated and bias-corrected fields from a regional climate model (ALADIN-Climate) from the Med-CORDEX initiative run at a spatial resolution of 12 km and for three different Representative Concentration Pathway scenarios (RCP2.6, RCP4.5 and RCP8.5).
How to cite: Loudiyi, I., Jacquemin, I., Tychon, B., Francois, L., Lahlou, M., Wellens, J., and Balaghi, R.: Simulating and analysing climate change impacts on crop yields in Morocco using the CARAIB dynamic vegetation model driven by Med-CORDEX projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11350, https://doi.org/10.5194/egusphere-egu2020-11350, 2020.
EGU2020-21722 | Displays | BG3.18
Assessment of cereal production and food security under climate change in the Euro-Mediterranean RegionValentina Mereu, José Maria Costa Saura, Antonio Trabucco, and Donatella Spano
Future climate projections indicate a northward shift of suitable agricultural areas with a potential intensification of cropping systems in northern Europe, and a decrease in crop productivity in southern Europe mainly due to extreme temperatures and reduction in precipitation and water availability. Furthermore, the uncertainty in projecting climate change impacts on agricultural productivity at the regional scale affects the choice of appropriate adaptation strategies.
The main objective of this study is to assess the potential risk for cereal production and food security in the Euro-Mediterranean area and North Africa due to climate change, integrating multiple factors. Simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models implemented in the DSSAT (Decision Support System for Agrotechnology Transfer) software. A spatially distributed routine integrating DSSAT with large geodatasets characterizing the environment (climate and edaphic) conditions and management options (e.g. agronomic practices, irrigation, fertilization) was applied to perform the simulation of grain yield for durum wheat, common wheat, and maize in each grid cell. An ensemble of climate projections from ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) were used as input to the crop models. The uncertainty and model agreement of projected changes in crop yield, under current and future CO2 values (according to RCP8.5) were evaluated and new potential and high risk areas for cereal production were identified. Moreover, socio-economic indicators were considered to evaluate the exposure and adaptive capacity of the system and estimate the potential risk for cereal production. The result is a four dimensions single map that combine the selected variable and indices. Results show a potential decrease in cereal production per capita in the west Mediterranean area, North Africa and Turkey. However, the potential risk differ across these regions, according with the adaptive capacity of each area. Results also show a potential increase in cereal production per capita in north eastern Europe. Overall, there is high agreement across models.
How to cite: Mereu, V., Costa Saura, J. M., Trabucco, A., and Spano, D.: Assessment of cereal production and food security under climate change in the Euro-Mediterranean Region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21722, https://doi.org/10.5194/egusphere-egu2020-21722, 2020.
Future climate projections indicate a northward shift of suitable agricultural areas with a potential intensification of cropping systems in northern Europe, and a decrease in crop productivity in southern Europe mainly due to extreme temperatures and reduction in precipitation and water availability. Furthermore, the uncertainty in projecting climate change impacts on agricultural productivity at the regional scale affects the choice of appropriate adaptation strategies.
The main objective of this study is to assess the potential risk for cereal production and food security in the Euro-Mediterranean area and North Africa due to climate change, integrating multiple factors. Simulations were carried out using the CSM-CERES-Wheat and CSM-CERES-Maize crop models implemented in the DSSAT (Decision Support System for Agrotechnology Transfer) software. A spatially distributed routine integrating DSSAT with large geodatasets characterizing the environment (climate and edaphic) conditions and management options (e.g. agronomic practices, irrigation, fertilization) was applied to perform the simulation of grain yield for durum wheat, common wheat, and maize in each grid cell. An ensemble of climate projections from ISIMIP (Inter-Sectoral Impact Model Intercomparison Project) were used as input to the crop models. The uncertainty and model agreement of projected changes in crop yield, under current and future CO2 values (according to RCP8.5) were evaluated and new potential and high risk areas for cereal production were identified. Moreover, socio-economic indicators were considered to evaluate the exposure and adaptive capacity of the system and estimate the potential risk for cereal production. The result is a four dimensions single map that combine the selected variable and indices. Results show a potential decrease in cereal production per capita in the west Mediterranean area, North Africa and Turkey. However, the potential risk differ across these regions, according with the adaptive capacity of each area. Results also show a potential increase in cereal production per capita in north eastern Europe. Overall, there is high agreement across models.
How to cite: Mereu, V., Costa Saura, J. M., Trabucco, A., and Spano, D.: Assessment of cereal production and food security under climate change in the Euro-Mediterranean Region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21722, https://doi.org/10.5194/egusphere-egu2020-21722, 2020.
EGU2020-18052 | Displays | BG3.18
Climate change impact evaluation in various regions in Europe on the base of ensemble modellingJaromir Krzyszczak, Piotr Baranowski, and Monika Zubik
Climate change uncertainty largely complicates adaptation and risk management evaluation at the regional level, therefore new approaches for managing this uncertainty are still being developed. In this study three crop models (DNDC, WOFOST and DSSAT) were used to explore the utility of impact response surfaces (IRS) and adaptation response surfaces (ARS) methodologies (Pirttioja et al., 2015; Ruiz-Ramos et al., 2018).
To build IRS, the sensitivity of modelled yield to systematic increments of changes in temperature (-1 to +6°C) and precipitation (-30 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather. Four levels of CO2 (360, 447, 522 and 601 ppm) representing future conditions until 2070 were considered. In turn, to build ARS, adaptation options were: shortening or extending the crop cycle of the standard cultivar, sowing earlier or later than the standard date and additional irrigation. Preliminary data indicate that yields are declining with higher temperatures and decreased precipitation. Yield is more sensitive to changes in baseline temperature values and much less sensitive to changes in baseline precipitation values for arable fields in Finland, while for arable fields in Germany, ARS indicates yield sensitivity at a similar level for both variables. Also, our data suggests that some adaptation options provides increase of the yield up to 1500 kg/ha, which suggest that ARSs may be valuable tool for planning an effective adaptation treatments. This research shows how to analyze and assess the impact of adaptation strategies in the context of the high level of regional uncertainty in relation to future climate conditions. Developed methodology can be applied to other climatic zones to help in planning adaptation and mitigation strategies.
This study has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the project: MSINiN, contract number: BIOSTRATEG3/343547/8/NCBR/2017
How to cite: Krzyszczak, J., Baranowski, P., and Zubik, M.: Climate change impact evaluation in various regions in Europe on the base of ensemble modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18052, https://doi.org/10.5194/egusphere-egu2020-18052, 2020.
Climate change uncertainty largely complicates adaptation and risk management evaluation at the regional level, therefore new approaches for managing this uncertainty are still being developed. In this study three crop models (DNDC, WOFOST and DSSAT) were used to explore the utility of impact response surfaces (IRS) and adaptation response surfaces (ARS) methodologies (Pirttioja et al., 2015; Ruiz-Ramos et al., 2018).
To build IRS, the sensitivity of modelled yield to systematic increments of changes in temperature (-1 to +6°C) and precipitation (-30 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather. Four levels of CO2 (360, 447, 522 and 601 ppm) representing future conditions until 2070 were considered. In turn, to build ARS, adaptation options were: shortening or extending the crop cycle of the standard cultivar, sowing earlier or later than the standard date and additional irrigation. Preliminary data indicate that yields are declining with higher temperatures and decreased precipitation. Yield is more sensitive to changes in baseline temperature values and much less sensitive to changes in baseline precipitation values for arable fields in Finland, while for arable fields in Germany, ARS indicates yield sensitivity at a similar level for both variables. Also, our data suggests that some adaptation options provides increase of the yield up to 1500 kg/ha, which suggest that ARSs may be valuable tool for planning an effective adaptation treatments. This research shows how to analyze and assess the impact of adaptation strategies in the context of the high level of regional uncertainty in relation to future climate conditions. Developed methodology can be applied to other climatic zones to help in planning adaptation and mitigation strategies.
This study has been partly financed from the funds of the Polish National Centre for Research and Development in frame of the project: MSINiN, contract number: BIOSTRATEG3/343547/8/NCBR/2017
How to cite: Krzyszczak, J., Baranowski, P., and Zubik, M.: Climate change impact evaluation in various regions in Europe on the base of ensemble modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18052, https://doi.org/10.5194/egusphere-egu2020-18052, 2020.
EGU2020-20676 | Displays | BG3.18
Comprehensive global climate impact assessment for crop yieldsChristoph Müller and the AgMIP GGCMI team
Climate change impacts on agriculture are subject to large uncertainties from a variety of sources. One of the most important sources of uncertainty is the uncertainty in the realization of climate change itself. In the absence of clear climate mitigation strategies and substantial uncertainties on population growth, economic development, technology and lifestyles, a very broad set of greenhouse gas emission scenarios has been developed to inform climate modeling. Climate models often differ in the spatial patterns of projected changes in particular with respect to changes in precipitation. The Coupled Model Intercomparison Project (CMIP5, CMIP6) provides a broad range of future climate change projections.
Crop models are often applied at selected sites or with global coverage, as in the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Global crop model applications have been shown to have some skill, but also add additional uncertainty, given that many processes cannot be calibrated properly for the lack of suitable reference data and because management information is largely absent (Müller et al., 2017).
However, already the computational power required to compute the comprehensive set of climate projections prohibits such applications. Instead, typically, small and largely random selections of climate scenarios are used to project impacts, such as agricultural crop yields. McSweeney and Jones (2016) find that a selection of 5 climate models as often applied, is insufficient to cover the range of projections in all regions.
Here we present initial results of a comprehensive global climate impact assessment for crop yields that explores the full range of the CMIP6 climate projection archive. For this, we use a set of 9 global gridded crop model emulators (Franke et al., 2019b) that were trained on a very large systematic input sensitivity analysis with up to 1404 global-coverage, 31-year simulation data sets per crop and crop model (Franke et al., 2019a). The training domain includes variations in atmospheric carbon dioxide (CO2) concentrations (4 levels from 360 ppm to 810 ppm), air temperature (7 levels from -1 to +6°C), water supply (8 levels from -50 to +30% and full irrigation), nitrogen fertilization (3 levels from 10 to 200 kgN/ha) and adaptation (2 levels: none and regained growing seasons) and thus represents an unprecedented rich data base for emulator training. The emulators, in form of grid-cell specific regression models with 27 coefficients, are computationally light-weight and can thus be applied to the full CMIP6 data archive.
We here present first results from this analysis, breaking down the different sources of uncertainty (emission concentration pathways, climate model, crop model). Results will help to interpret crop model simulations in general: the unstructured reduction of the uncertainty space from selecting a small number of climate scenarios by e.g. first availability and/or individual crop models has so far hampered to quantify the uncertainty in crop model projections.
Franke (2019a) Geoscientific Model Development Discuss, 2019:1-30.
Franke (2019b) Geoscientific Model Development, submitted
McSweeney & Jones, (2016) Climate Services, 1:24-29.
Müller (2017) Geoscientific Model Development, 10:1403-1422.
How to cite: Müller, C. and the AgMIP GGCMI team: Comprehensive global climate impact assessment for crop yields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20676, https://doi.org/10.5194/egusphere-egu2020-20676, 2020.
Climate change impacts on agriculture are subject to large uncertainties from a variety of sources. One of the most important sources of uncertainty is the uncertainty in the realization of climate change itself. In the absence of clear climate mitigation strategies and substantial uncertainties on population growth, economic development, technology and lifestyles, a very broad set of greenhouse gas emission scenarios has been developed to inform climate modeling. Climate models often differ in the spatial patterns of projected changes in particular with respect to changes in precipitation. The Coupled Model Intercomparison Project (CMIP5, CMIP6) provides a broad range of future climate change projections.
Crop models are often applied at selected sites or with global coverage, as in the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Global crop model applications have been shown to have some skill, but also add additional uncertainty, given that many processes cannot be calibrated properly for the lack of suitable reference data and because management information is largely absent (Müller et al., 2017).
However, already the computational power required to compute the comprehensive set of climate projections prohibits such applications. Instead, typically, small and largely random selections of climate scenarios are used to project impacts, such as agricultural crop yields. McSweeney and Jones (2016) find that a selection of 5 climate models as often applied, is insufficient to cover the range of projections in all regions.
Here we present initial results of a comprehensive global climate impact assessment for crop yields that explores the full range of the CMIP6 climate projection archive. For this, we use a set of 9 global gridded crop model emulators (Franke et al., 2019b) that were trained on a very large systematic input sensitivity analysis with up to 1404 global-coverage, 31-year simulation data sets per crop and crop model (Franke et al., 2019a). The training domain includes variations in atmospheric carbon dioxide (CO2) concentrations (4 levels from 360 ppm to 810 ppm), air temperature (7 levels from -1 to +6°C), water supply (8 levels from -50 to +30% and full irrigation), nitrogen fertilization (3 levels from 10 to 200 kgN/ha) and adaptation (2 levels: none and regained growing seasons) and thus represents an unprecedented rich data base for emulator training. The emulators, in form of grid-cell specific regression models with 27 coefficients, are computationally light-weight and can thus be applied to the full CMIP6 data archive.
We here present first results from this analysis, breaking down the different sources of uncertainty (emission concentration pathways, climate model, crop model). Results will help to interpret crop model simulations in general: the unstructured reduction of the uncertainty space from selecting a small number of climate scenarios by e.g. first availability and/or individual crop models has so far hampered to quantify the uncertainty in crop model projections.
Franke (2019a) Geoscientific Model Development Discuss, 2019:1-30.
Franke (2019b) Geoscientific Model Development, submitted
McSweeney & Jones, (2016) Climate Services, 1:24-29.
Müller (2017) Geoscientific Model Development, 10:1403-1422.
How to cite: Müller, C. and the AgMIP GGCMI team: Comprehensive global climate impact assessment for crop yields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20676, https://doi.org/10.5194/egusphere-egu2020-20676, 2020.
EGU2020-11783 | Displays | BG3.18
Site specific impacts of climate change on crop rotations and their management in Brandenburg/GermanyKurt-Christian Kersebaum, Susanne Schulz, and Evelyn Wallor
Climate change impact on crop production depends on the cultivated crop and its position within crop rotations and on site conditions, e.g. soils and hydrology, buffering adverse weather situations. We present a regional study across the federal state of Brandenburg/Germany based on gridded climate data and a digital soil map using the HERMES-to-Go model. The aim was to investigate defined crop rotations and common agricultural practices under current and future climate conditions regarding productivity and environmental effects. Two contrasting GCMs (HAD and MPI) were used to generate climate input for modelling for the RCPs 2.6 and 8.5.
5 different types of crop production were simulated by defining crop rotations over 4-5 years for soil quality rating groups. While one rotation is comprised by the most common crops, another rotation modifies the first one by introducing a legume followed by a more demanding crop. The third rotation intends to produce higher value crops, e.g. potatoes than the first one, while the fourth rotation has its focus on fodder grass and cereal production. Building on this the fifth rotation replaces the fodder grass by alfalfa. All rotations are simulated in shifted phases to ensure that each crop is simulated for each year.
Sowing, harvest and nitrogen fertilization were derived by algorithms based on soil and climate information to allow self-adaptation to changing climate conditions. The crop rotations are simulated under rainfed and irrigated conditions and with and without the implementation of cover crops to prevent winter fallow.
We used the digital soil map 1:300.000 for Brandenburg with 99 soil map units. Within the soil map unit, up to three dominant soil types were considered to achieve at least 65% coverage. 276 soil types are defined by their soil profiles including soil organic matter content and texture down to 2 meters. Groundwater levels are estimated using the depth of reduction horizons as constant values over the year, to consider capillary rise depending on soil texture and distance between the root zone and the groundwater table.
In total each climate scenario contains about 148.000 simulations of 30 years. Beside crop yields we analyse the outputs for trends in soil organic matter, groundwater recharge, nitrogen leaching and the effect on water and nitrogen management using algorithms for automatic management.
Results indicate that spring crops were more negatively affected by climate change than winter crops especially on soils with low water holding capacity. However, few areas with more loamy soils and potential contribution of capillary rise from a shallow groundwater even benefited from climate change. Irrigation in most cases improved crop yield especially for spring crops. However, further analysis is required to assess if irrigation gains an economic benefit for all crop rotations. Nitrogen leaching can be reduced by implementing winter cover crops. Soil organic matter is assessed to decline for most sites and rotations. Only the rotations with multiyear grass or alfalfa can keep the level, but not on all sites.
How to cite: Kersebaum, K.-C., Schulz, S., and Wallor, E.: Site specific impacts of climate change on crop rotations and their management in Brandenburg/Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11783, https://doi.org/10.5194/egusphere-egu2020-11783, 2020.
Climate change impact on crop production depends on the cultivated crop and its position within crop rotations and on site conditions, e.g. soils and hydrology, buffering adverse weather situations. We present a regional study across the federal state of Brandenburg/Germany based on gridded climate data and a digital soil map using the HERMES-to-Go model. The aim was to investigate defined crop rotations and common agricultural practices under current and future climate conditions regarding productivity and environmental effects. Two contrasting GCMs (HAD and MPI) were used to generate climate input for modelling for the RCPs 2.6 and 8.5.
5 different types of crop production were simulated by defining crop rotations over 4-5 years for soil quality rating groups. While one rotation is comprised by the most common crops, another rotation modifies the first one by introducing a legume followed by a more demanding crop. The third rotation intends to produce higher value crops, e.g. potatoes than the first one, while the fourth rotation has its focus on fodder grass and cereal production. Building on this the fifth rotation replaces the fodder grass by alfalfa. All rotations are simulated in shifted phases to ensure that each crop is simulated for each year.
Sowing, harvest and nitrogen fertilization were derived by algorithms based on soil and climate information to allow self-adaptation to changing climate conditions. The crop rotations are simulated under rainfed and irrigated conditions and with and without the implementation of cover crops to prevent winter fallow.
We used the digital soil map 1:300.000 for Brandenburg with 99 soil map units. Within the soil map unit, up to three dominant soil types were considered to achieve at least 65% coverage. 276 soil types are defined by their soil profiles including soil organic matter content and texture down to 2 meters. Groundwater levels are estimated using the depth of reduction horizons as constant values over the year, to consider capillary rise depending on soil texture and distance between the root zone and the groundwater table.
In total each climate scenario contains about 148.000 simulations of 30 years. Beside crop yields we analyse the outputs for trends in soil organic matter, groundwater recharge, nitrogen leaching and the effect on water and nitrogen management using algorithms for automatic management.
Results indicate that spring crops were more negatively affected by climate change than winter crops especially on soils with low water holding capacity. However, few areas with more loamy soils and potential contribution of capillary rise from a shallow groundwater even benefited from climate change. Irrigation in most cases improved crop yield especially for spring crops. However, further analysis is required to assess if irrigation gains an economic benefit for all crop rotations. Nitrogen leaching can be reduced by implementing winter cover crops. Soil organic matter is assessed to decline for most sites and rotations. Only the rotations with multiyear grass or alfalfa can keep the level, but not on all sites.
How to cite: Kersebaum, K.-C., Schulz, S., and Wallor, E.: Site specific impacts of climate change on crop rotations and their management in Brandenburg/Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11783, https://doi.org/10.5194/egusphere-egu2020-11783, 2020.
EGU2020-21649 | Displays | BG3.18
Modelling impacts of climate change and alternative management interventions on the multi-functionality of agricultural landscapes in southern AfricaReimund Roetter, William Nelson, Johannes Isselstein, Simon Scheiter, Mirjam Pfeiffer, Munir Hoffmann, Kingsley Ayisi, Anja Linstädter, Kai Behn, Catrin Westphal, Ingo Grass, Jan-Henning Feil, Jude Odhiambo, Peter Taylor, Wayne Twine, Paolo Merante, Gennady Bracho Mujica, Thomas Bringhenti, Sala Lamega, Sara Yazdan Bakhsh, Wilhelmine Krieger, Valerie Linden, Sina Weier, and Barend Erasmus
On the background of increasing welfare and continued population growth, there is an ever-increasing pressure on land and other natural resources in many parts of the world. The situation is, however, particularly severe in the drylands of Sub-Saharan Africa. Southern African landscapes, composed of arable lands, tree orchards and rangelands, provide a range of important ecosystem functions. These functions are increasingly threatened by land use changes through competing claims on land by agriculture, tourism, mining and other sectors, and by environmental change, namely climate change and soil degradation. Among others, climate models project that drought risk in the region will increase considerably. Based on comprehensive data sets originating from previous groundwork by several collaborative projects on the functioning of these ecosystems, a number of biophysical and bio-economic models have been developed and evaluated. In the framework of the South African Limpopo Landscapes network (SALLnet) we have now refined and tailored these models for combined use for the assessment of changes in multiple functions of the prevailing agroecosystems when affected by alternative climate and land management scenarios - from field to regional scale. We apply vegetation models (such as aDGVM), crop models (such as APSIM) and integrative farm level models (e.g. agent-based) for different farming systems in conjunction with geo-referenced databases. Model outputs are combined to assess the impact of management x environment interactions on various ecosystem functions. Of special interest in our study are the ecosystem services related to the provision of food, feed and fuel, soil and water conservation, as well as recycling and restoring carbon and nutrients in soil. To illustrate how the combination of various modelling components can work in assessing management intervention effects under different environmental conditions on landscape level ecosystem services, a case study was defined in Limpopo province, South Africa. We investigated effects of current management practices and an intensification scenario over a longer period of years on soil organic carbon change under rangeland and arable land, potential erosion, productive water use, biomass production, monthly feed gaps, and rangeland habitat quality. Tentative results showed that sustainable intensification closed the livestock feed gap, but further reduced soil organic carbon. More generally, coupling the output of vegetation and crop models regionally calibrated with sound ground/ experimental data appears promising to provide meaningful insights into the highly complex interconnections of different ecosystem services at a landscape level.
How to cite: Roetter, R., Nelson, W., Isselstein, J., Scheiter, S., Pfeiffer, M., Hoffmann, M., Ayisi, K., Linstädter, A., Behn, K., Westphal, C., Grass, I., Feil, J.-H., Odhiambo, J., Taylor, P., Twine, W., Merante, P., Bracho Mujica, G., Bringhenti, T., Lamega, S., Yazdan Bakhsh, S., Krieger, W., Linden, V., Weier, S., and Erasmus, B.: Modelling impacts of climate change and alternative management interventions on the multi-functionality of agricultural landscapes in southern Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21649, https://doi.org/10.5194/egusphere-egu2020-21649, 2020.
On the background of increasing welfare and continued population growth, there is an ever-increasing pressure on land and other natural resources in many parts of the world. The situation is, however, particularly severe in the drylands of Sub-Saharan Africa. Southern African landscapes, composed of arable lands, tree orchards and rangelands, provide a range of important ecosystem functions. These functions are increasingly threatened by land use changes through competing claims on land by agriculture, tourism, mining and other sectors, and by environmental change, namely climate change and soil degradation. Among others, climate models project that drought risk in the region will increase considerably. Based on comprehensive data sets originating from previous groundwork by several collaborative projects on the functioning of these ecosystems, a number of biophysical and bio-economic models have been developed and evaluated. In the framework of the South African Limpopo Landscapes network (SALLnet) we have now refined and tailored these models for combined use for the assessment of changes in multiple functions of the prevailing agroecosystems when affected by alternative climate and land management scenarios - from field to regional scale. We apply vegetation models (such as aDGVM), crop models (such as APSIM) and integrative farm level models (e.g. agent-based) for different farming systems in conjunction with geo-referenced databases. Model outputs are combined to assess the impact of management x environment interactions on various ecosystem functions. Of special interest in our study are the ecosystem services related to the provision of food, feed and fuel, soil and water conservation, as well as recycling and restoring carbon and nutrients in soil. To illustrate how the combination of various modelling components can work in assessing management intervention effects under different environmental conditions on landscape level ecosystem services, a case study was defined in Limpopo province, South Africa. We investigated effects of current management practices and an intensification scenario over a longer period of years on soil organic carbon change under rangeland and arable land, potential erosion, productive water use, biomass production, monthly feed gaps, and rangeland habitat quality. Tentative results showed that sustainable intensification closed the livestock feed gap, but further reduced soil organic carbon. More generally, coupling the output of vegetation and crop models regionally calibrated with sound ground/ experimental data appears promising to provide meaningful insights into the highly complex interconnections of different ecosystem services at a landscape level.
How to cite: Roetter, R., Nelson, W., Isselstein, J., Scheiter, S., Pfeiffer, M., Hoffmann, M., Ayisi, K., Linstädter, A., Behn, K., Westphal, C., Grass, I., Feil, J.-H., Odhiambo, J., Taylor, P., Twine, W., Merante, P., Bracho Mujica, G., Bringhenti, T., Lamega, S., Yazdan Bakhsh, S., Krieger, W., Linden, V., Weier, S., and Erasmus, B.: Modelling impacts of climate change and alternative management interventions on the multi-functionality of agricultural landscapes in southern Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21649, https://doi.org/10.5194/egusphere-egu2020-21649, 2020.
EGU2020-8065 | Displays | BG3.18
Livestock carrying capacity: assessment of world`s grasslands based on MODIS data products.Johannes Piipponen, Afag Rizayeva, Jan de Leeuw, Mika Jalava, and Matti Kummu
Despite the consensus among researchers that future diets should include more plant-based proteins, animal-based foodstuffs are unlikely to disappear completely from our diet. Natural grasslands yield a notable part of the world`s animal protein production, but little is known about the sustainable potential of different areas, and thus the level of meat production that could be achieved globally by grazing. Whilst heavy stocking densities and overgrazing occurs in many regions, there still remain areas that have the potential to increase grazing from a carrying capacity perspective. This study aims to estimate the aboveground biomass that is sustainably available for grazers on the grasslands and savannas based on the MODIS Net Primary Production (NPP) approach at the global scale. We then use this information to calculate reasonable livestock-carrying capacities, using slopes, forest cover densities, proper use factors, and animal forage requirements as restrictions. The use of remote sensing to assess carrying capacities is still in its infancy, and this study represents the first global application of this novel approach. In addition, this study provides a methodology for examining the spatial and temporal variability of carrying capacities between seasons and years. Here we define the regional upper limits for pasture-based animal production, identify where future production could sustainably concentrate, and quantify the amount of protein intake that can be fulfilled by grazing animals.
How to cite: Piipponen, J., Rizayeva, A., de Leeuw, J., Jalava, M., and Kummu, M.: Livestock carrying capacity: assessment of world`s grasslands based on MODIS data products. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8065, https://doi.org/10.5194/egusphere-egu2020-8065, 2020.
Despite the consensus among researchers that future diets should include more plant-based proteins, animal-based foodstuffs are unlikely to disappear completely from our diet. Natural grasslands yield a notable part of the world`s animal protein production, but little is known about the sustainable potential of different areas, and thus the level of meat production that could be achieved globally by grazing. Whilst heavy stocking densities and overgrazing occurs in many regions, there still remain areas that have the potential to increase grazing from a carrying capacity perspective. This study aims to estimate the aboveground biomass that is sustainably available for grazers on the grasslands and savannas based on the MODIS Net Primary Production (NPP) approach at the global scale. We then use this information to calculate reasonable livestock-carrying capacities, using slopes, forest cover densities, proper use factors, and animal forage requirements as restrictions. The use of remote sensing to assess carrying capacities is still in its infancy, and this study represents the first global application of this novel approach. In addition, this study provides a methodology for examining the spatial and temporal variability of carrying capacities between seasons and years. Here we define the regional upper limits for pasture-based animal production, identify where future production could sustainably concentrate, and quantify the amount of protein intake that can be fulfilled by grazing animals.
How to cite: Piipponen, J., Rizayeva, A., de Leeuw, J., Jalava, M., and Kummu, M.: Livestock carrying capacity: assessment of world`s grasslands based on MODIS data products. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8065, https://doi.org/10.5194/egusphere-egu2020-8065, 2020.
EGU2020-21304 | Displays | BG3.18
Closing the Global Irrigation Yield Gap alongside SSPsMarina Andrijevic, Nicole van Maanen, Carl-Friedrich Schleussner, and Lorenzo Rosa
The global yield gap is a concept to assess the difference between the actual yield and the maximum potential yield that could be achieved by applying optimal agricultural techniques such as irrigation. Climate change and socio-economic development, including population growth, call for addressing the yield gap to increase global production and to adapt to climate change as irrigation in many circumstances is a very effective adaptation measure. On the regional level, the irrigation yield gap can thus be interpreted as an indicator linked to adaptive capacity of the agricultural sector to climate change impacts. At the same time, effective deployment of irrigation is linked, among other things, to the socio-economic development including economic capabilities, but also institutional and water governance frameworks.
Based on a detailed assessment of the irrigation yield gap, taking into account water availability constraints such as environmental flow requirements, we here establish as sustainable irrigation adaptation index for the agricultural sector. In a next step we link this sustainable irrigation index to socio-economic indicators provided by the framework of Socio- Economic Pathways (SSPs) on the national level. Doing so allows us to project the closure of the yield gap alongside the quantitative SSP narratives of socio-economic developments. We find that even under very optimistic scenarios of socio-economic development, it will take decades to close the irrigation yield gap in many developing countries, while without substantial development improvements our results suggest limited improvement in many tropical countries. Our projections present a first attempt to consistently link future irrigation expansion to socio-economic scenarios used in climate change research. We report a substantial scenario dependence of this expansion that underscores the need to incorporate socio-economic projections into projections of future agricultural impacts.
How to cite: Andrijevic, M., van Maanen, N., Schleussner, C.-F., and Rosa, L.: Closing the Global Irrigation Yield Gap alongside SSPs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21304, https://doi.org/10.5194/egusphere-egu2020-21304, 2020.
The global yield gap is a concept to assess the difference between the actual yield and the maximum potential yield that could be achieved by applying optimal agricultural techniques such as irrigation. Climate change and socio-economic development, including population growth, call for addressing the yield gap to increase global production and to adapt to climate change as irrigation in many circumstances is a very effective adaptation measure. On the regional level, the irrigation yield gap can thus be interpreted as an indicator linked to adaptive capacity of the agricultural sector to climate change impacts. At the same time, effective deployment of irrigation is linked, among other things, to the socio-economic development including economic capabilities, but also institutional and water governance frameworks.
Based on a detailed assessment of the irrigation yield gap, taking into account water availability constraints such as environmental flow requirements, we here establish as sustainable irrigation adaptation index for the agricultural sector. In a next step we link this sustainable irrigation index to socio-economic indicators provided by the framework of Socio- Economic Pathways (SSPs) on the national level. Doing so allows us to project the closure of the yield gap alongside the quantitative SSP narratives of socio-economic developments. We find that even under very optimistic scenarios of socio-economic development, it will take decades to close the irrigation yield gap in many developing countries, while without substantial development improvements our results suggest limited improvement in many tropical countries. Our projections present a first attempt to consistently link future irrigation expansion to socio-economic scenarios used in climate change research. We report a substantial scenario dependence of this expansion that underscores the need to incorporate socio-economic projections into projections of future agricultural impacts.
How to cite: Andrijevic, M., van Maanen, N., Schleussner, C.-F., and Rosa, L.: Closing the Global Irrigation Yield Gap alongside SSPs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21304, https://doi.org/10.5194/egusphere-egu2020-21304, 2020.
EGU2020-9762 | Displays | BG3.18
Mitigation potential for increasing soil organic carbon of rice fields in Bangladesh – a case studyJack Walton, Matthias Kuhnert, Khadiza Begum, Mohammed Abdul Kader, Marta Dondini, Jon Hillier, Lini Wollenberg, and Pete Smith
In order to limit global warming to 2°C, a variety of mitigation measures are needed, including those that result in net negative emissions. Soil carbon sequestration (SCS) through changed land management practices has the potential to help meet this need, but it requires further study to represent a viable policy option. Rice cultivation plays a major role in South Asian agriculture, accounting for almost 40% of the crop’s harvested area worldwide. Its greenhouse gas (GHG) profile means it contributes disproportionately more than other crops to the region’s emissions. Adapting rice system management for SCS may therefore represent a compelling mitigation opportunity for the agricultural sectors of South Asian countries. This study uses a process-based modelling approach to compare the performance of two models, ECOSSE and DAYCENT, in assessing the mitigation potential of increasing soil organic carbon (SOC) stocks on a Bangladeshi test site under rice cultivation. A previous study using DAYCENT showed an increase in SOC stock as well as an overall GHG emissions reduction for several management practices relative to the baseline scenario. ECOSSE, calibrated to the same measurements, also showed an increase in SOC and net emissions reduction relative to the baseline. However, the models differed significantly in the extent of mitigation predicted as well as the GHG emissions profile. Given these differences, further analysis is needed to reduce error and uncertainty in these models. The results of this study form a basis for spatial model approaches to assess the mitigation potential of rice production in Bangladesh.
How to cite: Walton, J., Kuhnert, M., Begum, K., Abdul Kader, M., Dondini, M., Hillier, J., Wollenberg, L., and Smith, P.: Mitigation potential for increasing soil organic carbon of rice fields in Bangladesh – a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9762, https://doi.org/10.5194/egusphere-egu2020-9762, 2020.
In order to limit global warming to 2°C, a variety of mitigation measures are needed, including those that result in net negative emissions. Soil carbon sequestration (SCS) through changed land management practices has the potential to help meet this need, but it requires further study to represent a viable policy option. Rice cultivation plays a major role in South Asian agriculture, accounting for almost 40% of the crop’s harvested area worldwide. Its greenhouse gas (GHG) profile means it contributes disproportionately more than other crops to the region’s emissions. Adapting rice system management for SCS may therefore represent a compelling mitigation opportunity for the agricultural sectors of South Asian countries. This study uses a process-based modelling approach to compare the performance of two models, ECOSSE and DAYCENT, in assessing the mitigation potential of increasing soil organic carbon (SOC) stocks on a Bangladeshi test site under rice cultivation. A previous study using DAYCENT showed an increase in SOC stock as well as an overall GHG emissions reduction for several management practices relative to the baseline scenario. ECOSSE, calibrated to the same measurements, also showed an increase in SOC and net emissions reduction relative to the baseline. However, the models differed significantly in the extent of mitigation predicted as well as the GHG emissions profile. Given these differences, further analysis is needed to reduce error and uncertainty in these models. The results of this study form a basis for spatial model approaches to assess the mitigation potential of rice production in Bangladesh.
How to cite: Walton, J., Kuhnert, M., Begum, K., Abdul Kader, M., Dondini, M., Hillier, J., Wollenberg, L., and Smith, P.: Mitigation potential for increasing soil organic carbon of rice fields in Bangladesh – a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9762, https://doi.org/10.5194/egusphere-egu2020-9762, 2020.
EGU2020-4934 | Displays | BG3.18
Modelling of soil organic carbon changes and carbon balance under Conservation Agriculture and conventional cropping systems in Southern FinlandElena Valkama and Marco Acutis
Conservation agriculture (CA) is a farming system that promotes maintenance of (1) minimum soil disturbance avoiding soil inversion (i.e. no-tillage or minimum tillage), (2) a permanent soil cover with crop residues and/or cover crops, and (3) diversification of plant species. The adoption of CA is promoted by FAO as a response to sustainable land management, environmental protection and climate change adaptation and mitigation. According to FAO, implementation of CA in Europe would reduce emissions by about 200 Mt CO2 per year. The carbon credit system (1 credit = 1t CO2 reduced) allows the compensation of the release of GHG generated by industries by means of funding emission reduction projects. Despite its potential for emission reduction, agricultural systems, however, are nearly beyond of carbon market.
The objectives of this study were (1) to assess the potential of CA for soil organic carbon (SOC) sequestration for the current climate conditions and for a future climate scenario; (2) to estimates carbon balance and possibility to obtain carbon credits in Southern Finland.
Five cropping systems were simulated by using the ARMOSA process-based crop model: conventional systems under ploughing with monoculture and residues removed (Conv–R) or residues retained (Conv+R); no-tillage; CA and CA with a cover crop, Italian ryegrass (CA+CC). In Conv–R, Conv+R and NT, the simulated monocultures were spring barley. In CA and CA+CC crop rotations were spring barley - oilseed rape - oats - spring wheat. Simulations were carried out for the current (1998-2017) and future climatic scenarios (period 2020-2040, scenario Representative Concentration Pathway 6.0).
We evaluated carbon balance by using SALM method (Verified Carbon Standard, VM0017), which is a method to quantify in terms of carbon credits the Sustainable Agricultural Land Management projects. The method takes into account the dynamics of carbon stored in soil and the direct emission of N2O due to use of fertilizers (organic and mineral) and CO2 emission due to chemical fertilizer production, the amount of fuel used in tillage and other field operations. For estimation, we used the value of carbon credit of 21€.
Under current climate conditions, Conv–R and Conv+R emitted totally about 4.7 and 2.0 t CO2e ha-1yr-1, respectively, mainly due to SOC loss (1 and 0.34 t ha-1 yr-1, respectively). No-tillage emitted 0.4 t CO2e ha-1yr-1, mainly, due to N2O from fertilizers and chemical fertilizer production. In contrast, CA and CA+CC allowed to SOC sequestration of 0.315 and 0.650 t ha-1yr-1, resulting in emissions reduction of 0.420 and 1.62 t CO2e ha-1 yr-1, respectively. By adopting CA and CA+CC in Finland, there is a potential to obtain 2.5 and 3.7 carbon credits with the value of 52 and 77 € ha-1yr-1 respect to baseline (Conv+R).
Under future climate scenario (+0.6 °C; –120 mm y-1), SOC decline for conventional systems will be more pronounced compared to that under actual climate, and SOC sequestration will be possible to accomplish only for CA+CC.
How to cite: Valkama, E. and Acutis, M.: Modelling of soil organic carbon changes and carbon balance under Conservation Agriculture and conventional cropping systems in Southern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4934, https://doi.org/10.5194/egusphere-egu2020-4934, 2020.
Conservation agriculture (CA) is a farming system that promotes maintenance of (1) minimum soil disturbance avoiding soil inversion (i.e. no-tillage or minimum tillage), (2) a permanent soil cover with crop residues and/or cover crops, and (3) diversification of plant species. The adoption of CA is promoted by FAO as a response to sustainable land management, environmental protection and climate change adaptation and mitigation. According to FAO, implementation of CA in Europe would reduce emissions by about 200 Mt CO2 per year. The carbon credit system (1 credit = 1t CO2 reduced) allows the compensation of the release of GHG generated by industries by means of funding emission reduction projects. Despite its potential for emission reduction, agricultural systems, however, are nearly beyond of carbon market.
The objectives of this study were (1) to assess the potential of CA for soil organic carbon (SOC) sequestration for the current climate conditions and for a future climate scenario; (2) to estimates carbon balance and possibility to obtain carbon credits in Southern Finland.
Five cropping systems were simulated by using the ARMOSA process-based crop model: conventional systems under ploughing with monoculture and residues removed (Conv–R) or residues retained (Conv+R); no-tillage; CA and CA with a cover crop, Italian ryegrass (CA+CC). In Conv–R, Conv+R and NT, the simulated monocultures were spring barley. In CA and CA+CC crop rotations were spring barley - oilseed rape - oats - spring wheat. Simulations were carried out for the current (1998-2017) and future climatic scenarios (period 2020-2040, scenario Representative Concentration Pathway 6.0).
We evaluated carbon balance by using SALM method (Verified Carbon Standard, VM0017), which is a method to quantify in terms of carbon credits the Sustainable Agricultural Land Management projects. The method takes into account the dynamics of carbon stored in soil and the direct emission of N2O due to use of fertilizers (organic and mineral) and CO2 emission due to chemical fertilizer production, the amount of fuel used in tillage and other field operations. For estimation, we used the value of carbon credit of 21€.
Under current climate conditions, Conv–R and Conv+R emitted totally about 4.7 and 2.0 t CO2e ha-1yr-1, respectively, mainly due to SOC loss (1 and 0.34 t ha-1 yr-1, respectively). No-tillage emitted 0.4 t CO2e ha-1yr-1, mainly, due to N2O from fertilizers and chemical fertilizer production. In contrast, CA and CA+CC allowed to SOC sequestration of 0.315 and 0.650 t ha-1yr-1, resulting in emissions reduction of 0.420 and 1.62 t CO2e ha-1 yr-1, respectively. By adopting CA and CA+CC in Finland, there is a potential to obtain 2.5 and 3.7 carbon credits with the value of 52 and 77 € ha-1yr-1 respect to baseline (Conv+R).
Under future climate scenario (+0.6 °C; –120 mm y-1), SOC decline for conventional systems will be more pronounced compared to that under actual climate, and SOC sequestration will be possible to accomplish only for CA+CC.
How to cite: Valkama, E. and Acutis, M.: Modelling of soil organic carbon changes and carbon balance under Conservation Agriculture and conventional cropping systems in Southern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4934, https://doi.org/10.5194/egusphere-egu2020-4934, 2020.
EGU2020-1141 | Displays | BG3.18
Modelling the potential for soil carbon storage using biochar- a case studyNicholas Allen, Bernardo Borges, and Saran Sohi
Biochar additions to agricultural fields could greatly increase the carbon sink potential of sugarcane plantations, turning abundant crop residues into highly recalcitrant forms. Biochar not only stores carbon but the production process is energy positive. Gradual improvement to soil cation exchange capacity and bulk density may benefit nutrient and water retention, potentially mitigating some effects of climate change.
Relatively little is known about the kinetics of biochar carbon decay since accumulation over decades to centuries is not directly observed. Modelling decay based on known biotic and abiotic factors in soil and climate requires knowledge of biochar sub-pools, specifically their size and rate constants.
Here we have used accelerated chemical ageing as a proxy for oxidative ageing in soils. The resulting partitioning of biochar recalcitrance with mean residence time of up to 10,000 years allows extraction of decay parameters without resorting to extrapolation from short-term study. We compared carbon accumulation using 1, 2 and 3 biochar pools based on differently adapted versions of the RothC soil carbon model.
Results from sensitivity analyses will be presented in terms of biochar type, model structure and climate. These will be illustrated in the context of the sugarcane system of Sao Paulo, Brazil, under current and potential future climate.
How to cite: Allen, N., Borges, B., and Sohi, S.: Modelling the potential for soil carbon storage using biochar- a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1141, https://doi.org/10.5194/egusphere-egu2020-1141, 2020.
Biochar additions to agricultural fields could greatly increase the carbon sink potential of sugarcane plantations, turning abundant crop residues into highly recalcitrant forms. Biochar not only stores carbon but the production process is energy positive. Gradual improvement to soil cation exchange capacity and bulk density may benefit nutrient and water retention, potentially mitigating some effects of climate change.
Relatively little is known about the kinetics of biochar carbon decay since accumulation over decades to centuries is not directly observed. Modelling decay based on known biotic and abiotic factors in soil and climate requires knowledge of biochar sub-pools, specifically their size and rate constants.
Here we have used accelerated chemical ageing as a proxy for oxidative ageing in soils. The resulting partitioning of biochar recalcitrance with mean residence time of up to 10,000 years allows extraction of decay parameters without resorting to extrapolation from short-term study. We compared carbon accumulation using 1, 2 and 3 biochar pools based on differently adapted versions of the RothC soil carbon model.
Results from sensitivity analyses will be presented in terms of biochar type, model structure and climate. These will be illustrated in the context of the sugarcane system of Sao Paulo, Brazil, under current and potential future climate.
How to cite: Allen, N., Borges, B., and Sohi, S.: Modelling the potential for soil carbon storage using biochar- a case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1141, https://doi.org/10.5194/egusphere-egu2020-1141, 2020.
EGU2020-21788 | Displays | BG3.18
MAPPY : Multisectoral Analysis of climate and land use change impacts on Pollinators, Plant diversity and crops YieldsMaurine Antoine and the Maurine Antoine(1)
The impacts of climate change on natural systems and biodiversity are known and already visible in some regions. With regard to agronomic systems, the effects of climate change have also been widely studied. However, some processes are still poorly understood, such as the links between pollinators and climate change or land use change. The feedbacks between different systems under climate change and land use change are still very little explored and require a multidisciplinary approach. It is within this framework that the MAPPY project fits.
The overall objective of the MAPPY project, funded by the AXIS program of JPI-Climate, is to study quantitatively feedback processes linking pollinators, plant diversity and crop yields in the context of climate and land use changes. A set of complementary models will be assembled, iteratively, to capture the dynamics of this complex system at regional level. Dynamic vegetation models and species distribution models will be used to assess the impacts of future climate change. Then, an agent-based model will be used to derive detailed land use and land cover change scenarios for the future at the scale of studied regions. The results of this combination of models will make it possible to assess the potential impacts on pollinator communities, which will make it possible to refine crop models. Finally, the socio-economic impacts of these forecasts will be assessed.
Several case study regions are defined in Europe. The entire study will be undertaken with local stakeholders who will identify the most relevant topics to be addressed. Indeed, stakeholders are asking more and more questions about climate change impact on crop yields, fruit crop damage, pollinator decline. Therefore, they will help us select the results that will be useful to them. Finally, a web platform will be developed with online tools allowing exploration of project results. The platform will be designed by involving stakeholders from the start of the project.
How to cite: Antoine, M. and the Maurine Antoine(1): MAPPY : Multisectoral Analysis of climate and land use change impacts on Pollinators, Plant diversity and crops Yields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21788, https://doi.org/10.5194/egusphere-egu2020-21788, 2020.
The impacts of climate change on natural systems and biodiversity are known and already visible in some regions. With regard to agronomic systems, the effects of climate change have also been widely studied. However, some processes are still poorly understood, such as the links between pollinators and climate change or land use change. The feedbacks between different systems under climate change and land use change are still very little explored and require a multidisciplinary approach. It is within this framework that the MAPPY project fits.
The overall objective of the MAPPY project, funded by the AXIS program of JPI-Climate, is to study quantitatively feedback processes linking pollinators, plant diversity and crop yields in the context of climate and land use changes. A set of complementary models will be assembled, iteratively, to capture the dynamics of this complex system at regional level. Dynamic vegetation models and species distribution models will be used to assess the impacts of future climate change. Then, an agent-based model will be used to derive detailed land use and land cover change scenarios for the future at the scale of studied regions. The results of this combination of models will make it possible to assess the potential impacts on pollinator communities, which will make it possible to refine crop models. Finally, the socio-economic impacts of these forecasts will be assessed.
Several case study regions are defined in Europe. The entire study will be undertaken with local stakeholders who will identify the most relevant topics to be addressed. Indeed, stakeholders are asking more and more questions about climate change impact on crop yields, fruit crop damage, pollinator decline. Therefore, they will help us select the results that will be useful to them. Finally, a web platform will be developed with online tools allowing exploration of project results. The platform will be designed by involving stakeholders from the start of the project.
How to cite: Antoine, M. and the Maurine Antoine(1): MAPPY : Multisectoral Analysis of climate and land use change impacts on Pollinators, Plant diversity and crops Yields, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21788, https://doi.org/10.5194/egusphere-egu2020-21788, 2020.
EGU2020-22455 | Displays | BG3.18
Global Agricultural Costing and Investment modelYiorgos Vittis and Michael Obersteiner
Increasing competing demands for land, water and energy along with increasing word population call for strategies to minimise environmental impacts while producing adequate food for 9 billion people. Studies have highlighted trade-offs between yields, biodiversity and socioeconomic goals in alternative land management solutions that share or spare agricultural land, pointing out the necessity of demand-side adjustments to meet environmental and food security goals. On the contrary, research has demonstrated that agricultural intensification through sparing and sharing agricultural land at global scales has the capacity to close yield gaps, reduce land requirements and increase biodiversity. Here we address the fundamental question: Would agricultural systems produce adequate food under a land sharing and targeted sparing scenario at lower financial costs? Optimal allocation of agricultural production, based on biophysical constraints, enables increased efficiencies and thus, we hypothesize that production is going to be less costly at global scales. To address this question, a cost engineering method is employed using crop modelling and inventory data on 16 crops to assess financial implications of sharing and sparing production scenarios. Preliminary findings demonstrate that at national scales, where there are potentials for greater and more efficient food production, there is larger spatial aggregation of production systems and thus higher costs that relate to large inputs of nutrients required to close yield gaps. Further forthcoming research will allow the identification of financial balances at global scales and enable the present study to confirm that current production volumes can be maintained at lower financial and environmental costs.
How to cite: Vittis, Y. and Obersteiner, M.: Global Agricultural Costing and Investment model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22455, https://doi.org/10.5194/egusphere-egu2020-22455, 2020.
Increasing competing demands for land, water and energy along with increasing word population call for strategies to minimise environmental impacts while producing adequate food for 9 billion people. Studies have highlighted trade-offs between yields, biodiversity and socioeconomic goals in alternative land management solutions that share or spare agricultural land, pointing out the necessity of demand-side adjustments to meet environmental and food security goals. On the contrary, research has demonstrated that agricultural intensification through sparing and sharing agricultural land at global scales has the capacity to close yield gaps, reduce land requirements and increase biodiversity. Here we address the fundamental question: Would agricultural systems produce adequate food under a land sharing and targeted sparing scenario at lower financial costs? Optimal allocation of agricultural production, based on biophysical constraints, enables increased efficiencies and thus, we hypothesize that production is going to be less costly at global scales. To address this question, a cost engineering method is employed using crop modelling and inventory data on 16 crops to assess financial implications of sharing and sparing production scenarios. Preliminary findings demonstrate that at national scales, where there are potentials for greater and more efficient food production, there is larger spatial aggregation of production systems and thus higher costs that relate to large inputs of nutrients required to close yield gaps. Further forthcoming research will allow the identification of financial balances at global scales and enable the present study to confirm that current production volumes can be maintained at lower financial and environmental costs.
How to cite: Vittis, Y. and Obersteiner, M.: Global Agricultural Costing and Investment model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22455, https://doi.org/10.5194/egusphere-egu2020-22455, 2020.
BG3.20 – Global Earth observation for improved understanding of terrestrial ecosystem dynamics
EGU2020-19649 | Displays | BG3.20 | Highlight
Estimating carbon losses from disturbances in tropical moist forests (deforestation and forest degradation) since 2011Frederic Achard, Christelle Vancutsem, Valerio Avitabile, and Andreas Langner
The need for accurate information to characterize the evolution of forest cover at the tropical scale is widely recognized, particularly to assess carbon losses from processes of disturbances such as deforestation and forest degradation1. In fact, the contribution of degradation is a key element for REDD+ activities and is presently mostly ignored in national reporting due to the lack of reliable information at such scale.
Recently Vancutsem et al.2 produced a dataset at 30m resolution which delineates the tropical moist forest (TMF) cover changes from 1990 to 2019. The use of the Landsat historical time-series at high temporal and spatial resolution allows accurate monitoring of deforestation and degradation, from which the carbon losses from disturbances in TMFs can be estimated. A degradation event is defined here as temporary absence of tree cover (visible within a Landsat pixel during a maximum of three years duration) and includes impacts of fires and logging activities.
We quantify the annual losses in above-ground carbon stock associated to degradation and deforestation in TMF over the period 2011-2019 by combining the annual disturbances in forest cover derived from the Landsat archive the pan-tropical map of aboveground live woody biomass density (AGB) from Santoro et al.3 at 100 m. To reduce the local variability within the estimation of AGB values, we apply a moving average filter under the TMF cover for the year 2010.
The carbon loss due to degradation is accounted as full carbon loss within a pixel (like a deforestation). The reason is that logging activities usually remove large trees with higher biomass densities than the average value of the disturbed pixel indicated by the pan-tropical maps. To avoid double counting of carbon removal, deforestation happening after degradation is not accounted as carbon loss.
Our results are compared with estimates of previous studies that cover different periods and forest domains: (i) Tyukavina et al.4 provide estimates of carbon loss from deforestation for the period 2000-2012 for all forests (evergreen and deciduous) discriminating natural forests from managed forests, and (ii) Baccini et al.5 provide estimates of carbon loss from deforestation and degradation for the period 2003-2014 for both evergreen and deciduous forests.
In a further step, we will analyze the sensitivity of the results to the input AGB values by applying the same approach to other AGB maps (e.g. Baccini et al. 20126).
Finally we intend to use Sentinel-2 data (10 m) for monitoring the location and extent of logging activities and burnt areas and further improve the estimates of carbon losses from forest degradation.
1. Achard F, House JI 2015 doi 10.1088/1748-9326/10/10/101002
2. Vancutsem C. et al. 2019 Submitted to Nat. Geoscience
3. Santoro M et al. 2018 doi 10.1594/PANGAEA.894711
4. Tuykavina A et al 2018 http://iopscience.iop.org/1748-9326/10/7/074002
5. Baccini A et al. 2017 doi 10.1126/science.aam5962
6. Baccini A et al. 2012 doi 10.1038/nclimate1354
How to cite: Achard, F., Vancutsem, C., Avitabile, V., and Langner, A.: Estimating carbon losses from disturbances in tropical moist forests (deforestation and forest degradation) since 2011, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19649, https://doi.org/10.5194/egusphere-egu2020-19649, 2020.
The need for accurate information to characterize the evolution of forest cover at the tropical scale is widely recognized, particularly to assess carbon losses from processes of disturbances such as deforestation and forest degradation1. In fact, the contribution of degradation is a key element for REDD+ activities and is presently mostly ignored in national reporting due to the lack of reliable information at such scale.
Recently Vancutsem et al.2 produced a dataset at 30m resolution which delineates the tropical moist forest (TMF) cover changes from 1990 to 2019. The use of the Landsat historical time-series at high temporal and spatial resolution allows accurate monitoring of deforestation and degradation, from which the carbon losses from disturbances in TMFs can be estimated. A degradation event is defined here as temporary absence of tree cover (visible within a Landsat pixel during a maximum of three years duration) and includes impacts of fires and logging activities.
We quantify the annual losses in above-ground carbon stock associated to degradation and deforestation in TMF over the period 2011-2019 by combining the annual disturbances in forest cover derived from the Landsat archive the pan-tropical map of aboveground live woody biomass density (AGB) from Santoro et al.3 at 100 m. To reduce the local variability within the estimation of AGB values, we apply a moving average filter under the TMF cover for the year 2010.
The carbon loss due to degradation is accounted as full carbon loss within a pixel (like a deforestation). The reason is that logging activities usually remove large trees with higher biomass densities than the average value of the disturbed pixel indicated by the pan-tropical maps. To avoid double counting of carbon removal, deforestation happening after degradation is not accounted as carbon loss.
Our results are compared with estimates of previous studies that cover different periods and forest domains: (i) Tyukavina et al.4 provide estimates of carbon loss from deforestation for the period 2000-2012 for all forests (evergreen and deciduous) discriminating natural forests from managed forests, and (ii) Baccini et al.5 provide estimates of carbon loss from deforestation and degradation for the period 2003-2014 for both evergreen and deciduous forests.
In a further step, we will analyze the sensitivity of the results to the input AGB values by applying the same approach to other AGB maps (e.g. Baccini et al. 20126).
Finally we intend to use Sentinel-2 data (10 m) for monitoring the location and extent of logging activities and burnt areas and further improve the estimates of carbon losses from forest degradation.
1. Achard F, House JI 2015 doi 10.1088/1748-9326/10/10/101002
2. Vancutsem C. et al. 2019 Submitted to Nat. Geoscience
3. Santoro M et al. 2018 doi 10.1594/PANGAEA.894711
4. Tuykavina A et al 2018 http://iopscience.iop.org/1748-9326/10/7/074002
5. Baccini A et al. 2017 doi 10.1126/science.aam5962
6. Baccini A et al. 2012 doi 10.1038/nclimate1354
How to cite: Achard, F., Vancutsem, C., Avitabile, V., and Langner, A.: Estimating carbon losses from disturbances in tropical moist forests (deforestation and forest degradation) since 2011, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19649, https://doi.org/10.5194/egusphere-egu2020-19649, 2020.
EGU2020-11398 | Displays | BG3.20
Relating ASCAT backscatter and dynamic vegetation parameters to vegetation water dynamics in the AmazonAshwini Petchiappan, Susan Steele-Dunne, Mariette Vreugdenhil, Sebastian Hahn, and Wolfgang Wagner
The Amazon rainforest is among the most vital ecosystems on earth, holding about a quarter of the global terrestrial carbon sink. Since 2005, three 100-year return period droughts have occurred, the likes of which have the potential to turn the forest from a carbon sink to a carbon source. Monitoring the Amazon is essential to understand the functioning of the various ecoregions and how they respond to water stress.
In this study, we investigate the ASCAT backscatter and dynamic vegetation parameters (DVP) over the Amazon region as a potential source of information about the vegetation. The dynamic vegetation parameters are slope and curvature of the second order Taylor polynomial used to represent the incidence angle dependence of backscatter. We looked for spatial and temporal patterns in the backscatter and DVP over Amazonia, and related them to climatic variables such as radiation and precipitation from the Princeton Global Meteorological Forcing Dataset, as well as variations in terrestrial water storage from GRACE.
Results will be presented from the first ten years of ASCAT observations over the Amazon region, including the Cerrado grasslands southeast of the Amazon forest. We found that spatial patterns of the backscatter and ASCAT DVP reflect the distribution of major land cover types in the region. Seasonal variations in the parameters match the seasonality of moisture demand and availability, and show an influence of vegetation phenology. Diurnal differences in backscatter between the morning (~10:00 AM) and evening overpasses (~10:00 PM) suggest that the backscatter is sensitive to vegetation water dynamics. Significant anomalies were observed during the Amazon droughts of 2010 and 2015, indicating that ASCAT could detect water stress and drought effects in the vegetation. Therefore, the ASCAT DVP show promise for long-term monitoring of the Amazon with respect to vegetation water dynamics and droughts.
How to cite: Petchiappan, A., Steele-Dunne, S., Vreugdenhil, M., Hahn, S., and Wagner, W.: Relating ASCAT backscatter and dynamic vegetation parameters to vegetation water dynamics in the Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11398, https://doi.org/10.5194/egusphere-egu2020-11398, 2020.
The Amazon rainforest is among the most vital ecosystems on earth, holding about a quarter of the global terrestrial carbon sink. Since 2005, three 100-year return period droughts have occurred, the likes of which have the potential to turn the forest from a carbon sink to a carbon source. Monitoring the Amazon is essential to understand the functioning of the various ecoregions and how they respond to water stress.
In this study, we investigate the ASCAT backscatter and dynamic vegetation parameters (DVP) over the Amazon region as a potential source of information about the vegetation. The dynamic vegetation parameters are slope and curvature of the second order Taylor polynomial used to represent the incidence angle dependence of backscatter. We looked for spatial and temporal patterns in the backscatter and DVP over Amazonia, and related them to climatic variables such as radiation and precipitation from the Princeton Global Meteorological Forcing Dataset, as well as variations in terrestrial water storage from GRACE.
Results will be presented from the first ten years of ASCAT observations over the Amazon region, including the Cerrado grasslands southeast of the Amazon forest. We found that spatial patterns of the backscatter and ASCAT DVP reflect the distribution of major land cover types in the region. Seasonal variations in the parameters match the seasonality of moisture demand and availability, and show an influence of vegetation phenology. Diurnal differences in backscatter between the morning (~10:00 AM) and evening overpasses (~10:00 PM) suggest that the backscatter is sensitive to vegetation water dynamics. Significant anomalies were observed during the Amazon droughts of 2010 and 2015, indicating that ASCAT could detect water stress and drought effects in the vegetation. Therefore, the ASCAT DVP show promise for long-term monitoring of the Amazon with respect to vegetation water dynamics and droughts.
How to cite: Petchiappan, A., Steele-Dunne, S., Vreugdenhil, M., Hahn, S., and Wagner, W.: Relating ASCAT backscatter and dynamic vegetation parameters to vegetation water dynamics in the Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11398, https://doi.org/10.5194/egusphere-egu2020-11398, 2020.
EGU2020-18686 | Displays | BG3.20
Analysis of water dynamics in the soil-plant-atmosphere continuum using a multi-sensor approachDavid Chaparro, Thomas Jagdhuber, Dara Entekhabi, María Piles, Anke Fluhrer, Andrew Feldman, François Jonard, and Mercè Vall-llossera
Changing climate patterns have increased hydrological extremes in many regions [1]. This impacts water and carbon cycles, potentially modifying vegetation processes and thus terrestrial carbon uptake. It is therefore crucial to understand the relationship between the main water pools linked to vegetation (i.e., soil moisture, plant water storage, and atmospheric water deficit), and how vegetation responds to changes of these pools. Hence, the goal of this research is to understand the water pools and fluxes in the soil-plant-atmosphere continuum (SPAC) and their relationship with vegetation responses.
Our study spans from April 2015 to March 2019 and is structured in two parts:
Firstly, relative water content (RWC) is estimated using a multi-sensor approach to monitor water storage in plants. This is at the core of our research approach towards water pool monitoring within SPAC. Here, we will present a RWC dataset derived from gravimetric moisture content (mg) estimates using the method first proposed in [2], and further validated in [3]. This allows retrieving RWC and mg independently from biomass influences. Here, we apply this method using a sensor synergy including (i) vegetation optical depth from SMAP L-band radiometer (L-VOD), (ii) vegetation height (VH) from ICESat-2 Lidar and (iii) vegetation volume fraction (d) from AQUARIUS L-band radar. RWC status and temporal dynamics will be discussed.
Secondly, water dynamics in the SPAC and their impact on leaf changes are analyzed. We will present a global, time-lag correlation analysis among: (i) the developed RWC maps, (ii) surface soil moisture from SMAP (SM), (iii) vapor pressure deficit (VPD; from MERRA reanalysis [4]), and (iv) leaf area index (LAI; from MODIS [5]). Resulting time-lag and correlation maps, as well as analyses of LAI dynamics as a function of SPAC, will be presented at the conference.
References
[1] IPCC. (2013). Annex I: Atlas of global and regional climate projections. In: van Oldenborgh, et al. (Eds.) Climate Change 2013: The Physical Science Basis (pp. 1311-1393). Cambridge University Press.
[2] Fink, A., et al. (2018). Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. In IGARSS 2018 (pp. 353-356). IEEE.
[3] Meyer, T., et al. Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth, Remote Sens. 2019, 11(20), 2353
[4] NASA (2019). Modern-Era Retrospective analysis for Research and Applications, Version 2. Accessed 2020-01-14 from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.
[5] Myneni, R., et al. (2015). MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. Accessed 2020-01-14 from https://doi.org/10.5067/MODIS/MOD15A2H.006.
How to cite: Chaparro, D., Jagdhuber, T., Entekhabi, D., Piles, M., Fluhrer, A., Feldman, A., Jonard, F., and Vall-llossera, M.: Analysis of water dynamics in the soil-plant-atmosphere continuum using a multi-sensor approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18686, https://doi.org/10.5194/egusphere-egu2020-18686, 2020.
Changing climate patterns have increased hydrological extremes in many regions [1]. This impacts water and carbon cycles, potentially modifying vegetation processes and thus terrestrial carbon uptake. It is therefore crucial to understand the relationship between the main water pools linked to vegetation (i.e., soil moisture, plant water storage, and atmospheric water deficit), and how vegetation responds to changes of these pools. Hence, the goal of this research is to understand the water pools and fluxes in the soil-plant-atmosphere continuum (SPAC) and their relationship with vegetation responses.
Our study spans from April 2015 to March 2019 and is structured in two parts:
Firstly, relative water content (RWC) is estimated using a multi-sensor approach to monitor water storage in plants. This is at the core of our research approach towards water pool monitoring within SPAC. Here, we will present a RWC dataset derived from gravimetric moisture content (mg) estimates using the method first proposed in [2], and further validated in [3]. This allows retrieving RWC and mg independently from biomass influences. Here, we apply this method using a sensor synergy including (i) vegetation optical depth from SMAP L-band radiometer (L-VOD), (ii) vegetation height (VH) from ICESat-2 Lidar and (iii) vegetation volume fraction (d) from AQUARIUS L-band radar. RWC status and temporal dynamics will be discussed.
Secondly, water dynamics in the SPAC and their impact on leaf changes are analyzed. We will present a global, time-lag correlation analysis among: (i) the developed RWC maps, (ii) surface soil moisture from SMAP (SM), (iii) vapor pressure deficit (VPD; from MERRA reanalysis [4]), and (iv) leaf area index (LAI; from MODIS [5]). Resulting time-lag and correlation maps, as well as analyses of LAI dynamics as a function of SPAC, will be presented at the conference.
References
[1] IPCC. (2013). Annex I: Atlas of global and regional climate projections. In: van Oldenborgh, et al. (Eds.) Climate Change 2013: The Physical Science Basis (pp. 1311-1393). Cambridge University Press.
[2] Fink, A., et al. (2018). Estimating Gravimetric Moisture of Vegetation Using an Attenuation-Based Multi-Sensor Approach. In IGARSS 2018 (pp. 353-356). IEEE.
[3] Meyer, T., et al. Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth, Remote Sens. 2019, 11(20), 2353
[4] NASA (2019). Modern-Era Retrospective analysis for Research and Applications, Version 2. Accessed 2020-01-14 from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/.
[5] Myneni, R., et al. (2015). MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. Accessed 2020-01-14 from https://doi.org/10.5067/MODIS/MOD15A2H.006.
How to cite: Chaparro, D., Jagdhuber, T., Entekhabi, D., Piles, M., Fluhrer, A., Feldman, A., Jonard, F., and Vall-llossera, M.: Analysis of water dynamics in the soil-plant-atmosphere continuum using a multi-sensor approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18686, https://doi.org/10.5194/egusphere-egu2020-18686, 2020.
EGU2020-13128 | Displays | BG3.20
Effects of sub-daily internal and external canopy water fluctuations on radar backscatterPaul Vermunt, Susan Steele-Dunne, Saeed Khabbazan, Jasmeet Judge, and Leila Guerriero
Radar observations of vegetated surfaces are highly affected by water in the soil and canopy. Consequently, radar has been used to monitor surface soil moisture for decades now. In addition, radar has been proven a useful tool for monitoring agricultural crop growth and development and forest fuel load estimation, as a result of the sensitivity of backscatter to vegetation water content (VWC). These current applications are based on satellite revisit periods of days to weeks. However, with future satellite constellations and geosynchronous radar missions, such as ESA’s Earth Explorer candidate mission HydroTerra, we will be able to monitor soil and vegetation multiple times per day. This opens up opportunities for new applications.
Examples could be (1) early detection of water stress in vegetation through anomalies in daily cycles of VWC, and (2) spatio-temporal estimations of rainfall interception, an important part of the water balance. However, currently, we lack the knowledge to physically understand sub-daily patterns in backscatter. Hence, the aim of our research is to understand the effect of water-related factors on sub-daily patterns of radar backscatter of a growing corn canopy.
Two intensive field campaigns were conducted in Florida (2018) and The Netherlands (2019). During both campaigns, soil moisture, external canopy water (dew, interception), soil water potential, and weather conditions were monitored every 15 minutes for the entire growing season. In addition, regular destructive sampling was performed to measure seasonal and sub-daily variations of vegetation water content. In Florida, hourly field scans were made with a truck-mounted polarimetric L-band scatterometer. In The Netherlands, these measurements were extended with X- and C-band frequencies.
Here, results will be presented from both campaigns. Different periods in the growing season will be highlighted. In particular, we will elaborate on the effects of variations in internal and external canopy water, and soil moisture on diurnal backscatter patterns.
How to cite: Vermunt, P., Steele-Dunne, S., Khabbazan, S., Judge, J., and Guerriero, L.: Effects of sub-daily internal and external canopy water fluctuations on radar backscatter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13128, https://doi.org/10.5194/egusphere-egu2020-13128, 2020.
Radar observations of vegetated surfaces are highly affected by water in the soil and canopy. Consequently, radar has been used to monitor surface soil moisture for decades now. In addition, radar has been proven a useful tool for monitoring agricultural crop growth and development and forest fuel load estimation, as a result of the sensitivity of backscatter to vegetation water content (VWC). These current applications are based on satellite revisit periods of days to weeks. However, with future satellite constellations and geosynchronous radar missions, such as ESA’s Earth Explorer candidate mission HydroTerra, we will be able to monitor soil and vegetation multiple times per day. This opens up opportunities for new applications.
Examples could be (1) early detection of water stress in vegetation through anomalies in daily cycles of VWC, and (2) spatio-temporal estimations of rainfall interception, an important part of the water balance. However, currently, we lack the knowledge to physically understand sub-daily patterns in backscatter. Hence, the aim of our research is to understand the effect of water-related factors on sub-daily patterns of radar backscatter of a growing corn canopy.
Two intensive field campaigns were conducted in Florida (2018) and The Netherlands (2019). During both campaigns, soil moisture, external canopy water (dew, interception), soil water potential, and weather conditions were monitored every 15 minutes for the entire growing season. In addition, regular destructive sampling was performed to measure seasonal and sub-daily variations of vegetation water content. In Florida, hourly field scans were made with a truck-mounted polarimetric L-band scatterometer. In The Netherlands, these measurements were extended with X- and C-band frequencies.
Here, results will be presented from both campaigns. Different periods in the growing season will be highlighted. In particular, we will elaborate on the effects of variations in internal and external canopy water, and soil moisture on diurnal backscatter patterns.
How to cite: Vermunt, P., Steele-Dunne, S., Khabbazan, S., Judge, J., and Guerriero, L.: Effects of sub-daily internal and external canopy water fluctuations on radar backscatter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13128, https://doi.org/10.5194/egusphere-egu2020-13128, 2020.
EGU2020-10347 | Displays | BG3.20
Global maps of ecosystem functional properties with the SCOPE model on Google earth engine Sentinel-2 compositesEgor Prikaziuk, Christiaan van der Tol, and Mirco Migliavacca
To monitor ecosystems at large spatial scale multiple data sources are needed. We developed a methodology to simulate ecosystem functional properties (EFPs): light use efficiency (LUE), water use efficiency (WUE), and evaporative fraction (EF) with Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model at global scale using weather and optical satellite data.
EFPs, metrics that integrate ecosystem processes and environmental conditions, are calculated from ecosystem fluxes: gross primary productivity (GPP), sensible (H) and latent (LE) heat flux. These fluxes were simulated by SCOPE from weather parameters and plant traits (leaf area index (LAI), leaf chlorophyll content (Cab)). The weather data was taken from ECMWF ERA5-Land dataset, the plant traits were retrieved with look-up table (LUT) from Sentinel-2 Level 2 composites, exported from Google Earth engine at 10 km resolution.
LUT retrieval was optimized on a synthetic dataset to reach acceptable quality for the key drivers of GPP flux: LAI (R2 = 0.75) and Cab (R2 = 0.62). The global retrieved LAI showed some discrepancies with MODIS LAI product MCD15, especially in forest regions (RMSE = 1.73 m2 m-2). As a consequence, SCOPE-simulated GPP was lower in those regions, compared to MODIS GPP product (MYD17) (RMSE = 0.81 kgC m-2 yr-1). SCOPE-simulated heat fluxes were compared to ECMWF energy flux from ERA5-Land dataset (RMSEH = 35.4 W m-2, RMSELE = 41.6 W m-2). EFPs validation is in progress.
The discrepancies in LAI can be explained by the fact that we did not use plant functional type information during LUT retrieval, in contrast to the MODIS algorithm. Significant overestimation of LE in dry areas is the consequence of the absence of water balance routine in SCOPE model. We consider SCOPE to be a promising tool for optical and weather data fusion.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721995.
How to cite: Prikaziuk, E., van der Tol, C., and Migliavacca, M.: Global maps of ecosystem functional properties with the SCOPE model on Google earth engine Sentinel-2 composites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10347, https://doi.org/10.5194/egusphere-egu2020-10347, 2020.
To monitor ecosystems at large spatial scale multiple data sources are needed. We developed a methodology to simulate ecosystem functional properties (EFPs): light use efficiency (LUE), water use efficiency (WUE), and evaporative fraction (EF) with Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE) model at global scale using weather and optical satellite data.
EFPs, metrics that integrate ecosystem processes and environmental conditions, are calculated from ecosystem fluxes: gross primary productivity (GPP), sensible (H) and latent (LE) heat flux. These fluxes were simulated by SCOPE from weather parameters and plant traits (leaf area index (LAI), leaf chlorophyll content (Cab)). The weather data was taken from ECMWF ERA5-Land dataset, the plant traits were retrieved with look-up table (LUT) from Sentinel-2 Level 2 composites, exported from Google Earth engine at 10 km resolution.
LUT retrieval was optimized on a synthetic dataset to reach acceptable quality for the key drivers of GPP flux: LAI (R2 = 0.75) and Cab (R2 = 0.62). The global retrieved LAI showed some discrepancies with MODIS LAI product MCD15, especially in forest regions (RMSE = 1.73 m2 m-2). As a consequence, SCOPE-simulated GPP was lower in those regions, compared to MODIS GPP product (MYD17) (RMSE = 0.81 kgC m-2 yr-1). SCOPE-simulated heat fluxes were compared to ECMWF energy flux from ERA5-Land dataset (RMSEH = 35.4 W m-2, RMSELE = 41.6 W m-2). EFPs validation is in progress.
The discrepancies in LAI can be explained by the fact that we did not use plant functional type information during LUT retrieval, in contrast to the MODIS algorithm. Significant overestimation of LE in dry areas is the consequence of the absence of water balance routine in SCOPE model. We consider SCOPE to be a promising tool for optical and weather data fusion.
The project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721995.
How to cite: Prikaziuk, E., van der Tol, C., and Migliavacca, M.: Global maps of ecosystem functional properties with the SCOPE model on Google earth engine Sentinel-2 composites, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10347, https://doi.org/10.5194/egusphere-egu2020-10347, 2020.
EGU2020-9057 | Displays | BG3.20
Climatic drivers and biogeophysical feedbacks: a causal inference approach over multiple temporal scalesJeroen Claessen, Annalisa Molini, Brecht Martens, Matteo Detto, Matthias Demuzere, and Diego G. Miralles
Earth system models (ESMs) need to correctly simulate the impact of climate on vegetation, as well as the feedback of vegetation on climate. Improving the skill of ESMs in representing climate—biosphere interactions is crucial to enhance predictions of climate and ecosystem functioning. Correlation and regression techniques are commonly used to study these interactions statistically, but these methods lack the ability to unravel the bidirectional nature of the climate–biosphere system. Here, we explore these interactions across multiple temporal scales by adopting a spectral Granger causality framework that allows identifying potentially inter-dependent variables. Multi-decadal remotely-sensed records are used to analyse the impact of key climatic drivers (precipitation, radiation and temperature) on vegetation (Leaf Area Index, LAI), as well as the biophysical feedback on local climate. These observational results are in turn used to benchmark a set of Coupled Model Intercomparison Project Phase 5 (CMIP5) members at the global scale.
Results show that the climate control on LAI variability increases with longer temporal scales, being the highest at inter-annual scales. Globally, precipitation is the most dominant driver of vegetation at monthly scales, particularly in (semi-)arid regions, as expected. The seasonal LAI variability in energy-driven latitudes is mainly controlled by radiation, while air temperature controls vegetation growth and decay in northern latitudes at inter-annual scales. ESMs have a tendency to over-represent the climate control on LAI dynamics, and especially the role of precipitation at inter-annual scales. Likewise, the widespread effect of LAI variability on radiation, as observed over the northern latitudes due to albedo changes, is also overestimated by the CMIP5 models. Overall, our experiments emphasise the potential of benchmarking the representation of climate—biosphere interactions in online ESMs using causal statistics in combination with observational data.
How to cite: Claessen, J., Molini, A., Martens, B., Detto, M., Demuzere, M., and Miralles, D. G.: Climatic drivers and biogeophysical feedbacks: a causal inference approach over multiple temporal scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9057, https://doi.org/10.5194/egusphere-egu2020-9057, 2020.
Earth system models (ESMs) need to correctly simulate the impact of climate on vegetation, as well as the feedback of vegetation on climate. Improving the skill of ESMs in representing climate—biosphere interactions is crucial to enhance predictions of climate and ecosystem functioning. Correlation and regression techniques are commonly used to study these interactions statistically, but these methods lack the ability to unravel the bidirectional nature of the climate–biosphere system. Here, we explore these interactions across multiple temporal scales by adopting a spectral Granger causality framework that allows identifying potentially inter-dependent variables. Multi-decadal remotely-sensed records are used to analyse the impact of key climatic drivers (precipitation, radiation and temperature) on vegetation (Leaf Area Index, LAI), as well as the biophysical feedback on local climate. These observational results are in turn used to benchmark a set of Coupled Model Intercomparison Project Phase 5 (CMIP5) members at the global scale.
Results show that the climate control on LAI variability increases with longer temporal scales, being the highest at inter-annual scales. Globally, precipitation is the most dominant driver of vegetation at monthly scales, particularly in (semi-)arid regions, as expected. The seasonal LAI variability in energy-driven latitudes is mainly controlled by radiation, while air temperature controls vegetation growth and decay in northern latitudes at inter-annual scales. ESMs have a tendency to over-represent the climate control on LAI dynamics, and especially the role of precipitation at inter-annual scales. Likewise, the widespread effect of LAI variability on radiation, as observed over the northern latitudes due to albedo changes, is also overestimated by the CMIP5 models. Overall, our experiments emphasise the potential of benchmarking the representation of climate—biosphere interactions in online ESMs using causal statistics in combination with observational data.
How to cite: Claessen, J., Molini, A., Martens, B., Detto, M., Demuzere, M., and Miralles, D. G.: Climatic drivers and biogeophysical feedbacks: a causal inference approach over multiple temporal scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9057, https://doi.org/10.5194/egusphere-egu2020-9057, 2020.
EGU2020-8066 | Displays | BG3.20 | Highlight
Slow-down of the greening trend in natural vegetation with further rise in atmospheric CO2Alexander J. Winkler, Ranga B. Myneni, Alexis Hannart, and Victor Brovkin
Satellite data reveal widespread changes in vegetation cover of Earth’s land surfaces. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climate change and consequent episodic disturbances (e.g. fires and droughts) are hypothesized to be key drivers of changes in natural vegetation. A rigorous regional attribution at biome-level that can be scaled into a global picture of what is behind the observed changes is currently lacking.
Therefore, we analyze here the longest available satellite record of global leaf area index (LAI, 1981-2017) and identify several clusters of significant long-term changes at the biome scale. Using process-based model simulations (fully-coupled MPI-M Earth system model and 13 stand-alone land surface models), we disentangle the effects of rising CO2 on LAI in a probabilistic setting applying Causal Counterfactual Theory.
Our analysis reveals a slowing down of greening and strengthening of browning trends, particularly in the last two decades (2000-2017). The decreases in LAI are primarily concentrated in regions of high LAI (i.e. tropical forests), whereas the increases are in low LAI regions (i.e. northern and arid lands). These opposing trends are reducing the LAI texture of natural vegetation at the global scale. The analysis prominently indicates the effects of climate change on many biomes – warming in northern ecosystems and rainfall anomalies in tropical biomes. Our results do not support previously published accounts of dominant global-scale effects of CO2 fertilization. Most models largely underestimate vegetation browning, especially in the tropical rainforests. The leaf area loss in these productive ecosystems could be an early indicator of a slow-down in the terrestrial carbon sink. Models need to better account for this effect to realize plausible Earth system projections of the 21st century.
How to cite: Winkler, A. J., Myneni, R. B., Hannart, A., and Brovkin, V.: Slow-down of the greening trend in natural vegetation with further rise in atmospheric CO2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8066, https://doi.org/10.5194/egusphere-egu2020-8066, 2020.
Satellite data reveal widespread changes in vegetation cover of Earth’s land surfaces. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climate change and consequent episodic disturbances (e.g. fires and droughts) are hypothesized to be key drivers of changes in natural vegetation. A rigorous regional attribution at biome-level that can be scaled into a global picture of what is behind the observed changes is currently lacking.
Therefore, we analyze here the longest available satellite record of global leaf area index (LAI, 1981-2017) and identify several clusters of significant long-term changes at the biome scale. Using process-based model simulations (fully-coupled MPI-M Earth system model and 13 stand-alone land surface models), we disentangle the effects of rising CO2 on LAI in a probabilistic setting applying Causal Counterfactual Theory.
Our analysis reveals a slowing down of greening and strengthening of browning trends, particularly in the last two decades (2000-2017). The decreases in LAI are primarily concentrated in regions of high LAI (i.e. tropical forests), whereas the increases are in low LAI regions (i.e. northern and arid lands). These opposing trends are reducing the LAI texture of natural vegetation at the global scale. The analysis prominently indicates the effects of climate change on many biomes – warming in northern ecosystems and rainfall anomalies in tropical biomes. Our results do not support previously published accounts of dominant global-scale effects of CO2 fertilization. Most models largely underestimate vegetation browning, especially in the tropical rainforests. The leaf area loss in these productive ecosystems could be an early indicator of a slow-down in the terrestrial carbon sink. Models need to better account for this effect to realize plausible Earth system projections of the 21st century.
How to cite: Winkler, A. J., Myneni, R. B., Hannart, A., and Brovkin, V.: Slow-down of the greening trend in natural vegetation with further rise in atmospheric CO2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8066, https://doi.org/10.5194/egusphere-egu2020-8066, 2020.
EGU2020-19616 | Displays | BG3.20
Down-scaling MODIS operational vegetation products with machine learning and fused gap-free high resolution reflectance data in Google Earth EngineÁlvaro Moreno Martínez, Emma Izquierdo Verdiguier, Gustau Camps Valls, Marco Maneta, Jordi Muñoz Marí, Nathaniel Robinson, José E. Adsuara, Manuel Campos Taberner, Francisco J. García Haro, Adrián Pérez Suay, and Steven W. Running
Among Essential Climate Variables (ECVs) for global climate observation, the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are the most widely used to study land vegetated surfaces. The NASA’s Moderate Resolution Imaging Spectro-radiometer (MODIS) is a key instrument aboard the Terra and Aqua platforms and allows to estimate both biophysical variables at coarse resolution (500 m) and global scales. The MODIS operational algorithm to retrieve LAI and FAPAR (MOD15/MYD15/MCD15) uses a physically-based radiative transfer model (RTM) to compute their estimates with corrected surface spectral information content. This algorithm has been heavily validated and compared with field measurements and other sensors but, so far, no equivalent products at high spatial resolution and continental or global scales are routinely produced.
Here, we introduce and validate a methodology to create a set of high spatial resolution LAI/FAPAR products by learning the MODIS RTM using advanced machine learning approaches and gap filled Landsat surface reflectances. The latter are smoothed and gap-filled by the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM). HISTARTFM has a great potential to improve the original Landsat reflectances by reducing their noise and recovering missing data due to cloud contamination. In addition, HISTARFM runs very fast in cloud computing platforms such as Google Earth Engine (GEE) and provides uncertainty estimates which can be propagated through the models. These estimates allow to compute numerical uncertainties beyond the typical and qualitative control information layers provided in operational products such as the MODIS LAI/FAPAR. The introduced high spatial resolution biophysical products here could be of interest to the users to achieve the needed levels of spatial detail to adequately monitor croplands and heterogeneously vegetated landscapes.
How to cite: Moreno Martínez, Á., Izquierdo Verdiguier, E., Camps Valls, G., Maneta, M., Muñoz Marí, J., Robinson, N., Adsuara, J. E., Campos Taberner, M., García Haro, F. J., Pérez Suay, A., and Running, S. W.: Down-scaling MODIS operational vegetation products with machine learning and fused gap-free high resolution reflectance data in Google Earth Engine, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19616, https://doi.org/10.5194/egusphere-egu2020-19616, 2020.
Among Essential Climate Variables (ECVs) for global climate observation, the Leaf Area Index (LAI) and the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) are the most widely used to study land vegetated surfaces. The NASA’s Moderate Resolution Imaging Spectro-radiometer (MODIS) is a key instrument aboard the Terra and Aqua platforms and allows to estimate both biophysical variables at coarse resolution (500 m) and global scales. The MODIS operational algorithm to retrieve LAI and FAPAR (MOD15/MYD15/MCD15) uses a physically-based radiative transfer model (RTM) to compute their estimates with corrected surface spectral information content. This algorithm has been heavily validated and compared with field measurements and other sensors but, so far, no equivalent products at high spatial resolution and continental or global scales are routinely produced.
Here, we introduce and validate a methodology to create a set of high spatial resolution LAI/FAPAR products by learning the MODIS RTM using advanced machine learning approaches and gap filled Landsat surface reflectances. The latter are smoothed and gap-filled by the HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM). HISTARTFM has a great potential to improve the original Landsat reflectances by reducing their noise and recovering missing data due to cloud contamination. In addition, HISTARFM runs very fast in cloud computing platforms such as Google Earth Engine (GEE) and provides uncertainty estimates which can be propagated through the models. These estimates allow to compute numerical uncertainties beyond the typical and qualitative control information layers provided in operational products such as the MODIS LAI/FAPAR. The introduced high spatial resolution biophysical products here could be of interest to the users to achieve the needed levels of spatial detail to adequately monitor croplands and heterogeneously vegetated landscapes.
How to cite: Moreno Martínez, Á., Izquierdo Verdiguier, E., Camps Valls, G., Maneta, M., Muñoz Marí, J., Robinson, N., Adsuara, J. E., Campos Taberner, M., García Haro, F. J., Pérez Suay, A., and Running, S. W.: Down-scaling MODIS operational vegetation products with machine learning and fused gap-free high resolution reflectance data in Google Earth Engine, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19616, https://doi.org/10.5194/egusphere-egu2020-19616, 2020.
EGU2020-21152 | Displays | BG3.20
Predicting Opuntia stricta (Haw.) in arid and semi-arid environment of Kenya using Sentinel imagery and ensemble machine learning classifiersJames Muthoka, Pedram Rowhani, and Alexander Antonarakis
To ensure effective management of Alien plant species especially the invasive demands for knowledge of their spatial availability. The use of satellite remote sensing tools has increasingly provided potential ways to assess spatial availability as compared to the traditional ways that are inadequate to provide similar information in a detailed way. The Copernicus Sentinel satellite images with a high spatial resolution and easy access at no charge provides an opportunity for mapping the spatial variability at a regional scale and in a detailed manner. In this study, we assess the potential of Sentinel 2 images vegetation indices and using ensemble machine learning techniques, map the spatial variability of invasive species (Opuntia stricta) in an arid and semi-arid region of Kenya. To actualize this, we use Sentinel 2 bands and thirty-one vegetation and elevation indices for classification. Field data collected is divided into two (training & validation) and used to get the best model to classify Opuntia stricta and eight other control classes. The best performing model and the highest contributing features are selected for final Opuntia stricta estimation. The random forest algorithm yields the highest accuracy 89% hence is used to classify Opuntia stricta species. Our observation of the overall results indicates that Sentinels in combination with the indices characterized by spatial resolution provide an importance that can be used to discriminate Opuntia stricta species hence providing an opportunity for long term monitoring and management at a fairly acceptable accuracy hence ensuring limited pasture degradation. Therefore, future research should focus on exploring Sentinel time-series images for estimating Opuntia stricta species at a temporal variability.
How to cite: Muthoka, J., Rowhani, P., and Antonarakis, A.: Predicting Opuntia stricta (Haw.) in arid and semi-arid environment of Kenya using Sentinel imagery and ensemble machine learning classifiers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21152, https://doi.org/10.5194/egusphere-egu2020-21152, 2020.
To ensure effective management of Alien plant species especially the invasive demands for knowledge of their spatial availability. The use of satellite remote sensing tools has increasingly provided potential ways to assess spatial availability as compared to the traditional ways that are inadequate to provide similar information in a detailed way. The Copernicus Sentinel satellite images with a high spatial resolution and easy access at no charge provides an opportunity for mapping the spatial variability at a regional scale and in a detailed manner. In this study, we assess the potential of Sentinel 2 images vegetation indices and using ensemble machine learning techniques, map the spatial variability of invasive species (Opuntia stricta) in an arid and semi-arid region of Kenya. To actualize this, we use Sentinel 2 bands and thirty-one vegetation and elevation indices for classification. Field data collected is divided into two (training & validation) and used to get the best model to classify Opuntia stricta and eight other control classes. The best performing model and the highest contributing features are selected for final Opuntia stricta estimation. The random forest algorithm yields the highest accuracy 89% hence is used to classify Opuntia stricta species. Our observation of the overall results indicates that Sentinels in combination with the indices characterized by spatial resolution provide an importance that can be used to discriminate Opuntia stricta species hence providing an opportunity for long term monitoring and management at a fairly acceptable accuracy hence ensuring limited pasture degradation. Therefore, future research should focus on exploring Sentinel time-series images for estimating Opuntia stricta species at a temporal variability.
How to cite: Muthoka, J., Rowhani, P., and Antonarakis, A.: Predicting Opuntia stricta (Haw.) in arid and semi-arid environment of Kenya using Sentinel imagery and ensemble machine learning classifiers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21152, https://doi.org/10.5194/egusphere-egu2020-21152, 2020.
EGU2020-4721 | Displays | BG3.20
Land use shapes the relationship between tree cover and carbon stocks in the tropicsManan Bhan, Steffen Fritz, Simone Gingrich, and Karlheinz Erb
Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing the states and dynamics of tropical ecosystems. Despite the presence of several datasets with high spatial resolution, differences among data products prevail and systemic inter-relations between TC and CS remain poorly quantified. Further, the role of land use in explaining disagreements among datasets remains largely unexplored. Here, by combining established spatially-explicit estimates of TC and CS over contemporary timescales, we analyse uncertainties between these two ecosystem parameters across the global tropics (~ 23.4°N to 23.4°S). We quantify land use effects by contrasting actual and potential (ie. in the hypothetical absence of land use) states of vegetation and by correlating TC and CS changes with land use intensity. Our results show that land use strongly alters both TC and CS, with disproportionate impacts on CS and large variations across tropical ecozones. Differences between potential and actual vegetation CS remain above 50% across the tropics except for rainforests (34%). Differences within corresponding TC estimates are more variable, and higher among sparsely-vegetated landscapes (81% for shrublands), highlighting the overwhelming extent of land use impacts. Cross-comparisons across available TC and CS datasets reveal large spatial disagreements. More than a third of all identified co-located TC and CS change datasets show disagreements in the direction of change (Gain vs Loss), and these divergences persist as a function of land use intensities. Our results provide a characterization of the prevailing uncertainty structures of input datasets and the spatial patterns of land use-induced disturbances at the pixel and ecozone-levels. This assumes added significance in light of the stock-taking exercises envisaged as part of the Paris Agreement, the advancement of terrestrial carbon modelling initiatives as well as emerging, novel remote sensing products.
How to cite: Bhan, M., Fritz, S., Gingrich, S., and Erb, K.: Land use shapes the relationship between tree cover and carbon stocks in the tropics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4721, https://doi.org/10.5194/egusphere-egu2020-4721, 2020.
Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing the states and dynamics of tropical ecosystems. Despite the presence of several datasets with high spatial resolution, differences among data products prevail and systemic inter-relations between TC and CS remain poorly quantified. Further, the role of land use in explaining disagreements among datasets remains largely unexplored. Here, by combining established spatially-explicit estimates of TC and CS over contemporary timescales, we analyse uncertainties between these two ecosystem parameters across the global tropics (~ 23.4°N to 23.4°S). We quantify land use effects by contrasting actual and potential (ie. in the hypothetical absence of land use) states of vegetation and by correlating TC and CS changes with land use intensity. Our results show that land use strongly alters both TC and CS, with disproportionate impacts on CS and large variations across tropical ecozones. Differences between potential and actual vegetation CS remain above 50% across the tropics except for rainforests (34%). Differences within corresponding TC estimates are more variable, and higher among sparsely-vegetated landscapes (81% for shrublands), highlighting the overwhelming extent of land use impacts. Cross-comparisons across available TC and CS datasets reveal large spatial disagreements. More than a third of all identified co-located TC and CS change datasets show disagreements in the direction of change (Gain vs Loss), and these divergences persist as a function of land use intensities. Our results provide a characterization of the prevailing uncertainty structures of input datasets and the spatial patterns of land use-induced disturbances at the pixel and ecozone-levels. This assumes added significance in light of the stock-taking exercises envisaged as part of the Paris Agreement, the advancement of terrestrial carbon modelling initiatives as well as emerging, novel remote sensing products.
How to cite: Bhan, M., Fritz, S., Gingrich, S., and Erb, K.: Land use shapes the relationship between tree cover and carbon stocks in the tropics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4721, https://doi.org/10.5194/egusphere-egu2020-4721, 2020.
EGU2020-7723 | Displays | BG3.20
How global dryland vegetation dynamics relate to changing climatic conditions and anthropogenic dynamicsChristin Abel, Stéphanie Horion, Torbern Tagesson, Wanda De Keersmaecker, Alistair W.R. Seddon, Abdulhakim M. Abdi, and Rasmus Fensholt
Monitoring ecosystem dynamics is fundamental to understanding and eventually forecasting ecosystem states. To achieve this, it is crucial to identify and understand potential negative/ positive effects from a changing world on the system. As one key aspect of every ecosystem are the living organisms it involves, our research focuses on vegetation, since it has major implications for both the climate, because plants absorb carbon dioxide, and human well-being, because people depend on the products of plants. Specifically addressing global drylands, where vegetation productivity is tightly linked to the availability of water (mainly through rainfall), we quantify changes in vegetation functioning by analyzing the slopes of a sequential linear regression (SeRGS) over a time series of remote sensing data (NDVI and rainfall), as introduced in Abel et al., 2019. Further, we apply a data-driven, empirical approach to estimate the relative importance of potential drivers of identified changes, as in Abel et al., 2020 (in revision). We show that there are substantial regional and continental differences in vegetation functioning and that these trends can be linked to global trends of population expansion, large-scale agriculture intensification/ expansion and changing climatic conditions. Results from these studies, follow-up research and perspectives will be presented and discussed at EGU.
References:
Abel, C., Horion, S., Tagesson, T., Brandt, M., Fensholt, R. (2019). Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sens. Environ. 224, 317–332.
Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A. W. R., Abdi A. M., Fensholt, R. (2020). How the human-environment nexus changes global dryland vegetation functioning, in revision.
How to cite: Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A. W. R., Abdi, A. M., and Fensholt, R.: How global dryland vegetation dynamics relate to changing climatic conditions and anthropogenic dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7723, https://doi.org/10.5194/egusphere-egu2020-7723, 2020.
Monitoring ecosystem dynamics is fundamental to understanding and eventually forecasting ecosystem states. To achieve this, it is crucial to identify and understand potential negative/ positive effects from a changing world on the system. As one key aspect of every ecosystem are the living organisms it involves, our research focuses on vegetation, since it has major implications for both the climate, because plants absorb carbon dioxide, and human well-being, because people depend on the products of plants. Specifically addressing global drylands, where vegetation productivity is tightly linked to the availability of water (mainly through rainfall), we quantify changes in vegetation functioning by analyzing the slopes of a sequential linear regression (SeRGS) over a time series of remote sensing data (NDVI and rainfall), as introduced in Abel et al., 2019. Further, we apply a data-driven, empirical approach to estimate the relative importance of potential drivers of identified changes, as in Abel et al., 2020 (in revision). We show that there are substantial regional and continental differences in vegetation functioning and that these trends can be linked to global trends of population expansion, large-scale agriculture intensification/ expansion and changing climatic conditions. Results from these studies, follow-up research and perspectives will be presented and discussed at EGU.
References:
Abel, C., Horion, S., Tagesson, T., Brandt, M., Fensholt, R. (2019). Towards improved remote sensing based monitoring of dryland ecosystem functioning using sequential linear regression slopes (SeRGS). Remote Sens. Environ. 224, 317–332.
Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A. W. R., Abdi A. M., Fensholt, R. (2020). How the human-environment nexus changes global dryland vegetation functioning, in revision.
How to cite: Abel, C., Horion, S., Tagesson, T., De Keersmaecker, W., Seddon, A. W. R., Abdi, A. M., and Fensholt, R.: How global dryland vegetation dynamics relate to changing climatic conditions and anthropogenic dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7723, https://doi.org/10.5194/egusphere-egu2020-7723, 2020.
EGU2020-2283 | Displays | BG3.20
Quantitatively distinguish the impact of climate change and human activities on the vegetation changes in Mainland China based on the improved residual methodYahai Zhang and Aizhong Ye
Knowledge of the current severe global environmental changes, vegetation has faced the dual challenges posed by climate change and human activities. Quantitatively distinguishing the influence of climate change and human activities on vegetation changes is a key to develop adaptive ecological protection policies. This study used the Normalized Difference Vegetation Index (NDVI) and meteorological data from 1982 to 2015 to analyze the characteristic of vegetation changes and the relationship with climate factors in Mainland China. The contribution rates of climate change and human activities to vegetation dynamics are further calculated by the improved trend method of residual analysis. The results show that 68.81% vegetation of Mainland China is in a state of sustainable increase and cultivated vegetation (CV) and grass are the main greening vegetation types. The impact of human activities (54.45%-75.27%) on vegetation changes in Mainland China is higher than climate change (24.73%-45.46%). Human activities mainly affect grass, mixed coniferous broad-leaved forest (MCBF) and cultivated vegetation (CV), while swamp is more sensitive to climate change. The improved residual trend method considering temporal and spatial dimensions can reduce the uncertainty of the methods. This study provides a theoretical basis for future government implementation of ecological management.
How to cite: Zhang, Y. and Ye, A.: Quantitatively distinguish the impact of climate change and human activities on the vegetation changes in Mainland China based on the improved residual method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2283, https://doi.org/10.5194/egusphere-egu2020-2283, 2020.
Knowledge of the current severe global environmental changes, vegetation has faced the dual challenges posed by climate change and human activities. Quantitatively distinguishing the influence of climate change and human activities on vegetation changes is a key to develop adaptive ecological protection policies. This study used the Normalized Difference Vegetation Index (NDVI) and meteorological data from 1982 to 2015 to analyze the characteristic of vegetation changes and the relationship with climate factors in Mainland China. The contribution rates of climate change and human activities to vegetation dynamics are further calculated by the improved trend method of residual analysis. The results show that 68.81% vegetation of Mainland China is in a state of sustainable increase and cultivated vegetation (CV) and grass are the main greening vegetation types. The impact of human activities (54.45%-75.27%) on vegetation changes in Mainland China is higher than climate change (24.73%-45.46%). Human activities mainly affect grass, mixed coniferous broad-leaved forest (MCBF) and cultivated vegetation (CV), while swamp is more sensitive to climate change. The improved residual trend method considering temporal and spatial dimensions can reduce the uncertainty of the methods. This study provides a theoretical basis for future government implementation of ecological management.
How to cite: Zhang, Y. and Ye, A.: Quantitatively distinguish the impact of climate change and human activities on the vegetation changes in Mainland China based on the improved residual method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2283, https://doi.org/10.5194/egusphere-egu2020-2283, 2020.
EGU2020-18028 | Displays | BG3.20
Unraveling the time-scale teleconnections between soil moisture and vegetationDiego Bueso, Maria Piles, and Gustau Camps-Valls
Identifying causal relations from observational data is key to understand Earth system interactions. Extensions to spatio-temporal analysis at different scales are of vital importance for better understanding dynamical phenomenon of natural complex systems. Soil moisture-vegetation interactions constitute a central part of ecosystem functioning and health. Here we are interested in uncovering (potentially nonlinear) spatio-temporal causal relations at different time scales between two relevant Earth observation variables: soil moisture (SM) and vegetation optical depth (VOD). To aboard the complexity data problem, we extract relevant and expressive feature components with the nonlinear kernel-based dimensional reduction method ROCK-PCA in [1]. The method yields the main modes of variability of the variables that are then used to study causal relations. To infer causality relations we use the cross-information kernel Granger causality (XKGC) method introduced in [2], which accounts for nonlinear cross-relations between the involved variables and generalizes nonlinear GC methods. Results are succesfully compared to standard correlation analysis, transfer entropy and convergent cross-mapping alternative methods. In general XKGC identifies a sparser connectivity than correlation. Also, well-known wet and dry patterns are identified as reported in the literature, but other interesting unreported connections and spatio-temporal SM<-->VOD emerge.
REFERENCES
[1] D. Bueso, M. Piles and G. Camps-Valls, "Nonlinear PCA for Spatio-Temporal Analysis of
Earth Observation Data," in IEEE Transactions on Geoscience and Remote Sensing, accepted (2020).
[2] Brajard, J., Charantonis, A., Chen, C., & Runge, J. (Eds.). (2019). Proceedings of the
9th International Workshop on Climate Informatics: CI 2019 (No. NCAR/TN-561+PROC).
How to cite: Bueso, D., Piles, M., and Camps-Valls, G.: Unraveling the time-scale teleconnections between soil moisture and vegetation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18028, https://doi.org/10.5194/egusphere-egu2020-18028, 2020.
Identifying causal relations from observational data is key to understand Earth system interactions. Extensions to spatio-temporal analysis at different scales are of vital importance for better understanding dynamical phenomenon of natural complex systems. Soil moisture-vegetation interactions constitute a central part of ecosystem functioning and health. Here we are interested in uncovering (potentially nonlinear) spatio-temporal causal relations at different time scales between two relevant Earth observation variables: soil moisture (SM) and vegetation optical depth (VOD). To aboard the complexity data problem, we extract relevant and expressive feature components with the nonlinear kernel-based dimensional reduction method ROCK-PCA in [1]. The method yields the main modes of variability of the variables that are then used to study causal relations. To infer causality relations we use the cross-information kernel Granger causality (XKGC) method introduced in [2], which accounts for nonlinear cross-relations between the involved variables and generalizes nonlinear GC methods. Results are succesfully compared to standard correlation analysis, transfer entropy and convergent cross-mapping alternative methods. In general XKGC identifies a sparser connectivity than correlation. Also, well-known wet and dry patterns are identified as reported in the literature, but other interesting unreported connections and spatio-temporal SM<-->VOD emerge.
REFERENCES
[1] D. Bueso, M. Piles and G. Camps-Valls, "Nonlinear PCA for Spatio-Temporal Analysis of
Earth Observation Data," in IEEE Transactions on Geoscience and Remote Sensing, accepted (2020).
[2] Brajard, J., Charantonis, A., Chen, C., & Runge, J. (Eds.). (2019). Proceedings of the
9th International Workshop on Climate Informatics: CI 2019 (No. NCAR/TN-561+PROC).
How to cite: Bueso, D., Piles, M., and Camps-Valls, G.: Unraveling the time-scale teleconnections between soil moisture and vegetation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18028, https://doi.org/10.5194/egusphere-egu2020-18028, 2020.
EGU2020-17702 | Displays | BG3.20
Phenology-induced energy and carbon fluxes in land surface modelsJan De Pue, José Miguel Barrios, Fabienne Maignan, Liyang Liu, Philippe Ciais, Alirio Arboleda, Rafiq Hamdi, Manuela Balzarolo, and Françoise Gellens-Meulenberghs
The annual phenological cycle is of key importance for the carbon and energy fluxes in terrestrial ecosystems. Although the processes controlling budburst and leaf senescence are fairly well known, the connection between plant phenology and the carbon fluxes remains a challenging aspect in land surface modelling (LSM). In this study, the modelling strategies of three well stablished LSM are compared. The LSM considered in this study were: ORCHIDEE, ISBA-A-gs and the model driving the LSA-SAF evapotranspiration product (https://landsaf.ipma.pt). The latter model does not simulate the carbon fluxes but focuses on the computation of evapotranspiration and energy fluxes.
The phenological cycle is simulated explicitly in the ORCHIDEE model, using empirical relations based on temperature sum, water availability, and other variables. In the ISBA-A-gs model, phenology and LAI development is fully photosynthesis-driven. The phenology in the LSA-SAF model is driven by remote sensing forcing variables, such as LAI observations. Alternatively, the assimilation of remote sensing LAI products is a convenient method to improve the simulated phenological cycle in land surface models. A dedicated module for this operation is available in ISBA-A-gs.
Simulations were performed over a wide range of climatological conditions and plant functional types. The results were then validated with in-situ measurements conducted at Fluxnet stations. In addition to the comparison between measured and modelled carbon fluxes, the validation in this study included the intra-annual variation in the simulated phenological cycle.
How to cite: De Pue, J., Barrios, J. M., Maignan, F., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., Balzarolo, M., and Gellens-Meulenberghs, F.: Phenology-induced energy and carbon fluxes in land surface models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17702, https://doi.org/10.5194/egusphere-egu2020-17702, 2020.
The annual phenological cycle is of key importance for the carbon and energy fluxes in terrestrial ecosystems. Although the processes controlling budburst and leaf senescence are fairly well known, the connection between plant phenology and the carbon fluxes remains a challenging aspect in land surface modelling (LSM). In this study, the modelling strategies of three well stablished LSM are compared. The LSM considered in this study were: ORCHIDEE, ISBA-A-gs and the model driving the LSA-SAF evapotranspiration product (https://landsaf.ipma.pt). The latter model does not simulate the carbon fluxes but focuses on the computation of evapotranspiration and energy fluxes.
The phenological cycle is simulated explicitly in the ORCHIDEE model, using empirical relations based on temperature sum, water availability, and other variables. In the ISBA-A-gs model, phenology and LAI development is fully photosynthesis-driven. The phenology in the LSA-SAF model is driven by remote sensing forcing variables, such as LAI observations. Alternatively, the assimilation of remote sensing LAI products is a convenient method to improve the simulated phenological cycle in land surface models. A dedicated module for this operation is available in ISBA-A-gs.
Simulations were performed over a wide range of climatological conditions and plant functional types. The results were then validated with in-situ measurements conducted at Fluxnet stations. In addition to the comparison between measured and modelled carbon fluxes, the validation in this study included the intra-annual variation in the simulated phenological cycle.
How to cite: De Pue, J., Barrios, J. M., Maignan, F., Liu, L., Ciais, P., Arboleda, A., Hamdi, R., Balzarolo, M., and Gellens-Meulenberghs, F.: Phenology-induced energy and carbon fluxes in land surface models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17702, https://doi.org/10.5194/egusphere-egu2020-17702, 2020.
EGU2020-17527 | Displays | BG3.20
An offline reanalysis of land surface variables with LDAS-Monde forced by a kilometric scale NWP systemBertrand Bonan, Clément Albergel, Adrien Napoly, Yongjun Zheng, and Jean-Christophe Calvet
LDAS-Monde is the offline land data assimilation system (LDAS) developed by Météo-France’s research centre (CNRM) aiming to monitor the evolution of land surface variables (LSVs) at various scales, from regional to global. It combines numerical simulations from the multilayer and interactive vegetation ISBA land surface model and satellite-derived observations of surface soil moisture and leaf area index (LAI). LDAS-Monde has been successfully validated over the globe.
In this work, we study the possibility to set up LDAS-Monde to the context of the kilometric spatial resolution. In this context, we assimilate satellite observations of LAI from the Copernicus Global Land Service (CGLS) into the ISBA land surface model forced with Météo-France’s small scale numerical weather prediction system AROME. We produce a reanalysis of LSVs at 2.5-km spatial resolution over the AROME domain centred on France starting from 2017. The quality of this reanalysis is assessed by comparing the obtained reanalysis with satellite products of LAI and surface soil moisture from e.g. CGLS and in-situ measurements of soil moisture from various networks (SMOSMANIA, …). We also show the ability of our system to monitor the evolution of LSVs in the context of the severe drought that France suffered during the summer 2018. LDAS-Monde at 2.5-km spatial resolution displays a great potential for agricultural monitoring at high resolution. We also plan to adapt our framework to 1.0-km spatial resolution.
How to cite: Bonan, B., Albergel, C., Napoly, A., Zheng, Y., and Calvet, J.-C.: An offline reanalysis of land surface variables with LDAS-Monde forced by a kilometric scale NWP system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17527, https://doi.org/10.5194/egusphere-egu2020-17527, 2020.
LDAS-Monde is the offline land data assimilation system (LDAS) developed by Météo-France’s research centre (CNRM) aiming to monitor the evolution of land surface variables (LSVs) at various scales, from regional to global. It combines numerical simulations from the multilayer and interactive vegetation ISBA land surface model and satellite-derived observations of surface soil moisture and leaf area index (LAI). LDAS-Monde has been successfully validated over the globe.
In this work, we study the possibility to set up LDAS-Monde to the context of the kilometric spatial resolution. In this context, we assimilate satellite observations of LAI from the Copernicus Global Land Service (CGLS) into the ISBA land surface model forced with Météo-France’s small scale numerical weather prediction system AROME. We produce a reanalysis of LSVs at 2.5-km spatial resolution over the AROME domain centred on France starting from 2017. The quality of this reanalysis is assessed by comparing the obtained reanalysis with satellite products of LAI and surface soil moisture from e.g. CGLS and in-situ measurements of soil moisture from various networks (SMOSMANIA, …). We also show the ability of our system to monitor the evolution of LSVs in the context of the severe drought that France suffered during the summer 2018. LDAS-Monde at 2.5-km spatial resolution displays a great potential for agricultural monitoring at high resolution. We also plan to adapt our framework to 1.0-km spatial resolution.
How to cite: Bonan, B., Albergel, C., Napoly, A., Zheng, Y., and Calvet, J.-C.: An offline reanalysis of land surface variables with LDAS-Monde forced by a kilometric scale NWP system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17527, https://doi.org/10.5194/egusphere-egu2020-17527, 2020.
EGU2020-18110 | Displays | BG3.20
On the added value of improving the spatial representation and seasonal variations of vegetation cover in land surface models for simulated land surface temperatureMiguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johanssen, and Emanuel Dutra
Earth observations were used to evaluate and improve the representation of Land Surface Temperature (LST) and vegetation coverage over Iberia in two state-of-the-art land surface models - the European Center for Medium Range Weather Forecasting (ECMWF) Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) and the Méteo-France Interaction between Soil Biosphere and Atmosphere model (ISBA) within the SURface EXternalisée modelling platform (SURFEX-ISBA) for the 2004-2015 period.
The results show that the daily maximum LST simulated by HTESSEL over Iberia is affected by a large cold bias during summer months when compared against the Satellite Application Facility Land Surface Analysis (LSA-SAF), reaching magnitude larger than 10ºC over wide portions of central and southwestern Iberia. This error is shown to be tightly linked to a misrepresentation of the vegetation cover. In contrast, SURFEX simulations did not had such a cold bias. This was due to the better representation of vegetation coverage in SURFEX, which uses an updated land cover dataset (ECOCLIMAP II) and an interactive vegetation evolution, representing seasonality.
The representation of vegetation over Iberia in HTESSEL was improved by combining information from the European Space Agency Climate Change Initiative (ESA-CCI) land cover dataset with the Copernicus Global Land Service (CGLS) Leaf Area Index (LAI) and fraction of vegetation coverage (FCOVER). The proposed improvement vegetation includes a clumping approach to introduce seasonality to the vegetation coverage. The results show significant added value, removing the daily maximum LST summer cold bias completely while never reducing the accuracy over all seasons and hours of the day.
This work has important implications: First, LST is a key variable in surface-atmosphere energy and water exchanges and, thus, its accurate representation in earth system models is very important. Second, HTESSEL is the land surface model employed by ECMWF in the production of their weather forecasts and reanalysis, hence systematic errors are propagated into these products. Indeed, we show that the summer daily maximum LST cold bias over Iberia in HTESSEL is present in the widely used ECMWF fifth generation reanalysis (ERA5) and fourth generation reanalysis (ERA-Interim). Finally, our results provide hints into the interaction between vegetation land-atmosphere exchanges, highlight the consistent relevance of the vegetation cover and seasonality in representing land surface temperature in both models, and how earth observations play a critical role for constraining and improving weather and climate simulations.
How to cite: Nogueira, M., Albergel, C., Boussetta, S., Johanssen, F., and Dutra, E.: On the added value of improving the spatial representation and seasonal variations of vegetation cover in land surface models for simulated land surface temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18110, https://doi.org/10.5194/egusphere-egu2020-18110, 2020.
Earth observations were used to evaluate and improve the representation of Land Surface Temperature (LST) and vegetation coverage over Iberia in two state-of-the-art land surface models - the European Center for Medium Range Weather Forecasting (ECMWF) Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land (HTESSEL) and the Méteo-France Interaction between Soil Biosphere and Atmosphere model (ISBA) within the SURface EXternalisée modelling platform (SURFEX-ISBA) for the 2004-2015 period.
The results show that the daily maximum LST simulated by HTESSEL over Iberia is affected by a large cold bias during summer months when compared against the Satellite Application Facility Land Surface Analysis (LSA-SAF), reaching magnitude larger than 10ºC over wide portions of central and southwestern Iberia. This error is shown to be tightly linked to a misrepresentation of the vegetation cover. In contrast, SURFEX simulations did not had such a cold bias. This was due to the better representation of vegetation coverage in SURFEX, which uses an updated land cover dataset (ECOCLIMAP II) and an interactive vegetation evolution, representing seasonality.
The representation of vegetation over Iberia in HTESSEL was improved by combining information from the European Space Agency Climate Change Initiative (ESA-CCI) land cover dataset with the Copernicus Global Land Service (CGLS) Leaf Area Index (LAI) and fraction of vegetation coverage (FCOVER). The proposed improvement vegetation includes a clumping approach to introduce seasonality to the vegetation coverage. The results show significant added value, removing the daily maximum LST summer cold bias completely while never reducing the accuracy over all seasons and hours of the day.
This work has important implications: First, LST is a key variable in surface-atmosphere energy and water exchanges and, thus, its accurate representation in earth system models is very important. Second, HTESSEL is the land surface model employed by ECMWF in the production of their weather forecasts and reanalysis, hence systematic errors are propagated into these products. Indeed, we show that the summer daily maximum LST cold bias over Iberia in HTESSEL is present in the widely used ECMWF fifth generation reanalysis (ERA5) and fourth generation reanalysis (ERA-Interim). Finally, our results provide hints into the interaction between vegetation land-atmosphere exchanges, highlight the consistent relevance of the vegetation cover and seasonality in representing land surface temperature in both models, and how earth observations play a critical role for constraining and improving weather and climate simulations.
How to cite: Nogueira, M., Albergel, C., Boussetta, S., Johanssen, F., and Dutra, E.: On the added value of improving the spatial representation and seasonal variations of vegetation cover in land surface models for simulated land surface temperature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18110, https://doi.org/10.5194/egusphere-egu2020-18110, 2020.
EGU2020-17717 | Displays | BG3.20
Inferring non-steady-state terrestrial vegetation carbon turnover times from multi-decadal space-borne observations on global scaleNaixin Fan, Simon Besnard, Maurizio Santoro, Oliver Cartus, and Nuno Carvalhais
The global biomass is determined by the vegetation turnover times (τ) and carbon fixation through photosynthesis. Vegetation turnover time is a central parameter that not only partially determines the terrestrial carbon sink but also the response of terrestrial vegetation to the future changes in climate. However, the change of magnitude, spatial patterns and uncertainties in τ as well as the sensitivity of these processes to climate change is not well understood due to lack of observations on global scale. In this study, we explore a new dataset of annual above-ground biomass (AGB) change from 1993 to 2018 from spaceborne scatterometer observations. Using the long-term, spatial-explicit global dynamic dataset, we investigated how τ change over almost three decades including the uncertainties. Previous estimations of τ under steady-state assumption can now be challenged acknowledging that terrestrial ecosystems are, for the most of cases, not in balance. In this study, we explore this new dataset to derive global maps of τ in non-steady-state for different periods of time. We used a non-steady-state carbon model in which the change of AGB is a function of Gross Primary Production (GPP) and τ (ΔAGB = α*GPP-AGB/ τ). The parameter α represents the percentage of incorporation of carbon from GPP to biomass. By exploring the AGB change in 5 to 10 years of time step, we were able to infer τ and α from the observations of AGB and GPP change by solving the linear equation. We show how τ changes after potential disturbances in the early 2000s in comparison to the previous decade. We also show the spatial distributions of α from the change of AGB. By accessing the change in biomass, τ and α as well as their associated uncertainties, we provide a comprehensive diagnostic on the vegetation dynamics and the potential response of biomass to disturbance and to climate change.
How to cite: Fan, N., Besnard, S., Santoro, M., Cartus, O., and Carvalhais, N.: Inferring non-steady-state terrestrial vegetation carbon turnover times from multi-decadal space-borne observations on global scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17717, https://doi.org/10.5194/egusphere-egu2020-17717, 2020.
The global biomass is determined by the vegetation turnover times (τ) and carbon fixation through photosynthesis. Vegetation turnover time is a central parameter that not only partially determines the terrestrial carbon sink but also the response of terrestrial vegetation to the future changes in climate. However, the change of magnitude, spatial patterns and uncertainties in τ as well as the sensitivity of these processes to climate change is not well understood due to lack of observations on global scale. In this study, we explore a new dataset of annual above-ground biomass (AGB) change from 1993 to 2018 from spaceborne scatterometer observations. Using the long-term, spatial-explicit global dynamic dataset, we investigated how τ change over almost three decades including the uncertainties. Previous estimations of τ under steady-state assumption can now be challenged acknowledging that terrestrial ecosystems are, for the most of cases, not in balance. In this study, we explore this new dataset to derive global maps of τ in non-steady-state for different periods of time. We used a non-steady-state carbon model in which the change of AGB is a function of Gross Primary Production (GPP) and τ (ΔAGB = α*GPP-AGB/ τ). The parameter α represents the percentage of incorporation of carbon from GPP to biomass. By exploring the AGB change in 5 to 10 years of time step, we were able to infer τ and α from the observations of AGB and GPP change by solving the linear equation. We show how τ changes after potential disturbances in the early 2000s in comparison to the previous decade. We also show the spatial distributions of α from the change of AGB. By accessing the change in biomass, τ and α as well as their associated uncertainties, we provide a comprehensive diagnostic on the vegetation dynamics and the potential response of biomass to disturbance and to climate change.
How to cite: Fan, N., Besnard, S., Santoro, M., Cartus, O., and Carvalhais, N.: Inferring non-steady-state terrestrial vegetation carbon turnover times from multi-decadal space-borne observations on global scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17717, https://doi.org/10.5194/egusphere-egu2020-17717, 2020.
EGU2020-19673 | Displays | BG3.20
Forest above-ground biomass estimates across three decades from spaceborne scatterometer observationsMaurizio Santoro, Oliver Cartus, Nuno Carvalhais, Simon Besnard, and Naixin Fan
The large uncertainty characterizing the terrestrial carbon (C) cycle is a consequence of the sparse and irregular observations on the ground. In terms of observations, spaceborne remote sensing has been achieving global, repeated coverages of the Earth since the late 1970s, with a continuous increase in terms of density of observations in time and spatial resolution, thus potentially qualifying as data source to fill such gap in knowledge. Above-ground biomass is a baseline for quantifying the terrestrial C pool; however, remote sensing observations do not measure the organic mass of vegetation. Above-ground biomass (AGB) of forests can only be inferred by inverting numerical models relating and combining multiple remote sensing observations. One of the longest time record of observations from space is represented by the backscattered intensity from the European Remote Sensing Wind Scatterometer (ERS WindScat) and the MetOp Advanced Scatterometer (ASCAT), both operating at C-band (wavelength of 6 cm). An almost unbroken time series of backscatter observations at 0.25° spatial resolution exists since 1991 and data continuity is guaranteed in the next decades. In spite of the weak sensitivity of C-band backscatter to AGB, wall-to-wall estimates of AGB have been derived from high-resolution SAR observations by exploiting multiple observations acquired in a relatively short time period (Santoro et al., Rem. Sens. Env., 2011; Santoro et al., Rem. Sens. Env., 2015). We have now applied this approach to generate a global time series of AGB estimates for each year between 1992 and 2018 from the C-band scatterometer data at 0.25° spatial resolution. The spatial patterns of AGB match known patterns from in situ records and other remote sensing datasets. The uncertainty of our AGB estimates is between 30% and 40% of the estimated value at the pixel level, providing strong confidence in multi-decadal AGB trends. We identify a constant increase of biomass across most boreal and temperate forests of the northern hemisphere. In contrast, we detect severe loss of biomass throughout the wet tropics during the 1990s and the beginning of the 2000 decade in consequence of massive deforestation. This loss in biomass is followed by a steady increase during the 2000s and the beginning of the most recent decade, coming more recently into saturation. Overall, we find that the global AGB density at 0.25° steadily increased by 9% from 71.8 Mg ha-1 Pg in the 1990s to 78.1 Mg ha-1 in the 2010s. Combining our AGB density estimates with the annual maps of the Climate Change Initiative (CCI) Land Cover dataset, we show that total AGB in forests decreased slightly from 566 Pg in the 1990s to 560 Pg in the 2000s, then increased to 593 Pg in the 2010s, resulting in an almost 5% net increase during the last three decades.
How to cite: Santoro, M., Cartus, O., Carvalhais, N., Besnard, S., and Fan, N.: Forest above-ground biomass estimates across three decades from spaceborne scatterometer observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19673, https://doi.org/10.5194/egusphere-egu2020-19673, 2020.
The large uncertainty characterizing the terrestrial carbon (C) cycle is a consequence of the sparse and irregular observations on the ground. In terms of observations, spaceborne remote sensing has been achieving global, repeated coverages of the Earth since the late 1970s, with a continuous increase in terms of density of observations in time and spatial resolution, thus potentially qualifying as data source to fill such gap in knowledge. Above-ground biomass is a baseline for quantifying the terrestrial C pool; however, remote sensing observations do not measure the organic mass of vegetation. Above-ground biomass (AGB) of forests can only be inferred by inverting numerical models relating and combining multiple remote sensing observations. One of the longest time record of observations from space is represented by the backscattered intensity from the European Remote Sensing Wind Scatterometer (ERS WindScat) and the MetOp Advanced Scatterometer (ASCAT), both operating at C-band (wavelength of 6 cm). An almost unbroken time series of backscatter observations at 0.25° spatial resolution exists since 1991 and data continuity is guaranteed in the next decades. In spite of the weak sensitivity of C-band backscatter to AGB, wall-to-wall estimates of AGB have been derived from high-resolution SAR observations by exploiting multiple observations acquired in a relatively short time period (Santoro et al., Rem. Sens. Env., 2011; Santoro et al., Rem. Sens. Env., 2015). We have now applied this approach to generate a global time series of AGB estimates for each year between 1992 and 2018 from the C-band scatterometer data at 0.25° spatial resolution. The spatial patterns of AGB match known patterns from in situ records and other remote sensing datasets. The uncertainty of our AGB estimates is between 30% and 40% of the estimated value at the pixel level, providing strong confidence in multi-decadal AGB trends. We identify a constant increase of biomass across most boreal and temperate forests of the northern hemisphere. In contrast, we detect severe loss of biomass throughout the wet tropics during the 1990s and the beginning of the 2000 decade in consequence of massive deforestation. This loss in biomass is followed by a steady increase during the 2000s and the beginning of the most recent decade, coming more recently into saturation. Overall, we find that the global AGB density at 0.25° steadily increased by 9% from 71.8 Mg ha-1 Pg in the 1990s to 78.1 Mg ha-1 in the 2010s. Combining our AGB density estimates with the annual maps of the Climate Change Initiative (CCI) Land Cover dataset, we show that total AGB in forests decreased slightly from 566 Pg in the 1990s to 560 Pg in the 2000s, then increased to 593 Pg in the 2010s, resulting in an almost 5% net increase during the last three decades.
How to cite: Santoro, M., Cartus, O., Carvalhais, N., Besnard, S., and Fan, N.: Forest above-ground biomass estimates across three decades from spaceborne scatterometer observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19673, https://doi.org/10.5194/egusphere-egu2020-19673, 2020.
EGU2020-19566 | Displays | BG3.20
A new space-borne perspective of crop productivity variations over the US Corn BeltPeter Somkuti, Hartmut Boesch, Robert Parker, Alex Webb, Liang Feng, Paul Palmer, and Tristan Quaife
We analyse inter-annual variations of SIF over the US Corn Belt using a seven-year time series (2010–2016) retrieved from measurements of short-wave IR radiation collected by the Japanese Greenhouse gases Observing SATellite (GOSAT). Using survey data and annual reports from the US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS), we relate anomalies in the GOSAT SIF time series to meteorological and climatic events that affected planting or growing seasons. The events described in the USDA annual reports are confirmed using remote sensing-based data such as land surface temperature, precipitation, water storage anomalies and soil moisture. These datasets were carefully collocated with the GOSAT footprints on a sub-pixel basis to remove any effect that could occur due to different sampling. We find that cumulative SIF, integrated from April to June, tracks the planting progress established in the first half of the planting season (Pearson correlation r > 0.89). Similarly, we show that crop yields for corn (maize) and soybeans are equally well correlated to the integrated SIF from July to October (r > 0.86). Our results for SIF are consistent with reflectance-based vegetation indices, that have a longer established history of crop monitoring. Despite GOSAT’s sparse sampling, we were able to show the potential for using satellite-based SIF to study agriculturally-managed vegetation.
[1] Somkuti et al., "A new space-borne perspective of crop productivity variations over the US Corn Belt." Agricultural and Forest Meteorology 281 (2020): 107826.
How to cite: Somkuti, P., Boesch, H., Parker, R., Webb, A., Feng, L., Palmer, P., and Quaife, T.: A new space-borne perspective of crop productivity variations over the US Corn Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19566, https://doi.org/10.5194/egusphere-egu2020-19566, 2020.
We analyse inter-annual variations of SIF over the US Corn Belt using a seven-year time series (2010–2016) retrieved from measurements of short-wave IR radiation collected by the Japanese Greenhouse gases Observing SATellite (GOSAT). Using survey data and annual reports from the US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS), we relate anomalies in the GOSAT SIF time series to meteorological and climatic events that affected planting or growing seasons. The events described in the USDA annual reports are confirmed using remote sensing-based data such as land surface temperature, precipitation, water storage anomalies and soil moisture. These datasets were carefully collocated with the GOSAT footprints on a sub-pixel basis to remove any effect that could occur due to different sampling. We find that cumulative SIF, integrated from April to June, tracks the planting progress established in the first half of the planting season (Pearson correlation r > 0.89). Similarly, we show that crop yields for corn (maize) and soybeans are equally well correlated to the integrated SIF from July to October (r > 0.86). Our results for SIF are consistent with reflectance-based vegetation indices, that have a longer established history of crop monitoring. Despite GOSAT’s sparse sampling, we were able to show the potential for using satellite-based SIF to study agriculturally-managed vegetation.
[1] Somkuti et al., "A new space-borne perspective of crop productivity variations over the US Corn Belt." Agricultural and Forest Meteorology 281 (2020): 107826.
How to cite: Somkuti, P., Boesch, H., Parker, R., Webb, A., Feng, L., Palmer, P., and Quaife, T.: A new space-borne perspective of crop productivity variations over the US Corn Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19566, https://doi.org/10.5194/egusphere-egu2020-19566, 2020.
EGU2020-20596 | Displays | BG3.20
Convergences and divergences between data-driven GPP estimates and high-resolution SIF measurements across vegetation and climatic gradientsMark Pickering, Alessandro Cescatti, and Gregory Duveiller
Sun-induced chlorophyll fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross primary productivity (GPP). However, current studies have generally been limited by the spatial resolution of datasets with a sufficiently long archive. For example, while available since 2007, the commonly used GOME-2 SIF data has a spatial resolution in the order of 0.5° (~50km), too coarse to effectively separate the competing effects of different types of vegetation from the overall ecosystem dynamics, or to draw general conclusions relevant to the land cover of a region. While finer SIF retrievals are becoming available, such as from the TROPOMI instrument on-board of the Sentinal-5P platform, several years will be needed before their archives reach a sufficient temporal depth.
Using GOME-2 SIF retrievals, downscaled to a resolution of 0.05° (~5km) via a proven methodology [1], comparisons are made with the data-driven FLUXCOM GPP dataset and divergences and convergences explored to see where high-resolution SIF can enhance our understanding of GPP. This includes an exploration of the spatial and temporal relationships between estimates of GPP and SIF at a global scale. The high resolution of the SIF data allows the relationships to be broken down by plant functional type (PFT) for separate climate zones, thus enabling a confrontation between FLUXCOM GPP and SIF at fine granularity and eventually a future integration of SIF in the estimation of data-driven GPP products.
Whilst a linear relationship is generally observed between SIF and GPP in all vegetation categories, areas of non-linearity suggest where SIF could potentially provide more information about ecosystem dynamics that are not represented in the GPP dataset. For example some vegetation types experience saturation in the seasonal GPP measurements (likely driven by the saturation of the fraction of absorbed PAR), that are not emerging from the SIF signal. In addition, in highly productive ecosystems like tropical rainforests, a wide range of spatio-temporal variation in SIF is observed, while only a considerably smaller variability is reproduced in the modelled GPP. Further studies are conducted on how SIF and GPP behave differently in anomalies of air temperature and soil moisture. Overall, the study suggests there is room to improve global land-climate models by incorporating information from SIF.
[1] Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data Discuss., , in review, 2019.
How to cite: Pickering, M., Cescatti, A., and Duveiller, G.: Convergences and divergences between data-driven GPP estimates and high-resolution SIF measurements across vegetation and climatic gradients, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20596, https://doi.org/10.5194/egusphere-egu2020-20596, 2020.
Sun-induced chlorophyll fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross primary productivity (GPP). However, current studies have generally been limited by the spatial resolution of datasets with a sufficiently long archive. For example, while available since 2007, the commonly used GOME-2 SIF data has a spatial resolution in the order of 0.5° (~50km), too coarse to effectively separate the competing effects of different types of vegetation from the overall ecosystem dynamics, or to draw general conclusions relevant to the land cover of a region. While finer SIF retrievals are becoming available, such as from the TROPOMI instrument on-board of the Sentinal-5P platform, several years will be needed before their archives reach a sufficient temporal depth.
Using GOME-2 SIF retrievals, downscaled to a resolution of 0.05° (~5km) via a proven methodology [1], comparisons are made with the data-driven FLUXCOM GPP dataset and divergences and convergences explored to see where high-resolution SIF can enhance our understanding of GPP. This includes an exploration of the spatial and temporal relationships between estimates of GPP and SIF at a global scale. The high resolution of the SIF data allows the relationships to be broken down by plant functional type (PFT) for separate climate zones, thus enabling a confrontation between FLUXCOM GPP and SIF at fine granularity and eventually a future integration of SIF in the estimation of data-driven GPP products.
Whilst a linear relationship is generally observed between SIF and GPP in all vegetation categories, areas of non-linearity suggest where SIF could potentially provide more information about ecosystem dynamics that are not represented in the GPP dataset. For example some vegetation types experience saturation in the seasonal GPP measurements (likely driven by the saturation of the fraction of absorbed PAR), that are not emerging from the SIF signal. In addition, in highly productive ecosystems like tropical rainforests, a wide range of spatio-temporal variation in SIF is observed, while only a considerably smaller variability is reproduced in the modelled GPP. Further studies are conducted on how SIF and GPP behave differently in anomalies of air temperature and soil moisture. Overall, the study suggests there is room to improve global land-climate models by incorporating information from SIF.
[1] Duveiller, G., Filipponi, F., Walther, S., Köhler, P., Frankenberg, C., Guanter, L., and Cescatti, A.: A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity, Earth Syst. Sci. Data Discuss., , in review, 2019.
How to cite: Pickering, M., Cescatti, A., and Duveiller, G.: Convergences and divergences between data-driven GPP estimates and high-resolution SIF measurements across vegetation and climatic gradients, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20596, https://doi.org/10.5194/egusphere-egu2020-20596, 2020.
EGU2020-4596 | Displays | BG3.20
Estimation of global vegetation productivity from 1981 to 2018 With remote sensing dataRui Sun, Juanmin Wang, Zhiqiang Xiao, Anran Zhu, Mengjia Wang, and Tao Yu
ly during 1981 and 2018, which was in great agreement with the other similar products. The global NPP has shown a significant increase trend, with an annual growth rate of 0.10 PgC/yr (R2=0.4684)
How to cite: Sun, R., Wang, J., Xiao, Z., Zhu, A., Wang, M., and Yu, T.: Estimation of global vegetation productivity from 1981 to 2018 With remote sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4596, https://doi.org/10.5194/egusphere-egu2020-4596, 2020.
ly during 1981 and 2018, which was in great agreement with the other similar products. The global NPP has shown a significant increase trend, with an annual growth rate of 0.10 PgC/yr (R2=0.4684)
How to cite: Sun, R., Wang, J., Xiao, Z., Zhu, A., Wang, M., and Yu, T.: Estimation of global vegetation productivity from 1981 to 2018 With remote sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4596, https://doi.org/10.5194/egusphere-egu2020-4596, 2020.
EGU2020-17875 | Displays | BG3.20
A new global Gross Primary Production (GPP) dataset based on microwave Vegetation Optical Depth Climate Archive (VODCA)Benjamin Wild, Irene Teubner, Leander Moesinger, and Wouter Dorigo
Gross Primary Production (GPP) describes the uptake of C02 by plants through photosynthesis and is essential to monitor and analyze ecosystem dynamics. Teubner et al.1 developed a carbon sink-driven approach to estimate GPP on a global scale using Vegetation Optical Depth (VOD), derived from active and passive microwave observations. This allows to analyze GPP variability, complementing existing optical GPP products which are more affected by weather conditions. The short operation time of the individual microwave sensors and the bias between them prohibit analyzing GPP variability. This issue can potentially be overcome by using the Vegetation Optical Depth Climate Archive (VODCA) developed by Moesinger et al.2, which merges multiple VOD products into a single data record. However, the use of a long-running VOD composite for estimating global GPP is challenging because the implications of the VOD aggregation process on the modelling of GPP are difficult to identify a priori.
Here, we present the results of applying the carbon sink-driven GPP estimation approach on the VODCA datasets. As model input for each pixel we used raw VOD from VODCA as well as changes in VOD and median VOD, the latter serves as proxy for vegetation cover. In order to analyze the performance of the carbon sink-driven approach when using VODCA as input, the model is cross-validated against single-sensor (AMSR-E) VOD estimates and commonly used carbon source-driven estimates (MODIS/FLUXCOM). We assessed the ability to model GPP based on single-frequency VODCA (C-, X- and Ku-band) as well as using multiple frequencies as model input.
Overall, the results show that single-band as well as multi-band VODCA performs slightly better in predicting GPP than single-sensor based VOD. Especially in the tropical regions multi-frequency VODCA GPP outperforms single-sensor based estimates. Compared to source-driven approaches, VOD based GPP estimates are higher than FLUXCOM and MODIS GPP. The spatial patterns, however, show good correspondence with the carbon source-driven GPP products, confirming that VODCA can be used to extend the GPP estimates to the past three decades.
1Teubner, I., Forkel, M., Camps-Valls, G., Jung, M., Miralles, Diego, Tramontana, G., van der Schalie, R., Vreugdenhil, M., Moesinger, L., Dorigo, W.:A carbon sink-driven approach to estimate gross primary production from microwave satellite observations, 2019. Remote Sensing of Environment. 229. 100-113. 10.1016/j.rse.2019.04.022.
2Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-42, in review, 2019.
How to cite: Wild, B., Teubner, I., Moesinger, L., and Dorigo, W.: A new global Gross Primary Production (GPP) dataset based on microwave Vegetation Optical Depth Climate Archive (VODCA), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17875, https://doi.org/10.5194/egusphere-egu2020-17875, 2020.
Gross Primary Production (GPP) describes the uptake of C02 by plants through photosynthesis and is essential to monitor and analyze ecosystem dynamics. Teubner et al.1 developed a carbon sink-driven approach to estimate GPP on a global scale using Vegetation Optical Depth (VOD), derived from active and passive microwave observations. This allows to analyze GPP variability, complementing existing optical GPP products which are more affected by weather conditions. The short operation time of the individual microwave sensors and the bias between them prohibit analyzing GPP variability. This issue can potentially be overcome by using the Vegetation Optical Depth Climate Archive (VODCA) developed by Moesinger et al.2, which merges multiple VOD products into a single data record. However, the use of a long-running VOD composite for estimating global GPP is challenging because the implications of the VOD aggregation process on the modelling of GPP are difficult to identify a priori.
Here, we present the results of applying the carbon sink-driven GPP estimation approach on the VODCA datasets. As model input for each pixel we used raw VOD from VODCA as well as changes in VOD and median VOD, the latter serves as proxy for vegetation cover. In order to analyze the performance of the carbon sink-driven approach when using VODCA as input, the model is cross-validated against single-sensor (AMSR-E) VOD estimates and commonly used carbon source-driven estimates (MODIS/FLUXCOM). We assessed the ability to model GPP based on single-frequency VODCA (C-, X- and Ku-band) as well as using multiple frequencies as model input.
Overall, the results show that single-band as well as multi-band VODCA performs slightly better in predicting GPP than single-sensor based VOD. Especially in the tropical regions multi-frequency VODCA GPP outperforms single-sensor based estimates. Compared to source-driven approaches, VOD based GPP estimates are higher than FLUXCOM and MODIS GPP. The spatial patterns, however, show good correspondence with the carbon source-driven GPP products, confirming that VODCA can be used to extend the GPP estimates to the past three decades.
1Teubner, I., Forkel, M., Camps-Valls, G., Jung, M., Miralles, Diego, Tramontana, G., van der Schalie, R., Vreugdenhil, M., Moesinger, L., Dorigo, W.:A carbon sink-driven approach to estimate gross primary production from microwave satellite observations, 2019. Remote Sensing of Environment. 229. 100-113. 10.1016/j.rse.2019.04.022.
2Moesinger, L., Dorigo, W., de Jeu, R., van der Schalie, R., Scanlon, T., Teubner, I., and Forkel, M.: The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2019-42, in review, 2019.
How to cite: Wild, B., Teubner, I., Moesinger, L., and Dorigo, W.: A new global Gross Primary Production (GPP) dataset based on microwave Vegetation Optical Depth Climate Archive (VODCA), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17875, https://doi.org/10.5194/egusphere-egu2020-17875, 2020.
EGU2020-18889 | Displays | BG3.20
The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCALeander Moesinger, Ruxandra Zotta, Robin van der Schalie, Matthias Forkel, Tracy Scanlon, Irene Teubner, Richard de Jeu, and Wouter Dorigo
Since the late 1970s, spaceborne microwave radiometers have been providing measurements of radiation emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to the density, biomass, and water content of vegetation. Because of its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes in vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time span covered by the individual microwave sensors. This can potentially be overcome by merging multiple VOD products into a single climate data record. However, combining multiple sensors into a single product is challenging as systematic differences between input products like biases, different temporal and spatial resolutions and coverage need to be overcome.
Here, we present a new series of long-term VOD products, the VOD Climate Archive (VODCA; Moesinger et al., 2019). VODCA combines VOD retrievals that have been derived from multiple sensors (SSM/I, TMI, AMSR-E, Windsat and AMSR-2) using the Land Parameter Retrieval Model. We produce separate VOD products for microwave observations in different spectral bands, namely Ku-band (period 1987-2017), X-band (1997-2018) and C-band (2002-2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency with respect to the structural elements of the canopy. Our merging approach builds on an existing approach that is used to merge satellite products of surface soil moisture1,2.
The characteristics of VODCA are assessed for self-consistency and against other products. Using an autocorrelation analysis, we show that the merging of the multiple data sets successfully reduces the random error compared to the input data sets. Spatio-temporal patterns and anomalies of the merged products show consistency between frequencies and with Leaf Area Index observations from the MODIS instrument as well as with Vegetation Continuous Fields from the AVHRR instruments. Long-term trends in Ku-Band VODCA show that since 1987 there has been a decline in VOD in the tropics and in large parts of east-central and north Asia, while a substantial increase is observed in India, large parts of Australia, southern Africa, southeastern China and central north America. In summary, VODCA shows vast potential for monitoring spatial-temporal ecosystem changes as it is sensitive to vegetation water content and unaffected by cloud cover or high sun zenith angles. As such it complements existing long-term optical indices of greenness and leaf area.
1Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019) Evolution of the CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739. https://doi.org/10.5194/essd-11-717-2019
2Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001.
How to cite: Moesinger, L., Zotta, R., van der Schalie, R., Forkel, M., Scanlon, T., Teubner, I., de Jeu, R., and Dorigo, W.: The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18889, https://doi.org/10.5194/egusphere-egu2020-18889, 2020.
Since the late 1970s, spaceborne microwave radiometers have been providing measurements of radiation emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to the density, biomass, and water content of vegetation. Because of its high temporal resolution and long availability, VOD can be used to monitor short- to long-term changes in vegetation. However, studying long-term VOD dynamics is generally hampered by the relatively short time span covered by the individual microwave sensors. This can potentially be overcome by merging multiple VOD products into a single climate data record. However, combining multiple sensors into a single product is challenging as systematic differences between input products like biases, different temporal and spatial resolutions and coverage need to be overcome.
Here, we present a new series of long-term VOD products, the VOD Climate Archive (VODCA; Moesinger et al., 2019). VODCA combines VOD retrievals that have been derived from multiple sensors (SSM/I, TMI, AMSR-E, Windsat and AMSR-2) using the Land Parameter Retrieval Model. We produce separate VOD products for microwave observations in different spectral bands, namely Ku-band (period 1987-2017), X-band (1997-2018) and C-band (2002-2018). In this way, our multi-band VOD products preserve the unique characteristics of each frequency with respect to the structural elements of the canopy. Our merging approach builds on an existing approach that is used to merge satellite products of surface soil moisture1,2.
The characteristics of VODCA are assessed for self-consistency and against other products. Using an autocorrelation analysis, we show that the merging of the multiple data sets successfully reduces the random error compared to the input data sets. Spatio-temporal patterns and anomalies of the merged products show consistency between frequencies and with Leaf Area Index observations from the MODIS instrument as well as with Vegetation Continuous Fields from the AVHRR instruments. Long-term trends in Ku-Band VODCA show that since 1987 there has been a decline in VOD in the tropics and in large parts of east-central and north Asia, while a substantial increase is observed in India, large parts of Australia, southern Africa, southeastern China and central north America. In summary, VODCA shows vast potential for monitoring spatial-temporal ecosystem changes as it is sensitive to vegetation water content and unaffected by cloud cover or high sun zenith angles. As such it complements existing long-term optical indices of greenness and leaf area.
1Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019) Evolution of the CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739. https://doi.org/10.5194/essd-11-717-2019
2Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001.
How to cite: Moesinger, L., Zotta, R., van der Schalie, R., Forkel, M., Scanlon, T., Teubner, I., de Jeu, R., and Dorigo, W.: The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18889, https://doi.org/10.5194/egusphere-egu2020-18889, 2020.
EGU2020-10931 | Displays | BG3.20
Assessing the sensitivity of multi-frequency vegetation optical depth to biomass and canopy moisture content: towards an ecological-oriented evaluationLuisa Schmidt, Matthias Forkel, Wouter A. Dorigo, Leander Moesinger, Robin van der Schalie, Marta Yebra, and Thomas A. M. Pugh
Multi-decadal records of global Vegetation Optical Depth (VOD) derived from spaceborne microwave sensors provide novel opportunities to observe and analyze both the current state as well as the temporal changes of vegetation. Theoretically, VOD is sensitive to the biomass and moisture content of vegetation. Past studies found relations between VOD and leaf area index (LAI), productivity, biomass, and vegetation water status. In addition, VOD has been used to investigate or estimate changes in biomass, vegetation isohydricity, and tree mortality. However, VOD is not directly measured with ground observations and therefore difficult to evaluate. Several VOD products exist that have been retrieved using different satellite sensors, microwave frequencies (e.g. Ku, X, C, and L-bands) and retrieval algorithms. These products show differences in both their temporal (e.g. short-term variability) as well as spatial dynamics (e.g. their relation with LAI). Hence from a user point-of-view, it is difficult to assess which VOD products might be the most suitable for a certain ecological application.
Here we aim to develop and present initial results of an ecological-oriented assessment of several VOD products. Based on the theoretical assumption that VOD is sensitive to vegetation biomass and moisture content, we assess the co-varying sensitivities of high- (Ku, X, C-bands) and low-frequency (L-band) VOD products to biomass and moisture content within a consistent evaluation framework. High-frequency VOD was taken from the recent developed VODCA products and low-frequency VOD from SMAP and SMOS retrievals. Biomass was derived from global above-ground biomass maps and MODIS LAI. Canopy moisture content was estimated from MODIS retrievals.
The first results confirm previous findings that VOD is both sensitive to biomass and moisture content. High-frequency VOD products are mainly sensitive to short-term changes in canopy biomass and moisture content and low frequency VOD to woody biomass. However, we also found that high-frequency VOD shows high sensitivity to aboveground biomass in Savannahs and boreal forests. Also low-frequency VOD includes a clear signal of vegetation moisture that cannot be explained by biomass changes. This suggests that multi-frequency VOD products and estimates of vegetation biomass and moisture content should be integrated and jointly analyzed to provide a consistent picture of ecosystem dynamics.
How to cite: Schmidt, L., Forkel, M., Dorigo, W. A., Moesinger, L., van der Schalie, R., Yebra, M., and Pugh, T. A. M.: Assessing the sensitivity of multi-frequency vegetation optical depth to biomass and canopy moisture content: towards an ecological-oriented evaluation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10931, https://doi.org/10.5194/egusphere-egu2020-10931, 2020.
Multi-decadal records of global Vegetation Optical Depth (VOD) derived from spaceborne microwave sensors provide novel opportunities to observe and analyze both the current state as well as the temporal changes of vegetation. Theoretically, VOD is sensitive to the biomass and moisture content of vegetation. Past studies found relations between VOD and leaf area index (LAI), productivity, biomass, and vegetation water status. In addition, VOD has been used to investigate or estimate changes in biomass, vegetation isohydricity, and tree mortality. However, VOD is not directly measured with ground observations and therefore difficult to evaluate. Several VOD products exist that have been retrieved using different satellite sensors, microwave frequencies (e.g. Ku, X, C, and L-bands) and retrieval algorithms. These products show differences in both their temporal (e.g. short-term variability) as well as spatial dynamics (e.g. their relation with LAI). Hence from a user point-of-view, it is difficult to assess which VOD products might be the most suitable for a certain ecological application.
Here we aim to develop and present initial results of an ecological-oriented assessment of several VOD products. Based on the theoretical assumption that VOD is sensitive to vegetation biomass and moisture content, we assess the co-varying sensitivities of high- (Ku, X, C-bands) and low-frequency (L-band) VOD products to biomass and moisture content within a consistent evaluation framework. High-frequency VOD was taken from the recent developed VODCA products and low-frequency VOD from SMAP and SMOS retrievals. Biomass was derived from global above-ground biomass maps and MODIS LAI. Canopy moisture content was estimated from MODIS retrievals.
The first results confirm previous findings that VOD is both sensitive to biomass and moisture content. High-frequency VOD products are mainly sensitive to short-term changes in canopy biomass and moisture content and low frequency VOD to woody biomass. However, we also found that high-frequency VOD shows high sensitivity to aboveground biomass in Savannahs and boreal forests. Also low-frequency VOD includes a clear signal of vegetation moisture that cannot be explained by biomass changes. This suggests that multi-frequency VOD products and estimates of vegetation biomass and moisture content should be integrated and jointly analyzed to provide a consistent picture of ecosystem dynamics.
How to cite: Schmidt, L., Forkel, M., Dorigo, W. A., Moesinger, L., van der Schalie, R., Yebra, M., and Pugh, T. A. M.: Assessing the sensitivity of multi-frequency vegetation optical depth to biomass and canopy moisture content: towards an ecological-oriented evaluation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10931, https://doi.org/10.5194/egusphere-egu2020-10931, 2020.
EGU2020-4020 | Displays | BG3.20 | Highlight
SMOS-IC L-VOD reveals that tropical forests did not recover from the strong 2015–2016 El Niño eventLei Fan, Jean-pierre Wigneron, Philippe Ciais, Ana Bastos, Martin Brandt, Jérome Chave, Sassan Saatchi, Alessandro Baccini, and Rasmus Fensholt
Severe drought and extreme heat associated with the 2015–2016 El Niño event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. Simulations from land-surface models used in the global carbon budget (GCB) suggest a strong reinvigoration of the tropical land sink after the 2015–2016 El Niño. However, models and atmospheric inversions display large divergences in tropical CO2 fluxes during the 2017 recovery event. For instance, models predict a total net land sink recovery (2017 sink minus the 2015–2016 average sink) ranging from 0.3 to 2.6 Pg C, and the land sink recovery estimated from five atmospheric inversions ranges from −0.08 to +1.92 Pg C. The results of different inversions show a large spread in the tropics due to the scarcity of stations and uncertainties in atmospheric transport simulations.
We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 20141. From 2014 to 2017, tropical AGC stocks decreased by 1.3 Pg C due to persistent AGC losses in Africa (-0.9 Pg C) and America (-0.5 Pg C). Pantropically, drylands recovered their carbon stocks to pre–El Niño levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.
Reference
How to cite: Fan, L., Wigneron, J., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A., and Fensholt, R.: SMOS-IC L-VOD reveals that tropical forests did not recover from the strong 2015–2016 El Niño event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4020, https://doi.org/10.5194/egusphere-egu2020-4020, 2020.
Severe drought and extreme heat associated with the 2015–2016 El Niño event have led to large carbon emissions from the tropical vegetation to the atmosphere. With the return to normal climatic conditions in 2017, tropical forest aboveground carbon (AGC) stocks are expected to partly recover due to increased productivity, but the intensity and spatial distribution of this recovery are unknown. Simulations from land-surface models used in the global carbon budget (GCB) suggest a strong reinvigoration of the tropical land sink after the 2015–2016 El Niño. However, models and atmospheric inversions display large divergences in tropical CO2 fluxes during the 2017 recovery event. For instance, models predict a total net land sink recovery (2017 sink minus the 2015–2016 average sink) ranging from 0.3 to 2.6 Pg C, and the land sink recovery estimated from five atmospheric inversions ranges from −0.08 to +1.92 Pg C. The results of different inversions show a large spread in the tropics due to the scarcity of stations and uncertainties in atmospheric transport simulations.
We used low-frequency microwave satellite data (L-VOD) to feature precise monitoring of AGC changes and show that the AGC recovery of tropical ecosystems was slow and that by the end of 2017, AGC had not reached predrought levels of 20141. From 2014 to 2017, tropical AGC stocks decreased by 1.3 Pg C due to persistent AGC losses in Africa (-0.9 Pg C) and America (-0.5 Pg C). Pantropically, drylands recovered their carbon stocks to pre–El Niño levels, but African and American humid forests did not, suggesting carryover effects from enhanced forest mortality.
Reference
How to cite: Fan, L., Wigneron, J., Ciais, P., Bastos, A., Brandt, M., Chave, J., Saatchi, S., Baccini, A., and Fensholt, R.: SMOS-IC L-VOD reveals that tropical forests did not recover from the strong 2015–2016 El Niño event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4020, https://doi.org/10.5194/egusphere-egu2020-4020, 2020.
BG3.21 – Peatland management
EGU2020-3107 | Displays | BG3.21
Sphagnum reintroduction under a warming climate: keys to successJuul Limpens and Hilde Tomassen
Restoring peatland functioning is closely related to restoring growth of ecosystem engineering Sphagnum species. In strongly degenerated peatlands reintroducing diaspores of Sphagnum is necessary to overcome strong dispersal and establishment bottlenecks. Which reintroduction strategy varies between peatland types, surface properties and/or microclimate. Comparative analyses of restoration techniques is scarce, hampering informed management choices.
We set out to assess keys to success for Sphagnum reintroduction on strongly humified bare peat in three degraded and long-time rewetted temperate peatlands in the Netherlands. To this end we experimentally manipulated water table position (control, extra water), type of abiotic shelter (control, nurse plants, mulch), Sphagnum species (S. magellanicum, S. papillosum and S. cuspidatum), species mixture (monoculture, mixed culture), diaspore size (clumped intact plants or fragments) and diaspore density (0, 36, 72, 156 plants/m2) and monitored Sphagnum survival, lateral expansion and environmental conditions. The experiment was established in 2018 and repeated in 2019, covering two of the most extreme summers in recorded history.
Water table close to the surface and shelter of a mulch layer were key to Sphagnum survival and growth irrespective of Sphagnum species, reintroduction method or year. Survival increased linearly with diaspore density. Diaspore size showed an interaction with mulch cover: fragments did best under mulch cover, whereas clumped plants survived better outside shelter.
Taken together our results suggest that successful reintroduction of Sphagnum is possible under a warming climate, but that strategies should be strongly focussed on amelioration of abiotic stress even when water tables are close to the surface.
How to cite: Limpens, J. and Tomassen, H.: Sphagnum reintroduction under a warming climate: keys to success, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3107, https://doi.org/10.5194/egusphere-egu2020-3107, 2020.
Restoring peatland functioning is closely related to restoring growth of ecosystem engineering Sphagnum species. In strongly degenerated peatlands reintroducing diaspores of Sphagnum is necessary to overcome strong dispersal and establishment bottlenecks. Which reintroduction strategy varies between peatland types, surface properties and/or microclimate. Comparative analyses of restoration techniques is scarce, hampering informed management choices.
We set out to assess keys to success for Sphagnum reintroduction on strongly humified bare peat in three degraded and long-time rewetted temperate peatlands in the Netherlands. To this end we experimentally manipulated water table position (control, extra water), type of abiotic shelter (control, nurse plants, mulch), Sphagnum species (S. magellanicum, S. papillosum and S. cuspidatum), species mixture (monoculture, mixed culture), diaspore size (clumped intact plants or fragments) and diaspore density (0, 36, 72, 156 plants/m2) and monitored Sphagnum survival, lateral expansion and environmental conditions. The experiment was established in 2018 and repeated in 2019, covering two of the most extreme summers in recorded history.
Water table close to the surface and shelter of a mulch layer were key to Sphagnum survival and growth irrespective of Sphagnum species, reintroduction method or year. Survival increased linearly with diaspore density. Diaspore size showed an interaction with mulch cover: fragments did best under mulch cover, whereas clumped plants survived better outside shelter.
Taken together our results suggest that successful reintroduction of Sphagnum is possible under a warming climate, but that strategies should be strongly focussed on amelioration of abiotic stress even when water tables are close to the surface.
How to cite: Limpens, J. and Tomassen, H.: Sphagnum reintroduction under a warming climate: keys to success, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3107, https://doi.org/10.5194/egusphere-egu2020-3107, 2020.
EGU2020-18515 | Displays | BG3.21
Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinksSarah Schwieger, Jürgen Kreyling, John Couwenberg, Marko Smiljanić, Robert Weigel, Martin Wilmking, and Gesche Blume-Werry
In their natural state peatlands are effective carbon sinks as more biomass is produced than decomposed under the prevalent anoxic conditions. Draining peatlands results in release of the stored carbon. Rewetting may or may not restore the original carbon sink. Patterns of plant production and decomposition in rewetted peatlands and how they compare to the drained state remain largely unexplored.
We measured annual above- and belowground biomass production and decomposition in three different drained and rewetted peatland types: alder forest, percolation fen and coastal fen. We also used standard material (green and rooibos tea) to compare decomposition between the sites, regardless of the decomposability of the local plant material.
Rewetted sites had higher root and shoot production in the percolation fen, and higher root production in the coastal fen but similar root and leaf production in the alder forest (excluding woody biomass). Decomposition rates were similar in drained and rewetted sites, only in the percolation fen and alder forest aboveground litter decomposed faster in the drained sites. The rewetted percolation fen and the two coastal sites have the highest projected potential for organic matter accumulation due to high production and low decomposition rates. Roots accounted for 23–66% of total biomass production, and the importance of belowground biomass, rather than aboveground biomass, for organic matter accumulation increased with time. This highlights the significance of roots as main peat forming element in these graminoid-dominated fen peatlands and their crucial role in carbon cycling. Notably, increased production compensated for loss by decomposition even during the exceptionally dry year 2018.
Rewetted sites generally had a more productive plant community compared to drained sites, only tree stem biomass increment was higher in the drained alder forest site. High biomass production supported the peatlands’ function as carbon sink even during a dry year and roots were more important than shoots in establishing this sink, especially in the graminoid dominated sites. Rewetted peatlands may cope better with the extreme weather conditions that will occur more frequently in the future, emphasizing the case for rewetting those systems
How to cite: Schwieger, S., Kreyling, J., Couwenberg, J., Smiljanić, M., Weigel, R., Wilmking, M., and Blume-Werry, G.: Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18515, https://doi.org/10.5194/egusphere-egu2020-18515, 2020.
In their natural state peatlands are effective carbon sinks as more biomass is produced than decomposed under the prevalent anoxic conditions. Draining peatlands results in release of the stored carbon. Rewetting may or may not restore the original carbon sink. Patterns of plant production and decomposition in rewetted peatlands and how they compare to the drained state remain largely unexplored.
We measured annual above- and belowground biomass production and decomposition in three different drained and rewetted peatland types: alder forest, percolation fen and coastal fen. We also used standard material (green and rooibos tea) to compare decomposition between the sites, regardless of the decomposability of the local plant material.
Rewetted sites had higher root and shoot production in the percolation fen, and higher root production in the coastal fen but similar root and leaf production in the alder forest (excluding woody biomass). Decomposition rates were similar in drained and rewetted sites, only in the percolation fen and alder forest aboveground litter decomposed faster in the drained sites. The rewetted percolation fen and the two coastal sites have the highest projected potential for organic matter accumulation due to high production and low decomposition rates. Roots accounted for 23–66% of total biomass production, and the importance of belowground biomass, rather than aboveground biomass, for organic matter accumulation increased with time. This highlights the significance of roots as main peat forming element in these graminoid-dominated fen peatlands and their crucial role in carbon cycling. Notably, increased production compensated for loss by decomposition even during the exceptionally dry year 2018.
Rewetted sites generally had a more productive plant community compared to drained sites, only tree stem biomass increment was higher in the drained alder forest site. High biomass production supported the peatlands’ function as carbon sink even during a dry year and roots were more important than shoots in establishing this sink, especially in the graminoid dominated sites. Rewetted peatlands may cope better with the extreme weather conditions that will occur more frequently in the future, emphasizing the case for rewetting those systems
How to cite: Schwieger, S., Kreyling, J., Couwenberg, J., Smiljanić, M., Weigel, R., Wilmking, M., and Blume-Werry, G.: Wetter is better: rewetting of minerotrophic peatlands increases plant production and moves them towards carbon sinks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18515, https://doi.org/10.5194/egusphere-egu2020-18515, 2020.
EGU2020-10302 | Displays | BG3.21
Managed peatlands as novel ecosystemsGerald Jurasinski, Florian Beyer, Anke Günther, Cordula Gutekunst, Vytas Huth, Franziska Koebsch, Daniel Köhn, Marian Koch, Susanne Liebner, and Viktoria Unger
Although peatlands cover only about 3% of the land surface of the Earth they store approx. 42% of all soil carbon, if not considerably more, as newest model approaches suggest. Only a minor fraction of all peatlands (5%) is drained, making up a total of 0.15% of the land surface. However from this small land area approx. 5.5% of the global anthropogenic CO2 emissions derive. Therefore, rewetting peatlands on a massive scale is seen as a viable option to decrease greenhouse gas (GHG) emissions and to create GHG sinks in the long run.
Our understanding of the ecological and biogeochemical functioning of rewetted peatlands is limited, and especially limited when regarding fen peatlands, which are not even well understood in the pristine state. Thus, there is strong demand to investigate the ecological functioning of these ecosystems.
All peatlands that are not pristine anymore, are managed peatlands, regardless of wether they are still used, abandoned, or rewetted/restored. To ask the right questions regarding the ecological functioning of these systems, it is essential to acknowledge managed peatlands as novel ecosystems. The „novel ecosystem“ approach has been developed primarily to address the effect of invasive species or climate change on biodiversity and ecological functioning. „Novel“ ecosystems result as a consequence of human activity but don’t need ongoing human intervention to maintain the novel state.
In my talk I will argue that understanding managed peatlands as novel ecosystems is essential to a proper investigation of their ecological and biogeochemical functioning. The argument will be based on the results of several recent research projects in managed temperate peatlands focussing on, inter alia, short-term and long-term vegetation development, GHG emissions and microbial community development.
How to cite: Jurasinski, G., Beyer, F., Günther, A., Gutekunst, C., Huth, V., Koebsch, F., Köhn, D., Koch, M., Liebner, S., and Unger, V.: Managed peatlands as novel ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10302, https://doi.org/10.5194/egusphere-egu2020-10302, 2020.
Although peatlands cover only about 3% of the land surface of the Earth they store approx. 42% of all soil carbon, if not considerably more, as newest model approaches suggest. Only a minor fraction of all peatlands (5%) is drained, making up a total of 0.15% of the land surface. However from this small land area approx. 5.5% of the global anthropogenic CO2 emissions derive. Therefore, rewetting peatlands on a massive scale is seen as a viable option to decrease greenhouse gas (GHG) emissions and to create GHG sinks in the long run.
Our understanding of the ecological and biogeochemical functioning of rewetted peatlands is limited, and especially limited when regarding fen peatlands, which are not even well understood in the pristine state. Thus, there is strong demand to investigate the ecological functioning of these ecosystems.
All peatlands that are not pristine anymore, are managed peatlands, regardless of wether they are still used, abandoned, or rewetted/restored. To ask the right questions regarding the ecological functioning of these systems, it is essential to acknowledge managed peatlands as novel ecosystems. The „novel ecosystem“ approach has been developed primarily to address the effect of invasive species or climate change on biodiversity and ecological functioning. „Novel“ ecosystems result as a consequence of human activity but don’t need ongoing human intervention to maintain the novel state.
In my talk I will argue that understanding managed peatlands as novel ecosystems is essential to a proper investigation of their ecological and biogeochemical functioning. The argument will be based on the results of several recent research projects in managed temperate peatlands focussing on, inter alia, short-term and long-term vegetation development, GHG emissions and microbial community development.
How to cite: Jurasinski, G., Beyer, F., Günther, A., Gutekunst, C., Huth, V., Koebsch, F., Köhn, D., Koch, M., Liebner, S., and Unger, V.: Managed peatlands as novel ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10302, https://doi.org/10.5194/egusphere-egu2020-10302, 2020.
EGU2020-19886 | Displays | BG3.21
Peatland restoration age (Scotland, UK) can be better reproduced by a classification model based on Sentinel-2 than with high resolution aerial imageryRebekka Artz, Jonathan Ball, Catherine Smart, Gillian Donaldson-Selby, Neil Cowie, Mark Hancock, Daniela Klein, and Alessandro Gimona
Damage to peatland globally causes significant contributions to the current net greenhouse gas emissions and pose a further future risk as such damaged peatlands are vulnerable to future climatic stress. Globally, peatland restoration efforts are rapidly increasing in scale as natural climate solutions, yet relatively little effort has been it into effective monitoring of landscape scale restoration projects. We developed a classification model that uses remote observations (Sentinel-2 or national scale aerial imagery from Getmapping) to detect restoration efficacy by training it against a dataset from a chronosequence of spatially collocated peatland restoration sites that had previously been converted to plantation forestry. The Sentinel-2 based model greatly outperformed the aerial imagery-based model (RGB and IR, 25 and 50 cm, respectively). Adding slope to the classification improved kappa by less than 0.02. Prediction of the starting (forestry) and target (restored) state was very robust, and both recent and the oldest restoration sites were spatially well predicted. The main model uncertainties lie with sites of intermediate age, where on-the-ground restoration trajectories based on vegetation composition also differ the most, and with sites where additional layers of management after the initial restoration management have been applied.
How to cite: Artz, R., Ball, J., Smart, C., Donaldson-Selby, G., Cowie, N., Hancock, M., Klein, D., and Gimona, A.: Peatland restoration age (Scotland, UK) can be better reproduced by a classification model based on Sentinel-2 than with high resolution aerial imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19886, https://doi.org/10.5194/egusphere-egu2020-19886, 2020.
Damage to peatland globally causes significant contributions to the current net greenhouse gas emissions and pose a further future risk as such damaged peatlands are vulnerable to future climatic stress. Globally, peatland restoration efforts are rapidly increasing in scale as natural climate solutions, yet relatively little effort has been it into effective monitoring of landscape scale restoration projects. We developed a classification model that uses remote observations (Sentinel-2 or national scale aerial imagery from Getmapping) to detect restoration efficacy by training it against a dataset from a chronosequence of spatially collocated peatland restoration sites that had previously been converted to plantation forestry. The Sentinel-2 based model greatly outperformed the aerial imagery-based model (RGB and IR, 25 and 50 cm, respectively). Adding slope to the classification improved kappa by less than 0.02. Prediction of the starting (forestry) and target (restored) state was very robust, and both recent and the oldest restoration sites were spatially well predicted. The main model uncertainties lie with sites of intermediate age, where on-the-ground restoration trajectories based on vegetation composition also differ the most, and with sites where additional layers of management after the initial restoration management have been applied.
How to cite: Artz, R., Ball, J., Smart, C., Donaldson-Selby, G., Cowie, N., Hancock, M., Klein, D., and Gimona, A.: Peatland restoration age (Scotland, UK) can be better reproduced by a classification model based on Sentinel-2 than with high resolution aerial imagery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19886, https://doi.org/10.5194/egusphere-egu2020-19886, 2020.
EGU2020-13266 | Displays | BG3.21
Physical and chemical properties of fen peat soils under agricultural use across Europe.Arndt Piayda, Bärbel Tiemeyer, Ullrich Dettmann, Christoph Buschmann, Michel Bechtold, and Norbert Röder
Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage, form important nutrient filters and provide hydrological buffer capacities. They represent an important share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show strong alterations of soil physical and chemical properties, accompanied by extreme mineralization rates, land surface subsidence, soil and water quality deterioration and thus crop failure.
The aim of this study is to report soil physical and chemical properties of fen peat soils under typical agricultural management in six European countries in contrast to the technical and economical assessment of the managing farmers. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 46 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden.
The results showed a strong impact of agricultural management on fen peat soil properties across Europe. Peat depth ranged from -0.2 to -4.7 m below ground (on average -1.1 m). The majority of sites were deeply drained, showing annual mean soil water levels of -0.6 m with summer draw downs to -0.93 m. Soil profiles exhibited strong gradients of humification with soil depth, showing fully degraded topsoils (von Post 10 down to -0.2 m), reaching weaker degradation (<= von Post 7) only below -0.6 m. Bulk density, porosity and available field capacity consistently reflected the degradation gradient, whereas hydraulic conductivity and penetration resistance showed no trend. Soil organic carbon was strongly reduced in the topsoil horizons (25% on average) and reached only in horizons below -0.6 m values of on average 45%. Total nitrogen and pH values showed no clear depth gradient. The soil carbon stock ranged from 100 to 500 t/ha for the unsaturated horizons and increases up to 2000 t/ha in the permanently saturated subsoil.
The economic relevance of organic soils varied greatly across countries and although farms were settled in organic soil rich regions, 72% of farms had an average share of peat soil of only 23%. The main reasons farmers attributed yield losses on organic soils to were (by importance), high ground water levels, unsuitable water management, and ponding/hydrophobic soils independent of the land use, strongly contrasting the measured water levels. Overall, in the perception of interviewed farmers, the economic success of land use on organic soils in the future will be mostly depended on financial shortcomings due to increasing water logging and inevitably increasing drainage costs agreed on by 65% and 69% of interviewed farmers.
How to cite: Piayda, A., Tiemeyer, B., Dettmann, U., Buschmann, C., Bechtold, M., and Röder, N.: Physical and chemical properties of fen peat soils under agricultural use across Europe., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13266, https://doi.org/10.5194/egusphere-egu2020-13266, 2020.
Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage, form important nutrient filters and provide hydrological buffer capacities. They represent an important share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show strong alterations of soil physical and chemical properties, accompanied by extreme mineralization rates, land surface subsidence, soil and water quality deterioration and thus crop failure.
The aim of this study is to report soil physical and chemical properties of fen peat soils under typical agricultural management in six European countries in contrast to the technical and economical assessment of the managing farmers. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 46 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden.
The results showed a strong impact of agricultural management on fen peat soil properties across Europe. Peat depth ranged from -0.2 to -4.7 m below ground (on average -1.1 m). The majority of sites were deeply drained, showing annual mean soil water levels of -0.6 m with summer draw downs to -0.93 m. Soil profiles exhibited strong gradients of humification with soil depth, showing fully degraded topsoils (von Post 10 down to -0.2 m), reaching weaker degradation (<= von Post 7) only below -0.6 m. Bulk density, porosity and available field capacity consistently reflected the degradation gradient, whereas hydraulic conductivity and penetration resistance showed no trend. Soil organic carbon was strongly reduced in the topsoil horizons (25% on average) and reached only in horizons below -0.6 m values of on average 45%. Total nitrogen and pH values showed no clear depth gradient. The soil carbon stock ranged from 100 to 500 t/ha for the unsaturated horizons and increases up to 2000 t/ha in the permanently saturated subsoil.
The economic relevance of organic soils varied greatly across countries and although farms were settled in organic soil rich regions, 72% of farms had an average share of peat soil of only 23%. The main reasons farmers attributed yield losses on organic soils to were (by importance), high ground water levels, unsuitable water management, and ponding/hydrophobic soils independent of the land use, strongly contrasting the measured water levels. Overall, in the perception of interviewed farmers, the economic success of land use on organic soils in the future will be mostly depended on financial shortcomings due to increasing water logging and inevitably increasing drainage costs agreed on by 65% and 69% of interviewed farmers.
How to cite: Piayda, A., Tiemeyer, B., Dettmann, U., Buschmann, C., Bechtold, M., and Röder, N.: Physical and chemical properties of fen peat soils under agricultural use across Europe., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13266, https://doi.org/10.5194/egusphere-egu2020-13266, 2020.
EGU2020-10843 | Displays | BG3.21
Protein yield and extractability of flood-tolerant perennial grasses cultivated on a riparian fen, affected by harvest and fertilisation frequencyClaudia Kalla, Lene Stødkilde, Uffe Jørgensen, and Poul Erik Lærke
Paludiculture, defined as agriculture on wet or rewetted peatlands has been proposed as a mitigation strategy to reverse unsustainable environmental impacts such as land subsidence, nutrient release to surface water and greenhouse gas emissions from traditional agriculture on drained peatland. In particular, the production of biomass feedstock from flood-tolerant perennial grasses for green biorefining to protein and other value-added products may be a viable economic and environmentally sustainable option for temperate peatlands. However, optimal quality characteristics of the biomass for protein extraction have yet to be defined.
In 2018, field plots cultivated with different flood-tolerant perennial grasses were established in an agricultural fen peatland in Denmark. Of these, a total of eight plots cultivated with reed canary grass (RCG) and tall fescue were each subdivided into six sub-plots with different management regarding harvest and fertilisation. Harvest frequencies ranged from one to five times in the period between mid-May to mid-October at intervals of 4-6 weeks. The sub-plots received fertilisation of 100 kg ha-1 of both N and K prior to each harvest. Protein extractability of the grasses was assessed by lab-scale biorefinery techniques using a screw press followed by precipitation of true protein in the resulting juice. This was compared with protein fractions classified by the Cornell Net Carbohydrate and Protein System (CNCPS). The biorefinery extractable protein yields (fresh weight) ranged from 10 % to 25 % of the fresh mass input, dependent on treatment, with summer harvests having the lowest yield. Evaluation of the easily extractable crude protein (CP) CNCPS fractions B1 and B2 showed yields of between 61.8 – 110.7 g CP kg-1 DM. Preliminary processing of data showed that the cumulative yields of extractable crude protein for the growing season seem highly affected by management.
How to cite: Kalla, C., Stødkilde, L., Jørgensen, U., and Lærke, P. E.: Protein yield and extractability of flood-tolerant perennial grasses cultivated on a riparian fen, affected by harvest and fertilisation frequency , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10843, https://doi.org/10.5194/egusphere-egu2020-10843, 2020.
Paludiculture, defined as agriculture on wet or rewetted peatlands has been proposed as a mitigation strategy to reverse unsustainable environmental impacts such as land subsidence, nutrient release to surface water and greenhouse gas emissions from traditional agriculture on drained peatland. In particular, the production of biomass feedstock from flood-tolerant perennial grasses for green biorefining to protein and other value-added products may be a viable economic and environmentally sustainable option for temperate peatlands. However, optimal quality characteristics of the biomass for protein extraction have yet to be defined.
In 2018, field plots cultivated with different flood-tolerant perennial grasses were established in an agricultural fen peatland in Denmark. Of these, a total of eight plots cultivated with reed canary grass (RCG) and tall fescue were each subdivided into six sub-plots with different management regarding harvest and fertilisation. Harvest frequencies ranged from one to five times in the period between mid-May to mid-October at intervals of 4-6 weeks. The sub-plots received fertilisation of 100 kg ha-1 of both N and K prior to each harvest. Protein extractability of the grasses was assessed by lab-scale biorefinery techniques using a screw press followed by precipitation of true protein in the resulting juice. This was compared with protein fractions classified by the Cornell Net Carbohydrate and Protein System (CNCPS). The biorefinery extractable protein yields (fresh weight) ranged from 10 % to 25 % of the fresh mass input, dependent on treatment, with summer harvests having the lowest yield. Evaluation of the easily extractable crude protein (CP) CNCPS fractions B1 and B2 showed yields of between 61.8 – 110.7 g CP kg-1 DM. Preliminary processing of data showed that the cumulative yields of extractable crude protein for the growing season seem highly affected by management.
How to cite: Kalla, C., Stødkilde, L., Jørgensen, U., and Lærke, P. E.: Protein yield and extractability of flood-tolerant perennial grasses cultivated on a riparian fen, affected by harvest and fertilisation frequency , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10843, https://doi.org/10.5194/egusphere-egu2020-10843, 2020.
EGU2020-3428 | Displays | BG3.21
Causal links between drainage and forest growth response in boreal peatlandsAri Laurén, Marjo Palviainen, Samuli Launiainen, Kersti Haahti, Stenberg Leena, Urzainqui Aranburu Iñaki, Nieminen Mika, Laiho Raija, and Hökkä Hannu
Drainage is considered as an essential pre-requisite in management of peatland forests, and it generally increases stand growth. So far, the primary reasons behind the growth response are not fully understood. The explanation must be linked to direct or indirect growth factors, such as the supply of radiation, water, oxygen, and nutrients. Applying an empirical dataset consisting of 18 drained Scots pine (Pinus sylvestris L.) stands we constructed a causal network linking meteorology and climate variables, site and stand properties, organic matter decomposition, growth regulating factors and biomass growth. The network was analysed using piecewise structural equation models (SEM). The SEM analysis indicated that the stand growth response to drainage is mainly caused by increased supply of nutrients, especially potassium. Based on this causal model, we constructed a dynamic simulation model called Peatland simulator SUSI. SUSI describes hydrology, stand growth, site carbon balance and stand nutrient supply and demand under different management schemes and under different site types and weather conditions. The simulator was tested against a large independent dataset consisting of 69 stands and 207 plots. SUSI was parameterized according to measured stand and site data and run using daily meteorological data. The simulation revealed that SUSI can predict five-year volume growth of the stand with good accuracy. Because SUSI links the drainage and the growth response in a process level, the model facilitates cost-benefit analyses of the drainage, helps in avoiding unnecessary drainage operations and their adverse environmental effects such as increased carbon emissions, peat subsidence and nutrient leaching. Thus, it can guide in the search for optional, more acceptable management schemes for drained forested peatlands.
How to cite: Laurén, A., Palviainen, M., Launiainen, S., Haahti, K., Leena, S., Iñaki, U. A., Mika, N., Raija, L., and Hannu, H.: Causal links between drainage and forest growth response in boreal peatlands , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3428, https://doi.org/10.5194/egusphere-egu2020-3428, 2020.
Drainage is considered as an essential pre-requisite in management of peatland forests, and it generally increases stand growth. So far, the primary reasons behind the growth response are not fully understood. The explanation must be linked to direct or indirect growth factors, such as the supply of radiation, water, oxygen, and nutrients. Applying an empirical dataset consisting of 18 drained Scots pine (Pinus sylvestris L.) stands we constructed a causal network linking meteorology and climate variables, site and stand properties, organic matter decomposition, growth regulating factors and biomass growth. The network was analysed using piecewise structural equation models (SEM). The SEM analysis indicated that the stand growth response to drainage is mainly caused by increased supply of nutrients, especially potassium. Based on this causal model, we constructed a dynamic simulation model called Peatland simulator SUSI. SUSI describes hydrology, stand growth, site carbon balance and stand nutrient supply and demand under different management schemes and under different site types and weather conditions. The simulator was tested against a large independent dataset consisting of 69 stands and 207 plots. SUSI was parameterized according to measured stand and site data and run using daily meteorological data. The simulation revealed that SUSI can predict five-year volume growth of the stand with good accuracy. Because SUSI links the drainage and the growth response in a process level, the model facilitates cost-benefit analyses of the drainage, helps in avoiding unnecessary drainage operations and their adverse environmental effects such as increased carbon emissions, peat subsidence and nutrient leaching. Thus, it can guide in the search for optional, more acceptable management schemes for drained forested peatlands.
How to cite: Laurén, A., Palviainen, M., Launiainen, S., Haahti, K., Leena, S., Iñaki, U. A., Mika, N., Raija, L., and Hannu, H.: Causal links between drainage and forest growth response in boreal peatlands , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3428, https://doi.org/10.5194/egusphere-egu2020-3428, 2020.
EGU2020-19948 | Displays | BG3.21
Preliminary GHG balances of different drained and rewetted peatland ecosystems in North-eastern GermanyDaniel Köhn, Anke Günther, and Gerald Jurasinski
Globally, peatlands store an immense amount of carbon and thus are of large importance for the global climate. Therefore, it is also of uttermost importance to understand the functioning of this carbon sink with regards to anthropogenic influences such as drainage, agricultural use and subsequent rewetting.
In the federal state of Mecklenburg-Western Pomerania in north-western Germany peatlands cover 13% of the total land area. A large proportion of these peatlands have been drained and an estimated 27% of all GHG Emissions of the state originate from drained peatlands. Rewetting of peatlands holds a large potential for the reduction of CO2 emissions thus becoming more and more important in tackling climate change.
In the WETSCAPES project, we aim at understanding the processes of matter turnover in differently managed peatland ecosystems. Here we present preliminary full GHG balances of the first two years of measurements. Results include the balances of coastal flooding fens, percolation fens, and alder forests, of which there is a drained and rewetted one for each peatland ecosystem. The coastal flooding fen was rewetted in 1996, the percolation fen in 1998 and the alder forest in 2003. Fluxes of CO2, CH4, and N2O were measured on these six different sites using the closed chamber method. Additionally, stem fluxes and ditch fluxes were included in the balances where applicable.
Preliminary results show lower CO2 emissions in the rewetted compared to the drained sites; however, this depends strongly on the peatland type. Especially the coastal fens differed only slightly in their CO2 emissions and at the same time showed very high overall CO2 emissions.
Our results show strong variation in GHG emissions of drained and rewetted central European fens in two years with extreme weather, i.e. drought, conditions that are predicted to become more common with increasing global warming. Methane emissions of the rewetted sites were low with only temporary peaks in summer, which again suggests rewetting as the best solution to reduce the climate impact of drained peatlands.
How to cite: Köhn, D., Günther, A., and Jurasinski, G.: Preliminary GHG balances of different drained and rewetted peatland ecosystems in North-eastern Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19948, https://doi.org/10.5194/egusphere-egu2020-19948, 2020.
Globally, peatlands store an immense amount of carbon and thus are of large importance for the global climate. Therefore, it is also of uttermost importance to understand the functioning of this carbon sink with regards to anthropogenic influences such as drainage, agricultural use and subsequent rewetting.
In the federal state of Mecklenburg-Western Pomerania in north-western Germany peatlands cover 13% of the total land area. A large proportion of these peatlands have been drained and an estimated 27% of all GHG Emissions of the state originate from drained peatlands. Rewetting of peatlands holds a large potential for the reduction of CO2 emissions thus becoming more and more important in tackling climate change.
In the WETSCAPES project, we aim at understanding the processes of matter turnover in differently managed peatland ecosystems. Here we present preliminary full GHG balances of the first two years of measurements. Results include the balances of coastal flooding fens, percolation fens, and alder forests, of which there is a drained and rewetted one for each peatland ecosystem. The coastal flooding fen was rewetted in 1996, the percolation fen in 1998 and the alder forest in 2003. Fluxes of CO2, CH4, and N2O were measured on these six different sites using the closed chamber method. Additionally, stem fluxes and ditch fluxes were included in the balances where applicable.
Preliminary results show lower CO2 emissions in the rewetted compared to the drained sites; however, this depends strongly on the peatland type. Especially the coastal fens differed only slightly in their CO2 emissions and at the same time showed very high overall CO2 emissions.
Our results show strong variation in GHG emissions of drained and rewetted central European fens in two years with extreme weather, i.e. drought, conditions that are predicted to become more common with increasing global warming. Methane emissions of the rewetted sites were low with only temporary peaks in summer, which again suggests rewetting as the best solution to reduce the climate impact of drained peatlands.
How to cite: Köhn, D., Günther, A., and Jurasinski, G.: Preliminary GHG balances of different drained and rewetted peatland ecosystems in North-eastern Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19948, https://doi.org/10.5194/egusphere-egu2020-19948, 2020.
EGU2020-19191 | Displays | BG3.21
Investigating the cost-efficiency of rewetting German organic soilsJan Steinhauser
Degraded organic soils are the largest source of atmospheric CO2 outside the energy sector, responsible for five percent of Germany’s total greenhouse gas (GHG) emissions. Previous studies have shown a high potential of both protecting non-degraded soils and rewetting degraded soils for mitigating GHG emissions. However, these emission assessments provide little information about opportunity cost and regional cost-efficiency.
This study maps local emission benefits and management cost of organic soil restoration in Germany using a county-scale resolution (EU NUTS level 3/LAU level 1). We integrate these data in a recursive dynamic European agricultural sector model. This model determines the global agricultural market equilibrium for major agricultural commodities. In the European Union, the model depicts several intensities of crop and livestock production. To compute national abatement cost functions for rewetting organic soils in Germany, we solve the model for a wide range of alternative carbon prices applied to emission reductions from organic soils. From the optimal solution, we determine total emission reductions from organic soils in Germany accompanied by adjustments in agricultural production, land values, commodity prices, and international commodity trade.
The resulting spatial data will define economically attractive soil areas in Germany for agricultural mitigation efforts and for future in-depth case studies and stakeholder discussions. Thus, the results will guide optimal strategies for organic soil restoration.
How to cite: Steinhauser, J.: Investigating the cost-efficiency of rewetting German organic soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19191, https://doi.org/10.5194/egusphere-egu2020-19191, 2020.
Degraded organic soils are the largest source of atmospheric CO2 outside the energy sector, responsible for five percent of Germany’s total greenhouse gas (GHG) emissions. Previous studies have shown a high potential of both protecting non-degraded soils and rewetting degraded soils for mitigating GHG emissions. However, these emission assessments provide little information about opportunity cost and regional cost-efficiency.
This study maps local emission benefits and management cost of organic soil restoration in Germany using a county-scale resolution (EU NUTS level 3/LAU level 1). We integrate these data in a recursive dynamic European agricultural sector model. This model determines the global agricultural market equilibrium for major agricultural commodities. In the European Union, the model depicts several intensities of crop and livestock production. To compute national abatement cost functions for rewetting organic soils in Germany, we solve the model for a wide range of alternative carbon prices applied to emission reductions from organic soils. From the optimal solution, we determine total emission reductions from organic soils in Germany accompanied by adjustments in agricultural production, land values, commodity prices, and international commodity trade.
The resulting spatial data will define economically attractive soil areas in Germany for agricultural mitigation efforts and for future in-depth case studies and stakeholder discussions. Thus, the results will guide optimal strategies for organic soil restoration.
How to cite: Steinhauser, J.: Investigating the cost-efficiency of rewetting German organic soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19191, https://doi.org/10.5194/egusphere-egu2020-19191, 2020.
EGU2020-19113 | Displays | BG3.21
Putting Paludiculture into Practice – Experiences from field-scale Cattail paludiculture in NE GermanySabine Wichmann, Kerstin Haldan, Nora Köhn, Kristina Kuprina, Josephine Neubert, Franziska Tanneberger, Telse Vogel, and Hans Joosten
Paludiculture is the productive use of wet peatlands. In contrast to drained peatlands, rewetted peatlands have water levels close to surface, which ensure regulating services similar to those in natural peatland ecosystems. The cultivation of wetland plants provides promising options for sustainable farming on peatland. However, practical experiences with paludiculture is scarce and large-scale implementation remains challenging.
The Paludi-PRIMA project (2019-2022) puts paludiculture into practice. A core task is the establishment and investigation of a Cattail field of ~10 ha on a rewetted, formerly drained fen grassland. We gained valuable experiences on site selection, planning and approval processes (water and nature conservation law) and construction work (site preparation, water management). We planted commercially grown seedlings of two species (T. latifolia, T. angustifolia) with two planting densities (0.5 and 1 plant m-2) using planting machines from forestry. Cattail is adapted to water-saturated soils, enables peat conservation and has a high value creation potential based on the material use of the biomass. Cost data of all implementation steps from site selection to harvest are collected to assess the economic viability in dependence of biomass quality and utilisation options. The field trial is also used for investigations on water demand, nutrient retention and biodiversity, and as a demonstration site for visitors. Mesocosm experiments with Cattail and Reed clones as well as genetic analyses investigate to which extend productivity and biomass quality are determined by species/genotypes, site conditions and management.
Barriers to the implementation of paludiculture are mainly related to the current EU Common Agriculture Policy, the protection of permanent grassland, the consideration of Cattail or Reed stands as protected habitat and the high investment costs. Lessons learned and research results are used to elaborate recommendations for farmers, authorities and policy makers in order to facilitate a large-scale implementation of paludiculture.
Further information: www.moorwissen.de/en/prima
How to cite: Wichmann, S., Haldan, K., Köhn, N., Kuprina, K., Neubert, J., Tanneberger, F., Vogel, T., and Joosten, H.: Putting Paludiculture into Practice – Experiences from field-scale Cattail paludiculture in NE Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19113, https://doi.org/10.5194/egusphere-egu2020-19113, 2020.
Paludiculture is the productive use of wet peatlands. In contrast to drained peatlands, rewetted peatlands have water levels close to surface, which ensure regulating services similar to those in natural peatland ecosystems. The cultivation of wetland plants provides promising options for sustainable farming on peatland. However, practical experiences with paludiculture is scarce and large-scale implementation remains challenging.
The Paludi-PRIMA project (2019-2022) puts paludiculture into practice. A core task is the establishment and investigation of a Cattail field of ~10 ha on a rewetted, formerly drained fen grassland. We gained valuable experiences on site selection, planning and approval processes (water and nature conservation law) and construction work (site preparation, water management). We planted commercially grown seedlings of two species (T. latifolia, T. angustifolia) with two planting densities (0.5 and 1 plant m-2) using planting machines from forestry. Cattail is adapted to water-saturated soils, enables peat conservation and has a high value creation potential based on the material use of the biomass. Cost data of all implementation steps from site selection to harvest are collected to assess the economic viability in dependence of biomass quality and utilisation options. The field trial is also used for investigations on water demand, nutrient retention and biodiversity, and as a demonstration site for visitors. Mesocosm experiments with Cattail and Reed clones as well as genetic analyses investigate to which extend productivity and biomass quality are determined by species/genotypes, site conditions and management.
Barriers to the implementation of paludiculture are mainly related to the current EU Common Agriculture Policy, the protection of permanent grassland, the consideration of Cattail or Reed stands as protected habitat and the high investment costs. Lessons learned and research results are used to elaborate recommendations for farmers, authorities and policy makers in order to facilitate a large-scale implementation of paludiculture.
Further information: www.moorwissen.de/en/prima
How to cite: Wichmann, S., Haldan, K., Köhn, N., Kuprina, K., Neubert, J., Tanneberger, F., Vogel, T., and Joosten, H.: Putting Paludiculture into Practice – Experiences from field-scale Cattail paludiculture in NE Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19113, https://doi.org/10.5194/egusphere-egu2020-19113, 2020.
EGU2020-19964 | Displays | BG3.21
Effects of harvest time and nutrient supply on fuel quality of Paludiculture plant speciesClaudia Oehmke, Franziska Eller, Linjing Ren, Wenyoung Guo, Nora Köhn, Tobias Dahms, Wendelin Wichtmann, Franziska Tanneberger, Brian K. Sorrell, and Hans Brix
Paludiculture („palus" lat. swamp) is the sustainable use of wet and rewetted peatlands which maintains the peatbody for carbon storage. Worldwide, drained peatlands cover only 0.3 percent of the land area but emit almost 5 percent of all anthropogenic greenhouse gas emissions. Rewetting of drained peatlands is therefore an urgent need for climate change mitigation. The production of biomass for the use as solid biofuel for combustion, is one promising utilisation option.
Compared to wood, herbaceous biomass (e.g. grasses and reeds) contains higher concentrations of critical elements (N, S, Cl or K) that leads to higher emissions (SOx, NOx) or to the destruction of boilers or parts of it (corrosion). Late harvest in winter is often recommended for grass species to improve fuel quality and also storage stability. Nutrients and other elements will be reduced in plant tissues by leaching or translocation processes during plant die-off. Water content that is crucial for storage will also decrease. Combustion quality of herbaceous biomass depends on plant species, site specific parameters and harvest time. There are only a few studies for the suitability of Paludiculture plants for combustion, and little is known about the effects of nutrient supply.
In our study we focused on fuel quality parameters of Typha latifolia, Typha angustifolia, Arundo donax, and four European clones of Phragmites australis (Denmark, Netherlands, Romania, and Italy) grown in mesocosms on three different nutrient levels (0, 75 and 500 kg N/ha/a). We analysed the total concentrations of C, H, N, O, S, Cl, K, Na, P, Ca, Si and ash content as well as higher heating value in the above ground biomass.
Winter harvested P. australis (Italy), T. angustifolia as well as T. latifolia could meet the required treasure values for N concentrations at all nutrient levels. S concentrations were only for T. angustifolia and T. latifolia below the treasure values at summer harvest, but for all plant species at winter harvest. Ash contents were very high for all plant species in summer (>6 %) – except for A. donax and P. australis (Netherlands). Effects of nutrient levels on biofuel quality were stronger in summer than in winter.
A comparison of plant species, harvest time (summer and winter) and nutrient levels will be used to decide for an optimal cultivation type and management strategy for Paludiculture purposes. The main aim is to provide biomass for combustion with high energy yields per hectare combined with the highest possible fuel quality.
How to cite: Oehmke, C., Eller, F., Ren, L., Guo, W., Köhn, N., Dahms, T., Wichtmann, W., Tanneberger, F., Sorrell, B. K., and Brix, H.: Effects of harvest time and nutrient supply on fuel quality of Paludiculture plant species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19964, https://doi.org/10.5194/egusphere-egu2020-19964, 2020.
Paludiculture („palus" lat. swamp) is the sustainable use of wet and rewetted peatlands which maintains the peatbody for carbon storage. Worldwide, drained peatlands cover only 0.3 percent of the land area but emit almost 5 percent of all anthropogenic greenhouse gas emissions. Rewetting of drained peatlands is therefore an urgent need for climate change mitigation. The production of biomass for the use as solid biofuel for combustion, is one promising utilisation option.
Compared to wood, herbaceous biomass (e.g. grasses and reeds) contains higher concentrations of critical elements (N, S, Cl or K) that leads to higher emissions (SOx, NOx) or to the destruction of boilers or parts of it (corrosion). Late harvest in winter is often recommended for grass species to improve fuel quality and also storage stability. Nutrients and other elements will be reduced in plant tissues by leaching or translocation processes during plant die-off. Water content that is crucial for storage will also decrease. Combustion quality of herbaceous biomass depends on plant species, site specific parameters and harvest time. There are only a few studies for the suitability of Paludiculture plants for combustion, and little is known about the effects of nutrient supply.
In our study we focused on fuel quality parameters of Typha latifolia, Typha angustifolia, Arundo donax, and four European clones of Phragmites australis (Denmark, Netherlands, Romania, and Italy) grown in mesocosms on three different nutrient levels (0, 75 and 500 kg N/ha/a). We analysed the total concentrations of C, H, N, O, S, Cl, K, Na, P, Ca, Si and ash content as well as higher heating value in the above ground biomass.
Winter harvested P. australis (Italy), T. angustifolia as well as T. latifolia could meet the required treasure values for N concentrations at all nutrient levels. S concentrations were only for T. angustifolia and T. latifolia below the treasure values at summer harvest, but for all plant species at winter harvest. Ash contents were very high for all plant species in summer (>6 %) – except for A. donax and P. australis (Netherlands). Effects of nutrient levels on biofuel quality were stronger in summer than in winter.
A comparison of plant species, harvest time (summer and winter) and nutrient levels will be used to decide for an optimal cultivation type and management strategy for Paludiculture purposes. The main aim is to provide biomass for combustion with high energy yields per hectare combined with the highest possible fuel quality.
How to cite: Oehmke, C., Eller, F., Ren, L., Guo, W., Köhn, N., Dahms, T., Wichtmann, W., Tanneberger, F., Sorrell, B. K., and Brix, H.: Effects of harvest time and nutrient supply on fuel quality of Paludiculture plant species, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19964, https://doi.org/10.5194/egusphere-egu2020-19964, 2020.
EGU2020-13649 | Displays | BG3.21
How to make intensively used peat meadows sustainable for the future? Four management options to potentially reduce peat oxidationMerit van den Berg, Christian Fritz, Bas van de Riet, Stefan Weideveld, Thomas Gremmen, Eva van den Elzen, Renske Vroom, Jeroen Geurts, Ralf Aben, and Leon Lamers
Almost all peatlands in the Netherlands are drained for agricultural purposes or in the past for peat extraction. What remains is a peatland area of about 300.000 ha of which 85 % is used for agriculture. As a result of peat oxidation, these areas are still subsiding by about 1 cm per year. Another effect is the enormous emission of CO2, which contributes to about 4% of total Dutch greenhouse gas emissions. With the awareness of a changing climate and the need for protection against flooding of coastal areas, solutions are being searched to reduce or stop peat oxidation and coinciding land subsidence and CO2 emission.
In this presentation we will show four different management options which are currently being tested in the Netherlands. These options all focus on increasing the groundwater table to lower oxygen intrusion and consequently lower aerobic decomposition. Depending on crop choices water levels may need to stay 40 cm below the surface to maximize fodder plant yields. We expect a trade-off between land-use intensity (yields) and CO2 emission reduction. The management options range from maintaining the current land-use by elevating summer water levels with submerged drainage pipes to the development of peat-forming plant species by complete rewetting. Data of the effects of these management options on CO2 emission will be shown and with that the effectiveness of reducing peat oxidation.
How to cite: van den Berg, M., Fritz, C., van de Riet, B., Weideveld, S., Gremmen, T., van den Elzen, E., Vroom, R., Geurts, J., Aben, R., and Lamers, L.: How to make intensively used peat meadows sustainable for the future? Four management options to potentially reduce peat oxidation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13649, https://doi.org/10.5194/egusphere-egu2020-13649, 2020.
Almost all peatlands in the Netherlands are drained for agricultural purposes or in the past for peat extraction. What remains is a peatland area of about 300.000 ha of which 85 % is used for agriculture. As a result of peat oxidation, these areas are still subsiding by about 1 cm per year. Another effect is the enormous emission of CO2, which contributes to about 4% of total Dutch greenhouse gas emissions. With the awareness of a changing climate and the need for protection against flooding of coastal areas, solutions are being searched to reduce or stop peat oxidation and coinciding land subsidence and CO2 emission.
In this presentation we will show four different management options which are currently being tested in the Netherlands. These options all focus on increasing the groundwater table to lower oxygen intrusion and consequently lower aerobic decomposition. Depending on crop choices water levels may need to stay 40 cm below the surface to maximize fodder plant yields. We expect a trade-off between land-use intensity (yields) and CO2 emission reduction. The management options range from maintaining the current land-use by elevating summer water levels with submerged drainage pipes to the development of peat-forming plant species by complete rewetting. Data of the effects of these management options on CO2 emission will be shown and with that the effectiveness of reducing peat oxidation.
How to cite: van den Berg, M., Fritz, C., van de Riet, B., Weideveld, S., Gremmen, T., van den Elzen, E., Vroom, R., Geurts, J., Aben, R., and Lamers, L.: How to make intensively used peat meadows sustainable for the future? Four management options to potentially reduce peat oxidation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13649, https://doi.org/10.5194/egusphere-egu2020-13649, 2020.
EGU2020-20399 | Displays | BG3.21
Methods in studying the effects of soil amendments on greenhouse gas emissions from cultivated peatland, and the effects on associated soil microbe communitiesJussi Ronkainen, Maarit Liimatainen, Henri Siljanen, and Marja Maljanen
Background
Agricultural soils produce large quantities of greenhouse gases (GHG). Especially organic soils, such as peat, can act as a source of carbon dioxide (CO2) and nitrous oxide (N2O) when the natural water table height is lowered for agricultural use, allowing aerobic decomposition of the previously waterlogged organic matter. While organic soils, such as peat, make up approximately 13% of the total arable land area in Finland, CO2 emissions from cultivated peat constitute 40% of the total CO2, and 22% of the N2O emissions from agriculture. These emissions are the result of microbial activity related to carbon and nitrogen cycles, and according to current knowledge microbial activity is regulated by the pH and electrical conductivity of the soil. Soil amendments such as lime and wood ash are used to improve the alkalinity of cultivated soil and may influence microbial activity. Earlier experiments have also shown that wood ash addition can decrease the N2O emissions from cultivated peat. Researching the extent to which it is possible to mitigate these GHG emissions with soil amendments is of vital importance in order to build sustainable land use practices and guidelines for agricultural use of peatlands.
Method
In our research we aim to study the effects of different soil amendments on GHG emissions from cultivated peatlands. The soil amendments that we study are wood ash, lime (calcium carbonate, CaCO3), gypsum (CaSO4* 2H2O), and biochar. The soils we use are collected from four different cultivated peatland sites, and the effects were studied in bottle and core incubation experiments where the GHG emission rates were measured weekly. The soil was also sampled, and samples flash-frozen, before and after the incubation to allow for DNA and RNA extraction, for purposes of determining the soil microbe community structure and activity. We determine the soil microbial community by amplifying 16S rRNA-gene from the extracted DNA and sequencing the amplified DNA with MiSeq equipment. To further study the community structure and activity we determine the copy numbers of selected enzyme-coding genes (amoA, nirK, nirS, narG, nrfA) related to nitrogen cycling from both the extracted DNA and RNA using Quantitative PCR, and Quantitative Reverse Transcription PCR methods respectively. In addition to measuring the GHG emissions, we also measure the nitrous acid (HONO) and nitric oxide (NO) emissions from the soils during the experiment. Nitrous acid is precursor of atmospheric NO that depletes ozone, and hydroxyl radicals (OH) that can oxidize atmospheric methane (CH4). Based on our initial results from the core incubations, we are also planning a follow up field experiment.
How to cite: Ronkainen, J., Liimatainen, M., Siljanen, H., and Maljanen, M.: Methods in studying the effects of soil amendments on greenhouse gas emissions from cultivated peatland, and the effects on associated soil microbe communities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20399, https://doi.org/10.5194/egusphere-egu2020-20399, 2020.
Background
Agricultural soils produce large quantities of greenhouse gases (GHG). Especially organic soils, such as peat, can act as a source of carbon dioxide (CO2) and nitrous oxide (N2O) when the natural water table height is lowered for agricultural use, allowing aerobic decomposition of the previously waterlogged organic matter. While organic soils, such as peat, make up approximately 13% of the total arable land area in Finland, CO2 emissions from cultivated peat constitute 40% of the total CO2, and 22% of the N2O emissions from agriculture. These emissions are the result of microbial activity related to carbon and nitrogen cycles, and according to current knowledge microbial activity is regulated by the pH and electrical conductivity of the soil. Soil amendments such as lime and wood ash are used to improve the alkalinity of cultivated soil and may influence microbial activity. Earlier experiments have also shown that wood ash addition can decrease the N2O emissions from cultivated peat. Researching the extent to which it is possible to mitigate these GHG emissions with soil amendments is of vital importance in order to build sustainable land use practices and guidelines for agricultural use of peatlands.
Method
In our research we aim to study the effects of different soil amendments on GHG emissions from cultivated peatlands. The soil amendments that we study are wood ash, lime (calcium carbonate, CaCO3), gypsum (CaSO4* 2H2O), and biochar. The soils we use are collected from four different cultivated peatland sites, and the effects were studied in bottle and core incubation experiments where the GHG emission rates were measured weekly. The soil was also sampled, and samples flash-frozen, before and after the incubation to allow for DNA and RNA extraction, for purposes of determining the soil microbe community structure and activity. We determine the soil microbial community by amplifying 16S rRNA-gene from the extracted DNA and sequencing the amplified DNA with MiSeq equipment. To further study the community structure and activity we determine the copy numbers of selected enzyme-coding genes (amoA, nirK, nirS, narG, nrfA) related to nitrogen cycling from both the extracted DNA and RNA using Quantitative PCR, and Quantitative Reverse Transcription PCR methods respectively. In addition to measuring the GHG emissions, we also measure the nitrous acid (HONO) and nitric oxide (NO) emissions from the soils during the experiment. Nitrous acid is precursor of atmospheric NO that depletes ozone, and hydroxyl radicals (OH) that can oxidize atmospheric methane (CH4). Based on our initial results from the core incubations, we are also planning a follow up field experiment.
How to cite: Ronkainen, J., Liimatainen, M., Siljanen, H., and Maljanen, M.: Methods in studying the effects of soil amendments on greenhouse gas emissions from cultivated peatland, and the effects on associated soil microbe communities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20399, https://doi.org/10.5194/egusphere-egu2020-20399, 2020.
EGU2020-3500 | Displays | BG3.21
The impact of mineral soil cover fill on N2O emissions in peatland drained for agricultureYuqiao Wang, Sonja Paul, Markus Jocher, Christine Alewell, and Jens Leifeld
Drainage for agriculture has converted peatlands from a carbon sink to one of the world’s major greenhouse gas (GHG) sources. In order to improve the sustainability of peatland management in agriculture, and to counteract soil subsidence, mineral soil coverage is becoming an increasingly used practice in Switzerland. Cover fills may change the GHG balance from the corresponding organic soil. To explore the effect of cover fill on soil N2O emissions, we carry out a field experiment in the Swiss Rhine Valley and measure the soil – borne N2O exchange from two adjacent sites: drained organic soil without mineral soil cover (DN), and drained organic soil with mineral soil cover (DC). Mineral soil material was applied 12 years ago and varies in thickness between 20 – 80 cm. Both sites have the identical farming practice (intensive permanent meadow). In our experiment, an automatic chamber system is used for collecting the N2O at an interval of 3 h. Soil moisture, expressd as volumetric water content (VWC), is recorded every 10 min. After ten month (303 days) of continous measurement, the data reveal that: (1) The average N2O emission from DN is higher than DC by a factor of 11 (11.24 ± 3.46 vs 0.97 ± 0.22 mg N2O-N m-2 day-1). Hence, mineral soil cover of organic soil seems to induce a strong reduction in N2O emissions. (2) Exogenous N inputs (mineral N fertilizer and cow slurry) are the main drivers of N2O emissions. N2O peaks occured shortly after the N application and lasted for 2 to 3 weeks before returning to background N2O emission. At the DC site post N- input N2O emissions accounted for 68 % of the total N2O emission over the whole measurement period. An equivalent of around 1 % of the exogenous N- input was emitted as N2O. At the DN site, emission peaks after fertilization accounted for 79 % of the total N2O emission, equivalent to around 13 % of the exogenous N- input. Background emissions between peak events shows no significant difference between DC (0.51± 0.15 mg N2O-N m-2 day-1) and DN (2.73± 2.44 mg N2O-N m-2 day-1). The comparison of peak and background fluxes tentatively indicates that higher average emission rates from the DN site are related directly to fertilization. Finally, surface soil characteristics (soil pH, bulk density, and soil N) changed after mineral soil cover, and soil moisture content differed between sites. During the experimental period, the mean daily soil moisture from DN site (24.1 % VWC – 60.18 % VWC) is higher than DC site (20.17 % VWC – 51.26 % VWC). In summary, our data from this first experimental period suggest that mineral soil cover fill could strongly reduce the N2O emission from drained organic soil, and may therefore be an interesting GHG mitigation option in agriculture.
How to cite: Wang, Y., Paul, S., Jocher, M., Alewell, C., and Leifeld, J.: The impact of mineral soil cover fill on N2O emissions in peatland drained for agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3500, https://doi.org/10.5194/egusphere-egu2020-3500, 2020.
Drainage for agriculture has converted peatlands from a carbon sink to one of the world’s major greenhouse gas (GHG) sources. In order to improve the sustainability of peatland management in agriculture, and to counteract soil subsidence, mineral soil coverage is becoming an increasingly used practice in Switzerland. Cover fills may change the GHG balance from the corresponding organic soil. To explore the effect of cover fill on soil N2O emissions, we carry out a field experiment in the Swiss Rhine Valley and measure the soil – borne N2O exchange from two adjacent sites: drained organic soil without mineral soil cover (DN), and drained organic soil with mineral soil cover (DC). Mineral soil material was applied 12 years ago and varies in thickness between 20 – 80 cm. Both sites have the identical farming practice (intensive permanent meadow). In our experiment, an automatic chamber system is used for collecting the N2O at an interval of 3 h. Soil moisture, expressd as volumetric water content (VWC), is recorded every 10 min. After ten month (303 days) of continous measurement, the data reveal that: (1) The average N2O emission from DN is higher than DC by a factor of 11 (11.24 ± 3.46 vs 0.97 ± 0.22 mg N2O-N m-2 day-1). Hence, mineral soil cover of organic soil seems to induce a strong reduction in N2O emissions. (2) Exogenous N inputs (mineral N fertilizer and cow slurry) are the main drivers of N2O emissions. N2O peaks occured shortly after the N application and lasted for 2 to 3 weeks before returning to background N2O emission. At the DC site post N- input N2O emissions accounted for 68 % of the total N2O emission over the whole measurement period. An equivalent of around 1 % of the exogenous N- input was emitted as N2O. At the DN site, emission peaks after fertilization accounted for 79 % of the total N2O emission, equivalent to around 13 % of the exogenous N- input. Background emissions between peak events shows no significant difference between DC (0.51± 0.15 mg N2O-N m-2 day-1) and DN (2.73± 2.44 mg N2O-N m-2 day-1). The comparison of peak and background fluxes tentatively indicates that higher average emission rates from the DN site are related directly to fertilization. Finally, surface soil characteristics (soil pH, bulk density, and soil N) changed after mineral soil cover, and soil moisture content differed between sites. During the experimental period, the mean daily soil moisture from DN site (24.1 % VWC – 60.18 % VWC) is higher than DC site (20.17 % VWC – 51.26 % VWC). In summary, our data from this first experimental period suggest that mineral soil cover fill could strongly reduce the N2O emission from drained organic soil, and may therefore be an interesting GHG mitigation option in agriculture.
How to cite: Wang, Y., Paul, S., Jocher, M., Alewell, C., and Leifeld, J.: The impact of mineral soil cover fill on N2O emissions in peatland drained for agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3500, https://doi.org/10.5194/egusphere-egu2020-3500, 2020.
EGU2020-8085 | Displays | BG3.21
Effects of grassland renewal and submerged drains on greenhouse gas exchange at an intensively managed bog peat soilLiv Sokolowsky, Bärbel Tiemeyer, Ullrich Dettmann, Merten Minke, Jeremy Rüffer, Arne Tegge, Isabelle Böhme, and Christian Brümmer
Intact peatland ecosystems are efficient sinks of atmospheric carbon dioxide (CO2). Disturbance, e.g. by drainage to transform peatlands into agricultural land, causes high emissions of the greenhouse gases (GHG) CO2 and nitrous oxide (N2O). Our Project “Gnarrenburger Moor” focuses on the evaluation of the effects of submerged drains on GHG emissions and dissolved solute losses from bog peat under intensive grassland management. Due to installation of the water management system, grassland renewal was necessary at one of our two experimental grassland sites, both being located in Northwest Germany and subjected to similar management in the past. Here, we report on the initial year of the project, which was dominated by the impact of grassland renewal as target groundwater levels were only reached after several months.
The reference site, representing common region-specific grassland management on peat, is deeply drained by tile drains, while submerged drains were installed at the project site to achieve constantly high water levels of 30 to 40 cm below ground. Both sites are equipped with eddy covariance towers for CO2 measurements and 6 plots for manually measuring N2O and methane (CH4) with closed chambers. Water samples for the analysis of phosphorus and nitrogen species are collected from ditches, tile drains and suction plates at 15, 30 and 60 cm depths. Measurements started in March 2019, i.e. approximately one month before the grassland renewal. The mechanical renewal involved mulching of the old grass sward and grading the surface of the site. Due to very dry conditions, growth of grass species was poor and the site was mulched and re-seeded again in July 2019. Target groundwater levels were reached in September 2019.
During the initial year of our study, grassland renewal substantially dominated the response of the system. From April to November, net ecosystem exchange of the project site was approximately 400 g C m-2 higher than that of the reference site. When including carbon input and output from organic fertilizer and harvest on the reference site, the project site is still by far (around 140 g C m-2) a larger source. When the bare soil and raising groundwater levels coincided between July and September, N2O fluxes and dissolved nitrogen and phosphorus concentrations drastically increased at the project site. N2O fluxes were partially 100 times higher than at the reference site. The next years will show whether an operational water management system and a fully developed grass sward will turn the project site with submerged drains into a smaller source of GHGs than the reference site.
How to cite: Sokolowsky, L., Tiemeyer, B., Dettmann, U., Minke, M., Rüffer, J., Tegge, A., Böhme, I., and Brümmer, C.: Effects of grassland renewal and submerged drains on greenhouse gas exchange at an intensively managed bog peat soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8085, https://doi.org/10.5194/egusphere-egu2020-8085, 2020.
Intact peatland ecosystems are efficient sinks of atmospheric carbon dioxide (CO2). Disturbance, e.g. by drainage to transform peatlands into agricultural land, causes high emissions of the greenhouse gases (GHG) CO2 and nitrous oxide (N2O). Our Project “Gnarrenburger Moor” focuses on the evaluation of the effects of submerged drains on GHG emissions and dissolved solute losses from bog peat under intensive grassland management. Due to installation of the water management system, grassland renewal was necessary at one of our two experimental grassland sites, both being located in Northwest Germany and subjected to similar management in the past. Here, we report on the initial year of the project, which was dominated by the impact of grassland renewal as target groundwater levels were only reached after several months.
The reference site, representing common region-specific grassland management on peat, is deeply drained by tile drains, while submerged drains were installed at the project site to achieve constantly high water levels of 30 to 40 cm below ground. Both sites are equipped with eddy covariance towers for CO2 measurements and 6 plots for manually measuring N2O and methane (CH4) with closed chambers. Water samples for the analysis of phosphorus and nitrogen species are collected from ditches, tile drains and suction plates at 15, 30 and 60 cm depths. Measurements started in March 2019, i.e. approximately one month before the grassland renewal. The mechanical renewal involved mulching of the old grass sward and grading the surface of the site. Due to very dry conditions, growth of grass species was poor and the site was mulched and re-seeded again in July 2019. Target groundwater levels were reached in September 2019.
During the initial year of our study, grassland renewal substantially dominated the response of the system. From April to November, net ecosystem exchange of the project site was approximately 400 g C m-2 higher than that of the reference site. When including carbon input and output from organic fertilizer and harvest on the reference site, the project site is still by far (around 140 g C m-2) a larger source. When the bare soil and raising groundwater levels coincided between July and September, N2O fluxes and dissolved nitrogen and phosphorus concentrations drastically increased at the project site. N2O fluxes were partially 100 times higher than at the reference site. The next years will show whether an operational water management system and a fully developed grass sward will turn the project site with submerged drains into a smaller source of GHGs than the reference site.
How to cite: Sokolowsky, L., Tiemeyer, B., Dettmann, U., Minke, M., Rüffer, J., Tegge, A., Böhme, I., and Brümmer, C.: Effects of grassland renewal and submerged drains on greenhouse gas exchange at an intensively managed bog peat soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8085, https://doi.org/10.5194/egusphere-egu2020-8085, 2020.
EGU2020-18328 | Displays | BG3.21
Assessing nitrous oxide emissions from European peatlands at variable degradation status and land use to improve national GHG inventoriesBernd Lennartz, Haojie Liu, and Nicole Wrage Mönnig
Nitrous oxide (N2O) is 300 times more potent than carbon dioxide in atmospheric warming and it is the main driver of stratospheric ozone depletion. The N2O emissions from peatlands are often estimated by applying published IPCC default emission factors, neglecting the stages of peat degradation. Here, we introduce soil bulk density (BD) as a proxy for peat degradation to estimate N2O emissions. A synthesis of soil physical and geochemical data from global boreal and temperate peatlands revealed a strong relationship between BD and annual N2O emissions (R2=0.56, p<0.001), and the BD was superior to other parameters (C/N, pH) in estimating annual N2O emissions. The results indicate that the more a peat soil is degraded, and the larger the values for BD are the larger the risk of N2O emission in peaty landscapes. Even after rewetting, highly degraded soils may exhibit large N2O release rates. A BD distribution map of European peatlands was generated and the estimated annual N2O-N emissions from European peatlands sum up to approximately 46.9 Gg. In conclusion, this research shows that explicitly accounting for the stage of peat degradation as expressed in measured BD values gives reliable N2O emission estimates from peatlands on a national scale.
How to cite: Lennartz, B., Liu, H., and Wrage Mönnig, N.: Assessing nitrous oxide emissions from European peatlands at variable degradation status and land use to improve national GHG inventories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18328, https://doi.org/10.5194/egusphere-egu2020-18328, 2020.
Nitrous oxide (N2O) is 300 times more potent than carbon dioxide in atmospheric warming and it is the main driver of stratospheric ozone depletion. The N2O emissions from peatlands are often estimated by applying published IPCC default emission factors, neglecting the stages of peat degradation. Here, we introduce soil bulk density (BD) as a proxy for peat degradation to estimate N2O emissions. A synthesis of soil physical and geochemical data from global boreal and temperate peatlands revealed a strong relationship between BD and annual N2O emissions (R2=0.56, p<0.001), and the BD was superior to other parameters (C/N, pH) in estimating annual N2O emissions. The results indicate that the more a peat soil is degraded, and the larger the values for BD are the larger the risk of N2O emission in peaty landscapes. Even after rewetting, highly degraded soils may exhibit large N2O release rates. A BD distribution map of European peatlands was generated and the estimated annual N2O-N emissions from European peatlands sum up to approximately 46.9 Gg. In conclusion, this research shows that explicitly accounting for the stage of peat degradation as expressed in measured BD values gives reliable N2O emission estimates from peatlands on a national scale.
How to cite: Lennartz, B., Liu, H., and Wrage Mönnig, N.: Assessing nitrous oxide emissions from European peatlands at variable degradation status and land use to improve national GHG inventories, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18328, https://doi.org/10.5194/egusphere-egu2020-18328, 2020.
EGU2020-4547 | Displays | BG3.21
Microbial-derived phospholipid fatty acids approve the link of stable isotope depth pattern to peatland hydrologyMiriam Groß-Schmölders, Axel Birkholz, Kristy Klein, Jens Leifeld, and Christine Alewell
Ongoing peatland degradation calls for an efficient method to indicate peatland hydrology and the success of restoration effort. In previous studies we found specific depth patterns of 13C and 15N depending on peatland hydrology (drained, rewetted or natural), but were unable to find an explanation of these patterns. As degradation is mostly connected to drainage we assumed an increase of microbial activity. This microbial activity should then be imprinted in stable isotope signatures (15N, 13C) due to differences in microorganism communities, their metabolic pathways and nutrient sources. We aimed to find a link between our investigated isotope depth patterns to microbial community composition. Therefore, we conducted a phospholipid fatty acid (PLFAs) analysis. As a marker for bacteria we used PLFAs i-C15:0 and a-C-15:0 as well as the C18:2,9c as a marker for fungi. We studied two nutrient poor peatlands in Northern Europe: Lakkasuo (Central Finland) and Degerö Stormyr (Northern Sweden). At all locations cores were taken from adjacent drained (or rewetted) and natural sites. At Lakkasuo drained site, we found a high humification index (HI, after van Post), shown by less plant residuals and a high amount of matrix. For Degerö Stormyr the picture looks different. Above the drained horizon (high HI) peat was light, with a smaller amount of matrix and lots of plant residuals (low HI), like it was also seen in the natural cores. At the drained (and rewetted) sites we found distinct peaks in microbial PLFA concentrations, which correlate to the stable isotope peaks ("turning point”) we found before. At the 15N turning point, in the center of the drained horizon, overall microbial-derived PLFA abundance is also the highest. Furthermore, the overall microbial-derived PLFA abundance is positively correlated with 15N values (r2=0.5). Fungi-derived PLFAs are negatively correlated (r2=0.4) to 13C. Fungi-derived PLFAs showed the highest amount at the uppermost part of the drained horizon and low amounts in the waterlogged conditions below the drained horizon, whereas 13C showed lowest values at the surface and high values below the drained horizon. Our results suggest, that fungi dominate microbial metabolism in the upper, aerobic peat horizon. Downwards the drained horizon conditions slowly switch to oxygen limitation. Thus, fungal-derived PLFAs decrease whereas bacterial-derived PLFAs are increasing. The highest diversity of microbial-derived PLFAs is indicated by the 15N turning point. Below this point, oxygen is increasingly limited and concentrations of all microbial-derived PLFAs are decreasing down to the 13C turning point and the onset of the permanently waterlogged, anaerobic horizon. Cores from rewetted peatlands show no depth trend of 15N values above the formerly drained horizon and a low amount of microbial-derived PLFAs. Hence, we conclude that stable isotope values reflect microbial metabolism processes, which differ between drained, rewetted and natural peatlands. Additionally, stable isotope patterns reflect a switch in the predominant communities from fungi to bacteria within a drained horizon. Summing up, the PLFA analysis approved that stable isotope measurements can serve as a cost and work efficient monitoring tool for peatland history as well as peatland restoration success.
How to cite: Groß-Schmölders, M., Birkholz, A., Klein, K., Leifeld, J., and Alewell, C.: Microbial-derived phospholipid fatty acids approve the link of stable isotope depth pattern to peatland hydrology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4547, https://doi.org/10.5194/egusphere-egu2020-4547, 2020.
Ongoing peatland degradation calls for an efficient method to indicate peatland hydrology and the success of restoration effort. In previous studies we found specific depth patterns of 13C and 15N depending on peatland hydrology (drained, rewetted or natural), but were unable to find an explanation of these patterns. As degradation is mostly connected to drainage we assumed an increase of microbial activity. This microbial activity should then be imprinted in stable isotope signatures (15N, 13C) due to differences in microorganism communities, their metabolic pathways and nutrient sources. We aimed to find a link between our investigated isotope depth patterns to microbial community composition. Therefore, we conducted a phospholipid fatty acid (PLFAs) analysis. As a marker for bacteria we used PLFAs i-C15:0 and a-C-15:0 as well as the C18:2,9c as a marker for fungi. We studied two nutrient poor peatlands in Northern Europe: Lakkasuo (Central Finland) and Degerö Stormyr (Northern Sweden). At all locations cores were taken from adjacent drained (or rewetted) and natural sites. At Lakkasuo drained site, we found a high humification index (HI, after van Post), shown by less plant residuals and a high amount of matrix. For Degerö Stormyr the picture looks different. Above the drained horizon (high HI) peat was light, with a smaller amount of matrix and lots of plant residuals (low HI), like it was also seen in the natural cores. At the drained (and rewetted) sites we found distinct peaks in microbial PLFA concentrations, which correlate to the stable isotope peaks ("turning point”) we found before. At the 15N turning point, in the center of the drained horizon, overall microbial-derived PLFA abundance is also the highest. Furthermore, the overall microbial-derived PLFA abundance is positively correlated with 15N values (r2=0.5). Fungi-derived PLFAs are negatively correlated (r2=0.4) to 13C. Fungi-derived PLFAs showed the highest amount at the uppermost part of the drained horizon and low amounts in the waterlogged conditions below the drained horizon, whereas 13C showed lowest values at the surface and high values below the drained horizon. Our results suggest, that fungi dominate microbial metabolism in the upper, aerobic peat horizon. Downwards the drained horizon conditions slowly switch to oxygen limitation. Thus, fungal-derived PLFAs decrease whereas bacterial-derived PLFAs are increasing. The highest diversity of microbial-derived PLFAs is indicated by the 15N turning point. Below this point, oxygen is increasingly limited and concentrations of all microbial-derived PLFAs are decreasing down to the 13C turning point and the onset of the permanently waterlogged, anaerobic horizon. Cores from rewetted peatlands show no depth trend of 15N values above the formerly drained horizon and a low amount of microbial-derived PLFAs. Hence, we conclude that stable isotope values reflect microbial metabolism processes, which differ between drained, rewetted and natural peatlands. Additionally, stable isotope patterns reflect a switch in the predominant communities from fungi to bacteria within a drained horizon. Summing up, the PLFA analysis approved that stable isotope measurements can serve as a cost and work efficient monitoring tool for peatland history as well as peatland restoration success.
How to cite: Groß-Schmölders, M., Birkholz, A., Klein, K., Leifeld, J., and Alewell, C.: Microbial-derived phospholipid fatty acids approve the link of stable isotope depth pattern to peatland hydrology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4547, https://doi.org/10.5194/egusphere-egu2020-4547, 2020.
EGU2020-11169 | Displays | BG3.21
A new national research programme on greenhouse gas emissions from lowland peat meadows in The NetherlandsGilles Erkens and Jim Boonman and the NOBV-team
Following the Paris Agreement (2015) that aims to limit climate warming, the Dutch government presented a National Climate Agreement. The National Climate Agreement allocates the overall ambition of reducing the national greenhouse gas emission by 49% in 2030 (compared to 1990) to different sectors, such as industry, mobility or agriculture and land use. Within the latter sector, the peat meadow areas currently contribute ~4.6 to 7 Mton per year of CO2 to the national greenhouse gas emission. In the National Climate Agreement, the aim is to reduce the net CO2 emission from the peat meadow areas with 1 Mton per year by 2030.
The peat meadows of the Netherlands are drained peatlands for dairy farming. Drainage of peatlands causes land subsidence, and as a result of peat oxidation, greenhouse gas emissions (CO2, CH4, N2O). Critical factors that determine the level of greenhouse gas emissions from the peat meadows are amongst others the groundwater level, peat thickness, macrofossil composition, mineral cover-soil thickness, the level of fertiliser addition. In the National Climate Agreement, the main focus is on raising groundwater levels in the peat meadow area to reduce greenhouse gas emissions and subsidence. This can be either passively achieved by raising the ditch water levels, surface irrigation, reducing transpiration losses or actively by using submerged drainage systems that drain in winter, but infiltrate water in summer.
It is now time to produce regional spatial plans that comprise a compilation of measures that raise groundwater levels enough to reduce the greenhouse emissions with 1 Mton per year by 2030. To do so, it is imperative that the exact effects of the proposed measures on greenhouse gas emissions and subsidence are known, under different environmental conditions. In ongoing and previously executed studies, results so far show mixed outcomes. Therefore, a national research programme commenced autumn 2019, in which the greenhouse gas emission and subsidence is continuously measured in five field sites. The programme focusses on the effects of submerged drainage/irrigation on emissions in the first 2 growing seasons.
The consortium in charge of the national research programme consists of parties in the Netherlands that have ample experience in measuring greenhouse emission and subsidence. Each of the five field sites consists of one measurement plot in an area where the groundwater level is raised and one reference plot where the groundwater level dynamics remained the same. A measurement plot consists of continuously operating gas analyser chambers that rotate within the plot every two weeks. In two field sites, emissions are also measured using the eddy covariance method. In addition, subsidence is measured with extensometers and spirit levelling. Sensors, both in situ and above ground, provide information on relevant parameters such as soil moisture, soil temperature, oxygen availability, and meteorological parameters. Samples are being extracted from the field sites and tested on microbiological assemblages, and soil (mechanical) parameters. The whole programme is designed to run for at least five years, but first results that support policy development, are supposed to be reported in 2021.
How to cite: Erkens, G. and Boonman, J. and the NOBV-team: A new national research programme on greenhouse gas emissions from lowland peat meadows in The Netherlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11169, https://doi.org/10.5194/egusphere-egu2020-11169, 2020.
Following the Paris Agreement (2015) that aims to limit climate warming, the Dutch government presented a National Climate Agreement. The National Climate Agreement allocates the overall ambition of reducing the national greenhouse gas emission by 49% in 2030 (compared to 1990) to different sectors, such as industry, mobility or agriculture and land use. Within the latter sector, the peat meadow areas currently contribute ~4.6 to 7 Mton per year of CO2 to the national greenhouse gas emission. In the National Climate Agreement, the aim is to reduce the net CO2 emission from the peat meadow areas with 1 Mton per year by 2030.
The peat meadows of the Netherlands are drained peatlands for dairy farming. Drainage of peatlands causes land subsidence, and as a result of peat oxidation, greenhouse gas emissions (CO2, CH4, N2O). Critical factors that determine the level of greenhouse gas emissions from the peat meadows are amongst others the groundwater level, peat thickness, macrofossil composition, mineral cover-soil thickness, the level of fertiliser addition. In the National Climate Agreement, the main focus is on raising groundwater levels in the peat meadow area to reduce greenhouse gas emissions and subsidence. This can be either passively achieved by raising the ditch water levels, surface irrigation, reducing transpiration losses or actively by using submerged drainage systems that drain in winter, but infiltrate water in summer.
It is now time to produce regional spatial plans that comprise a compilation of measures that raise groundwater levels enough to reduce the greenhouse emissions with 1 Mton per year by 2030. To do so, it is imperative that the exact effects of the proposed measures on greenhouse gas emissions and subsidence are known, under different environmental conditions. In ongoing and previously executed studies, results so far show mixed outcomes. Therefore, a national research programme commenced autumn 2019, in which the greenhouse gas emission and subsidence is continuously measured in five field sites. The programme focusses on the effects of submerged drainage/irrigation on emissions in the first 2 growing seasons.
The consortium in charge of the national research programme consists of parties in the Netherlands that have ample experience in measuring greenhouse emission and subsidence. Each of the five field sites consists of one measurement plot in an area where the groundwater level is raised and one reference plot where the groundwater level dynamics remained the same. A measurement plot consists of continuously operating gas analyser chambers that rotate within the plot every two weeks. In two field sites, emissions are also measured using the eddy covariance method. In addition, subsidence is measured with extensometers and spirit levelling. Sensors, both in situ and above ground, provide information on relevant parameters such as soil moisture, soil temperature, oxygen availability, and meteorological parameters. Samples are being extracted from the field sites and tested on microbiological assemblages, and soil (mechanical) parameters. The whole programme is designed to run for at least five years, but first results that support policy development, are supposed to be reported in 2021.
How to cite: Erkens, G. and Boonman, J. and the NOBV-team: A new national research programme on greenhouse gas emissions from lowland peat meadows in The Netherlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11169, https://doi.org/10.5194/egusphere-egu2020-11169, 2020.
EGU2020-22564 | Displays | BG3.21
Interaction of water table management and mice infestation on greenhouse gas emissions from intensively used grasslands on HistosolBärbel Tiemeyer, Sebastian Heller, Sebastian Willi Oehmke, and Ullrich Dettmann
During the last century, drainage turned the majority of the bogs and fens in Germany into productive agricultural land, causing substantial emissions of greenhouse gases (GHG). The project ‘SWAMPS’ focuses both on maintaining the trafficability for conventional intensive grassland use and on the reduction of GHG emissions by managing the groundwater level by submerged drains and blocked ditches. Here, we aim to evaluate the interaction of water table management and a severe mice infestation on the emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4).
We set up two field sites on both fen and bog peat in North-Western Germany. Submerged drains were installed at a distance of 4 to 5 m and with a target ditch level of 45 to 50 cm below mean soil surface. On the parcels with blocked ditches, the target ditch level is adjusted at 30 to 35 cm. The control parcels are drained by ditches and/or drainage pipes. Since 2017, diurnal CO2 flux measurement campaigns have been realised once every three to four weeks with transparent and opaque chambers and a portable gas analyser. CH4 and N2O samples are taken biweekly and additionally more frequently after fertilizer application.
However, our experimental design was disrupted when, after an extremely dry summer and a dry and mild winter, the mice population grew strongly in 2019. We monitored both the number of mouse holes and the damage by mice. At the bog site, nearly no grass was left at the control site at the end of the year, while at the fen site, less, but still significant damage was observed. In this year, this was typical for the situation in North-Western Germany, where around 150,000 ha of grassland were severely damaged by mice. The sites with water table management were less effected by mice, but as food became scarce, they started to move into these wetter areas as well.
Despite higher water levels, CO2 emissions in 2019 were partially higher than in previous years, especially at those sites affected by mice. With this presentation, we would like to discuss the effects of mice damage on soil respiration and on possibilities to disentangle water management effects from this (experimental and agricultural) calamity.
How to cite: Tiemeyer, B., Heller, S., Oehmke, S. W., and Dettmann, U.: Interaction of water table management and mice infestation on greenhouse gas emissions from intensively used grasslands on Histosol, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22564, https://doi.org/10.5194/egusphere-egu2020-22564, 2020.
During the last century, drainage turned the majority of the bogs and fens in Germany into productive agricultural land, causing substantial emissions of greenhouse gases (GHG). The project ‘SWAMPS’ focuses both on maintaining the trafficability for conventional intensive grassland use and on the reduction of GHG emissions by managing the groundwater level by submerged drains and blocked ditches. Here, we aim to evaluate the interaction of water table management and a severe mice infestation on the emissions of carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4).
We set up two field sites on both fen and bog peat in North-Western Germany. Submerged drains were installed at a distance of 4 to 5 m and with a target ditch level of 45 to 50 cm below mean soil surface. On the parcels with blocked ditches, the target ditch level is adjusted at 30 to 35 cm. The control parcels are drained by ditches and/or drainage pipes. Since 2017, diurnal CO2 flux measurement campaigns have been realised once every three to four weeks with transparent and opaque chambers and a portable gas analyser. CH4 and N2O samples are taken biweekly and additionally more frequently after fertilizer application.
However, our experimental design was disrupted when, after an extremely dry summer and a dry and mild winter, the mice population grew strongly in 2019. We monitored both the number of mouse holes and the damage by mice. At the bog site, nearly no grass was left at the control site at the end of the year, while at the fen site, less, but still significant damage was observed. In this year, this was typical for the situation in North-Western Germany, where around 150,000 ha of grassland were severely damaged by mice. The sites with water table management were less effected by mice, but as food became scarce, they started to move into these wetter areas as well.
Despite higher water levels, CO2 emissions in 2019 were partially higher than in previous years, especially at those sites affected by mice. With this presentation, we would like to discuss the effects of mice damage on soil respiration and on possibilities to disentangle water management effects from this (experimental and agricultural) calamity.
How to cite: Tiemeyer, B., Heller, S., Oehmke, S. W., and Dettmann, U.: Interaction of water table management and mice infestation on greenhouse gas emissions from intensively used grasslands on Histosol, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22564, https://doi.org/10.5194/egusphere-egu2020-22564, 2020.
EGU2020-8090 | Displays | BG3.21
Insights into CO2 simulations from the Irish Blackwater peatland using ECOSSE modelAlina Premrov, David Wilson, Matthew Saunders, Jagadeesh Yeluripati, and Florence Renou-Wilson
Abstract
Non-degraded peatlands are known to be important carbon sink; however, if they are exposed to anthropogenic changes they can act as carbon source. This study forms a part of the larger AUGER project (http://www.ucd.ie/auger). It uses the ECOSSE process-based model to predict CO2 emissions [heterotrophic respiration (Rh)] associated with different peatland management (Smith et al., 2010). The work aims to provide preliminary insights into CO2 modelling procedures for drained and rewetted sites from Blackwater, the former Irish raised bog. After drainage in 1950’s (due to peat-extraction) and cessation of draining in 1999, the landscape developed drained ‘Bare Peat’ (BP), and rewetted ‘Reeds’ (R) and ‘Sedges’ (S) sites (Renou-Wilson et al., 2019). Modelling of CO2 from these sites was done using ECOSSE-v.6.2b model (‘site-specific’ mode) with water-table (WT) module (Smith et al., 2010), and default peatland vegetation parameters. The other model-input parameters (including soil respiration, WT and other soil parameters) were obtained from measurements reported in Renou-Wilson et al. (2019). Simulations on drained BP site were run starting from 1950 and on rewetted R and S sites starting from 1999 (which is the year of cessation of drainage). The climate data inputs (2010-2017) were obtained from ICHEC (EPA_Climate-WRF, 2019). The long-term average climate data for model spin-up were obtained from Met Éireann (2012) with potential evapotranspiration estimated by Thornthwaite (1948) method. Daily ecosystem respiration (Reco) data for May/June 2011 to Aug 2011 obtained from raw CO2 flux measurements (Renou-Wilson et al., 2019) were used. For vegetated sites Rh was estimated from Reco using method explained in Abdalla et al. (2014). Daily CO2 simulations were compared to Reco for BP site (r2 =0.20) and to Rh for R site (r2 = 0.35) and S site (r2 = 0.55). The preliminary results showed some underestimation of simulated CO2 indicating the need for further modelling refinements for satisfactory results. The results from BP site further indicated on the importance of including long-term drainage period (i.e. from 1950 on) because avoiding this step resulted in a large overestimation of predicted CO2.
Acknowledgements
AUGER project is funded under the Irish EPA Research programme 2014-2020.
Literature
Abdalla, M., et al. 2014. Simulation of CO2 and attribution analysis at six European peatland sites using the ECOSSE Model. Water Air Soil Pollut 225:2182.
EPA_Climate-WRF (2019). ERDDAPv.1.82. ICHEC. https://erddap.ichec.ie/erddap/files/EPA_Climate/WRF/
Met Éireann. 2012. 30 year averages. Met Éireann - The Irish Meteorological Service, Ireland.
Renou-Wilson, F., et. al. 2019. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 127:547-560.
Smith, J., et al. 2010. ECOSSE. User Manual.
Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geog. Review 38, 55-94.
How to cite: Premrov, A., Wilson, D., Saunders, M., Yeluripati, J., and Renou-Wilson, F.: Insights into CO2 simulations from the Irish Blackwater peatland using ECOSSE model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8090, https://doi.org/10.5194/egusphere-egu2020-8090, 2020.
Abstract
Non-degraded peatlands are known to be important carbon sink; however, if they are exposed to anthropogenic changes they can act as carbon source. This study forms a part of the larger AUGER project (http://www.ucd.ie/auger). It uses the ECOSSE process-based model to predict CO2 emissions [heterotrophic respiration (Rh)] associated with different peatland management (Smith et al., 2010). The work aims to provide preliminary insights into CO2 modelling procedures for drained and rewetted sites from Blackwater, the former Irish raised bog. After drainage in 1950’s (due to peat-extraction) and cessation of draining in 1999, the landscape developed drained ‘Bare Peat’ (BP), and rewetted ‘Reeds’ (R) and ‘Sedges’ (S) sites (Renou-Wilson et al., 2019). Modelling of CO2 from these sites was done using ECOSSE-v.6.2b model (‘site-specific’ mode) with water-table (WT) module (Smith et al., 2010), and default peatland vegetation parameters. The other model-input parameters (including soil respiration, WT and other soil parameters) were obtained from measurements reported in Renou-Wilson et al. (2019). Simulations on drained BP site were run starting from 1950 and on rewetted R and S sites starting from 1999 (which is the year of cessation of drainage). The climate data inputs (2010-2017) were obtained from ICHEC (EPA_Climate-WRF, 2019). The long-term average climate data for model spin-up were obtained from Met Éireann (2012) with potential evapotranspiration estimated by Thornthwaite (1948) method. Daily ecosystem respiration (Reco) data for May/June 2011 to Aug 2011 obtained from raw CO2 flux measurements (Renou-Wilson et al., 2019) were used. For vegetated sites Rh was estimated from Reco using method explained in Abdalla et al. (2014). Daily CO2 simulations were compared to Reco for BP site (r2 =0.20) and to Rh for R site (r2 = 0.35) and S site (r2 = 0.55). The preliminary results showed some underestimation of simulated CO2 indicating the need for further modelling refinements for satisfactory results. The results from BP site further indicated on the importance of including long-term drainage period (i.e. from 1950 on) because avoiding this step resulted in a large overestimation of predicted CO2.
Acknowledgements
AUGER project is funded under the Irish EPA Research programme 2014-2020.
Literature
Abdalla, M., et al. 2014. Simulation of CO2 and attribution analysis at six European peatland sites using the ECOSSE Model. Water Air Soil Pollut 225:2182.
EPA_Climate-WRF (2019). ERDDAPv.1.82. ICHEC. https://erddap.ichec.ie/erddap/files/EPA_Climate/WRF/
Met Éireann. 2012. 30 year averages. Met Éireann - The Irish Meteorological Service, Ireland.
Renou-Wilson, F., et. al. 2019. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecol. Eng. 127:547-560.
Smith, J., et al. 2010. ECOSSE. User Manual.
Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geog. Review 38, 55-94.
How to cite: Premrov, A., Wilson, D., Saunders, M., Yeluripati, J., and Renou-Wilson, F.: Insights into CO2 simulations from the Irish Blackwater peatland using ECOSSE model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8090, https://doi.org/10.5194/egusphere-egu2020-8090, 2020.
EGU2020-19120 | Displays | BG3.21
Guiding drained peatland management towards negative GHG emissionsÅsa Kasimir, Salim Belyazid, Louise Andresen, Natascha Kljun, Sylvia Toet, Cecilia Akselsson, Edith Hammer, Emma Kritzberg, Annemarie Gärdenäs, Patrik Vestin, Per-Erik Jansson, and Leif Klemedtsson
In a world of climate change we need to minimize and stop greenhouse gas (GHG) emissions and instead accumulate carbon in ecosystems - we call this ‘negative emissions’. Drained peatlands are in many cases large sources of GHGs to the atmosphere but rewetting of a peatland can mitigate these emissions and possibly reach a net uptake. However, carbon accumulation in peatlands is a dynamic and complex balance between uptake and release, which is mainly driven by the groundwater table (WT) depth.
Our new project funded by the Swedish Research Council FORMAS (2020-2022) aims to produce a handbook with guidance on how to change management of drained organic soil in order to convert them into low or negative emission peatlands. Researchers from Gothenburg, Stockholm, Lund and York Universities will collaborate with landowners, public authorities and NGO’s to assemble the most relevant knowledge.
We will compare GHG fluxes from organic soils under different traditional and newly suggested land uses in the Swedish landscape, by collected field data, which will be the input for upscaling in time and space by using state-of-the-art process models (CoupModel and ForSAFE). For modelling purposes, extensive abiotic and GHG datasets will be available from the research station ‘Skogaryd’ in Västra Götaland, Sweden (https://gvc.gu.se/english/research/skogaryd), from a drained peat with spruce forest, before and after the clear-cut in 2019. This clear-cut area will now be partly rewetted by building a dam, and GHG flux measurements will be collected in response to different soil WT and vegetation types. Other available data are from a variety of drained and rewetted peat soils in neighboring countries. In addition, GHG measurements in Sweden on restored bogs are starting during summer 2020. Models will allow us to assess and examine the influence of 1) WT fluctuations, 2) soil fertility, and 3) management on both carbon storage and GHG fluxes for rewetted cases with moss vegetation, meadow or swamp forest.
How to cite: Kasimir, Å., Belyazid, S., Andresen, L., Kljun, N., Toet, S., Akselsson, C., Hammer, E., Kritzberg, E., Gärdenäs, A., Vestin, P., Jansson, P.-E., and Klemedtsson, L.: Guiding drained peatland management towards negative GHG emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19120, https://doi.org/10.5194/egusphere-egu2020-19120, 2020.
In a world of climate change we need to minimize and stop greenhouse gas (GHG) emissions and instead accumulate carbon in ecosystems - we call this ‘negative emissions’. Drained peatlands are in many cases large sources of GHGs to the atmosphere but rewetting of a peatland can mitigate these emissions and possibly reach a net uptake. However, carbon accumulation in peatlands is a dynamic and complex balance between uptake and release, which is mainly driven by the groundwater table (WT) depth.
Our new project funded by the Swedish Research Council FORMAS (2020-2022) aims to produce a handbook with guidance on how to change management of drained organic soil in order to convert them into low or negative emission peatlands. Researchers from Gothenburg, Stockholm, Lund and York Universities will collaborate with landowners, public authorities and NGO’s to assemble the most relevant knowledge.
We will compare GHG fluxes from organic soils under different traditional and newly suggested land uses in the Swedish landscape, by collected field data, which will be the input for upscaling in time and space by using state-of-the-art process models (CoupModel and ForSAFE). For modelling purposes, extensive abiotic and GHG datasets will be available from the research station ‘Skogaryd’ in Västra Götaland, Sweden (https://gvc.gu.se/english/research/skogaryd), from a drained peat with spruce forest, before and after the clear-cut in 2019. This clear-cut area will now be partly rewetted by building a dam, and GHG flux measurements will be collected in response to different soil WT and vegetation types. Other available data are from a variety of drained and rewetted peat soils in neighboring countries. In addition, GHG measurements in Sweden on restored bogs are starting during summer 2020. Models will allow us to assess and examine the influence of 1) WT fluctuations, 2) soil fertility, and 3) management on both carbon storage and GHG fluxes for rewetted cases with moss vegetation, meadow or swamp forest.
How to cite: Kasimir, Å., Belyazid, S., Andresen, L., Kljun, N., Toet, S., Akselsson, C., Hammer, E., Kritzberg, E., Gärdenäs, A., Vestin, P., Jansson, P.-E., and Klemedtsson, L.: Guiding drained peatland management towards negative GHG emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19120, https://doi.org/10.5194/egusphere-egu2020-19120, 2020.
EGU2020-14053 | Displays | BG3.21
Soil-atmosphere CO2 and CH4 fluxes in a nutrient-poor drained peatland forest in boreal SwedenJärvi Järveoja, Matthias Peichl, and Mats B. Nilsson
In countries such as Sweden, where between 1.5 and 2.0 million hectares of natural peatlands have been drained for forestry purposes, knowledge on soil-atmosphere greenhouse gas (GHG) fluxes from these areas is required for national GHG accounting as well as for identifying suitable management strategies (e.g. forestry vs rewetting) to reduce GHG emissions. In this study, we applied the manual chamber method (incl. clear and dark chambers) to investigate the soil-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges in a nutrient-poor drained peatland forest in boreal Sweden over two growing seasons (2018-2019). Combined with an array of vegetated and vegetation-removal plots we further partitioned the soil-atmosphere CO2 exchange into its individual component fluxes of heterotrophic and autotrophic respiration as well as gross and net primary production. In addition, we collected soil environmental, vegetation and meteorological data to determine the key biotic and abiotic controls of these fluxes. All measurements were carried out along multiple transects at 5, 25 and 50 m distances from the main drainage ditch to explore their spatial variability. For comparison, we used similar GHG flux data from an automated chamber system at the nearby natural Degerö mire. We found divergent magnitudes and patterns in the soil-atmosphere CO2 exchange and its component fluxes between the drained peatland forest and the natural mire, altogether resulting in a close-to-zero soil-atmosphere CO2 balance at the drained site compared to a net CO2 uptake at the mire. The CH4 emissions from the drained peatland forest were significantly reduced compared to the natural mire; however, due to a relatively high mean water table level the drained site continued to act as a persistent CH4 source. Overall, these detailed data will serve as a baseline for evaluating the impact of future rewetting activities (planned for 2020 at the site) on the GHG balance and will provide the various forest stakeholders valuable decision-support for developing sustainable and climate-responsible forest management strategies.
How to cite: Järveoja, J., Peichl, M., and Nilsson, M. B.: Soil-atmosphere CO2 and CH4 fluxes in a nutrient-poor drained peatland forest in boreal Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14053, https://doi.org/10.5194/egusphere-egu2020-14053, 2020.
In countries such as Sweden, where between 1.5 and 2.0 million hectares of natural peatlands have been drained for forestry purposes, knowledge on soil-atmosphere greenhouse gas (GHG) fluxes from these areas is required for national GHG accounting as well as for identifying suitable management strategies (e.g. forestry vs rewetting) to reduce GHG emissions. In this study, we applied the manual chamber method (incl. clear and dark chambers) to investigate the soil-atmosphere carbon dioxide (CO2) and methane (CH4) exchanges in a nutrient-poor drained peatland forest in boreal Sweden over two growing seasons (2018-2019). Combined with an array of vegetated and vegetation-removal plots we further partitioned the soil-atmosphere CO2 exchange into its individual component fluxes of heterotrophic and autotrophic respiration as well as gross and net primary production. In addition, we collected soil environmental, vegetation and meteorological data to determine the key biotic and abiotic controls of these fluxes. All measurements were carried out along multiple transects at 5, 25 and 50 m distances from the main drainage ditch to explore their spatial variability. For comparison, we used similar GHG flux data from an automated chamber system at the nearby natural Degerö mire. We found divergent magnitudes and patterns in the soil-atmosphere CO2 exchange and its component fluxes between the drained peatland forest and the natural mire, altogether resulting in a close-to-zero soil-atmosphere CO2 balance at the drained site compared to a net CO2 uptake at the mire. The CH4 emissions from the drained peatland forest were significantly reduced compared to the natural mire; however, due to a relatively high mean water table level the drained site continued to act as a persistent CH4 source. Overall, these detailed data will serve as a baseline for evaluating the impact of future rewetting activities (planned for 2020 at the site) on the GHG balance and will provide the various forest stakeholders valuable decision-support for developing sustainable and climate-responsible forest management strategies.
How to cite: Järveoja, J., Peichl, M., and Nilsson, M. B.: Soil-atmosphere CO2 and CH4 fluxes in a nutrient-poor drained peatland forest in boreal Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14053, https://doi.org/10.5194/egusphere-egu2020-14053, 2020.
EGU2020-13689 | Displays | BG3.21
Insights into measuring highly variable and sporadic N2O emissions in a fertile peatland forest with automatic chambersAnnalea Lohila, Mika Korkiakoski, Paavo Ojanen, Kari Minkkinen, Timo Penttilä, Juuso Rainne, and Tuomas Laurila
Drainage and other management activities in peatlands make especially the fertile sites a source of greenhouse gases into the atmosphere. In addition to typically losing carbon dioxide (CO2) from the old peat, they act as sources of nitrous oxide (N2O) into the atmosphere. In contrary to CO2, N2O fluxes do not necessarily show a distinct seasonal cycle with high emissions in summer and low in winter. Instead, the most intense peaks in N2O fluxes have been earlier attributed to freezing-thawing cycles of peat soil. Emissions of N2O have been reported to vary greatly both in time and space. Due to instrument limitations, the fluxes have been typically measured using manual chamber technique which provides only a snapshot of the potentially highly dynamic fluxes.
In this presentation we show multi-year results of N2O fluxes captured by automatic chambers and compare those to temporally sparse manual chamber measurements. Our study site was a nutrient-rich drained peatland ‘Lettosuo’ located in Tammela in southern Finland. The peatland, originally an herb-rich tall sedge pine fen was drained for forestry in 1969. After that, the tree stand was a mixture of Scots pine, Norway spruce and Downy birch. N2O fluxes were measured hourly with six automatic chambers. We will address the temporal and spatial variability in the fluxes and the plausible reasons behind them, including the drought of summer 2018, and give a summary of the exploitability of different methods. Suggestions for an improved chamber configuration and for the optimal sampling frequency for manual chambers will be given based on the results.
How to cite: Lohila, A., Korkiakoski, M., Ojanen, P., Minkkinen, K., Penttilä, T., Rainne, J., and Laurila, T.: Insights into measuring highly variable and sporadic N2O emissions in a fertile peatland forest with automatic chambers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13689, https://doi.org/10.5194/egusphere-egu2020-13689, 2020.
Drainage and other management activities in peatlands make especially the fertile sites a source of greenhouse gases into the atmosphere. In addition to typically losing carbon dioxide (CO2) from the old peat, they act as sources of nitrous oxide (N2O) into the atmosphere. In contrary to CO2, N2O fluxes do not necessarily show a distinct seasonal cycle with high emissions in summer and low in winter. Instead, the most intense peaks in N2O fluxes have been earlier attributed to freezing-thawing cycles of peat soil. Emissions of N2O have been reported to vary greatly both in time and space. Due to instrument limitations, the fluxes have been typically measured using manual chamber technique which provides only a snapshot of the potentially highly dynamic fluxes.
In this presentation we show multi-year results of N2O fluxes captured by automatic chambers and compare those to temporally sparse manual chamber measurements. Our study site was a nutrient-rich drained peatland ‘Lettosuo’ located in Tammela in southern Finland. The peatland, originally an herb-rich tall sedge pine fen was drained for forestry in 1969. After that, the tree stand was a mixture of Scots pine, Norway spruce and Downy birch. N2O fluxes were measured hourly with six automatic chambers. We will address the temporal and spatial variability in the fluxes and the plausible reasons behind them, including the drought of summer 2018, and give a summary of the exploitability of different methods. Suggestions for an improved chamber configuration and for the optimal sampling frequency for manual chambers will be given based on the results.
How to cite: Lohila, A., Korkiakoski, M., Ojanen, P., Minkkinen, K., Penttilä, T., Rainne, J., and Laurila, T.: Insights into measuring highly variable and sporadic N2O emissions in a fertile peatland forest with automatic chambers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13689, https://doi.org/10.5194/egusphere-egu2020-13689, 2020.
EGU2020-15736 | Displays | BG3.21
Detecting Groundwater Level Changes with Radar InterferometryFloris Heuff and Ramon Hanssen
The Dutch are known for their dewatered peat pastures known as polders. These pastures are used for heavy agricultural and have to be continuously drained to compensate for the subsiding top layer due to oxidation. Additionally, the top part of the peat soil responds to changes in temperature and precipitation. Driven by moisture changes, the peat soils shrink as water is evaporated during dry, warm periods, while they swell in periods with lots of precipitation. During these dry periods, the groundwater level drops as well, mirroring the behavior of the surface. As the groundwater level drops, more organic material is exposed to air and more greenhouse gases are emitted. Monitoring the movement of the surface of the pasture could provide indirect measurements of the groundwater level and used to reveal areas that are more or less affected by a rainfall deficit. Efforts to reduce emissions can then be focused on more vulnerable areas. However, this dynamical behavior is hard to monitor with conventional geodetic means, as it is near impossible to install the required benchmarks on the soft surface of the pastures, which are needed for repeated surveying.
Radar Interferometry presents an opportunity to observe this dynamic behavior without the need of installing equipment. The Sentinel-1a/b satellites pass the Dutch peat soils four times per week, providing the data necessary to observe the shrinking and swelling of the soils. We applied the technique to two study areas in the Netherlands, one between Delft and Rotterdam, where most of the pastures are situated on peat or peaty soils, and one above Zwolle in the center of Netherlands, near Staphorst, a peat-rich area. We processed all radar acquisitions between 2017 and 2019, which were averaged to 200 by 200 meter square windows to suppress noise. This is than further processed to obtain deformation time series. Based on these time series, areas more vulnerable to droughts were identified. Notably, 2018 – a very dry year, with a very large rainfall deficit – caused significantly more shrinkage than observed in 2017. We estimate that some areas shrunk up to 50 percent more. The associated drop in groundwater level exposed fresh peat to air for the first time, potentially increasing the emission of greenhouse gases significantly.
Climate change exposes peat soils to new and more extreme weather conditions. Radar Interferometry can monitor the impact of these conditions on the soils and can be used to reduce greenhouse emissions more effectively.
How to cite: Heuff, F. and Hanssen, R.: Detecting Groundwater Level Changes with Radar Interferometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15736, https://doi.org/10.5194/egusphere-egu2020-15736, 2020.
The Dutch are known for their dewatered peat pastures known as polders. These pastures are used for heavy agricultural and have to be continuously drained to compensate for the subsiding top layer due to oxidation. Additionally, the top part of the peat soil responds to changes in temperature and precipitation. Driven by moisture changes, the peat soils shrink as water is evaporated during dry, warm periods, while they swell in periods with lots of precipitation. During these dry periods, the groundwater level drops as well, mirroring the behavior of the surface. As the groundwater level drops, more organic material is exposed to air and more greenhouse gases are emitted. Monitoring the movement of the surface of the pasture could provide indirect measurements of the groundwater level and used to reveal areas that are more or less affected by a rainfall deficit. Efforts to reduce emissions can then be focused on more vulnerable areas. However, this dynamical behavior is hard to monitor with conventional geodetic means, as it is near impossible to install the required benchmarks on the soft surface of the pastures, which are needed for repeated surveying.
Radar Interferometry presents an opportunity to observe this dynamic behavior without the need of installing equipment. The Sentinel-1a/b satellites pass the Dutch peat soils four times per week, providing the data necessary to observe the shrinking and swelling of the soils. We applied the technique to two study areas in the Netherlands, one between Delft and Rotterdam, where most of the pastures are situated on peat or peaty soils, and one above Zwolle in the center of Netherlands, near Staphorst, a peat-rich area. We processed all radar acquisitions between 2017 and 2019, which were averaged to 200 by 200 meter square windows to suppress noise. This is than further processed to obtain deformation time series. Based on these time series, areas more vulnerable to droughts were identified. Notably, 2018 – a very dry year, with a very large rainfall deficit – caused significantly more shrinkage than observed in 2017. We estimate that some areas shrunk up to 50 percent more. The associated drop in groundwater level exposed fresh peat to air for the first time, potentially increasing the emission of greenhouse gases significantly.
Climate change exposes peat soils to new and more extreme weather conditions. Radar Interferometry can monitor the impact of these conditions on the soils and can be used to reduce greenhouse emissions more effectively.
How to cite: Heuff, F. and Hanssen, R.: Detecting Groundwater Level Changes with Radar Interferometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15736, https://doi.org/10.5194/egusphere-egu2020-15736, 2020.
EGU2020-9334 | Displays | BG3.21
How does land-use influence the composition of DOM in peatland surface waters?Catherine Moody
Peatlands export large quantities of dissolved organic matter (DOM) into surface waters. The characteristics of the peatland (e.g. vegetation cover, scale, land use) effect the concentration and composition of DOM in the water. In the UK, water companies use surface water from peatlands as a source of drinking water, and the efficiency of the treatment process depends on the concentration and composition of DOM in the incoming water. In order to better understand the link between peatland characteristics and water treatment efficiency, the composition and concentration of DOM in surface waters draining peatlands across the UK was investigated. Water samples were collected from peatland surface waters from over 300 sites across the UK. Sites with different land uses, vegetation cover, management regimes and restoration states were included.
The DOM was extracted from the water and analysed, to determine the elemental composition of the DOM. In future, targeted restoration and revegetation of peatlands could be used to alter the composition of DOM in the surface water, to produce DOM that can be more easily treated for drinking water, or treatment processes can be improved to increase treatment efficiency, based on a better understanding of the composition of DOM.
How to cite: Moody, C.: How does land-use influence the composition of DOM in peatland surface waters?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9334, https://doi.org/10.5194/egusphere-egu2020-9334, 2020.
Peatlands export large quantities of dissolved organic matter (DOM) into surface waters. The characteristics of the peatland (e.g. vegetation cover, scale, land use) effect the concentration and composition of DOM in the water. In the UK, water companies use surface water from peatlands as a source of drinking water, and the efficiency of the treatment process depends on the concentration and composition of DOM in the incoming water. In order to better understand the link between peatland characteristics and water treatment efficiency, the composition and concentration of DOM in surface waters draining peatlands across the UK was investigated. Water samples were collected from peatland surface waters from over 300 sites across the UK. Sites with different land uses, vegetation cover, management regimes and restoration states were included.
The DOM was extracted from the water and analysed, to determine the elemental composition of the DOM. In future, targeted restoration and revegetation of peatlands could be used to alter the composition of DOM in the surface water, to produce DOM that can be more easily treated for drinking water, or treatment processes can be improved to increase treatment efficiency, based on a better understanding of the composition of DOM.
How to cite: Moody, C.: How does land-use influence the composition of DOM in peatland surface waters?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9334, https://doi.org/10.5194/egusphere-egu2020-9334, 2020.
EGU2020-13088 | Displays | BG3.21
Canal block location optimization for drained peatland restorationIñaki Urzainqui, Ari Laurén, Marjo Palviainen, and Hannu Hökkä
Building canal or drain blocks is a powerful tool to raise the water table of a drained peatland and to enhance ecosystem restoration. When restoring large areas, the number of blocks becomes limited by the available resources, which raises the following question: in which exact positions should a given number of blocks be placed in order to maximize the water table raise? There is neither a simple nor an analytic answer. The water table response is a complex phenomenon that depends on several factors, such as the topology of the canal network, site topography, peat hydraulic properties, vegetation and meteorological conditions. We developed a new method to position the canal blocks which is based on the combination of a hydrological model and heuristic optimization algorithms. We applied this approach to a large drained peatland area (1100 km2) in Indonesia. Our solution consistently improved the performance of traditional block locating methods, indicating that drained peatland restoration can be made more effective at the same cost by selecting the positions of the blocks using a numerical approach.
How to cite: Urzainqui, I., Laurén, A., Palviainen, M., and Hökkä, H.: Canal block location optimization for drained peatland restoration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13088, https://doi.org/10.5194/egusphere-egu2020-13088, 2020.
Building canal or drain blocks is a powerful tool to raise the water table of a drained peatland and to enhance ecosystem restoration. When restoring large areas, the number of blocks becomes limited by the available resources, which raises the following question: in which exact positions should a given number of blocks be placed in order to maximize the water table raise? There is neither a simple nor an analytic answer. The water table response is a complex phenomenon that depends on several factors, such as the topology of the canal network, site topography, peat hydraulic properties, vegetation and meteorological conditions. We developed a new method to position the canal blocks which is based on the combination of a hydrological model and heuristic optimization algorithms. We applied this approach to a large drained peatland area (1100 km2) in Indonesia. Our solution consistently improved the performance of traditional block locating methods, indicating that drained peatland restoration can be made more effective at the same cost by selecting the positions of the blocks using a numerical approach.
How to cite: Urzainqui, I., Laurén, A., Palviainen, M., and Hökkä, H.: Canal block location optimization for drained peatland restoration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13088, https://doi.org/10.5194/egusphere-egu2020-13088, 2020.
BG3.22 – Terrestrial ecosystem responses to global change: integrating experiments and models to understand carbon, nutrient, and water cycling
EGU2020-8023 | Displays | BG3.22
Nutrient constraints on the Amazon carbon sink: from field measurements to model projectionsKatrin Fleischer, Carlos Alberto Quesada, David Lapola, Lucia Fuchslueger, Laynara Lugli, Tatiana Reichert, and Anja Rammig
The Amazon rainforest faces immense pressures from human-induced deforestation and climate change and its future existence is largely indeterminate. Accurately projecting the forest’s response to future conditions, and thus preparing for the best possible outcome, requires a sound process-based understanding of its ecological and biogeochemical functioning. The intact forest acts as a sink of atmospheric carbon dioxide (CO2), however, this invaluable function is slowing down for unclear reasons, according to long-term plot measurements of tree growth. Earth system models, on the other hand, assume a continuous sink of carbon into the 21st century, predominantly driven by CO2 fertilization, concurrently buffering against adverse effects by climate change. Advancing empirical and experimental evidence points to strong nutrient constraints on the Amazon carbon sink, foremostly by phosphorus and other cations, so that the projected strength of the future carbon sink is certainly unrealistic. It is highly uncertain, however, to which degree nutrients are and will diminish elevated CO2-induced productivity, and to which extent plant-based mechanisms may upregulate phosphorus supply or optimize phosphorus use to facilitate the increasing demand by elevated CO2. Site-scale ecosystem model ensemble analysis underscores the diverging hypotheses on phosphorus feedbacks we are currently facing. In addition, heterogeneous soil phosphorus availability across the Amazon basin, in combination with a hyperdiverse plant community, challenges current efforts to project phosphorus constraints on the future of the Amazon carbon sink. We here give an outlook of current progress and future research needs of model-experiment integration to tackle this pressing question.
How to cite: Fleischer, K., Quesada, C. A., Lapola, D., Fuchslueger, L., Lugli, L., Reichert, T., and Rammig, A.: Nutrient constraints on the Amazon carbon sink: from field measurements to model projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8023, https://doi.org/10.5194/egusphere-egu2020-8023, 2020.
The Amazon rainforest faces immense pressures from human-induced deforestation and climate change and its future existence is largely indeterminate. Accurately projecting the forest’s response to future conditions, and thus preparing for the best possible outcome, requires a sound process-based understanding of its ecological and biogeochemical functioning. The intact forest acts as a sink of atmospheric carbon dioxide (CO2), however, this invaluable function is slowing down for unclear reasons, according to long-term plot measurements of tree growth. Earth system models, on the other hand, assume a continuous sink of carbon into the 21st century, predominantly driven by CO2 fertilization, concurrently buffering against adverse effects by climate change. Advancing empirical and experimental evidence points to strong nutrient constraints on the Amazon carbon sink, foremostly by phosphorus and other cations, so that the projected strength of the future carbon sink is certainly unrealistic. It is highly uncertain, however, to which degree nutrients are and will diminish elevated CO2-induced productivity, and to which extent plant-based mechanisms may upregulate phosphorus supply or optimize phosphorus use to facilitate the increasing demand by elevated CO2. Site-scale ecosystem model ensemble analysis underscores the diverging hypotheses on phosphorus feedbacks we are currently facing. In addition, heterogeneous soil phosphorus availability across the Amazon basin, in combination with a hyperdiverse plant community, challenges current efforts to project phosphorus constraints on the future of the Amazon carbon sink. We here give an outlook of current progress and future research needs of model-experiment integration to tackle this pressing question.
How to cite: Fleischer, K., Quesada, C. A., Lapola, D., Fuchslueger, L., Lugli, L., Reichert, T., and Rammig, A.: Nutrient constraints on the Amazon carbon sink: from field measurements to model projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8023, https://doi.org/10.5194/egusphere-egu2020-8023, 2020.
EGU2020-10396 | Displays | BG3.22
Local-scale and spatially explicit response of tropical forests to climate changeFlorian Hofhansl, Werner Huber, Anton Weissenhofer, Wolfgang Wanek, and Oskar Franklin
Currently applied dynamic vegetation models do not realistically represent forest ecosystem processes and thus are not able to reproduce in-situ observations of forest ecosystem responses to drought. This is due to the fact that models typically rely on plant functional types to forecast the functional response of vegetation to climate change and to anthropogenic disturbance. However, recent observations of divergent ecosystem responses between topographic forest sites, differing in the availability of water and nutrients, indicate that we should no longer rely on this outdated concept but rather should explore new avenues of representing vegetation dynamics and associated climate change response in next-generation approaches.
Global climate change scenarios forecast increasing severity of climate extremes in association with El Niño–Southern Oscillation (ENSO). Such climate anomalies have been shown to affect forest ecosystem processes such as net primary productivity, which is determined by climate (precipitation, temperature, and light) and soil fertility (geology and topography). However, more recently it has been suggested that the impact of such climate fluctuations on forest productivity was strongly related to local site characteristics, which determined the sensitivity of forest ecosystem processes to climate anomalies.
We propose a novel approach integrating in-situ observations with remotely sensed estimates of forest aboveground productivity for parameterization of next-generation vegetation models capable of forecasting realistic forest ecosystem responses under future scenarios. Our approach considers local site characteristics associated with topography and disturbance history, both of which determine the sensitivity of forest aboveground productivity to projected climate anomalies. Our results therefore should have crucial implications for management and restoration of forest ecosystems and could be used to refine estimates of forest C sink-strength under future scenarios.
How to cite: Hofhansl, F., Huber, W., Weissenhofer, A., Wanek, W., and Franklin, O.: Local-scale and spatially explicit response of tropical forests to climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10396, https://doi.org/10.5194/egusphere-egu2020-10396, 2020.
Currently applied dynamic vegetation models do not realistically represent forest ecosystem processes and thus are not able to reproduce in-situ observations of forest ecosystem responses to drought. This is due to the fact that models typically rely on plant functional types to forecast the functional response of vegetation to climate change and to anthropogenic disturbance. However, recent observations of divergent ecosystem responses between topographic forest sites, differing in the availability of water and nutrients, indicate that we should no longer rely on this outdated concept but rather should explore new avenues of representing vegetation dynamics and associated climate change response in next-generation approaches.
Global climate change scenarios forecast increasing severity of climate extremes in association with El Niño–Southern Oscillation (ENSO). Such climate anomalies have been shown to affect forest ecosystem processes such as net primary productivity, which is determined by climate (precipitation, temperature, and light) and soil fertility (geology and topography). However, more recently it has been suggested that the impact of such climate fluctuations on forest productivity was strongly related to local site characteristics, which determined the sensitivity of forest ecosystem processes to climate anomalies.
We propose a novel approach integrating in-situ observations with remotely sensed estimates of forest aboveground productivity for parameterization of next-generation vegetation models capable of forecasting realistic forest ecosystem responses under future scenarios. Our approach considers local site characteristics associated with topography and disturbance history, both of which determine the sensitivity of forest aboveground productivity to projected climate anomalies. Our results therefore should have crucial implications for management and restoration of forest ecosystems and could be used to refine estimates of forest C sink-strength under future scenarios.
How to cite: Hofhansl, F., Huber, W., Weissenhofer, A., Wanek, W., and Franklin, O.: Local-scale and spatially explicit response of tropical forests to climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10396, https://doi.org/10.5194/egusphere-egu2020-10396, 2020.
EGU2020-13935 | Displays | BG3.22
Early responses of elevated nutrient input on above-ground net primary production of a lower-montane tropical forest in UgandaRaphael Manu, Marife D. Corre, Edzo Veldkamp, and Oliver van Straaten
Nutrient availability in tropical forest ecosystems plays a critical role in sustaining forest growth and productivity. Observational evidence for nutrient limitations on net primary productivity (NPP) in the tropics is rare yet crucial for predicting the impacts of human-induced changes on tropical forests, particularly for underrepresented tropical regions in Africa. In an ecosystem-scale nutrient manipulation experiment, we assessed the response of different components of above-ground net primary production (ANPP) to nutrient addition of nitrogen (N), phosphorus (P), potassium (K) and all possible combinations (NP, NK, PK, and NPK) at rates of 125 kg N ha-1yr-1, 50 kg P ha-1 yr-1 and 50 kg K ha-1yr-1.
We established 32 (8 treatments × 4 replicates) experimental plots of 40 × 40 m2 each and measured stem growth of over 15,000 trees with diameter at breast height (dbh) ≥ 1 cm as well as litter production and above-ground woody biomass production (AWBP), of a lower-montane tropical forest (1100 m a.s.l.) in northwestern Uganda.
After 18 months of nutrient addition, we found that different aspects of ANPP, including litter production and AWBP are controlled by multiple soil nutrients. Specifically, we measured higher total fine-litter production in the N (13.6 ± 1.4 Mg ha-1 yr-1) and K (13.3 ± 1.8 Mg ha-1 yr-1) addition plots than the control (11.1 ± 0.6 Mg ha-1 yr-1) plots. Both reproductive litter (flowers and fruits; 10% of total fine-litter fall) and leaf litter (62% of total fine-litter fall) significantly increased with K addition. In general, fine-litter production in our plots is higher than what has been reported so far for lower-montane tropical forests. Increased AWBP is associated with N addition plots. The response of trees to nutrient addition however, varied with tree sizes. Trees with dbh between 10 – 30 cm increased significantly in AWBP under PK addition. There was no effect of nutrient addition associated with either smaller (1 – 10 cm dbh) or larger trees (dbh > 30 cm). The medium-sized trees which may have experienced resource competition but have now transitioned into the canopy layer (exposed to sunlight) are able to use additional nutrient for active growth. In contrast, bigger trees may allocate extra nutrient for reproduction and leaf-vitality, while smaller trees remain shaded, co-limited by sunlight and therefore unable to utilize increased available nutrients for stem diameter growth. ANPP increased by 39% with N addition and marginally by 23% with K additions relative to the control. In conclusion, our experiment provides evidence of N and potentially K limitation of ANPP in this lower-montane tropical forest, and highlights that, in a highly diverse ecosystem different components of ANPP may be regulated by multiple nutrients.
How to cite: Manu, R., Corre, M. D., Veldkamp, E., and van Straaten, O.: Early responses of elevated nutrient input on above-ground net primary production of a lower-montane tropical forest in Uganda, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13935, https://doi.org/10.5194/egusphere-egu2020-13935, 2020.
Nutrient availability in tropical forest ecosystems plays a critical role in sustaining forest growth and productivity. Observational evidence for nutrient limitations on net primary productivity (NPP) in the tropics is rare yet crucial for predicting the impacts of human-induced changes on tropical forests, particularly for underrepresented tropical regions in Africa. In an ecosystem-scale nutrient manipulation experiment, we assessed the response of different components of above-ground net primary production (ANPP) to nutrient addition of nitrogen (N), phosphorus (P), potassium (K) and all possible combinations (NP, NK, PK, and NPK) at rates of 125 kg N ha-1yr-1, 50 kg P ha-1 yr-1 and 50 kg K ha-1yr-1.
We established 32 (8 treatments × 4 replicates) experimental plots of 40 × 40 m2 each and measured stem growth of over 15,000 trees with diameter at breast height (dbh) ≥ 1 cm as well as litter production and above-ground woody biomass production (AWBP), of a lower-montane tropical forest (1100 m a.s.l.) in northwestern Uganda.
After 18 months of nutrient addition, we found that different aspects of ANPP, including litter production and AWBP are controlled by multiple soil nutrients. Specifically, we measured higher total fine-litter production in the N (13.6 ± 1.4 Mg ha-1 yr-1) and K (13.3 ± 1.8 Mg ha-1 yr-1) addition plots than the control (11.1 ± 0.6 Mg ha-1 yr-1) plots. Both reproductive litter (flowers and fruits; 10% of total fine-litter fall) and leaf litter (62% of total fine-litter fall) significantly increased with K addition. In general, fine-litter production in our plots is higher than what has been reported so far for lower-montane tropical forests. Increased AWBP is associated with N addition plots. The response of trees to nutrient addition however, varied with tree sizes. Trees with dbh between 10 – 30 cm increased significantly in AWBP under PK addition. There was no effect of nutrient addition associated with either smaller (1 – 10 cm dbh) or larger trees (dbh > 30 cm). The medium-sized trees which may have experienced resource competition but have now transitioned into the canopy layer (exposed to sunlight) are able to use additional nutrient for active growth. In contrast, bigger trees may allocate extra nutrient for reproduction and leaf-vitality, while smaller trees remain shaded, co-limited by sunlight and therefore unable to utilize increased available nutrients for stem diameter growth. ANPP increased by 39% with N addition and marginally by 23% with K additions relative to the control. In conclusion, our experiment provides evidence of N and potentially K limitation of ANPP in this lower-montane tropical forest, and highlights that, in a highly diverse ecosystem different components of ANPP may be regulated by multiple nutrients.
How to cite: Manu, R., Corre, M. D., Veldkamp, E., and van Straaten, O.: Early responses of elevated nutrient input on above-ground net primary production of a lower-montane tropical forest in Uganda, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13935, https://doi.org/10.5194/egusphere-egu2020-13935, 2020.
EGU2020-13534 | Displays | BG3.22
Variability of ecosystem scale water-use efficiency in a nutrient manipulation experimentTarek EI-Madany, Markus Reichstein, Arnaud Carrara, M. Pilar Martin, Gerardo Moreno, Rosario Gonzalez-Cascon, Josep Penuelas, Vicente Burchard-Levin, Tiana Hammer, Jürgen Knauer, Olaf Kolle, Yunpeng Luo, Javier Pacheco-Labrador, Oscar Perez-Priego, Victor Rolo, Thomas Wutzler, and Mirco Migliavacca
Nitrogen (N) and phosphorus (P) are the two most important limiting soil nutrients reducing carbon sequestration globally. Through anthropogenic N-deposition, stoichiometric imbalances in plant-available N and P are expected in terrestrial ecosystems. This will result in increased P-limitation to plants and associated, but yet understudied, implications for ecosystem carbon sequestration, water-use efficiency (WUE), and biophysical properties. Here, we show results of a large-scale fertilization experiment designed to quantify effects of stoichiometric N:P ratio imbalances on WUE in a semi-arid tree-grass ecosystem. At the ecosystem-scale, the addition of N increased leaf area index, canopy chlorophyll content, and WUE. The addition of P, which relived the N:P imbalance, resulted in a further increase of WUE, more fixed carbon per transpired water. We conclude that increased N and combined N+P addition leads to shifts in many aspects of ecosystem functioning and biophysics, in particular related to water use strategies.
How to cite: EI-Madany, T., Reichstein, M., Carrara, A., Martin, M. P., Moreno, G., Gonzalez-Cascon, R., Penuelas, J., Burchard-Levin, V., Hammer, T., Knauer, J., Kolle, O., Luo, Y., Pacheco-Labrador, J., Perez-Priego, O., Rolo, V., Wutzler, T., and Migliavacca, M.: Variability of ecosystem scale water-use efficiency in a nutrient manipulation experiment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13534, https://doi.org/10.5194/egusphere-egu2020-13534, 2020.
Nitrogen (N) and phosphorus (P) are the two most important limiting soil nutrients reducing carbon sequestration globally. Through anthropogenic N-deposition, stoichiometric imbalances in plant-available N and P are expected in terrestrial ecosystems. This will result in increased P-limitation to plants and associated, but yet understudied, implications for ecosystem carbon sequestration, water-use efficiency (WUE), and biophysical properties. Here, we show results of a large-scale fertilization experiment designed to quantify effects of stoichiometric N:P ratio imbalances on WUE in a semi-arid tree-grass ecosystem. At the ecosystem-scale, the addition of N increased leaf area index, canopy chlorophyll content, and WUE. The addition of P, which relived the N:P imbalance, resulted in a further increase of WUE, more fixed carbon per transpired water. We conclude that increased N and combined N+P addition leads to shifts in many aspects of ecosystem functioning and biophysics, in particular related to water use strategies.
How to cite: EI-Madany, T., Reichstein, M., Carrara, A., Martin, M. P., Moreno, G., Gonzalez-Cascon, R., Penuelas, J., Burchard-Levin, V., Hammer, T., Knauer, J., Kolle, O., Luo, Y., Pacheco-Labrador, J., Perez-Priego, O., Rolo, V., Wutzler, T., and Migliavacca, M.: Variability of ecosystem scale water-use efficiency in a nutrient manipulation experiment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13534, https://doi.org/10.5194/egusphere-egu2020-13534, 2020.
EGU2020-1421 | Displays | BG3.22
Nitrogen addition accelerates ecosystem phosphorus cycling at multiple scales in a temperate grassland of Northeast ChinaHaiying Cui, Manuel Delgado-Baquerizo, Wei Sun, Jian-Ying Ma, Wenzheng Song, Keying Wang, and Xiaoli Ling
Plant phosphorus (P) resorption, mutualistic symbiosis with mycorrhizas, such as arbuscular mycorrhizal fungi (AMF) and soil organic P mineralization are crucial strategies for acquiring sufficient P to meet plant nutrient demand. Which is the main strategy, however, responding to elevated nitrogen (N) addition to alleviate P deficiency caused by N enrichment remains unclear in terrestrial ecosystems. We explored the responses of foliar P resorption of dominate species (Leymus chinensis), soil microbial properties and organic P mineralization to multi-level N addition in a temperate meadow steppe, Northeast China. We found the enhancements in plant biomass, microbial biomass C and N (MBC, MBN), alkaline phosphatase activities (ALP), and phoD gene abundance (main gene coded soil ALP), while the reductions in soil pH, available P, microbial biomass P, and AMF abundance, and no significant responses of foliar P content under simulative N deposition. When the rates exceeded the threshold 10 g N m-2yr-1, plants and microbes had little additional responses to N enrichment. Notably, N addition had distinct effects on three plant P acquisition strategies, that no conspicuous increase in P resorption efficiency, reduced dependence on mutualistic with AMF symbiosis and accelerated organic P mineralization. A positive correlation between ALP activity, phoD gene abundance and P mineralization rate suggested increases in phosphatase activities and its functional gene copies play crucial roles in organic P mineralization. Nitrogen addition aggravated P deficiency to the production of plant and microbial biomass, which further accelerated soil organic P mineralization and foliar P resorption. Due to lack of plasticity in P resorption efficiency and reduced dependence on mutualistic with AMF symbiosis, however, the organic P mineralization dominated in P acquisition to meet increased P demand. Furthermore, the increase in ALP activities, activation of phoD genes and decrease in soil pH were the main pathways to accelerate organic P mineralization and consequently alleviated P deficiency caused by anthropogenic N deposition, especially at conditions of N saturation. Our results provide strong evidences that N addition can accelerate the rate of P cycling and mobilize plant P uptake strategies such as soil organic P mineralization and leaf P resorption, which are important to better maintain sustainable ecosystem development in the more fertilized word.
Acknowledgments: This work was supported by the National Key Research and Development Program of China (2016YFC0500602), National Natural Science Foundation of China (31570470, 31870456), the Fundamental Research Funds for the Central Universities (2412018ZD010), and the Program of Introducing Talents of Discipline to Universities (B16011). H.C. acknowledges support from Chinese Scholarship Council (CSC).
How to cite: Cui, H., Delgado-Baquerizo, M., Sun, W., Ma, J.-Y., Song, W., Wang, K., and Ling, X.: Nitrogen addition accelerates ecosystem phosphorus cycling at multiple scales in a temperate grassland of Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1421, https://doi.org/10.5194/egusphere-egu2020-1421, 2020.
Plant phosphorus (P) resorption, mutualistic symbiosis with mycorrhizas, such as arbuscular mycorrhizal fungi (AMF) and soil organic P mineralization are crucial strategies for acquiring sufficient P to meet plant nutrient demand. Which is the main strategy, however, responding to elevated nitrogen (N) addition to alleviate P deficiency caused by N enrichment remains unclear in terrestrial ecosystems. We explored the responses of foliar P resorption of dominate species (Leymus chinensis), soil microbial properties and organic P mineralization to multi-level N addition in a temperate meadow steppe, Northeast China. We found the enhancements in plant biomass, microbial biomass C and N (MBC, MBN), alkaline phosphatase activities (ALP), and phoD gene abundance (main gene coded soil ALP), while the reductions in soil pH, available P, microbial biomass P, and AMF abundance, and no significant responses of foliar P content under simulative N deposition. When the rates exceeded the threshold 10 g N m-2yr-1, plants and microbes had little additional responses to N enrichment. Notably, N addition had distinct effects on three plant P acquisition strategies, that no conspicuous increase in P resorption efficiency, reduced dependence on mutualistic with AMF symbiosis and accelerated organic P mineralization. A positive correlation between ALP activity, phoD gene abundance and P mineralization rate suggested increases in phosphatase activities and its functional gene copies play crucial roles in organic P mineralization. Nitrogen addition aggravated P deficiency to the production of plant and microbial biomass, which further accelerated soil organic P mineralization and foliar P resorption. Due to lack of plasticity in P resorption efficiency and reduced dependence on mutualistic with AMF symbiosis, however, the organic P mineralization dominated in P acquisition to meet increased P demand. Furthermore, the increase in ALP activities, activation of phoD genes and decrease in soil pH were the main pathways to accelerate organic P mineralization and consequently alleviated P deficiency caused by anthropogenic N deposition, especially at conditions of N saturation. Our results provide strong evidences that N addition can accelerate the rate of P cycling and mobilize plant P uptake strategies such as soil organic P mineralization and leaf P resorption, which are important to better maintain sustainable ecosystem development in the more fertilized word.
Acknowledgments: This work was supported by the National Key Research and Development Program of China (2016YFC0500602), National Natural Science Foundation of China (31570470, 31870456), the Fundamental Research Funds for the Central Universities (2412018ZD010), and the Program of Introducing Talents of Discipline to Universities (B16011). H.C. acknowledges support from Chinese Scholarship Council (CSC).
How to cite: Cui, H., Delgado-Baquerizo, M., Sun, W., Ma, J.-Y., Song, W., Wang, K., and Ling, X.: Nitrogen addition accelerates ecosystem phosphorus cycling at multiple scales in a temperate grassland of Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1421, https://doi.org/10.5194/egusphere-egu2020-1421, 2020.
EGU2020-103 | Displays | BG3.22
Nitrogen fixation beyond leguminous plants: characterising overlooked plant-bacteria associations in the light of climate changeKathrin Rousk
Nitrogen (N2) fixation performed by moss-associated cyanobacteria is one of the main sources of new N in pristine, high latitude ecosystems like boreal forests and arctic tundra. Here, mosses and associated cyanobacteria can contribute more than 50% to total ecosystem N input. However, N2 fixation in mosses is strongly influenced by abiotic factors, in particular moisture and temperature. Hence, climate change will significantly affect this key ecosystem process in pristine ecosystems. Here, I will present a synthesis of several field and laboratory assessments of moss-associated N2 fixation in response to climate change by manipulating moisture and temperature in subarctic and arctic tundra.
Both in a long-term climate warming experiment in the arctic, and along a continental climate gradient, spanning arctic, subarctic and temperate ecosystems, increased temperatures (up to 30 °C) lead to either no effect or decreased N2 fixation rates in different moss species. Yet, N2 fixation rates were strongly dependent on moss-moisture, which seems to be a more important driver of N2 fixation in mosses than temperature.
In another set of studies, two dominant moss species (Hylocomium splendens, Pleurozium schreberi) were collected from a steep precipitation gradient (400-1200 mm mean annual precipitation, MAP) in the Subarctic close to Abisko, Northern Sweden, and were incubated at different moisture and temperature levels in the laboratory. Nitrogen fixation, cyanobacterial abundance (via qPCR) and cyanobacterial community composition (via sequencing) on the mosses were assessed. Moisture and temperature interacted strongly to control moss-associated N2 fixation rates, and the highest activity was found at the wet end of the precipitation gradient. Although cyanobacterial abundance was higher in one of the investigated mosses (H. splendens), translating into higher N2 fixation rates, cyanobacterial community composition did not differ between the two moss species. Nostoc was the most common cyanobacterial genera on both mosses, and hardly any methanotrophic N2 fixing bacteria were found on the mosses along the precipitation gradient. Increased temperatures lead to increased abundances of certain cyanobacterial genera (Cylindrospermum and Nostoc), while others declined in response to warming. Hence, cyanobacterial communities colonizing mosses will be dominated by a few cyanobacteria species in a warmer climate, and temperature and moisture interact strongly to affect their activity. Thus, these two major climate change factors should be considered in unison when estimating climate change effects on key ecosystem processes such as N2 fixation. Further, host identity determines cyanobacterial abundance, and thereby, N2 fixation rates.
How to cite: Rousk, K.: Nitrogen fixation beyond leguminous plants: characterising overlooked plant-bacteria associations in the light of climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-103, https://doi.org/10.5194/egusphere-egu2020-103, 2020.
Nitrogen (N2) fixation performed by moss-associated cyanobacteria is one of the main sources of new N in pristine, high latitude ecosystems like boreal forests and arctic tundra. Here, mosses and associated cyanobacteria can contribute more than 50% to total ecosystem N input. However, N2 fixation in mosses is strongly influenced by abiotic factors, in particular moisture and temperature. Hence, climate change will significantly affect this key ecosystem process in pristine ecosystems. Here, I will present a synthesis of several field and laboratory assessments of moss-associated N2 fixation in response to climate change by manipulating moisture and temperature in subarctic and arctic tundra.
Both in a long-term climate warming experiment in the arctic, and along a continental climate gradient, spanning arctic, subarctic and temperate ecosystems, increased temperatures (up to 30 °C) lead to either no effect or decreased N2 fixation rates in different moss species. Yet, N2 fixation rates were strongly dependent on moss-moisture, which seems to be a more important driver of N2 fixation in mosses than temperature.
In another set of studies, two dominant moss species (Hylocomium splendens, Pleurozium schreberi) were collected from a steep precipitation gradient (400-1200 mm mean annual precipitation, MAP) in the Subarctic close to Abisko, Northern Sweden, and were incubated at different moisture and temperature levels in the laboratory. Nitrogen fixation, cyanobacterial abundance (via qPCR) and cyanobacterial community composition (via sequencing) on the mosses were assessed. Moisture and temperature interacted strongly to control moss-associated N2 fixation rates, and the highest activity was found at the wet end of the precipitation gradient. Although cyanobacterial abundance was higher in one of the investigated mosses (H. splendens), translating into higher N2 fixation rates, cyanobacterial community composition did not differ between the two moss species. Nostoc was the most common cyanobacterial genera on both mosses, and hardly any methanotrophic N2 fixing bacteria were found on the mosses along the precipitation gradient. Increased temperatures lead to increased abundances of certain cyanobacterial genera (Cylindrospermum and Nostoc), while others declined in response to warming. Hence, cyanobacterial communities colonizing mosses will be dominated by a few cyanobacteria species in a warmer climate, and temperature and moisture interact strongly to affect their activity. Thus, these two major climate change factors should be considered in unison when estimating climate change effects on key ecosystem processes such as N2 fixation. Further, host identity determines cyanobacterial abundance, and thereby, N2 fixation rates.
How to cite: Rousk, K.: Nitrogen fixation beyond leguminous plants: characterising overlooked plant-bacteria associations in the light of climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-103, https://doi.org/10.5194/egusphere-egu2020-103, 2020.
EGU2020-12097 | Displays | BG3.22
Leaf nitrogen distribution within canopies is (also) optimalHan Wang, Colin Prentice, Trevor Keenan, Ülo Niinemets, and Nils Stenseth
The distribution of leaf nitrogen (NL) within canopies has been discussed for decades in relation to the optimality hypothesis that predicts coordination of carboxylation capacity with absorbed light. Although an optimal (that is, proportional) response of both carboxylation capacity and NLto light is extensively supported by field observations of variation among sites, the observed saturation curve of NLwithin canopies seems to challenge the generality of that response. By considering dynamic light regimes, we propose an optimality-based theory that successfully reconciles the apparent conflict of observed NLdistribution within and between canopies. This theory proposes that due to the highly uneven temporal distribution of sun flecks, the light level to which understory leaves acclimate is much higher than the average light level. This proposition leads to a saturation curve for the vertical distribution of NL. Our within-canopy data analysis supports this theory. Understorey leaves require significantly less NLto achieve photosynthetic capacity as an acclimation to sun flecks. The contribution of structural and photosynthetic components to NLpredicted by the theory is quantitatively and consistently supported by global datasets of variation both within and between canopies.
How to cite: Wang, H., Prentice, C., Keenan, T., Niinemets, Ü., and Stenseth, N.: Leaf nitrogen distribution within canopies is (also) optimal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12097, https://doi.org/10.5194/egusphere-egu2020-12097, 2020.
The distribution of leaf nitrogen (NL) within canopies has been discussed for decades in relation to the optimality hypothesis that predicts coordination of carboxylation capacity with absorbed light. Although an optimal (that is, proportional) response of both carboxylation capacity and NLto light is extensively supported by field observations of variation among sites, the observed saturation curve of NLwithin canopies seems to challenge the generality of that response. By considering dynamic light regimes, we propose an optimality-based theory that successfully reconciles the apparent conflict of observed NLdistribution within and between canopies. This theory proposes that due to the highly uneven temporal distribution of sun flecks, the light level to which understory leaves acclimate is much higher than the average light level. This proposition leads to a saturation curve for the vertical distribution of NL. Our within-canopy data analysis supports this theory. Understorey leaves require significantly less NLto achieve photosynthetic capacity as an acclimation to sun flecks. The contribution of structural and photosynthetic components to NLpredicted by the theory is quantitatively and consistently supported by global datasets of variation both within and between canopies.
How to cite: Wang, H., Prentice, C., Keenan, T., Niinemets, Ü., and Stenseth, N.: Leaf nitrogen distribution within canopies is (also) optimal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12097, https://doi.org/10.5194/egusphere-egu2020-12097, 2020.
EGU2020-4822 | Displays | BG3.22 | Highlight | Vladimir Ivanovich Vernadsky Medal Lecture
Human induced changes on the global carbon cycle over the last 60 yearsPierre Friedlingstein
Human activities have an unprecedented impact on the global carbon cycle. Atmospheric CO2 concentrations have been continuously monitored since 1958, and show a 30% increase, from 315 ppm in 1958 to 411 ppm in 2019. Anthropogenic emissions, primarily from fossil fuel combustion, but also from land-use changes, are the drivers of these changes, with global emissions almost tripling over that period, from 4GtC per year in 1958 to almost 12 GtC per year at present. Although the current rate of increase in fossil fuel emission of about 1% per year is lower than over the 2000s (about 3.0 % per year), there are no sign of global emissions peaking yet, despite climate policies being put in places in many countries.
The atmospheric CO2 increase induces land and ocean carbon uptake, respectively driven by enhanced photosynthesis, leading to larger land biomass and soil carbon; and by enhanced air-sea CO2 exchange, leading to larger carbon content in the surface ocean and export to the deep ocean. These mechanism are negative feedbacks in the Earth system and are removing about 50% of the CO2 emitted in the atmosphere. Without these land and ocean carbon sinks, atmospheric CO2 would already be about 600 ppm.
However, modelling studies show that climate change reduces land and ocean carbon sinks, hence amplifying the warming. Although there is agreement that such positive feedback will develop over the course of the century, there are not yet clear evidences of a major climate driven reduction of the carbon sinks. So far, observations and modelling studies of the historical carbon cycle do not show any sign of a tipping point in the global carbon cycle.
How to cite: Friedlingstein, P.: Human induced changes on the global carbon cycle over the last 60 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4822, https://doi.org/10.5194/egusphere-egu2020-4822, 2020.
Human activities have an unprecedented impact on the global carbon cycle. Atmospheric CO2 concentrations have been continuously monitored since 1958, and show a 30% increase, from 315 ppm in 1958 to 411 ppm in 2019. Anthropogenic emissions, primarily from fossil fuel combustion, but also from land-use changes, are the drivers of these changes, with global emissions almost tripling over that period, from 4GtC per year in 1958 to almost 12 GtC per year at present. Although the current rate of increase in fossil fuel emission of about 1% per year is lower than over the 2000s (about 3.0 % per year), there are no sign of global emissions peaking yet, despite climate policies being put in places in many countries.
The atmospheric CO2 increase induces land and ocean carbon uptake, respectively driven by enhanced photosynthesis, leading to larger land biomass and soil carbon; and by enhanced air-sea CO2 exchange, leading to larger carbon content in the surface ocean and export to the deep ocean. These mechanism are negative feedbacks in the Earth system and are removing about 50% of the CO2 emitted in the atmosphere. Without these land and ocean carbon sinks, atmospheric CO2 would already be about 600 ppm.
However, modelling studies show that climate change reduces land and ocean carbon sinks, hence amplifying the warming. Although there is agreement that such positive feedback will develop over the course of the century, there are not yet clear evidences of a major climate driven reduction of the carbon sinks. So far, observations and modelling studies of the historical carbon cycle do not show any sign of a tipping point in the global carbon cycle.
How to cite: Friedlingstein, P.: Human induced changes on the global carbon cycle over the last 60 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4822, https://doi.org/10.5194/egusphere-egu2020-4822, 2020.
EGU2020-3476 | Displays | BG3.22
Diverging impacts of extreme summers on European C-cycling from different regional and seasonal compensation effectsAna Bastos and the ICOS drought task-force
In the past 20 years, three major drought-heat events (DH) occurred in Europe: DH2003 in western Europe, DH2010 in western Russia and, more recently, DH2018 in central Europe and Scandinavia. These events were all preceded by warm and dry springs that contributed to the summer heatwaves and are comparable in magnitude. However, they varied in their geographical distribution and biomes affected, so they can be used as “natural experiments” to improve our understanding of ecosystems’ responses to climate conditions that will become more frequent in the coming decades.
We analyze anomalies in carbon, water and energy fluxes from 11 Dynamic Global Vegetation Models (DGVMs) forced with higher spatial and temporal resolution climate forcing than conventional global simulations, as well as an ensemble of estimates from the data driven FLUXCOM product. All three DH events were associated with decreases in summer gross primary productivity (GPP), but the relative strength at continental scale differed between events. The DGVMs and FLUXCOM show event-dependent agreement in estimated gross and net CO2 fluxes. We also find a progressively stronger negative effect of heat anomalies on ecosystem productivity between each event, which might indicate a transition towards more water-limited regime at continental scale by progressively warmer background conditions.
The different impacts of the three DH events on continental-scale summer GPP are in part related to regional asymmetries in climate anomalies that act to amplify or offset the impact of DH events on ecosystem productivity, depending on their geographical distribution and biomes affected. At the annual scale, both FLUXCOM and DGVMs indicate close to neutral or above-average CO2 uptake in the three years, when removing the long-term trend. This is in part because increased productivity in spring in response to warming and reduced respiration in autumn compensated for less photosynthetic uptake in summer.
All models show good skill in simulating the soil-moisture anomalies during DH events, but in general DGVMs show poor skill in simulating the increased sensitivity of GPP to soil-moisture and decreased sensitivity to temperature during extreme events. The relative skill of individual DGVMs in simulating these changes of GPP sensitivity to climate during extreme events explains the mismatch in simulated productivity anomalies with FLUXCOM estimates.
How to cite: Bastos, A. and the ICOS drought task-force: Diverging impacts of extreme summers on European C-cycling from different regional and seasonal compensation effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3476, https://doi.org/10.5194/egusphere-egu2020-3476, 2020.
In the past 20 years, three major drought-heat events (DH) occurred in Europe: DH2003 in western Europe, DH2010 in western Russia and, more recently, DH2018 in central Europe and Scandinavia. These events were all preceded by warm and dry springs that contributed to the summer heatwaves and are comparable in magnitude. However, they varied in their geographical distribution and biomes affected, so they can be used as “natural experiments” to improve our understanding of ecosystems’ responses to climate conditions that will become more frequent in the coming decades.
We analyze anomalies in carbon, water and energy fluxes from 11 Dynamic Global Vegetation Models (DGVMs) forced with higher spatial and temporal resolution climate forcing than conventional global simulations, as well as an ensemble of estimates from the data driven FLUXCOM product. All three DH events were associated with decreases in summer gross primary productivity (GPP), but the relative strength at continental scale differed between events. The DGVMs and FLUXCOM show event-dependent agreement in estimated gross and net CO2 fluxes. We also find a progressively stronger negative effect of heat anomalies on ecosystem productivity between each event, which might indicate a transition towards more water-limited regime at continental scale by progressively warmer background conditions.
The different impacts of the three DH events on continental-scale summer GPP are in part related to regional asymmetries in climate anomalies that act to amplify or offset the impact of DH events on ecosystem productivity, depending on their geographical distribution and biomes affected. At the annual scale, both FLUXCOM and DGVMs indicate close to neutral or above-average CO2 uptake in the three years, when removing the long-term trend. This is in part because increased productivity in spring in response to warming and reduced respiration in autumn compensated for less photosynthetic uptake in summer.
All models show good skill in simulating the soil-moisture anomalies during DH events, but in general DGVMs show poor skill in simulating the increased sensitivity of GPP to soil-moisture and decreased sensitivity to temperature during extreme events. The relative skill of individual DGVMs in simulating these changes of GPP sensitivity to climate during extreme events explains the mismatch in simulated productivity anomalies with FLUXCOM estimates.
How to cite: Bastos, A. and the ICOS drought task-force: Diverging impacts of extreme summers on European C-cycling from different regional and seasonal compensation effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3476, https://doi.org/10.5194/egusphere-egu2020-3476, 2020.
EGU2020-11172 | Displays | BG3.22
Conflicting drivers of land carbon uptake variability reconciled by land-atmosphere couplingVincent Humphrey, Alexis Berg, Philippe Ciais, Christian Frankenberg, Pierre Gentine, Martin Jung, Markus Reichstein, and Seneviratne Sonia I.
Obtaining reliable estimates of the sensitivity of carbon fluxes to water availability, temperature and vapor pressure deficit is essential for constraining climate-carbon feedbacks in Earth system models. However, these variables often co-vary because of soil moisture – atmosphere feedbacks, especially in situations where they are most susceptible to strongly impact ecosystems (e.g. during droughts and heatwaves), leading to potentially conflicting results when sensitivities are assessed independently. In particular, there is conflicting evidence on the role of temperature versus water availability in explaining these variations at the global scale.
Here, we show that accounting for the effect of soil moisture – atmosphere coupling resolves much of this controversy. Using idealized climate model experiments, we find that variability in soil moisture accounts for 90% of the inter-annual variability in land carbon uptake, mainly through its impact on photosynthesis. Without SM variability, the inter-annual variability (IAV) of land carbon uptake is almost eliminated. We show that the effects of soil moisture can be decomposed into 1) a direct ecosystem response to soil water stress and 2) a dominant indirect response to extreme temperature and vapor pressure deficit triggered by land-atmosphere coupling and controlled by anomalous soil moisture conditions. Importantly, these two mechanisms do not necessarily have the same spatial extent, and some regions can be more sensitive to indirect effects than to direct effects.
These two pathways explain why results from coupled climate models suggest a dominant role of soil moisture, while uncoupled simulations diagnose a strong temperature effect. These findings have strong implications for offline model sensitivity analyses as well as field scale manipulation experiments (i.e. rainfall exclusion studies) where the impact of drought on carbon exchange and vegetation activity is often studied by intervening solely on soil moisture content with little consideration of the physical feedbacks on temperature and air humidity occurring in natural conditions.
How to cite: Humphrey, V., Berg, A., Ciais, P., Frankenberg, C., Gentine, P., Jung, M., Reichstein, M., and Sonia I., S.: Conflicting drivers of land carbon uptake variability reconciled by land-atmosphere coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11172, https://doi.org/10.5194/egusphere-egu2020-11172, 2020.
Obtaining reliable estimates of the sensitivity of carbon fluxes to water availability, temperature and vapor pressure deficit is essential for constraining climate-carbon feedbacks in Earth system models. However, these variables often co-vary because of soil moisture – atmosphere feedbacks, especially in situations where they are most susceptible to strongly impact ecosystems (e.g. during droughts and heatwaves), leading to potentially conflicting results when sensitivities are assessed independently. In particular, there is conflicting evidence on the role of temperature versus water availability in explaining these variations at the global scale.
Here, we show that accounting for the effect of soil moisture – atmosphere coupling resolves much of this controversy. Using idealized climate model experiments, we find that variability in soil moisture accounts for 90% of the inter-annual variability in land carbon uptake, mainly through its impact on photosynthesis. Without SM variability, the inter-annual variability (IAV) of land carbon uptake is almost eliminated. We show that the effects of soil moisture can be decomposed into 1) a direct ecosystem response to soil water stress and 2) a dominant indirect response to extreme temperature and vapor pressure deficit triggered by land-atmosphere coupling and controlled by anomalous soil moisture conditions. Importantly, these two mechanisms do not necessarily have the same spatial extent, and some regions can be more sensitive to indirect effects than to direct effects.
These two pathways explain why results from coupled climate models suggest a dominant role of soil moisture, while uncoupled simulations diagnose a strong temperature effect. These findings have strong implications for offline model sensitivity analyses as well as field scale manipulation experiments (i.e. rainfall exclusion studies) where the impact of drought on carbon exchange and vegetation activity is often studied by intervening solely on soil moisture content with little consideration of the physical feedbacks on temperature and air humidity occurring in natural conditions.
How to cite: Humphrey, V., Berg, A., Ciais, P., Frankenberg, C., Gentine, P., Jung, M., Reichstein, M., and Sonia I., S.: Conflicting drivers of land carbon uptake variability reconciled by land-atmosphere coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11172, https://doi.org/10.5194/egusphere-egu2020-11172, 2020.
EGU2020-678 | Displays | BG3.22
One stomatal model to rule them all? Evaluating competing hypotheses to regulate the exchange of carbon and water against experimental dataManon Sabot, Martin De Kauwe, Belinda Medlyn, and Andy Pitman
Nearly 2/3 of the annual global evapotranspiration (ET) over land arises from the vegetation. Yet, coupled-climate models only attribute between 22% – 58% of the annual terrestrial ET to plants. In coupled-climate models, the exchange of carbon and water between the terrestrial biosphere and the atmosphere is simulated by land-surface models (LSMs). Within those LSMs, stomatal conductance (gs) models allow plants to regulate their transpiration and carbon uptake, but most are empirically linked to climate, soil moisture availabilty, and CO2. Therefore, how and which gs schemes are implemented within LSMs is a key source of model uncertainty. This uncertainty has led to considerable investment in theory development in the recent years; multiple alternative hypotheses of optimal leaf-level regulation of gas exchange have been proposed as solutions to reduce existing model biases. However, a systematic inter-model evaluation is lacking (i.e. inter-model comparison within a single framework is needed to understand how different mechanistic assumptions across these new gs models affect plant behaviour). Here, we asked how, and under what conditions, nine novel optimal gs models differ from one another. The models were trained to match under average conditions before being subjected to: (i) a dry-down, (ii) high vapour pressure deficit, and (iii) elevated CO2. These experiments allowed us to identify the models’ specific responses and sensitivities. To further assess whether the models’ responses were realistic, we tested them against photosynthetic and hydraulic field data measured along mesic-xeric gradients in Europe and Australia. Finally, we evaluated model performance versus model complexity and the amount of information taken in by each model, which enables us to make recommendations regarding the use of stomatal conductance schemes in global climate models.
How to cite: Sabot, M., De Kauwe, M., Medlyn, B., and Pitman, A.: One stomatal model to rule them all? Evaluating competing hypotheses to regulate the exchange of carbon and water against experimental data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-678, https://doi.org/10.5194/egusphere-egu2020-678, 2020.
Nearly 2/3 of the annual global evapotranspiration (ET) over land arises from the vegetation. Yet, coupled-climate models only attribute between 22% – 58% of the annual terrestrial ET to plants. In coupled-climate models, the exchange of carbon and water between the terrestrial biosphere and the atmosphere is simulated by land-surface models (LSMs). Within those LSMs, stomatal conductance (gs) models allow plants to regulate their transpiration and carbon uptake, but most are empirically linked to climate, soil moisture availabilty, and CO2. Therefore, how and which gs schemes are implemented within LSMs is a key source of model uncertainty. This uncertainty has led to considerable investment in theory development in the recent years; multiple alternative hypotheses of optimal leaf-level regulation of gas exchange have been proposed as solutions to reduce existing model biases. However, a systematic inter-model evaluation is lacking (i.e. inter-model comparison within a single framework is needed to understand how different mechanistic assumptions across these new gs models affect plant behaviour). Here, we asked how, and under what conditions, nine novel optimal gs models differ from one another. The models were trained to match under average conditions before being subjected to: (i) a dry-down, (ii) high vapour pressure deficit, and (iii) elevated CO2. These experiments allowed us to identify the models’ specific responses and sensitivities. To further assess whether the models’ responses were realistic, we tested them against photosynthetic and hydraulic field data measured along mesic-xeric gradients in Europe and Australia. Finally, we evaluated model performance versus model complexity and the amount of information taken in by each model, which enables us to make recommendations regarding the use of stomatal conductance schemes in global climate models.
How to cite: Sabot, M., De Kauwe, M., Medlyn, B., and Pitman, A.: One stomatal model to rule them all? Evaluating competing hypotheses to regulate the exchange of carbon and water against experimental data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-678, https://doi.org/10.5194/egusphere-egu2020-678, 2020.
EGU2020-5176 | Displays | BG3.22
Ecophysiological Responses of desert shrub to rainfall addition for Reaumurica soongorica in desert ecosystemWei Li and Cicheng Zhang
Desert environments are characterized by limited and highly variable rainfall, which is an intermittent source of water critical to the evolution of the structure and functioning of desert ecosystems. The present study was to assess the effects of different amounts of rainfall received through discrete rainfall events and of the ecophysiological responses for Reaumurica soongorica along multiple average precipitation (MAP) gradient. A field experiment was performed under seven simulated rainfall amounts (0 - 40 mm) with Reaumurica soongorica at respective High-P (120 mm), Middle-P (67 mm), and Low-P (35 mm) sites along middle and lower reach of Heihe River Basin in July, 2015. Pre-dawn plant water potential (ψpd), the rates of photosynthesis and stomatal conductance were measured synchronously. Results showed that: photosynthetic response of R.soongorica to rainfall pulse was significant different. The mean daily leaf gas exchange and maximum photosynthesis rate (Pn-max) of R.soongorica were decreased obviously with decreasing MAP. Vapour pressure deficit (VPD) was the predominant factor for gas exchange limiting. Under the control of VPD, stomatal conductance was pregressively reduced with decreasing ψpd, which was functioned as limiting Pn-max and further increasing water use efficiency (WUE). However, when MAP was declined below 35 mm, the response of stomatal conductance to ψpd was weakened, from which Pn-max began to increase again. 2 to 4 days hystereric response of R.soongorica ψpd to various rainfall events was found in High-P. Stomatal conductance was then increased linearly with increasing ψpd, from which Pn-max was also enhanced linearly. While weakly response of ψpd to similar rainfall events was observed in Low-P, where stomatal conductance and Pn-max was maintained stable after rain. Mentioned above, the effective rainfall pluse, induced by obvious physiological response of R. soongorica, was 3.63-6.73 mm and 6.73-10.09 mm for Linze and Ejina, respective. Our results provided comprehensively understanding in the consequences of long-term variability in rainfall for the physiology of desert plants and species dynamics in desert ecosystems.
How to cite: Li, W. and Zhang, C.: Ecophysiological Responses of desert shrub to rainfall addition for Reaumurica soongorica in desert ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5176, https://doi.org/10.5194/egusphere-egu2020-5176, 2020.
Desert environments are characterized by limited and highly variable rainfall, which is an intermittent source of water critical to the evolution of the structure and functioning of desert ecosystems. The present study was to assess the effects of different amounts of rainfall received through discrete rainfall events and of the ecophysiological responses for Reaumurica soongorica along multiple average precipitation (MAP) gradient. A field experiment was performed under seven simulated rainfall amounts (0 - 40 mm) with Reaumurica soongorica at respective High-P (120 mm), Middle-P (67 mm), and Low-P (35 mm) sites along middle and lower reach of Heihe River Basin in July, 2015. Pre-dawn plant water potential (ψpd), the rates of photosynthesis and stomatal conductance were measured synchronously. Results showed that: photosynthetic response of R.soongorica to rainfall pulse was significant different. The mean daily leaf gas exchange and maximum photosynthesis rate (Pn-max) of R.soongorica were decreased obviously with decreasing MAP. Vapour pressure deficit (VPD) was the predominant factor for gas exchange limiting. Under the control of VPD, stomatal conductance was pregressively reduced with decreasing ψpd, which was functioned as limiting Pn-max and further increasing water use efficiency (WUE). However, when MAP was declined below 35 mm, the response of stomatal conductance to ψpd was weakened, from which Pn-max began to increase again. 2 to 4 days hystereric response of R.soongorica ψpd to various rainfall events was found in High-P. Stomatal conductance was then increased linearly with increasing ψpd, from which Pn-max was also enhanced linearly. While weakly response of ψpd to similar rainfall events was observed in Low-P, where stomatal conductance and Pn-max was maintained stable after rain. Mentioned above, the effective rainfall pluse, induced by obvious physiological response of R. soongorica, was 3.63-6.73 mm and 6.73-10.09 mm for Linze and Ejina, respective. Our results provided comprehensively understanding in the consequences of long-term variability in rainfall for the physiology of desert plants and species dynamics in desert ecosystems.
How to cite: Li, W. and Zhang, C.: Ecophysiological Responses of desert shrub to rainfall addition for Reaumurica soongorica in desert ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5176, https://doi.org/10.5194/egusphere-egu2020-5176, 2020.
EGU2020-5406 | Displays | BG3.22
Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysisYunfeng Han and Biao Zhu
Arbuscular mycorrhizal (AM) fungi play many important roles in terrestrial ecosystems. The effects of increasing nitrogen (N) deposition on AM fungi will inevitably affect many important ecosystem processes. However, our quantitative understanding on the generalizable patterns of how N deposition affects AM fungi at the global scale remains unclear.
We conducted a meta-analysis of 431 observations from 111 publications to investigate the responses of AM fungi to N addition, including abundance, richness and diversity, and explored the mechanisms of N addition affecting AM fungi by trait-based guilds method.
Results showed that N addition had strong negative effects on AM fungal abundance and richness, and different AM fungal guilds showed different responses to N addition: the rhizophilic guild significantly decreased under N addition, while the edaphophilic guild increased (but with much variability) under N addition. Further analysis showed that N addition affects AM fungi mainly by causing soil acidification and increasing soil available N. Specifically, soil acidification had a negative effect on both the rhizophilic and edaphophilic AM fungi and increased soil available N mainly negatively affect the edaphophilic AM fungi. Moreover, the response of AM fungi to N addition was also affected by the shifts in plant carbon (C) allocation caused by soil phosphorus (P) availability.
This synthesis highlights that trait-based AM fungal guilds as well as taking soil P and C from host plants into consideration can improve our understanding of dynamics of AM fungal communities under increasing N deposition. This would further enable better predictions of the functional consequences of changes in AM fungal communities such as impacts on soil organic C dynamics, plant P uptake and plant diversity.
How to cite: Han, Y. and Zhu, B.: Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5406, https://doi.org/10.5194/egusphere-egu2020-5406, 2020.
Arbuscular mycorrhizal (AM) fungi play many important roles in terrestrial ecosystems. The effects of increasing nitrogen (N) deposition on AM fungi will inevitably affect many important ecosystem processes. However, our quantitative understanding on the generalizable patterns of how N deposition affects AM fungi at the global scale remains unclear.
We conducted a meta-analysis of 431 observations from 111 publications to investigate the responses of AM fungi to N addition, including abundance, richness and diversity, and explored the mechanisms of N addition affecting AM fungi by trait-based guilds method.
Results showed that N addition had strong negative effects on AM fungal abundance and richness, and different AM fungal guilds showed different responses to N addition: the rhizophilic guild significantly decreased under N addition, while the edaphophilic guild increased (but with much variability) under N addition. Further analysis showed that N addition affects AM fungi mainly by causing soil acidification and increasing soil available N. Specifically, soil acidification had a negative effect on both the rhizophilic and edaphophilic AM fungi and increased soil available N mainly negatively affect the edaphophilic AM fungi. Moreover, the response of AM fungi to N addition was also affected by the shifts in plant carbon (C) allocation caused by soil phosphorus (P) availability.
This synthesis highlights that trait-based AM fungal guilds as well as taking soil P and C from host plants into consideration can improve our understanding of dynamics of AM fungal communities under increasing N deposition. This would further enable better predictions of the functional consequences of changes in AM fungal communities such as impacts on soil organic C dynamics, plant P uptake and plant diversity.
How to cite: Han, Y. and Zhu, B.: Responses of arbuscular mycorrhizal fungi to nitrogen addition: a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5406, https://doi.org/10.5194/egusphere-egu2020-5406, 2020.
EGU2020-12017 | Displays | BG3.22
Changes in root zone storage capacity and their effects on river discharge and gross primary productionRodolfo Nóbrega, David Sandoval, and Colin Prentice
Root zone storage capacity (Rz) is a parameter widely used in terrestrial ecosystem models that estimate the amount of soil moisture available for transpiration. However, Rz is subject to large uncertainty, due to the lack of data on the distribution of soil properties and the depth of plant roots that actively take up water. Our study makes use of a mass-balance approach to investigate Rz in different ecosystems, and changes in water fluxes caused by land-cover change. The method needs no land-cover or soil information, and uses precipitation (P) and evapotranspiration (ET) time series to estimate the seasonal water deficit. To account for some of the uncertainty in ET, we use different methods for ET estimation, including methods based on satellite estimates, and modelling approaches that back-calculate ET from other ecosystem fluxes. We show that reduced ET due to land-cover change reduces Rz, which in turn increases baseflow in regions with a strong rainfall seasonality. This finding allows us to analyse the trade-off between gross primary production and hydrological fluxes at river basin scales. We also consider some ideas on how to use mass-balance Rz in water-stress functions as incorporated in existing terrestrial ecosystem models.
How to cite: Nóbrega, R., Sandoval, D., and Prentice, C.: Changes in root zone storage capacity and their effects on river discharge and gross primary production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12017, https://doi.org/10.5194/egusphere-egu2020-12017, 2020.
Root zone storage capacity (Rz) is a parameter widely used in terrestrial ecosystem models that estimate the amount of soil moisture available for transpiration. However, Rz is subject to large uncertainty, due to the lack of data on the distribution of soil properties and the depth of plant roots that actively take up water. Our study makes use of a mass-balance approach to investigate Rz in different ecosystems, and changes in water fluxes caused by land-cover change. The method needs no land-cover or soil information, and uses precipitation (P) and evapotranspiration (ET) time series to estimate the seasonal water deficit. To account for some of the uncertainty in ET, we use different methods for ET estimation, including methods based on satellite estimates, and modelling approaches that back-calculate ET from other ecosystem fluxes. We show that reduced ET due to land-cover change reduces Rz, which in turn increases baseflow in regions with a strong rainfall seasonality. This finding allows us to analyse the trade-off between gross primary production and hydrological fluxes at river basin scales. We also consider some ideas on how to use mass-balance Rz in water-stress functions as incorporated in existing terrestrial ecosystem models.
How to cite: Nóbrega, R., Sandoval, D., and Prentice, C.: Changes in root zone storage capacity and their effects on river discharge and gross primary production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12017, https://doi.org/10.5194/egusphere-egu2020-12017, 2020.
EGU2020-12789 | Displays | BG3.22
The potential significance of ericoid mycorrhizal fungi in ombrotrophic peatland biogeochemistrySiya Shao, Nigel Roulet, and Jianghua Wu
Northern peatlands have sequestered a huge amount of carbon through exceptionally low microbial activity which is partly attributed to their nutrient-poor conditions. Evergreen shrubs, a dominant species in ombrotrophic bogs, adapt to this nutrient-poor condition by developing organic nutrient acquisition strategies, mediated by ericoid mycorrhizal association. However, the mycorrhizal symbionts together with nutrient cycling have been omitted in peatland models, precluding our ability to simulate the significance of nutrient limitation in peatlands following environmental changes. To address this issue, we further developed the well-established peatland model MWM by incorporating a mechanistic mycorrhizal fungi model and both nitrogen and phosphorus cycles. The new model was adopted to simulate the fertilization effect on peatlands and evaluated against measurements from the long-term fertilization experiments at Mer Bleue, a raised ombrotrophic bog located in southern Ontario, Canada. The model successfully reproduced the observed dramatic changes with fertilization in mycorrhizal performance, vegetation composition and carbon cycle. Greater availability of inorganic nutrients diminished the role of mycorrhizal fungi in plant nutrient uptake. More assimilated carbon was allocated to shrub growth, which then inhibited the growth of sphagnum moss and ultimately posed a threat to the carbon-sequestration capacity of peatlands. Therefore, mycorrhizal activities, which have been overlooked in past peatland studies, could play a significant role in understanding how peatlands respond to increased nutrient deposition in the future.
How to cite: Shao, S., Roulet, N., and Wu, J.: The potential significance of ericoid mycorrhizal fungi in ombrotrophic peatland biogeochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12789, https://doi.org/10.5194/egusphere-egu2020-12789, 2020.
Northern peatlands have sequestered a huge amount of carbon through exceptionally low microbial activity which is partly attributed to their nutrient-poor conditions. Evergreen shrubs, a dominant species in ombrotrophic bogs, adapt to this nutrient-poor condition by developing organic nutrient acquisition strategies, mediated by ericoid mycorrhizal association. However, the mycorrhizal symbionts together with nutrient cycling have been omitted in peatland models, precluding our ability to simulate the significance of nutrient limitation in peatlands following environmental changes. To address this issue, we further developed the well-established peatland model MWM by incorporating a mechanistic mycorrhizal fungi model and both nitrogen and phosphorus cycles. The new model was adopted to simulate the fertilization effect on peatlands and evaluated against measurements from the long-term fertilization experiments at Mer Bleue, a raised ombrotrophic bog located in southern Ontario, Canada. The model successfully reproduced the observed dramatic changes with fertilization in mycorrhizal performance, vegetation composition and carbon cycle. Greater availability of inorganic nutrients diminished the role of mycorrhizal fungi in plant nutrient uptake. More assimilated carbon was allocated to shrub growth, which then inhibited the growth of sphagnum moss and ultimately posed a threat to the carbon-sequestration capacity of peatlands. Therefore, mycorrhizal activities, which have been overlooked in past peatland studies, could play a significant role in understanding how peatlands respond to increased nutrient deposition in the future.
How to cite: Shao, S., Roulet, N., and Wu, J.: The potential significance of ericoid mycorrhizal fungi in ombrotrophic peatland biogeochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12789, https://doi.org/10.5194/egusphere-egu2020-12789, 2020.
EGU2020-21048 | Displays | BG3.22
Responses of temperate steppe to simulated nitrogen deposition: from community structure to ecosystem functionsYongmei Huang
Effect of nitrogen deposition on terrestrial ecosystems are one of the hot spots in the study of global change, and the significantly different responses were reported widely among different ecosystems. In this study, field simulated nitrogen deposition experiment was carried out in a temperate steppe, norther China from 2011 to 2018. Treatments were designed as: CK (0 g N/m2), N2 level (2 g N/m2), N5 level (5 g N/m2), N10 level (10 g N/m2), N25 level (25 g N/m2) and N50 level (50 g N/m2). The results showed that the N addition did not cause a noticeable change in the net primary productivity and soil acidification. N addition caused a significant decline in community biodiversity with a major shift in species composition. N utilization strategy, photosynthetic capacity, and water use efficiency of three dominant species behaved differently under N deposition. Soil was the major sink for N deposition testified by the 15N isotope tracer experiment. N addition decreased soil microorganism and plant 15N recovery and increased soil of 30-40 cm layer 15N recovery. N saturation of the temperature steppe would occur when N deposition rate reached 5.4-8.4gN m-2a-1.
How to cite: Huang, Y.: Responses of temperate steppe to simulated nitrogen deposition: from community structure to ecosystem functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21048, https://doi.org/10.5194/egusphere-egu2020-21048, 2020.
Effect of nitrogen deposition on terrestrial ecosystems are one of the hot spots in the study of global change, and the significantly different responses were reported widely among different ecosystems. In this study, field simulated nitrogen deposition experiment was carried out in a temperate steppe, norther China from 2011 to 2018. Treatments were designed as: CK (0 g N/m2), N2 level (2 g N/m2), N5 level (5 g N/m2), N10 level (10 g N/m2), N25 level (25 g N/m2) and N50 level (50 g N/m2). The results showed that the N addition did not cause a noticeable change in the net primary productivity and soil acidification. N addition caused a significant decline in community biodiversity with a major shift in species composition. N utilization strategy, photosynthetic capacity, and water use efficiency of three dominant species behaved differently under N deposition. Soil was the major sink for N deposition testified by the 15N isotope tracer experiment. N addition decreased soil microorganism and plant 15N recovery and increased soil of 30-40 cm layer 15N recovery. N saturation of the temperature steppe would occur when N deposition rate reached 5.4-8.4gN m-2a-1.
How to cite: Huang, Y.: Responses of temperate steppe to simulated nitrogen deposition: from community structure to ecosystem functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21048, https://doi.org/10.5194/egusphere-egu2020-21048, 2020.
EGU2020-13891 | Displays | BG3.22
Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation typesChris R Taylor, Ben Keane, Iain Hartley, and Gareth Phoenix
Terrestrial ecosystems absorb 30% of anthropogenic carbon dioxide (CO2) emissions, slowing its rising atmospheric concentration and substantially inhibiting climate change. This uptake is believed to be due to elevated CO2 (eCO2) stimulating plant photosynthesis and growth, thus increasing carbon (C) storage in plants and soil organic matter. However, nitrogen (N) limitation can reduce ecosystem C uptake capacity under eCO2 by as much as 50%. Phosphorus (P) limitation in ecosystems is almost as common as N-limitation and is increasing due to ongoing deposition of N from anthropogenic activities. Despite this, we do not know how P-limited ecosystems will respond to eCO2, constituting a major gap in our understanding of how large areas of the biosphere will impact atmospheric CO2 over the coming decades.
In the first study conducted into the effect of eCO2 on P-limited ecosystems with manipulated nutrient availability, the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment project (PLACE), investigates the effects of eCO2 on C cycling in grasslands, which are a critical global C store. Turf mesocosms from P-limited acidic and limestone grasslands, where N and P inputs have been manipulated for 20 years (control, low N (3.5 g m-2 y-1), high N (14 g m-2 y-1), and P (3.5 g m-2 y-1)), have been exposed to either ambient or eCO2 (600 ppm) in a miniFACE (mini Free Air Carbon Enrichment) system. Long-term P addition has alleviated P limitation while N additions have exacerbated it. The two contrasting grasslands contain different amounts of organic versus mineral P in their soils and, thus, plants may have to use contrasting strategies to acquire the additional P they need to increase growth rates under elevated CO2.
We present data from the first two growing seasons, including above and below ground productivity, and C, N and P cycling through plant, soil and microbial pools. Aboveground harvest data from the second year have shown eCO2 has only increased biomass production in the limestone grassland (by 17%; p< 0.0001), and not in the acid grassland. There was also a significant effect of nutrient treatment (p< 0.001) with biomass increasing under P and HN, indicating some co-NP limitation. Stable isotope tracing, using the fumigation CO2 signal has shown the fate of newly assimilated C and its contribution to gaseous C flux to the atmosphere in the form of methane (CH4) and respired CO2. In summary, our first two years of eCO2 treatment suggests that productivity of limestone and acidic grassland respond differently and that these responses depend on nutrient availability, indicating the complexity of predicting P-limited ecosystem responses as atmospheric CO2 continues to rise.
How to cite: Taylor, C. R., Keane, B., Hartley, I., and Phoenix, G.: Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13891, https://doi.org/10.5194/egusphere-egu2020-13891, 2020.
Terrestrial ecosystems absorb 30% of anthropogenic carbon dioxide (CO2) emissions, slowing its rising atmospheric concentration and substantially inhibiting climate change. This uptake is believed to be due to elevated CO2 (eCO2) stimulating plant photosynthesis and growth, thus increasing carbon (C) storage in plants and soil organic matter. However, nitrogen (N) limitation can reduce ecosystem C uptake capacity under eCO2 by as much as 50%. Phosphorus (P) limitation in ecosystems is almost as common as N-limitation and is increasing due to ongoing deposition of N from anthropogenic activities. Despite this, we do not know how P-limited ecosystems will respond to eCO2, constituting a major gap in our understanding of how large areas of the biosphere will impact atmospheric CO2 over the coming decades.
In the first study conducted into the effect of eCO2 on P-limited ecosystems with manipulated nutrient availability, the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment project (PLACE), investigates the effects of eCO2 on C cycling in grasslands, which are a critical global C store. Turf mesocosms from P-limited acidic and limestone grasslands, where N and P inputs have been manipulated for 20 years (control, low N (3.5 g m-2 y-1), high N (14 g m-2 y-1), and P (3.5 g m-2 y-1)), have been exposed to either ambient or eCO2 (600 ppm) in a miniFACE (mini Free Air Carbon Enrichment) system. Long-term P addition has alleviated P limitation while N additions have exacerbated it. The two contrasting grasslands contain different amounts of organic versus mineral P in their soils and, thus, plants may have to use contrasting strategies to acquire the additional P they need to increase growth rates under elevated CO2.
We present data from the first two growing seasons, including above and below ground productivity, and C, N and P cycling through plant, soil and microbial pools. Aboveground harvest data from the second year have shown eCO2 has only increased biomass production in the limestone grassland (by 17%; p< 0.0001), and not in the acid grassland. There was also a significant effect of nutrient treatment (p< 0.001) with biomass increasing under P and HN, indicating some co-NP limitation. Stable isotope tracing, using the fumigation CO2 signal has shown the fate of newly assimilated C and its contribution to gaseous C flux to the atmosphere in the form of methane (CH4) and respired CO2. In summary, our first two years of eCO2 treatment suggests that productivity of limestone and acidic grassland respond differently and that these responses depend on nutrient availability, indicating the complexity of predicting P-limited ecosystem responses as atmospheric CO2 continues to rise.
How to cite: Taylor, C. R., Keane, B., Hartley, I., and Phoenix, G.: Carbon flux response and recovery to drought years in a hemi-boreal peat bog between different vegetation types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13891, https://doi.org/10.5194/egusphere-egu2020-13891, 2020.
EGU2020-18266 | Displays | BG3.22
Heavily data-constrained mechanistic ecohydrological modeling can guide management of pre-Alpine grasslands in the present and future climateMartina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
The pressure of climate change and increasing food demand on agricultural systems made management strategies crucial for matching the production goals without affecting water quantity and quality. This is, for instance, the case for managed grasslands in the Alpine and pre-alpine regions. This study combines a large suite of observations from the TERENO observatory and ScaleX campaigns with mechanistic modeling, in order to analyze the response of managed grasslands north of the Alps to different climatic conditions and management strategies, aimed at evaluating changes in the ecohydrological response, as well as carbon, water and nutrient fluxes.
First, we used the data to evaluate the performance of the mechanistic Tethys-Chloris (T&C) model, which fully integrates the solution of surface energy balance and hydrological budget with vegetation dynamics and soil biogeochemistry, for the period 2012-2016. This is characterized by significant climatic inter-annual variability and including the extraordinarily warm year 2015. The observations cover three different grassland sites composed by flux towers, soil moisture and temperature probes, lysimeters, nutrient leaching and dedicated vegetation sampling campaigns, allowing an unprecedented validation opportunity of model skills for multiple variable and temporal scales. The observed system response, in terms of water, energy and nutrients dynamics, are successfully reproduced, which increases confidence on the model capability to reproduce the feedbacks among hydrology, vegetation growth and soil biogeochemistry. The results highlight the impact of an early begin of the growing season on the vegetation productivity and nutrients leaching in years with reduced snow cover, as well as the effects of summer drought on vegetation productivity.
Second, numerical experiments are used to test the response of this ecosystem to different grassland fertilization and cutting scenarios in the present climate and in warmer and CO2 enriched conditions. Of particular interest are the number and timing of grass cuts and fertilizer applications that could optimize grassland productivity without compromising water quality in a warmer climate.
How to cite: Botter, M., Zeeman, M., Burlando, P., and Fatichi, S.: Heavily data-constrained mechanistic ecohydrological modeling can guide management of pre-Alpine grasslands in the present and future climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18266, https://doi.org/10.5194/egusphere-egu2020-18266, 2020.
The pressure of climate change and increasing food demand on agricultural systems made management strategies crucial for matching the production goals without affecting water quantity and quality. This is, for instance, the case for managed grasslands in the Alpine and pre-alpine regions. This study combines a large suite of observations from the TERENO observatory and ScaleX campaigns with mechanistic modeling, in order to analyze the response of managed grasslands north of the Alps to different climatic conditions and management strategies, aimed at evaluating changes in the ecohydrological response, as well as carbon, water and nutrient fluxes.
First, we used the data to evaluate the performance of the mechanistic Tethys-Chloris (T&C) model, which fully integrates the solution of surface energy balance and hydrological budget with vegetation dynamics and soil biogeochemistry, for the period 2012-2016. This is characterized by significant climatic inter-annual variability and including the extraordinarily warm year 2015. The observations cover three different grassland sites composed by flux towers, soil moisture and temperature probes, lysimeters, nutrient leaching and dedicated vegetation sampling campaigns, allowing an unprecedented validation opportunity of model skills for multiple variable and temporal scales. The observed system response, in terms of water, energy and nutrients dynamics, are successfully reproduced, which increases confidence on the model capability to reproduce the feedbacks among hydrology, vegetation growth and soil biogeochemistry. The results highlight the impact of an early begin of the growing season on the vegetation productivity and nutrients leaching in years with reduced snow cover, as well as the effects of summer drought on vegetation productivity.
Second, numerical experiments are used to test the response of this ecosystem to different grassland fertilization and cutting scenarios in the present climate and in warmer and CO2 enriched conditions. Of particular interest are the number and timing of grass cuts and fertilizer applications that could optimize grassland productivity without compromising water quality in a warmer climate.
How to cite: Botter, M., Zeeman, M., Burlando, P., and Fatichi, S.: Heavily data-constrained mechanistic ecohydrological modeling can guide management of pre-Alpine grasslands in the present and future climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18266, https://doi.org/10.5194/egusphere-egu2020-18266, 2020.
EGU2020-15896 | Displays | BG3.22
Integrating the carbon and nitrogen interactions in the Common Land Model (CoLM-CN): model description and benchmarkingQian Zhang
Nitrogen is the most important nutrient regulating plant growth and productivity in many ecosystems. However, in CMIP5 only two Earth System Models (ESMs) included the N cycle in their carbon simulations. Over the past years, many more ESMs have implemented N cycle and some also incorporated P cycle in their land surface components. In this study, we present a new carbon-nitrogen coupled land model (CoLM-CN) which integrated C-N cycles with processes of energy and water balances in terrestrial ecosystems as the land component of BNU-ESM. The model development includes: (1) combining a global scale Dynamic Nitrogen Scheme (DyN) with a recent version of the Common Land Model; (2) the representation of plant productivity is improved based on the observed relationships between leaf level nitrogen and plant photosynthesis and respiration rates from global plant traits experiments; (3) flexible plant C-N stoichiometry and dynamic allocation between different tissues; (4) explicit representation of vertical soil organic carbon and nitrogen distributions. We forced the model with reconstructed historical climate fields (CRUNCEP) from 1901-2014 to quantify the effect of accounting for nitrogen cycle on the responses of terrestrial carbon cycle to increasing atmosphere CO2 concentration and climatic change. The simulated concurrent terrestrial carbon stocks and fluxes are benchmarked using the International Land Model Benchmarking Package (ILAMB). Compared with the version without N cycling, CoLM-CN performs better in simulating the global annual gross primary productivity, leaf area index, live biomass carbon, soil carbon, and improves the biophysical results as latent heat and sensible heat fluxes.
How to cite: Zhang, Q.: Integrating the carbon and nitrogen interactions in the Common Land Model (CoLM-CN): model description and benchmarking , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15896, 2020.
EGU2020-5198 | Displays | BG3.22
Water fluxes and coupled nitrogen export in a managed prealpine grassland: identifying the effects of climate change and agricultural managementKatrin Schneider and Ralf Kiese
It is generally accepted that climate change likely alters the ratio of water balance components in mid-latitude environments. Higher temperatures and an elevated water vapour deficit may increase evapotranspiration rates and reduce groundwater recharge rates. At the same time, agricultural management may interfere these effects, e.g. through reduced plant transpiration rates due to a high cutting frequency.
The study analyses climate change and agricultural management effects on the water fluxes and coupled nitrogen export in a prealpine grassland. It makes use of the grassland lysimeters, which are part of the TERENO preAlpine observatory in southern Bavaria (Germany). In a “space-for-time” approach, soil cores with an area of 1 m² and a depth of 1.5 m have been excavated and translocated to lower elevations. Furthermore, soil cores from the same area (that have not been translocated to lower elevations) act as control plots in the lysimeter network. The elevation gradient between the highest (864 m a.s.l.) and lowest (695 m a.s.l.) lysimeter station accounts for a temperature increase of approx. 2°C, while precipitation decreases from approx. 1350 mm a-1 to approx. 960 mm a-1. Following local agricultural practice, intensive as well as extensive grassland management is applied at the lysimeters: intensive management refers to a higher frequency of cutting (up to five times per year) and manure application (approx.. 250 kg N ha-1 a-1) than extensive management (two cuts and approx. 80 kg N ha-1 a-1).
The study compares the effects of temperature and precipitation changes (i.e. elevated temperature and decrease in precipitation) and different agricultural management on water balance components (evapotranspiration, groundwater recharge, Ammonia and Nitrate fluxes) measured at the lysimeters. Preliminary result show that the ratio of evapotranspiration to precipitation increases in the climate change treatment. Water-bound nitrogen fluxes are comparably low on all sites, indicating that nitrogen uptake by plant plants is dominating over nitrogen leaching.
How to cite: Schneider, K. and Kiese, R.: Water fluxes and coupled nitrogen export in a managed prealpine grassland: identifying the effects of climate change and agricultural management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5198, https://doi.org/10.5194/egusphere-egu2020-5198, 2020.
It is generally accepted that climate change likely alters the ratio of water balance components in mid-latitude environments. Higher temperatures and an elevated water vapour deficit may increase evapotranspiration rates and reduce groundwater recharge rates. At the same time, agricultural management may interfere these effects, e.g. through reduced plant transpiration rates due to a high cutting frequency.
The study analyses climate change and agricultural management effects on the water fluxes and coupled nitrogen export in a prealpine grassland. It makes use of the grassland lysimeters, which are part of the TERENO preAlpine observatory in southern Bavaria (Germany). In a “space-for-time” approach, soil cores with an area of 1 m² and a depth of 1.5 m have been excavated and translocated to lower elevations. Furthermore, soil cores from the same area (that have not been translocated to lower elevations) act as control plots in the lysimeter network. The elevation gradient between the highest (864 m a.s.l.) and lowest (695 m a.s.l.) lysimeter station accounts for a temperature increase of approx. 2°C, while precipitation decreases from approx. 1350 mm a-1 to approx. 960 mm a-1. Following local agricultural practice, intensive as well as extensive grassland management is applied at the lysimeters: intensive management refers to a higher frequency of cutting (up to five times per year) and manure application (approx.. 250 kg N ha-1 a-1) than extensive management (two cuts and approx. 80 kg N ha-1 a-1).
The study compares the effects of temperature and precipitation changes (i.e. elevated temperature and decrease in precipitation) and different agricultural management on water balance components (evapotranspiration, groundwater recharge, Ammonia and Nitrate fluxes) measured at the lysimeters. Preliminary result show that the ratio of evapotranspiration to precipitation increases in the climate change treatment. Water-bound nitrogen fluxes are comparably low on all sites, indicating that nitrogen uptake by plant plants is dominating over nitrogen leaching.
How to cite: Schneider, K. and Kiese, R.: Water fluxes and coupled nitrogen export in a managed prealpine grassland: identifying the effects of climate change and agricultural management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5198, https://doi.org/10.5194/egusphere-egu2020-5198, 2020.
EGU2020-7090 | Displays | BG3.22
Plant phosphorus use and acquisition strategies in the Amazon rainforest with relevance to vegetation modelsTatiana Reichert, Anja Rammig, Carlos A. Quesada, Lucia Fuchslueger, and Katrin Fleischer
The Amazon rainforest is the biggest tropical rainforest in the world and provides significant global climate regulation services. However, the future of the Amazon rainforest carbon sink under elevated CO2 is uncertain. The potential fertilization effect of elevated CO2 on the Amazon rainforest carbon sink may be constrained by phosphorus availability. Phosphorus is an essential element involved in all major plant processes and is considered to be the primary limiting nutrient in the Amazon rainforest. To cope with phosphorus limitation, plants have developed different strategies to increase the use efficiency, uptake, and availability of phosphorus. Vegetation models have identified phosphorus use and acquisition strategies as crucial to the projections of the future of the Amazon rainforest. Although some of the strategies are explicitly or implicitly represented in vegetation models, the mechanistic representations diverge due to the lack of empirical knowledge. Here, we synthesized the current understanding of the main strategies and how they may play out in the Amazon rainforest, namely, root phosphorus foraging, arbuscular mycorrhizal symbiosis, phosphatase and organic acids exudation, and leaf phosphorus resorption. We focus on mechanisms, drivers, and plasticity along soil phosphorus gradients of the named strategies, aiming to inform models and highlight important knowledge gaps, offering an opportunity to bring modeling and experimental research together.
How to cite: Reichert, T., Rammig, A., A. Quesada, C., Fuchslueger, L., and Fleischer, K.: Plant phosphorus use and acquisition strategies in the Amazon rainforest with relevance to vegetation models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7090, https://doi.org/10.5194/egusphere-egu2020-7090, 2020.
The Amazon rainforest is the biggest tropical rainforest in the world and provides significant global climate regulation services. However, the future of the Amazon rainforest carbon sink under elevated CO2 is uncertain. The potential fertilization effect of elevated CO2 on the Amazon rainforest carbon sink may be constrained by phosphorus availability. Phosphorus is an essential element involved in all major plant processes and is considered to be the primary limiting nutrient in the Amazon rainforest. To cope with phosphorus limitation, plants have developed different strategies to increase the use efficiency, uptake, and availability of phosphorus. Vegetation models have identified phosphorus use and acquisition strategies as crucial to the projections of the future of the Amazon rainforest. Although some of the strategies are explicitly or implicitly represented in vegetation models, the mechanistic representations diverge due to the lack of empirical knowledge. Here, we synthesized the current understanding of the main strategies and how they may play out in the Amazon rainforest, namely, root phosphorus foraging, arbuscular mycorrhizal symbiosis, phosphatase and organic acids exudation, and leaf phosphorus resorption. We focus on mechanisms, drivers, and plasticity along soil phosphorus gradients of the named strategies, aiming to inform models and highlight important knowledge gaps, offering an opportunity to bring modeling and experimental research together.
How to cite: Reichert, T., Rammig, A., A. Quesada, C., Fuchslueger, L., and Fleischer, K.: Plant phosphorus use and acquisition strategies in the Amazon rainforest with relevance to vegetation models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7090, https://doi.org/10.5194/egusphere-egu2020-7090, 2020.
EGU2020-12111 | Displays | BG3.22
Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studiesJennifer A. Holm, David M. Medvigy, Benjamin Smith, Jeffrey S. Dukes, Claus Beier, Mikhail Mishurov, Xiangtao Xu, Jeremy W. Lichstein, Craig D. Allen, Klaus S. Larsen, Yiqi Luo, Cari Ficken, William T. Pockman, William R.L. Anderegg, and Anja Rammig
Climatic extreme events are expected to occur more frequently and potentially be stronger in the future, increasing the likelihood of unprecedented climate extremes (UCEs), or record-breaking events such as prolonged droughts, to occur. To prepare for UCEs and their impacts, we need to develop a better understanding of terrestrial ecosystem responses to events such as extreme drought. We know that intense, extreme droughts can substantially affect ecosystem stability and carbon cycling through increased plant mortality and delaying ecosystem recovery. Our ability to predict such effects is limited due to the lack of experiments focusing on climatic excursions beyond the range of historical experience.
We explore the response of forest ecosystems to UCEs using two dynamic vegetation demographic models (VDMs), ED2 and LPJ-GUESS, in which the abundances of different plant functional types, as well as tree size- and age-class structure, are emergent properties of resource competition. We investigate the hypothesis that ecosystem responses to UCEs (e.g., unprecedented droughts) cannot be extrapolated from ecosystem responses to milder extremes, as a result of non-linear ecosystem responses (e.g. due to plant plasticity, functional diversity, and trait combinations). We evaluate each model’s mechanisms and state variables prior, during, and after a continuum of drought intensities ultimately reaching very extreme drought scenarios (i.e., 0% to 100% reduction in precipitation for drought durations of 1-year, 2-year, and 4-year scenarios) at two dry forested sites: Palo Verde, Costa Rica (i.e. tropical) and EucFACE, Australia (i.e. temperate). Both models produce nonlinear responses to these UCEs. Due to differences in model structure and process representation, the model’s sensitivity of biomass loss diverged based on either duration or intensity of droughts, as well as different model responses at each site. Biomass losses in ED2 are sensitive to drought duration, while in LPJ-GUESS they are mainly driven by drought intensity. Elevated atmospheric CO2 concentrations alone did not buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight discrepancies in process formulations and uncertainties in models, notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes. This shows that different hypotheses of plant responses to UCEs exist in two similar models, reflecting knowledge gaps, which should be tested with gap-informed field experiments. This iterative modeling-experiment framework would help improve predictions of terrestrial ecosystem responses and climate feedbacks.
How to cite: Holm, J. A., Medvigy, D. M., Smith, B., Dukes, J. S., Beier, C., Mishurov, M., Xu, X., Lichstein, J. W., Allen, C. D., Larsen, K. S., Luo, Y., Ficken, C., Pockman, W. T., Anderegg, W. R. L., and Rammig, A.: Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12111, https://doi.org/10.5194/egusphere-egu2020-12111, 2020.
Climatic extreme events are expected to occur more frequently and potentially be stronger in the future, increasing the likelihood of unprecedented climate extremes (UCEs), or record-breaking events such as prolonged droughts, to occur. To prepare for UCEs and their impacts, we need to develop a better understanding of terrestrial ecosystem responses to events such as extreme drought. We know that intense, extreme droughts can substantially affect ecosystem stability and carbon cycling through increased plant mortality and delaying ecosystem recovery. Our ability to predict such effects is limited due to the lack of experiments focusing on climatic excursions beyond the range of historical experience.
We explore the response of forest ecosystems to UCEs using two dynamic vegetation demographic models (VDMs), ED2 and LPJ-GUESS, in which the abundances of different plant functional types, as well as tree size- and age-class structure, are emergent properties of resource competition. We investigate the hypothesis that ecosystem responses to UCEs (e.g., unprecedented droughts) cannot be extrapolated from ecosystem responses to milder extremes, as a result of non-linear ecosystem responses (e.g. due to plant plasticity, functional diversity, and trait combinations). We evaluate each model’s mechanisms and state variables prior, during, and after a continuum of drought intensities ultimately reaching very extreme drought scenarios (i.e., 0% to 100% reduction in precipitation for drought durations of 1-year, 2-year, and 4-year scenarios) at two dry forested sites: Palo Verde, Costa Rica (i.e. tropical) and EucFACE, Australia (i.e. temperate). Both models produce nonlinear responses to these UCEs. Due to differences in model structure and process representation, the model’s sensitivity of biomass loss diverged based on either duration or intensity of droughts, as well as different model responses at each site. Biomass losses in ED2 are sensitive to drought duration, while in LPJ-GUESS they are mainly driven by drought intensity. Elevated atmospheric CO2 concentrations alone did not buffer the ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings highlight discrepancies in process formulations and uncertainties in models, notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic schemes. This shows that different hypotheses of plant responses to UCEs exist in two similar models, reflecting knowledge gaps, which should be tested with gap-informed field experiments. This iterative modeling-experiment framework would help improve predictions of terrestrial ecosystem responses and climate feedbacks.
How to cite: Holm, J. A., Medvigy, D. M., Smith, B., Dukes, J. S., Beier, C., Mishurov, M., Xu, X., Lichstein, J. W., Allen, C. D., Larsen, K. S., Luo, Y., Ficken, C., Pockman, W. T., Anderegg, W. R. L., and Rammig, A.: Exploring the impacts of unprecedented climate extremes on forest ecosystems: hypotheses to guide modeling and experimental studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12111, https://doi.org/10.5194/egusphere-egu2020-12111, 2020.
EGU2020-12188 | Displays | BG3.22
Application of a priori primary production model to estimate water vapor fluxShen Tan and Han Wang
Accurate estimation of terrestrial evapotranspiration (ET) is a basic request in researches about water cycle and the energy exchange at land-atmosphere interface. Modelling ET with water and carbon coupling theory has been proven to be a robust and effective strategy. However, there still remaining an assumption needs demonstration: if site-calibrated parameters in empirical models are universally accurate and could be generalized in different regions or future scenario. In this research, we present a prototype coupling ET and carbon assimilation based on a first-principle primary production model with only two parameters calibrated with independent datasets. The water vapor diffuses through leaf stomata, which is regulated by the ratio of leaf-internal to external CO2 (χ) and could be estimated by environmental factors using our universal model. We validated the prototype with three steps. In the first step, we prove that diffusion process is the key linkage of water cycle and carbon assimilation at canopy scale. In the second step, comparation was carried over different vegetation types between predicted gross primary production (GPP) and tower-based observation, where results displays good agreement was found. Thirdly, we use the predicted χ and GPP to estimate canopy ET. Due to the strict description of physical and physiological process, our ET model is free of further consideration about the variation of parameters, thus could be ideally used in non-site region or future scenario. Sensitivity analysis results show that GPP would increase following the rising of CO2 concentration, but exhibit a parabolic trend when faced with rising air temperature. On the other hand, simulated ET exhibits nearly linear trend against warmer environment, but nearly no obvious relation with rising CO2 concentration.
How to cite: Tan, S. and Wang, H.: Application of a priori primary production model to estimate water vapor flux, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12188, https://doi.org/10.5194/egusphere-egu2020-12188, 2020.
Accurate estimation of terrestrial evapotranspiration (ET) is a basic request in researches about water cycle and the energy exchange at land-atmosphere interface. Modelling ET with water and carbon coupling theory has been proven to be a robust and effective strategy. However, there still remaining an assumption needs demonstration: if site-calibrated parameters in empirical models are universally accurate and could be generalized in different regions or future scenario. In this research, we present a prototype coupling ET and carbon assimilation based on a first-principle primary production model with only two parameters calibrated with independent datasets. The water vapor diffuses through leaf stomata, which is regulated by the ratio of leaf-internal to external CO2 (χ) and could be estimated by environmental factors using our universal model. We validated the prototype with three steps. In the first step, we prove that diffusion process is the key linkage of water cycle and carbon assimilation at canopy scale. In the second step, comparation was carried over different vegetation types between predicted gross primary production (GPP) and tower-based observation, where results displays good agreement was found. Thirdly, we use the predicted χ and GPP to estimate canopy ET. Due to the strict description of physical and physiological process, our ET model is free of further consideration about the variation of parameters, thus could be ideally used in non-site region or future scenario. Sensitivity analysis results show that GPP would increase following the rising of CO2 concentration, but exhibit a parabolic trend when faced with rising air temperature. On the other hand, simulated ET exhibits nearly linear trend against warmer environment, but nearly no obvious relation with rising CO2 concentration.
How to cite: Tan, S. and Wang, H.: Application of a priori primary production model to estimate water vapor flux, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12188, https://doi.org/10.5194/egusphere-egu2020-12188, 2020.
EGU2020-19721 | Displays | BG3.22
Importance of complex LULCC representation for N cycling and productivity in the EC-Earth frameworkDavid Wårlind, Lars Nieradzik, Paul Miller, Mats Lindeskog, Peter Anthoni, Almut Arneth, and Ben Smith
With human land-use activities expected to increase in the future, it is important to understand how LULCC (Land-Use Land-Cover Change) activities affect the Earth’s surface, climate and biogeochemical cycles. Here we use the CMIP6 version of the EC-Earth3 Earth System Model (ESM) to assess the impacts of LULCC on surface fluxes of carbon (C) and nitrogen (N). EC-Earth is one of the first ESMs to interactively couple a 2nd generation dynamical vegetation model (LPJ-GUESS) with mechanistic C-N dynamics in soil and vegetation to an atmospheric model. The size, age structure, temporal dynamics and spatial heterogeneity of the vegetated landscape are represented and simulated dynamically in LPJ-GUESS. Such functionality has been argued to be essential to correctly capture biogeochemical and biophysical land-atmosphere interactions on longer timescales and has been shown to improve their representation compared to more common area-based vegetation schemes. The patch-based structure of LPJ-GUESS also makes it possible to represent the history (soil, litter status) of a single patch as it might have been involved in several land-use transitions. We examine the effects on surface fluxes of carbon and nitrogen in three LUMIP simulations, for both offline land-only and fully coupled ESM runs. We focus on the effects of gross land-use transitions (“land-hist”), net land-use transitions (“land-noShiftcultivate”) and fixing land-use at 1850 levels (“land-noLu”).
In general, EC-Earth shows a higher historical C loss due to LULCC than other ESMs, but our results are still in line with LULCC emissions constrained by biomass observations. Gross transitions result in a higher historical C loss compared to net transitions, while runs without LULCC (noLu) show a constant gain in C. LULCC also affects the total N content of the system and hence soil nutrient content. Gross (net) LULCC leads to a loss of 1.5 (1.0) PgN over the historical period whereas 1.5 PgN is gained in noLu runs. As increases in global fertilization and harvest fluxes more or less offset one another for both gross and net LULCC, the differences in total N pools derive from biological nitrogen fixation (BNF), soil fluxes, leaching and land-use associated fluxes of N. Changes in soil fertility result in a higher productivity for net compared to gross transitions, mainly in the Tropics. Net transitions also results in less N lost through land-use change and hence a higher net mineralisation rate. This is mainly notable in the Tropics where the initially organic matter content is lower compared to temperate and boreal regions. The productivity and harvested biomass from crops are similar for gross and net transitions as their N source mainly comes from N fertilization, with the exception of some developing countries where N fertilisation is not as high as in industrialised countries. Based on these examples of how the N cycle and productivity are affected by LULCC, we argue that the full complexity of gross transitions is required to accurately predict how LULCC affects the N cycle, productivity and biogeophysical feedbacks to the climate.
How to cite: Wårlind, D., Nieradzik, L., Miller, P., Lindeskog, M., Anthoni, P., Arneth, A., and Smith, B.: Importance of complex LULCC representation for N cycling and productivity in the EC-Earth framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19721, https://doi.org/10.5194/egusphere-egu2020-19721, 2020.
With human land-use activities expected to increase in the future, it is important to understand how LULCC (Land-Use Land-Cover Change) activities affect the Earth’s surface, climate and biogeochemical cycles. Here we use the CMIP6 version of the EC-Earth3 Earth System Model (ESM) to assess the impacts of LULCC on surface fluxes of carbon (C) and nitrogen (N). EC-Earth is one of the first ESMs to interactively couple a 2nd generation dynamical vegetation model (LPJ-GUESS) with mechanistic C-N dynamics in soil and vegetation to an atmospheric model. The size, age structure, temporal dynamics and spatial heterogeneity of the vegetated landscape are represented and simulated dynamically in LPJ-GUESS. Such functionality has been argued to be essential to correctly capture biogeochemical and biophysical land-atmosphere interactions on longer timescales and has been shown to improve their representation compared to more common area-based vegetation schemes. The patch-based structure of LPJ-GUESS also makes it possible to represent the history (soil, litter status) of a single patch as it might have been involved in several land-use transitions. We examine the effects on surface fluxes of carbon and nitrogen in three LUMIP simulations, for both offline land-only and fully coupled ESM runs. We focus on the effects of gross land-use transitions (“land-hist”), net land-use transitions (“land-noShiftcultivate”) and fixing land-use at 1850 levels (“land-noLu”).
In general, EC-Earth shows a higher historical C loss due to LULCC than other ESMs, but our results are still in line with LULCC emissions constrained by biomass observations. Gross transitions result in a higher historical C loss compared to net transitions, while runs without LULCC (noLu) show a constant gain in C. LULCC also affects the total N content of the system and hence soil nutrient content. Gross (net) LULCC leads to a loss of 1.5 (1.0) PgN over the historical period whereas 1.5 PgN is gained in noLu runs. As increases in global fertilization and harvest fluxes more or less offset one another for both gross and net LULCC, the differences in total N pools derive from biological nitrogen fixation (BNF), soil fluxes, leaching and land-use associated fluxes of N. Changes in soil fertility result in a higher productivity for net compared to gross transitions, mainly in the Tropics. Net transitions also results in less N lost through land-use change and hence a higher net mineralisation rate. This is mainly notable in the Tropics where the initially organic matter content is lower compared to temperate and boreal regions. The productivity and harvested biomass from crops are similar for gross and net transitions as their N source mainly comes from N fertilization, with the exception of some developing countries where N fertilisation is not as high as in industrialised countries. Based on these examples of how the N cycle and productivity are affected by LULCC, we argue that the full complexity of gross transitions is required to accurately predict how LULCC affects the N cycle, productivity and biogeophysical feedbacks to the climate.
How to cite: Wårlind, D., Nieradzik, L., Miller, P., Lindeskog, M., Anthoni, P., Arneth, A., and Smith, B.: Importance of complex LULCC representation for N cycling and productivity in the EC-Earth framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19721, https://doi.org/10.5194/egusphere-egu2020-19721, 2020.
EGU2020-11589 | Displays | BG3.22
Can elevated CO2 experiments explain the magnitude of the land carbon sink?Huanyuan Zhang, Iain Colin Prentice, César Terrer, Trevor Keenan, and Oskar Franklin
Based on Free Air Carbon Dioxide Enrichment (FACE) and other raised-CO2 experiments (eCO2), new hypotheses have been proposed to explain how the magnitude of the CO2 fertilization effect on biomass and biomass production depends primarily on soil nitrogen and phosphorus availability [1,2]. To test whether these hypotheses and measurements from eCO2 could explain the land carbon sink as independently determined from data and models, we combined a CO2 response curve for biomass production with a simple two-box model of biomass and soil to simulate the evolution of the land carbon sink during the past century. Results were compared to Dynamic Global Vegetation Model (DGVM) results, as reported by the Global Carbon Project, and to results from inversion studies based on atmospheric CO2 measurements. The interannual variability of the modelled land sink was realistic, dominated by the temperature dependence of heterotrophic respiration, and similar to DGVMs results. However, the magnitude of the derived land sink based on eCO2 results was smaller, and its geographical distribution was different to DGVMs average. Sensitivity tests showed that these findings were robust to reasonable variations of parameter values. The smaller sink is due to the smaller amount of vegetation biomass increment documented by eCO2 experiments in comparison with the mean predictions of DGVMs. A land sink closer to the observed one could be produced, however, when incorporating the hypothesis that nutrient-stressed plants export “excess” carbon (generated by increased photosynthesis, but unable to be used for growth) to the soil and that only a fraction of this excess carbon returns to the atmosphere. This hypothesis requires further exploration but hints at a reconciliation between DGVMs that explain the land carbon sink without nutrient limitations, with experimental findings of (sometimes severe) restrictions on CO2 fertilization due to nutrient stress.
[1] Terrer et al. 2016, Science, doi.org/10.1126/science.aaf4610
[2] Terrer et al. 2019, Nature Climate Change, doi.org/10.1038/s41558-019-0545-2
How to cite: Zhang, H., Prentice, I. C., Terrer, C., Keenan, T., and Franklin, O.: Can elevated CO2 experiments explain the magnitude of the land carbon sink?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11589, https://doi.org/10.5194/egusphere-egu2020-11589, 2020.
Based on Free Air Carbon Dioxide Enrichment (FACE) and other raised-CO2 experiments (eCO2), new hypotheses have been proposed to explain how the magnitude of the CO2 fertilization effect on biomass and biomass production depends primarily on soil nitrogen and phosphorus availability [1,2]. To test whether these hypotheses and measurements from eCO2 could explain the land carbon sink as independently determined from data and models, we combined a CO2 response curve for biomass production with a simple two-box model of biomass and soil to simulate the evolution of the land carbon sink during the past century. Results were compared to Dynamic Global Vegetation Model (DGVM) results, as reported by the Global Carbon Project, and to results from inversion studies based on atmospheric CO2 measurements. The interannual variability of the modelled land sink was realistic, dominated by the temperature dependence of heterotrophic respiration, and similar to DGVMs results. However, the magnitude of the derived land sink based on eCO2 results was smaller, and its geographical distribution was different to DGVMs average. Sensitivity tests showed that these findings were robust to reasonable variations of parameter values. The smaller sink is due to the smaller amount of vegetation biomass increment documented by eCO2 experiments in comparison with the mean predictions of DGVMs. A land sink closer to the observed one could be produced, however, when incorporating the hypothesis that nutrient-stressed plants export “excess” carbon (generated by increased photosynthesis, but unable to be used for growth) to the soil and that only a fraction of this excess carbon returns to the atmosphere. This hypothesis requires further exploration but hints at a reconciliation between DGVMs that explain the land carbon sink without nutrient limitations, with experimental findings of (sometimes severe) restrictions on CO2 fertilization due to nutrient stress.
[1] Terrer et al. 2016, Science, doi.org/10.1126/science.aaf4610
[2] Terrer et al. 2019, Nature Climate Change, doi.org/10.1038/s41558-019-0545-2
How to cite: Zhang, H., Prentice, I. C., Terrer, C., Keenan, T., and Franklin, O.: Can elevated CO2 experiments explain the magnitude of the land carbon sink?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11589, https://doi.org/10.5194/egusphere-egu2020-11589, 2020.
EGU2020-21843 | Displays | BG3.22
Reactive N additions and their effects in microbial activity and soil respiration under a Nothofagus glauca (Phil.) Krasser forest of ChileJuan-Pablo Fuentes, Daniela Celedón, Horacio Bown, Amanda Martínez, and Marina Vega
Increases in available soil N under forests can affect several ecosystem functions including soil CO2 fluxes and microbial activity. Most of the studies, concerning reactive N deposition in natural ecosystems, are located in the northern hemisphere, meanwhile little is known in southern forest ecosystems, including deciduous Nothofagus forests. We evaluated the effect of reactive N additions (N-NO3 broadcasted under 20 trees at a rate of 400 Kg ha-1 yr-1) in soil CO2 fluxes (Rs, μmol CO2 m-2 s-1), microbial biomass C (MBC), and related ecophysiological indexes, in the most septentrional N. glauca forest of Chile (19S 310464 S, 6213139 W). Twenty additional N. glauca trees, with no N additions, were used as controls. After seven months of N-application, soil respiration was significantly higher (p<0.001) under the N-fertilized trees than in the control trees. Soil MBC, the ratio between MBC and soil organic C (qmic), and the ratio between cummulative basal respiration and SOC (qmin) decreased significantly (p<0.05) in the N-enriched trees, but only after two years of N application. Basal respiration and the metabolic quotient qCO2 were not affected by N enrichment. Even though soil respiration increased, N enrichment inhibited microbial activity. Temporal variations in MBC, basal respiration, and qmic were also found and were associated to water availability.
How to cite: Fuentes, J.-P., Celedón, D., Bown, H., Martínez, A., and Vega, M.: Reactive N additions and their effects in microbial activity and soil respiration under a Nothofagus glauca (Phil.) Krasser forest of Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21843, https://doi.org/10.5194/egusphere-egu2020-21843, 2020.
Increases in available soil N under forests can affect several ecosystem functions including soil CO2 fluxes and microbial activity. Most of the studies, concerning reactive N deposition in natural ecosystems, are located in the northern hemisphere, meanwhile little is known in southern forest ecosystems, including deciduous Nothofagus forests. We evaluated the effect of reactive N additions (N-NO3 broadcasted under 20 trees at a rate of 400 Kg ha-1 yr-1) in soil CO2 fluxes (Rs, μmol CO2 m-2 s-1), microbial biomass C (MBC), and related ecophysiological indexes, in the most septentrional N. glauca forest of Chile (19S 310464 S, 6213139 W). Twenty additional N. glauca trees, with no N additions, were used as controls. After seven months of N-application, soil respiration was significantly higher (p<0.001) under the N-fertilized trees than in the control trees. Soil MBC, the ratio between MBC and soil organic C (qmic), and the ratio between cummulative basal respiration and SOC (qmin) decreased significantly (p<0.05) in the N-enriched trees, but only after two years of N application. Basal respiration and the metabolic quotient qCO2 were not affected by N enrichment. Even though soil respiration increased, N enrichment inhibited microbial activity. Temporal variations in MBC, basal respiration, and qmic were also found and were associated to water availability.
How to cite: Fuentes, J.-P., Celedón, D., Bown, H., Martínez, A., and Vega, M.: Reactive N additions and their effects in microbial activity and soil respiration under a Nothofagus glauca (Phil.) Krasser forest of Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21843, https://doi.org/10.5194/egusphere-egu2020-21843, 2020.
BG3.23 – Mountain forests under climate change
EGU2020-879 | Displays | BG3.23
Avalanche hazard in low-mountain part of Eastern CarpathiansOles Ridush, Bogdan Ridush, and Daria Kholiavchuk
The goal of our research is to forecast the possible avalanches in the zones of active deforestation, especially situated close to the infrastructure objects and settlements.
Despite the fact, that in Ukrainian Carpathians snow avalanches were observed by the Ukrainian Hydrometeorological Service, some recent events showed us, that it does not fulfill the current situation. The observations are regularly held in alpine and subalpine zones (>1300m. a.s.l.) of mountain ranges, in the same time territories with lower altitudes were not studied.
Due to the active deforestation of the region in recent years, it appeared in new territories with conditions suitable for the appearance of avalanches. Because deforestation is mainly held on territories with lower altitudes, which are often densely settled, it makes such avalanches hazardous for the infrastructure and settlements. One of such avalanches occurred on the slope near village Kruhlyi (Rakhiv District, Zakarpatska oblast') in February 2019, that caused blocking of the international highway with 300 m3 of ice and snow. The avalanche occurred on the deforested area with altitudes between 400 and 480 m a.s.l., inclination around 28â° and 150m long. This event changes our vision in avalanche expectancy in the Carpathian Mountains to much lower altitudes. Research is currently being held based on data about deforestation and detecting areas with suitable avalanche properties.
This research was supported by the project “Snow-avalanche activity from Romanian and Ukrainian Eastern Carpathians”, funded by AUF and IFA Romania.
How to cite: Ridush, O., Ridush, B., and Kholiavchuk, D.: Avalanche hazard in low-mountain part of Eastern Carpathians, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-879, https://doi.org/10.5194/egusphere-egu2020-879, 2020.
The goal of our research is to forecast the possible avalanches in the zones of active deforestation, especially situated close to the infrastructure objects and settlements.
Despite the fact, that in Ukrainian Carpathians snow avalanches were observed by the Ukrainian Hydrometeorological Service, some recent events showed us, that it does not fulfill the current situation. The observations are regularly held in alpine and subalpine zones (>1300m. a.s.l.) of mountain ranges, in the same time territories with lower altitudes were not studied.
Due to the active deforestation of the region in recent years, it appeared in new territories with conditions suitable for the appearance of avalanches. Because deforestation is mainly held on territories with lower altitudes, which are often densely settled, it makes such avalanches hazardous for the infrastructure and settlements. One of such avalanches occurred on the slope near village Kruhlyi (Rakhiv District, Zakarpatska oblast') in February 2019, that caused blocking of the international highway with 300 m3 of ice and snow. The avalanche occurred on the deforested area with altitudes between 400 and 480 m a.s.l., inclination around 28â° and 150m long. This event changes our vision in avalanche expectancy in the Carpathian Mountains to much lower altitudes. Research is currently being held based on data about deforestation and detecting areas with suitable avalanche properties.
This research was supported by the project “Snow-avalanche activity from Romanian and Ukrainian Eastern Carpathians”, funded by AUF and IFA Romania.
How to cite: Ridush, O., Ridush, B., and Kholiavchuk, D.: Avalanche hazard in low-mountain part of Eastern Carpathians, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-879, https://doi.org/10.5194/egusphere-egu2020-879, 2020.
EGU2020-9284 | Displays | BG3.23
What explains the elevational upward shifts at the treeline ecotone?Àngela Manrique-Alba and Santiago Beguería
Temperatures have increased worldwide in the last decades, with the most pronounced and rapid changes occurring at high altitudes and latitudes. Climate change has played an important role in modifying the altitudinal location of the treeline ecotone, i.e. the transition from timber line (the upper forest limit, defined by the presence of a continuous forest cover) to the treeline (the last upright trees reaching 2 or 3 m in height). Moreover, the influence of recent land use change (e.g., changes in pastoral use, tourism development) in treeline dynamics is increasingly acknowledged. We have compiled a dataset of treeline changes over the Pyrenees mountain range, extending over more than 12000 linear kilometres, representing a large study area that extends across a broad range of environmental conditions. The main objective was to assess the effects of climate change, past land uses and physiography on the treeline dynamics between 1956 and 2015. To explore the variation in treeline shifts we used pairs of aerial photographs taken in 1956 and 2015 and we identified the position of the tree line using a criterion based on canopy cover thresholds. Our findings show significant differences between tree line dynamics for the two analysed periods and allow us to infer the relative importance of climatic factors, land use change, and local anthropogenic influence modulating the treeline structure and its dynamics.
How to cite: Manrique-Alba, À. and Beguería, S.: What explains the elevational upward shifts at the treeline ecotone?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9284, https://doi.org/10.5194/egusphere-egu2020-9284, 2020.
Temperatures have increased worldwide in the last decades, with the most pronounced and rapid changes occurring at high altitudes and latitudes. Climate change has played an important role in modifying the altitudinal location of the treeline ecotone, i.e. the transition from timber line (the upper forest limit, defined by the presence of a continuous forest cover) to the treeline (the last upright trees reaching 2 or 3 m in height). Moreover, the influence of recent land use change (e.g., changes in pastoral use, tourism development) in treeline dynamics is increasingly acknowledged. We have compiled a dataset of treeline changes over the Pyrenees mountain range, extending over more than 12000 linear kilometres, representing a large study area that extends across a broad range of environmental conditions. The main objective was to assess the effects of climate change, past land uses and physiography on the treeline dynamics between 1956 and 2015. To explore the variation in treeline shifts we used pairs of aerial photographs taken in 1956 and 2015 and we identified the position of the tree line using a criterion based on canopy cover thresholds. Our findings show significant differences between tree line dynamics for the two analysed periods and allow us to infer the relative importance of climatic factors, land use change, and local anthropogenic influence modulating the treeline structure and its dynamics.
How to cite: Manrique-Alba, À. and Beguería, S.: What explains the elevational upward shifts at the treeline ecotone?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9284, https://doi.org/10.5194/egusphere-egu2020-9284, 2020.
EGU2020-10058 | Displays | BG3.23
Snow avalanche activity above Innsbruck, Austria: a dendrogeomorphological approachNuria Guerrero-Hue, Michaela Teich, Kurt Nicolussi, Thomas Pichler, Marc Adams, Christian Scheidl, and Jan-Thomas Fischer
Snow avalanches are natural disturbances that can cause substantial damage to forests, and endanger people and material assets. Knowledge of past avalanches is crucial for forest management and planning technical mitigation measures. Dendrogeomorphology can provide information on previous disturbances, for example tree damages, caused by avalanches in forested terrain. By analysing the past growth of trees, both temporal and spatial reconstructions of the avalanche activity in forests are possible.
We use a dendrogeomorphological approach to study the past avalanche activity on an avalanche path above the city of Innsbruck in Austria. The area is of high importance for recreation (e.g. hiking, biking and skiing) as well as avalanche mitigation. Protection forest and technical protection measures are already in place (breaking mounds, catching and deflection dams) and frequently interact with avalanches. In January 2019, an avalanche with a destructive size of 3 - 4 released above the Arzler Alm mountain hut and caused considerable damage to approx. 25 ha of forest. This event provided us with the opportunity to conduct the present study. We sampled 104 trees along three longitudinal transects at elevation bands of 1200, 1100 and 1000 m a.s.l. covering the damaged area. We furthermore applied a selective sampling scheme below the forest damage along a gully where avalanches that reached the city of Innsbruck had previously been observed. Using an increment borer at least two cores per tree were taken from damaged and undisturbed trees. A mixture of conifers and broadleaved trees (mostly Picea abies (L.) Karst, Fagus sylvatica L. and Abies alba Mill.), as well as old and young trees was selected. In addition, we recorded the exact position of each tree and measured several tree parameters (e.g. diameter at breast height, tree height, damage description). Each core was then prepared following a standard dendrochronological procedure. Tree-rings were counted and ring-width was measured using a stereo microscope and a time-series analysis program (TSAP Win). Additionally, a visual detection of growth reactions (traumatic resin ducts, reaction wood, scars, callus tissue, growth suppression or releases) was performed, and tree-ring series were cross-dated and compared with local reference chronologies. Years with tree-rings showing growth anomalies potentially caused by ecological or climatic factors were discarded as possible avalanche years.
Going forward we will compare years with major avalanche events identified by the dendrogeomorphological analysis, with existing extensive archival data and orthophotos. We expect this to confirm known events, but also to provide new information on unknown events. Based on the location of sampled trees, we will furthermore reconstruct the spatial extent of past events to estimate magnitude and frequency of avalanche activity in the area. Our results will also contribute to better predicting size and periodicity of future avalanche events and revealing potential changes in the avalanche regime. This in turn is relevant to calibrating and validating avalanche simulation models as well as for the design of technical and silvicultural protection and mitigation measures, which is especially important for an Alpine city like Innsbruck.
How to cite: Guerrero-Hue, N., Teich, M., Nicolussi, K., Pichler, T., Adams, M., Scheidl, C., and Fischer, J.-T.: Snow avalanche activity above Innsbruck, Austria: a dendrogeomorphological approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10058, https://doi.org/10.5194/egusphere-egu2020-10058, 2020.
Snow avalanches are natural disturbances that can cause substantial damage to forests, and endanger people and material assets. Knowledge of past avalanches is crucial for forest management and planning technical mitigation measures. Dendrogeomorphology can provide information on previous disturbances, for example tree damages, caused by avalanches in forested terrain. By analysing the past growth of trees, both temporal and spatial reconstructions of the avalanche activity in forests are possible.
We use a dendrogeomorphological approach to study the past avalanche activity on an avalanche path above the city of Innsbruck in Austria. The area is of high importance for recreation (e.g. hiking, biking and skiing) as well as avalanche mitigation. Protection forest and technical protection measures are already in place (breaking mounds, catching and deflection dams) and frequently interact with avalanches. In January 2019, an avalanche with a destructive size of 3 - 4 released above the Arzler Alm mountain hut and caused considerable damage to approx. 25 ha of forest. This event provided us with the opportunity to conduct the present study. We sampled 104 trees along three longitudinal transects at elevation bands of 1200, 1100 and 1000 m a.s.l. covering the damaged area. We furthermore applied a selective sampling scheme below the forest damage along a gully where avalanches that reached the city of Innsbruck had previously been observed. Using an increment borer at least two cores per tree were taken from damaged and undisturbed trees. A mixture of conifers and broadleaved trees (mostly Picea abies (L.) Karst, Fagus sylvatica L. and Abies alba Mill.), as well as old and young trees was selected. In addition, we recorded the exact position of each tree and measured several tree parameters (e.g. diameter at breast height, tree height, damage description). Each core was then prepared following a standard dendrochronological procedure. Tree-rings were counted and ring-width was measured using a stereo microscope and a time-series analysis program (TSAP Win). Additionally, a visual detection of growth reactions (traumatic resin ducts, reaction wood, scars, callus tissue, growth suppression or releases) was performed, and tree-ring series were cross-dated and compared with local reference chronologies. Years with tree-rings showing growth anomalies potentially caused by ecological or climatic factors were discarded as possible avalanche years.
Going forward we will compare years with major avalanche events identified by the dendrogeomorphological analysis, with existing extensive archival data and orthophotos. We expect this to confirm known events, but also to provide new information on unknown events. Based on the location of sampled trees, we will furthermore reconstruct the spatial extent of past events to estimate magnitude and frequency of avalanche activity in the area. Our results will also contribute to better predicting size and periodicity of future avalanche events and revealing potential changes in the avalanche regime. This in turn is relevant to calibrating and validating avalanche simulation models as well as for the design of technical and silvicultural protection and mitigation measures, which is especially important for an Alpine city like Innsbruck.
How to cite: Guerrero-Hue, N., Teich, M., Nicolussi, K., Pichler, T., Adams, M., Scheidl, C., and Fischer, J.-T.: Snow avalanche activity above Innsbruck, Austria: a dendrogeomorphological approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10058, https://doi.org/10.5194/egusphere-egu2020-10058, 2020.
EGU2020-20968 | Displays | BG3.23
Understanding and predicting species- and elevation-dependent dynamics in East Asian temperate forestsMoonil Kim, Nick Strigul, Elena Rovenskaya, Florian Kraxner, and Woo-Kyun Lee
The velocity and impact of climate change on forest appear to be site, environment, and tree species-specific. The primary objective of this research is to assess the changes in productivity of major temperate tree species in South Korea using terrestrial inventory and satellite remote sensing data. The area covered by each tree species was further categorized into either lowland forest (LLF) or high mountain forest (HMF) and investigated. We used the repeated Korean national forest inventory (NFI) data to calculate a stand-level annual increment (SAI). We then compared the SAI, a ground-based productivity measure, to MODIS net primary productivity (NPP) as a measure of productivity based on satellite imagery. In addition, the growth index of each increment core, which eliminated the effect of tree age on radial growth, was derived as an indicator of the variation of productivity by tree species over the past four decades. Based on these steps, we understand the species- and elevation-dependent dynamics. The secondary objective is to predict the forest dynamics under climate change using the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model. The PPA-SiBGC is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the major species by using NFI and increment core data. We predicted forest dynamics using the following time-series metrics: Net ecosystem exchange, aboveground biomass, belowground biomass, C, N, soil respiration, and relative abundance. We then focus on comparing the impact of climate change on LLF and HMF. The results of our study can be used to develop climate-smart forest management strategies to ensure that both LLF and HMF continue to be resilient and continue to provide a wide range of ecosystem services in the Eastern Asian region.
How to cite: Kim, M., Strigul, N., Rovenskaya, E., Kraxner, F., and Lee, W.-K.: Understanding and predicting species- and elevation-dependent dynamics in East Asian temperate forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20968, https://doi.org/10.5194/egusphere-egu2020-20968, 2020.
The velocity and impact of climate change on forest appear to be site, environment, and tree species-specific. The primary objective of this research is to assess the changes in productivity of major temperate tree species in South Korea using terrestrial inventory and satellite remote sensing data. The area covered by each tree species was further categorized into either lowland forest (LLF) or high mountain forest (HMF) and investigated. We used the repeated Korean national forest inventory (NFI) data to calculate a stand-level annual increment (SAI). We then compared the SAI, a ground-based productivity measure, to MODIS net primary productivity (NPP) as a measure of productivity based on satellite imagery. In addition, the growth index of each increment core, which eliminated the effect of tree age on radial growth, was derived as an indicator of the variation of productivity by tree species over the past four decades. Based on these steps, we understand the species- and elevation-dependent dynamics. The secondary objective is to predict the forest dynamics under climate change using the Perfect Plasticity Approximation with Simple Biogeochemistry (PPA-SiBGC) model. The PPA-SiBGC is an analytically tractable model of forest dynamics, defined in terms of parameters for individual trees, including allometry, growth, and mortality. We estimated these parameters for the major species by using NFI and increment core data. We predicted forest dynamics using the following time-series metrics: Net ecosystem exchange, aboveground biomass, belowground biomass, C, N, soil respiration, and relative abundance. We then focus on comparing the impact of climate change on LLF and HMF. The results of our study can be used to develop climate-smart forest management strategies to ensure that both LLF and HMF continue to be resilient and continue to provide a wide range of ecosystem services in the Eastern Asian region.
How to cite: Kim, M., Strigul, N., Rovenskaya, E., Kraxner, F., and Lee, W.-K.: Understanding and predicting species- and elevation-dependent dynamics in East Asian temperate forests , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20968, https://doi.org/10.5194/egusphere-egu2020-20968, 2020.
EGU2020-21291 | Displays | BG3.23
Mountain forest ecosystem services – maintaining resilience in the face of disturbancesAna Stritih, Peter Bebi, and Adrienne Grêt-Regamey
For centuries, mountain forests in the Alps have provided essential ecosystem services such as wood production and protection from natural hazards (e.g. avalanches and landslides), which enable mountain societies to thrive in these marginal environments. These ecosystem services are affected by climate and land use change, as well as changes in societal demand and management regimes. In recent years, the management of mountain forests has been increasingly driven by forest disturbances, such as windthrow, bark beetle outbreaks, and forest fires. The increasing rate of disturbances has the potential to convert forests from carbon sinks to carbon sources, and may also affect the provision of other ecosystem services, such as avalanche protection. The capacity of forests to provide services, their vulnerability to disturbance, and their resilience depend on their structure, composition and management regime. Forests with a heterogeneous structure and species composition are expected to better maintain their protection function after disturbances.
Information on forest structure and its link to functions and services is available from a variety of sources, from Earth Observation and in-situ data, existing process-based models, to local expert knowledge. We use Bayesian Networks to integrate these different types of information and model ecosystem services (carbon sequestration, wood production, and avalanche protection) in the Swiss Alps. This probabilistic modelling approach allows us to identify knowledge gaps and explore uncertainties in the future provision of ecosystem services. Since disturbances are a major source of uncertainty, we combine remote sensing and forest management data to investigate how disturbance severity and post-disturbance recovery are influenced by stand characteristics, such as structural heterogeneity. Based on this analysis, we discuss how forest management can help ensure the provision of mountain forest ecosystem services under changing disturbance regimes.
How to cite: Stritih, A., Bebi, P., and Grêt-Regamey, A.: Mountain forest ecosystem services – maintaining resilience in the face of disturbances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21291, https://doi.org/10.5194/egusphere-egu2020-21291, 2020.
For centuries, mountain forests in the Alps have provided essential ecosystem services such as wood production and protection from natural hazards (e.g. avalanches and landslides), which enable mountain societies to thrive in these marginal environments. These ecosystem services are affected by climate and land use change, as well as changes in societal demand and management regimes. In recent years, the management of mountain forests has been increasingly driven by forest disturbances, such as windthrow, bark beetle outbreaks, and forest fires. The increasing rate of disturbances has the potential to convert forests from carbon sinks to carbon sources, and may also affect the provision of other ecosystem services, such as avalanche protection. The capacity of forests to provide services, their vulnerability to disturbance, and their resilience depend on their structure, composition and management regime. Forests with a heterogeneous structure and species composition are expected to better maintain their protection function after disturbances.
Information on forest structure and its link to functions and services is available from a variety of sources, from Earth Observation and in-situ data, existing process-based models, to local expert knowledge. We use Bayesian Networks to integrate these different types of information and model ecosystem services (carbon sequestration, wood production, and avalanche protection) in the Swiss Alps. This probabilistic modelling approach allows us to identify knowledge gaps and explore uncertainties in the future provision of ecosystem services. Since disturbances are a major source of uncertainty, we combine remote sensing and forest management data to investigate how disturbance severity and post-disturbance recovery are influenced by stand characteristics, such as structural heterogeneity. Based on this analysis, we discuss how forest management can help ensure the provision of mountain forest ecosystem services under changing disturbance regimes.
How to cite: Stritih, A., Bebi, P., and Grêt-Regamey, A.: Mountain forest ecosystem services – maintaining resilience in the face of disturbances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21291, https://doi.org/10.5194/egusphere-egu2020-21291, 2020.
EGU2020-21835 | Displays | BG3.23
Hydrologic stress suppresses tree regeneration and destabilizes the lower treeline in the U.S. Rocky MountainsMarco Maneta, Solomon Dobrowski, Zack Holden, Anna Sala, Gerard Sapes, and Caelan Simeone
More frequent hydrologic stress events associated with increasing air temperatures and declining precipitation in the western U.S are resulting in more frequent and larger forest fires and tree die offs. It is also producing drier and hotter soils that are gradually becoming inadequate for seedlings, reducing the probability of recruitment and forest recovery and increasing the probability of permanent forest loss.
We use a spatially-distributed ecohydrologic model (Ech2o-SPAC) to simulate the spatial distribution of soil moisture and the conditions that generate water stress in plants at high resolution and regional extents. The model represents water stress in seedlings from a mechanistic point of view by simulating the water potential within the vascular system of seedlings. When the water potential within seedlings is very low, cavitation events that reduce water transport in the hydraulic column occur, which generate hydraulic stress. Time series of cavitation-induced low hydraulic conductivity events are combined into an index that integrates their intensity, duration and frequency to generate a dynamic stress index. The spatially distributed nature of the model permits to obtain maps of the dynamic stress index that can be directly related to the probability of seedling mortality and its influence on the regeneration potential of the lower treeline.
The model was calibrated for Pinus ponderosa seedlings using a glasshouse drought experiment and was tested using in situ monitoring data on seedling mortality from reforestation efforts. The calibrated model was used to simulate water-induced stress and mortality in seedlings in western Montana. Results show that low elevation, south facing, non-convergent topographic locations with high atmospheric demand and limited upslope water subsidies experienced the highest rates of modeled mortality. Furthermore, modeled drought mortality in seedlings from 2001-2015 correlated with the current distribution of forest cover near the lower treeline suggest that drought limits recruitment and ultimately constrains the low elevation extent of conifer forests within the region. Extrapolation of the results show that many low elevation forest regions in the western US may have crossed climatic thresholds that prevent recruitment and will probably not recover after disturbance.
How to cite: Maneta, M., Dobrowski, S., Holden, Z., Sala, A., Sapes, G., and Simeone, C.: Hydrologic stress suppresses tree regeneration and destabilizes the lower treeline in the U.S. Rocky Mountains , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21835, https://doi.org/10.5194/egusphere-egu2020-21835, 2020.
More frequent hydrologic stress events associated with increasing air temperatures and declining precipitation in the western U.S are resulting in more frequent and larger forest fires and tree die offs. It is also producing drier and hotter soils that are gradually becoming inadequate for seedlings, reducing the probability of recruitment and forest recovery and increasing the probability of permanent forest loss.
We use a spatially-distributed ecohydrologic model (Ech2o-SPAC) to simulate the spatial distribution of soil moisture and the conditions that generate water stress in plants at high resolution and regional extents. The model represents water stress in seedlings from a mechanistic point of view by simulating the water potential within the vascular system of seedlings. When the water potential within seedlings is very low, cavitation events that reduce water transport in the hydraulic column occur, which generate hydraulic stress. Time series of cavitation-induced low hydraulic conductivity events are combined into an index that integrates their intensity, duration and frequency to generate a dynamic stress index. The spatially distributed nature of the model permits to obtain maps of the dynamic stress index that can be directly related to the probability of seedling mortality and its influence on the regeneration potential of the lower treeline.
The model was calibrated for Pinus ponderosa seedlings using a glasshouse drought experiment and was tested using in situ monitoring data on seedling mortality from reforestation efforts. The calibrated model was used to simulate water-induced stress and mortality in seedlings in western Montana. Results show that low elevation, south facing, non-convergent topographic locations with high atmospheric demand and limited upslope water subsidies experienced the highest rates of modeled mortality. Furthermore, modeled drought mortality in seedlings from 2001-2015 correlated with the current distribution of forest cover near the lower treeline suggest that drought limits recruitment and ultimately constrains the low elevation extent of conifer forests within the region. Extrapolation of the results show that many low elevation forest regions in the western US may have crossed climatic thresholds that prevent recruitment and will probably not recover after disturbance.
How to cite: Maneta, M., Dobrowski, S., Holden, Z., Sala, A., Sapes, G., and Simeone, C.: Hydrologic stress suppresses tree regeneration and destabilizes the lower treeline in the U.S. Rocky Mountains , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21835, https://doi.org/10.5194/egusphere-egu2020-21835, 2020.
EGU2020-22103 | Displays | BG3.23
The influence of canopy disturbances on landslide susceptibility in mountain forestsMaximilian Rossmann, Michael Schiffer, and Christian Scheidl
The Bannwald Hallstatt in the Upper Austrian Salzkammergut, is one of the oldest measures to protect the people, the settlement area, the energy supply of the community Hallstatt, as well as important infrastructure facilities in the region. In particular, the Hallstatt World Cultural Heritage Site with its settlements and access roads, which is strongly influenced by tourism, is protected.
A new project planned for 2020 will extend the area of the Bannwald forest, which has existed since 1879, in a south-westerly direction, thus protecting the permanent settlement area of the Echerntal Valley from gravitational natural hazards. As a result, the project area, which currently covers 270 hectares, will almost double to 489 hectares. 20 million euros have been budgeted for the implementation of the project, for the next 30 years. In order to be able to use these funds in an optimal and targeted manner, it is extremely important to know the protection performance of the existing forest. In the present study a model was developed to show the protective effect against rockfall and avalanches. For this purpose, an evaluation matrix with differently weighted influencing variables was developed, which was presented as a thematic map in the form of a traffic light system ("ideal"/green, "minimal"/orange, "not fulfilled"/red.). In order to be able to better illustrate the tendencies of the achieved protection effect, a “protective-forestometer” was developed. This visualizes the protection performance of the observed partial area with a pointer and a percentage indication.
However, the aim of this work was to derive the protective performance of the individual forest areas from a purely economically oriented forest management system. Hence, the data basis for this work was the 2017 forest inventory of the Austrian Federal Forestry Company (Österreichische Bundesforste AG).
How to cite: Rossmann, M., Schiffer, M., and Scheidl, C.: The influence of canopy disturbances on landslide susceptibility in mountain forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22103, https://doi.org/10.5194/egusphere-egu2020-22103, 2020.
The Bannwald Hallstatt in the Upper Austrian Salzkammergut, is one of the oldest measures to protect the people, the settlement area, the energy supply of the community Hallstatt, as well as important infrastructure facilities in the region. In particular, the Hallstatt World Cultural Heritage Site with its settlements and access roads, which is strongly influenced by tourism, is protected.
A new project planned for 2020 will extend the area of the Bannwald forest, which has existed since 1879, in a south-westerly direction, thus protecting the permanent settlement area of the Echerntal Valley from gravitational natural hazards. As a result, the project area, which currently covers 270 hectares, will almost double to 489 hectares. 20 million euros have been budgeted for the implementation of the project, for the next 30 years. In order to be able to use these funds in an optimal and targeted manner, it is extremely important to know the protection performance of the existing forest. In the present study a model was developed to show the protective effect against rockfall and avalanches. For this purpose, an evaluation matrix with differently weighted influencing variables was developed, which was presented as a thematic map in the form of a traffic light system ("ideal"/green, "minimal"/orange, "not fulfilled"/red.). In order to be able to better illustrate the tendencies of the achieved protection effect, a “protective-forestometer” was developed. This visualizes the protection performance of the observed partial area with a pointer and a percentage indication.
However, the aim of this work was to derive the protective performance of the individual forest areas from a purely economically oriented forest management system. Hence, the data basis for this work was the 2017 forest inventory of the Austrian Federal Forestry Company (Österreichische Bundesforste AG).
How to cite: Rossmann, M., Schiffer, M., and Scheidl, C.: The influence of canopy disturbances on landslide susceptibility in mountain forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22103, https://doi.org/10.5194/egusphere-egu2020-22103, 2020.
EGU2020-22538 | Displays | BG3.23
Filtering of large wood in torrential catchmentsMarkus Beck and Johannes Hübl
Large wood can cause serious damage on existing structures like bridges, dams and flood protection measures. Therefore, large wood recruitment in rivers became an important topic concerning risk mitigation and flood protection both in mountainous areas and in lowland rivers all around the world. However, former mitigation constructions like check dams, often don’t consider the impact of single wood pieces or the effect of a dense wood accumulation on the stability and function. To avoid potential negative effects, several strategies have been established. An often-used strategy is to filter out the wood pieces before a critical river section or structure is affected.
In the year 2002, a flood event in the Naarn river in Perg, Austria, mobilized and transported large wood pieces along the river path and caused damage at a bridge in the downstream settlement area. The mobilization was mainly caused by side erosion along the wooded hillslopes connected to the river system. To avoid this problem in future, a protection measure to filter out large wood is planned in the above situated river section. To estimate the effect of the planned measure, different scenarios will be analyzed, based on a small scale hydraulic physical model with compliance to Froude scaling. The research focus lies on the effectivity of the measure with a discharge ranging from a frequent (one-year recurrence) discharge event (HQ1) to a design event of a 100 year recurrence discharge (HQ100) as well as the case of a system overload. Forces, flow velocity and flow depths and the effect of debris accumulation are also part of the research. The main goal is to find the optimal filter structure with the highest effectivity. The results of this model will be realized at the Naarn river.
How to cite: Beck, M. and Hübl, J.: Filtering of large wood in torrential catchments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22538, https://doi.org/10.5194/egusphere-egu2020-22538, 2020.
Large wood can cause serious damage on existing structures like bridges, dams and flood protection measures. Therefore, large wood recruitment in rivers became an important topic concerning risk mitigation and flood protection both in mountainous areas and in lowland rivers all around the world. However, former mitigation constructions like check dams, often don’t consider the impact of single wood pieces or the effect of a dense wood accumulation on the stability and function. To avoid potential negative effects, several strategies have been established. An often-used strategy is to filter out the wood pieces before a critical river section or structure is affected.
In the year 2002, a flood event in the Naarn river in Perg, Austria, mobilized and transported large wood pieces along the river path and caused damage at a bridge in the downstream settlement area. The mobilization was mainly caused by side erosion along the wooded hillslopes connected to the river system. To avoid this problem in future, a protection measure to filter out large wood is planned in the above situated river section. To estimate the effect of the planned measure, different scenarios will be analyzed, based on a small scale hydraulic physical model with compliance to Froude scaling. The research focus lies on the effectivity of the measure with a discharge ranging from a frequent (one-year recurrence) discharge event (HQ1) to a design event of a 100 year recurrence discharge (HQ100) as well as the case of a system overload. Forces, flow velocity and flow depths and the effect of debris accumulation are also part of the research. The main goal is to find the optimal filter structure with the highest effectivity. The results of this model will be realized at the Naarn river.
How to cite: Beck, M. and Hübl, J.: Filtering of large wood in torrential catchments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22538, https://doi.org/10.5194/egusphere-egu2020-22538, 2020.
BG3.24 – Soil Carbon linked to global change
EGU2020-8004 | Displays | BG3.24
Projected soil organic carbon stocks in German croplands under different climate change scenariosCatharina Riggers, Christopher Poeplau, Axel Don, Cathleen Frühauf, and René Dechow
Mineralization of soil organic carbon (SOC) is driven by temperature and soil moisture. Thus, climate change might affect future SOC stocks with implications for greenhouse gas fluxes from soils and soil fertility of arable land. We used a model ensemble of different SOC models and climate projections to project SOC stocks in German croplands up to 2099 under different climate change scenarios of the Intergovernmental Panel of Climate Change. Current SOC stocks and management data were derived from the German Agricultural Soil Inventory. We estimated the increase in carbon (C) input required to preserve or increase recent SOC stocks. The model ensemble projected declining SOC stocks in German croplands under current management and yield levels. This was true for a scenario with no future climate change (-0.065 Mg ha-1 a-1) as well as for the climate change scenarios (-0.070 Mg ha-1 a-1 to -0.120 Mg ha-1 a-1). Thereby, preserving current SOC stocks would require an increase in current C input to the soil of between 51 % (+1.3 Mg ha-1) and 93 % (+2.3 Mg ha-1). We further estimated that a C input increase of between 221 % and 283 % would be required to increase SOC stocks by 34.4 % in 2099 (4 ‰ a-1). The results of this study indicate that increasing SOC stocks under climate change by a noticeable amount will be challenging since SOC losses need to be overcompensated.
How to cite: Riggers, C., Poeplau, C., Don, A., Frühauf, C., and Dechow, R.: Projected soil organic carbon stocks in German croplands under different climate change scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8004, https://doi.org/10.5194/egusphere-egu2020-8004, 2020.
Mineralization of soil organic carbon (SOC) is driven by temperature and soil moisture. Thus, climate change might affect future SOC stocks with implications for greenhouse gas fluxes from soils and soil fertility of arable land. We used a model ensemble of different SOC models and climate projections to project SOC stocks in German croplands up to 2099 under different climate change scenarios of the Intergovernmental Panel of Climate Change. Current SOC stocks and management data were derived from the German Agricultural Soil Inventory. We estimated the increase in carbon (C) input required to preserve or increase recent SOC stocks. The model ensemble projected declining SOC stocks in German croplands under current management and yield levels. This was true for a scenario with no future climate change (-0.065 Mg ha-1 a-1) as well as for the climate change scenarios (-0.070 Mg ha-1 a-1 to -0.120 Mg ha-1 a-1). Thereby, preserving current SOC stocks would require an increase in current C input to the soil of between 51 % (+1.3 Mg ha-1) and 93 % (+2.3 Mg ha-1). We further estimated that a C input increase of between 221 % and 283 % would be required to increase SOC stocks by 34.4 % in 2099 (4 ‰ a-1). The results of this study indicate that increasing SOC stocks under climate change by a noticeable amount will be challenging since SOC losses need to be overcompensated.
How to cite: Riggers, C., Poeplau, C., Don, A., Frühauf, C., and Dechow, R.: Projected soil organic carbon stocks in German croplands under different climate change scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8004, https://doi.org/10.5194/egusphere-egu2020-8004, 2020.
EGU2020-9866 | Displays | BG3.24
A spatial emergent constraint on the sensitivity of soil carbon turnover time to global warmingRebecca Varney, Peter Cox, Sarah Chadburn, Pierre Friedlingstein, Eleanor Burke, Charles Koven, and Gustaf Hugelius
Carbon cycle feedbacks represent large uncertainties on climate change projections, and the response
of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil
carbon depend on changes in litter and root inputs from plants, and especially on reductions in the
turnover time of soil carbon (τs) with warming. The latter represents the change in soil carbon
due to the response of soil turnover time (∆Cs,τ), and can be diagnosed from projections made with
Earth System Models (ESMs). It is found to span a large range even at the Paris Agreement Target
of 2◦C global warming. We use the spatial variability of τs inferred from observations to obtain a
constraint on ∆Cs,τ . This spatial emergent constraint allows us to greatly reduce the uncertainty in
∆Cs,τ at 2◦C global warming. We do likewise for other levels of global warming to derive a best
estimate for the effective sensitivity of τs to global warming, and derive a q10 equivalent value for
heterotrophic respiration.
How to cite: Varney, R., Cox, P., Chadburn, S., Friedlingstein, P., Burke, E., Koven, C., and Hugelius, G.: A spatial emergent constraint on the sensitivity of soil carbon turnover time to global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9866, https://doi.org/10.5194/egusphere-egu2020-9866, 2020.
Carbon cycle feedbacks represent large uncertainties on climate change projections, and the response
of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil
carbon depend on changes in litter and root inputs from plants, and especially on reductions in the
turnover time of soil carbon (τs) with warming. The latter represents the change in soil carbon
due to the response of soil turnover time (∆Cs,τ), and can be diagnosed from projections made with
Earth System Models (ESMs). It is found to span a large range even at the Paris Agreement Target
of 2◦C global warming. We use the spatial variability of τs inferred from observations to obtain a
constraint on ∆Cs,τ . This spatial emergent constraint allows us to greatly reduce the uncertainty in
∆Cs,τ at 2◦C global warming. We do likewise for other levels of global warming to derive a best
estimate for the effective sensitivity of τs to global warming, and derive a q10 equivalent value for
heterotrophic respiration.
How to cite: Varney, R., Cox, P., Chadburn, S., Friedlingstein, P., Burke, E., Koven, C., and Hugelius, G.: A spatial emergent constraint on the sensitivity of soil carbon turnover time to global warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9866, https://doi.org/10.5194/egusphere-egu2020-9866, 2020.
EGU2020-9716 | Displays | BG3.24
Linking temperature sensitivities of soil enzymes to temperature responses of different organic matter pools in the DAISY modelMoritz Laub, Rana Shahbaz Ali, Michael Scott Demyan, Yvonne Funkuin Nkwain, Christian Poll, Petra Högy, Arne Poyda, Joachim Ingwersen, Sergey Blagodatsky, Ellen Kandeler, and Georg Cadisch
Soil organic carbon (SOC) losses under a changing climate are driven by the temperature sensitivity of SOC mineralization (usually expressed as Q10, the multiplier of activity with 10 °C temperature increase). The activation energy theory (AET) suggests that, due to higher activation energies, the more complex the carbon, the higher is mineralization Q10. However, studies on Q10 have been inconsistent with regard to AET. Measurements of potential soil enzymes activity Q10 even contradicted AET: Phenoloxidase (representing complex carbon) had consistently lower Q10 than the more labile xylanase and glucosidase. This study used two approaches of examining Q10 in SOC modeling: 1) Bayesian calibration (BC) and 2) using different measured enzyme Q10 as proxies for mineralization Q10 of different SOC pools. The SOC model was DAISY (S. Hansen et al., 2012). BC informed Q10 by field measured data, while the second approach tested if directly using enzyme Q10 (of phenoloxidase, glucosidase and xylanase) for DAISY pools improved simulation results. Both approaches used the temperature sensitive measurements of CO2 evolution and soil microbial biomass. The measured enzyme Q10 were from field manipulation experiments with bare fallow and vegetated plots in the two regions of Kraichgau and Swabian Jura in Southwest Germany. The enzyme-derived Q10 were used for modelling those fields and furthermore for in‑situ litterbag decomposition experiments at 20 sites in the same region. Two further laboratory experiments with temperature manipulation were included: an incubation of the field residues into soil and an incubation of bare soil from the start and year 50 of a long duration bare fallow (from Ultuna). The BC made use of CO2 and microbial data to inform about the range of Q10 of different carbon pools for the individual experiments and combined data.
The BC of the residue incubation experiment constrained Q10 for metabolic (~3) and structural litter (~2). Estimated 95% credibility intervals did not overlap. The BC for Ultuna could constrain the slow and fast SOC pool with Q10 ~2.8 and ~3, respectively, but credibility intervals of both pools overlapped. The Q10 of field experiments, which had most abundant data, could not be constrained by BC, probably because their annual temparature variability was too low. However, the model errors of the field experiment could be reduced by the second approach, when the Q10 of phenoloxidase was used for to the structural litter pool as well as for the fast and slow SOC pools. Thus regional enzyme Q10 improved the model fit but only for regional simulations. Therefore, they could be useful proxies when natural temperature range is too small to inform temperature sensitivity by BC. Any trends found in this study contradicted AET, both from measured enzymes and BC of the incubation experiments. This calls for alternative Q10 hypotheses and the need for individual Q10 values for different SOC pool rather than a general one. BC approaches would benefit from a wider temperature range of field experiments and understanding what causes variable enzyme Q10 could help to improve future SOC models.
How to cite: Laub, M., Ali, R. S., Demyan, M. S., Nkwain, Y. F., Poll, C., Högy, P., Poyda, A., Ingwersen, J., Blagodatsky, S., Kandeler, E., and Cadisch, G.: Linking temperature sensitivities of soil enzymes to temperature responses of different organic matter pools in the DAISY model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9716, https://doi.org/10.5194/egusphere-egu2020-9716, 2020.
Soil organic carbon (SOC) losses under a changing climate are driven by the temperature sensitivity of SOC mineralization (usually expressed as Q10, the multiplier of activity with 10 °C temperature increase). The activation energy theory (AET) suggests that, due to higher activation energies, the more complex the carbon, the higher is mineralization Q10. However, studies on Q10 have been inconsistent with regard to AET. Measurements of potential soil enzymes activity Q10 even contradicted AET: Phenoloxidase (representing complex carbon) had consistently lower Q10 than the more labile xylanase and glucosidase. This study used two approaches of examining Q10 in SOC modeling: 1) Bayesian calibration (BC) and 2) using different measured enzyme Q10 as proxies for mineralization Q10 of different SOC pools. The SOC model was DAISY (S. Hansen et al., 2012). BC informed Q10 by field measured data, while the second approach tested if directly using enzyme Q10 (of phenoloxidase, glucosidase and xylanase) for DAISY pools improved simulation results. Both approaches used the temperature sensitive measurements of CO2 evolution and soil microbial biomass. The measured enzyme Q10 were from field manipulation experiments with bare fallow and vegetated plots in the two regions of Kraichgau and Swabian Jura in Southwest Germany. The enzyme-derived Q10 were used for modelling those fields and furthermore for in‑situ litterbag decomposition experiments at 20 sites in the same region. Two further laboratory experiments with temperature manipulation were included: an incubation of the field residues into soil and an incubation of bare soil from the start and year 50 of a long duration bare fallow (from Ultuna). The BC made use of CO2 and microbial data to inform about the range of Q10 of different carbon pools for the individual experiments and combined data.
The BC of the residue incubation experiment constrained Q10 for metabolic (~3) and structural litter (~2). Estimated 95% credibility intervals did not overlap. The BC for Ultuna could constrain the slow and fast SOC pool with Q10 ~2.8 and ~3, respectively, but credibility intervals of both pools overlapped. The Q10 of field experiments, which had most abundant data, could not be constrained by BC, probably because their annual temparature variability was too low. However, the model errors of the field experiment could be reduced by the second approach, when the Q10 of phenoloxidase was used for to the structural litter pool as well as for the fast and slow SOC pools. Thus regional enzyme Q10 improved the model fit but only for regional simulations. Therefore, they could be useful proxies when natural temperature range is too small to inform temperature sensitivity by BC. Any trends found in this study contradicted AET, both from measured enzymes and BC of the incubation experiments. This calls for alternative Q10 hypotheses and the need for individual Q10 values for different SOC pool rather than a general one. BC approaches would benefit from a wider temperature range of field experiments and understanding what causes variable enzyme Q10 could help to improve future SOC models.
How to cite: Laub, M., Ali, R. S., Demyan, M. S., Nkwain, Y. F., Poll, C., Högy, P., Poyda, A., Ingwersen, J., Blagodatsky, S., Kandeler, E., and Cadisch, G.: Linking temperature sensitivities of soil enzymes to temperature responses of different organic matter pools in the DAISY model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9716, https://doi.org/10.5194/egusphere-egu2020-9716, 2020.
EGU2020-604 | Displays | BG3.24
Legacy of constant and diurnally oscillating temperatures on soil respiration and microbial community structure.Adetunji Alex Adekanmbi, Yiran Zou, Xin Shu, Liz Shaw, and Tom Sizmur
Increasing temperatures due to the greenhouse effect are known to increase soil respiration, releasing more CO2 into the atmosphere and resulting in a positive feedback in our climate system. Diurnal oscillations in air temperatures influence soil temperatures and thus may affect soil microbial activities and organic carbon vulnerability. Laboratory incubation studies evaluating the temperature sensitivity of soil respiration frequently use measurements of respiration taken at a constant incubation temperature in soil that has also been pre-incubated at a constant temperature. However, such constant temperature incubations do not represent the field situation, where soils undergo diurnal oscillations in temperate under the influence of changing air temperature. We investigated the effects of constant and diurnally oscillating temperatures on soil respiration, organic matter and soil microbial community composition. A Grassland soil from the UK was either incubated at a constant temperature of 5, 10 or 15 ºC , or diurnally oscillated between 5 and 15 ºC (increasing or decreasing at 2.5 ºC for 3 hour intervals within each 24 hours). Soil CO2 flux was measured by temporarily moving incubated soils from each of the abovementioned treatments to 5, 10 or 15 ºC, such that soils incubated at each temperature had CO2 flux measured at every temperature. Our approach used incubation and measurement temperatures as factors to explore the influence of incubation temperature on the respiration at the measured temperature and to determine temperature sensitivity of CO2 flux for each incubation treatment. We hypothesised that a higher measurement temperature would result in greater CO2 flux and that, irrespective of measurement temperature, CO2 emitted from the 5 to 15 ºC oscillating incubation would be similar to that from the 10 ºC incubation. The results showed that both incubation and measurement temperatures influence soil respiration differently. Soil respiration measured at 15 ºC was greater than that of 5 and 10 ºC, irrespective of the incubation temperature. Incubating soil at a temperature oscillating between 5 and 15 oC resulted in greater CO2 flux than constant incubations at 10 ºC or 5 ºC, but was statistically similar to 15 ºC. This may be because extracellular depolymerisation is the rate limiting step in soil respiration and the time spent at 15 ºC in the oscillating treatment was sufficient to depolymerise enough polysaccharides to maximise intracellular respiration. The greater CO2 release in soils incubated at 15 ºC or oscillating between 5 and 15 ºC coincided with depletion of the soil organic carbon and a shift in the phospholipid fatty acid profile of the soil microbial community, consistent with thermal adaptation to higher temperatures. Dissolved organic carbon and C/N ratio significantly decreased in soils incubated at 15 ºC or oscillating between 5 and 15 ºC with attendant increase in the ratios of Gram negative to positive bacteria and cis/trans ratio, and decreased Fungi/Bacteria ratio. Our results suggest that daily maximum temperatures are more important than daily minimum or average temperatures when considering the response of soils to warming.
How to cite: Adekanmbi, A. A., Zou, Y., Shu, X., Shaw, L., and Sizmur, T.: Legacy of constant and diurnally oscillating temperatures on soil respiration and microbial community structure., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-604, https://doi.org/10.5194/egusphere-egu2020-604, 2020.
Increasing temperatures due to the greenhouse effect are known to increase soil respiration, releasing more CO2 into the atmosphere and resulting in a positive feedback in our climate system. Diurnal oscillations in air temperatures influence soil temperatures and thus may affect soil microbial activities and organic carbon vulnerability. Laboratory incubation studies evaluating the temperature sensitivity of soil respiration frequently use measurements of respiration taken at a constant incubation temperature in soil that has also been pre-incubated at a constant temperature. However, such constant temperature incubations do not represent the field situation, where soils undergo diurnal oscillations in temperate under the influence of changing air temperature. We investigated the effects of constant and diurnally oscillating temperatures on soil respiration, organic matter and soil microbial community composition. A Grassland soil from the UK was either incubated at a constant temperature of 5, 10 or 15 ºC , or diurnally oscillated between 5 and 15 ºC (increasing or decreasing at 2.5 ºC for 3 hour intervals within each 24 hours). Soil CO2 flux was measured by temporarily moving incubated soils from each of the abovementioned treatments to 5, 10 or 15 ºC, such that soils incubated at each temperature had CO2 flux measured at every temperature. Our approach used incubation and measurement temperatures as factors to explore the influence of incubation temperature on the respiration at the measured temperature and to determine temperature sensitivity of CO2 flux for each incubation treatment. We hypothesised that a higher measurement temperature would result in greater CO2 flux and that, irrespective of measurement temperature, CO2 emitted from the 5 to 15 ºC oscillating incubation would be similar to that from the 10 ºC incubation. The results showed that both incubation and measurement temperatures influence soil respiration differently. Soil respiration measured at 15 ºC was greater than that of 5 and 10 ºC, irrespective of the incubation temperature. Incubating soil at a temperature oscillating between 5 and 15 oC resulted in greater CO2 flux than constant incubations at 10 ºC or 5 ºC, but was statistically similar to 15 ºC. This may be because extracellular depolymerisation is the rate limiting step in soil respiration and the time spent at 15 ºC in the oscillating treatment was sufficient to depolymerise enough polysaccharides to maximise intracellular respiration. The greater CO2 release in soils incubated at 15 ºC or oscillating between 5 and 15 ºC coincided with depletion of the soil organic carbon and a shift in the phospholipid fatty acid profile of the soil microbial community, consistent with thermal adaptation to higher temperatures. Dissolved organic carbon and C/N ratio significantly decreased in soils incubated at 15 ºC or oscillating between 5 and 15 ºC with attendant increase in the ratios of Gram negative to positive bacteria and cis/trans ratio, and decreased Fungi/Bacteria ratio. Our results suggest that daily maximum temperatures are more important than daily minimum or average temperatures when considering the response of soils to warming.
How to cite: Adekanmbi, A. A., Zou, Y., Shu, X., Shaw, L., and Sizmur, T.: Legacy of constant and diurnally oscillating temperatures on soil respiration and microbial community structure., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-604, https://doi.org/10.5194/egusphere-egu2020-604, 2020.
EGU2020-9128 | Displays | BG3.24
Soil organic matter build-up during soil formation in glacier forefields around the worldNorine Khedim, Lauric Cécillon, Jérome Poulenard, Pierre Barré, François Baudin, Silvio Marta, Ludovic Gielly, Roberto Ambrosini, Antoine Rabatel, Cédric Dentant, Sophie Cauvy, Fabien Anthelme, Levan Tielidze, Erwan Messager, Philippe Choler, and Francesco Ficetola
Due to the continued ice retreat with global warming, areas of deglaciated forefields will strongly increase in the future, leading to the emergence of new terrestrial ecosystems in many regions of the world. The soil chronosequences resulting from glacier retreat have long been a key tool for studies focusing on the mechanisms of soil formation and soil organic matter storage.
This study aimed at identifying general patterns in soil organic matter (SOM) build-up during the initial stage of soil formation and ecosystem development (0–500 years) in different glacier forefields around the world. For this purpose, we measured total soil organic matter concentration (C and N), its stable isotopic composition (13C, 15N) and its distribution in carbon pools of different biogeochemical stability over time in ten soil chronosequences on glacier forefields (four Andeans, one Canadian Rockies, one Greenland, two Alps, one Caucasus, one Himalaya). The distribution of SOM in carbon pools was estimated with Rock-Eval® thermal analysis. We then tested the effect of time and climatic variables (temperature, precipitation) on the build-up of soil organic matter (total concentration, isotopic signature and distribution in carbon pools).
We found a positive correlation between the rate of SOM accumulation and the average temperature of the warmest quarter (three-month period). We also noted significant traces of atmospheric deposition of anthropogenic origin in some forefield glaciers, particularly in the northern hemisphere. The build-up of soil carbon pools showed consistent trends across the soil chronosequences of the ten glacier forefields. During the first decades of soil formation, the very low SOM quantities were dominated by a very stable carbon with a small but significant labile carbon pool. This may highlight the presence of organic matter derived from ancient carbon on the different forefield glaciers, decomposed by an active living trophic network of soil microorganisms. The overall stability of SOM then slowly decreased with time, reflecting the soil carbon input from plants.
We conclude that while the rate of SOM accumulation is driven by climate (air temperature of the growing season), the build-up of soil carbon pools shows a consistent temporal trajectory on the different glacier forefields around the world.
How to cite: Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F., Marta, S., Gielly, L., Ambrosini, R., Rabatel, A., Dentant, C., Cauvy, S., Anthelme, F., Tielidze, L., Messager, E., Choler, P., and Ficetola, F.: Soil organic matter build-up during soil formation in glacier forefields around the world , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9128, https://doi.org/10.5194/egusphere-egu2020-9128, 2020.
Due to the continued ice retreat with global warming, areas of deglaciated forefields will strongly increase in the future, leading to the emergence of new terrestrial ecosystems in many regions of the world. The soil chronosequences resulting from glacier retreat have long been a key tool for studies focusing on the mechanisms of soil formation and soil organic matter storage.
This study aimed at identifying general patterns in soil organic matter (SOM) build-up during the initial stage of soil formation and ecosystem development (0–500 years) in different glacier forefields around the world. For this purpose, we measured total soil organic matter concentration (C and N), its stable isotopic composition (13C, 15N) and its distribution in carbon pools of different biogeochemical stability over time in ten soil chronosequences on glacier forefields (four Andeans, one Canadian Rockies, one Greenland, two Alps, one Caucasus, one Himalaya). The distribution of SOM in carbon pools was estimated with Rock-Eval® thermal analysis. We then tested the effect of time and climatic variables (temperature, precipitation) on the build-up of soil organic matter (total concentration, isotopic signature and distribution in carbon pools).
We found a positive correlation between the rate of SOM accumulation and the average temperature of the warmest quarter (three-month period). We also noted significant traces of atmospheric deposition of anthropogenic origin in some forefield glaciers, particularly in the northern hemisphere. The build-up of soil carbon pools showed consistent trends across the soil chronosequences of the ten glacier forefields. During the first decades of soil formation, the very low SOM quantities were dominated by a very stable carbon with a small but significant labile carbon pool. This may highlight the presence of organic matter derived from ancient carbon on the different forefield glaciers, decomposed by an active living trophic network of soil microorganisms. The overall stability of SOM then slowly decreased with time, reflecting the soil carbon input from plants.
We conclude that while the rate of SOM accumulation is driven by climate (air temperature of the growing season), the build-up of soil carbon pools shows a consistent temporal trajectory on the different glacier forefields around the world.
How to cite: Khedim, N., Cécillon, L., Poulenard, J., Barré, P., Baudin, F., Marta, S., Gielly, L., Ambrosini, R., Rabatel, A., Dentant, C., Cauvy, S., Anthelme, F., Tielidze, L., Messager, E., Choler, P., and Ficetola, F.: Soil organic matter build-up during soil formation in glacier forefields around the world , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9128, https://doi.org/10.5194/egusphere-egu2020-9128, 2020.
EGU2020-9182 | Displays | BG3.24
Soil organic carbon along a geothermal gradient in North-West CanadaTino Peplau, Edward Gregorich, and Christopher Poeplau
Global warming will increase soil microbial activity and thus catalyse the mineralisation of soil organic carbon (SOC). Predicting the dynamics of soil organic carbon in response to warming is crucial but associated with large uncertainties, owing to experimental limitations. Most studies use in-vitro incubation experiments or relatively short-term in-situ soil warming experiments. Long-term observations on the consequences of soil warming on whole-profile SOC are still rare. Here, we used a long-term geothermal gradient in North-West Canada to study effects of warming on quantity and quality of SOC in an aspen forest ecosystem.
The Takhini hot springs are located within the region of discontinuous permafrost in the southern Yukon Territory, Canada. The springs warm the surrounding soil constantly and lead to a horizontal temperature gradient of approximately 10°C within a radius of 100 meters. As these natural springs heat the ground for centuries and the forest ecosystem surrounding the springs is relatively homogenous, the site provides ideal conditions for observing long-term effects of soil warming on ecosystem properties. Soils were sampled at four different warming intensities to a depth of 80 cm and analysed for their SOC content and further soil properties in different depths.
For the bulk soil, we found a significant negative relationship between soil temperature and SOC stocks. This confirms that climate change will most likely induce SOC loss and thus a positive climate- carbon cycle feedback loop. The response of five different SOC fractions to warming will also be presented.
How to cite: Peplau, T., Gregorich, E., and Poeplau, C.: Soil organic carbon along a geothermal gradient in North-West Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9182, https://doi.org/10.5194/egusphere-egu2020-9182, 2020.
Global warming will increase soil microbial activity and thus catalyse the mineralisation of soil organic carbon (SOC). Predicting the dynamics of soil organic carbon in response to warming is crucial but associated with large uncertainties, owing to experimental limitations. Most studies use in-vitro incubation experiments or relatively short-term in-situ soil warming experiments. Long-term observations on the consequences of soil warming on whole-profile SOC are still rare. Here, we used a long-term geothermal gradient in North-West Canada to study effects of warming on quantity and quality of SOC in an aspen forest ecosystem.
The Takhini hot springs are located within the region of discontinuous permafrost in the southern Yukon Territory, Canada. The springs warm the surrounding soil constantly and lead to a horizontal temperature gradient of approximately 10°C within a radius of 100 meters. As these natural springs heat the ground for centuries and the forest ecosystem surrounding the springs is relatively homogenous, the site provides ideal conditions for observing long-term effects of soil warming on ecosystem properties. Soils were sampled at four different warming intensities to a depth of 80 cm and analysed for their SOC content and further soil properties in different depths.
For the bulk soil, we found a significant negative relationship between soil temperature and SOC stocks. This confirms that climate change will most likely induce SOC loss and thus a positive climate- carbon cycle feedback loop. The response of five different SOC fractions to warming will also be presented.
How to cite: Peplau, T., Gregorich, E., and Poeplau, C.: Soil organic carbon along a geothermal gradient in North-West Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9182, https://doi.org/10.5194/egusphere-egu2020-9182, 2020.
EGU2020-12339 * | Displays | BG3.24 | Highlight | BG Division Outstanding ECS Lecture
The response of deep soil carbon to climate change: Empirical studies from forests to farmland and the tropics to the arcticCaitlin Hicks Pries
Over half of global soil organic carbon (SOC) is stored in subsurface soils (>20 cm depth), but the vulnerability of this deeper SOC to climate change has only begun to be tested. Most soil warming experiments have either only warmed surface soils or only examined the response of the surface carbon dioxide flux, so the sensitivity of SOC at different soil depths and the potential of various soil depths to generate a positive feedback to climate change is undetermined. As predictive models of terrestrial carbon storage move toward more mechanistic process representations, we need to understand how the carbon cycle differs across soil depths. We present depth-explicit measurements of soil CO2 production from seven studies, including five in situ deep soil warming experiments and two laboratory incubations. The experiments’ locations ranged from coniferous to hardwood temperate forests in the United States and from volcanic soils in Hawaii to agricultural soils in France. The incubated soils came from a former agricultural field and arctic tundra. We have found that in temperate forests, deep soil carbon is just as vulnerable to warming-induced losses as surface soils and that warming has caused a shift in the source of carbon being respired at all depths. However, where minerals are strongly associated with organic carbon, as in Hawaii, or in degraded soils where much of the organic carbon has been lost, deep soil carbon is not vulnerable to warming-induced losses. Thus, the response of deep soil to climate change seems to be dependent on how available deep soil carbon is to microbes.
How to cite: Hicks Pries, C.: The response of deep soil carbon to climate change: Empirical studies from forests to farmland and the tropics to the arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12339, https://doi.org/10.5194/egusphere-egu2020-12339, 2020.
Over half of global soil organic carbon (SOC) is stored in subsurface soils (>20 cm depth), but the vulnerability of this deeper SOC to climate change has only begun to be tested. Most soil warming experiments have either only warmed surface soils or only examined the response of the surface carbon dioxide flux, so the sensitivity of SOC at different soil depths and the potential of various soil depths to generate a positive feedback to climate change is undetermined. As predictive models of terrestrial carbon storage move toward more mechanistic process representations, we need to understand how the carbon cycle differs across soil depths. We present depth-explicit measurements of soil CO2 production from seven studies, including five in situ deep soil warming experiments and two laboratory incubations. The experiments’ locations ranged from coniferous to hardwood temperate forests in the United States and from volcanic soils in Hawaii to agricultural soils in France. The incubated soils came from a former agricultural field and arctic tundra. We have found that in temperate forests, deep soil carbon is just as vulnerable to warming-induced losses as surface soils and that warming has caused a shift in the source of carbon being respired at all depths. However, where minerals are strongly associated with organic carbon, as in Hawaii, or in degraded soils where much of the organic carbon has been lost, deep soil carbon is not vulnerable to warming-induced losses. Thus, the response of deep soil to climate change seems to be dependent on how available deep soil carbon is to microbes.
How to cite: Hicks Pries, C.: The response of deep soil carbon to climate change: Empirical studies from forests to farmland and the tropics to the arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12339, https://doi.org/10.5194/egusphere-egu2020-12339, 2020.
EGU2020-1574 | Displays | BG3.24
Evaluation of Grassland Carbon Pool Based on a TECO-R Model and a Climate-Driving Function: A Case Study in the Xilingol Typical Steppe Region of Inner Mongolia, ChinaXin Lyu
While researchers worldwide have spent much effort on quantitatively evaluating organic carbon at the regional scale, few studies have examined organic carbon pools at different levels, or their driving factors. Comprehensive analysis in this field would facilitate a deeper understanding of carbon pool mechanisms and lay a foundation for future work. In this study, the improved Terrestrial Ecosystem Regional (TECO-R) model was modified and parameters were calibrated for local application. The vegetation, litter, soil, and ecosystem carbon pools in the Xilingol typical steppe region of Inner Mongolia, China were quantitatively modeled for the 2011–2018 period. The organic carbon pools at different levels were compared and analyzed in terms of their spatial distribution, inter-annual variation, and climate-driving factors. Overall, the modified TECO-R model accurately simulated carbon storage, revealing that the various organic carbon pools increased overall and were characterized by different degrees of clustering in their spatial distribution, inter-annual variation, and climate-driving factors. Clear formation mechanisms were observed in the soil, litter, and root carbon pools. As the soil depth increased, the carbon stock of the root carbon pool and the soil carbon pool decreased. Climate factors exerted different degrees of constraints on each carbon pool. Integrated studies, such as this, promote understanding of the compositional differences in grassland carbon pools and the driving mechanism for these carbon pools, which, taken together, can help shape the policy for carbon sink management in grasslands.
How to cite: Lyu, X.: Evaluation of Grassland Carbon Pool Based on a TECO-R Model and a Climate-Driving Function: A Case Study in the Xilingol Typical Steppe Region of Inner Mongolia, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1574, https://doi.org/10.5194/egusphere-egu2020-1574, 2020.
While researchers worldwide have spent much effort on quantitatively evaluating organic carbon at the regional scale, few studies have examined organic carbon pools at different levels, or their driving factors. Comprehensive analysis in this field would facilitate a deeper understanding of carbon pool mechanisms and lay a foundation for future work. In this study, the improved Terrestrial Ecosystem Regional (TECO-R) model was modified and parameters were calibrated for local application. The vegetation, litter, soil, and ecosystem carbon pools in the Xilingol typical steppe region of Inner Mongolia, China were quantitatively modeled for the 2011–2018 period. The organic carbon pools at different levels were compared and analyzed in terms of their spatial distribution, inter-annual variation, and climate-driving factors. Overall, the modified TECO-R model accurately simulated carbon storage, revealing that the various organic carbon pools increased overall and were characterized by different degrees of clustering in their spatial distribution, inter-annual variation, and climate-driving factors. Clear formation mechanisms were observed in the soil, litter, and root carbon pools. As the soil depth increased, the carbon stock of the root carbon pool and the soil carbon pool decreased. Climate factors exerted different degrees of constraints on each carbon pool. Integrated studies, such as this, promote understanding of the compositional differences in grassland carbon pools and the driving mechanism for these carbon pools, which, taken together, can help shape the policy for carbon sink management in grasslands.
How to cite: Lyu, X.: Evaluation of Grassland Carbon Pool Based on a TECO-R Model and a Climate-Driving Function: A Case Study in the Xilingol Typical Steppe Region of Inner Mongolia, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1574, https://doi.org/10.5194/egusphere-egu2020-1574, 2020.
EGU2020-2208 | Displays | BG3.24
Global change has created a large subsoil carbon sink the U.S. Corn BeltMichael Castellano, Sotirios Archontoulis, Antonio Mallarino, Ann Russell, Johan Six, Eugene Takle, and Hanna Poffenbarger
Using long-term observations and experiments, we show that subsoils in the north central United States are a large modern organic carbon sink (~400 kg C ha-1 y-1). In this region, which is dominated by arable lands, the strongest signal of global change is a wetter environment. Precipitation amount and intensity have increased while atmospheric vapor pressure deficit has decreased. At the same time, this region has experienced a number of changes in agroecosystem properties and management; agroecosystems have become less diverse and total crop residue inputs to the soil have increased (>100%) due to large increases in crop yield. We used repeated measurements from two independent long-term (>40 years) cropping systems experiments to reject hypotheses that changes in cropping systems diversity and increases in crop residue input can explain the observed increase in subsoil carbon. In contrast, we used regional observations in climate to demonstrate that an increasingly wet environment is coincident with an increase in subsoil moisture content to a level that would inhibit soil carbon mineralization. As a result, we attribute the subsoil carbon sink to a wetter environment that has led to lower subsoil carbon outputs via microbial mineralization.
How to cite: Castellano, M., Archontoulis, S., Mallarino, A., Russell, A., Six, J., Takle, E., and Poffenbarger, H.: Global change has created a large subsoil carbon sink the U.S. Corn Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2208, https://doi.org/10.5194/egusphere-egu2020-2208, 2020.
Using long-term observations and experiments, we show that subsoils in the north central United States are a large modern organic carbon sink (~400 kg C ha-1 y-1). In this region, which is dominated by arable lands, the strongest signal of global change is a wetter environment. Precipitation amount and intensity have increased while atmospheric vapor pressure deficit has decreased. At the same time, this region has experienced a number of changes in agroecosystem properties and management; agroecosystems have become less diverse and total crop residue inputs to the soil have increased (>100%) due to large increases in crop yield. We used repeated measurements from two independent long-term (>40 years) cropping systems experiments to reject hypotheses that changes in cropping systems diversity and increases in crop residue input can explain the observed increase in subsoil carbon. In contrast, we used regional observations in climate to demonstrate that an increasingly wet environment is coincident with an increase in subsoil moisture content to a level that would inhibit soil carbon mineralization. As a result, we attribute the subsoil carbon sink to a wetter environment that has led to lower subsoil carbon outputs via microbial mineralization.
How to cite: Castellano, M., Archontoulis, S., Mallarino, A., Russell, A., Six, J., Takle, E., and Poffenbarger, H.: Global change has created a large subsoil carbon sink the U.S. Corn Belt, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2208, https://doi.org/10.5194/egusphere-egu2020-2208, 2020.
EGU2020-4476 | Displays | BG3.24
Effects of litter manipulation on soil biochemical processes: A global meta-analysisKeyi He, Jiguang Feng, and Biao Zhu
Global changes can alter the quantity and quality of above-and below-ground inputs, which will affect soil carbon (C) dynamics and nutrient cycles. The effects of detritus from above- and below-ground are not entirely uniform. Although numerous experiments have been conducted, the general patterns of how litter manipulation affect soil biochemical processes and whether such effects varied among changes in above- and below-ground inputs remain unclear.
Here, we conducted a meta-analysis of 2181 observations from 216 published studies to examine the responses of belowground processes to manipulated above- and below-ground litter alterations.Our results showed that, across all studies, litter manipulation generally had significant effects on soil moisture, but had minor effects on soil temperature and pH. Litter addition generally stimulated C and nutrient cycle, and microbial variables, whereas removal of litter, root and both of them generally suppressed or did not change these processes. Specifically, litter addition significantly increased soil respiration (Rs) and soil organic carbon (SOC) content in the mineral soil by 24.5% and 6.2%, respectively. Litter removal, root removal, and no inputs (removal of both litter and root) reduced Rs by 23.6%, 38.1%, and 50.2%, respectively. Litter removal and no inputs on average decreased SOC content in the mineral soil by 19% and 22.8%, respectively, but such negative effect did not occur under root removal. This suggests that aboveground litter may be more valid in soil C stabilization than roots within a relatively short period. In addition, manipulation level also regulated the responses of SOC, Rs and MBC to litter alterations. The direction of litter manipulation effects on multiple variables are basically similar among ecosystem types.
Overall, our findings provide a reference for assessing the impact of primary productivity growth on C and nutrient cycling in terrestrial ecosystems under global changes, and highlight that the effects of aboveground litters and roots should be separately incorporated into soil C models.
How to cite: He, K., Feng, J., and Zhu, B.: Effects of litter manipulation on soil biochemical processes: A global meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4476, https://doi.org/10.5194/egusphere-egu2020-4476, 2020.
Global changes can alter the quantity and quality of above-and below-ground inputs, which will affect soil carbon (C) dynamics and nutrient cycles. The effects of detritus from above- and below-ground are not entirely uniform. Although numerous experiments have been conducted, the general patterns of how litter manipulation affect soil biochemical processes and whether such effects varied among changes in above- and below-ground inputs remain unclear.
Here, we conducted a meta-analysis of 2181 observations from 216 published studies to examine the responses of belowground processes to manipulated above- and below-ground litter alterations.Our results showed that, across all studies, litter manipulation generally had significant effects on soil moisture, but had minor effects on soil temperature and pH. Litter addition generally stimulated C and nutrient cycle, and microbial variables, whereas removal of litter, root and both of them generally suppressed or did not change these processes. Specifically, litter addition significantly increased soil respiration (Rs) and soil organic carbon (SOC) content in the mineral soil by 24.5% and 6.2%, respectively. Litter removal, root removal, and no inputs (removal of both litter and root) reduced Rs by 23.6%, 38.1%, and 50.2%, respectively. Litter removal and no inputs on average decreased SOC content in the mineral soil by 19% and 22.8%, respectively, but such negative effect did not occur under root removal. This suggests that aboveground litter may be more valid in soil C stabilization than roots within a relatively short period. In addition, manipulation level also regulated the responses of SOC, Rs and MBC to litter alterations. The direction of litter manipulation effects on multiple variables are basically similar among ecosystem types.
Overall, our findings provide a reference for assessing the impact of primary productivity growth on C and nutrient cycling in terrestrial ecosystems under global changes, and highlight that the effects of aboveground litters and roots should be separately incorporated into soil C models.
How to cite: He, K., Feng, J., and Zhu, B.: Effects of litter manipulation on soil biochemical processes: A global meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4476, https://doi.org/10.5194/egusphere-egu2020-4476, 2020.
EGU2020-7283 | Displays | BG3.24
The Global Long-Term Agricultural Experiment NetworkCarolina Cardoso Lisboa, Jonathan Storkey, Carlos Eduardo Pellegrino Cerri, Christian Thierfelder, Juan Andres Quincke, Pauline Chivenge, and Sieglinde Snapp
Balancing food production with environmentally sustainable land management can have important climate change mitigation co-benefits. Recent reports, including the IPCC latest Special Report, launched at the COP 25 in December 2019, have highlighted the significant role of soil carbon (C) stocks in agricultural soils in achieving CO2 zero emissons and contributing to CO2 removal. However, to measure the soil C balance (C-gains and C-losses), a deep understanding of the processes governing the changes in soil C stocks in agricultural systems is required as well as knowledge on the impact of management over long and short time scales under distinct climate conditions. An understanding of the mechanisms underpinning these processes depends on robust evidence-based datasets that can be applied to several different models to model soil C-dynamics over time and make predictions upon future scenarios. The datasets from long-term experiments (LTEs) can be extremely valuable to facilitate the evaluation of alternative food production systems impact/effect on soil health, as such soil C stocks. Employing modeling tools to analyse these data, would lead to better evaluation of land use and management practices and its environmental impacts around the globe. With the aim of supporting the agricultural science community in meeting this and related objetives, the Global Long-Term Agricultural Experiment Network (GLTEN) was launched in October 2019. The main goal of the network is to assemble and harmonize, following FAIR Data Principle (findable, accessible, interoperable and reusable), metadata from LTEs through the online GLTEN-Metadata Portal (https://glten.org/). This initial scientific investigation of the data shared between the experiments focusses on soil C data analyzed using free available tools to exploit and compare the trade-offs between several agricultural practices and C-offset given the distinct soil type and climate conditions. With the support of the GLTEN-members, we will start these joint analyses applying the Carbon Benefits Tools (https://banr.nrel.colostate.edu/CBP/) and the RothC Model (https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc). The progress of this collaborative work relies on the commitment and expertise of the GLTEN-members and we expect that the outcome from this investigation will support the knowledge refining and advancing the development of existing modeling tools. Furthermore, we will demonstrate the potential for the GLTEN to provide a platform that supports and facilitates collaborative research among the community.
How to cite: Cardoso Lisboa, C., Storkey, J., Pellegrino Cerri, C. E., Thierfelder, C., Quincke, J. A., Chivenge, P., and Snapp, S.: The Global Long-Term Agricultural Experiment Network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7283, https://doi.org/10.5194/egusphere-egu2020-7283, 2020.
Balancing food production with environmentally sustainable land management can have important climate change mitigation co-benefits. Recent reports, including the IPCC latest Special Report, launched at the COP 25 in December 2019, have highlighted the significant role of soil carbon (C) stocks in agricultural soils in achieving CO2 zero emissons and contributing to CO2 removal. However, to measure the soil C balance (C-gains and C-losses), a deep understanding of the processes governing the changes in soil C stocks in agricultural systems is required as well as knowledge on the impact of management over long and short time scales under distinct climate conditions. An understanding of the mechanisms underpinning these processes depends on robust evidence-based datasets that can be applied to several different models to model soil C-dynamics over time and make predictions upon future scenarios. The datasets from long-term experiments (LTEs) can be extremely valuable to facilitate the evaluation of alternative food production systems impact/effect on soil health, as such soil C stocks. Employing modeling tools to analyse these data, would lead to better evaluation of land use and management practices and its environmental impacts around the globe. With the aim of supporting the agricultural science community in meeting this and related objetives, the Global Long-Term Agricultural Experiment Network (GLTEN) was launched in October 2019. The main goal of the network is to assemble and harmonize, following FAIR Data Principle (findable, accessible, interoperable and reusable), metadata from LTEs through the online GLTEN-Metadata Portal (https://glten.org/). This initial scientific investigation of the data shared between the experiments focusses on soil C data analyzed using free available tools to exploit and compare the trade-offs between several agricultural practices and C-offset given the distinct soil type and climate conditions. With the support of the GLTEN-members, we will start these joint analyses applying the Carbon Benefits Tools (https://banr.nrel.colostate.edu/CBP/) and the RothC Model (https://www.rothamsted.ac.uk/rothamsted-carbon-model-rothc). The progress of this collaborative work relies on the commitment and expertise of the GLTEN-members and we expect that the outcome from this investigation will support the knowledge refining and advancing the development of existing modeling tools. Furthermore, we will demonstrate the potential for the GLTEN to provide a platform that supports and facilitates collaborative research among the community.
How to cite: Cardoso Lisboa, C., Storkey, J., Pellegrino Cerri, C. E., Thierfelder, C., Quincke, J. A., Chivenge, P., and Snapp, S.: The Global Long-Term Agricultural Experiment Network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7283, https://doi.org/10.5194/egusphere-egu2020-7283, 2020.
EGU2020-7647 | Displays | BG3.24
Lateglacial and Holocene paleoenvironments: insights from buried black soils in Emilia (Northern Italy)Gian Marco Salani, Gianluca Bianchini, Stefano Cremonini, Mauro De Feudis, Gilmo Vianello, and Livia Vittori Antisari
In Lateglacial and Holocene stratigraphic sequences investigated in the eastern Po Plain (northern Italy), close to Bologna, black horizons are sometimes observed. Earlier paleo-environmental studies concerning this area have not interpreted origin and composition of these black buried horizons. In order to test this hypothesis, we are studying three stratigraphic sequences from Salara (SAL), San Mamolo (SMA) and Marzabotto (MRZ). To emphasize morphological characteristics (e.g., colour and thickness), a pedo-stratigraphic criterion was adopted for each layer observed in all the three stratigraphic sets. Totally, the horizons found are: 15 for SMA (two black), 14 for SAL (two black) and 6 for MRZ (one black); for each layer was sampled 1 kg of soil for the next investigations. Afterwards, the samples were treated in laboratory to carry out i) geochemical analyses of major, minor and trace elements, by XRF-WD Spectrometry, ii) carbon speciation in Organic (TOC) and Inorganic (TIC) fractions, by Soli TOC Cube (elemental analyser working in temperature ramp mode), iii) isotopic (δ13C) analysis, by EA-IRMS System. XRF analysis was necessary to understand how the black horizons are enriched or depleted in major, minor and trace elements compared to the other layers of the stratigraphic sections. Black horizons are enriched in Al2O3 (>14.95 wt%), Fe2O3 (>5.05 wt%), K2O (>2.27 wt%), TiO2 (>0.69 wt%), Ce (>45 mg kg-1), Cr (>148 mg kg-1), V (>91 mg kg-1), and depleted in CaO (<4.52 wt%). In the same way, the Soli TOC Cube analyses were useful to make the carbon speciation for all the layers, demonstrating that black horizons are depleted in TIC (<0.87 wt%) with respect to the other layers. Low calcium and TIC in black horizons indicate that these levels are depleted in carbonates. EA-IRMS measurements were useful to understand the nature of black soils and the different climate conditions existing at the time of pedogenesis. δ13C has been measured for Total Carbon, TIC and TOC, and the values of black horizons are systematically more negative with respect to the other layers. The resulting values are a proxy of the type of vegetation coverage, reflecting the different proportions of C3 and C4 plants. The extremely negative values of black horizons suggest a prevalence of C3 plants during their formations, supporting the initial hypothesis of a connection with cold climatic periods. During these periods water was more acid thus explaining the paucity of carbonate. Pollen analysis is in progress to constrain this interpretation.
How to cite: Salani, G. M., Bianchini, G., Cremonini, S., De Feudis, M., Vianello, G., and Vittori Antisari, L.: Lateglacial and Holocene paleoenvironments: insights from buried black soils in Emilia (Northern Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7647, https://doi.org/10.5194/egusphere-egu2020-7647, 2020.
In Lateglacial and Holocene stratigraphic sequences investigated in the eastern Po Plain (northern Italy), close to Bologna, black horizons are sometimes observed. Earlier paleo-environmental studies concerning this area have not interpreted origin and composition of these black buried horizons. In order to test this hypothesis, we are studying three stratigraphic sequences from Salara (SAL), San Mamolo (SMA) and Marzabotto (MRZ). To emphasize morphological characteristics (e.g., colour and thickness), a pedo-stratigraphic criterion was adopted for each layer observed in all the three stratigraphic sets. Totally, the horizons found are: 15 for SMA (two black), 14 for SAL (two black) and 6 for MRZ (one black); for each layer was sampled 1 kg of soil for the next investigations. Afterwards, the samples were treated in laboratory to carry out i) geochemical analyses of major, minor and trace elements, by XRF-WD Spectrometry, ii) carbon speciation in Organic (TOC) and Inorganic (TIC) fractions, by Soli TOC Cube (elemental analyser working in temperature ramp mode), iii) isotopic (δ13C) analysis, by EA-IRMS System. XRF analysis was necessary to understand how the black horizons are enriched or depleted in major, minor and trace elements compared to the other layers of the stratigraphic sections. Black horizons are enriched in Al2O3 (>14.95 wt%), Fe2O3 (>5.05 wt%), K2O (>2.27 wt%), TiO2 (>0.69 wt%), Ce (>45 mg kg-1), Cr (>148 mg kg-1), V (>91 mg kg-1), and depleted in CaO (<4.52 wt%). In the same way, the Soli TOC Cube analyses were useful to make the carbon speciation for all the layers, demonstrating that black horizons are depleted in TIC (<0.87 wt%) with respect to the other layers. Low calcium and TIC in black horizons indicate that these levels are depleted in carbonates. EA-IRMS measurements were useful to understand the nature of black soils and the different climate conditions existing at the time of pedogenesis. δ13C has been measured for Total Carbon, TIC and TOC, and the values of black horizons are systematically more negative with respect to the other layers. The resulting values are a proxy of the type of vegetation coverage, reflecting the different proportions of C3 and C4 plants. The extremely negative values of black horizons suggest a prevalence of C3 plants during their formations, supporting the initial hypothesis of a connection with cold climatic periods. During these periods water was more acid thus explaining the paucity of carbonate. Pollen analysis is in progress to constrain this interpretation.
How to cite: Salani, G. M., Bianchini, G., Cremonini, S., De Feudis, M., Vianello, G., and Vittori Antisari, L.: Lateglacial and Holocene paleoenvironments: insights from buried black soils in Emilia (Northern Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7647, https://doi.org/10.5194/egusphere-egu2020-7647, 2020.
EGU2020-8359 | Displays | BG3.24
Tackling climate change reporting needs regarding soil C pool: SOC modelling under different land-use categories in CroatiaMasa Zorana Ostrogovic Sever, Dóra Hidy, Zoltán Barcza, and Hrvoje Marjanovic
Soil organic matter (SOM) is one of five mandatory pools used in reporting of national greenhouse gas inventories under UNFCCC and EU regulations. Reporting on net change in soil organic carbon (SOC) under different land uses over time is challenging. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories suggest that all estimates, including carbon (C) in SOM, should be transparent and consistent throughout the time series. For some countries assessing net change of SOC is often not easy due to lack of data, infrastructure or funding. Consequently, for the mineral part of the soil, frequently used is the simplest approach of assessment (Tier 1) which assumes no change in mineral SOC stocks. However, this assumption should be substantiated.
There is a growing need for the use of higher tiers in reporting of C changes in SOM pool, by providing estimates from field measurements and modelling. While soil C modelling is cost-effective, and in some countries already found applicable for the purpose of reporting, field measurements of soil C stocks are expensive and time-consuming, but necessary for model calibration and validation.
In our research we used Biome-BGCMuSo model, a biogeochemical model that simulates the storage and flux of water, C, and nitrogen (N) in the soil-plant-atmosphere system. Biome-BGCMuSo is a new variant of the well‑known Biome-BGC model with an improved multilayer soil module. We performed spatial modelling of SOC down to 30 cm for four different land-use categories of: deciduous forests, evergreen forests, annual croplands and grasslands, for the period 1990-2014. Eco-physiological parameters for each biome (i.e. land-use) were obtained from the literature. Meteorological data was obtained from open-access meteorological database FORESEE. Management activities (i.e. thinning, planting, mowing, fertilizing, and ploughing) where estimated based on available data and consultations with the local experts. Modelling results of SOC stocks were compared to field measurements. Trends of soil C change in period 1990-2014 under different land-uses were discussed.
How to cite: Ostrogovic Sever, M. Z., Hidy, D., Barcza, Z., and Marjanovic, H.: Tackling climate change reporting needs regarding soil C pool: SOC modelling under different land-use categories in Croatia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8359, https://doi.org/10.5194/egusphere-egu2020-8359, 2020.
Soil organic matter (SOM) is one of five mandatory pools used in reporting of national greenhouse gas inventories under UNFCCC and EU regulations. Reporting on net change in soil organic carbon (SOC) under different land uses over time is challenging. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories suggest that all estimates, including carbon (C) in SOM, should be transparent and consistent throughout the time series. For some countries assessing net change of SOC is often not easy due to lack of data, infrastructure or funding. Consequently, for the mineral part of the soil, frequently used is the simplest approach of assessment (Tier 1) which assumes no change in mineral SOC stocks. However, this assumption should be substantiated.
There is a growing need for the use of higher tiers in reporting of C changes in SOM pool, by providing estimates from field measurements and modelling. While soil C modelling is cost-effective, and in some countries already found applicable for the purpose of reporting, field measurements of soil C stocks are expensive and time-consuming, but necessary for model calibration and validation.
In our research we used Biome-BGCMuSo model, a biogeochemical model that simulates the storage and flux of water, C, and nitrogen (N) in the soil-plant-atmosphere system. Biome-BGCMuSo is a new variant of the well‑known Biome-BGC model with an improved multilayer soil module. We performed spatial modelling of SOC down to 30 cm for four different land-use categories of: deciduous forests, evergreen forests, annual croplands and grasslands, for the period 1990-2014. Eco-physiological parameters for each biome (i.e. land-use) were obtained from the literature. Meteorological data was obtained from open-access meteorological database FORESEE. Management activities (i.e. thinning, planting, mowing, fertilizing, and ploughing) where estimated based on available data and consultations with the local experts. Modelling results of SOC stocks were compared to field measurements. Trends of soil C change in period 1990-2014 under different land-uses were discussed.
How to cite: Ostrogovic Sever, M. Z., Hidy, D., Barcza, Z., and Marjanovic, H.: Tackling climate change reporting needs regarding soil C pool: SOC modelling under different land-use categories in Croatia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8359, https://doi.org/10.5194/egusphere-egu2020-8359, 2020.
EGU2020-8509 | Displays | BG3.24
Vulnerability of C stocks in Polylepis forests of the Peruvian Andes under climate change – evidence from laboratory incubations, microbial nutrient constraints and enzyme activitiesAngela Martin, Nele Meyer, Sylwia Adamczyk, Outi-Maaria Sietiö, Subin Kalu, Kevin Mganga, Sady García Bendezu, and Kristiina Karhu
Soils are the largest stock of terrestrial carbon, the dynamics of soil organic C (SOC) are controlled by microbial physiology, but how it promotes stable SOC and how it would change with warming, remains unknown. The Huascarán National Park (HNP), the largest mass of tropical glaciers in the world, has lost 20-30% of its glacial cover and the temperatures in this biosphere have risen 0.1°C per decade since 1970. However, no information on the HNP soil carbon stocks is available. As managing SOC is important for global warming mitigation, we study the soil C stocks in Polylepis forests of three valleys in the HNP along a temperature gradient relative to elevation (3300 to 4500 m asl), and their vulnerability to decomposition with increasing temperatures and combined labile C and nutrient (N+P) additions.
We found that higher altitude soils have higher C:N:P ratios which indicates that, as expected, soils at high altitudes are nutrient limited. Also, the activities of the N acquiring enzymes: NAGase and leucine-aminopeptidase, C acquiring enzymes: beta-glucosidase, cellobiosidase, beta-xylosidase and phosphatase were positively correlated with altitude, which indicate that N and P availability decreased with altitude across our gradient. This could make high altitude soils vulnerable to C losses, not just due to increased temperatures, but also due to increased rhizosphere priming effects. Climate warming might increase plant growth and belowground C allocation, which in turn could lead to priming due to nutrient mining.
We found no differences across altitudes in microbial biomass (Cmic) measured with the chloroform fumigation extraction method. We are currently analysing microbial community composition (by PLFA’s and DNA based methods). We will present data on microbial CUE of glucose decomposition, and how it is related to soil C/N ratios, nutrient availability and nutrient requirements, and community composition of the microbes. We also aim to test whether higher CUE is related to higher C stabilisation potential in the form of microbial necromass residues (amino sugars), or higher C loss when microbes efficiently growing on labile substrates will also increase the decomposition of more stable SOC (priming).
How to cite: Martin, A., Meyer, N., Adamczyk, S., Sietiö, O.-M., Kalu, S., Mganga, K., García Bendezu, S., and Karhu, K.: Vulnerability of C stocks in Polylepis forests of the Peruvian Andes under climate change – evidence from laboratory incubations, microbial nutrient constraints and enzyme activities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8509, https://doi.org/10.5194/egusphere-egu2020-8509, 2020.
Soils are the largest stock of terrestrial carbon, the dynamics of soil organic C (SOC) are controlled by microbial physiology, but how it promotes stable SOC and how it would change with warming, remains unknown. The Huascarán National Park (HNP), the largest mass of tropical glaciers in the world, has lost 20-30% of its glacial cover and the temperatures in this biosphere have risen 0.1°C per decade since 1970. However, no information on the HNP soil carbon stocks is available. As managing SOC is important for global warming mitigation, we study the soil C stocks in Polylepis forests of three valleys in the HNP along a temperature gradient relative to elevation (3300 to 4500 m asl), and their vulnerability to decomposition with increasing temperatures and combined labile C and nutrient (N+P) additions.
We found that higher altitude soils have higher C:N:P ratios which indicates that, as expected, soils at high altitudes are nutrient limited. Also, the activities of the N acquiring enzymes: NAGase and leucine-aminopeptidase, C acquiring enzymes: beta-glucosidase, cellobiosidase, beta-xylosidase and phosphatase were positively correlated with altitude, which indicate that N and P availability decreased with altitude across our gradient. This could make high altitude soils vulnerable to C losses, not just due to increased temperatures, but also due to increased rhizosphere priming effects. Climate warming might increase plant growth and belowground C allocation, which in turn could lead to priming due to nutrient mining.
We found no differences across altitudes in microbial biomass (Cmic) measured with the chloroform fumigation extraction method. We are currently analysing microbial community composition (by PLFA’s and DNA based methods). We will present data on microbial CUE of glucose decomposition, and how it is related to soil C/N ratios, nutrient availability and nutrient requirements, and community composition of the microbes. We also aim to test whether higher CUE is related to higher C stabilisation potential in the form of microbial necromass residues (amino sugars), or higher C loss when microbes efficiently growing on labile substrates will also increase the decomposition of more stable SOC (priming).
How to cite: Martin, A., Meyer, N., Adamczyk, S., Sietiö, O.-M., Kalu, S., Mganga, K., García Bendezu, S., and Karhu, K.: Vulnerability of C stocks in Polylepis forests of the Peruvian Andes under climate change – evidence from laboratory incubations, microbial nutrient constraints and enzyme activities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8509, https://doi.org/10.5194/egusphere-egu2020-8509, 2020.
EGU2020-10750 | Displays | BG3.24
Characterization of Soil Organic Matter along an elevation gradient at Stelvio Pass (Italian Alps).Roberta Zangrando, Maria del Carmen Villoslada Hidalgo, Clara Turetta, Nicoletta Cannone, Francesco Malfasi, and Silvano Onofri
Climate Change (CC) has evident impacts on the biotic and abiotic components of ecosystems.
Soil is the third largest reservoir of carbon, next to the lithosphere and the oceans, and stores approximately 1500 Gt in the top1 m depth. Even small changes in soil C stocks could have a vast impact on atmospheric CO2 concentration. Elevated surface temperature can substantially affect global C budgets and produce positive or negative feedbacks to climate change. Therefore, understanding the response of soil organic carbon (SOC) stocks to warming is of critical importance to evaluate the feedbacks between terrestrial C cycle and climate change.
In comparison to other ecosystems, the areas at high altitudes and latitudes are the most vulnerable. In permafrost areas of the Northern Hemisphere the CC has already determined an increase in greenhouse gas emissions, shrub vegetation and variation in the composition of microbial communities. While numerous studies have been performed in Arctic, much less numerous are available for high altitude areas. These areas are a quarter of the emerged lands and have suffered strong impacts from the CC. Mountain permafrost makes up 14% of global permafrost, stores large quantities of organic carbon (SOC), and can release large quantities of CO2 due to climate change. However, permafrost contribution to the IPCC global budget has not yet been correctly quantified, in particular for ecosystems of prairie and shrubland, which alone could incorporate over 80Pg of C between soil and biomass. In the last decades, the plant component has undergone migration of species to higher altitudes, expansion of shrubs, variations in floristic composition and dominance, variations in area distribution. The expansion of the shrubs accelerates the regression of alpine meadows and snow valleys.
The sampling activities have been carried out in July and September, from September 2017 to July 2019 in an area near Stelvio Pass (2,758 m a.s.l.) (Italian Central-Eastern Alps) along an altitude gradient. Two sampling sites located at 2600 m a.s.l. and 2200 m a.s.l. in altitude, corresponding to about 3° C difference in the average annual air temperature were chosen. At the 2600 m site, warming experiments using open-top chambers (OTCs) to investigate how climate warming affects SOC were performed.
In order to characterize the SOM (Soil Organic Matter), Total carbon (TC), Organic carbon (OC), Total Nitrogen (TN) and Dissolved Organic Carbon (DOC) were determined in soils. TC and TN were determined in biomass. In both soils and biomass were analyzed to quantify the distribution of stable isotopes of C and N, δ13C and δ15N.
How to cite: Zangrando, R., Villoslada Hidalgo, M. C., Turetta, C., Cannone, N., Malfasi, F., and Onofri, S.: Characterization of Soil Organic Matter along an elevation gradient at Stelvio Pass (Italian Alps)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10750, https://doi.org/10.5194/egusphere-egu2020-10750, 2020.
Climate Change (CC) has evident impacts on the biotic and abiotic components of ecosystems.
Soil is the third largest reservoir of carbon, next to the lithosphere and the oceans, and stores approximately 1500 Gt in the top1 m depth. Even small changes in soil C stocks could have a vast impact on atmospheric CO2 concentration. Elevated surface temperature can substantially affect global C budgets and produce positive or negative feedbacks to climate change. Therefore, understanding the response of soil organic carbon (SOC) stocks to warming is of critical importance to evaluate the feedbacks between terrestrial C cycle and climate change.
In comparison to other ecosystems, the areas at high altitudes and latitudes are the most vulnerable. In permafrost areas of the Northern Hemisphere the CC has already determined an increase in greenhouse gas emissions, shrub vegetation and variation in the composition of microbial communities. While numerous studies have been performed in Arctic, much less numerous are available for high altitude areas. These areas are a quarter of the emerged lands and have suffered strong impacts from the CC. Mountain permafrost makes up 14% of global permafrost, stores large quantities of organic carbon (SOC), and can release large quantities of CO2 due to climate change. However, permafrost contribution to the IPCC global budget has not yet been correctly quantified, in particular for ecosystems of prairie and shrubland, which alone could incorporate over 80Pg of C between soil and biomass. In the last decades, the plant component has undergone migration of species to higher altitudes, expansion of shrubs, variations in floristic composition and dominance, variations in area distribution. The expansion of the shrubs accelerates the regression of alpine meadows and snow valleys.
The sampling activities have been carried out in July and September, from September 2017 to July 2019 in an area near Stelvio Pass (2,758 m a.s.l.) (Italian Central-Eastern Alps) along an altitude gradient. Two sampling sites located at 2600 m a.s.l. and 2200 m a.s.l. in altitude, corresponding to about 3° C difference in the average annual air temperature were chosen. At the 2600 m site, warming experiments using open-top chambers (OTCs) to investigate how climate warming affects SOC were performed.
In order to characterize the SOM (Soil Organic Matter), Total carbon (TC), Organic carbon (OC), Total Nitrogen (TN) and Dissolved Organic Carbon (DOC) were determined in soils. TC and TN were determined in biomass. In both soils and biomass were analyzed to quantify the distribution of stable isotopes of C and N, δ13C and δ15N.
How to cite: Zangrando, R., Villoslada Hidalgo, M. C., Turetta, C., Cannone, N., Malfasi, F., and Onofri, S.: Characterization of Soil Organic Matter along an elevation gradient at Stelvio Pass (Italian Alps)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10750, https://doi.org/10.5194/egusphere-egu2020-10750, 2020.
EGU2020-11036 | Displays | BG3.24
Soil Organic Matter stability along altitudinal gradients in the French AlpsJérôme Poulenard, Norine Khedim, Lauric Cecillon, Amélie Sailard, Pierre Barré, Laure Soucémarianadin, François Baudin, Philippe Choler, and Wilfried Thuiller
High-elevation ecosystems are considered as systems that have accumulated large amounts of organic carbon in their soils over the past millennia. However, there are still large uncertainties about soil organic matter (SOM) stocks and stability in mountain areas . The fate of SOM in alpine environments is particularly questioned in the context of climate change.
The aim of this study was to investigate SOM stocks and biogeochemical characteristics of SOM along altitudinal gradients to decipher their climatic and biogeochemical drivers. To do so, we used the soil samples set of the French ORCHAMP long-term observatory network. ORCHAMP is built around multiple altitudinal gradients (ca. 1000m of elevation gain representative of the pedoclimatic variability of the French Alps. Each gradient is made of 5 to 8 permanent plots distributed regularly each 200 m of elevation, from the valley (1000 m a.s.l.) to the mountain top (until 3000 m a.s.l.). We studied 18 elevational gradients, including 105 soil profiles and 350 soil horizons. The biogeochemical stability of SOM was estimated with Rock-Eval® thermal analysis.
SOM stocks are extremely variable and do not increase with elevation . The size of the thermally labile SOM pool strongly increases with elevation. The high lability of SOM revealed by Rock-Eval® thermal analysis suggests a generally high vulnerability of SOM to climate change in alpine environments. The mechanisms explaining the maintenance of this SOM pool in alpine environments are still under study. Hypotheses involving complex balances between climate, nature of fresh organic matter, and enzymatic activities will be discussed.
How to cite: Poulenard, J., Khedim, N., Cecillon, L., Sailard, A., Barré, P., Soucémarianadin, L., Baudin, F., Choler, P., and Thuiller, W.: Soil Organic Matter stability along altitudinal gradients in the French Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11036, https://doi.org/10.5194/egusphere-egu2020-11036, 2020.
High-elevation ecosystems are considered as systems that have accumulated large amounts of organic carbon in their soils over the past millennia. However, there are still large uncertainties about soil organic matter (SOM) stocks and stability in mountain areas . The fate of SOM in alpine environments is particularly questioned in the context of climate change.
The aim of this study was to investigate SOM stocks and biogeochemical characteristics of SOM along altitudinal gradients to decipher their climatic and biogeochemical drivers. To do so, we used the soil samples set of the French ORCHAMP long-term observatory network. ORCHAMP is built around multiple altitudinal gradients (ca. 1000m of elevation gain representative of the pedoclimatic variability of the French Alps. Each gradient is made of 5 to 8 permanent plots distributed regularly each 200 m of elevation, from the valley (1000 m a.s.l.) to the mountain top (until 3000 m a.s.l.). We studied 18 elevational gradients, including 105 soil profiles and 350 soil horizons. The biogeochemical stability of SOM was estimated with Rock-Eval® thermal analysis.
SOM stocks are extremely variable and do not increase with elevation . The size of the thermally labile SOM pool strongly increases with elevation. The high lability of SOM revealed by Rock-Eval® thermal analysis suggests a generally high vulnerability of SOM to climate change in alpine environments. The mechanisms explaining the maintenance of this SOM pool in alpine environments are still under study. Hypotheses involving complex balances between climate, nature of fresh organic matter, and enzymatic activities will be discussed.
How to cite: Poulenard, J., Khedim, N., Cecillon, L., Sailard, A., Barré, P., Soucémarianadin, L., Baudin, F., Choler, P., and Thuiller, W.: Soil Organic Matter stability along altitudinal gradients in the French Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11036, https://doi.org/10.5194/egusphere-egu2020-11036, 2020.
EGU2020-12053 | Displays | BG3.24
Impact of drought on C forms and fluxes in the soil – plant continuumCornelia Rumpel, Muhammad Sanaullah, Maria de la Luz Mora, Marcela Calabi Floody, and Abad Chabbi
Global change is likely to increase the drought periods, which may have significant consequences for the turnover of SOM, in particular through their effect on plants. The aim of the study was to assess different compartments of the soil – plant continuum for their response to drought stress by combining field and laboratory experiments. We focused on three common grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) found to constitute grasslands of the temperate climate. We investigated drought impact on (1) plant biochemistry and potential mineralization of this material in soil, (2) decomposition of aboveground plant leaf litter of different quality, (3) plant-mediated soil C fluxes including (4) soil microbial biomass and their enzyme activities in the rhizosphere.
Plant elemental and biochemical composition showed contrasting changes depending on the species in response to drought stress. The changes in elemental and biochemical composition of leaf litter, ultimately influenced its mineralization in soil. Drought stress highly modified the decomposition dynamics of litter from the three grassland species as a function of litter quality.
Moreover, drought stress resulted in significant decrease in both shoot and root biomass in monocultures, while root biomass did not change when they were grown in mixture. Under drought stress, we observed higher belowground allocation of photosynthates and the drought had reduced root-derived respiration. This resulted in significant changes of soil enzyme activities.
Our results suggest that plant species and community composition strongly influenced drought effects in the rhizosphere. Thus, management interventions should aim at influencing rhizosphere processes through their impact on microbial activities affecting C, N and water cycles. Plant community composition and in particular the introduction of legumes might be a tool to attenuate drought stress not only because of different water use efficiency by plants, but also by their indirect effects on these processes.
How to cite: Rumpel, C., Sanaullah, M., Mora, M. D. L. L., Calabi Floody, M., and Chabbi, A.: Impact of drought on C forms and fluxes in the soil – plant continuum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12053, https://doi.org/10.5194/egusphere-egu2020-12053, 2020.
Global change is likely to increase the drought periods, which may have significant consequences for the turnover of SOM, in particular through their effect on plants. The aim of the study was to assess different compartments of the soil – plant continuum for their response to drought stress by combining field and laboratory experiments. We focused on three common grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) found to constitute grasslands of the temperate climate. We investigated drought impact on (1) plant biochemistry and potential mineralization of this material in soil, (2) decomposition of aboveground plant leaf litter of different quality, (3) plant-mediated soil C fluxes including (4) soil microbial biomass and their enzyme activities in the rhizosphere.
Plant elemental and biochemical composition showed contrasting changes depending on the species in response to drought stress. The changes in elemental and biochemical composition of leaf litter, ultimately influenced its mineralization in soil. Drought stress highly modified the decomposition dynamics of litter from the three grassland species as a function of litter quality.
Moreover, drought stress resulted in significant decrease in both shoot and root biomass in monocultures, while root biomass did not change when they were grown in mixture. Under drought stress, we observed higher belowground allocation of photosynthates and the drought had reduced root-derived respiration. This resulted in significant changes of soil enzyme activities.
Our results suggest that plant species and community composition strongly influenced drought effects in the rhizosphere. Thus, management interventions should aim at influencing rhizosphere processes through their impact on microbial activities affecting C, N and water cycles. Plant community composition and in particular the introduction of legumes might be a tool to attenuate drought stress not only because of different water use efficiency by plants, but also by their indirect effects on these processes.
How to cite: Rumpel, C., Sanaullah, M., Mora, M. D. L. L., Calabi Floody, M., and Chabbi, A.: Impact of drought on C forms and fluxes in the soil – plant continuum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12053, https://doi.org/10.5194/egusphere-egu2020-12053, 2020.
EGU2020-12086 | Displays | BG3.24
Climate and soil type effects on crop residue decompositionEd Gregorich, Mike Beare, Denis Curtin, Henry Janzen, Ben Ellert, and Bobbi Helgason
Crop residues are an important resource for maintaining soil productivity. The decay of crop residues is linked to many ecosystem functions, affecting atmospheric CO2, nutrient release, microbial diversity, and soil organic matter quality. The rate of decay, in turn, is regulated by soil type, management, and environmental variables, some of which will be changing in the future. Our objective in this study was to evaluate effects of soil type, climate, residue placement on the decomposition and retention of residue-derived C. 13C-labelled barley straw was either placed at the surface or mixed to 10 cm in soils at four sites in Canada and one site in New Zealand representing different soil types and climates. Soils were collected periodically over 10 yr to determine 13C remaining. The loss of C from crop residues occurred quickly, most (70-75%) within the first 2 yrs but with only 5-10% remaining after 10 yrs. There were large losses of C from the mixed treatments within the first year, with 20-50% lost after 6 months over winter and 50-70 % lost after one year; after that decomposition slowed. Temperature was the single most important factor regulating the rate of residue decay. Thermal time, expressed as cumulative degree days, explained more of the variability in residue C recovered than time (in calendar years). Slower decay of surface-placed residues may be attributed to lower mean annual precipitation at those sites. Thermal time is a robust, consistent way of predicting crop residue decay rates (or C storage) for comparing C kinetics across sites with different soils and climates.
How to cite: Gregorich, E., Beare, M., Curtin, D., Janzen, H., Ellert, B., and Helgason, B.: Climate and soil type effects on crop residue decomposition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12086, https://doi.org/10.5194/egusphere-egu2020-12086, 2020.
Crop residues are an important resource for maintaining soil productivity. The decay of crop residues is linked to many ecosystem functions, affecting atmospheric CO2, nutrient release, microbial diversity, and soil organic matter quality. The rate of decay, in turn, is regulated by soil type, management, and environmental variables, some of which will be changing in the future. Our objective in this study was to evaluate effects of soil type, climate, residue placement on the decomposition and retention of residue-derived C. 13C-labelled barley straw was either placed at the surface or mixed to 10 cm in soils at four sites in Canada and one site in New Zealand representing different soil types and climates. Soils were collected periodically over 10 yr to determine 13C remaining. The loss of C from crop residues occurred quickly, most (70-75%) within the first 2 yrs but with only 5-10% remaining after 10 yrs. There were large losses of C from the mixed treatments within the first year, with 20-50% lost after 6 months over winter and 50-70 % lost after one year; after that decomposition slowed. Temperature was the single most important factor regulating the rate of residue decay. Thermal time, expressed as cumulative degree days, explained more of the variability in residue C recovered than time (in calendar years). Slower decay of surface-placed residues may be attributed to lower mean annual precipitation at those sites. Thermal time is a robust, consistent way of predicting crop residue decay rates (or C storage) for comparing C kinetics across sites with different soils and climates.
How to cite: Gregorich, E., Beare, M., Curtin, D., Janzen, H., Ellert, B., and Helgason, B.: Climate and soil type effects on crop residue decomposition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12086, https://doi.org/10.5194/egusphere-egu2020-12086, 2020.
EGU2020-18446 | Displays | BG3.24
Soil organic carbon dynamics as affected by climate warming in a semiarid alpine regionMeng Zhu, Wei Liu, Qi Feng, Bing Jia, and Chengqi Zhang
An evaluation to soil organic carbon (SOC) stock dynamics in alpine regions is crucial for the adaptive management of regional carbon budget under the elevation-dependent warming in mountainous regions. Here, we evaluated the dynamics of SOC stock to 60 cm depth in the Qilian Mountains (1700~5100 m a.s.l.) by combining systematic measurements from 138 sampling sites with a machine learning technique (i.e. random forest, RF). Our results revealed that the combination of systematic measurements with the RF model allowed spatially explicit estimates to be made. The average SOC density (SOC amount per unit area, SOCD) in the middle Qilian Mountains will decrease under future climate change. However, the size and direction of carbon change are elevation- or vegetation-dependent. Specifically, in comparison with the baseline year (1970~2000), the mean annual precipitation will increase by 18.37, 19.80 and 30.80 mm, and the mean annual temperature will increase by 1.9, 2.4 and 2.9°C, respectively, under the RCP2.6 (representative concentration pathway), RCP4.5 and RCP8.5 scenarios in 2050s. Accordingly, the mean SOCD decreased by 0.59, 0.93 and 1.05 kg C m-2, the SOC stock decreased by 6.23, 9.75 and 11.07 Tg C, respectively under the RCP2.6, RCP4.5 and RCP8.5 scenarios. In addition, the mid-elevation zones (3100-3900 m), especially the subalpine shrub-meadow zone, will be characterized by the strongest carbon loss due to the high standing organic carbon stock under climate warming. By contrast, the high elevation zones (> 3900 m), especially the alpine desert zone, which will experience increase in accumulative temperature, prolongation in growing season, and consequently enhancement in plant productivity due to future climate warming, will be characterized by significant carbon accumulation in the future. Thus, the mid-elevation zones, especially the subalpine shrub-meadow zone should be given priority in terms of reducing CO2 emissions under future warming in alpine regions.
How to cite: Zhu, M., Liu, W., Feng, Q., Jia, B., and Zhang, C.: Soil organic carbon dynamics as affected by climate warming in a semiarid alpine region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18446, https://doi.org/10.5194/egusphere-egu2020-18446, 2020.
An evaluation to soil organic carbon (SOC) stock dynamics in alpine regions is crucial for the adaptive management of regional carbon budget under the elevation-dependent warming in mountainous regions. Here, we evaluated the dynamics of SOC stock to 60 cm depth in the Qilian Mountains (1700~5100 m a.s.l.) by combining systematic measurements from 138 sampling sites with a machine learning technique (i.e. random forest, RF). Our results revealed that the combination of systematic measurements with the RF model allowed spatially explicit estimates to be made. The average SOC density (SOC amount per unit area, SOCD) in the middle Qilian Mountains will decrease under future climate change. However, the size and direction of carbon change are elevation- or vegetation-dependent. Specifically, in comparison with the baseline year (1970~2000), the mean annual precipitation will increase by 18.37, 19.80 and 30.80 mm, and the mean annual temperature will increase by 1.9, 2.4 and 2.9°C, respectively, under the RCP2.6 (representative concentration pathway), RCP4.5 and RCP8.5 scenarios in 2050s. Accordingly, the mean SOCD decreased by 0.59, 0.93 and 1.05 kg C m-2, the SOC stock decreased by 6.23, 9.75 and 11.07 Tg C, respectively under the RCP2.6, RCP4.5 and RCP8.5 scenarios. In addition, the mid-elevation zones (3100-3900 m), especially the subalpine shrub-meadow zone, will be characterized by the strongest carbon loss due to the high standing organic carbon stock under climate warming. By contrast, the high elevation zones (> 3900 m), especially the alpine desert zone, which will experience increase in accumulative temperature, prolongation in growing season, and consequently enhancement in plant productivity due to future climate warming, will be characterized by significant carbon accumulation in the future. Thus, the mid-elevation zones, especially the subalpine shrub-meadow zone should be given priority in terms of reducing CO2 emissions under future warming in alpine regions.
How to cite: Zhu, M., Liu, W., Feng, Q., Jia, B., and Zhang, C.: Soil organic carbon dynamics as affected by climate warming in a semiarid alpine region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18446, https://doi.org/10.5194/egusphere-egu2020-18446, 2020.
EGU2020-11987 | Displays | BG3.24
Projections of climate change effects on pasture productivity, GHG exchanges and soil carbon stocksNicolas Puche, Nicolas Viovy, Miko Kirschbaum, and Abad Chabbi
Agriculture is intimately affected by climate change (atmospheric CO2 concentration, temperature, precipitation and patterns of climate extremes), and there are major societal concerns about climate change effects on agriculture lands and hence food security in the 21st century. Despite those concerns, there is still only poor understanding of the possible impacts of climate change on the productivity and carbon dynamics of rain-fed pastoral systems in France, particularly their direction and magnitude over long time scales. The present study uses 3 scenarios (e.g. RCP 2.6, 4.5 and 8.5) of possible future climatic conditions and assesses their effects on productivity and SOC stocks of mowed and rotationally grazed grasslands. We used the CenW ecosystem model to simulate carbon, water, and nitrogen cycles in response to changes in environmental drivers and management practices. The simulations indicated that grassland productivity was increased through CO2 fertilization and higher water use efficiencies but that SOC losses between 5% and 23% (if CO2 fertilization is not accounted for in the simulations) are expected due to higher temperatures and biomass exports. Such losses may further affect climate feedback loop and jeopardize the agroecosystem sustainability. More extreme climate events were expected under more pessimistic climate change scenarios with very different outcomes if the CO2 fertilization effect is accounted for or not. This study showed that under the current management practices implemented at the study site, soil C losses were expected over the 21st century under climate change conditions, highlighting the need to modify/adapt farming practices.
How to cite: Puche, N., Viovy, N., Kirschbaum, M., and Chabbi, A.: Projections of climate change effects on pasture productivity, GHG exchanges and soil carbon stocks , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11987, https://doi.org/10.5194/egusphere-egu2020-11987, 2020.
Agriculture is intimately affected by climate change (atmospheric CO2 concentration, temperature, precipitation and patterns of climate extremes), and there are major societal concerns about climate change effects on agriculture lands and hence food security in the 21st century. Despite those concerns, there is still only poor understanding of the possible impacts of climate change on the productivity and carbon dynamics of rain-fed pastoral systems in France, particularly their direction and magnitude over long time scales. The present study uses 3 scenarios (e.g. RCP 2.6, 4.5 and 8.5) of possible future climatic conditions and assesses their effects on productivity and SOC stocks of mowed and rotationally grazed grasslands. We used the CenW ecosystem model to simulate carbon, water, and nitrogen cycles in response to changes in environmental drivers and management practices. The simulations indicated that grassland productivity was increased through CO2 fertilization and higher water use efficiencies but that SOC losses between 5% and 23% (if CO2 fertilization is not accounted for in the simulations) are expected due to higher temperatures and biomass exports. Such losses may further affect climate feedback loop and jeopardize the agroecosystem sustainability. More extreme climate events were expected under more pessimistic climate change scenarios with very different outcomes if the CO2 fertilization effect is accounted for or not. This study showed that under the current management practices implemented at the study site, soil C losses were expected over the 21st century under climate change conditions, highlighting the need to modify/adapt farming practices.
How to cite: Puche, N., Viovy, N., Kirschbaum, M., and Chabbi, A.: Projections of climate change effects on pasture productivity, GHG exchanges and soil carbon stocks , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11987, https://doi.org/10.5194/egusphere-egu2020-11987, 2020.
EGU2020-3298 | Displays | BG3.24
LIFE Nadapta: A regional-scale strategy using soil condition assessment for evaluating climate change vulnerability and adaptation of agriculture in Navarre, SpainInigo Virto, Rodrigo Antón, Fco. Javier Arricibita, Alberto Ruiz-Sagaseta, Alberto Enrique, Isabel de Soto, Luis Orcaray, and Armel Zaragüeta
The Life Nadapta project (https://lifenadapta.navarra.es/en/inicio) aims to develop a regional-scale integrated strategy for climate change adaptation in the region of Navarre (Spain). This strategy encompasses the most affected economic sectors, including agriculture. Agriculture is highly dependent on climatic conditions, and therefore especially vulnerable to changes in climate. This vulnerability is dependent, among other factors, on soil characteristics and condition. The interaction of this vulnerability with the exposure of agrosystems to climate change impacts (drivers of change) can explain the expected risks associated to these impacts.
Understanding the resilience and possibilities of adaptation of agrosystems requires assessing how they can modulate their vulnerability and/or reduce their exposure. Agricultural management, and in particular, soil organic matter management play a key role in this sense.
In this framework, the project assesses the vulnerability and adaptability of agrosystems in three steps: First, a preliminary diagnosis of soils vulnerability in the territory was conducted, including a division in 12 homogeneous areas and the particular assessment of soil characteristic in each of them. Then, three major strategies of agricultural management aiming to improve the adaptability of agrosystems (namely crop rotations, organic fertilization and conservation agriculture) will be assessed by selecting representative agricultural plots under contrasted management in each of the areas. More than 150 plots will be included in this assessment, that makes a regional network for monitoring. That for, a specific sampling design was developed to effectively reflect the variability and different soil characteristics, and ant the same time, grant homogeneous paired comparisons. As the three strategies are known to have a potential to increase soil organic C (SOC) stocks, and to modify other soil parameters such as water retention or erodibility, the last phase consists in assessing SOC and other indicators of soil condition, under the light of the projected climate change scenarios and identified impacts in the region.
Preliminary results show differences in vulnerability for the selected areas, and different responses of SOC and other soil indicators to the strategies tested, depending on the natural characteristics of the soils and the historical land-use in the territory.
How to cite: Virto, I., Antón, R., Arricibita, Fco. J., Ruiz-Sagaseta, A., Enrique, A., de Soto, I., Orcaray, L., and Zaragüeta, A.: LIFE Nadapta: A regional-scale strategy using soil condition assessment for evaluating climate change vulnerability and adaptation of agriculture in Navarre, Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3298, https://doi.org/10.5194/egusphere-egu2020-3298, 2020.
The Life Nadapta project (https://lifenadapta.navarra.es/en/inicio) aims to develop a regional-scale integrated strategy for climate change adaptation in the region of Navarre (Spain). This strategy encompasses the most affected economic sectors, including agriculture. Agriculture is highly dependent on climatic conditions, and therefore especially vulnerable to changes in climate. This vulnerability is dependent, among other factors, on soil characteristics and condition. The interaction of this vulnerability with the exposure of agrosystems to climate change impacts (drivers of change) can explain the expected risks associated to these impacts.
Understanding the resilience and possibilities of adaptation of agrosystems requires assessing how they can modulate their vulnerability and/or reduce their exposure. Agricultural management, and in particular, soil organic matter management play a key role in this sense.
In this framework, the project assesses the vulnerability and adaptability of agrosystems in three steps: First, a preliminary diagnosis of soils vulnerability in the territory was conducted, including a division in 12 homogeneous areas and the particular assessment of soil characteristic in each of them. Then, three major strategies of agricultural management aiming to improve the adaptability of agrosystems (namely crop rotations, organic fertilization and conservation agriculture) will be assessed by selecting representative agricultural plots under contrasted management in each of the areas. More than 150 plots will be included in this assessment, that makes a regional network for monitoring. That for, a specific sampling design was developed to effectively reflect the variability and different soil characteristics, and ant the same time, grant homogeneous paired comparisons. As the three strategies are known to have a potential to increase soil organic C (SOC) stocks, and to modify other soil parameters such as water retention or erodibility, the last phase consists in assessing SOC and other indicators of soil condition, under the light of the projected climate change scenarios and identified impacts in the region.
Preliminary results show differences in vulnerability for the selected areas, and different responses of SOC and other soil indicators to the strategies tested, depending on the natural characteristics of the soils and the historical land-use in the territory.
How to cite: Virto, I., Antón, R., Arricibita, Fco. J., Ruiz-Sagaseta, A., Enrique, A., de Soto, I., Orcaray, L., and Zaragüeta, A.: LIFE Nadapta: A regional-scale strategy using soil condition assessment for evaluating climate change vulnerability and adaptation of agriculture in Navarre, Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3298, https://doi.org/10.5194/egusphere-egu2020-3298, 2020.
EGU2020-20965 | Displays | BG3.24
Assessment of the potential for long-term soil carbon sequestration and stabilization in contrasting soils after native forest conversion to planted forests.Felipe Aburto, Oscar Crovo, Claudia Czimczik, Carlos Sierra, Susan Trumbore, and Xiaomei Xu
Soil organic carbon accretion through reforestation has been proposed as one of the most economically feasible and effective alternatives for carbon sequestration. A substantial fraction of these reforestation efforts are expected to occur through intensively managed exotic plantations. Management intensification and forest type conversion into productive plantations can significantly alter SOC inputs and dynamics, reducing the potential positive effect on long-term soil carbon sequestration. To understand how this forest cover change modifies the magnitude and distributions of C as well as the stability of these C pools, we selected five soils of contrasting origin and mineralogy (crystalline to amorphous clays) under both remnants of secondary temperate oak forests and pine plantations in south-central Chile. In each of these sites, two adjacent permanent plots were established, where soils were sampled at 5 points to a depth 2.4m. The sites included volcanic soils formed from recent volcanic ash (Arenosol), young ash deposits (Andosol) and old ash deposits (Ferralsol), and two residuals soils formed from granite (Luvisol) and slate (Lixisol). The recent ash-derived soils displayed clay mineralogy dominated by amorphous minerals, the young-ash by short-range order minerals and meta-halloysite; the old-ash soils have mineralogy dominated by halloysite and goethite; while residuals soils had micaceous clays, kaolinite, gibbsite, and iron oxy-hydroxides clays. Soil types had a strong influence on the C, N, and P pools. The arenosol has the smallest total C pools followed by the Andosol and Ferralsol (e.g., 45 to 56 Mg C/ha), while the largest C pool sizes were found in the residual lixisol (e.g., 387 to 243 MgC /m2). For most sites, plantation forests have lower total C and N pools and higher P pools, except for the ferrosol. Respiration rates vary significantly between sites and forest types. Total soil respiration rates tend to be higher in the native forest soils than in planted soils. Respired FM 14CO2 was significantly correlated to bulk soil 14C FM (p<0.01, R2 = 0.7). Surface organic carbon mostly incorporated post-bomb testing 14C, which tends to become much depleted at deeper horizons. This depth-dependent trend was similar for plantations and native forest soils, but plantation displayed more depleted ∆14C than native soils at all depths in most soil types. In most soil types, surface layers respired 14CO2 was more enriched in the native forests than in plantations, but this relation flipped at depths intervals deeper than 80 cm. The age of the respired carbon was highly dependent on soil type. Soil respiration rates and 14CO2 signatures in soils with more active clay mineralogy (2:1 and pseudo crystalline clays) seemed to be less affected by forest conversion than in soils with low stabilization capacity. The arenosol showed modern bulk and respired carbon at all depths as a result of its low carbon retention capacity (sandy textures). Our preliminary results highlight the relevance of the mineralogical control on SOC dynamics and stabilization processes and they also emphasized the need to further asses the effectiveness of planted forests for long-term soil carbon sequestration. Acknowledgments: CONICYT–PCI MPG190022, FONDECYT-Iniciacion 1160372
How to cite: Aburto, F., Crovo, O., Czimczik, C., Sierra, C., Trumbore, S., and Xu, X.: Assessment of the potential for long-term soil carbon sequestration and stabilization in contrasting soils after native forest conversion to planted forests., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20965, https://doi.org/10.5194/egusphere-egu2020-20965, 2020.
Soil organic carbon accretion through reforestation has been proposed as one of the most economically feasible and effective alternatives for carbon sequestration. A substantial fraction of these reforestation efforts are expected to occur through intensively managed exotic plantations. Management intensification and forest type conversion into productive plantations can significantly alter SOC inputs and dynamics, reducing the potential positive effect on long-term soil carbon sequestration. To understand how this forest cover change modifies the magnitude and distributions of C as well as the stability of these C pools, we selected five soils of contrasting origin and mineralogy (crystalline to amorphous clays) under both remnants of secondary temperate oak forests and pine plantations in south-central Chile. In each of these sites, two adjacent permanent plots were established, where soils were sampled at 5 points to a depth 2.4m. The sites included volcanic soils formed from recent volcanic ash (Arenosol), young ash deposits (Andosol) and old ash deposits (Ferralsol), and two residuals soils formed from granite (Luvisol) and slate (Lixisol). The recent ash-derived soils displayed clay mineralogy dominated by amorphous minerals, the young-ash by short-range order minerals and meta-halloysite; the old-ash soils have mineralogy dominated by halloysite and goethite; while residuals soils had micaceous clays, kaolinite, gibbsite, and iron oxy-hydroxides clays. Soil types had a strong influence on the C, N, and P pools. The arenosol has the smallest total C pools followed by the Andosol and Ferralsol (e.g., 45 to 56 Mg C/ha), while the largest C pool sizes were found in the residual lixisol (e.g., 387 to 243 MgC /m2). For most sites, plantation forests have lower total C and N pools and higher P pools, except for the ferrosol. Respiration rates vary significantly between sites and forest types. Total soil respiration rates tend to be higher in the native forest soils than in planted soils. Respired FM 14CO2 was significantly correlated to bulk soil 14C FM (p<0.01, R2 = 0.7). Surface organic carbon mostly incorporated post-bomb testing 14C, which tends to become much depleted at deeper horizons. This depth-dependent trend was similar for plantations and native forest soils, but plantation displayed more depleted ∆14C than native soils at all depths in most soil types. In most soil types, surface layers respired 14CO2 was more enriched in the native forests than in plantations, but this relation flipped at depths intervals deeper than 80 cm. The age of the respired carbon was highly dependent on soil type. Soil respiration rates and 14CO2 signatures in soils with more active clay mineralogy (2:1 and pseudo crystalline clays) seemed to be less affected by forest conversion than in soils with low stabilization capacity. The arenosol showed modern bulk and respired carbon at all depths as a result of its low carbon retention capacity (sandy textures). Our preliminary results highlight the relevance of the mineralogical control on SOC dynamics and stabilization processes and they also emphasized the need to further asses the effectiveness of planted forests for long-term soil carbon sequestration. Acknowledgments: CONICYT–PCI MPG190022, FONDECYT-Iniciacion 1160372
How to cite: Aburto, F., Crovo, O., Czimczik, C., Sierra, C., Trumbore, S., and Xu, X.: Assessment of the potential for long-term soil carbon sequestration and stabilization in contrasting soils after native forest conversion to planted forests., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20965, https://doi.org/10.5194/egusphere-egu2020-20965, 2020.
BG3.25 – Tracing Ecosystem Processes across Scales with Isotopes and other Novel Techniques
EGU2020-11276 | Displays | BG3.25 | Highlight
Non-radiative heat dissipation across scales in a water stressed pine forest: from the leaf to the planetary boundary layerDan Yakir, Jonathan Muller, Fyodor Tatatrinov, Mathias Mauder, and Eyal Rotenberg
Warming, drying, and intensified water stress is expected in many ecosystems over the next century. In dry environments, evaporative cooling becomes increasingly limited and must be replaced with alternative means of heat dissipation if canopy and leaf temperature are to be maintained within the physiological range and mortality avoided. We have shown that in dry environments when latent heat flux is minimal, net radiation is high, and thermal radiation emission is suppressed, pine forest canopies can efficiently cool through a massive sensible heat flux, facilitated by the low aerodynamic resistance of the open canopy (a so-called ‘Convector Effect’). Using novel methodology, we also show that this phenomenon may originate at the leaf-scale, associated with needle properties, changes in heat transport characteristics across the canopy profile, and propagating across scales can ultimately influence the boundary layer, the local atmospheric dynamics, and potentially regional climate.
How to cite: Yakir, D., Muller, J., Tatatrinov, F., Mauder, M., and Rotenberg, E.: Non-radiative heat dissipation across scales in a water stressed pine forest: from the leaf to the planetary boundary layer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11276, https://doi.org/10.5194/egusphere-egu2020-11276, 2020.
Warming, drying, and intensified water stress is expected in many ecosystems over the next century. In dry environments, evaporative cooling becomes increasingly limited and must be replaced with alternative means of heat dissipation if canopy and leaf temperature are to be maintained within the physiological range and mortality avoided. We have shown that in dry environments when latent heat flux is minimal, net radiation is high, and thermal radiation emission is suppressed, pine forest canopies can efficiently cool through a massive sensible heat flux, facilitated by the low aerodynamic resistance of the open canopy (a so-called ‘Convector Effect’). Using novel methodology, we also show that this phenomenon may originate at the leaf-scale, associated with needle properties, changes in heat transport characteristics across the canopy profile, and propagating across scales can ultimately influence the boundary layer, the local atmospheric dynamics, and potentially regional climate.
How to cite: Yakir, D., Muller, J., Tatatrinov, F., Mauder, M., and Rotenberg, E.: Non-radiative heat dissipation across scales in a water stressed pine forest: from the leaf to the planetary boundary layer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11276, https://doi.org/10.5194/egusphere-egu2020-11276, 2020.
EGU2020-901 | Displays | BG3.25
Eddy covariance and CRDS based techniques of GHGs measurements provide additional constraint in partitioning the net ecosystem exchangeSupriyo Chakraborty, Abirlal Metya, Amey Datye, Pramit K. Deb Burman, Dipankar Sarma, Nirmali Gogoi, and Abhijit Bora
Greenhouse gases such as CO2 and CH4 are emitted by various sources. Among the natural ecosystems, forests and wetlands are believed to emit sizeable amount of these gases by means of autotrophic, heterotrophic respirations and bacterial activities. Additionally, a relatively new source has been detected; the emission of CH4 by trees and plants. A growing evidence suggests that a significant amount of CH4 is generated especially by the trees in forested ecosystems. Eddy-covariance (EC) based technique is widely used to estimate the GHGs and energy fluxes in natural ecosystems. The net ecosystem exchange (NEE), measured by an EC system, typically represents the net CO2 fluxes arising due to the biosphere's photosynthetic and respirative processes. The net flux derived by this system, is subsequently partitioned into two components, the respired carbon and the assimilated carbon. However, the partitioning processes may have their own shortcomings which introduce significant errors. To reduce the uncertainty, the NEE needs to be constrained by some additional measurement. We have used a real time GHG analyzer in association with an existing EC system in a tropical forest of north-east India, the Kaziranga National Park, to better constrain the above two carbon fluxes. The GHG analyzer provided CO2 and CH4 concentrations as well as their carbon isotopic ratios. The isotopic data were used to partition the EC derived NEE records, which showed a good agreement with the EC measurements within the limits of experimental uncertainty. However, long-term observation is required to establish the potential of this relatively new method in this endeavour. Additionally, the isotopic data provided a strong evidence of plant generated CH4 , which was apparently not possible to identify by the conventional means. This work will present the three years (2016-2018) of NEE data to demonstrate the unique characteristics of the carbon transfer processes of one of the major forested regions of north-east India, with a special reference to its partitioning by means of the isotopic analysis carried out on a campaign mode observation in Feb 2019.
How to cite: Chakraborty, S., Metya, A., Datye, A., K. Deb Burman, P., Sarma, D., Gogoi, N., and Bora, A.: Eddy covariance and CRDS based techniques of GHGs measurements provide additional constraint in partitioning the net ecosystem exchange, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-901, https://doi.org/10.5194/egusphere-egu2020-901, 2020.
Greenhouse gases such as CO2 and CH4 are emitted by various sources. Among the natural ecosystems, forests and wetlands are believed to emit sizeable amount of these gases by means of autotrophic, heterotrophic respirations and bacterial activities. Additionally, a relatively new source has been detected; the emission of CH4 by trees and plants. A growing evidence suggests that a significant amount of CH4 is generated especially by the trees in forested ecosystems. Eddy-covariance (EC) based technique is widely used to estimate the GHGs and energy fluxes in natural ecosystems. The net ecosystem exchange (NEE), measured by an EC system, typically represents the net CO2 fluxes arising due to the biosphere's photosynthetic and respirative processes. The net flux derived by this system, is subsequently partitioned into two components, the respired carbon and the assimilated carbon. However, the partitioning processes may have their own shortcomings which introduce significant errors. To reduce the uncertainty, the NEE needs to be constrained by some additional measurement. We have used a real time GHG analyzer in association with an existing EC system in a tropical forest of north-east India, the Kaziranga National Park, to better constrain the above two carbon fluxes. The GHG analyzer provided CO2 and CH4 concentrations as well as their carbon isotopic ratios. The isotopic data were used to partition the EC derived NEE records, which showed a good agreement with the EC measurements within the limits of experimental uncertainty. However, long-term observation is required to establish the potential of this relatively new method in this endeavour. Additionally, the isotopic data provided a strong evidence of plant generated CH4 , which was apparently not possible to identify by the conventional means. This work will present the three years (2016-2018) of NEE data to demonstrate the unique characteristics of the carbon transfer processes of one of the major forested regions of north-east India, with a special reference to its partitioning by means of the isotopic analysis carried out on a campaign mode observation in Feb 2019.
How to cite: Chakraborty, S., Metya, A., Datye, A., K. Deb Burman, P., Sarma, D., Gogoi, N., and Bora, A.: Eddy covariance and CRDS based techniques of GHGs measurements provide additional constraint in partitioning the net ecosystem exchange, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-901, https://doi.org/10.5194/egusphere-egu2020-901, 2020.
EGU2020-9702 | Displays | BG3.25
Disentangling the long-term foliar 15N signal using a land surface modelSilvia Caldararu, Tea Thum, Richard Nair, and Sönke Zaehle
Terrestrial vegetation growth is hypothesised to increase under elevated atmospheric CO2, a process known as the CO2 fertilisation effect. However, the magnitude of this effect and its long-term sustainability remains uncertain. One of the main limitations to the CO2 fertilisation effect is nutrient limitation to plant growth, in particular nitrogen (N) in temperate and boreal ecosystems. Recent studies have suggested that decreases in observed foliar N content (N%) and δ15N indicate widespread nitrogen limitation with increasing CO2 concentrations. However, the factors driving these two variables, and especially the foliar δ15N values, are complex and can be caused by a number of processes. On one hand, if the observed trends reflect nutrient limitation, this limitation can be caused by either CO2 or warming driven growth. On the other hand, it is possible that nutrient limitation does not occur to its full extent due to plant plastic responses to alleviate nutrient limitation, causing a decrease in N%, but changes in the anthropogenic N deposition 15N signal cause the observed δ15N trend. In reality, it is likely that all these factors contribute to the observed trends. To understand ecosystem dynamics it is important to disentangle the processes behind these signals which is very difficult based on observational datasets only.
We use a novel land surface model to explore the causes behind the observed trends in foliar N% and δ15N. The QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) model has the unique capacity to track ecologically relevant isotopic composition, including 15N in plant and soil pools. The model also includes a realistic representation of plant plastic acclimation processes, specifically a representation of nitrogen allocation to and inside the canopy in response to nitrogen availability, so implicitly to changes in CO2 concentrations. We test the different hypotheses above behind the observed changes in N% and δ15N separately and quantify the contribution of each of the factors towards the observed trend. We then test the different hypotheses against existing observations of N% and δ15N from the ICP Forests database and other published datasets such as the global dataset of Craine et al. 2018.
Our study showcases the use of an isotope-enabled land surface model in conjunction with long-term observations to strengthen our understanding of the ecosystem processes behind the observed trends.
How to cite: Caldararu, S., Thum, T., Nair, R., and Zaehle, S.: Disentangling the long-term foliar 15N signal using a land surface model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9702, https://doi.org/10.5194/egusphere-egu2020-9702, 2020.
Terrestrial vegetation growth is hypothesised to increase under elevated atmospheric CO2, a process known as the CO2 fertilisation effect. However, the magnitude of this effect and its long-term sustainability remains uncertain. One of the main limitations to the CO2 fertilisation effect is nutrient limitation to plant growth, in particular nitrogen (N) in temperate and boreal ecosystems. Recent studies have suggested that decreases in observed foliar N content (N%) and δ15N indicate widespread nitrogen limitation with increasing CO2 concentrations. However, the factors driving these two variables, and especially the foliar δ15N values, are complex and can be caused by a number of processes. On one hand, if the observed trends reflect nutrient limitation, this limitation can be caused by either CO2 or warming driven growth. On the other hand, it is possible that nutrient limitation does not occur to its full extent due to plant plastic responses to alleviate nutrient limitation, causing a decrease in N%, but changes in the anthropogenic N deposition 15N signal cause the observed δ15N trend. In reality, it is likely that all these factors contribute to the observed trends. To understand ecosystem dynamics it is important to disentangle the processes behind these signals which is very difficult based on observational datasets only.
We use a novel land surface model to explore the causes behind the observed trends in foliar N% and δ15N. The QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles and the climate system) model has the unique capacity to track ecologically relevant isotopic composition, including 15N in plant and soil pools. The model also includes a realistic representation of plant plastic acclimation processes, specifically a representation of nitrogen allocation to and inside the canopy in response to nitrogen availability, so implicitly to changes in CO2 concentrations. We test the different hypotheses above behind the observed changes in N% and δ15N separately and quantify the contribution of each of the factors towards the observed trend. We then test the different hypotheses against existing observations of N% and δ15N from the ICP Forests database and other published datasets such as the global dataset of Craine et al. 2018.
Our study showcases the use of an isotope-enabled land surface model in conjunction with long-term observations to strengthen our understanding of the ecosystem processes behind the observed trends.
How to cite: Caldararu, S., Thum, T., Nair, R., and Zaehle, S.: Disentangling the long-term foliar 15N signal using a land surface model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9702, https://doi.org/10.5194/egusphere-egu2020-9702, 2020.
EGU2020-11472 | Displays | BG3.25
Stable isotopes as early indicators of high impact after plant invasion: A remote sensing perspectiveAndré Große-Stoltenberg, Christine Hellmann, Jan Thiele, Jens Oldeland, and Christiane Werner
High impact invasive plant species, such as the N-fixing and water-spending tree Acacia longifolia, are a major threat to ecosystem functioning worldwide. For example, Acacia's impact on nutrient and water-cycling in Mediterranean dune ecosystems is well understood. However, early detection of such impacts remains challenging. Therefore, novel approaches are required to map functional indicators of high invader impact. Here, we tested in a real world context if the stable isotopes δ13C and δ15N could be such mappable indicators. First, we show that A. longifolia differs regarding its biochemical leaf traits from the native species of the same growth form particularly regarding leaf N content as well as δ13C and δ15N. This may indicate a high impact on N and water cycling, and can be retrieved from hyperspectral data. Second, the impact of the invader on N cycling was mapped joining the spatial distribution of δ15N with airborne laserscanning data. Foliar δ15N of a non-fixing, native species increased in vicinity of invasive stands indicating an uptake of N previously fixed by the invader. Finally, those impacts possibly result in an increase of productivity of the whole dune ecosystem even when invader cover is low. This increase can be mapped integrating hyperspectral imagery with LiDAR data. Thus, there is potential to retrieve functional indicators of high impact including stable isotopes using remote sensing.
How to cite: Große-Stoltenberg, A., Hellmann, C., Thiele, J., Oldeland, J., and Werner, C.: Stable isotopes as early indicators of high impact after plant invasion: A remote sensing perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11472, https://doi.org/10.5194/egusphere-egu2020-11472, 2020.
High impact invasive plant species, such as the N-fixing and water-spending tree Acacia longifolia, are a major threat to ecosystem functioning worldwide. For example, Acacia's impact on nutrient and water-cycling in Mediterranean dune ecosystems is well understood. However, early detection of such impacts remains challenging. Therefore, novel approaches are required to map functional indicators of high invader impact. Here, we tested in a real world context if the stable isotopes δ13C and δ15N could be such mappable indicators. First, we show that A. longifolia differs regarding its biochemical leaf traits from the native species of the same growth form particularly regarding leaf N content as well as δ13C and δ15N. This may indicate a high impact on N and water cycling, and can be retrieved from hyperspectral data. Second, the impact of the invader on N cycling was mapped joining the spatial distribution of δ15N with airborne laserscanning data. Foliar δ15N of a non-fixing, native species increased in vicinity of invasive stands indicating an uptake of N previously fixed by the invader. Finally, those impacts possibly result in an increase of productivity of the whole dune ecosystem even when invader cover is low. This increase can be mapped integrating hyperspectral imagery with LiDAR data. Thus, there is potential to retrieve functional indicators of high impact including stable isotopes using remote sensing.
How to cite: Große-Stoltenberg, A., Hellmann, C., Thiele, J., Oldeland, J., and Werner, C.: Stable isotopes as early indicators of high impact after plant invasion: A remote sensing perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11472, https://doi.org/10.5194/egusphere-egu2020-11472, 2020.
EGU2020-12829 | Displays | BG3.25
N and P limitation shapes plant-AMF interactions across an aridity gradientSvenja Stock, Moritz Köster, Jens Boy, Roberto Godoy, Francisco Nájera, Francisco Matus, Carolina Merino, Khaled Abdallah, Christoph Leuschner, Sandra Spielvogel, Anna Gorbushina, Michaela Dippold, and Yakov Kuzyakov
Arbuscular mycorrhizal fungi (AMF) are important partners in plant nutrition, as they increase the range to scavenge for nutrients and can access resources otherwise occlude for plants. Under water shortage, when mobility of nutrients in soil is limited, AMF are especially important to acquire resources and can modulate plant drought resistance. Strategies of plants to cope with water and nutrient restrictions are shaped by the intensity of aridity. To investigate the effect of aridity on plant-AMF associations regarding drought resistance and plant nutrient acquisition, a 13CO2 pulse labeling was conducted across an aridity gradient. In a semiarid shrubland (66 mm a-1), a Mediterranean woodland (367 mm a-1), and a humid temperate forest (1500 mm a-1), root and soil samples were taken from 0-10 cm and 20-30 cm soil depth before labeling and at 1 day, 3 days, and 14 days after labeling. Carbon (C), nitrogen (N), and phosphorus (P) stocks as well as AMF root colonization, extraradical AMF biomass (phospho- and neutral lipid fatty acids (PLFA and NLFA) 16:1w5c), specific root length (SRL), and root tissue density (RTD) were measured. Plant C investment into AMF and roots was determined by the 13C incorporation in 16:1w5c (PLFA and NLFA) and root tissue, respectively. Soil C:N:P stoichiometry indicated a N and P limitation under humid conditions and a P limitation in the topsoil under Mediterranean conditions. N stocks were highest in the Mediterranean woodland. A strong correlation of the AMF storage compound NLFA 16:1w5c to C:P ratio under semiarid conditions pointed to a P limitation of AMF, likely resulting from low P mobility in dry and alkaline soils. With increasing aridity, the AMF abundance in root (and soil) decreased from 45% to 20% root area. 13C incorporation in PLFA 16:1w5c was similar across sites, while relative AMF abundance in topsoil (PLFA 16:1w5c:SOC) was slightly higher under semiarid and humid than under Mediterranean conditions, pointing to the importance of AMF for plant nutrition under nutrient limitation. Additionally, PLFA 16:1w5c contents in soil were higher with lower P availability in each site, underlining the role of AMF to supply P for plants under P deficiency. Under humid conditions (with strong N and P limitation) and semiarid conditions (with strong water limitation), root AMF colonization increased with lower N availability, displaying the role of AMF for plant N nutrition under nutrient and/or water shortage. Under humid and Mediterranean conditions, SRL decreased (0.5 and 0.3 times, respectively) and RTD increased (1.9 and 1.7 times, respectively) with depth, indicating a drought tolerance strategy of plants to sustain water shortage. Under semiarid conditions, SRL increased with depth (2.3 times), while RTD was consistently high, suggesting an increasing proportion of long-living fine roots with depth as scavenging agents for water. These relations point to a drought avoidance strategy of plants as adaptation to long-term water limitation. Under strong nutrient limitation, as under humid and semiarid conditions, AMF are crucial to sustain plant nutrition and to enhance plant resistance to water shortage.
How to cite: Stock, S., Köster, M., Boy, J., Godoy, R., Nájera, F., Matus, F., Merino, C., Abdallah, K., Leuschner, C., Spielvogel, S., Gorbushina, A., Dippold, M., and Kuzyakov, Y.: N and P limitation shapes plant-AMF interactions across an aridity gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12829, https://doi.org/10.5194/egusphere-egu2020-12829, 2020.
Arbuscular mycorrhizal fungi (AMF) are important partners in plant nutrition, as they increase the range to scavenge for nutrients and can access resources otherwise occlude for plants. Under water shortage, when mobility of nutrients in soil is limited, AMF are especially important to acquire resources and can modulate plant drought resistance. Strategies of plants to cope with water and nutrient restrictions are shaped by the intensity of aridity. To investigate the effect of aridity on plant-AMF associations regarding drought resistance and plant nutrient acquisition, a 13CO2 pulse labeling was conducted across an aridity gradient. In a semiarid shrubland (66 mm a-1), a Mediterranean woodland (367 mm a-1), and a humid temperate forest (1500 mm a-1), root and soil samples were taken from 0-10 cm and 20-30 cm soil depth before labeling and at 1 day, 3 days, and 14 days after labeling. Carbon (C), nitrogen (N), and phosphorus (P) stocks as well as AMF root colonization, extraradical AMF biomass (phospho- and neutral lipid fatty acids (PLFA and NLFA) 16:1w5c), specific root length (SRL), and root tissue density (RTD) were measured. Plant C investment into AMF and roots was determined by the 13C incorporation in 16:1w5c (PLFA and NLFA) and root tissue, respectively. Soil C:N:P stoichiometry indicated a N and P limitation under humid conditions and a P limitation in the topsoil under Mediterranean conditions. N stocks were highest in the Mediterranean woodland. A strong correlation of the AMF storage compound NLFA 16:1w5c to C:P ratio under semiarid conditions pointed to a P limitation of AMF, likely resulting from low P mobility in dry and alkaline soils. With increasing aridity, the AMF abundance in root (and soil) decreased from 45% to 20% root area. 13C incorporation in PLFA 16:1w5c was similar across sites, while relative AMF abundance in topsoil (PLFA 16:1w5c:SOC) was slightly higher under semiarid and humid than under Mediterranean conditions, pointing to the importance of AMF for plant nutrition under nutrient limitation. Additionally, PLFA 16:1w5c contents in soil were higher with lower P availability in each site, underlining the role of AMF to supply P for plants under P deficiency. Under humid conditions (with strong N and P limitation) and semiarid conditions (with strong water limitation), root AMF colonization increased with lower N availability, displaying the role of AMF for plant N nutrition under nutrient and/or water shortage. Under humid and Mediterranean conditions, SRL decreased (0.5 and 0.3 times, respectively) and RTD increased (1.9 and 1.7 times, respectively) with depth, indicating a drought tolerance strategy of plants to sustain water shortage. Under semiarid conditions, SRL increased with depth (2.3 times), while RTD was consistently high, suggesting an increasing proportion of long-living fine roots with depth as scavenging agents for water. These relations point to a drought avoidance strategy of plants as adaptation to long-term water limitation. Under strong nutrient limitation, as under humid and semiarid conditions, AMF are crucial to sustain plant nutrition and to enhance plant resistance to water shortage.
How to cite: Stock, S., Köster, M., Boy, J., Godoy, R., Nájera, F., Matus, F., Merino, C., Abdallah, K., Leuschner, C., Spielvogel, S., Gorbushina, A., Dippold, M., and Kuzyakov, Y.: N and P limitation shapes plant-AMF interactions across an aridity gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12829, https://doi.org/10.5194/egusphere-egu2020-12829, 2020.
EGU2020-6849 | Displays | BG3.25
Comparing the fate of N from fertilizer treatments and root litter turnover in a Mediterranean SavannaRichard Nair, Kendalynn Morris, Gerardo Moreno, Mirco Migliavacca, and Marion Schrumpf
Nutrient imbalances induced by anthropogenic N deposition may fundamentally alter plant activity and consequently, their role in biogeochemical cycling. Mechanistic understanding of N cycle processes is commonly informed by 15N tracers in fertilizer applications, but over the long term most N is obtained by plants is from litter mineralization rather than ‘new’ deposition N or mineral fertilizer applications. In many ecosystems this litter pool is dominated by root remains.
Here, we will compare results between two experiments: a 15N-labelled root litter experiment, and an associated conventional 15N-mineral fertilizer experiment, both located in a typical, spatially heterogeneous, seasonally-arid Spanish dehesa amended with N and NP fertilizers to induce nutrient imbalances. We show that recovery of the litter tracer in soil and plants was substantially higher than the fertilizer N, especially in microsites under trees, which are rich in organic inputs. In contrast, recovery of mineral tracers was strongest in more resource-poor grassland areas. Plant acquisition of N from the organic source was also affected by the concurrent P addition treatment while we found little evidence for a similar effect in mineral additions.
Our results imply that scaling nitrogen cycle processes informed by isotope tracers from experiments to ecosystems depends heavily on appropriateness of methodology, especially in interpreting short-term traces applied as fertilizer N.
How to cite: Nair, R., Morris, K., Moreno, G., Migliavacca, M., and Schrumpf, M.: Comparing the fate of N from fertilizer treatments and root litter turnover in a Mediterranean Savanna, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6849, https://doi.org/10.5194/egusphere-egu2020-6849, 2020.
Nutrient imbalances induced by anthropogenic N deposition may fundamentally alter plant activity and consequently, their role in biogeochemical cycling. Mechanistic understanding of N cycle processes is commonly informed by 15N tracers in fertilizer applications, but over the long term most N is obtained by plants is from litter mineralization rather than ‘new’ deposition N or mineral fertilizer applications. In many ecosystems this litter pool is dominated by root remains.
Here, we will compare results between two experiments: a 15N-labelled root litter experiment, and an associated conventional 15N-mineral fertilizer experiment, both located in a typical, spatially heterogeneous, seasonally-arid Spanish dehesa amended with N and NP fertilizers to induce nutrient imbalances. We show that recovery of the litter tracer in soil and plants was substantially higher than the fertilizer N, especially in microsites under trees, which are rich in organic inputs. In contrast, recovery of mineral tracers was strongest in more resource-poor grassland areas. Plant acquisition of N from the organic source was also affected by the concurrent P addition treatment while we found little evidence for a similar effect in mineral additions.
Our results imply that scaling nitrogen cycle processes informed by isotope tracers from experiments to ecosystems depends heavily on appropriateness of methodology, especially in interpreting short-term traces applied as fertilizer N.
How to cite: Nair, R., Morris, K., Moreno, G., Migliavacca, M., and Schrumpf, M.: Comparing the fate of N from fertilizer treatments and root litter turnover in a Mediterranean Savanna, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6849, https://doi.org/10.5194/egusphere-egu2020-6849, 2020.
EGU2020-20787 | Displays | BG3.25 | Highlight
Climatic, environmental and pollution traceability of the monumental Olive and Cedar trees of Lebanon: Lessons from the past to the presentNagham Tabaja, Lamis Chalak, David Amouroux, Emmanuel Tessier, Delphine Bosch, Nicolas Angeli, Francois Fourel, Ihab Jomaa, Fouad El Haj Hassan, and Ilham Bentaleb
Among the Mediterranean vegetation, olive and cedar trees are significant symbols, with the former considered among the oldest trees in the Mediterranean basin. In Lebanon, those trees survive at diverse altitudes, standing as a testimony to their long history and socio-economic role.
The Mediterranean basin is classified as an area vulnerable to climate change. Its species persisted in this area due to the low amplitude of temperature change between the last glacial period and the Holocene. The Middle East and North Africa region is a major contributor worldwide to global health and climate change emissions over the past three decades.
Understanding how these trees have and will survive the different cultural, climatic and environmental shocks, and how will they continue to persist among upcoming changes, is a scientific challenge.
Trees are considered a good archive for environmental and climatic data. Using stable isotope (C,N,S,O,H) to study tree response to climatic and environmental factors are now widely used. They can act as important tracers of how plants today and in the past, have interacted and responded to their abiotic and biotic environments. The O and C isotopic of bulk wood or purified cellulose from tree rings, has offered good record of the ecophysiology of the plants, resources they use, and environments they inhabit, now and in the past.
Due to the development of MCICPMS technique, Hg, Pb contents and isotopes can be analyzed to help reveal the problem between climate and anthropogenic contamination pollution effect. We can track the source of pollution and measure concentration through the content and isotopes within different tree tissues (leave, stem, wood). Thus, pollution and climatic records can be obtained on tree archives over various time scales through metal isotopes (Pb, Hg) and stable isotopes (CNHOS).
This study aims to examine the present and past conditions of monumental olive and cedar trees, through studying and comparing the present and past isotopic and radiogenic variation; and create a dataset to help anticipate and predict climatic discrepancies using interdisciplinary approaches.
Two ancient olive groves were selected, Bchaaleh (1300m-North), Kawkaba (672m-South), and one cedar tree site, Maasser El Chouf (1700m-Mount Lebanon).
Leaves, stems and rainwater samples are collected on monthly basis, and soil sediment and litter collected on quarterly basis from the olive sites. For cedar, seasonal collection is conducted to achieve a multi isotopic study for the present. To create data for the past, 212 wood cores were collected from 32 centennial olive trees and 21 cores were extracted of 8 cedar trees.
We expect to establish a database of stable and radiogenic isotopic signatures of recent and past olive and cedar elements. In addition to having a comprehensive interpretation of stable and radiogenic isotopic variations at seasonal scale through the applied time series, and calibrating between the isotopes of the tree and current climate. The study of trace elements contents, Pb and Hg isotopic ratio, will allow the reconstruction of anthropogenic pollution evolution of trees, tracing the sources of pollution.
Tree rings will provide information on paleoclimate and dating it back from the beginning of the industrial period.
How to cite: Tabaja, N., Chalak, L., Amouroux, D., Tessier, E., Bosch, D., Angeli, N., Fourel, F., Jomaa, I., El Haj Hassan, F., and Bentaleb, I.: Climatic, environmental and pollution traceability of the monumental Olive and Cedar trees of Lebanon: Lessons from the past to the present , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20787, https://doi.org/10.5194/egusphere-egu2020-20787, 2020.
Among the Mediterranean vegetation, olive and cedar trees are significant symbols, with the former considered among the oldest trees in the Mediterranean basin. In Lebanon, those trees survive at diverse altitudes, standing as a testimony to their long history and socio-economic role.
The Mediterranean basin is classified as an area vulnerable to climate change. Its species persisted in this area due to the low amplitude of temperature change between the last glacial period and the Holocene. The Middle East and North Africa region is a major contributor worldwide to global health and climate change emissions over the past three decades.
Understanding how these trees have and will survive the different cultural, climatic and environmental shocks, and how will they continue to persist among upcoming changes, is a scientific challenge.
Trees are considered a good archive for environmental and climatic data. Using stable isotope (C,N,S,O,H) to study tree response to climatic and environmental factors are now widely used. They can act as important tracers of how plants today and in the past, have interacted and responded to their abiotic and biotic environments. The O and C isotopic of bulk wood or purified cellulose from tree rings, has offered good record of the ecophysiology of the plants, resources they use, and environments they inhabit, now and in the past.
Due to the development of MCICPMS technique, Hg, Pb contents and isotopes can be analyzed to help reveal the problem between climate and anthropogenic contamination pollution effect. We can track the source of pollution and measure concentration through the content and isotopes within different tree tissues (leave, stem, wood). Thus, pollution and climatic records can be obtained on tree archives over various time scales through metal isotopes (Pb, Hg) and stable isotopes (CNHOS).
This study aims to examine the present and past conditions of monumental olive and cedar trees, through studying and comparing the present and past isotopic and radiogenic variation; and create a dataset to help anticipate and predict climatic discrepancies using interdisciplinary approaches.
Two ancient olive groves were selected, Bchaaleh (1300m-North), Kawkaba (672m-South), and one cedar tree site, Maasser El Chouf (1700m-Mount Lebanon).
Leaves, stems and rainwater samples are collected on monthly basis, and soil sediment and litter collected on quarterly basis from the olive sites. For cedar, seasonal collection is conducted to achieve a multi isotopic study for the present. To create data for the past, 212 wood cores were collected from 32 centennial olive trees and 21 cores were extracted of 8 cedar trees.
We expect to establish a database of stable and radiogenic isotopic signatures of recent and past olive and cedar elements. In addition to having a comprehensive interpretation of stable and radiogenic isotopic variations at seasonal scale through the applied time series, and calibrating between the isotopes of the tree and current climate. The study of trace elements contents, Pb and Hg isotopic ratio, will allow the reconstruction of anthropogenic pollution evolution of trees, tracing the sources of pollution.
Tree rings will provide information on paleoclimate and dating it back from the beginning of the industrial period.
How to cite: Tabaja, N., Chalak, L., Amouroux, D., Tessier, E., Bosch, D., Angeli, N., Fourel, F., Jomaa, I., El Haj Hassan, F., and Bentaleb, I.: Climatic, environmental and pollution traceability of the monumental Olive and Cedar trees of Lebanon: Lessons from the past to the present , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20787, https://doi.org/10.5194/egusphere-egu2020-20787, 2020.
EGU2020-4348 | Displays | BG3.25 | Highlight
Isotope tools scaling soil microbial ecology to biogeochemistryBruce Hungate
Microorganisms influence the composition of the atmosphere, the cycling of elements within and through ecosystems, the functioning of agricultural ecosystems on which humans depend, and human health. Microorganisms are also the most metabolically flexible and the most taxonomically and evolutionarily diverse organisms on Earth. Yet deciphering how that diversity imprints on the processes they influence at larger scales has proven challenging, because of the overwhelming complexity of microbial communities, and because of the difficulty of quantifying how microbial taxa assimilate and transform elements in the environment. New approaches that blend traditions from microbial ecology and ecosystem science make it possible to explore how the diversity and physiology of microorganisms shape ecosystem biogeochemistry and how it responds to global environmental change. Quantitative stable isotope probing has revealed cases where ‘omics data scales to quantitative ecology and biogeochemistry. Lab and field warming experiments in tropical, temperate, boreal, and arctic ecosystems point to generalized relationships between microbial growth rates (measured using isotope-enabled omics) and carbon release from soil through respiration (measured at the whole-system scale using classic techniques). Phylogenetic signals describe these relationships, indicating the potential for grounding biogeochemistry within the evolutionary histories of the organisms involved. In a meta-analysis across 27 independent experiments, quantitative stable isotope probing also indicates the general importance of predatory bacterial taxa in microbiomes, a role that increases in response to resource pulses, and which may provide a trophic theoretical underpinning to processes like the soil priming effect. More generally, such approaches hold potential for linking microbial diversity to carbon and element cycling in ecosystems. Historically, the diversity, complexity, and intractability of microbial ecosystems has relegated their study to either a reductionist descriptive tradition in microbial ecology or to a simplistically quantitative one in ecosystem science. Yet, new ideas and tools are poised to push microbial ecology forward to a point where it can more meaningfully integrate with ecological fields at larger scales, from populations to ecosystems to the globe.
How to cite: Hungate, B.: Isotope tools scaling soil microbial ecology to biogeochemistry , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4348, https://doi.org/10.5194/egusphere-egu2020-4348, 2020.
Microorganisms influence the composition of the atmosphere, the cycling of elements within and through ecosystems, the functioning of agricultural ecosystems on which humans depend, and human health. Microorganisms are also the most metabolically flexible and the most taxonomically and evolutionarily diverse organisms on Earth. Yet deciphering how that diversity imprints on the processes they influence at larger scales has proven challenging, because of the overwhelming complexity of microbial communities, and because of the difficulty of quantifying how microbial taxa assimilate and transform elements in the environment. New approaches that blend traditions from microbial ecology and ecosystem science make it possible to explore how the diversity and physiology of microorganisms shape ecosystem biogeochemistry and how it responds to global environmental change. Quantitative stable isotope probing has revealed cases where ‘omics data scales to quantitative ecology and biogeochemistry. Lab and field warming experiments in tropical, temperate, boreal, and arctic ecosystems point to generalized relationships between microbial growth rates (measured using isotope-enabled omics) and carbon release from soil through respiration (measured at the whole-system scale using classic techniques). Phylogenetic signals describe these relationships, indicating the potential for grounding biogeochemistry within the evolutionary histories of the organisms involved. In a meta-analysis across 27 independent experiments, quantitative stable isotope probing also indicates the general importance of predatory bacterial taxa in microbiomes, a role that increases in response to resource pulses, and which may provide a trophic theoretical underpinning to processes like the soil priming effect. More generally, such approaches hold potential for linking microbial diversity to carbon and element cycling in ecosystems. Historically, the diversity, complexity, and intractability of microbial ecosystems has relegated their study to either a reductionist descriptive tradition in microbial ecology or to a simplistically quantitative one in ecosystem science. Yet, new ideas and tools are poised to push microbial ecology forward to a point where it can more meaningfully integrate with ecological fields at larger scales, from populations to ecosystems to the globe.
How to cite: Hungate, B.: Isotope tools scaling soil microbial ecology to biogeochemistry , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4348, https://doi.org/10.5194/egusphere-egu2020-4348, 2020.
EGU2020-868 | Displays | BG3.25 | Highlight
Tracing recent carbon from photosynthesis to stem and soil respiration in an experimental tropical rainforest in response to droughtJohannes Ingrisch, Kathiravan Meeran, Angelika Kübert, Nemiah Ladd, Joost van Haren, Christiane Werner, Laura Meredith, and Michael Bahn
Tropical rainforests play a major role in the terrestrial carbon (C) cycle. However, to date little is known about the mechanisms and processes controlling C fluxes in tropical forests. Within the C cycle of a forest, trees allocate a substantial amount of photoassimilates belowground, and fuel respiration by stems, roots and microorganisms. This link between assimilation and respiration represents a significant pathway by which assimilated C is quickly returned to the atmosphere. However, the nature of this coupling, including the speed of above- to below-ground C allocation and the proportion of rapidly metabolized assimilates is yet unknown for mature tropical rainforest systems. Furthermore, the role of tree species and size and the relative roles of canopy versus understory plants are still unresolved.
Drought spells can exert a major control on the C balance of tropical forest ecosystems by altering C uptake, the partitioning of C and the dynamics of C allocation and belowground utilization. As such responses are difficult to measure in tropical rainforest, the consequences of drought for the dynamics of recent C in stem and soil respiration in this biome remain unclear.
To assess and quantify these processes, we made use of the Tropical Rain Forest at the Biosphere 2 research complex in Arizona, US. This infrastructure provides unique opportunities to study drought effects on the C dynamics in a controlled environment. We simulated a drought spell for eight weeks and continuously measured stem and soil CO2 fluxes using isotope laser spectroscopy before and during the drought as well as during the subsequent rewetting period. Our study is part of a large-scale experiment that aims to disentangle C- and water-cycle processes underpinning ecosystem responses to drought from a molecular to an ecosystem-scale level, with particular focus on plant-soil and plant-atmosphere interfaces.
We performed two canopy-scale 13CO2 pulse labeling campaigns under ambient environmental conditions and towards the end of the experimental drought. We traced the allocation dynamics of recently assimilated C to soil respiration and to stem respiration of dominant tree species. First results show that the allocation of assimilates from the canopy to soil-respired CO2 took several days and was affected by tree size and species identity. Under drought, tracer efflux from stems and soils was slowed down, with strong species-specific differences. Our results will allow novel insights into the combined effects of tree size, species identity and drought on the allocation dynamics and respiratory utilization of photoassimilates in tropical rainforest.
How to cite: Ingrisch, J., Meeran, K., Kübert, A., Ladd, N., van Haren, J., Werner, C., Meredith, L., and Bahn, M.: Tracing recent carbon from photosynthesis to stem and soil respiration in an experimental tropical rainforest in response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-868, https://doi.org/10.5194/egusphere-egu2020-868, 2020.
Tropical rainforests play a major role in the terrestrial carbon (C) cycle. However, to date little is known about the mechanisms and processes controlling C fluxes in tropical forests. Within the C cycle of a forest, trees allocate a substantial amount of photoassimilates belowground, and fuel respiration by stems, roots and microorganisms. This link between assimilation and respiration represents a significant pathway by which assimilated C is quickly returned to the atmosphere. However, the nature of this coupling, including the speed of above- to below-ground C allocation and the proportion of rapidly metabolized assimilates is yet unknown for mature tropical rainforest systems. Furthermore, the role of tree species and size and the relative roles of canopy versus understory plants are still unresolved.
Drought spells can exert a major control on the C balance of tropical forest ecosystems by altering C uptake, the partitioning of C and the dynamics of C allocation and belowground utilization. As such responses are difficult to measure in tropical rainforest, the consequences of drought for the dynamics of recent C in stem and soil respiration in this biome remain unclear.
To assess and quantify these processes, we made use of the Tropical Rain Forest at the Biosphere 2 research complex in Arizona, US. This infrastructure provides unique opportunities to study drought effects on the C dynamics in a controlled environment. We simulated a drought spell for eight weeks and continuously measured stem and soil CO2 fluxes using isotope laser spectroscopy before and during the drought as well as during the subsequent rewetting period. Our study is part of a large-scale experiment that aims to disentangle C- and water-cycle processes underpinning ecosystem responses to drought from a molecular to an ecosystem-scale level, with particular focus on plant-soil and plant-atmosphere interfaces.
We performed two canopy-scale 13CO2 pulse labeling campaigns under ambient environmental conditions and towards the end of the experimental drought. We traced the allocation dynamics of recently assimilated C to soil respiration and to stem respiration of dominant tree species. First results show that the allocation of assimilates from the canopy to soil-respired CO2 took several days and was affected by tree size and species identity. Under drought, tracer efflux from stems and soils was slowed down, with strong species-specific differences. Our results will allow novel insights into the combined effects of tree size, species identity and drought on the allocation dynamics and respiratory utilization of photoassimilates in tropical rainforest.
How to cite: Ingrisch, J., Meeran, K., Kübert, A., Ladd, N., van Haren, J., Werner, C., Meredith, L., and Bahn, M.: Tracing recent carbon from photosynthesis to stem and soil respiration in an experimental tropical rainforest in response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-868, https://doi.org/10.5194/egusphere-egu2020-868, 2020.
EGU2020-11636 | Displays | BG3.25
Soil Biogeochemical Response to Drought Conditions in the Biosphere 2 RainforestJoanne Shorter, Joseph Roscioli, Laura Meredith, and Juliana Gil-Loaiza
The direct measurement of soil gases provides insight into the biogeochemical processes responsible for micro- and macro-nutrient cycling, respiration, signaling, and environmental responses. The concentrations and isotopic signatures of soil gases are effective messengers of the microbial pathways active in the soil. We have developed and deployed a high frequency sensor consisting of new diffusive soil probes coupled with a Tunable Infrared Laser Direct Absorption Spectrometer (TILDAS) to monitor a range of soil gas species to investigate biogeochemical soil processes.
An array of soil probes was deployed at the Tropical Rainforest at Biosphere 2 in Arizona as part of the Water Atmosphere and Life Dynamics (WALD) experiment in 2019-2020. Probes were located in a root zone and nearby control area, and at several depths via a soil pit. These probes were coupled with a TILDAS to monitor isotopologues of nitrous oxide (N2O) including 14N15NO, 15N14NO, N218O, and methane (13CH4 and 12CH4), as well as CO2. During the WALD experiment, the probe-TILDAS system followed the impact on the soil biome of a 2 month induced drought in the rainforest and the subsequent return of rain. The high temporal resolution of the system allowed us to monitor each probe every 2 hours and thus observe changes in the composition of soil gases that reflect biogeochemical processes and pathways. CO2 and thus respiration decreased significantly during the drought and was slow to recover. Differences in N2O mixing ratios and isotopic signatures (both site preference and bulk 15N) in the root zone versus a controlled soil region were observed during both drought and rewetting periods. Changes in nitrogen and carbon cycles and the microbial pathways during the induced drought and rewetting as reflected in these observations will be discussed.
How to cite: Shorter, J., Roscioli, J., Meredith, L., and Gil-Loaiza, J.: Soil Biogeochemical Response to Drought Conditions in the Biosphere 2 Rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11636, https://doi.org/10.5194/egusphere-egu2020-11636, 2020.
The direct measurement of soil gases provides insight into the biogeochemical processes responsible for micro- and macro-nutrient cycling, respiration, signaling, and environmental responses. The concentrations and isotopic signatures of soil gases are effective messengers of the microbial pathways active in the soil. We have developed and deployed a high frequency sensor consisting of new diffusive soil probes coupled with a Tunable Infrared Laser Direct Absorption Spectrometer (TILDAS) to monitor a range of soil gas species to investigate biogeochemical soil processes.
An array of soil probes was deployed at the Tropical Rainforest at Biosphere 2 in Arizona as part of the Water Atmosphere and Life Dynamics (WALD) experiment in 2019-2020. Probes were located in a root zone and nearby control area, and at several depths via a soil pit. These probes were coupled with a TILDAS to monitor isotopologues of nitrous oxide (N2O) including 14N15NO, 15N14NO, N218O, and methane (13CH4 and 12CH4), as well as CO2. During the WALD experiment, the probe-TILDAS system followed the impact on the soil biome of a 2 month induced drought in the rainforest and the subsequent return of rain. The high temporal resolution of the system allowed us to monitor each probe every 2 hours and thus observe changes in the composition of soil gases that reflect biogeochemical processes and pathways. CO2 and thus respiration decreased significantly during the drought and was slow to recover. Differences in N2O mixing ratios and isotopic signatures (both site preference and bulk 15N) in the root zone versus a controlled soil region were observed during both drought and rewetting periods. Changes in nitrogen and carbon cycles and the microbial pathways during the induced drought and rewetting as reflected in these observations will be discussed.
How to cite: Shorter, J., Roscioli, J., Meredith, L., and Gil-Loaiza, J.: Soil Biogeochemical Response to Drought Conditions in the Biosphere 2 Rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11636, https://doi.org/10.5194/egusphere-egu2020-11636, 2020.
EGU2020-12426 | Displays | BG3.25
C-dots as non-toxic, non-destructive novel tracers to measure biochemical cycles in the soil-plant-atmosphere continuumBenjamin D. Hafner, Kanishka Singh, and Taryn L. Bauerle
Tracers provide a way to determine, follow and quantify biochemical cycles and energy fluxes within the soil-plant-atmosphere continuum (SPAC). Thereby, different tracers, such as dyes, carbonyl sulfite or stable isotopes are employed. One major disadvantage of many tracers is, that very often, plants have to be destructively harvested to analyze the tracer concentration, making it difficult to measure continuous fluxes. Additionally, for stable isotope studies, fractionation or exchange effects can make interpretation and quantification of biogeochemical fluxes difficult. Novel tracers that are already frequently used in animal systems, are fluorescent C-dots. These nanoparticles (5-50 nm diameter) provide a non-destructive imaging option using “in vivo imaging systems” (IVIS). We examined a first approach to apply and measure C-dots as possible tracers in tree saplings of three species (Picea glauca, Pinus strobus, Tsuga canadensis). Roots were excavated from soils and exposed to 20 µmol/l liquid silica-based nanoparticles (diameter of 5.1 nm) labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum 646 nm, emission maximum 662 nm). Subsequent continuous IVIS imaging showed real-time uptake and transport of the C-dots by the trees. Respective fluorescence intensity revealed the concentration of C-dots in each of the tissues at measured time steps. Subsequent cross-sectioning of roots, stems and leaves elucidated the internal transport pathway of the C-dots inside the saplings’ tissues. Finally, measurements of stomatal conductance, photosynthesis, transpiration rate, stem hydraulic conductivity and pre-dawn leaf water potentials in comparison to control saplings revealed no phytotoxic effect by the C-dots on plant functioning. In conclusion, C-dots provide a non-toxic new technique for measuring biochemical cycles within the SPAC. Future applications include high resolution tracing of water flow cycles and turnover times within the SPAC, compound specific analyses of root exudation or determining mechanisms of pest influences on plant metabolism.
How to cite: Hafner, B. D., Singh, K., and Bauerle, T. L.: C-dots as non-toxic, non-destructive novel tracers to measure biochemical cycles in the soil-plant-atmosphere continuum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12426, https://doi.org/10.5194/egusphere-egu2020-12426, 2020.
Tracers provide a way to determine, follow and quantify biochemical cycles and energy fluxes within the soil-plant-atmosphere continuum (SPAC). Thereby, different tracers, such as dyes, carbonyl sulfite or stable isotopes are employed. One major disadvantage of many tracers is, that very often, plants have to be destructively harvested to analyze the tracer concentration, making it difficult to measure continuous fluxes. Additionally, for stable isotope studies, fractionation or exchange effects can make interpretation and quantification of biogeochemical fluxes difficult. Novel tracers that are already frequently used in animal systems, are fluorescent C-dots. These nanoparticles (5-50 nm diameter) provide a non-destructive imaging option using “in vivo imaging systems” (IVIS). We examined a first approach to apply and measure C-dots as possible tracers in tree saplings of three species (Picea glauca, Pinus strobus, Tsuga canadensis). Roots were excavated from soils and exposed to 20 µmol/l liquid silica-based nanoparticles (diameter of 5.1 nm) labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum 646 nm, emission maximum 662 nm). Subsequent continuous IVIS imaging showed real-time uptake and transport of the C-dots by the trees. Respective fluorescence intensity revealed the concentration of C-dots in each of the tissues at measured time steps. Subsequent cross-sectioning of roots, stems and leaves elucidated the internal transport pathway of the C-dots inside the saplings’ tissues. Finally, measurements of stomatal conductance, photosynthesis, transpiration rate, stem hydraulic conductivity and pre-dawn leaf water potentials in comparison to control saplings revealed no phytotoxic effect by the C-dots on plant functioning. In conclusion, C-dots provide a non-toxic new technique for measuring biochemical cycles within the SPAC. Future applications include high resolution tracing of water flow cycles and turnover times within the SPAC, compound specific analyses of root exudation or determining mechanisms of pest influences on plant metabolism.
How to cite: Hafner, B. D., Singh, K., and Bauerle, T. L.: C-dots as non-toxic, non-destructive novel tracers to measure biochemical cycles in the soil-plant-atmosphere continuum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12426, https://doi.org/10.5194/egusphere-egu2020-12426, 2020.
EGU2020-20441 | Displays | BG3.25
Drought stress affects carbon partitioning between plant primary and secondary metabolism in Scots pine treesJürgen Kreuzwieser, Michel Grün, Monika Eiblmeier, Ines Bamberger, Ana Maria Yanez-Serrano, Lukas Fasbender, and Christiane Werner
The interplay of the processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and Volatile Organic Compound (VOC) biosynthesis, is still not fully understood. Pyruvate is a key metabolite which is formed in primary metabolism and acting as substrate in numerous secondary pathways forming many BVOCs, such as isoprene, volatile terpenoids, oxygenated compounds (acetaldehyde, acetic acid), benzenoids and fatty acid oxidation products (several wound VOCs), which can be emitted by plants. Within the ERC project VOCO, we established an innovative analytical setup enabling us to simultaneously measure stable carbon isotope composition of leaf exchanged CO2 (Infrared Isotope spectroscopy IRIS) together with VOC release (PTR-TOF-MS and GC-MS-C-IRMS). Position specific 13C-labeled pyruvate and 13CO2 were applied in tracer experiments to elucidate carbon partitioning at metabolic branching points into VOCs vs. CO2 in drought stressed Scots pine trees.
We observed treatment specific patterns of VOC emission including volatile terpenoids, oxygenated BVOCs and green leaf volatiles. Tracing 13C, we elucidated if compounds were de novo synthesized from 13C-labeled pyruvate or 13CO2. Position-specific labeling with [1-13C]-pyruvate and [2-13C]-pyruvate suggested that most VOCs were synthesized from the C2-C3 moiety of pyruvate whereas the C1 position was decarboxylated resulting in 13CO2 release by dark respiration in the light. We observed drought stress related shifts in 13CO2 release and VOC emissions. Our observations suggest that VOC emissions are associated with significant pyruvate C1 decarboxylation which is released to the atmosphere. This novel approach contributes to a better understanding of the metabolic links of processes of primary and secondary plant metabolisms which is relevant for the vegetation-atmosphere exchange of CO2 and VOCs.
How to cite: Kreuzwieser, J., Grün, M., Eiblmeier, M., Bamberger, I., Yanez-Serrano, A. M., Fasbender, L., and Werner, C.: Drought stress affects carbon partitioning between plant primary and secondary metabolism in Scots pine trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20441, https://doi.org/10.5194/egusphere-egu2020-20441, 2020.
The interplay of the processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and Volatile Organic Compound (VOC) biosynthesis, is still not fully understood. Pyruvate is a key metabolite which is formed in primary metabolism and acting as substrate in numerous secondary pathways forming many BVOCs, such as isoprene, volatile terpenoids, oxygenated compounds (acetaldehyde, acetic acid), benzenoids and fatty acid oxidation products (several wound VOCs), which can be emitted by plants. Within the ERC project VOCO, we established an innovative analytical setup enabling us to simultaneously measure stable carbon isotope composition of leaf exchanged CO2 (Infrared Isotope spectroscopy IRIS) together with VOC release (PTR-TOF-MS and GC-MS-C-IRMS). Position specific 13C-labeled pyruvate and 13CO2 were applied in tracer experiments to elucidate carbon partitioning at metabolic branching points into VOCs vs. CO2 in drought stressed Scots pine trees.
We observed treatment specific patterns of VOC emission including volatile terpenoids, oxygenated BVOCs and green leaf volatiles. Tracing 13C, we elucidated if compounds were de novo synthesized from 13C-labeled pyruvate or 13CO2. Position-specific labeling with [1-13C]-pyruvate and [2-13C]-pyruvate suggested that most VOCs were synthesized from the C2-C3 moiety of pyruvate whereas the C1 position was decarboxylated resulting in 13CO2 release by dark respiration in the light. We observed drought stress related shifts in 13CO2 release and VOC emissions. Our observations suggest that VOC emissions are associated with significant pyruvate C1 decarboxylation which is released to the atmosphere. This novel approach contributes to a better understanding of the metabolic links of processes of primary and secondary plant metabolisms which is relevant for the vegetation-atmosphere exchange of CO2 and VOCs.
How to cite: Kreuzwieser, J., Grün, M., Eiblmeier, M., Bamberger, I., Yanez-Serrano, A. M., Fasbender, L., and Werner, C.: Drought stress affects carbon partitioning between plant primary and secondary metabolism in Scots pine trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20441, https://doi.org/10.5194/egusphere-egu2020-20441, 2020.
EGU2020-6960 | Displays | BG3.25
Active support of mistletoe to the host tree with carbon assimilation under source-limitation – results from a 13C labelling experimentAo Wang, Andreas Rigling, Marco Lehmann, Matthias Saurer, Arthur Gessler, Zhong Du, and Maihe Li
Pine Mistletoe (Viscum album ssp. austriacum) is a hemi-parasite shrub species, whose survival and development rely on water and mineral resources obtained through the xylem sap from the host tree. Mistletoe can produce photosynthates in its green organs on its own. On the other side, as they are connected to the phloem of the host tree, they may also be able to retrieve carbon assimilates from their host and/or vice versa. However, the dynamics and the steering factors of this relationship remains unclear. We conducted 13C- labelling experiments with mature Scots pine (Pinus sylvestris) infected by mistletoes in a long-term (15 years) irrigation experiment in Switzerland (Pfynwald, Valais) to investigate the transport of carbon assimilates and nutrients between the host and the parasite under different soil moisture (600 mm vs 1200 mm of precipitation per year). Three irrigated and three control (natural xeric) pine trees infected by mistletoes were 13C labelled for 4 hours. During the 13C labelling of the trees, the following two experiments were carried out.
1) Wrapping experiment: 3-4 clusters of mistletoes on the labelled trees were wrapped with aluminium foil and enclosed in plastic bags to prevent mistletoe photosynthesis using 13C-enriched CO2 and to investigate a potential host-mistletoe carbon transfer.
2) Girdling and removal experiment: The phloem of 12 host tree branches (6 control & 6 irrigated) infected by mistletoes was manually removed (ca. 2 cm in width, basipetally of the mistletoes) to stop the downward transport of photosynthates from the girdled branches. Additionally, host needles or mistletoes were removed from the girdled branches to investigate the respective contribution of photosynthesis by the host needles vs. mistletoes to the host branch carbon balance.
In the wrapping experiment, wrapped and unwrapped mistletoe leaves and stems were harvested at 10 times points over 6 months. In the girdling and removal experiment, needles, twigs (i.e. xylem and phloem) and mistletoe leaves were harvested at 7 time points over 14 days. In both experiment, bulk organic matter of each tissue was analysed to trace the 13C signal.
We found that there was no 13C signal in the wrapped mistletoe leaves, indicating that there was no C-transfer from the host to the mistletoes via the phloem sap. Mistletoe removal from girdled branches decreased 13C-labelled carbon assimilates in host xylem and phloem. Meanwhile, when needles were completely removed from the girdled branches, host xylem and phloem were still able to acquire 13C from the mistletoes. These results suggest that mistletoes can support the host with carbon resources, which might be especially important when the host is C resource limited.
Our study provides new insights into the relationship between the hemi-parasite and its host tree. Mistletoes may play a role as C source providers to support the host and maintain a symbiotic relationship to survive.
How to cite: Wang, A., Rigling, A., Lehmann, M., Saurer, M., Gessler, A., Du, Z., and Li, M.: Active support of mistletoe to the host tree with carbon assimilation under source-limitation – results from a 13C labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6960, https://doi.org/10.5194/egusphere-egu2020-6960, 2020.
Pine Mistletoe (Viscum album ssp. austriacum) is a hemi-parasite shrub species, whose survival and development rely on water and mineral resources obtained through the xylem sap from the host tree. Mistletoe can produce photosynthates in its green organs on its own. On the other side, as they are connected to the phloem of the host tree, they may also be able to retrieve carbon assimilates from their host and/or vice versa. However, the dynamics and the steering factors of this relationship remains unclear. We conducted 13C- labelling experiments with mature Scots pine (Pinus sylvestris) infected by mistletoes in a long-term (15 years) irrigation experiment in Switzerland (Pfynwald, Valais) to investigate the transport of carbon assimilates and nutrients between the host and the parasite under different soil moisture (600 mm vs 1200 mm of precipitation per year). Three irrigated and three control (natural xeric) pine trees infected by mistletoes were 13C labelled for 4 hours. During the 13C labelling of the trees, the following two experiments were carried out.
1) Wrapping experiment: 3-4 clusters of mistletoes on the labelled trees were wrapped with aluminium foil and enclosed in plastic bags to prevent mistletoe photosynthesis using 13C-enriched CO2 and to investigate a potential host-mistletoe carbon transfer.
2) Girdling and removal experiment: The phloem of 12 host tree branches (6 control & 6 irrigated) infected by mistletoes was manually removed (ca. 2 cm in width, basipetally of the mistletoes) to stop the downward transport of photosynthates from the girdled branches. Additionally, host needles or mistletoes were removed from the girdled branches to investigate the respective contribution of photosynthesis by the host needles vs. mistletoes to the host branch carbon balance.
In the wrapping experiment, wrapped and unwrapped mistletoe leaves and stems were harvested at 10 times points over 6 months. In the girdling and removal experiment, needles, twigs (i.e. xylem and phloem) and mistletoe leaves were harvested at 7 time points over 14 days. In both experiment, bulk organic matter of each tissue was analysed to trace the 13C signal.
We found that there was no 13C signal in the wrapped mistletoe leaves, indicating that there was no C-transfer from the host to the mistletoes via the phloem sap. Mistletoe removal from girdled branches decreased 13C-labelled carbon assimilates in host xylem and phloem. Meanwhile, when needles were completely removed from the girdled branches, host xylem and phloem were still able to acquire 13C from the mistletoes. These results suggest that mistletoes can support the host with carbon resources, which might be especially important when the host is C resource limited.
Our study provides new insights into the relationship between the hemi-parasite and its host tree. Mistletoes may play a role as C source providers to support the host and maintain a symbiotic relationship to survive.
How to cite: Wang, A., Rigling, A., Lehmann, M., Saurer, M., Gessler, A., Du, Z., and Li, M.: Active support of mistletoe to the host tree with carbon assimilation under source-limitation – results from a 13C labelling experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6960, https://doi.org/10.5194/egusphere-egu2020-6960, 2020.
EGU2020-20785 | Displays | BG3.25
New method for hydrogen isotope analysis of non-structural carbohydratesPhilipp Schuler, Jobin Joseph, Marc-Andre Cormier, Roland A. Werner, Matthias Saurer, and Marco M. Lehmann
Analysing stable isotope composition of biologic components can be a powerful tool to reconstruct past environmental conditions, physiological responses, and to trace metabolic pathways. The analysis of the carbon-bound non-exchangeable hydrogen isotope ratios (δ2HNE) in carbohydrates can be challenging, partly due to the exchangeability of oxygen-bound hydrogen in the same molecule with those in water or vapour. To eliminate such sample alterations, carbohydrates have been nitrated to substitute exchangeable hydrogen with nitrate ester. However, the nitration of carbohydrates is time consuming, needs high sample amount, has several safety issues, and the nitrated products of short-chained carbohydrates are instable. δ2HNE of sugars derived from living organisms or directly from the environment are thus still limited and not widespread available. Here we optimized recent δ2HNE methods, with the focus on plant-derived non-structural carbohydrates such as starch, sugars, and sugar alcohols. The exchangeable hydrogen is replaced via equilibration with water vapour of a known isotopic composition to calculate δ2HNE. In this presentation, we will explain the new δ2HNE method, discuss precision, accuracy, as well as referencing strategies, and give a first outlook for future applications in plant and environmental sciences.
How to cite: Schuler, P., Joseph, J., Cormier, M.-A., Werner, R. A., Saurer, M., and Lehmann, M. M.: New method for hydrogen isotope analysis of non-structural carbohydrates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20785, https://doi.org/10.5194/egusphere-egu2020-20785, 2020.
Analysing stable isotope composition of biologic components can be a powerful tool to reconstruct past environmental conditions, physiological responses, and to trace metabolic pathways. The analysis of the carbon-bound non-exchangeable hydrogen isotope ratios (δ2HNE) in carbohydrates can be challenging, partly due to the exchangeability of oxygen-bound hydrogen in the same molecule with those in water or vapour. To eliminate such sample alterations, carbohydrates have been nitrated to substitute exchangeable hydrogen with nitrate ester. However, the nitration of carbohydrates is time consuming, needs high sample amount, has several safety issues, and the nitrated products of short-chained carbohydrates are instable. δ2HNE of sugars derived from living organisms or directly from the environment are thus still limited and not widespread available. Here we optimized recent δ2HNE methods, with the focus on plant-derived non-structural carbohydrates such as starch, sugars, and sugar alcohols. The exchangeable hydrogen is replaced via equilibration with water vapour of a known isotopic composition to calculate δ2HNE. In this presentation, we will explain the new δ2HNE method, discuss precision, accuracy, as well as referencing strategies, and give a first outlook for future applications in plant and environmental sciences.
How to cite: Schuler, P., Joseph, J., Cormier, M.-A., Werner, R. A., Saurer, M., and Lehmann, M. M.: New method for hydrogen isotope analysis of non-structural carbohydrates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20785, https://doi.org/10.5194/egusphere-egu2020-20785, 2020.
EGU2020-4784 | Displays | BG3.25
Soil and leaf CNP&S stoichiometry and isotopic composition in sagebrush ecosystems of WyomingFélix Brédoire, Paul A Ayayee, Seifeddine Ben Tekaya, Linda T A van Diepen, and David G Williams
Sagebrush (Artemisia tridentata) ecosystems span a wide range of environmental conditions in the Western US, where they are the most extensive semiarid vegetation type. Water availability is recognized as the major driver of the structure of sagebrush communities, however less is known about the associated biogeochemical processes. By characterizing large-scale biogeographical patterns of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) elemental and isotopic compositions in soil and vegetation, we aimed to: (1) detect potential nutrient limitations, (2) identify element sources (weathering, decomposition, or atmospheric deposition), and (3) identify the nature and rates of biogeochemical processes. We sampled sagebrush leaves together with intra- and inter-canopy soil at 50 sites across Wyoming, where sagebrush extends across strong climate and soil type gradients. We expect the nature, rates, and coupling of biogeochemical processes to correlate with patterns of water availability since it is a key control of microbial activity, and the diffusion of enzymes and substrates. Nutrient availability for plants may also follow the same pattern. For example, in moist sites, increased N and P availability may result from higher organic matter decomposition rates than in dry sites, potentially alleviating N limitation to plant growth. However, an excess of P relative to N may occur at high decomposition rates and where the soil parent material is P-rich, leaving N as the limiting nutrient. Conversely, warm and dry sites may have a greater proportion of N being lost through fractionating pathways and a more open N cycle, resulting in high soil and foliar d15N values. We expect leaf d34S to reflect contrasting sources, notably helping to decipher the relative importance of the inputs from atmospheric deposition and weathering (i.e. sedimentary material deposited under anoxic conditions). By improving our understanding of the biogeochemical processes associated with vegetation productivity patterns along a macro-climatic gradient, our data could provide insights into future ecosystem status and help designing disturbance recovery strategies.
How to cite: Brédoire, F., Ayayee, P. A., Ben Tekaya, S., van Diepen, L. T. A., and Williams, D. G.: Soil and leaf CNP&S stoichiometry and isotopic composition in sagebrush ecosystems of Wyoming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4784, https://doi.org/10.5194/egusphere-egu2020-4784, 2020.
Sagebrush (Artemisia tridentata) ecosystems span a wide range of environmental conditions in the Western US, where they are the most extensive semiarid vegetation type. Water availability is recognized as the major driver of the structure of sagebrush communities, however less is known about the associated biogeochemical processes. By characterizing large-scale biogeographical patterns of carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) elemental and isotopic compositions in soil and vegetation, we aimed to: (1) detect potential nutrient limitations, (2) identify element sources (weathering, decomposition, or atmospheric deposition), and (3) identify the nature and rates of biogeochemical processes. We sampled sagebrush leaves together with intra- and inter-canopy soil at 50 sites across Wyoming, where sagebrush extends across strong climate and soil type gradients. We expect the nature, rates, and coupling of biogeochemical processes to correlate with patterns of water availability since it is a key control of microbial activity, and the diffusion of enzymes and substrates. Nutrient availability for plants may also follow the same pattern. For example, in moist sites, increased N and P availability may result from higher organic matter decomposition rates than in dry sites, potentially alleviating N limitation to plant growth. However, an excess of P relative to N may occur at high decomposition rates and where the soil parent material is P-rich, leaving N as the limiting nutrient. Conversely, warm and dry sites may have a greater proportion of N being lost through fractionating pathways and a more open N cycle, resulting in high soil and foliar d15N values. We expect leaf d34S to reflect contrasting sources, notably helping to decipher the relative importance of the inputs from atmospheric deposition and weathering (i.e. sedimentary material deposited under anoxic conditions). By improving our understanding of the biogeochemical processes associated with vegetation productivity patterns along a macro-climatic gradient, our data could provide insights into future ecosystem status and help designing disturbance recovery strategies.
How to cite: Brédoire, F., Ayayee, P. A., Ben Tekaya, S., van Diepen, L. T. A., and Williams, D. G.: Soil and leaf CNP&S stoichiometry and isotopic composition in sagebrush ecosystems of Wyoming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4784, https://doi.org/10.5194/egusphere-egu2020-4784, 2020.
EGU2020-5590 | Displays | BG3.25
Construction of a Light Emitting Diode Chamber for Measurement of Gas Exchange in the Plant EcosystemTaehwan Shin, Seungtaek Jeong, and Jonghan Ko
Abstract: A canopy chamber system is useful to measure gas exchanges in the plant ecosystem. A transparent chamber has been generally used to measure canopy fluxes in the field, such that the light source for photosynthesis depends on the solar radiation. However, it is challenging to measure stable canopy fluxes in the field due to changeable solar radiation conditions in nature. In this study, we constructed a new chamber system to measure canopy fluxes using a Light Emitting Diode (LED) as a light source. Upon the construction, we aim to measure quantitative gas exchanges to estimate the amount of photosynthesis and evapotranspiration using the constructed chamber system in crop fields. While diverse chamber systems have been developed to measure canopy gas exchanges so far, no attempt has been made to create such an LED chamber system according to our best knowledge. The new chamber system was composed of a chamber, LEDs with a maximum power capacity of 1,800W, a water pump for cooling, and a gas analyzer (LI-850, LI-COR, USA). This LED chamber system can estimate the amount of photosynthesis and evapotranspiration rate of plants by measuring both CO2 and H2O fluxes in the ecosystem. These measurements can contribute to the practical assessment of crop productivity as well as scientific advancement in plant ecophysiology.
Keywords: Crop, evapotranspiration, gas exchange, LED, chamber, photosynthesis
Acknowledgement: This research was supported by "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ013841022018)" from Rural Development Administration, Republic of Korea.
How to cite: Shin, T., Jeong, S., and Ko, J.: Construction of a Light Emitting Diode Chamber for Measurement of Gas Exchange in the Plant Ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5590, https://doi.org/10.5194/egusphere-egu2020-5590, 2020.
Abstract: A canopy chamber system is useful to measure gas exchanges in the plant ecosystem. A transparent chamber has been generally used to measure canopy fluxes in the field, such that the light source for photosynthesis depends on the solar radiation. However, it is challenging to measure stable canopy fluxes in the field due to changeable solar radiation conditions in nature. In this study, we constructed a new chamber system to measure canopy fluxes using a Light Emitting Diode (LED) as a light source. Upon the construction, we aim to measure quantitative gas exchanges to estimate the amount of photosynthesis and evapotranspiration using the constructed chamber system in crop fields. While diverse chamber systems have been developed to measure canopy gas exchanges so far, no attempt has been made to create such an LED chamber system according to our best knowledge. The new chamber system was composed of a chamber, LEDs with a maximum power capacity of 1,800W, a water pump for cooling, and a gas analyzer (LI-850, LI-COR, USA). This LED chamber system can estimate the amount of photosynthesis and evapotranspiration rate of plants by measuring both CO2 and H2O fluxes in the ecosystem. These measurements can contribute to the practical assessment of crop productivity as well as scientific advancement in plant ecophysiology.
Keywords: Crop, evapotranspiration, gas exchange, LED, chamber, photosynthesis
Acknowledgement: This research was supported by "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ013841022018)" from Rural Development Administration, Republic of Korea.
How to cite: Shin, T., Jeong, S., and Ko, J.: Construction of a Light Emitting Diode Chamber for Measurement of Gas Exchange in the Plant Ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5590, https://doi.org/10.5194/egusphere-egu2020-5590, 2020.
EGU2020-8718 | Displays | BG3.25
Improving Visualisation of In-Vivo Root Anatomy and Fluid Transport in Soil Using Iodinated Contrast in Synchrotron XCT and XRFCallum Scotson, Katherine Williams, Daniel McKay Fletcher, Nicolai Koebernick, Arjen van Veelen, and Tiina Roose
Synchrotron X-ray computed tomography (SRXCT) imaging is a technique now commonly deployed for non-destructive 3D visualisation of root morphology in soil environments. However, visualising the internal anatomy of roots in soil using SRXCT can be difficult since the energy required for sufficient X-ray transmission through soil often results in poor contrast between root tissues. This reduces the amount of obtainable information about root anatomy and the effects of the soil environment on plant root internal structure. Contrast media is often used in SRXCT imaging to increase the contrast between tissues, enabling greater ease of both visualisation and image processing for internal structures of biological material.
In this work, we demonstrate that by introducing root material exposed to iodinated contrast media we can overcome these limitations and visualise internal root anatomy of in vivo roots intact within soil. To achieve this, we undertook time-resolved SRXCT imaging of juvenile maize plants growing in a specially designed growth system over a period of 24 hours. This system was designed such that only the base of the primary root would be suspended into iodinated contrast media whilst the rest of the root system remained in soil partially saturated with water, and the plant remained intact and alive. This enabled the basal section of primary root to take up iodinated contrast media without dispersal of the contrast media into the soil. Following the time-resolved imaging of the root system, leaf and stem material were then imaged using SRXCT and mapped using synchrotron X-ray florescence (SRXRF). Using this system, we were able to visualise and segment anatomical root features that are otherwise difficult to capture in vivo in soil using non-destructive 3D imaging such as vascular bundles (including phloem, xylem and proto-xylem) and structures within the cortex. We also gained inferences into fluid flow and transport within in vivo roots in soil based on this technique. The SRXCT imaging as well as the SRXRF mapping of stem and leaf material confirmed transport of the iodinated contrast media through plant vasculature and the distribution into leaf venation. This investigation demonstrates the quantity of data on internal root anatomy and fluid transport for in-vivo roots in soil that could be yielded from SRXCT and SRXRF in future.
How to cite: Scotson, C., Williams, K., McKay Fletcher, D., Koebernick, N., van Veelen, A., and Roose, T.: Improving Visualisation of In-Vivo Root Anatomy and Fluid Transport in Soil Using Iodinated Contrast in Synchrotron XCT and XRF, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8718, https://doi.org/10.5194/egusphere-egu2020-8718, 2020.
Synchrotron X-ray computed tomography (SRXCT) imaging is a technique now commonly deployed for non-destructive 3D visualisation of root morphology in soil environments. However, visualising the internal anatomy of roots in soil using SRXCT can be difficult since the energy required for sufficient X-ray transmission through soil often results in poor contrast between root tissues. This reduces the amount of obtainable information about root anatomy and the effects of the soil environment on plant root internal structure. Contrast media is often used in SRXCT imaging to increase the contrast between tissues, enabling greater ease of both visualisation and image processing for internal structures of biological material.
In this work, we demonstrate that by introducing root material exposed to iodinated contrast media we can overcome these limitations and visualise internal root anatomy of in vivo roots intact within soil. To achieve this, we undertook time-resolved SRXCT imaging of juvenile maize plants growing in a specially designed growth system over a period of 24 hours. This system was designed such that only the base of the primary root would be suspended into iodinated contrast media whilst the rest of the root system remained in soil partially saturated with water, and the plant remained intact and alive. This enabled the basal section of primary root to take up iodinated contrast media without dispersal of the contrast media into the soil. Following the time-resolved imaging of the root system, leaf and stem material were then imaged using SRXCT and mapped using synchrotron X-ray florescence (SRXRF). Using this system, we were able to visualise and segment anatomical root features that are otherwise difficult to capture in vivo in soil using non-destructive 3D imaging such as vascular bundles (including phloem, xylem and proto-xylem) and structures within the cortex. We also gained inferences into fluid flow and transport within in vivo roots in soil based on this technique. The SRXCT imaging as well as the SRXRF mapping of stem and leaf material confirmed transport of the iodinated contrast media through plant vasculature and the distribution into leaf venation. This investigation demonstrates the quantity of data on internal root anatomy and fluid transport for in-vivo roots in soil that could be yielded from SRXCT and SRXRF in future.
How to cite: Scotson, C., Williams, K., McKay Fletcher, D., Koebernick, N., van Veelen, A., and Roose, T.: Improving Visualisation of In-Vivo Root Anatomy and Fluid Transport in Soil Using Iodinated Contrast in Synchrotron XCT and XRF, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8718, https://doi.org/10.5194/egusphere-egu2020-8718, 2020.
EGU2020-9343 | Displays | BG3.25
Understanding drought induced responses in leaf and root CO2 and VOC fluxes through position specific isotope labellingLars Erik Daber, Ines Bamberger, S. Nemiah Ladd, Jürgen Kreuzwieser, Jane Fudyma, Juliana Gil Loaiza, Jason De Leeuw, Lingling Shi, Xuejuan Bai, Gemma Purser, Jordan E. Krechmer, Laura Meredith, and Christiane Werner
Climate change exerts increasing pressure on tropical rainforests enhancing their susceptibility to environmental stress. Plants' abilities to rapidly adjust their metabolism are critical for reducing the stress effects caused by extreme external conditions. Plants produce a wide spectrum of volatile organic compounds (VOCs) to cope with oxidative and thermal stress. The distribution and amount of VOC production thereby vary greatly not only among species but also organs, such as leaves and roots. Within the framework of our large-scale ecosystem manipulation experiment, Biosphere 2 Water, Atmosphere, and Life Dynamics (B2-WALD), we aimed to produce deeper insights into carbon partitioning between primary and secondary metabolism under drought stress, notably into CO2 and VOCs.
In particular, we investigated how drought stress influences organ-specific carbon allocation between processes of primary and secondary metabolisms and to what extent allocation into secondary metabolism protects plants from drought. The tropical rainforest mesocosm in Biosphere 2, University of Arizona, provides a unique system for ecosystem manipulation studies. We implemented a drought stress experiment, excluding rainfall for two months. To investigate changes in carbon allocation, we performed labelling experiments with position-specific 13C-labelled pyruvate on leaves and roots of several tropical tree and shrub species before and during the drought period. We used 13CO2 laser spectroscopy and high-sensitivity proton-transfer-reaction time-of-flight mass spectrometry to enable real-time analysis of metabolic pathways and carbon turnover, using leaf- and root-chambers to quantify fluxes.
Considering our preliminary results, net CO2 assimilation strongly declined under rain exclusion, due to stomatal closure. Consequently, respiration rates declined strongly in leaves as well as in roots. The response of VOC emissions, however, varied among organs. In leaves, we found that the emission of some VOCs declined under drought stress (acetone, monoterpenes), while other fluxes increased or stayed the same (isoprene). We will present detailed data on [1-13C]- and [2-13C]-pyruvate allocation within primary and secondary metabolism, such as decarboxylation processes and VOC-production. To our knowledge, this is the first time that real-time measurements of 13C-labelled root VOC-emissions were conducted, enabling this comparative analysis of drought induced stress effects on leaf- and root-emissions.
How to cite: Daber, L. E., Bamberger, I., Ladd, S. N., Kreuzwieser, J., Fudyma, J., Loaiza, J. G., De Leeuw, J., Shi, L., Bai, X., Purser, G., Krechmer, J. E., Meredith, L., and Werner, C.: Understanding drought induced responses in leaf and root CO2 and VOC fluxes through position specific isotope labelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9343, https://doi.org/10.5194/egusphere-egu2020-9343, 2020.
Climate change exerts increasing pressure on tropical rainforests enhancing their susceptibility to environmental stress. Plants' abilities to rapidly adjust their metabolism are critical for reducing the stress effects caused by extreme external conditions. Plants produce a wide spectrum of volatile organic compounds (VOCs) to cope with oxidative and thermal stress. The distribution and amount of VOC production thereby vary greatly not only among species but also organs, such as leaves and roots. Within the framework of our large-scale ecosystem manipulation experiment, Biosphere 2 Water, Atmosphere, and Life Dynamics (B2-WALD), we aimed to produce deeper insights into carbon partitioning between primary and secondary metabolism under drought stress, notably into CO2 and VOCs.
In particular, we investigated how drought stress influences organ-specific carbon allocation between processes of primary and secondary metabolisms and to what extent allocation into secondary metabolism protects plants from drought. The tropical rainforest mesocosm in Biosphere 2, University of Arizona, provides a unique system for ecosystem manipulation studies. We implemented a drought stress experiment, excluding rainfall for two months. To investigate changes in carbon allocation, we performed labelling experiments with position-specific 13C-labelled pyruvate on leaves and roots of several tropical tree and shrub species before and during the drought period. We used 13CO2 laser spectroscopy and high-sensitivity proton-transfer-reaction time-of-flight mass spectrometry to enable real-time analysis of metabolic pathways and carbon turnover, using leaf- and root-chambers to quantify fluxes.
Considering our preliminary results, net CO2 assimilation strongly declined under rain exclusion, due to stomatal closure. Consequently, respiration rates declined strongly in leaves as well as in roots. The response of VOC emissions, however, varied among organs. In leaves, we found that the emission of some VOCs declined under drought stress (acetone, monoterpenes), while other fluxes increased or stayed the same (isoprene). We will present detailed data on [1-13C]- and [2-13C]-pyruvate allocation within primary and secondary metabolism, such as decarboxylation processes and VOC-production. To our knowledge, this is the first time that real-time measurements of 13C-labelled root VOC-emissions were conducted, enabling this comparative analysis of drought induced stress effects on leaf- and root-emissions.
How to cite: Daber, L. E., Bamberger, I., Ladd, S. N., Kreuzwieser, J., Fudyma, J., Loaiza, J. G., De Leeuw, J., Shi, L., Bai, X., Purser, G., Krechmer, J. E., Meredith, L., and Werner, C.: Understanding drought induced responses in leaf and root CO2 and VOC fluxes through position specific isotope labelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9343, https://doi.org/10.5194/egusphere-egu2020-9343, 2020.
EGU2020-9460 | Displays | BG3.25
Drought effects on the carbon balance and VOC emissions of a tropical rainforest ecosystemInes Bamberger, Lars Erik Daber, Juliana Gil Loaiza, Gemma Purser, Jason De Leeuw, S. Nemiah Ladd, Laura Meredith, Jürgen Kreuzwieser, and Christiane Werner
Trees contribute substantially to the carbon cycling between the biosphere and atmosphere. Tropical ecosystems in particular are known to exchange not only CO2 with the atmosphere, but also a wide variety of volatile organic compounds (VOCs). With their high reactivity and short life time, VOCs are known to play not only a crucial role in atmospheric chemistry but also in plant signaling and interactions. Due to climate change periods of sustained drought are thought to increase in future and have the potential to alter the carbon balance of tropical ecosystems drastically. However, combined VOC and CO2 flux measurements are rare and thus a quantitative understanding of carbon exchange fluxes in rainforest species during and after drought periods has not yet been reached.
Thus, we used the unique opportunity to study changes of VOC and CO2 flux patterns of the rainforest mesocosm of Biosphere 2 (University of Arizona) in response to an experimentally induced drought period and during the recovery (Biosphere 2 Water, Atmosphere, and Life Dynamics experiment; B2-WALD). This provides us novel information about stress responses of a rainforest ecosystem and its ability to recover, specifically to drought stress. Real-time fluxes of CO2 and VOC exchange were measured by means of 13CO2 laser spectroscopy and proton-transfer-reaction time-of-flight mass-spectrometry (PTR-TOF-MS) using leaf chambers on five different tree and understory species.
While photosynthesis decreased during the drought, changes in VOC flux patterns were more diverse. For example, isoprene emissions increased with dry conditions, whereas fluxes of acetone declined. Here we will present and discuss our first results on leaf gas exchange measurements of different VOCs and CO2 and their response to drought and recovery.
How to cite: Bamberger, I., Daber, L. E., Gil Loaiza, J., Purser, G., De Leeuw, J., Ladd, S. N., Meredith, L., Kreuzwieser, J., and Werner, C.: Drought effects on the carbon balance and VOC emissions of a tropical rainforest ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9460, https://doi.org/10.5194/egusphere-egu2020-9460, 2020.
Trees contribute substantially to the carbon cycling between the biosphere and atmosphere. Tropical ecosystems in particular are known to exchange not only CO2 with the atmosphere, but also a wide variety of volatile organic compounds (VOCs). With their high reactivity and short life time, VOCs are known to play not only a crucial role in atmospheric chemistry but also in plant signaling and interactions. Due to climate change periods of sustained drought are thought to increase in future and have the potential to alter the carbon balance of tropical ecosystems drastically. However, combined VOC and CO2 flux measurements are rare and thus a quantitative understanding of carbon exchange fluxes in rainforest species during and after drought periods has not yet been reached.
Thus, we used the unique opportunity to study changes of VOC and CO2 flux patterns of the rainforest mesocosm of Biosphere 2 (University of Arizona) in response to an experimentally induced drought period and during the recovery (Biosphere 2 Water, Atmosphere, and Life Dynamics experiment; B2-WALD). This provides us novel information about stress responses of a rainforest ecosystem and its ability to recover, specifically to drought stress. Real-time fluxes of CO2 and VOC exchange were measured by means of 13CO2 laser spectroscopy and proton-transfer-reaction time-of-flight mass-spectrometry (PTR-TOF-MS) using leaf chambers on five different tree and understory species.
While photosynthesis decreased during the drought, changes in VOC flux patterns were more diverse. For example, isoprene emissions increased with dry conditions, whereas fluxes of acetone declined. Here we will present and discuss our first results on leaf gas exchange measurements of different VOCs and CO2 and their response to drought and recovery.
How to cite: Bamberger, I., Daber, L. E., Gil Loaiza, J., Purser, G., De Leeuw, J., Ladd, S. N., Meredith, L., Kreuzwieser, J., and Werner, C.: Drought effects on the carbon balance and VOC emissions of a tropical rainforest ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9460, https://doi.org/10.5194/egusphere-egu2020-9460, 2020.
EGU2020-21427 | Displays | BG3.25
Changes in chiral monoterpenes during drought in a rainforest reveal distinct source mechanismsJoseph Byron, Christiane Werner, Nemiah Ladd, Laura Meredith, Gemma Purser, and Jonathan Williams
Monoterpenes are used by plants as antioxidants in the defense against reactive oxygen species and are also contributors to the formation of secondary organic aerosol and cloud condensation nuclei. Understanding how the emissions of monoterpenes from biogenic sources change due to different stresses such as drought is of importance as more frequent drought events are expected to occur in the future due to climate change. Monoterpenes such as alpha pinene and limonene exist as optical isomers in mirror image forms, (+) and (-). Studies on the effect of different stresses on plant emissions commonly measure the sum of enantiomers rather than conducting separate measurements for the individual enantiomers [1]. Recent measurements of chiral monoterpenes have highlighted the importance of independently measuring the individual enantiomers of a chiral pair, due to differences such as environmental drivers [2] and local measurement source [3]. Despite the enantiomers of the same monoterpene having the same chemical properties, they can interact differently with biologically active chiral molecules such as those that exist as olfactory receptors within insect antennae [4].
The atmospheric dynamics of chiral monoterpenes from beneath the canopy of the tropical rainforest biome at Biosphere 2, Arizona, USA, were measured during pre-drought, drought and rewetting using an online GC-MS during the B2 Water, Atmosphere and Life Dynamics campaign (B2WALD). Furthermore, sorbent tube samples were obtained from different forest compartments, to investigate the compartment specific chiral VOC emission. Drought was found to be a driver of a change in the enantiomeric excess of specific monoterpenes. (-) alpha pinene was the dominant monoterpene present in agreement with results from the Amazonian rainforest despite there being no atmospheric chemistry in the Biosphere greenhouse. Interestingly, during the pre-drought phase, due to the conditions in the greenhouse, (-) alpha pinene showed an average daily maximum at 11:00 while (+) alpha pinene peaked at 15:00, coincident with peak light and temperature respectively. By the rewet phase, the average daily maximum for (-) alpha pinene shifted to 13:00, coincident with peak Isoprene, whilst it remained at 15:00 for (+) alpha pinene. The average maximum daily mixing ratios of (+) and (-) alpha pinene, during the drought phase, increased by a factor of 4 and 2 respectively, when compared to the pre-drought values. These results reveal distinct source mechanisms for individual enantiomers and the differing impact drought has on the individual enantiomers in a rainforest ecosystem.
- Lavoir, A.V., et al., Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences, 2009. 6(7): p. 1167-1180.
- Song, W., et al., Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature. Biogeosciences, 2014. 11(5): p. 1435-1447.
- Staudt, M., et al., Compartment specific chiral pinene emissions identified in a Maritime pine forest. Science of The Total Environment, 2019. 654: p. 1158-1166.
- Wibe, A., et al., Enantiomeric Composition of Monoterpene Hydrocarbons in Some Conifers and Receptor Neuron Discrimination of α-Pinene and Limonene Enantiomers in the Pine Weevil, Hylobius abietis. Journal of Chemical Ecology, 1998. 24(2): p. 273-287.
How to cite: Byron, J., Werner, C., Ladd, N., Meredith, L., Purser, G., and Williams, J.: Changes in chiral monoterpenes during drought in a rainforest reveal distinct source mechanisms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21427, https://doi.org/10.5194/egusphere-egu2020-21427, 2020.
Monoterpenes are used by plants as antioxidants in the defense against reactive oxygen species and are also contributors to the formation of secondary organic aerosol and cloud condensation nuclei. Understanding how the emissions of monoterpenes from biogenic sources change due to different stresses such as drought is of importance as more frequent drought events are expected to occur in the future due to climate change. Monoterpenes such as alpha pinene and limonene exist as optical isomers in mirror image forms, (+) and (-). Studies on the effect of different stresses on plant emissions commonly measure the sum of enantiomers rather than conducting separate measurements for the individual enantiomers [1]. Recent measurements of chiral monoterpenes have highlighted the importance of independently measuring the individual enantiomers of a chiral pair, due to differences such as environmental drivers [2] and local measurement source [3]. Despite the enantiomers of the same monoterpene having the same chemical properties, they can interact differently with biologically active chiral molecules such as those that exist as olfactory receptors within insect antennae [4].
The atmospheric dynamics of chiral monoterpenes from beneath the canopy of the tropical rainforest biome at Biosphere 2, Arizona, USA, were measured during pre-drought, drought and rewetting using an online GC-MS during the B2 Water, Atmosphere and Life Dynamics campaign (B2WALD). Furthermore, sorbent tube samples were obtained from different forest compartments, to investigate the compartment specific chiral VOC emission. Drought was found to be a driver of a change in the enantiomeric excess of specific monoterpenes. (-) alpha pinene was the dominant monoterpene present in agreement with results from the Amazonian rainforest despite there being no atmospheric chemistry in the Biosphere greenhouse. Interestingly, during the pre-drought phase, due to the conditions in the greenhouse, (-) alpha pinene showed an average daily maximum at 11:00 while (+) alpha pinene peaked at 15:00, coincident with peak light and temperature respectively. By the rewet phase, the average daily maximum for (-) alpha pinene shifted to 13:00, coincident with peak Isoprene, whilst it remained at 15:00 for (+) alpha pinene. The average maximum daily mixing ratios of (+) and (-) alpha pinene, during the drought phase, increased by a factor of 4 and 2 respectively, when compared to the pre-drought values. These results reveal distinct source mechanisms for individual enantiomers and the differing impact drought has on the individual enantiomers in a rainforest ecosystem.
- Lavoir, A.V., et al., Drought reduced monoterpene emissions from the evergreen Mediterranean oak Quercus ilex: results from a throughfall displacement experiment. Biogeosciences, 2009. 6(7): p. 1167-1180.
- Song, W., et al., Laboratory and field measurements of enantiomeric monoterpene emissions as a function of chemotype, light and temperature. Biogeosciences, 2014. 11(5): p. 1435-1447.
- Staudt, M., et al., Compartment specific chiral pinene emissions identified in a Maritime pine forest. Science of The Total Environment, 2019. 654: p. 1158-1166.
- Wibe, A., et al., Enantiomeric Composition of Monoterpene Hydrocarbons in Some Conifers and Receptor Neuron Discrimination of α-Pinene and Limonene Enantiomers in the Pine Weevil, Hylobius abietis. Journal of Chemical Ecology, 1998. 24(2): p. 273-287.
How to cite: Byron, J., Werner, C., Ladd, N., Meredith, L., Purser, G., and Williams, J.: Changes in chiral monoterpenes during drought in a rainforest reveal distinct source mechanisms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21427, https://doi.org/10.5194/egusphere-egu2020-21427, 2020.
EGU2020-10910 | Displays | BG3.25
Biogenic VOC emissions under drought and temperature stressDaniel Blomdahl, Laura Meredith, Christiane Werner, Nemiah Ladd, Ben Langford, Eiko Nemitz, Joost van Haren, Ines Bamburger, Gemma Purser, Joseph Byron, and Pawel Misztal
As climate change brings warmer temperatures and reduced precipitation to forests globally, it is vital to understand how plants adapt to drought and temperature stress. Plant activity emits biogenic volatile organic compounds (BVOC), and stress-induced changes in BVOC concentrations have important implications on secondary VOC and aerosols formation due to atmospheric reactions with ozone and other oxidants. Measurements of BVOC emissions were made at the Biosphere 2 rainforest facility near Oracle, AZ, USA from September to December 2019. Time resolved BVOC vertical concentration gradients were measured continuously using a proton transfer reaction time-of-flight mass spectrometer (PTR-QiToF-MS, Ionicon) sampling sequentially from five levels of a vertical tower positioned at 1 m, 3 m, 7 m, 14 m and 20 m above the forest floor. Emissions of a full range of primary BVOCs are estimated from concentrations and air exchange rates. The changes in ecosystem BVOC emission are evaluated under normal precipitation conditions, then throughout a controlled 2-month drought period, and finally through a re-wet period where rain was re-introduced to the rainforest. Analysis aims to show the vertical gradient of BVOC emissions from the forest plants, as well as how BVOC concentrations changed throughout the different stress periods. BVOCs that are important for plant physiology and atmospheric science, such as isoprene and higher terpenoids, as well as other compound classes such as volatile short chain and medium chain fatty acids, will be investigated in detail. These results will give insight into how plant emissions are affected under stress, either as protective mechanisms or due to desiccation-induced responses.
How to cite: Blomdahl, D., Meredith, L., Werner, C., Ladd, N., Langford, B., Nemitz, E., van Haren, J., Bamburger, I., Purser, G., Byron, J., and Misztal, P.: Biogenic VOC emissions under drought and temperature stress, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10910, https://doi.org/10.5194/egusphere-egu2020-10910, 2020.
As climate change brings warmer temperatures and reduced precipitation to forests globally, it is vital to understand how plants adapt to drought and temperature stress. Plant activity emits biogenic volatile organic compounds (BVOC), and stress-induced changes in BVOC concentrations have important implications on secondary VOC and aerosols formation due to atmospheric reactions with ozone and other oxidants. Measurements of BVOC emissions were made at the Biosphere 2 rainforest facility near Oracle, AZ, USA from September to December 2019. Time resolved BVOC vertical concentration gradients were measured continuously using a proton transfer reaction time-of-flight mass spectrometer (PTR-QiToF-MS, Ionicon) sampling sequentially from five levels of a vertical tower positioned at 1 m, 3 m, 7 m, 14 m and 20 m above the forest floor. Emissions of a full range of primary BVOCs are estimated from concentrations and air exchange rates. The changes in ecosystem BVOC emission are evaluated under normal precipitation conditions, then throughout a controlled 2-month drought period, and finally through a re-wet period where rain was re-introduced to the rainforest. Analysis aims to show the vertical gradient of BVOC emissions from the forest plants, as well as how BVOC concentrations changed throughout the different stress periods. BVOCs that are important for plant physiology and atmospheric science, such as isoprene and higher terpenoids, as well as other compound classes such as volatile short chain and medium chain fatty acids, will be investigated in detail. These results will give insight into how plant emissions are affected under stress, either as protective mechanisms or due to desiccation-induced responses.
How to cite: Blomdahl, D., Meredith, L., Werner, C., Ladd, N., Langford, B., Nemitz, E., van Haren, J., Bamburger, I., Purser, G., Byron, J., and Misztal, P.: Biogenic VOC emissions under drought and temperature stress, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10910, https://doi.org/10.5194/egusphere-egu2020-10910, 2020.
EGU2020-12179 | Displays | BG3.25
Volatile organic compound fluxes across the soils of a rainforest ecosystem during a simulated drought experimentGemma Purser, Jürgen Kreuzwieser, Johannes Ingrisch, Kathiravan Meeran, Juliana Gil Loaiza, Erik Daber, S. Nemiah Ladd, Laura Meredith, and Christiane Werner
EGU2020-12684 | Displays | BG3.25
Rhizosphere Volatile Organic Compounds: A real-time approach using diffusive soil probes on a controlled Tropical RainforestJuliana Gil Loaiza, Laura Meredith, Jordan Krechmer, Megan Claflin, Rob Roscioli, and Joanne Shorter
Microbial metabolic functions and biogeochemical pathways of the complex rhizosphere-soil-microbe interactions change with aboveground vegetation and the ecosystem response to environmental changes. Soil trace gases and current genomic approaches have been valuable to characterize in-situ microbial activity. However, there is a lack of understanding of the complexity of the belowground processes, the time frame of microbial community responses to environmental changes and the degree to which microbial activity can be inferred current -omics approaches. In the nitrogen cycling at a field scale, microbial diversity or gene abundance sometimes does not explain N2O emissions or even gene expression, there some bacteria that cannot be cultivated, and in general –omics involve destructive soil sampling that is prone to changes of the in-situ soil conditions. Additionally, field soil sampling may not capture the heterogeneity of the soil or specific area of study.
Volatile Organic Compounds (VOCs) produced in the rhizosphere play an important role in microbial nutrient cycling. VOCs are produced by plants and microorganisms as a response to biotic or biotic stressors or the type of carbon sources available.
Here, we present how subsurface soil gas measurements in an enclosed ecosystem during the Water, Atmosphere, and Life Dynamics experiment (B2-WALD) at the Tropical Rainforest biome of Biosphere 2 (Arizona, USA) during an induced controlled drought. We present initial results of a unique non-destructive approach that simultaneously couples a) new hydrophobic-porous subsurface soil probes, b) high-resolution Tunable Infrared Laser Direct Absorption Spectrometers (TILDAS) to analyze in situ trace gas isotopomers, and c) a proton transfer reaction mass spectrometer (VOCUS, high resolution volatile organic compound gas analyzer) for VOC quantification. We measured soil gas isotopic composition of N2O and VOCs-- comparing rhizosphere and control areas before and during the drought. We will focus our discussion on VOCs and its potential as makers of microbial interactions and signaling as a response to an environmental stressor like drought.
In this project, we demonstrate the feasibility of online coupling of soil probes with high-resolution instrumentation to measure products from nitrogen cycling and nonmethane VOC production in soils as a response to soil-plant microbe interactions. In addition, this approach could be a potential tool to constraint inferences derived from different –omics approaches.
How to cite: Gil Loaiza, J., Meredith, L., Krechmer, J., Claflin, M., Roscioli, R., and Shorter, J.: Rhizosphere Volatile Organic Compounds: A real-time approach using diffusive soil probes on a controlled Tropical Rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12684, https://doi.org/10.5194/egusphere-egu2020-12684, 2020.
Microbial metabolic functions and biogeochemical pathways of the complex rhizosphere-soil-microbe interactions change with aboveground vegetation and the ecosystem response to environmental changes. Soil trace gases and current genomic approaches have been valuable to characterize in-situ microbial activity. However, there is a lack of understanding of the complexity of the belowground processes, the time frame of microbial community responses to environmental changes and the degree to which microbial activity can be inferred current -omics approaches. In the nitrogen cycling at a field scale, microbial diversity or gene abundance sometimes does not explain N2O emissions or even gene expression, there some bacteria that cannot be cultivated, and in general –omics involve destructive soil sampling that is prone to changes of the in-situ soil conditions. Additionally, field soil sampling may not capture the heterogeneity of the soil or specific area of study.
Volatile Organic Compounds (VOCs) produced in the rhizosphere play an important role in microbial nutrient cycling. VOCs are produced by plants and microorganisms as a response to biotic or biotic stressors or the type of carbon sources available.
Here, we present how subsurface soil gas measurements in an enclosed ecosystem during the Water, Atmosphere, and Life Dynamics experiment (B2-WALD) at the Tropical Rainforest biome of Biosphere 2 (Arizona, USA) during an induced controlled drought. We present initial results of a unique non-destructive approach that simultaneously couples a) new hydrophobic-porous subsurface soil probes, b) high-resolution Tunable Infrared Laser Direct Absorption Spectrometers (TILDAS) to analyze in situ trace gas isotopomers, and c) a proton transfer reaction mass spectrometer (VOCUS, high resolution volatile organic compound gas analyzer) for VOC quantification. We measured soil gas isotopic composition of N2O and VOCs-- comparing rhizosphere and control areas before and during the drought. We will focus our discussion on VOCs and its potential as makers of microbial interactions and signaling as a response to an environmental stressor like drought.
In this project, we demonstrate the feasibility of online coupling of soil probes with high-resolution instrumentation to measure products from nitrogen cycling and nonmethane VOC production in soils as a response to soil-plant microbe interactions. In addition, this approach could be a potential tool to constraint inferences derived from different –omics approaches.
How to cite: Gil Loaiza, J., Meredith, L., Krechmer, J., Claflin, M., Roscioli, R., and Shorter, J.: Rhizosphere Volatile Organic Compounds: A real-time approach using diffusive soil probes on a controlled Tropical Rainforest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12684, https://doi.org/10.5194/egusphere-egu2020-12684, 2020.
EGU2020-11264 | Displays | BG3.25
Tracing ecosystem scale interactions of volatile organic compound (VOC) and CO2 emissions by position-specific and whole ecosystem isotope labellingChristiane Werner, Nemiah S. Ladd, and Laura Meredith and the B2 WALD
Ecosystem processes present a complex interplay between different components, such as vegetation, soil, and the rhizosphere. All these different components can emit (or even uptake) a plethora of volatile organic compound (BVOC) with highly dynamic response to environmental changes. However, processes controlling carbon allocation into primary and secondary metabolism such as VOC synthesis or respiratory CO2 emission remain unclear. De novo synthesis of BVOC depends on the availability of carbon, as well as energy provided by primary metabolism. Thus, carbon allocation may compete between primary and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. It is the main substrate fulling respiration, but also a substrate for a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds, such as volatile isoprenoids, oxygenated VOCs. Within the European Research Council (ERC) Project VOCO we developed a novel technological basis to couple CO2 fluxes with VOC emissions based on simultaneous real-time measurements of stable carbon isotope composition of branch, root, and soil respired CO2 and VOC fluxes (Fasbender et al. 2018). Position specific 13C-labeled pyruvate feeding experiments are used to trace partitioning within the metabolic branching points into VOCs versus CO2 emissions, bridging scales from sub-molecular to whole-plant and ecosystem processes. Positional 13C-labelling will trace real-time sub-molecular carbon investment into VOCs and CO2, enabling mechanistic descriptions of the underlying biochemical pathways coupling anabolic and catabolic processes.
To trace ecosystem scale interactions, we implemented a whole-ecosystem labelling approach in the world’s largest controlled growth facility: the Biosphere 2 Tropical Rainforest. In the Biosphere 2 Water, Atmosphere, and Life Dynamics (B2-WALD) experiment, we applied an ecosystem scale drought and tracing carbon allocation and dynamics of VOC, CO2 and H2O fluxes from leaf, root, soil and atmospheric scales. The overarching goal of B2-WALD is to track, biological mechanisms controlling the fate of CO2, VOC and water cycling in an ecosystem under change in an interdisciplinary approach. This comprehensive data set will be used for carbon and water partitioning from the metabolic to ecosystem scale
Fasbender L., et al. (2018). A novel approach combining PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-metabolite labelling to trace real-time carbon allocation into BVOCs and respiratory CO2. PLOS One,13: e0204398
How to cite: Werner, C., Ladd, N. S., and Meredith, L. and the B2 WALD: Tracing ecosystem scale interactions of volatile organic compound (VOC) and CO2 emissions by position-specific and whole ecosystem isotope labelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11264, https://doi.org/10.5194/egusphere-egu2020-11264, 2020.
Ecosystem processes present a complex interplay between different components, such as vegetation, soil, and the rhizosphere. All these different components can emit (or even uptake) a plethora of volatile organic compound (BVOC) with highly dynamic response to environmental changes. However, processes controlling carbon allocation into primary and secondary metabolism such as VOC synthesis or respiratory CO2 emission remain unclear. De novo synthesis of BVOC depends on the availability of carbon, as well as energy provided by primary metabolism. Thus, carbon allocation may compete between primary and secondary metabolism, which are linked via a number of interfaces including the central metabolite pyruvate. It is the main substrate fulling respiration, but also a substrate for a large array of secondary pathways leading to the biosynthesis of many volatile organic compounds, such as volatile isoprenoids, oxygenated VOCs. Within the European Research Council (ERC) Project VOCO we developed a novel technological basis to couple CO2 fluxes with VOC emissions based on simultaneous real-time measurements of stable carbon isotope composition of branch, root, and soil respired CO2 and VOC fluxes (Fasbender et al. 2018). Position specific 13C-labeled pyruvate feeding experiments are used to trace partitioning within the metabolic branching points into VOCs versus CO2 emissions, bridging scales from sub-molecular to whole-plant and ecosystem processes. Positional 13C-labelling will trace real-time sub-molecular carbon investment into VOCs and CO2, enabling mechanistic descriptions of the underlying biochemical pathways coupling anabolic and catabolic processes.
To trace ecosystem scale interactions, we implemented a whole-ecosystem labelling approach in the world’s largest controlled growth facility: the Biosphere 2 Tropical Rainforest. In the Biosphere 2 Water, Atmosphere, and Life Dynamics (B2-WALD) experiment, we applied an ecosystem scale drought and tracing carbon allocation and dynamics of VOC, CO2 and H2O fluxes from leaf, root, soil and atmospheric scales. The overarching goal of B2-WALD is to track, biological mechanisms controlling the fate of CO2, VOC and water cycling in an ecosystem under change in an interdisciplinary approach. This comprehensive data set will be used for carbon and water partitioning from the metabolic to ecosystem scale
Fasbender L., et al. (2018). A novel approach combining PTR-TOF-MS, 13CO2 laser spectroscopy and 13C-metabolite labelling to trace real-time carbon allocation into BVOCs and respiratory CO2. PLOS One,13: e0204398
How to cite: Werner, C., Ladd, N. S., and Meredith, L. and the B2 WALD: Tracing ecosystem scale interactions of volatile organic compound (VOC) and CO2 emissions by position-specific and whole ecosystem isotope labelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11264, https://doi.org/10.5194/egusphere-egu2020-11264, 2020.
EGU2020-9712 | Displays | BG3.25
Water cycling (pools and movement) through an enclosed tropical forest in response to drought.Joost van Haren, Kathrin Kuhnhammer, Angelika Kuebert, Matthias Beyer, Markus Tuller, Ebrahim Babaeian, Jia Hu, Maren Dubbert, Laura Meredith, and Christiane Werner
Tropical rain forests are greatly dependent on water supply and are highly efficient in water cycling. Soil infiltration rates as well as tree transpiration rates are high in these often seasonally dry ecosystems. Both deforestation and climate change have been shown to cause drought stress in tropical forests, the former through the increase of runoff and reduction in evapotranspiration, the latter mainly through the reduction in precipitation and transpiration.
Although great efforts have been made to determine the ecosystem and species responses to variable water supply, many processes determining how tree species in tropical ecosystems impact and are impacted by the water cycle (water uptake and redistribution, and stem storage) remain poorly understood. Water movement through trees, as measured by a D2O pulse label in the rainwater, was found to be high variable and species dependent in a previous experiment in the Biosphere 2 tropical rainforest (Evaristo et al. 2019). We hypothesized that differential rooting depth and/or stem water storage could be the main causes for the difference in water label transport through the trees.
Our study is part of a large-scale experiment in the Biosphere 2 tropical forest that uses isotope labeling (13C and D) to trace C- and water-cycle processes underpinning ecosystem responses to drought from a molecular to an ecosystem-scale level. Here, we focus on the water cycling of this ecosystem and how it is impacted by controlled drought and rewetting conditions. Detailed continuous measurements of both the water pools (soil and stem) and movement (stems, atmospheric fluxes) will be used to determine individual tree (including different species) and whole ecosystem responses to drought. These data will be presented in light of their implications for tropical forest water movement and drought vulnerability.
Reference
Evaristo J, Kim M, van Haren J, Pangle LA, Harman CJ, Troch PA, McDonnell JJ, (2019) Characterizing the fluxes and age distribution of soil water, plant water and deep percolation in a model tropical ecosystem. Water Resources Research, 55(4), 3307-3327.
How to cite: van Haren, J., Kuhnhammer, K., Kuebert, A., Beyer, M., Tuller, M., Babaeian, E., Hu, J., Dubbert, M., Meredith, L., and Werner, C.: Water cycling (pools and movement) through an enclosed tropical forest in response to drought., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9712, https://doi.org/10.5194/egusphere-egu2020-9712, 2020.
Tropical rain forests are greatly dependent on water supply and are highly efficient in water cycling. Soil infiltration rates as well as tree transpiration rates are high in these often seasonally dry ecosystems. Both deforestation and climate change have been shown to cause drought stress in tropical forests, the former through the increase of runoff and reduction in evapotranspiration, the latter mainly through the reduction in precipitation and transpiration.
Although great efforts have been made to determine the ecosystem and species responses to variable water supply, many processes determining how tree species in tropical ecosystems impact and are impacted by the water cycle (water uptake and redistribution, and stem storage) remain poorly understood. Water movement through trees, as measured by a D2O pulse label in the rainwater, was found to be high variable and species dependent in a previous experiment in the Biosphere 2 tropical rainforest (Evaristo et al. 2019). We hypothesized that differential rooting depth and/or stem water storage could be the main causes for the difference in water label transport through the trees.
Our study is part of a large-scale experiment in the Biosphere 2 tropical forest that uses isotope labeling (13C and D) to trace C- and water-cycle processes underpinning ecosystem responses to drought from a molecular to an ecosystem-scale level. Here, we focus on the water cycling of this ecosystem and how it is impacted by controlled drought and rewetting conditions. Detailed continuous measurements of both the water pools (soil and stem) and movement (stems, atmospheric fluxes) will be used to determine individual tree (including different species) and whole ecosystem responses to drought. These data will be presented in light of their implications for tropical forest water movement and drought vulnerability.
Reference
Evaristo J, Kim M, van Haren J, Pangle LA, Harman CJ, Troch PA, McDonnell JJ, (2019) Characterizing the fluxes and age distribution of soil water, plant water and deep percolation in a model tropical ecosystem. Water Resources Research, 55(4), 3307-3327.
How to cite: van Haren, J., Kuhnhammer, K., Kuebert, A., Beyer, M., Tuller, M., Babaeian, E., Hu, J., Dubbert, M., Meredith, L., and Werner, C.: Water cycling (pools and movement) through an enclosed tropical forest in response to drought., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9712, https://doi.org/10.5194/egusphere-egu2020-9712, 2020.
EGU2020-9868 | Displays | BG3.25
Above ground response of rainforest functional groups to experimental droughtAngelika Kübert, Kathrin Kühnhammer, Ines Bamberger, Erik Daber, Jason De Leeuw, Kinzey Bailey, Jia Hu, S. Nemiah Ladd, Laura Meredith, Joost van Haren, Matthias Beyer, Maren Dubbert, and Christiane Werner
Functional group-specific water use strategies are vital in understanding plant performance under current and future global climate change related drought scenarios. Different functional groups have different strategies to regulate their above ground water use and loss in order to respond to drought stress. Here, we studied the ecohydrological response of a controlled rain forest system to a 10-week lasting experimental drought (Biosphere 2 Water, Atmosphere, and Life Dynamics, B2 WALD project). Using gas exchange chambers, we specifically investigated the response of the two main rain forest functional groups - three canopy tree species and two understory species - in their above ground water use efficiency. Rates and isotopic fluxes of transpiration, assimilation and night respiration were monitored in high temporal resolution. In combination with plant physiological information (i.e., leaf water potential) a complete picture of their above ground water use could be gained. We expect that the deep rooting canopy tree species will be able to keep their above ground water use constant while the shallow rooting understory species will have to adapt their water use efficiency to budget their water reserves and resources.
How to cite: Kübert, A., Kühnhammer, K., Bamberger, I., Daber, E., De Leeuw, J., Bailey, K., Hu, J., Ladd, S. N., Meredith, L., van Haren, J., Beyer, M., Dubbert, M., and Werner, C.: Above ground response of rainforest functional groups to experimental drought , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9868, https://doi.org/10.5194/egusphere-egu2020-9868, 2020.
Functional group-specific water use strategies are vital in understanding plant performance under current and future global climate change related drought scenarios. Different functional groups have different strategies to regulate their above ground water use and loss in order to respond to drought stress. Here, we studied the ecohydrological response of a controlled rain forest system to a 10-week lasting experimental drought (Biosphere 2 Water, Atmosphere, and Life Dynamics, B2 WALD project). Using gas exchange chambers, we specifically investigated the response of the two main rain forest functional groups - three canopy tree species and two understory species - in their above ground water use efficiency. Rates and isotopic fluxes of transpiration, assimilation and night respiration were monitored in high temporal resolution. In combination with plant physiological information (i.e., leaf water potential) a complete picture of their above ground water use could be gained. We expect that the deep rooting canopy tree species will be able to keep their above ground water use constant while the shallow rooting understory species will have to adapt their water use efficiency to budget their water reserves and resources.
How to cite: Kübert, A., Kühnhammer, K., Bamberger, I., Daber, E., De Leeuw, J., Bailey, K., Hu, J., Ladd, S. N., Meredith, L., van Haren, J., Beyer, M., Dubbert, M., and Werner, C.: Above ground response of rainforest functional groups to experimental drought , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9868, https://doi.org/10.5194/egusphere-egu2020-9868, 2020.
EGU2020-18324 | Displays | BG3.25
Tracing dynamic water uptake and transport from root to canopy by online monitoring of water isotopes in an enclosed tropical forest in response to droughtKathrin Kuehnhammer, Joost van Haren, Angelika Kuebert, Maren Dubbert, Nemiah Ladd, Laura Meredith, Christiane Werner, and Matthias Beyer
Online (or: in situ) methods for measuring soil and plant water isotopes have been identified as an innovative and crucial step to address recently identified issues in studying water uptake using stable isotope techniques.
During a controlled three month drought and rewetting experiment at the Biosphere 2 (B2) enclosed rainforest, a recently developed online method for measuring stem water isotopes (Marshall et al., 2019), namely ‘stem borehole equilibration’, was combined with online monitoring of soil water isotopes and transpired water isotopes as well as sap flow and stem water storage. This enabled us to study root water uptake depths of different tree species and dynamic changes during the dry down and rewetting. After two months of drought, the system was supplied with isotopically labelled water (deuterated water) from down below via a pipe system spanning across the complete B2 rainforest in order to identify deep water uptake of the rainforest trees and hydraulic redistribution.
Results show that – as expected – all monitored trees responded to the drought by changing their root water uptake towards deeper soil depths while sap flow rates of most trees decreased. When rewetting the system, deep water uptake from the base of B2 (between 2.5m and 4m soil depth) was identified in all large, mature trees (Clitoria faichildiana, Hibiscus tilliaceus, Hura crepitans, Pachira aquatica). No deep water uptake was found in the smaller trees (mainly Pachira aquatica). Furthermore, stem water storage was notably different between species and affected their adaptation to drought and response to rewetting. The labelled water was also identified in the transpired water more than one month after re-starting rainfall at B2. However, no hydraulic redistribution was identified.
The holistic approach for monitoring the interactions of soils and plants provides inevitable insights into the adaptation of (enclosed) rainforests under drought and might have implications for natural rainforests. In particular, the capability of large trees to develop deep roots and the role of stem water storage are important elements for adaptation to climatic changes and need to be studied further under ‘real’ conditions.
References
Marshall, J.D., Cuntz, M., Beyer, M., Dubbert, M., Kühnhammer, K., 2019. Borehole equilibration: testing a new method to monitor the isotopic composition of tree xylem water in situ. Front. Plant Sci.
How to cite: Kuehnhammer, K., van Haren, J., Kuebert, A., Dubbert, M., Ladd, N., Meredith, L., Werner, C., and Beyer, M.: Tracing dynamic water uptake and transport from root to canopy by online monitoring of water isotopes in an enclosed tropical forest in response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18324, https://doi.org/10.5194/egusphere-egu2020-18324, 2020.
Online (or: in situ) methods for measuring soil and plant water isotopes have been identified as an innovative and crucial step to address recently identified issues in studying water uptake using stable isotope techniques.
During a controlled three month drought and rewetting experiment at the Biosphere 2 (B2) enclosed rainforest, a recently developed online method for measuring stem water isotopes (Marshall et al., 2019), namely ‘stem borehole equilibration’, was combined with online monitoring of soil water isotopes and transpired water isotopes as well as sap flow and stem water storage. This enabled us to study root water uptake depths of different tree species and dynamic changes during the dry down and rewetting. After two months of drought, the system was supplied with isotopically labelled water (deuterated water) from down below via a pipe system spanning across the complete B2 rainforest in order to identify deep water uptake of the rainforest trees and hydraulic redistribution.
Results show that – as expected – all monitored trees responded to the drought by changing their root water uptake towards deeper soil depths while sap flow rates of most trees decreased. When rewetting the system, deep water uptake from the base of B2 (between 2.5m and 4m soil depth) was identified in all large, mature trees (Clitoria faichildiana, Hibiscus tilliaceus, Hura crepitans, Pachira aquatica). No deep water uptake was found in the smaller trees (mainly Pachira aquatica). Furthermore, stem water storage was notably different between species and affected their adaptation to drought and response to rewetting. The labelled water was also identified in the transpired water more than one month after re-starting rainfall at B2. However, no hydraulic redistribution was identified.
The holistic approach for monitoring the interactions of soils and plants provides inevitable insights into the adaptation of (enclosed) rainforests under drought and might have implications for natural rainforests. In particular, the capability of large trees to develop deep roots and the role of stem water storage are important elements for adaptation to climatic changes and need to be studied further under ‘real’ conditions.
References
Marshall, J.D., Cuntz, M., Beyer, M., Dubbert, M., Kühnhammer, K., 2019. Borehole equilibration: testing a new method to monitor the isotopic composition of tree xylem water in situ. Front. Plant Sci.
How to cite: Kuehnhammer, K., van Haren, J., Kuebert, A., Dubbert, M., Ladd, N., Meredith, L., Werner, C., and Beyer, M.: Tracing dynamic water uptake and transport from root to canopy by online monitoring of water isotopes in an enclosed tropical forest in response to drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18324, https://doi.org/10.5194/egusphere-egu2020-18324, 2020.
EGU2020-12797 | Displays | BG3.25
Plant Water Relation and Drought: Relationship Between Plant Water Potential and Relative Leaf Water Content in Different Tropical PlantsSydney Kerman, Kinzie Bailey, Joost van Haren, Angelika Kübert, Kathrin Kühnhammer, Christiane Werner, Nemiah Ladd, Laura Meredith, and Jia Hu
As global average temperature continues to increase and precipitation events become less predictable, understanding the long-term effects of drought on ecosystems is of increasing importance. However, it is difficult to study phenomena such as drought due to their unpredictable nature and the fact that it is difficult to tag and track the movement of water and carbon through an entire ecosystem. Within the framework of the controlled ecosystem manipulation experiment (WALD- Water, Atmosphere and Life Dynamics) at Biosphere 2, a deliberate drought in the enclosed tropical rainforest biome presented a unique opportunity to study responses in carbon and water cycling due to water stress. Within the scope of this study, the goal of this project was to examine the effect of prolonged water stress on different species within the rainforest and understand how the plants coped with the stress on an ecosystem level. This was accomplished by weekly plant water potential measurements (WP) before, during, and after the drought, as well as leaf sampling for relative leaf water content (RWC) and xylem sampling for water isotope measurements. For both predawn and midday WP, we found significantly different species responses; for Ceiba pentandra and Pachira aquatica, WP did not decrease during the drought, while for Hibiscus tiliaceus and Hibiscus rosa sinensis, WP decreased dramatically during the drought. After the additional of moisture from deeper depths, both C. pentandra and Hura crepitans (largest trees) responded the fastest by increasing in WP, while H. tiliaceus and H. rosa sinensis had the slowest recovery in WP, and only after rewetting from above had occurred. RWC also revealed different responses by different plant species, with Phytolacca dioica and H. rosa sinensis showing the highest RWC values throughout the experiment. The relationship between RWC and WP was also not consistent among species, with half of the species exhibiting a positive relationship, while the other half exhibiting a negative relationship. Other factors such as trunk capacitance and or leaf shedding during the drought might explain some of these contrasting relationships. Establishing such associations could lead to the development of tools that remotely assess average leaf water content of an area of forest via spectral reflectance and use those data to approximate the water stress of plants in that area, a very valuable asset when dealing with such geographically extensive phenomena as drought.
How to cite: Kerman, S., Bailey, K., van Haren, J., Kübert, A., Kühnhammer, K., Werner, C., Ladd, N., Meredith, L., and Hu, J.: Plant Water Relation and Drought: Relationship Between Plant Water Potential and Relative Leaf Water Content in Different Tropical Plants, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12797, https://doi.org/10.5194/egusphere-egu2020-12797, 2020.
As global average temperature continues to increase and precipitation events become less predictable, understanding the long-term effects of drought on ecosystems is of increasing importance. However, it is difficult to study phenomena such as drought due to their unpredictable nature and the fact that it is difficult to tag and track the movement of water and carbon through an entire ecosystem. Within the framework of the controlled ecosystem manipulation experiment (WALD- Water, Atmosphere and Life Dynamics) at Biosphere 2, a deliberate drought in the enclosed tropical rainforest biome presented a unique opportunity to study responses in carbon and water cycling due to water stress. Within the scope of this study, the goal of this project was to examine the effect of prolonged water stress on different species within the rainforest and understand how the plants coped with the stress on an ecosystem level. This was accomplished by weekly plant water potential measurements (WP) before, during, and after the drought, as well as leaf sampling for relative leaf water content (RWC) and xylem sampling for water isotope measurements. For both predawn and midday WP, we found significantly different species responses; for Ceiba pentandra and Pachira aquatica, WP did not decrease during the drought, while for Hibiscus tiliaceus and Hibiscus rosa sinensis, WP decreased dramatically during the drought. After the additional of moisture from deeper depths, both C. pentandra and Hura crepitans (largest trees) responded the fastest by increasing in WP, while H. tiliaceus and H. rosa sinensis had the slowest recovery in WP, and only after rewetting from above had occurred. RWC also revealed different responses by different plant species, with Phytolacca dioica and H. rosa sinensis showing the highest RWC values throughout the experiment. The relationship between RWC and WP was also not consistent among species, with half of the species exhibiting a positive relationship, while the other half exhibiting a negative relationship. Other factors such as trunk capacitance and or leaf shedding during the drought might explain some of these contrasting relationships. Establishing such associations could lead to the development of tools that remotely assess average leaf water content of an area of forest via spectral reflectance and use those data to approximate the water stress of plants in that area, a very valuable asset when dealing with such geographically extensive phenomena as drought.
How to cite: Kerman, S., Bailey, K., van Haren, J., Kübert, A., Kühnhammer, K., Werner, C., Ladd, N., Meredith, L., and Hu, J.: Plant Water Relation and Drought: Relationship Between Plant Water Potential and Relative Leaf Water Content in Different Tropical Plants, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12797, https://doi.org/10.5194/egusphere-egu2020-12797, 2020.
EGU2020-11282 | Displays | BG3.25
How does drought affect the δ18O cellulose record? A Biosphere 2 experiment.Kinzie Bailey, Jia Hu, Christiane Warner, Nemiah Ladd, Laura Meredith, Joost van Haren, Matthias Beyer, Marco Lehman, and Neill Prohaska
Wood cellulose records environmental conditions via its isotopic composition, which can be used to reconstruct different environmental events or patterns. However, it has been suggested that there can be a decoupling of the δ18O of cellulose and environmental conditions due to a lag from post-carboxylation processes. Thus, studying the dynamics of intra-seasonal tree growth provides a unique way to examine how the δ18O of cellulose responds to environmental and ecophysiological processes. There are two main factors that contribute to the δ18O signature of cellulose: the isotopic content of the source water and the leaf evaporative enrichment effect, both of which can vary under natural settings. Thus, separating the source water signal from the atmospheric humidity signal in the δ18O of cellulose can be difficult. In this study, we took advantage of a highly controlled ecosystem scale study at the University of Arizona Biosphere 2 tropical forest biome, where a drought treatment was implemented with a deep re-wetting component followed by a shallow re-wetting component. Continuous measurements of δ18O of atmospheric water vapor, soil water and xylem water as well as targeted gas exchange measurements of stomatal conductance and transpiration were made throughout the study. We also collected the δ18O of phloem sugars and cellulose to address how well the Roden et. al. (2001) cellulose model estimated observed δ18O values. One main objective was to examine how the fraction of carbonyl oxygen atoms that exchange at the cambium during cellulose biosynthesis, or Pex, is altered, since recent studies suggest that Pex can very among species, across aridity gradients, and throughout the growing season. Thus, this highly instrumented experiment allows us to look at variations in Pex at a high temporal scale. By examining potential shifts in Pex throughout the formation of a tree ring, we can increase the robustness of reconstructions by targeting specific woody anatomy to capitalize on the different signals of source water and the evaporative effect laid down in wood cellulose.
How to cite: Bailey, K., Hu, J., Warner, C., Ladd, N., Meredith, L., van Haren, J., Beyer, M., Lehman, M., and Prohaska, N.: How does drought affect the δ18O cellulose record? A Biosphere 2 experiment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11282, https://doi.org/10.5194/egusphere-egu2020-11282, 2020.
Wood cellulose records environmental conditions via its isotopic composition, which can be used to reconstruct different environmental events or patterns. However, it has been suggested that there can be a decoupling of the δ18O of cellulose and environmental conditions due to a lag from post-carboxylation processes. Thus, studying the dynamics of intra-seasonal tree growth provides a unique way to examine how the δ18O of cellulose responds to environmental and ecophysiological processes. There are two main factors that contribute to the δ18O signature of cellulose: the isotopic content of the source water and the leaf evaporative enrichment effect, both of which can vary under natural settings. Thus, separating the source water signal from the atmospheric humidity signal in the δ18O of cellulose can be difficult. In this study, we took advantage of a highly controlled ecosystem scale study at the University of Arizona Biosphere 2 tropical forest biome, where a drought treatment was implemented with a deep re-wetting component followed by a shallow re-wetting component. Continuous measurements of δ18O of atmospheric water vapor, soil water and xylem water as well as targeted gas exchange measurements of stomatal conductance and transpiration were made throughout the study. We also collected the δ18O of phloem sugars and cellulose to address how well the Roden et. al. (2001) cellulose model estimated observed δ18O values. One main objective was to examine how the fraction of carbonyl oxygen atoms that exchange at the cambium during cellulose biosynthesis, or Pex, is altered, since recent studies suggest that Pex can very among species, across aridity gradients, and throughout the growing season. Thus, this highly instrumented experiment allows us to look at variations in Pex at a high temporal scale. By examining potential shifts in Pex throughout the formation of a tree ring, we can increase the robustness of reconstructions by targeting specific woody anatomy to capitalize on the different signals of source water and the evaporative effect laid down in wood cellulose.
How to cite: Bailey, K., Hu, J., Warner, C., Ladd, N., Meredith, L., van Haren, J., Beyer, M., Lehman, M., and Prohaska, N.: How does drought affect the δ18O cellulose record? A Biosphere 2 experiment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11282, https://doi.org/10.5194/egusphere-egu2020-11282, 2020.
EGU2020-12392 | Displays | BG3.25
Carbonyl sulfide reflections of leaf and ecosystem processes in a tropical rainforest under controlled droughtLaura Meredith, Róisín Commane, Ian Baker, Juliana Gil-Loaiza, Joost van Haren, Nemiah Ladd, and Christiane Werner
A promising tracer for partitioning the global balance of CO2 is carbonyl sulfide (COS or OCS), a trace gas with leaf-level mechanisms shared with carbon dioxide (CO2) and water (H2O). COS is therefore used to derive insights into photosynthesis and transpiration at ecosystem to global scales. However, it remains unclear whether COS reflects photosynthesis or stomatal conductance most strongly, as its leaf biochemical and physical processes are not perfectly analogous to either CO2 or H2O. There is therefore a need to evaluate the models that encapsulate our current understanding of leaf and soil COS fluxes and predictions of carbon and water cycling against independent constraints in tractable experimental systems.
In this study, we measured ecosystem, leaf, and soil fluxes of COS in the model Biosphere 2 (B2) Tropical Rainforest across a controlled whole ecosystem drought manipulation. We simultaneously, measured the stable isotopes of CO2, H2O, and their isotopes (13C-CO2, 18O-CO2, 2H-H2O, 18O-H2O) on atmosphere, leaf, and soil measurement streams connected to atmospheric towers, leaf chambers, and soil flux chambers. During the B2 Water, Atmosphere, and Life Dynamics (B2 WALD) campaign, the enclosed ecosystem received no rain for 66 days and was first rewet at depth (2-4 m) at 54 days. Here, we compare COS fluxes to simultaneous and independent measurements of GPP and transpiration from the leaf to ecosystem scales across ecosystem control, drought, and recovery. We further integrate COS measurements with the aforementioned isotopic tracers of carbon and water cycling into the Simple Biosphere Model (SiB3). Our goal is to explore the strengths and limitations of COS as a tracer of ecosystem processes dynamically responding to severe and controlled ecosystem drought.
How to cite: Meredith, L., Commane, R., Baker, I., Gil-Loaiza, J., van Haren, J., Ladd, N., and Werner, C.: Carbonyl sulfide reflections of leaf and ecosystem processes in a tropical rainforest under controlled drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12392, https://doi.org/10.5194/egusphere-egu2020-12392, 2020.
A promising tracer for partitioning the global balance of CO2 is carbonyl sulfide (COS or OCS), a trace gas with leaf-level mechanisms shared with carbon dioxide (CO2) and water (H2O). COS is therefore used to derive insights into photosynthesis and transpiration at ecosystem to global scales. However, it remains unclear whether COS reflects photosynthesis or stomatal conductance most strongly, as its leaf biochemical and physical processes are not perfectly analogous to either CO2 or H2O. There is therefore a need to evaluate the models that encapsulate our current understanding of leaf and soil COS fluxes and predictions of carbon and water cycling against independent constraints in tractable experimental systems.
In this study, we measured ecosystem, leaf, and soil fluxes of COS in the model Biosphere 2 (B2) Tropical Rainforest across a controlled whole ecosystem drought manipulation. We simultaneously, measured the stable isotopes of CO2, H2O, and their isotopes (13C-CO2, 18O-CO2, 2H-H2O, 18O-H2O) on atmosphere, leaf, and soil measurement streams connected to atmospheric towers, leaf chambers, and soil flux chambers. During the B2 Water, Atmosphere, and Life Dynamics (B2 WALD) campaign, the enclosed ecosystem received no rain for 66 days and was first rewet at depth (2-4 m) at 54 days. Here, we compare COS fluxes to simultaneous and independent measurements of GPP and transpiration from the leaf to ecosystem scales across ecosystem control, drought, and recovery. We further integrate COS measurements with the aforementioned isotopic tracers of carbon and water cycling into the Simple Biosphere Model (SiB3). Our goal is to explore the strengths and limitations of COS as a tracer of ecosystem processes dynamically responding to severe and controlled ecosystem drought.
How to cite: Meredith, L., Commane, R., Baker, I., Gil-Loaiza, J., van Haren, J., Ladd, N., and Werner, C.: Carbonyl sulfide reflections of leaf and ecosystem processes in a tropical rainforest under controlled drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12392, https://doi.org/10.5194/egusphere-egu2020-12392, 2020.
EGU2020-12504 | Displays | BG3.25
C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulicsKanishka Singh, Benjamin Hafner, James Knighton, M. Todd Walter, and Taryn Bauerle
Forest cover exerts a significant control on the partitioning of precipitation between evapotranspiration and surface runoff. Thus, understanding how plants take up and transpire water in forested catchments is essential to predict flooding potential and hydrologic cycling. A growing literature underscores the importance of integrating whole-plant hydraulics, including such processes as the spatial variability of root distribution and the temporally dynamic nature of root water uptake by depth in understanding the relationship between changes in vegetation and hydrology. The analysis of stable isotopes of water (18O and 2H) sourced from soils and plant tissue has enabled the estimation of tree root water uptake depths and water use strategies. Despite the general acceptance of stable water isotopic data to estimate plant hydraulic dynamics, this methodology imposes assumptions that may produce spurious results. For example, end member mixing analysis neglects time-delays during tree-water storage. Also, it is likely that hydraulic redistribution processes of plants, which transport water across soil depths and both into and out of plant tissue, modify δ18O and δ2H; the isotopic signature of a collected sample may thus reflect a history of transport and exposure to fractionating processes not accounted for in analysis. We tested the feasibility of C-dots, core-shell silica polyethylene-glycol coated fluorescent nano-particles (5.1 nm diameter) in 20 µmol/l solution with H2O labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum of 646 nm, emission maximum of 662 nm), as an alternative to stable water isotopes in the investigation of plant hydraulics. We examined the absorption and transport of C-dots through soil, as well as roots and aerial structures of Eastern hemlock (Tsuga canadensis), Eastern white pine (Pinus strobus), and white spruce (Picea glauca) saplings (n = 12 each) via an IVIS-200 luminescence in-situ imaging system. We compared the fluid mechanics, residence times and mixing schemes of C-dots with 2H-labeled water during transport within these plant species to establish the nanoparticles as a viable alternative through a split-root hydraulic redistribution experiment under moderate and severe drought conditions. We present a residence-time distribution to elucidate the mixing scheme of C-dot solution and calibration curves to aid future studies. This research is the premier assessment of this nanoparticle as an alternative tracer to stable water isotopes, and as such may yield insights for broader applications.
How to cite: Singh, K., Hafner, B., Knighton, J., Walter, M. T., and Bauerle, T.: C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12504, https://doi.org/10.5194/egusphere-egu2020-12504, 2020.
Forest cover exerts a significant control on the partitioning of precipitation between evapotranspiration and surface runoff. Thus, understanding how plants take up and transpire water in forested catchments is essential to predict flooding potential and hydrologic cycling. A growing literature underscores the importance of integrating whole-plant hydraulics, including such processes as the spatial variability of root distribution and the temporally dynamic nature of root water uptake by depth in understanding the relationship between changes in vegetation and hydrology. The analysis of stable isotopes of water (18O and 2H) sourced from soils and plant tissue has enabled the estimation of tree root water uptake depths and water use strategies. Despite the general acceptance of stable water isotopic data to estimate plant hydraulic dynamics, this methodology imposes assumptions that may produce spurious results. For example, end member mixing analysis neglects time-delays during tree-water storage. Also, it is likely that hydraulic redistribution processes of plants, which transport water across soil depths and both into and out of plant tissue, modify δ18O and δ2H; the isotopic signature of a collected sample may thus reflect a history of transport and exposure to fractionating processes not accounted for in analysis. We tested the feasibility of C-dots, core-shell silica polyethylene-glycol coated fluorescent nano-particles (5.1 nm diameter) in 20 µmol/l solution with H2O labeled with a near-infrared fluorophore, cyanine 5.5 (excitation maximum of 646 nm, emission maximum of 662 nm), as an alternative to stable water isotopes in the investigation of plant hydraulics. We examined the absorption and transport of C-dots through soil, as well as roots and aerial structures of Eastern hemlock (Tsuga canadensis), Eastern white pine (Pinus strobus), and white spruce (Picea glauca) saplings (n = 12 each) via an IVIS-200 luminescence in-situ imaging system. We compared the fluid mechanics, residence times and mixing schemes of C-dots with 2H-labeled water during transport within these plant species to establish the nanoparticles as a viable alternative through a split-root hydraulic redistribution experiment under moderate and severe drought conditions. We present a residence-time distribution to elucidate the mixing scheme of C-dot solution and calibration curves to aid future studies. This research is the premier assessment of this nanoparticle as an alternative tracer to stable water isotopes, and as such may yield insights for broader applications.
How to cite: Singh, K., Hafner, B., Knighton, J., Walter, M. T., and Bauerle, T.: C-dots as a novel silica-based fluorescent nanoparticle tracer to investigate plant hydraulics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12504, https://doi.org/10.5194/egusphere-egu2020-12504, 2020.
EGU2020-16450 | Displays | BG3.25
Variation in hydrogen stable isotopes in cellulose and n-alkanes: phylogenetic signal and related traitsJochem Baan, Meisha Holloway-Phillips, and Ansgar Kahmen
Hydrogen (H) stable isotope analysis of specific plant organic compounds has become of interest as a tool for ecological, environmental and palaeoclimatological studies. Aside from the influence of leaf water evaporative enrichment on the δ2H composition of organic compounds, hydrogen isotope fractionation occurs during carbon metabolism in the plant (εbio). To get a better understanding of the metabolic signal recorded in εbio, we explored the variation of δ2H in cellulose and n-alkanes, and its relationship with phylogeny and other plant traits. Leaf material of a large set of species in the eudicot clade was collected in the botanical garden at the University of Basel, cellulose and n-alkanes were extracted, δ2H in both compounds and δ18O in cellulose were analysed. It was found that modelled leaf water differences only explain part of the observed variation of δ2H in organic compounds. δ2H appears to be related to phylogeny and a wider assessment of trait data is currently being undertaken to test for signal associations with physiological traits. This study helps address at which taxonomic level the variation of δ2H is found; illuminate plant physiological traits that can be responsible for shaping species specific δ2H values in organic compounds; as well as, provide novel insights into the δ2H covariation between cellulose and n-alkanes.
How to cite: Baan, J., Holloway-Phillips, M., and Kahmen, A.: Variation in hydrogen stable isotopes in cellulose and n-alkanes: phylogenetic signal and related traits, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16450, https://doi.org/10.5194/egusphere-egu2020-16450, 2020.
Hydrogen (H) stable isotope analysis of specific plant organic compounds has become of interest as a tool for ecological, environmental and palaeoclimatological studies. Aside from the influence of leaf water evaporative enrichment on the δ2H composition of organic compounds, hydrogen isotope fractionation occurs during carbon metabolism in the plant (εbio). To get a better understanding of the metabolic signal recorded in εbio, we explored the variation of δ2H in cellulose and n-alkanes, and its relationship with phylogeny and other plant traits. Leaf material of a large set of species in the eudicot clade was collected in the botanical garden at the University of Basel, cellulose and n-alkanes were extracted, δ2H in both compounds and δ18O in cellulose were analysed. It was found that modelled leaf water differences only explain part of the observed variation of δ2H in organic compounds. δ2H appears to be related to phylogeny and a wider assessment of trait data is currently being undertaken to test for signal associations with physiological traits. This study helps address at which taxonomic level the variation of δ2H is found; illuminate plant physiological traits that can be responsible for shaping species specific δ2H values in organic compounds; as well as, provide novel insights into the δ2H covariation between cellulose and n-alkanes.
How to cite: Baan, J., Holloway-Phillips, M., and Kahmen, A.: Variation in hydrogen stable isotopes in cellulose and n-alkanes: phylogenetic signal and related traits, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16450, https://doi.org/10.5194/egusphere-egu2020-16450, 2020.
BG3.26 – Management of ecosystems and its effects on greenhouse gas budgets - current approaches and the pathway towards standardization
EGU2020-5062 | Displays | BG3.26 | Highlight
The Climate Benefit of Carbon SequestrationCarlos Sierra, Susan Crow, Martin Heimann, Holger Metzler, and Ernst-Detlef Schulze
Ecosystems play a fundamental role in climate change mitigation by taking up carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions can be quantified by global warming potentials, there is not a formal metric to assess climate benefits of carbon removals by sinks. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect of taking up carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back to the atmosphere. To quantify CBS, we also propose a formal definition of carbon sequestration (CS) as the integral of a sequestered amount of carbon over the time horizon it remains stored in an ecosystem. Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of carbon retention) in carbon sinks, which can vary largely for different ecosystems or management types. In three separate examples, we show how to compare different carbon management practices in forestry and soils using CS and CBS. We believe these metrics can be useful in resolving current controversies about the management of ecosystems for climate change mitigation.
How to cite: Sierra, C., Crow, S., Heimann, M., Metzler, H., and Schulze, E.-D.: The Climate Benefit of Carbon Sequestration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5062, https://doi.org/10.5194/egusphere-egu2020-5062, 2020.
Ecosystems play a fundamental role in climate change mitigation by taking up carbon from the atmosphere and storing it for a period of time in organic matter. Although climate impacts of carbon emissions can be quantified by global warming potentials, there is not a formal metric to assess climate benefits of carbon removals by sinks. We introduce here the Climate Benefit of Sequestration (CBS), a metric that quantifies the radiative effect of taking up carbon dioxide from the atmosphere and retaining it for a period of time in an ecosystem before releasing it back to the atmosphere. To quantify CBS, we also propose a formal definition of carbon sequestration (CS) as the integral of a sequestered amount of carbon over the time horizon it remains stored in an ecosystem. Both metrics incorporate the separate effects of i) inputs (amount of atmospheric carbon removal), and ii) transit time (time of carbon retention) in carbon sinks, which can vary largely for different ecosystems or management types. In three separate examples, we show how to compare different carbon management practices in forestry and soils using CS and CBS. We believe these metrics can be useful in resolving current controversies about the management of ecosystems for climate change mitigation.
How to cite: Sierra, C., Crow, S., Heimann, M., Metzler, H., and Schulze, E.-D.: The Climate Benefit of Carbon Sequestration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5062, https://doi.org/10.5194/egusphere-egu2020-5062, 2020.
EGU2020-8788 | Displays | BG3.26
Carbon dioxide and nitrous oxide fluxes from a legume-based grassland during contrasting seasons in eastern FinlandYuan Li, Panu Korhonen, Perttu Virkajärvi, and Narasinha J. Shurpali
Legumes facilitate soil carbon (C) sequestration and mitigation of nitrous oxide (N2O) emissions. They have an important role in improving model predictions of future feedbacks from the high-latitude carbon dioxide (CO2) and N2O fluxes and climate driving the response of northern ecosystems to warming. Legume based grasslands are an important part of the economy as high protein fodder for the cattle and thus, they are crucial for meat and dairy industries in Europe. However, there is a lack of regionally based, ecosystem scale field experimental data on legume based grasslands. Therefore, using the eddy covariance technique, we measured CO2 and N2O fluxes from a grassland site, growing timothy (Phleum pratense L.) and red clover (Trifolium pratense L.), treated with mineral nitrogen (MinN) or with digestate residue (OrgN) in eastern Finland during two growing seasons (May – Sep 2017 and 2018). Results showed that higher mean seasonal temperature (2018) increased net ecosystem CO2 exchange (NEE) and total dry matter (DM) and decreased N2O emissions. Specifically, NEE was 8.3 and 12.1 Mg ha-1 in 2017 and 2018, respectively with no differences between treatments over the two years. The DM yield was 5.9 and 4.9 Mg ha-1 for MinN and OrgN, respectively, in 2017, while it was 6.3 and 6.8 Mg ha-1 in 2018. Cumulative N2O fluxes were 0.01 (100-year global warming potential CO2-equivalent) and -0.6 Mg CO2 ha-1 in 2017 and 2018, respectively. Summing up the seasonal NEE, N2O flux and DM yield, the seasonal C balance was 2.1 and -1.3 Mg ha-1 for MinN and OrgN treatments in 2017, and it was -2.5 and -3.5 Mg ha-1, respectively, in 2018. Our observations from two climatically contrasting seasons suggest that the legume based grasslands in the boreal region have a strong C sequestration potential and the addition of organic fertilizer turns the systems to a larger sink in in the warmer year.
How to cite: Li, Y., Korhonen, P., Virkajärvi, P., and Shurpali, N. J.: Carbon dioxide and nitrous oxide fluxes from a legume-based grassland during contrasting seasons in eastern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8788, https://doi.org/10.5194/egusphere-egu2020-8788, 2020.
Legumes facilitate soil carbon (C) sequestration and mitigation of nitrous oxide (N2O) emissions. They have an important role in improving model predictions of future feedbacks from the high-latitude carbon dioxide (CO2) and N2O fluxes and climate driving the response of northern ecosystems to warming. Legume based grasslands are an important part of the economy as high protein fodder for the cattle and thus, they are crucial for meat and dairy industries in Europe. However, there is a lack of regionally based, ecosystem scale field experimental data on legume based grasslands. Therefore, using the eddy covariance technique, we measured CO2 and N2O fluxes from a grassland site, growing timothy (Phleum pratense L.) and red clover (Trifolium pratense L.), treated with mineral nitrogen (MinN) or with digestate residue (OrgN) in eastern Finland during two growing seasons (May – Sep 2017 and 2018). Results showed that higher mean seasonal temperature (2018) increased net ecosystem CO2 exchange (NEE) and total dry matter (DM) and decreased N2O emissions. Specifically, NEE was 8.3 and 12.1 Mg ha-1 in 2017 and 2018, respectively with no differences between treatments over the two years. The DM yield was 5.9 and 4.9 Mg ha-1 for MinN and OrgN, respectively, in 2017, while it was 6.3 and 6.8 Mg ha-1 in 2018. Cumulative N2O fluxes were 0.01 (100-year global warming potential CO2-equivalent) and -0.6 Mg CO2 ha-1 in 2017 and 2018, respectively. Summing up the seasonal NEE, N2O flux and DM yield, the seasonal C balance was 2.1 and -1.3 Mg ha-1 for MinN and OrgN treatments in 2017, and it was -2.5 and -3.5 Mg ha-1, respectively, in 2018. Our observations from two climatically contrasting seasons suggest that the legume based grasslands in the boreal region have a strong C sequestration potential and the addition of organic fertilizer turns the systems to a larger sink in in the warmer year.
How to cite: Li, Y., Korhonen, P., Virkajärvi, P., and Shurpali, N. J.: Carbon dioxide and nitrous oxide fluxes from a legume-based grassland during contrasting seasons in eastern Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8788, https://doi.org/10.5194/egusphere-egu2020-8788, 2020.
EGU2020-11415 | Displays | BG3.26
Modelling possibilities of the effects of sewage sludge deposition on ecosystem carbon exchange processes - a case study on arable lands in Southeast HungaryMárton Kiss, Károly Barta, Ágnes Gulyás, Emese Krajcsi, and Andrea Farsang
The recent research and policy efforts on climate change mitigation highlight the need for proper understanding of the effects of many types of land management interventions on greenhouse gas exchange processes. The complexity of carbon and nitrogen cycles, which is the case also for agricultural ecosystems, call for model-based research approaches. These can make the decision-making applications easier as well. The agricultural use of sewage sludge is widespread in many countries. There are a number of case studies about its possible effects on greenhouse gas fluxes under different climatic conditions, but there are not many experiences in relevant model-based assessments. In our contribution, the Biome-BGC MuSo (v.6.) model was used for the investigation of the main characteristics of ecosystem exchange of carbon in arable land of warm dry temperate climate in the Great Plain of Hungary. The Biome-BGC is one of the most widely used biogeochemical models, it is capable of handling different land management activities, have a multilayer soil module and enable a quite detailed ecophysiological parameterization, which make it suitable for the targeted study. The results of laboratory analyses of soil profiles of the study area were used for the parameterization (element contents, organic matter, etc.). The poster presents the first results of the integrated measurement and modelling research work.
How to cite: Kiss, M., Barta, K., Gulyás, Á., Krajcsi, E., and Farsang, A.: Modelling possibilities of the effects of sewage sludge deposition on ecosystem carbon exchange processes - a case study on arable lands in Southeast Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11415, https://doi.org/10.5194/egusphere-egu2020-11415, 2020.
The recent research and policy efforts on climate change mitigation highlight the need for proper understanding of the effects of many types of land management interventions on greenhouse gas exchange processes. The complexity of carbon and nitrogen cycles, which is the case also for agricultural ecosystems, call for model-based research approaches. These can make the decision-making applications easier as well. The agricultural use of sewage sludge is widespread in many countries. There are a number of case studies about its possible effects on greenhouse gas fluxes under different climatic conditions, but there are not many experiences in relevant model-based assessments. In our contribution, the Biome-BGC MuSo (v.6.) model was used for the investigation of the main characteristics of ecosystem exchange of carbon in arable land of warm dry temperate climate in the Great Plain of Hungary. The Biome-BGC is one of the most widely used biogeochemical models, it is capable of handling different land management activities, have a multilayer soil module and enable a quite detailed ecophysiological parameterization, which make it suitable for the targeted study. The results of laboratory analyses of soil profiles of the study area were used for the parameterization (element contents, organic matter, etc.). The poster presents the first results of the integrated measurement and modelling research work.
How to cite: Kiss, M., Barta, K., Gulyás, Á., Krajcsi, E., and Farsang, A.: Modelling possibilities of the effects of sewage sludge deposition on ecosystem carbon exchange processes - a case study on arable lands in Southeast Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11415, https://doi.org/10.5194/egusphere-egu2020-11415, 2020.
EGU2020-11792 | Displays | BG3.26
Partitioning of eddy covariance derived pasture N2O emissions for different sources and respective emission factorsChristof Ammann and Karl Voglmeier
Nitrous oxide (N2O) is a very potent greenhouse gas, and the majority of the emissions are associated with intensive livestock production. The magnitude of the emissions depends on the nitrogen (N) input to the soil, and on grazed pastures the largest share of the emissions is typically originating from the N applied via fertilization and excreta of the grazing animals. The uneven spatial distribution of the excretion leads to emission hot spots on grazing systems and makes the quantification of the gaseous emissions difficult. Micrometeorological methods like the eddy covariance (EC) that integrate emissions over a larger area method are well suited to quantify total field-scale N2O emissions of grazed pastures. But the partioning of emissions for different sources and the determination of source-specific emission factors is still a challenge.
We present results of a 5-year field experiment carried out in western Switzerland. The investigated pasture was grazed by dairy cows in an intensive rotational management. The field was additionally fertilized with organic and mineral fertilizer each year, according to the N requirement of the grassland. The field-scale N2O fluxes were quantified with the EC technique using a fast response Quantum cascade laser spectrometer for N2O concentration measurements. The experimental setup and the environmental conditions resulted in high temporal and spatial dynamics of the N2O fluxes with highest values typically occurring after mineral fertilization events in the summer month. Using N2O background parametrizations retrieved from chamber measurements in one year and subtracting the background emission from the measured N2O fluxes allowed us to calculate excreta-related emission factors (EFs) according to the IPCC guidelines. EFs for fertilizer N input were calculated using a pre-defined time window after the fertilizer was applied. The subtracted background emissions during the fertilization events were calculated from the EC measurements outside this time window. We attribute the observed emissions to the different N inputs and discuss potential reasons for the supposedly higher emissions after mineral fertilizer applications in comparison to organic fertilizer emissions.
How to cite: Ammann, C. and Voglmeier, K.: Partitioning of eddy covariance derived pasture N2O emissions for different sources and respective emission factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11792, https://doi.org/10.5194/egusphere-egu2020-11792, 2020.
Nitrous oxide (N2O) is a very potent greenhouse gas, and the majority of the emissions are associated with intensive livestock production. The magnitude of the emissions depends on the nitrogen (N) input to the soil, and on grazed pastures the largest share of the emissions is typically originating from the N applied via fertilization and excreta of the grazing animals. The uneven spatial distribution of the excretion leads to emission hot spots on grazing systems and makes the quantification of the gaseous emissions difficult. Micrometeorological methods like the eddy covariance (EC) that integrate emissions over a larger area method are well suited to quantify total field-scale N2O emissions of grazed pastures. But the partioning of emissions for different sources and the determination of source-specific emission factors is still a challenge.
We present results of a 5-year field experiment carried out in western Switzerland. The investigated pasture was grazed by dairy cows in an intensive rotational management. The field was additionally fertilized with organic and mineral fertilizer each year, according to the N requirement of the grassland. The field-scale N2O fluxes were quantified with the EC technique using a fast response Quantum cascade laser spectrometer for N2O concentration measurements. The experimental setup and the environmental conditions resulted in high temporal and spatial dynamics of the N2O fluxes with highest values typically occurring after mineral fertilization events in the summer month. Using N2O background parametrizations retrieved from chamber measurements in one year and subtracting the background emission from the measured N2O fluxes allowed us to calculate excreta-related emission factors (EFs) according to the IPCC guidelines. EFs for fertilizer N input were calculated using a pre-defined time window after the fertilizer was applied. The subtracted background emissions during the fertilization events were calculated from the EC measurements outside this time window. We attribute the observed emissions to the different N inputs and discuss potential reasons for the supposedly higher emissions after mineral fertilizer applications in comparison to organic fertilizer emissions.
How to cite: Ammann, C. and Voglmeier, K.: Partitioning of eddy covariance derived pasture N2O emissions for different sources and respective emission factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11792, https://doi.org/10.5194/egusphere-egu2020-11792, 2020.
EGU2020-12052 | Displays | BG3.26
Land use effects on C-N-and P stocks and greenhouse gas fluxes in agroecosystems in southern ChileJorge Perez-Quezada, Silvia Cano, Patricia Ibaceta, David Aguilera, Osvaldo Salazar, Mauricio Galleguillos, and Bruce Osborne
Agricultural and animal production are normally considered activities that degrade soils and are sources of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Here, we present a detailed description of the carbon (C), nitrogen (N) and phosphorus (P) stocks in croplands (CR), grasslands (GR), native shrublands (NS) and invasive shrublands (IS) at three locations of northern Chiloé Island, southern Chile. Also, using a portable chamber system (1 m3), the three GHG fluxes were measured one day per month, for one year (2018). The results showed that the larger total stocks of C and N were found at the NS sites, with values of 50.5 ± 4.3 kg m-2 and 2.96 ± 0.54 kg m-2, respectively. In contrast, the larger stock of P was observed at the GR sites, with a value of 0.51 ± 0.08 kg m-2. Comparisons of the total ecosystem stocks showed no significant differences among the agroecosystems but differed from values reported for a forest in Chiloé, which revealed a significant loss in C (58.6%) and N (11.1%) stocks in the agroecosystems, while the P stock increased by 92% compared to the forest. As net sources of CO2 acted the CR sites; net sources of CH4 were the CR, GR and IS sites; and net sources of N2O were the CR sites. The GHG balance showed that the CR sites behaved as a net source (388 g CO2-eq m-2 year-1), while GR (-1248 g CO2-eq m-2 year-1), NS (-1097 g CO2-eq m-2 year-1) and IS (-1928 g CO2-eq m-2 year-1) acted as sinks. This indicates that croplands could make an important contribution to local and regional GHG emissions. In a wider context, these results indicate that the regulation of land use conversions for agricultural use might be an effective tool to combat climate change, potentially reducing GHG emissions.
How to cite: Perez-Quezada, J., Cano, S., Ibaceta, P., Aguilera, D., Salazar, O., Galleguillos, M., and Osborne, B.: Land use effects on C-N-and P stocks and greenhouse gas fluxes in agroecosystems in southern Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12052, https://doi.org/10.5194/egusphere-egu2020-12052, 2020.
Agricultural and animal production are normally considered activities that degrade soils and are sources of greenhouse gases (GHG), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Here, we present a detailed description of the carbon (C), nitrogen (N) and phosphorus (P) stocks in croplands (CR), grasslands (GR), native shrublands (NS) and invasive shrublands (IS) at three locations of northern Chiloé Island, southern Chile. Also, using a portable chamber system (1 m3), the three GHG fluxes were measured one day per month, for one year (2018). The results showed that the larger total stocks of C and N were found at the NS sites, with values of 50.5 ± 4.3 kg m-2 and 2.96 ± 0.54 kg m-2, respectively. In contrast, the larger stock of P was observed at the GR sites, with a value of 0.51 ± 0.08 kg m-2. Comparisons of the total ecosystem stocks showed no significant differences among the agroecosystems but differed from values reported for a forest in Chiloé, which revealed a significant loss in C (58.6%) and N (11.1%) stocks in the agroecosystems, while the P stock increased by 92% compared to the forest. As net sources of CO2 acted the CR sites; net sources of CH4 were the CR, GR and IS sites; and net sources of N2O were the CR sites. The GHG balance showed that the CR sites behaved as a net source (388 g CO2-eq m-2 year-1), while GR (-1248 g CO2-eq m-2 year-1), NS (-1097 g CO2-eq m-2 year-1) and IS (-1928 g CO2-eq m-2 year-1) acted as sinks. This indicates that croplands could make an important contribution to local and regional GHG emissions. In a wider context, these results indicate that the regulation of land use conversions for agricultural use might be an effective tool to combat climate change, potentially reducing GHG emissions.
How to cite: Perez-Quezada, J., Cano, S., Ibaceta, P., Aguilera, D., Salazar, O., Galleguillos, M., and Osborne, B.: Land use effects on C-N-and P stocks and greenhouse gas fluxes in agroecosystems in southern Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12052, https://doi.org/10.5194/egusphere-egu2020-12052, 2020.
EGU2020-12135 | Displays | BG3.26
Deep neural network model to predict N2O emission change by biochar amendment in upland agricultural soilsJunge Hyun, Eungyu Park, and Gayoung Yoo
The N2O emission change by biochar addition in soils showed inconsistent trends depending on biochar types, soil properties, environmental conditions, and soil management practices. Especially in non-flooded upland agricultural soils, due to the complexity of N2O emission processes, which include nitrification, nitrifier-denitrification, and denitrification, there are still many gaps in the mechanistic understanding of biochar effects. In order to maximize climate change mitigating effect of biochar, the biochar application guidelines that consider N2O emission change need to be offered to farmers. However, the current lack of knowledge makes it challenging to create mechanistic models, and new approaches are needed. Machine learning techniques can be a solution because we can find the relationship between input and output variables without explicit mechanistic understanding and mathematical description. We aimed at developing a deep neural network (DNN) model to predict the N2O emission change from upland agricultural soils by biochar application. Among all the papers published between Jan 2007 ~ Jul 2019 collected from Web of Science Core Collection, 65 papers were chosen which report changes in N2O emissions by biochar addition in upland agricultural soils. Eleven variables, which have been reported as important factors influencing N2O emission, were selected as input parameters. These include 5 soil properties (Total carbon and nitrogen content, sand and clay content and pH), 3 biochar properties (Feedstock type, pyrolysis temperature and biochar application rate), and 3 agricultural practices (Fertilizer type, number of fertilization and N application rate). The output parameter is the ratio of the cumulative N2O emission of biochar treatment and control. Using 85% of the compiled dataset (training set), the DNN model was trained to predict the changes in N2O emission by biochar addition. The rest of the dataset (validation set) was used to validate the DNN model. As a result, the DNN model predicted the decreasing and increasing patterns of biochar driven N2O emission change in 84% of the validation data. This preliminary result could be a basis for developing practical biochar use guidelines. Further studies will be conducted to improve the prediction accuracy of the DNN model by combining principal component analysis.
How to cite: Hyun, J., Park, E., and Yoo, G.: Deep neural network model to predict N2O emission change by biochar amendment in upland agricultural soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12135, https://doi.org/10.5194/egusphere-egu2020-12135, 2020.
The N2O emission change by biochar addition in soils showed inconsistent trends depending on biochar types, soil properties, environmental conditions, and soil management practices. Especially in non-flooded upland agricultural soils, due to the complexity of N2O emission processes, which include nitrification, nitrifier-denitrification, and denitrification, there are still many gaps in the mechanistic understanding of biochar effects. In order to maximize climate change mitigating effect of biochar, the biochar application guidelines that consider N2O emission change need to be offered to farmers. However, the current lack of knowledge makes it challenging to create mechanistic models, and new approaches are needed. Machine learning techniques can be a solution because we can find the relationship between input and output variables without explicit mechanistic understanding and mathematical description. We aimed at developing a deep neural network (DNN) model to predict the N2O emission change from upland agricultural soils by biochar application. Among all the papers published between Jan 2007 ~ Jul 2019 collected from Web of Science Core Collection, 65 papers were chosen which report changes in N2O emissions by biochar addition in upland agricultural soils. Eleven variables, which have been reported as important factors influencing N2O emission, were selected as input parameters. These include 5 soil properties (Total carbon and nitrogen content, sand and clay content and pH), 3 biochar properties (Feedstock type, pyrolysis temperature and biochar application rate), and 3 agricultural practices (Fertilizer type, number of fertilization and N application rate). The output parameter is the ratio of the cumulative N2O emission of biochar treatment and control. Using 85% of the compiled dataset (training set), the DNN model was trained to predict the changes in N2O emission by biochar addition. The rest of the dataset (validation set) was used to validate the DNN model. As a result, the DNN model predicted the decreasing and increasing patterns of biochar driven N2O emission change in 84% of the validation data. This preliminary result could be a basis for developing practical biochar use guidelines. Further studies will be conducted to improve the prediction accuracy of the DNN model by combining principal component analysis.
How to cite: Hyun, J., Park, E., and Yoo, G.: Deep neural network model to predict N2O emission change by biochar amendment in upland agricultural soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12135, https://doi.org/10.5194/egusphere-egu2020-12135, 2020.
EGU2020-16123 | Displays | BG3.26
Towards the first Scots pine chronosequence studies in PolandJanusz Olejnik, Klaudia Ziemblinska, Marek Urbaniak, and Stanislaw Malek
Since January 2008 the first eddy covariance (EC) ecosystem station in Polish forests was set up in a 54-year-old homogenous Scots pine stand near Tuczno (north-western part of the country). Almost 40-m tall steal scaffold tower ensures obtaining CO2 and H2O fluxes from the area extending to 500 m in the prevailing wind direction most of the time. Until now measurements carried out in Tuczno forest are the only direct, real-time and long-term studies of this type in the Poland. In comparison with other European pine forests, investigated using the same technique, this site is very productive, annually sequestering about 16 t of CO2 per hectare. There were many other comprehensive studies done nearby the main EC tower, which were the part of the common project founded by the State Forests since the very beginning e.g.: dendrometry and typical forest biometrics, hydrological and soil investigations, etc.
The results of EC measurements of CO2 fluxes from Tuczno site together with data from two others pine forest sites: Tlen I (5-year-old forest, 6 years of data) and Mezyk (25-year-old forest, 2 years of data) allowed to create the cumulative NEP over the chronosequence. This is the first chronosequence curve for one tree species in this part of Europe. Since the climate and soil conditions at all three sites are very similar (there is no significant statistical difference), the current research at all site will be continued until 2025 and we do expect a full chronosequence curve very soon. These results were also compared with models (mainly CBM) and we would like to extend our results to the whole territory of Poland where it is a dominant species (about 60% of total forest area is covered by Pinus Silvestris).
How to cite: Olejnik, J., Ziemblinska, K., Urbaniak, M., and Malek, S.: Towards the first Scots pine chronosequence studies in Poland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16123, https://doi.org/10.5194/egusphere-egu2020-16123, 2020.
Since January 2008 the first eddy covariance (EC) ecosystem station in Polish forests was set up in a 54-year-old homogenous Scots pine stand near Tuczno (north-western part of the country). Almost 40-m tall steal scaffold tower ensures obtaining CO2 and H2O fluxes from the area extending to 500 m in the prevailing wind direction most of the time. Until now measurements carried out in Tuczno forest are the only direct, real-time and long-term studies of this type in the Poland. In comparison with other European pine forests, investigated using the same technique, this site is very productive, annually sequestering about 16 t of CO2 per hectare. There were many other comprehensive studies done nearby the main EC tower, which were the part of the common project founded by the State Forests since the very beginning e.g.: dendrometry and typical forest biometrics, hydrological and soil investigations, etc.
The results of EC measurements of CO2 fluxes from Tuczno site together with data from two others pine forest sites: Tlen I (5-year-old forest, 6 years of data) and Mezyk (25-year-old forest, 2 years of data) allowed to create the cumulative NEP over the chronosequence. This is the first chronosequence curve for one tree species in this part of Europe. Since the climate and soil conditions at all three sites are very similar (there is no significant statistical difference), the current research at all site will be continued until 2025 and we do expect a full chronosequence curve very soon. These results were also compared with models (mainly CBM) and we would like to extend our results to the whole territory of Poland where it is a dominant species (about 60% of total forest area is covered by Pinus Silvestris).
How to cite: Olejnik, J., Ziemblinska, K., Urbaniak, M., and Malek, S.: Towards the first Scots pine chronosequence studies in Poland , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16123, https://doi.org/10.5194/egusphere-egu2020-16123, 2020.
EGU2020-20452 | Displays | BG3.26
Different management practices impact on CO2 and H2O budget of wind disturbed forest sites- 5-year datasetKlaudia Ziemblinska, Janusz Olejnik, Marek Urbaniak, and Stanislaw Malek
There is evidence of increasing severity of extreme meteorological events, which due to climate warming are also more frequent than in the past few decades. Any disturbances (either natural or anthropogenic) exert a significant influence on the forest’s functioning. In Canada and the USA, fires and insect outbreaks cause the greatest damage while in Europe wind disturbances are the main threat. Since in Poland the majority of forests are managed by the State Forests, after such events disturbed areas are almost immediately designated for reforestation. While natural regeneration still contributes the least to forest restoration, the most common practices in our country include harvesting, soil preparation (ploughing) and manual seedlings introduction, which in this sense is similar to clear-cut’s management.
Once such an event happened in Poland two EC stations were set up in the area of an 80-year old pine forest, which had been wiped out by a tornado in July 2012, to asses the impact of forest management. To date, there have been more than 5 full years of continuous carbon and energy fluxes measurement, allowing insight into forest regeneration patterns due to manual reforestation, as well as differences in CO2 losses connected to chosen treatments. The two sites (Tlen I and Tlen II) differ mostly in terms of soil preparation – at Tlen I site soil was ploughed before replanting and at Tlen II soil cover remained almost intact. Additionally, at the second location, only trunks and main branches were harvested, while all uprooted stumps were left to decompose. Both meteorological and soil conditions have been investigated, with most of them not being significantly different, which allowed drawing the conclusion that observed differences in GHGs balance are most likely related to chosen forest management practices. Thorough analysis of quality checked EC data revealed that in 5-year perspective the application of traditional method (Tlen I site), mainly due to soil ploughing, resulted in much less total CO2 loss to the atmosphere, reaching C-neutrality point in only 6 years after the damage as well as better seedling growth in general in comparison to the technique, where the soil cover was not disrupted. Moreover, it seems that furrows created at the conventionally managed forest site (“double” organic layer) serve as crucial water reservoirs during water shortage periods, preventing from the pine plantation damage caused by prolonged droughts.
This work advances our understanding of how different forest management practices can help to sustain the least CO2 losses on the example of wind-disturbed forests. Although, it has to be remembered that long-term studies are needed to point the best option from the perspective of climate change mitigation.
How to cite: Ziemblinska, K., Olejnik, J., Urbaniak, M., and Malek, S.: Different management practices impact on CO2 and H2O budget of wind disturbed forest sites- 5-year dataset, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20452, https://doi.org/10.5194/egusphere-egu2020-20452, 2020.
There is evidence of increasing severity of extreme meteorological events, which due to climate warming are also more frequent than in the past few decades. Any disturbances (either natural or anthropogenic) exert a significant influence on the forest’s functioning. In Canada and the USA, fires and insect outbreaks cause the greatest damage while in Europe wind disturbances are the main threat. Since in Poland the majority of forests are managed by the State Forests, after such events disturbed areas are almost immediately designated for reforestation. While natural regeneration still contributes the least to forest restoration, the most common practices in our country include harvesting, soil preparation (ploughing) and manual seedlings introduction, which in this sense is similar to clear-cut’s management.
Once such an event happened in Poland two EC stations were set up in the area of an 80-year old pine forest, which had been wiped out by a tornado in July 2012, to asses the impact of forest management. To date, there have been more than 5 full years of continuous carbon and energy fluxes measurement, allowing insight into forest regeneration patterns due to manual reforestation, as well as differences in CO2 losses connected to chosen treatments. The two sites (Tlen I and Tlen II) differ mostly in terms of soil preparation – at Tlen I site soil was ploughed before replanting and at Tlen II soil cover remained almost intact. Additionally, at the second location, only trunks and main branches were harvested, while all uprooted stumps were left to decompose. Both meteorological and soil conditions have been investigated, with most of them not being significantly different, which allowed drawing the conclusion that observed differences in GHGs balance are most likely related to chosen forest management practices. Thorough analysis of quality checked EC data revealed that in 5-year perspective the application of traditional method (Tlen I site), mainly due to soil ploughing, resulted in much less total CO2 loss to the atmosphere, reaching C-neutrality point in only 6 years after the damage as well as better seedling growth in general in comparison to the technique, where the soil cover was not disrupted. Moreover, it seems that furrows created at the conventionally managed forest site (“double” organic layer) serve as crucial water reservoirs during water shortage periods, preventing from the pine plantation damage caused by prolonged droughts.
This work advances our understanding of how different forest management practices can help to sustain the least CO2 losses on the example of wind-disturbed forests. Although, it has to be remembered that long-term studies are needed to point the best option from the perspective of climate change mitigation.
How to cite: Ziemblinska, K., Olejnik, J., Urbaniak, M., and Malek, S.: Different management practices impact on CO2 and H2O budget of wind disturbed forest sites- 5-year dataset, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20452, https://doi.org/10.5194/egusphere-egu2020-20452, 2020.
EGU2020-21293 | Displays | BG3.26
Long-term impact of nitrogen addition on the carbon balance of a boreal pine forest in Northern SwedenPeng Zhao, Jinshu Chi, Mats Nilsson, Mikaell Ottosson.Lofvenius, Sune Linder, Tomas Lundmark, John Marshall, Torgny Näsholm, and Matthias Peichl
Nitrogen (N) added through atmospheric deposition or as fertilizer in boreal forests may alter their carbon (C) sequestration potential and sensitivity to climatic changes. While previous studies have primarily explored the responses of individual ecosystem components such as stem biomass production and soil carbon changes following N addition, the long-term impacts of N addition on the ecosystem-scale C balance of boreal forests still remain unclear. Here, we use data from eddy-covariance measurements in a fertilized Scots pine (Pinus sylvestris L.) forest (i.e. 16 ha receiving 100 and 50 kg N ha-1 yr-1 since 2006 and 2012, respectively) and an adjacent unfertilized control stand in boreal Sweden to investigate how one decade of N addition affected the net ecosystem productivity (NEP), gross primary production (GPP) and ecosystem respiration (ER) over five fertilization years (2015-2019). Results showed that N fertilization increased GPP in all five years with by 18% at average to 1183±41 g C m-2 yr-1 in the N-fertilized stand compared to 1003±56 g C m-2 yr-1 in the control stand. ER was also increased from 744±29 g C m-2 yr-1 in the control stand to 875±37 g C m-2 yr-1 in the fertilized stand. As a result, fertilization increased NEP from 259±28 g C m-2 yr-1 in the control stand to 308±20 g C m-2 yr-1 in the N-fertilized stand. Our results further suggested that the annual NEP was similar between stands during years with normal weather conditions (2015-2016) while NEP diverged due to a larger reduction in the control stand in years with environmental constraints (i.e. a cool summer in 2017 and droughts in 2018 and 2019). These findings indicate that enhanced N input to boreal forests increases and stabilizes their C sequestration potential under future climate conditions.
How to cite: Zhao, P., Chi, J., Nilsson, M., Ottosson.Lofvenius, M., Linder, S., Lundmark, T., Marshall, J., Näsholm, T., and Peichl, M.: Long-term impact of nitrogen addition on the carbon balance of a boreal pine forest in Northern Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21293, https://doi.org/10.5194/egusphere-egu2020-21293, 2020.
Nitrogen (N) added through atmospheric deposition or as fertilizer in boreal forests may alter their carbon (C) sequestration potential and sensitivity to climatic changes. While previous studies have primarily explored the responses of individual ecosystem components such as stem biomass production and soil carbon changes following N addition, the long-term impacts of N addition on the ecosystem-scale C balance of boreal forests still remain unclear. Here, we use data from eddy-covariance measurements in a fertilized Scots pine (Pinus sylvestris L.) forest (i.e. 16 ha receiving 100 and 50 kg N ha-1 yr-1 since 2006 and 2012, respectively) and an adjacent unfertilized control stand in boreal Sweden to investigate how one decade of N addition affected the net ecosystem productivity (NEP), gross primary production (GPP) and ecosystem respiration (ER) over five fertilization years (2015-2019). Results showed that N fertilization increased GPP in all five years with by 18% at average to 1183±41 g C m-2 yr-1 in the N-fertilized stand compared to 1003±56 g C m-2 yr-1 in the control stand. ER was also increased from 744±29 g C m-2 yr-1 in the control stand to 875±37 g C m-2 yr-1 in the fertilized stand. As a result, fertilization increased NEP from 259±28 g C m-2 yr-1 in the control stand to 308±20 g C m-2 yr-1 in the N-fertilized stand. Our results further suggested that the annual NEP was similar between stands during years with normal weather conditions (2015-2016) while NEP diverged due to a larger reduction in the control stand in years with environmental constraints (i.e. a cool summer in 2017 and droughts in 2018 and 2019). These findings indicate that enhanced N input to boreal forests increases and stabilizes their C sequestration potential under future climate conditions.
How to cite: Zhao, P., Chi, J., Nilsson, M., Ottosson.Lofvenius, M., Linder, S., Lundmark, T., Marshall, J., Näsholm, T., and Peichl, M.: Long-term impact of nitrogen addition on the carbon balance of a boreal pine forest in Northern Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21293, https://doi.org/10.5194/egusphere-egu2020-21293, 2020.
EGU2020-22260 | Displays | BG3.26
Spatial variability of the net ecosystem production and its component fluxes across a managed boreal forest landscape in Sweden: A biometric and chamber data-based analysisEduardo Martínez García, Mats B. Nilson, Hjalmar Laudon, Jörgen Wallerman, Johan E.S. Fransson, Tomas Lundmark, and Matthias Peichl
A managed boreal forest landscape is a diverse successional mosaic of clear-cuts to old-growth stands of different species growing on a variety of soil types. Consequently, this high spatial heterogeneity strongly impacts the forest net ecosystem production (NEP) across the managed landscape. However, the quantification of the variability of NEP and its component fluxes across forested landscapes is currently highly uncertain due to the complex interactions between forest structure and physiological processes and their changes over time.
Here, we assessed the spatial variability of NEP and its component fluxes during a 3-year period (2016-2018) over a boreal forest landscape (ca. 68 km2) located within the Krycklan catchment (64°14′N, 19°46′E) in northern Sweden. For this purpose, we selected 50 representative forest plots (10 m radius) across the catchment spanning various tree species (pine- and spruce-dominated stands) and forest age classes (from clear-cuts to old-growth forests). In each plot, forest floor CO2 fluxes were manually measured with custom-made closed chambers in monthly intervals during the growing seasons 2016-2018. Measurements were carried out across natural (both light/dark measurements) and trenching/vegetation removal plots (0.45 × 0.45 m) to partition the net forest-floor exchange (NEFF) into its contributing components, i.e., gross primary production (GPPFF) and respiration (ERFF). ERFF was further separated into plant autotrophic and soil heterotrophic respiration (RaFF and RhFF). Plot-level biometric measurements were conducted to determine the net primary production of trees and forest floor vegetation (NPPT and NPPFF) as well as heterotrophic dead wood respiration (decomposition, RhDW). Finally, NEP was calculated as NEP = NPPT + NPPFF – RhFF – RhDW.
Our results showed that NPPT consistently increased with forest ageing, while an opposite pattern was observed for NPPFF. In general, spruce stands showed lower NPPT compared to spruce stands at each given age class. In contrast, pine stands showed consistently higher NEFF, GPPFF, ERFF, RhFF, RaFF, and NPPFF compared to spruce stands. The forest floor was a net CO2 source, which increased with stand age due to the progressive decrease in GPPFF, while the ERFF remained similar among all the age classes. In addition, an analogous age-related pattern was observed in RhFF. Our findings also depicted an increasing NEP with forest age from about ≈ 54±67 g C m-2 yr-1 during the initial stages of development (i.e., 5-30 years-old) to a maximum of ≈ 170±68 g C m-2 yr-1 in middle-aged stands (i.e., 60-100 years-old). Higher NEP was generally observed for pine compared to spruce stands. Interestingly, we found that the old-growth forests steadily continue to accumulate C, which is contrary to the common view that they become C neutral or sources.
Overall, this comprehensive study improves our understanding of the spatial variability of the C balance over the heterogeneous regional forest landscape in northern Sweden, identifying tree species, forest floor vegetation and forest ageing as key drivers.
How to cite: Martínez García, E., Nilson, M. B., Laudon, H., Wallerman, J., Fransson, J. E. S., Lundmark, T., and Peichl, M.: Spatial variability of the net ecosystem production and its component fluxes across a managed boreal forest landscape in Sweden: A biometric and chamber data-based analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22260, https://doi.org/10.5194/egusphere-egu2020-22260, 2020.
A managed boreal forest landscape is a diverse successional mosaic of clear-cuts to old-growth stands of different species growing on a variety of soil types. Consequently, this high spatial heterogeneity strongly impacts the forest net ecosystem production (NEP) across the managed landscape. However, the quantification of the variability of NEP and its component fluxes across forested landscapes is currently highly uncertain due to the complex interactions between forest structure and physiological processes and their changes over time.
Here, we assessed the spatial variability of NEP and its component fluxes during a 3-year period (2016-2018) over a boreal forest landscape (ca. 68 km2) located within the Krycklan catchment (64°14′N, 19°46′E) in northern Sweden. For this purpose, we selected 50 representative forest plots (10 m radius) across the catchment spanning various tree species (pine- and spruce-dominated stands) and forest age classes (from clear-cuts to old-growth forests). In each plot, forest floor CO2 fluxes were manually measured with custom-made closed chambers in monthly intervals during the growing seasons 2016-2018. Measurements were carried out across natural (both light/dark measurements) and trenching/vegetation removal plots (0.45 × 0.45 m) to partition the net forest-floor exchange (NEFF) into its contributing components, i.e., gross primary production (GPPFF) and respiration (ERFF). ERFF was further separated into plant autotrophic and soil heterotrophic respiration (RaFF and RhFF). Plot-level biometric measurements were conducted to determine the net primary production of trees and forest floor vegetation (NPPT and NPPFF) as well as heterotrophic dead wood respiration (decomposition, RhDW). Finally, NEP was calculated as NEP = NPPT + NPPFF – RhFF – RhDW.
Our results showed that NPPT consistently increased with forest ageing, while an opposite pattern was observed for NPPFF. In general, spruce stands showed lower NPPT compared to spruce stands at each given age class. In contrast, pine stands showed consistently higher NEFF, GPPFF, ERFF, RhFF, RaFF, and NPPFF compared to spruce stands. The forest floor was a net CO2 source, which increased with stand age due to the progressive decrease in GPPFF, while the ERFF remained similar among all the age classes. In addition, an analogous age-related pattern was observed in RhFF. Our findings also depicted an increasing NEP with forest age from about ≈ 54±67 g C m-2 yr-1 during the initial stages of development (i.e., 5-30 years-old) to a maximum of ≈ 170±68 g C m-2 yr-1 in middle-aged stands (i.e., 60-100 years-old). Higher NEP was generally observed for pine compared to spruce stands. Interestingly, we found that the old-growth forests steadily continue to accumulate C, which is contrary to the common view that they become C neutral or sources.
Overall, this comprehensive study improves our understanding of the spatial variability of the C balance over the heterogeneous regional forest landscape in northern Sweden, identifying tree species, forest floor vegetation and forest ageing as key drivers.
How to cite: Martínez García, E., Nilson, M. B., Laudon, H., Wallerman, J., Fransson, J. E. S., Lundmark, T., and Peichl, M.: Spatial variability of the net ecosystem production and its component fluxes across a managed boreal forest landscape in Sweden: A biometric and chamber data-based analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22260, https://doi.org/10.5194/egusphere-egu2020-22260, 2020.
BG3.27 – Latest Developments and Software Tools for Ecosystem and Flux Data Analysis
EGU2020-2174 | Displays | BG3.27
Gap-filling continuously-measured soil respiration data with time-series-based methodsJunbin Zhao, Holger Lange, and Helge Meissner
Soil respiration is an important ecosystem process that releases carbon dioxide into the atmosphere. While soil respiration can be measured continuously at high temporal resolutions, gaps in the dataset are inevitable, leading to uncertainties in carbon budget estimations. Therefore, robust methods used to fill the gaps are needed. The process-based non-linear least squares (NLS) regression is the most widely used gap-filling method, which utilizes the established relationship between the soil respiration and temperature. In addition to NLS, we also implemented three other methods based on: 1) artificial neural networks (ANN), driven by temperature and moisture measurements, 2) singular spectrum analysis (SSA), relying only on the time series itself, and 3) the expectation-maximization (EM) approach, referencing to parallel flux measurements in the spatial vicinity. Six soil respiration datasets (2017-2019) from two boreal forests were used for benchmarking. Artificial gaps were randomly introduced into the datasets and then filled using the four methods. The time-series-based methods, SSA and EM, showed higher accuracies than NLS and ANN in small gaps (<1 day). In larger gaps (15 days), the performance was similar among NLS, SSA and EM; however, ANN showed large errors in gaps that coincided with precipitation events. Compared to the observations, gap-filled data by SSA showed similar degree of variances and those filled by EM were associated with similar first-order autocorrelation coefficients. In contrast, data filled by both NLS and ANN exhibited lower variance and higher autocorrelation than the observations. For estimations of the annual soil respiration budget, NLS, SSA and EM produced satisfying results with budget errors < 6% while ANN exhibited larger errors up to 16.0%. Our study highlights the two time-series-based methods which showed great potential in gap-filling carbon flux data, especially when other environmental variables are unavailable. The R code to perform the gap-filling with the four methods in this study is incorporated into the R package “FluxGapsR” freely available at https://github.com/junbinzhao/FluxGapsR/.
How to cite: Zhao, J., Lange, H., and Meissner, H.: Gap-filling continuously-measured soil respiration data with time-series-based methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2174, https://doi.org/10.5194/egusphere-egu2020-2174, 2020.
Soil respiration is an important ecosystem process that releases carbon dioxide into the atmosphere. While soil respiration can be measured continuously at high temporal resolutions, gaps in the dataset are inevitable, leading to uncertainties in carbon budget estimations. Therefore, robust methods used to fill the gaps are needed. The process-based non-linear least squares (NLS) regression is the most widely used gap-filling method, which utilizes the established relationship between the soil respiration and temperature. In addition to NLS, we also implemented three other methods based on: 1) artificial neural networks (ANN), driven by temperature and moisture measurements, 2) singular spectrum analysis (SSA), relying only on the time series itself, and 3) the expectation-maximization (EM) approach, referencing to parallel flux measurements in the spatial vicinity. Six soil respiration datasets (2017-2019) from two boreal forests were used for benchmarking. Artificial gaps were randomly introduced into the datasets and then filled using the four methods. The time-series-based methods, SSA and EM, showed higher accuracies than NLS and ANN in small gaps (<1 day). In larger gaps (15 days), the performance was similar among NLS, SSA and EM; however, ANN showed large errors in gaps that coincided with precipitation events. Compared to the observations, gap-filled data by SSA showed similar degree of variances and those filled by EM were associated with similar first-order autocorrelation coefficients. In contrast, data filled by both NLS and ANN exhibited lower variance and higher autocorrelation than the observations. For estimations of the annual soil respiration budget, NLS, SSA and EM produced satisfying results with budget errors < 6% while ANN exhibited larger errors up to 16.0%. Our study highlights the two time-series-based methods which showed great potential in gap-filling carbon flux data, especially when other environmental variables are unavailable. The R code to perform the gap-filling with the four methods in this study is incorporated into the R package “FluxGapsR” freely available at https://github.com/junbinzhao/FluxGapsR/.
How to cite: Zhao, J., Lange, H., and Meissner, H.: Gap-filling continuously-measured soil respiration data with time-series-based methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2174, https://doi.org/10.5194/egusphere-egu2020-2174, 2020.
EGU2020-2382 | Displays | BG3.27
Unlocking the potential of eddy covariance data with the R software package openeddyLadislav Šigut, Pavel Sedlák, Milan Fischer, Georg Jocher, Thomas Wutzler, Marian Pavelka, and Matthias Mauder
The eddy covariance method provides important insights about CO2, water and energy exchange-related processes on the ecosystem scale level. Data are collected quasi-continuously with sampling frequency 10 Hz at minimum, often throughout multiple years, producing large datasets. Standard data processing methods are already devised but undergo continuous refinements that should be reflected in the available software. Currently, a suite of software packages is available for computation of half-hourly products from high frequency raw data. However, software packages consolidating the further post-processing computations are not yet that common. The post-processing steps can consist of quality control, footprint modelling, computation of storage fluxes, gap-filling, flux partitioning and data aggregation. Also they can be realized in different programming languages and require various input data formats. Users would therefore often evaluate only certain aspects of the dataset which limits the amount of extractable information from obtained data and they possibly omit the features that could affect data quality or interpretation. Here we present the free R software package openeddy () that provides utilities for input data handling, extended quality control checks, data aggregation and visualization and that includes a workflow () that attempts to integrate all post-processing steps through incorporation of other free software packages, such as REddyProc (). The framework is designed for the standard set of eddy covariance fluxes, i.e. of momentum, latent and sensible heat as well as CO2. Special attention was paid to the visualization of results at different stages of processing and at different time resolutions and aggregation steps. This allows to quickly check that computations were performed as expected and it also helps to notice issues in the dataset itself. Finally, the proposed folder structure with defined post-processing steps allows to organize data in different stages of processing for improved ease of use. Produced workflow files document the whole processing chain and its possible adaptations for a given site. We believe that such a tool can be particularly useful for eddy-covariance novices, groups that cannot or do not contribute their data to regional networks for further processing or users that want to evaluate their data independently. This or similar efforts can also help to save human resources or speed up the development of new methods.
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program, grant number LM2015061, and within Mobility CzechGlobe 2, grant number CZ.02.2.69/0.0/0.0/18_053/0016924.
How to cite: Šigut, L., Sedlák, P., Fischer, M., Jocher, G., Wutzler, T., Pavelka, M., and Mauder, M.: Unlocking the potential of eddy covariance data with the R software package openeddy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2382, https://doi.org/10.5194/egusphere-egu2020-2382, 2020.
The eddy covariance method provides important insights about CO2, water and energy exchange-related processes on the ecosystem scale level. Data are collected quasi-continuously with sampling frequency 10 Hz at minimum, often throughout multiple years, producing large datasets. Standard data processing methods are already devised but undergo continuous refinements that should be reflected in the available software. Currently, a suite of software packages is available for computation of half-hourly products from high frequency raw data. However, software packages consolidating the further post-processing computations are not yet that common. The post-processing steps can consist of quality control, footprint modelling, computation of storage fluxes, gap-filling, flux partitioning and data aggregation. Also they can be realized in different programming languages and require various input data formats. Users would therefore often evaluate only certain aspects of the dataset which limits the amount of extractable information from obtained data and they possibly omit the features that could affect data quality or interpretation. Here we present the free R software package openeddy () that provides utilities for input data handling, extended quality control checks, data aggregation and visualization and that includes a workflow () that attempts to integrate all post-processing steps through incorporation of other free software packages, such as REddyProc (). The framework is designed for the standard set of eddy covariance fluxes, i.e. of momentum, latent and sensible heat as well as CO2. Special attention was paid to the visualization of results at different stages of processing and at different time resolutions and aggregation steps. This allows to quickly check that computations were performed as expected and it also helps to notice issues in the dataset itself. Finally, the proposed folder structure with defined post-processing steps allows to organize data in different stages of processing for improved ease of use. Produced workflow files document the whole processing chain and its possible adaptations for a given site. We believe that such a tool can be particularly useful for eddy-covariance novices, groups that cannot or do not contribute their data to regional networks for further processing or users that want to evaluate their data independently. This or similar efforts can also help to save human resources or speed up the development of new methods.
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program, grant number LM2015061, and within Mobility CzechGlobe 2, grant number CZ.02.2.69/0.0/0.0/18_053/0016924.
How to cite: Šigut, L., Sedlák, P., Fischer, M., Jocher, G., Wutzler, T., Pavelka, M., and Mauder, M.: Unlocking the potential of eddy covariance data with the R software package openeddy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2382, https://doi.org/10.5194/egusphere-egu2020-2382, 2020.
EGU2020-3645 | Displays | BG3.27
Effective aggregation of gappy replicated time series using INLAThomas Wutzler, Mirco Migliavacca, and Kendalynn Morris
Soil CO2 efflux data from automated chambers provide an important constraint for ecosystem and soil respiration. Usually, half-hourly time series of several replicated chambers have to be aggregated to plot-level while gaps in the time series have to be accommodated. Gaps cause jumps and other problems in aggregation of replicated measurement in each half-hour, therefore, lookup tables and machine learning approaches are used to fill gaps beforehand.
Here, we present an alternative fully Bayesian approach for the combined gap-filling and aggregation based on Integrated Nested Laplace Approximation (INLA). This method integrates all information from every measurement across replicates and across time and therefore efficiently estimates the correlation structure among all observations. It provides the full marginal posterior distribution of the aggregated time series at the plot level across the time span of the time series. We compare several aggregation approaches using four years of data from 16 automatic chambers at the eddy-covariance site in Majadas de Tietar in Spain (ES-LM1, ES-LMa).
This approach is applicable for other replicated time series as well. We further explore its usage for analysing time-varying effects across treatments and habitats and its usage for gap-filling net ecosystem exchange (NEE) data based on the full correlation structure in a data-cube of time and environmental conditions.
How to cite: Wutzler, T., Migliavacca, M., and Morris, K.: Effective aggregation of gappy replicated time series using INLA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3645, https://doi.org/10.5194/egusphere-egu2020-3645, 2020.
Soil CO2 efflux data from automated chambers provide an important constraint for ecosystem and soil respiration. Usually, half-hourly time series of several replicated chambers have to be aggregated to plot-level while gaps in the time series have to be accommodated. Gaps cause jumps and other problems in aggregation of replicated measurement in each half-hour, therefore, lookup tables and machine learning approaches are used to fill gaps beforehand.
Here, we present an alternative fully Bayesian approach for the combined gap-filling and aggregation based on Integrated Nested Laplace Approximation (INLA). This method integrates all information from every measurement across replicates and across time and therefore efficiently estimates the correlation structure among all observations. It provides the full marginal posterior distribution of the aggregated time series at the plot level across the time span of the time series. We compare several aggregation approaches using four years of data from 16 automatic chambers at the eddy-covariance site in Majadas de Tietar in Spain (ES-LM1, ES-LMa).
This approach is applicable for other replicated time series as well. We further explore its usage for analysing time-varying effects across treatments and habitats and its usage for gap-filling net ecosystem exchange (NEE) data based on the full correlation structure in a data-cube of time and environmental conditions.
How to cite: Wutzler, T., Migliavacca, M., and Morris, K.: Effective aggregation of gappy replicated time series using INLA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3645, https://doi.org/10.5194/egusphere-egu2020-3645, 2020.
EGU2020-5652 | Displays | BG3.27
Eddy Covariance Flux Data: Sitting on a Golden EggGerardo Fratini, Israel Begashaw, Andreas Burkart, John Gamon, Kaiyu Guan, David Johnson, Tommaso Julitta, Gilberto Pastorello, Karolina Sakowska, Mong-Kuen Sun, Lynn Woodford, and George Burba
Data from thousands of past and present eddy covariance flux stations are available across the globe, while multiple hundreds actively operating as individual process-level studies, small flux networks dedicated to specific research goals, and larger national and continental networks with broad ecological and environmental foci.
Many flux stations have weather and soil data to help clean, analyze and interpret the fluxes but most do not have optical proximal sensors, do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and cannot easily be used for validation of remotely sensed products, ecosystem modeling, or upscaling from field to regional levels. The flux source areas themselves (e.g., flux footprints) are typically not defined in the flux datasets, and the time stamps of the fluxes come in a large number of outdated non-trackable formats. Finally, the past ways of the flux data quality control, analysis and interpretation require a participation of micrometeorological expert (or an entire network) with their own custom codes or exceptional skills in using existing software such as MatLab or VB Tools in Excel. These are the key issues effectively preventing a larger environmental research community and remote sensing community from fully utilizing eddy covariance flux data.
In 2016-2020, a set of new tools to collect, process, analyze, time- and space- allocate and share time-synchronized flux data from multiple flux stations were developed and deployed globally. These new tools can be effective in solving most or all of the key issues listed above. The fully automated FluxSuite system combines hardware, software and web services, and does not require an expert to run it. It can be incorporated into a new flux station or added to a present station, using a weatherized remotely-accessible microcomputer, SmartFlux3 which utilizes EddyPro software to calculate fully-processed fluxes in near-real-time, alongside biomet data and flux footprints. All data are merged into a single quality-controlled file timed using PTP time protocol. Remote sensing researchers and modelers without actual physical stations can form “virtual networks” of actual stations by collaborating with tower PIs from different physical networks and flux databases.
The very latest development in this overall approach is the flux data analysis software, Tovi, designed to seamlessly ingest the data from the flux stations and to allow a non-micrometeorologist to quality control, analyze and interpret the flux data. It allows rapid execution of the QC/QA and data analysis steps which have been time-consuming and complicated in the past, and other data analysis steps virtually not doable in the past, all using interactive and intuitive GUI, including advanced footprint calculations and flux apportioning necessary for remote sensing community; NEE flux partitioning; automated generation specific lists of references for each workflow; etc.
This presentation will show how combinations of these new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data for ground truthing, improve scientific interactions, and promote a better utilization of the eddy covariance flux data by a wider environmental research community.
How to cite: Fratini, G., Begashaw, I., Burkart, A., Gamon, J., Guan, K., Johnson, D., Julitta, T., Pastorello, G., Sakowska, K., Sun, M.-K., Woodford, L., and Burba, G.: Eddy Covariance Flux Data: Sitting on a Golden Egg, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5652, https://doi.org/10.5194/egusphere-egu2020-5652, 2020.
Data from thousands of past and present eddy covariance flux stations are available across the globe, while multiple hundreds actively operating as individual process-level studies, small flux networks dedicated to specific research goals, and larger national and continental networks with broad ecological and environmental foci.
Many flux stations have weather and soil data to help clean, analyze and interpret the fluxes but most do not have optical proximal sensors, do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and cannot easily be used for validation of remotely sensed products, ecosystem modeling, or upscaling from field to regional levels. The flux source areas themselves (e.g., flux footprints) are typically not defined in the flux datasets, and the time stamps of the fluxes come in a large number of outdated non-trackable formats. Finally, the past ways of the flux data quality control, analysis and interpretation require a participation of micrometeorological expert (or an entire network) with their own custom codes or exceptional skills in using existing software such as MatLab or VB Tools in Excel. These are the key issues effectively preventing a larger environmental research community and remote sensing community from fully utilizing eddy covariance flux data.
In 2016-2020, a set of new tools to collect, process, analyze, time- and space- allocate and share time-synchronized flux data from multiple flux stations were developed and deployed globally. These new tools can be effective in solving most or all of the key issues listed above. The fully automated FluxSuite system combines hardware, software and web services, and does not require an expert to run it. It can be incorporated into a new flux station or added to a present station, using a weatherized remotely-accessible microcomputer, SmartFlux3 which utilizes EddyPro software to calculate fully-processed fluxes in near-real-time, alongside biomet data and flux footprints. All data are merged into a single quality-controlled file timed using PTP time protocol. Remote sensing researchers and modelers without actual physical stations can form “virtual networks” of actual stations by collaborating with tower PIs from different physical networks and flux databases.
The very latest development in this overall approach is the flux data analysis software, Tovi, designed to seamlessly ingest the data from the flux stations and to allow a non-micrometeorologist to quality control, analyze and interpret the flux data. It allows rapid execution of the QC/QA and data analysis steps which have been time-consuming and complicated in the past, and other data analysis steps virtually not doable in the past, all using interactive and intuitive GUI, including advanced footprint calculations and flux apportioning necessary for remote sensing community; NEE flux partitioning; automated generation specific lists of references for each workflow; etc.
This presentation will show how combinations of these new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data for ground truthing, improve scientific interactions, and promote a better utilization of the eddy covariance flux data by a wider environmental research community.
How to cite: Fratini, G., Begashaw, I., Burkart, A., Gamon, J., Guan, K., Johnson, D., Julitta, T., Pastorello, G., Sakowska, K., Sun, M.-K., Woodford, L., and Burba, G.: Eddy Covariance Flux Data: Sitting on a Golden Egg, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5652, https://doi.org/10.5194/egusphere-egu2020-5652, 2020.
EGU2020-5660 | Displays | BG3.27
Addressing eddy-covariance flux errors due to uncertainties in open path IRGA operation under harsh environmental conditions on the Tibetan PlateauFelix Nieberding, Gerardo Fratini, Christian Wille, Yaoming Ma, and Torsten Sachs
When using open path infrared gas analyzers (IRGA), lens contamination, calibration inaccuracies and ageing internal chemicals may lead to a slow drift in gas concentration measurements. During flux calculations, these errors are usually not accounted for under the assumption, that a slow drift in mean gas concentrations (i.e. over several weeks to months) does not affect the estimation of turbulent fluctuations and, hence, of covariances. This is however not the case. In fact, Serrano-Ortiz et al. (2008) estimated that an underestimation of the CO2 concentration will propagate into an overestimation of the carbon uptake via the WPL correction. In addition, for instruments – such as the widely used LI-7500 – where a nonlinear calibration curve relates raw absorptance measurements to gas concentration, Fratini et al. (2014) have shown that errors in mean concentrations leak into errors in fluxes on account of amplified or dampened estimated fluctuations. Both these effects can be eliminated, possibly completely, when the drift in gas concentration is corrected before raw data processing. Therefore, the offset between measured and reference (i.e. "real") gas concentrations has to be quantified and converted into the corresponding zero absorption biases. We performed the drift correction on a 15 years dataset from the Tibetan Plateau, where an extreme drift in concentration measurements occurred. Due to the remote location, user calibrations were performed irregularly, and no independent gas concentration measurements are available. Hence, we used the CO2 concentration measurements from the Mauna Loa atmospheric observatory (NOAA ESRL Global Monitoring Division, 2018, updated annually) as reference gas concentration to derive an offset for every half hour measurement. The offset in H2O mixing ratios could be determined from auxiliary low frequency measurements of relative humidity, temperature and air pressure. We then converted mixing ratios to raw absorptances using the instrument-specific calibration curve to apply an absorptance offset to every 10 Hz measurement, thus eliminating the long-term drift in both mean values and fluctuations of gas concentrations. The corrected raw data time series were then used for calculation of fluxes and subsequent corrections, including de-spiking, axis rotation, detrending and correction for spectral attenuations and air density fluctuations. In comparison to the uncorrected fluxes, the corrected fluxes yielded a considerably lower carbon uptake during daytime and summer, which is in compliance with instrument theory of operation and the results from numerical simulations and field data analysis as conducted by Fratini et al. (2014).
Fratini, G., McDermitt, D.K. & Papale, D. (2014) Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction. Biogeosciences, 11, 1037–1051.
NOAA ESRL Global Monitoring Division (2018, updated annually) Atmospheric Carbon Dioxide Dry Air Mole Fractions from quasi-continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole. Compiled by K.W. Thoning, D.R. Kitzis, and A. Crotwell., 2019th edn. NOAA ESRL GMD CCGG Group, Boulder, Colorado, USA.
Serrano-Ortiz, P., Kowalski, A.S., Domingo, F., Ruiz, B. & Alados-Arboledas, L. (2008) Consequences of Uncertainties in CO2 Density for Estimating Net Ecosystem CO2 Exchange by Open-path Eddy Covariance. Boundary-Layer Meteorology, 126, 209–218.
How to cite: Nieberding, F., Fratini, G., Wille, C., Ma, Y., and Sachs, T.: Addressing eddy-covariance flux errors due to uncertainties in open path IRGA operation under harsh environmental conditions on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5660, https://doi.org/10.5194/egusphere-egu2020-5660, 2020.
When using open path infrared gas analyzers (IRGA), lens contamination, calibration inaccuracies and ageing internal chemicals may lead to a slow drift in gas concentration measurements. During flux calculations, these errors are usually not accounted for under the assumption, that a slow drift in mean gas concentrations (i.e. over several weeks to months) does not affect the estimation of turbulent fluctuations and, hence, of covariances. This is however not the case. In fact, Serrano-Ortiz et al. (2008) estimated that an underestimation of the CO2 concentration will propagate into an overestimation of the carbon uptake via the WPL correction. In addition, for instruments – such as the widely used LI-7500 – where a nonlinear calibration curve relates raw absorptance measurements to gas concentration, Fratini et al. (2014) have shown that errors in mean concentrations leak into errors in fluxes on account of amplified or dampened estimated fluctuations. Both these effects can be eliminated, possibly completely, when the drift in gas concentration is corrected before raw data processing. Therefore, the offset between measured and reference (i.e. "real") gas concentrations has to be quantified and converted into the corresponding zero absorption biases. We performed the drift correction on a 15 years dataset from the Tibetan Plateau, where an extreme drift in concentration measurements occurred. Due to the remote location, user calibrations were performed irregularly, and no independent gas concentration measurements are available. Hence, we used the CO2 concentration measurements from the Mauna Loa atmospheric observatory (NOAA ESRL Global Monitoring Division, 2018, updated annually) as reference gas concentration to derive an offset for every half hour measurement. The offset in H2O mixing ratios could be determined from auxiliary low frequency measurements of relative humidity, temperature and air pressure. We then converted mixing ratios to raw absorptances using the instrument-specific calibration curve to apply an absorptance offset to every 10 Hz measurement, thus eliminating the long-term drift in both mean values and fluctuations of gas concentrations. The corrected raw data time series were then used for calculation of fluxes and subsequent corrections, including de-spiking, axis rotation, detrending and correction for spectral attenuations and air density fluctuations. In comparison to the uncorrected fluxes, the corrected fluxes yielded a considerably lower carbon uptake during daytime and summer, which is in compliance with instrument theory of operation and the results from numerical simulations and field data analysis as conducted by Fratini et al. (2014).
Fratini, G., McDermitt, D.K. & Papale, D. (2014) Eddy-covariance flux errors due to biases in gas concentration measurements: origins, quantification and correction. Biogeosciences, 11, 1037–1051.
NOAA ESRL Global Monitoring Division (2018, updated annually) Atmospheric Carbon Dioxide Dry Air Mole Fractions from quasi-continuous measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole. Compiled by K.W. Thoning, D.R. Kitzis, and A. Crotwell., 2019th edn. NOAA ESRL GMD CCGG Group, Boulder, Colorado, USA.
Serrano-Ortiz, P., Kowalski, A.S., Domingo, F., Ruiz, B. & Alados-Arboledas, L. (2008) Consequences of Uncertainties in CO2 Density for Estimating Net Ecosystem CO2 Exchange by Open-path Eddy Covariance. Boundary-Layer Meteorology, 126, 209–218.
How to cite: Nieberding, F., Fratini, G., Wille, C., Ma, Y., and Sachs, T.: Addressing eddy-covariance flux errors due to uncertainties in open path IRGA operation under harsh environmental conditions on the Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5660, https://doi.org/10.5194/egusphere-egu2020-5660, 2020.
EGU2020-7821 | Displays | BG3.27
Untangling fiber optic Distributed Temperature Sensing: Getting the right temperature and getting there smoothlyBart Schilperoort, Karl Lapo, Anita Freundorfer, and Bas des Tombe
Distributed Temperature Sensing (DTS) using fiber optic cables is a promising technique capable of filling in critical gaps between point observations and remote sensing. While DTS only directly measures the fiber temperature, it has been used to make spatially distributed observations of air temperature, wet bulb temperature, wind speed, and more, on the scales of centimeters to kilometers at temporal resolutions as fine as a second. Of particular interest for the flux community, the spatially distributed nature of DTS allows us to place point observations within a spatial context, highlighting missing physics and linking processes across scales.
However, DTS is not without its drawbacks. It is not a push button operation – each DTS array is unique, requiring an exceptional investment in time for the deployment and for turning DTS observations into physically-meaningful results. Characteristics of DTS observations change with the DTS device used, but also with, e.g., the type of the fiber, the layout of the fiber optic array, and properties of the reference sections used in calibration. These issues create two main challenges in processing DTS data: 1) the need for a robust calibration and 2) management of data that can exceed a terabyte, especially with large or long-term installations. To address these challenges and simplify the use of this powerful technique we present two tools, which can be used both standalone and in conjunction with each other.
First is ‘python-dts-calibration’, a Python package which is aimed at performing thorough calibration of DTS data, as calibration by DTS devices is often lacking in quality. It is able to perform a more robust calibration than the device default, and provides confidence intervals for the calibrated temperature. The confidence intervals vary along the fiber and over time and are different for every setup. The second tool, ‘pyfocs’, is a Python package meant for managing larger, long term installations. This tool automates the workflow including checking data integrity, calibration, and physically mapping the data. pyfocs incorporates ‘python-dts-calibration’ at its core, allowing the tool to robustly calibrate any DTS configuration. Lastly, the package provides the option for calculating other parameters, such as wind speed.
Both tools are open-source and hosted on GitHub[1][2], allowing for everyone to check the code and suggest changes. By sharing our tools, we hope to make the use of fiber optic DTS in geosciences easier and open the door of this new technology to non-specialists.
[1] https://github.com/dtscalibration/python-dts-calibration
[2] https://github.com/klapo/pyfocs
How to cite: Schilperoort, B., Lapo, K., Freundorfer, A., and des Tombe, B.: Untangling fiber optic Distributed Temperature Sensing: Getting the right temperature and getting there smoothly, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7821, https://doi.org/10.5194/egusphere-egu2020-7821, 2020.
Distributed Temperature Sensing (DTS) using fiber optic cables is a promising technique capable of filling in critical gaps between point observations and remote sensing. While DTS only directly measures the fiber temperature, it has been used to make spatially distributed observations of air temperature, wet bulb temperature, wind speed, and more, on the scales of centimeters to kilometers at temporal resolutions as fine as a second. Of particular interest for the flux community, the spatially distributed nature of DTS allows us to place point observations within a spatial context, highlighting missing physics and linking processes across scales.
However, DTS is not without its drawbacks. It is not a push button operation – each DTS array is unique, requiring an exceptional investment in time for the deployment and for turning DTS observations into physically-meaningful results. Characteristics of DTS observations change with the DTS device used, but also with, e.g., the type of the fiber, the layout of the fiber optic array, and properties of the reference sections used in calibration. These issues create two main challenges in processing DTS data: 1) the need for a robust calibration and 2) management of data that can exceed a terabyte, especially with large or long-term installations. To address these challenges and simplify the use of this powerful technique we present two tools, which can be used both standalone and in conjunction with each other.
First is ‘python-dts-calibration’, a Python package which is aimed at performing thorough calibration of DTS data, as calibration by DTS devices is often lacking in quality. It is able to perform a more robust calibration than the device default, and provides confidence intervals for the calibrated temperature. The confidence intervals vary along the fiber and over time and are different for every setup. The second tool, ‘pyfocs’, is a Python package meant for managing larger, long term installations. This tool automates the workflow including checking data integrity, calibration, and physically mapping the data. pyfocs incorporates ‘python-dts-calibration’ at its core, allowing the tool to robustly calibrate any DTS configuration. Lastly, the package provides the option for calculating other parameters, such as wind speed.
Both tools are open-source and hosted on GitHub[1][2], allowing for everyone to check the code and suggest changes. By sharing our tools, we hope to make the use of fiber optic DTS in geosciences easier and open the door of this new technology to non-specialists.
[1] https://github.com/dtscalibration/python-dts-calibration
[2] https://github.com/klapo/pyfocs
How to cite: Schilperoort, B., Lapo, K., Freundorfer, A., and des Tombe, B.: Untangling fiber optic Distributed Temperature Sensing: Getting the right temperature and getting there smoothly, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7821, https://doi.org/10.5194/egusphere-egu2020-7821, 2020.
EGU2020-9319 | Displays | BG3.27
Evaluation of energy balance closure correction methods for multiple eddy-covariance sites in different biomesMatthias Mauder and the Energy-balance closure correction evaluation team
The apparent lack of surface energy balance closure is one of the most crucial challenges in the measurement of biosphere-atmosphere exchange. In principle, this issue can have a variety of potential reasons, including instrumental errors and errors introduced in the data processing chain. In addition, secondary circulations have been identified as one of the main reasons for a non-closure of the surface energy balance, since the related energy transport cannot be captured by common eddy-covariance tower flux measurements. When present, neglecting this process will result in an underestimation of turbulent fluxes. Secondary circulations can, however, be represented by means of large-eddy simulations, which have been employed to develop a novel semi-empirical model to correct for the missing large-scale flux (De Roo et al. 2018, DOI 10.1371/journal.pone.0209022). In this study, we compare the results of this process-based method with two other previously published bulk-correction methods (Mauder et al. 2013, DOI 10.1016/j.agrformet.2012.09.006; Charuchittipan et al. 2014, DOI 10.1007/s10546-014-9922-6). These three correction methods are applied for multiple sites in different biomes around the world. Independent data of energy fluxes from these sites are used to assess which of these methods leads to the most reliable results, and we discuss the limitations of these corrections methods with respect to meteorological conditions and site characteristics, such as measurement height, the landscape-scale heterogeneity and terrain complexity.
How to cite: Mauder, M. and the Energy-balance closure correction evaluation team: Evaluation of energy balance closure correction methods for multiple eddy-covariance sites in different biomes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9319, https://doi.org/10.5194/egusphere-egu2020-9319, 2020.
The apparent lack of surface energy balance closure is one of the most crucial challenges in the measurement of biosphere-atmosphere exchange. In principle, this issue can have a variety of potential reasons, including instrumental errors and errors introduced in the data processing chain. In addition, secondary circulations have been identified as one of the main reasons for a non-closure of the surface energy balance, since the related energy transport cannot be captured by common eddy-covariance tower flux measurements. When present, neglecting this process will result in an underestimation of turbulent fluxes. Secondary circulations can, however, be represented by means of large-eddy simulations, which have been employed to develop a novel semi-empirical model to correct for the missing large-scale flux (De Roo et al. 2018, DOI 10.1371/journal.pone.0209022). In this study, we compare the results of this process-based method with two other previously published bulk-correction methods (Mauder et al. 2013, DOI 10.1016/j.agrformet.2012.09.006; Charuchittipan et al. 2014, DOI 10.1007/s10546-014-9922-6). These three correction methods are applied for multiple sites in different biomes around the world. Independent data of energy fluxes from these sites are used to assess which of these methods leads to the most reliable results, and we discuss the limitations of these corrections methods with respect to meteorological conditions and site characteristics, such as measurement height, the landscape-scale heterogeneity and terrain complexity.
How to cite: Mauder, M. and the Energy-balance closure correction evaluation team: Evaluation of energy balance closure correction methods for multiple eddy-covariance sites in different biomes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9319, https://doi.org/10.5194/egusphere-egu2020-9319, 2020.
EGU2020-17955 | Displays | BG3.27
The various facets of digital repeat photography fully exploited with the phenopix R packageGianluca Filippa, Edoardo Cremonese, Marta Galvagno, and Mirco Migliavacca
Flux towers are more and more often equipped with digital cameras (aka phenocams) widely used to track canopy greenness. Phenocam-derived vegetation indices can capture land surface phenology but also seasonality in gross primary production (GPP) estimated from eddy covariance (EC) measurements. In addition, phenocams can be used to track seasonal development of different species or individuals within the same image scene, and evaluate spatial variability within the footprint of EC measurements. Further, phenocams were recently used to quantify disturbance such as late frost, fires, storms etc. in forested ecosystems and the impact of climate extremes on ecosystem functioning. With the recent rapid development of phenocameras, the need for up-to-date, efficient, open-source software is also increasing tremendously. The phenopix R package was developed for this purpose. In this contribution, we will provide an overview of the software capabilities, with a special focus on how EC measurements can benefit from phenocam data streams.
The steps of a basic processing workflow will be illustrated, including drawing a region of interest (ROI) on an image; extracting red, green and blue digital numbers from a seasonal series of images; depicting greenness index trajectories; fitting a curve to the seasonal trajectories; extracting relevant phenological thresholds (phenophases); characterizing phenophase uncertainties. A focus will be made on recent software developments, including the calculation of camera-derived NDVI and other infrared-based indices, and the handling of shifts in the field of view of the phenocameras.
How to cite: Filippa, G., Cremonese, E., Galvagno, M., and Migliavacca, M.: The various facets of digital repeat photography fully exploited with the phenopix R package, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17955, https://doi.org/10.5194/egusphere-egu2020-17955, 2020.
Flux towers are more and more often equipped with digital cameras (aka phenocams) widely used to track canopy greenness. Phenocam-derived vegetation indices can capture land surface phenology but also seasonality in gross primary production (GPP) estimated from eddy covariance (EC) measurements. In addition, phenocams can be used to track seasonal development of different species or individuals within the same image scene, and evaluate spatial variability within the footprint of EC measurements. Further, phenocams were recently used to quantify disturbance such as late frost, fires, storms etc. in forested ecosystems and the impact of climate extremes on ecosystem functioning. With the recent rapid development of phenocameras, the need for up-to-date, efficient, open-source software is also increasing tremendously. The phenopix R package was developed for this purpose. In this contribution, we will provide an overview of the software capabilities, with a special focus on how EC measurements can benefit from phenocam data streams.
The steps of a basic processing workflow will be illustrated, including drawing a region of interest (ROI) on an image; extracting red, green and blue digital numbers from a seasonal series of images; depicting greenness index trajectories; fitting a curve to the seasonal trajectories; extracting relevant phenological thresholds (phenophases); characterizing phenophase uncertainties. A focus will be made on recent software developments, including the calculation of camera-derived NDVI and other infrared-based indices, and the handling of shifts in the field of view of the phenocameras.
How to cite: Filippa, G., Cremonese, E., Galvagno, M., and Migliavacca, M.: The various facets of digital repeat photography fully exploited with the phenopix R package, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17955, https://doi.org/10.5194/egusphere-egu2020-17955, 2020.
Here we present an overview of methods for partitioning evapotranspiration (ET) from eddy covariance data. We focus on methods that are designed to use the core energy and carbon fluxes, as well as meteorological data, and do not require supplemental measurements or campaigns. A comparison of three such methods for estimating transpiration (T) showed high correlations between them (R2 of daily T between 0.80 and 0.87) and higher correlations to daily stand T estimates from sap flow data (R2 between 0.58 and 0.66) compared to the tower ET (R2 = 0.49). However, the three methods show significant differences in magnitude, with T/ET values ranging from 45% to 77%. Despite the differences in magnitude, the methods show plausible patterns with respect to LAI, seasonal cycles, WUE, and VPD; moreover, they represent an improvement compared to using ET as a proxy for T even when filtering for days after rain. Finally, we outline practical aspects of applying the methods, such as how to apply the methods and code availability.
How to cite: Nelson, J.: Water Flux Partitioning for Eddy Covariance Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18965, https://doi.org/10.5194/egusphere-egu2020-18965, 2020.
Here we present an overview of methods for partitioning evapotranspiration (ET) from eddy covariance data. We focus on methods that are designed to use the core energy and carbon fluxes, as well as meteorological data, and do not require supplemental measurements or campaigns. A comparison of three such methods for estimating transpiration (T) showed high correlations between them (R2 of daily T between 0.80 and 0.87) and higher correlations to daily stand T estimates from sap flow data (R2 between 0.58 and 0.66) compared to the tower ET (R2 = 0.49). However, the three methods show significant differences in magnitude, with T/ET values ranging from 45% to 77%. Despite the differences in magnitude, the methods show plausible patterns with respect to LAI, seasonal cycles, WUE, and VPD; moreover, they represent an improvement compared to using ET as a proxy for T even when filtering for days after rain. Finally, we outline practical aspects of applying the methods, such as how to apply the methods and code availability.
How to cite: Nelson, J.: Water Flux Partitioning for Eddy Covariance Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18965, https://doi.org/10.5194/egusphere-egu2020-18965, 2020.
EGU2020-20111 | Displays | BG3.27
Using Real-Time Eddy Covariance Data for Timely Validation of Operational Remote Sensing Products: I. Setting Workflow for QC and GPP PartitioningRoel Van Hoolst, Radek Czerný, Jorge Torres Leon, Gerardo Fratini, Marian Pavelka, Ladislav Šigut, Else Swinnen, Carolien Tote, and George Burba
BG3.30 – Tropical landscapes and peatlands: Biogeochemistry, ecohydrology and land use impacts
EGU2020-21496 | Displays | BG3.30
Ecosystem-scale measurements of CO2 and CH4 fluxes from a tropical peatland in Sarawak, MalaysiaFrankie Kiew, Guan Xhuan Wong, Ryuichi Hirata, Angela Tang, and Lulie Melling
Tropical peatlands of Southeast Asia are a globally important carbon reservoir, storing an enormous amount of soil organic carbon as peat. These ecosystems are complex and poorly understood with large unknown biogeochemical processes. Despite the huge carbon stocks in these ecosystems, data on ecosystem-scale carbon dioxide (CO2) and methane (CH4) fluxes are still limited in comparison with mid- and high-latitude peatland ecosystems. The recent increase in the intensity of climate anomaly such as El Niño may alter the hydrological regime of this ecosystem, thus affects its carbon cycling. It is crucial to quantify the CO2 and CH4 fluxes of the ecosystem and understand their responses to environmental changes to predict the role of peat swamp forest in global carbon cycles. To date, the application of the eddy covariance technique to measure the ecosystem-scale CO2 and CH4 fluxes in tropical peatlands is still limited to few studies in Malaysia and Indonesia.
In 2010, we established a long-term greenhouse gas fluxes monitoring using the eddy covariance technique over a peat swamp forest in Sarawak, Malaysia. Here, we present the net ecosystem exchange of CO2 (NEE) and CH4 (FCH4) from February 2014 to January 2017 (3 years). We had quantified the NEE and FCH4, the diurnal and seasonal variations of NEE and FCH4, and the response of NEE and FCH4 to GWL. The FCH4 was determined half-hourly as the sum of eddy CH4 flux and CH4 storage change in an air column below the flux measurement height. We had determined the global warming potential of this ecosystem from annual NEE and FCH4 using sustained-flux global warming potential (SGWP). The annual FCH4 was converted into a CO2 equivalent unit using an SGWP factor of 45 which represents the SGWP for CH4 over a timescale of 100 years. Our preliminary result showed that the CH4 emission potentially offset the CO2 sequestration, which was higher than those reported in other regions in the world.
How to cite: Kiew, F., Wong, G. X., Hirata, R., Tang, A., and Melling, L.: Ecosystem-scale measurements of CO2 and CH4 fluxes from a tropical peatland in Sarawak, Malaysia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21496, https://doi.org/10.5194/egusphere-egu2020-21496, 2020.
Tropical peatlands of Southeast Asia are a globally important carbon reservoir, storing an enormous amount of soil organic carbon as peat. These ecosystems are complex and poorly understood with large unknown biogeochemical processes. Despite the huge carbon stocks in these ecosystems, data on ecosystem-scale carbon dioxide (CO2) and methane (CH4) fluxes are still limited in comparison with mid- and high-latitude peatland ecosystems. The recent increase in the intensity of climate anomaly such as El Niño may alter the hydrological regime of this ecosystem, thus affects its carbon cycling. It is crucial to quantify the CO2 and CH4 fluxes of the ecosystem and understand their responses to environmental changes to predict the role of peat swamp forest in global carbon cycles. To date, the application of the eddy covariance technique to measure the ecosystem-scale CO2 and CH4 fluxes in tropical peatlands is still limited to few studies in Malaysia and Indonesia.
In 2010, we established a long-term greenhouse gas fluxes monitoring using the eddy covariance technique over a peat swamp forest in Sarawak, Malaysia. Here, we present the net ecosystem exchange of CO2 (NEE) and CH4 (FCH4) from February 2014 to January 2017 (3 years). We had quantified the NEE and FCH4, the diurnal and seasonal variations of NEE and FCH4, and the response of NEE and FCH4 to GWL. The FCH4 was determined half-hourly as the sum of eddy CH4 flux and CH4 storage change in an air column below the flux measurement height. We had determined the global warming potential of this ecosystem from annual NEE and FCH4 using sustained-flux global warming potential (SGWP). The annual FCH4 was converted into a CO2 equivalent unit using an SGWP factor of 45 which represents the SGWP for CH4 over a timescale of 100 years. Our preliminary result showed that the CH4 emission potentially offset the CO2 sequestration, which was higher than those reported in other regions in the world.
How to cite: Kiew, F., Wong, G. X., Hirata, R., Tang, A., and Melling, L.: Ecosystem-scale measurements of CO2 and CH4 fluxes from a tropical peatland in Sarawak, Malaysia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21496, https://doi.org/10.5194/egusphere-egu2020-21496, 2020.
EGU2020-6405 | Displays | BG3.30
Carbon balance of tropical peat ecosystems in BorneoTakashi Hirano
Tropical peat swamp forest (PSF) is a unique ecosystem rich in carbon and water, which is widely distributed in Southeast Asia’s coastal lowlands, mainly in Borneo, Sumatra and Malay Peninsular. The ecosystem has accumulated a huge amount of organic carbon in peat soil over millennia under the condition of high groundwater level. However, PSF has been reduced and degraded by logging, drainage and burning mainly because of land conversion to oil palm and pulp wood plantations during the last two decades. Such human disturbances potentially increase carbon dioxide (CO2) emissions to the atmosphere through enhanced oxidative peat decomposition and the increased risk of peat fires. Thus, it is essentail to assess the current carbon status of tropical peatlands and quantify the effects of disturbance on the carbon balance to understand the role of tropical peatlands in the regional and global carbon balances. We have continuously measured ecosystem-scale eddy fluxes and soil fluxes of CO2 and methane (CH4) in different tropical peat ecosystems, including a little drained PSF, a drained PSF, a burned ex-PSF and an oil palm plantation, in Central Kalimantan, Indonesia, and Sarawak, Malaysia, in Borneo. Based on the monitoring data, I’ll talk about the carbon balance of tropical peat ecosystems, such as its seasonal variation and its relationship with groundwwater level, and the effect of disturbance due to human activities and ENSO drought on the carbon flux and balance.
How to cite: Hirano, T.: Carbon balance of tropical peat ecosystems in Borneo, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6405, https://doi.org/10.5194/egusphere-egu2020-6405, 2020.
Tropical peat swamp forest (PSF) is a unique ecosystem rich in carbon and water, which is widely distributed in Southeast Asia’s coastal lowlands, mainly in Borneo, Sumatra and Malay Peninsular. The ecosystem has accumulated a huge amount of organic carbon in peat soil over millennia under the condition of high groundwater level. However, PSF has been reduced and degraded by logging, drainage and burning mainly because of land conversion to oil palm and pulp wood plantations during the last two decades. Such human disturbances potentially increase carbon dioxide (CO2) emissions to the atmosphere through enhanced oxidative peat decomposition and the increased risk of peat fires. Thus, it is essentail to assess the current carbon status of tropical peatlands and quantify the effects of disturbance on the carbon balance to understand the role of tropical peatlands in the regional and global carbon balances. We have continuously measured ecosystem-scale eddy fluxes and soil fluxes of CO2 and methane (CH4) in different tropical peat ecosystems, including a little drained PSF, a drained PSF, a burned ex-PSF and an oil palm plantation, in Central Kalimantan, Indonesia, and Sarawak, Malaysia, in Borneo. Based on the monitoring data, I’ll talk about the carbon balance of tropical peat ecosystems, such as its seasonal variation and its relationship with groundwwater level, and the effect of disturbance due to human activities and ENSO drought on the carbon flux and balance.
How to cite: Hirano, T.: Carbon balance of tropical peat ecosystems in Borneo, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6405, https://doi.org/10.5194/egusphere-egu2020-6405, 2020.
EGU2020-19872 | Displays | BG3.30
Temporal variability of greenhouse gas and reactive gas emission factors during a two-week-long tropical peatland experimental burnYuqi Hu, Thomas E L Smith, Muhammad Agung Santoso, Hafiz Muhammad Fahid Amin, Eirik G Christensen, Wuquan Cui, Dwi Marhaendro Jati Purnomo, Pither Palamba, Yulianto Sulistyo Nugroho, and Guillermo Rein
Smoke from peatland wildfires contributes significantly to global greenhouse gas (GHG) emissions, while reactive gases and particulates cause transboundary haze episodes. Haze is the large-scale accumulation of smoke at low altitudes, especially frequent in Southeast Asia during dry periods. Understanding emissions from peatland fires plays a vital role in calculating GHG budgets, forecasting haze events and modelling future climate change. However, only a handful of field studies or laboratory experiments on tropical peat fire smoke have been undertaken to date. Of the few studies that have investigated tropical peatland fire emissions, there exists substantial inter-study variabilities of emission factors (EFs) with some gas emission factors varying by a factor of 10 between studies. Explaining the nature of such variability remains a challenge. In August/September 2018 in Riau, Indonesia, we carried out the first field-scale experimental burn on a tropical peatland (the GAMBUT Workshop), aiming to understand how fires ignite, how they spread, and how emissions vary across the life-cycle of a peatland fire. Our site was a heavily degraded tropical peatland subjected to long-term drainage, logging, and agricultural conversion. Here we present the field measurements of gas emissions from the fire experiment. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was used to retrieve mole fractions of 13 gas species. EFs from 40 measurement sessions over two weeks of burning during different fire stages (e.g., slash and burn ignition, smouldering spread or suppression) and weather events (e.g., wind or rainfall) were calculated and reported. We present field evidence to indicate that EFs vary significantly among fire stages and weather events. Heterogenous physicochemical properties of our peatland site (e.g. moisture content, inorganic content and bulk density) were also found to affect the EFs. We discuss the implications for air quality forecasting, suggesting the necessity for more complex mapping of peatland heterogeneity/land-use for emissions inventories and temporally variable emissions factors, depending on the time since the initiation of a fire event.
How to cite: Hu, Y., Smith, T. E. L., Santoso, M. A., Amin, H. M. F., Christensen, E. G., Cui, W., Purnomo, D. M. J., Palamba, P., Nugroho, Y. S., and Rein, G.: Temporal variability of greenhouse gas and reactive gas emission factors during a two-week-long tropical peatland experimental burn, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19872, https://doi.org/10.5194/egusphere-egu2020-19872, 2020.
Smoke from peatland wildfires contributes significantly to global greenhouse gas (GHG) emissions, while reactive gases and particulates cause transboundary haze episodes. Haze is the large-scale accumulation of smoke at low altitudes, especially frequent in Southeast Asia during dry periods. Understanding emissions from peatland fires plays a vital role in calculating GHG budgets, forecasting haze events and modelling future climate change. However, only a handful of field studies or laboratory experiments on tropical peat fire smoke have been undertaken to date. Of the few studies that have investigated tropical peatland fire emissions, there exists substantial inter-study variabilities of emission factors (EFs) with some gas emission factors varying by a factor of 10 between studies. Explaining the nature of such variability remains a challenge. In August/September 2018 in Riau, Indonesia, we carried out the first field-scale experimental burn on a tropical peatland (the GAMBUT Workshop), aiming to understand how fires ignite, how they spread, and how emissions vary across the life-cycle of a peatland fire. Our site was a heavily degraded tropical peatland subjected to long-term drainage, logging, and agricultural conversion. Here we present the field measurements of gas emissions from the fire experiment. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was used to retrieve mole fractions of 13 gas species. EFs from 40 measurement sessions over two weeks of burning during different fire stages (e.g., slash and burn ignition, smouldering spread or suppression) and weather events (e.g., wind or rainfall) were calculated and reported. We present field evidence to indicate that EFs vary significantly among fire stages and weather events. Heterogenous physicochemical properties of our peatland site (e.g. moisture content, inorganic content and bulk density) were also found to affect the EFs. We discuss the implications for air quality forecasting, suggesting the necessity for more complex mapping of peatland heterogeneity/land-use for emissions inventories and temporally variable emissions factors, depending on the time since the initiation of a fire event.
How to cite: Hu, Y., Smith, T. E. L., Santoso, M. A., Amin, H. M. F., Christensen, E. G., Cui, W., Purnomo, D. M. J., Palamba, P., Nugroho, Y. S., and Rein, G.: Temporal variability of greenhouse gas and reactive gas emission factors during a two-week-long tropical peatland experimental burn, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19872, https://doi.org/10.5194/egusphere-egu2020-19872, 2020.
EGU2020-12505 | Displays | BG3.30 | Highlight
Mapping Drainage Canals in Southeast Asian Peatlands and their Implications for Peatland DegradationNathan Dadap, Alexander Cobb, Alison Hoyt, Krishna Rao, Charles Harvey, and Alexandra Konings
Drainage canal networks associated with agricultural land use are a major contributor to peatland degradation in Southeast Asia. These canals are used to control water table depth and make the soil suitable for planting, but their presence has the negative impact of drying out peat soils near the ground surface. Drier soils in turn cause elevated fire risk, increased carbon release to the atmosphere, and subsidence. Although canals directly impact local peat hydrology, the effect of drainage intensity (i.e. canal density) in peatlands has not been quantitatively investigated, due to a lack of reliable canal maps in the region.
In this study, we trained a machine learning model to identify drainage canals and map their density throughout Southeast Asian peatlands using remote sensing imagery. Specifically, a fully convolutional neural network was applied to RGB 5m resolution Basemap imagery from Planet. Training data was generated by hand-labeling canals from satellite images, and validation of canal density was performed via comparison to independently labeled maps. A map of canal density was then produced across ISEA peatlands using images from 2017. We compared canal density with land use type and found that mean canal density is highest in industrial plantations. We also compared canal density with fire occurrence and subsidence data. This new dataset has potential applications for studies of peatland hydrology, land use change, and fire risk.
How to cite: Dadap, N., Cobb, A., Hoyt, A., Rao, K., Harvey, C., and Konings, A.: Mapping Drainage Canals in Southeast Asian Peatlands and their Implications for Peatland Degradation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12505, https://doi.org/10.5194/egusphere-egu2020-12505, 2020.
Drainage canal networks associated with agricultural land use are a major contributor to peatland degradation in Southeast Asia. These canals are used to control water table depth and make the soil suitable for planting, but their presence has the negative impact of drying out peat soils near the ground surface. Drier soils in turn cause elevated fire risk, increased carbon release to the atmosphere, and subsidence. Although canals directly impact local peat hydrology, the effect of drainage intensity (i.e. canal density) in peatlands has not been quantitatively investigated, due to a lack of reliable canal maps in the region.
In this study, we trained a machine learning model to identify drainage canals and map their density throughout Southeast Asian peatlands using remote sensing imagery. Specifically, a fully convolutional neural network was applied to RGB 5m resolution Basemap imagery from Planet. Training data was generated by hand-labeling canals from satellite images, and validation of canal density was performed via comparison to independently labeled maps. A map of canal density was then produced across ISEA peatlands using images from 2017. We compared canal density with land use type and found that mean canal density is highest in industrial plantations. We also compared canal density with fire occurrence and subsidence data. This new dataset has potential applications for studies of peatland hydrology, land use change, and fire risk.
How to cite: Dadap, N., Cobb, A., Hoyt, A., Rao, K., Harvey, C., and Konings, A.: Mapping Drainage Canals in Southeast Asian Peatlands and their Implications for Peatland Degradation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12505, https://doi.org/10.5194/egusphere-egu2020-12505, 2020.
EGU2020-3432 | Displays | BG3.30
Quantification of the organic carbon pool of a large Indonesian peatland using an airborne geophysical method and comparison to an empirical topographic approachSonia Silvestri, Rosemary Knight, Andrea Viezzoli, Curtis J. Richardson, Gusti Z. Anshari, Noah Dewar, Neal Flanagan, and Xavier Comas
The precise quantification of peat deposits at local to global scale is of key importance for the implementation of adequate conservation policies of peatlands. To this end, new remote sensing applications are needed, that provide high resolution data sets at regional scale. In this presentation, we present the results obtained using Airborne Electromagnetics (AEM) to estimate peat thickness and carbon content of a large peatland site located in Indonesia. The effectiveness of the AEM method for assessing peat thickness and volumes, and in turn carbon stocks, is tested by comparing the results to ground-truth measurements. Our results show that the AEM method can detect both the top and the bottom of a peatland profile over a clay substrate at high spatial resolution, allowing for an accurate three-dimensional morphological description of the peat body. The AEM method performs extremely well along the flight lines, where the instrument clearly detects the peat layer and differentiates it from the underlying mineral substrate. Moving away from the flight lines, the accuracy slightly decreases because the interpolation of the AEM data does not fully capture the highly variable morphology of the peat bottom. We conclude that in varying dome conditions, a high flight line density is preferable to describe the spatial distribution of the peat layer. Once the volume of the peatland is determined, the average organic carbon content by soil volume retrieved from field campaigns and laboratory analyses is used to estimate the total organic carbon stored in the peatland.
The results obtained with the AEM method are compared to those obtained with an empirical method that uses the soil topography to predict the thickness of the peatland. This empirical approach is based on the analyses of several previous studies available from the literature that show how it is common for some dome-shaped peatlands to present a linear correlation between peat thickness and soil topography. In this study, we show that the linear correlation is site-specific, and when used for prediction purposes, it provides incorrect peat volume estimates when it is extended to other sites or over large territories. When compared to the AEM method, our results show that the AEM method is superior in detecting the peat morphology and volume.
How to cite: Silvestri, S., Knight, R., Viezzoli, A., Richardson, C. J., Anshari, G. Z., Dewar, N., Flanagan, N., and Comas, X.: Quantification of the organic carbon pool of a large Indonesian peatland using an airborne geophysical method and comparison to an empirical topographic approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3432, https://doi.org/10.5194/egusphere-egu2020-3432, 2020.
The precise quantification of peat deposits at local to global scale is of key importance for the implementation of adequate conservation policies of peatlands. To this end, new remote sensing applications are needed, that provide high resolution data sets at regional scale. In this presentation, we present the results obtained using Airborne Electromagnetics (AEM) to estimate peat thickness and carbon content of a large peatland site located in Indonesia. The effectiveness of the AEM method for assessing peat thickness and volumes, and in turn carbon stocks, is tested by comparing the results to ground-truth measurements. Our results show that the AEM method can detect both the top and the bottom of a peatland profile over a clay substrate at high spatial resolution, allowing for an accurate three-dimensional morphological description of the peat body. The AEM method performs extremely well along the flight lines, where the instrument clearly detects the peat layer and differentiates it from the underlying mineral substrate. Moving away from the flight lines, the accuracy slightly decreases because the interpolation of the AEM data does not fully capture the highly variable morphology of the peat bottom. We conclude that in varying dome conditions, a high flight line density is preferable to describe the spatial distribution of the peat layer. Once the volume of the peatland is determined, the average organic carbon content by soil volume retrieved from field campaigns and laboratory analyses is used to estimate the total organic carbon stored in the peatland.
The results obtained with the AEM method are compared to those obtained with an empirical method that uses the soil topography to predict the thickness of the peatland. This empirical approach is based on the analyses of several previous studies available from the literature that show how it is common for some dome-shaped peatlands to present a linear correlation between peat thickness and soil topography. In this study, we show that the linear correlation is site-specific, and when used for prediction purposes, it provides incorrect peat volume estimates when it is extended to other sites or over large territories. When compared to the AEM method, our results show that the AEM method is superior in detecting the peat morphology and volume.
How to cite: Silvestri, S., Knight, R., Viezzoli, A., Richardson, C. J., Anshari, G. Z., Dewar, N., Flanagan, N., and Comas, X.: Quantification of the organic carbon pool of a large Indonesian peatland using an airborne geophysical method and comparison to an empirical topographic approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3432, https://doi.org/10.5194/egusphere-egu2020-3432, 2020.
EGU2020-11941 | Displays | BG3.30
Significant carbon loss from a natural tropical peatland under current climateChandra Shekhar Deshmukh, Dony Julius, Nardi Nardi, Ari Putra Susanto, and Nurholis Nurholis
Southeast Asian peatlands, one-third of global tropical peatlands, have sequestered and preserved gigatons of carbon in the past thousands of year. Rainfall fluctuation on yearly and even hourly timescales plays an important role that defines peat carbon accumulation or loss from tropical peatlands. Notably, research related to the ecosystem-scale carbon exchange, including methane (CH4), over tropical peatland ecosystems remains limited. Given their significant carbon stocks, the fate of natural tropical peatlands under current and future climate is unknown.
We performed a study in Kampar Peninsula, a coastal tropical peatland of around 700,000 ha, in Sumatra, Indonesia. This ombrotrophic (acidic and nutrient-poor) peatland largely formed within the past 8000 years. The peninsula is characterized by a large, relatively intact central forest area surrounded by a mosaic of smallholder agricultural land, and industrial fiber wood plantation, smaller secondary forest areas, and undeveloped open and degraded land. We measured the net ecosystem CO2 and CH4 exchanges between natural peatland and the atmosphere using the eddy covariance technique over two years (June 2017-May 2019). In addition, peat subsidence rates were measured using polyvinyl chloride poles at every 1 km along 35 km long transect across the natural forest in the peninsula. In the natural forest, groundwater level shows periodic sharp rises and steady decreases corresponding to rain events. The groundwater level can rise up to 20 cm above the peat surface in the wet season, and then in the late dry season can reach -70 cm.
Our measurements indicate that the natural tropical peatland functioned as a significant source of CO2 (410±60 g CO2-C m-2 year-1) and CH4 (6.8±0.7 g CH4-C m-2 year-1) to the atmosphere. If we follow IPCC global warming potential (GWP) accounting methodology and apply a 100-year GWP of 34 for CH4, this implies that CH4 emissions contributed ~35% of the 100-year net warming impact. Carbon emissions (due to oxidation of peat, litterfall and coarse wood debris) contributed ~30-35% of the observed subsidence rates. The CO2 exchanges increased linearly as groundwater level declined. Lower groundwater level enhances peat aeration and potentially increases oxidative peat decomposition, which results in higher CO2 emissions. The CH4 exchanges decreased exponentially as groundwater level declined.
The results indicate that tropical peatland ecosystems are no longer a carbon sink under the current climate. Our results, which are among the first eddy covariance exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CO2 and CH4 emissions from a globally important ecosystem and improve our understanding of the role of natural tropical peatlands under current and future climate.
How to cite: Deshmukh, C. S., Julius, D., Nardi, N., Putra Susanto, A., and Nurholis, N.: Significant carbon loss from a natural tropical peatland under current climate , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11941, https://doi.org/10.5194/egusphere-egu2020-11941, 2020.
Southeast Asian peatlands, one-third of global tropical peatlands, have sequestered and preserved gigatons of carbon in the past thousands of year. Rainfall fluctuation on yearly and even hourly timescales plays an important role that defines peat carbon accumulation or loss from tropical peatlands. Notably, research related to the ecosystem-scale carbon exchange, including methane (CH4), over tropical peatland ecosystems remains limited. Given their significant carbon stocks, the fate of natural tropical peatlands under current and future climate is unknown.
We performed a study in Kampar Peninsula, a coastal tropical peatland of around 700,000 ha, in Sumatra, Indonesia. This ombrotrophic (acidic and nutrient-poor) peatland largely formed within the past 8000 years. The peninsula is characterized by a large, relatively intact central forest area surrounded by a mosaic of smallholder agricultural land, and industrial fiber wood plantation, smaller secondary forest areas, and undeveloped open and degraded land. We measured the net ecosystem CO2 and CH4 exchanges between natural peatland and the atmosphere using the eddy covariance technique over two years (June 2017-May 2019). In addition, peat subsidence rates were measured using polyvinyl chloride poles at every 1 km along 35 km long transect across the natural forest in the peninsula. In the natural forest, groundwater level shows periodic sharp rises and steady decreases corresponding to rain events. The groundwater level can rise up to 20 cm above the peat surface in the wet season, and then in the late dry season can reach -70 cm.
Our measurements indicate that the natural tropical peatland functioned as a significant source of CO2 (410±60 g CO2-C m-2 year-1) and CH4 (6.8±0.7 g CH4-C m-2 year-1) to the atmosphere. If we follow IPCC global warming potential (GWP) accounting methodology and apply a 100-year GWP of 34 for CH4, this implies that CH4 emissions contributed ~35% of the 100-year net warming impact. Carbon emissions (due to oxidation of peat, litterfall and coarse wood debris) contributed ~30-35% of the observed subsidence rates. The CO2 exchanges increased linearly as groundwater level declined. Lower groundwater level enhances peat aeration and potentially increases oxidative peat decomposition, which results in higher CO2 emissions. The CH4 exchanges decreased exponentially as groundwater level declined.
The results indicate that tropical peatland ecosystems are no longer a carbon sink under the current climate. Our results, which are among the first eddy covariance exchange data reported for any tropical peatland, should help to reduce the uncertainty in the estimation of CO2 and CH4 emissions from a globally important ecosystem and improve our understanding of the role of natural tropical peatlands under current and future climate.
How to cite: Deshmukh, C. S., Julius, D., Nardi, N., Putra Susanto, A., and Nurholis, N.: Significant carbon loss from a natural tropical peatland under current climate , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11941, https://doi.org/10.5194/egusphere-egu2020-11941, 2020.
EGU2020-21851 | Displays | BG3.30 | Highlight
Millennia-old carbon fluxes from degraded tropical peatland soilsStephanie Evers, Thomas Smith, Mark Garnett, Selvakumar Dhandipani, and Massimo Lupascu
Assessing the flux of carbon (C) from terrestrial ecosystems to the atmosphere represents a critical element of global carbon budgeting. In tropical peatlands this has been a fundamental part of assessing the impact of land use change on an ecosystem that represents a significant global carbon store, with peat accumulation being often many meters deep. These systems have formed over thousands of years as a function of incomplete decomposition of organic matter from water-logged swamp forests. However, intact tropical peat swamp forests (PSFs) are under increasing threat from agricultural conversion, deforestation, drainage practices and fires. The resultant alteration of the peat soil results in peat oxidation, increased rates of organic matter decomposition and greenhouse gas (GHG) emissions. Consequently, these peats are reverting from C stores to sources.
Radiocarbon (14C) abundance can be used to assess C cycling rates in varied ecosystems and identify rapid or slow C turnover rates from years to centuries, as well as shifts in cycling rates – for example with land use or hydrological alteration. Within intact peatlands, deep peats generally contain an increasing abundance of 14C depleted content due to radioactive decay, conversely, shallower peats are more abundant in recently produced organic litter enriched with “Bomb C”; derived from nuclear testing in the 1960s. Similarly, root derived organic matter and the associated root respiration (autotrophic respiration) also have signatures resembling recent atmospheres, whereas microbial respiration of soil organic matter (heterotrophic respiration) will resemble the mean age of the soil carbon being utilised by the microbial community, and as such can be a tracer for sources of carbon being decomposed.
Yet while an increasing body of knowledge exists on tropical peatland carbon flux rates or net ecosystem respiration in association with land-use change, these approaches fail to delineate the sources of carbon being used within the soil profile and thus fully address questions linked to changing carbon cycling rates with land use change.
Here we provide what we believe to be the first data on 14CO2 fluxes from tropical peatland soils in relation to varying land use classes with the aim of determining if peats which were previously long-terms C stores are being utilised within short, fast C cycles and thus contributing to modern GHG budgets. CO2 flux rates were measured using soil chambers and emitted CO2 was subsequently trapped on a zeolite molecular sieve cartridge. An aliquot of the recovered CO2 was graphitised and analysed for 14C by accelerator mass spectrometry. Associated soil age profiles were also determined.
Results indicate significant fluxes of multi-millennia old carbon from peatlands under altered land use classes and clear evidence for a shift to C cycling speed, with previously long-term stored C contributing to modern C budgets. Result highlight the instability of the peat profile under altered land-use classes and minimal to no contribution of modern C from recently produced organic matter to these carbon budgets. Findings clearly indicate the unsustainability of these agricultural practices and the need for burn- and drain-free land-use strategies.
How to cite: Evers, S., Smith, T., Garnett, M., Dhandipani, S., and Lupascu, M.: Millennia-old carbon fluxes from degraded tropical peatland soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21851, https://doi.org/10.5194/egusphere-egu2020-21851, 2020.
Assessing the flux of carbon (C) from terrestrial ecosystems to the atmosphere represents a critical element of global carbon budgeting. In tropical peatlands this has been a fundamental part of assessing the impact of land use change on an ecosystem that represents a significant global carbon store, with peat accumulation being often many meters deep. These systems have formed over thousands of years as a function of incomplete decomposition of organic matter from water-logged swamp forests. However, intact tropical peat swamp forests (PSFs) are under increasing threat from agricultural conversion, deforestation, drainage practices and fires. The resultant alteration of the peat soil results in peat oxidation, increased rates of organic matter decomposition and greenhouse gas (GHG) emissions. Consequently, these peats are reverting from C stores to sources.
Radiocarbon (14C) abundance can be used to assess C cycling rates in varied ecosystems and identify rapid or slow C turnover rates from years to centuries, as well as shifts in cycling rates – for example with land use or hydrological alteration. Within intact peatlands, deep peats generally contain an increasing abundance of 14C depleted content due to radioactive decay, conversely, shallower peats are more abundant in recently produced organic litter enriched with “Bomb C”; derived from nuclear testing in the 1960s. Similarly, root derived organic matter and the associated root respiration (autotrophic respiration) also have signatures resembling recent atmospheres, whereas microbial respiration of soil organic matter (heterotrophic respiration) will resemble the mean age of the soil carbon being utilised by the microbial community, and as such can be a tracer for sources of carbon being decomposed.
Yet while an increasing body of knowledge exists on tropical peatland carbon flux rates or net ecosystem respiration in association with land-use change, these approaches fail to delineate the sources of carbon being used within the soil profile and thus fully address questions linked to changing carbon cycling rates with land use change.
Here we provide what we believe to be the first data on 14CO2 fluxes from tropical peatland soils in relation to varying land use classes with the aim of determining if peats which were previously long-terms C stores are being utilised within short, fast C cycles and thus contributing to modern GHG budgets. CO2 flux rates were measured using soil chambers and emitted CO2 was subsequently trapped on a zeolite molecular sieve cartridge. An aliquot of the recovered CO2 was graphitised and analysed for 14C by accelerator mass spectrometry. Associated soil age profiles were also determined.
Results indicate significant fluxes of multi-millennia old carbon from peatlands under altered land use classes and clear evidence for a shift to C cycling speed, with previously long-term stored C contributing to modern C budgets. Result highlight the instability of the peat profile under altered land-use classes and minimal to no contribution of modern C from recently produced organic matter to these carbon budgets. Findings clearly indicate the unsustainability of these agricultural practices and the need for burn- and drain-free land-use strategies.
How to cite: Evers, S., Smith, T., Garnett, M., Dhandipani, S., and Lupascu, M.: Millennia-old carbon fluxes from degraded tropical peatland soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21851, https://doi.org/10.5194/egusphere-egu2020-21851, 2020.
EGU2020-22269 | Displays | BG3.30
Effects of rewetting of peatlands on GHG fluxes from the soils with different land-cover typesDaniel Murdiyarso, Iska Lestari Lestari, Muhamad Taufik, and Putu Santikayasa
Deforestation followed by draining of tropical peat swamp forests are the most common disturbance regimes before further land development takes place. The severity and extent depend on a number of drivers that dictate how restoration should be performed. The permanent plots were established to monitor total ecosystem carbon stocks and greenhouse gases (CO2, CH4, N2O) emissions from peatland under different vegetation cover, namely forest tree species, oil pal, and rubber plantations, and evaluate the effect of rewetting by blocking the drainage canals on GHG fluxes. We found that the mean total ecosystem carbon stocks at a reforested area, rubber and oil palm were 3983 + 318 Mg C ha-1, 3363 + 207 Mg C ha-1 and 3523 + 253 Mg C ha-1 respectively. The average total soil emission of CO2 during conditions before canal blocking in reforested areas, oil palm and rubber plantations were 10.93 Mg CO2 ha-1yr-1, 16.66 Mg CO2 ha-1yr-1 and 23.70 Mg CO2 ha-1yr-1. After the canals were blocked, the average total CO2 emissions were 3.57 Mg CO2 ha-1yr-1 in reforested area, 10.47 Mg CO2 ha-1yr-1 in oil palm and 15.27 57 Mg CO2 ha-1yr-1 in rubber plantation.
Methane (CH4) flux before blocking were (-0.10 + 0.84), (0.34 + 4.52), and (0.50 + 2.70) mg m-2 hr-1 in reforested area, oil palm and rubber plantation respectively, while the fluxes after blocking were (8.02 + 3.28), (5.36 + 6.13), and (0.64 + 1.19) mg m-2 hr-1 respectively. The increasing trends after blocking suggests that methanogenic bacteria were active in anaerobic. On the other hand, N2O decreased from (0.40 + 0.84), (0.40 + 0.84), and 0.40 + 0.84) mg m-2 hr-1 in forested area, oil palm and rubber plantations to (-0.20 + 0.27), (-0.45 + 2.08), and (2.15 + 0.25) mg m-2 hr-1 respectively.
How to cite: Murdiyarso, D., Lestari, I. L., Taufik, M., and Santikayasa, P.: Effects of rewetting of peatlands on GHG fluxes from the soils with different land-cover types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22269, https://doi.org/10.5194/egusphere-egu2020-22269, 2020.
Deforestation followed by draining of tropical peat swamp forests are the most common disturbance regimes before further land development takes place. The severity and extent depend on a number of drivers that dictate how restoration should be performed. The permanent plots were established to monitor total ecosystem carbon stocks and greenhouse gases (CO2, CH4, N2O) emissions from peatland under different vegetation cover, namely forest tree species, oil pal, and rubber plantations, and evaluate the effect of rewetting by blocking the drainage canals on GHG fluxes. We found that the mean total ecosystem carbon stocks at a reforested area, rubber and oil palm were 3983 + 318 Mg C ha-1, 3363 + 207 Mg C ha-1 and 3523 + 253 Mg C ha-1 respectively. The average total soil emission of CO2 during conditions before canal blocking in reforested areas, oil palm and rubber plantations were 10.93 Mg CO2 ha-1yr-1, 16.66 Mg CO2 ha-1yr-1 and 23.70 Mg CO2 ha-1yr-1. After the canals were blocked, the average total CO2 emissions were 3.57 Mg CO2 ha-1yr-1 in reforested area, 10.47 Mg CO2 ha-1yr-1 in oil palm and 15.27 57 Mg CO2 ha-1yr-1 in rubber plantation.
Methane (CH4) flux before blocking were (-0.10 + 0.84), (0.34 + 4.52), and (0.50 + 2.70) mg m-2 hr-1 in reforested area, oil palm and rubber plantation respectively, while the fluxes after blocking were (8.02 + 3.28), (5.36 + 6.13), and (0.64 + 1.19) mg m-2 hr-1 respectively. The increasing trends after blocking suggests that methanogenic bacteria were active in anaerobic. On the other hand, N2O decreased from (0.40 + 0.84), (0.40 + 0.84), and 0.40 + 0.84) mg m-2 hr-1 in forested area, oil palm and rubber plantations to (-0.20 + 0.27), (-0.45 + 2.08), and (2.15 + 0.25) mg m-2 hr-1 respectively.
How to cite: Murdiyarso, D., Lestari, I. L., Taufik, M., and Santikayasa, P.: Effects of rewetting of peatlands on GHG fluxes from the soils with different land-cover types, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22269, https://doi.org/10.5194/egusphere-egu2020-22269, 2020.
EGU2020-10276 | Displays | BG3.30
Impacts of logging on soil organic carbon and heterotrophic respiration in tropical forests in BorneoSylvia H. Vetter, Yit Arn Teh, Michael Martin, Dafydd M. O. Elias, Terhi Riutta, and Pete Smith
Selective logging is the practice of extracting selected commercial trees from natural production forests. The intensity of logging correlates with a reduction in biodiversity, wood production and biomass stocks. Less is known about the relationship of logging to soil organic carbon (SOC) and how it changes or recovers over time. Empirical measurements in Borneo provided SOC, soil respiration, aboveground and belowground net primary productivity (NPP) from intact old-growth forest (OGF) as well as from moderately to heavily logged (LOG) forest sites. Soil carbon (C) content and heterotrophic respiration (Rh) was higher in LOG sites than in OGF sites. Moderately logged forest (logged > 10 years ago) contained more SOC than heavily logged forest (logged approx. 7 years ago). NPP was used to estimate the C input to the soil. All these data were used to test the biochemical model ECOSSE (Estimating Carbon in Organic Soils – Sequestration and Emissions) to calculate SOC for the study sites. The model performed well in simulating the soil respiration of OGF and generated acceptable results for LOG sites in the validation process. The results for logged forests showed an increase in Rh over the first 15 years, with some sites showing either a further increase over the next 15 years or stabilizing at a higher level compared to pre-disturbance conditions for other sites. However, for all modelled cases, a break was observed after 30 years, when Rh decreased to a lower level (but not as low as for OGF) before reaching a new equilibrium. At the same time, SOC begins to increase. Spatial modelling showed the results for Borneo under logged conditions and the potential of storing C if logging was reduced. Only 22% of Borneo is under old-growth forest; the results show moderate to high C losses if this region is subjected to logging. Overall, the results show the disturbance of SOC and Rh through logging over periods longer than 30 years.
How to cite: Vetter, S. H., Teh, Y. A., Martin, M., Elias, D. M. O., Riutta, T., and Smith, P.: Impacts of logging on soil organic carbon and heterotrophic respiration in tropical forests in Borneo , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10276, https://doi.org/10.5194/egusphere-egu2020-10276, 2020.
Selective logging is the practice of extracting selected commercial trees from natural production forests. The intensity of logging correlates with a reduction in biodiversity, wood production and biomass stocks. Less is known about the relationship of logging to soil organic carbon (SOC) and how it changes or recovers over time. Empirical measurements in Borneo provided SOC, soil respiration, aboveground and belowground net primary productivity (NPP) from intact old-growth forest (OGF) as well as from moderately to heavily logged (LOG) forest sites. Soil carbon (C) content and heterotrophic respiration (Rh) was higher in LOG sites than in OGF sites. Moderately logged forest (logged > 10 years ago) contained more SOC than heavily logged forest (logged approx. 7 years ago). NPP was used to estimate the C input to the soil. All these data were used to test the biochemical model ECOSSE (Estimating Carbon in Organic Soils – Sequestration and Emissions) to calculate SOC for the study sites. The model performed well in simulating the soil respiration of OGF and generated acceptable results for LOG sites in the validation process. The results for logged forests showed an increase in Rh over the first 15 years, with some sites showing either a further increase over the next 15 years or stabilizing at a higher level compared to pre-disturbance conditions for other sites. However, for all modelled cases, a break was observed after 30 years, when Rh decreased to a lower level (but not as low as for OGF) before reaching a new equilibrium. At the same time, SOC begins to increase. Spatial modelling showed the results for Borneo under logged conditions and the potential of storing C if logging was reduced. Only 22% of Borneo is under old-growth forest; the results show moderate to high C losses if this region is subjected to logging. Overall, the results show the disturbance of SOC and Rh through logging over periods longer than 30 years.
How to cite: Vetter, S. H., Teh, Y. A., Martin, M., Elias, D. M. O., Riutta, T., and Smith, P.: Impacts of logging on soil organic carbon and heterotrophic respiration in tropical forests in Borneo , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10276, https://doi.org/10.5194/egusphere-egu2020-10276, 2020.
EGU2020-6023 | Displays | BG3.30 | Highlight
Methane and carbon dioxide emissions from two contrasting wetlands in the Okavango Delta, Botswana.Carole Helfter, Mangaliso Gondwe, Mike Murray-Hudson, and Ute Skiba
We report on two years of continuous monitoring of methane (CH4) and carbon dioxide (CO2) emissions at two contrasting sites in the Okavango Delta, North-Western Botswana, an inland delta bordered by the Kalahari Desert. Approximately 60% of the annual water influx into the Okavango Delta results from seasonal river discharges originating in the Angolan Highlands, and the remainder comes from direct rainfall. 96-98% of the 16.1 billion m3 entering the Delta annually are lost through evapo-transpiration (1500 mm.year-1). Flooding is gradual and it takes the pulsed influx ca. 4-5 months to travel the 250 km separating the inlet in Mohembo from the main outlet in Maun. The wetlands of the Okavango Delta are in pristine condition and can be separated into three categories: permanently flooded, seasonally flooded (3-6 months per year) and occasionally flooded (typically once per decade).
Two eddy-covariance systems were set up in August 2017, one at Guma Lagoon (18°57'53.01" S; 22°22'16.20" E) at the edge of an extensive papyrus bed in the permanently-flooded section of the delta, and the second one at Nxaraga on the SW edge of Chief’s Island (19°32'53'' S; 23°10'45'' E) in the seasonal floodplain. In addition, monthly measurements of methane and carbon dioxide fluxes were taken using a clear dynamic chamber at the Nxaraga site along transects chosen to span the natural soil moisture gradient (very dry to waterlogged soils).
The emissions of methane exhibited contrasting spatial and temporal patterns between sites. At the seasonal wetland, very low fluxes of CH4 were typically observed from January to June. Emissions increased abruptly from July-August onwards after flood waters rewetted the flooplain in that area of the Delta. Throughout the year, local emission hotspots of CH4 were observed along the vegetated river channels within the flux footprint of the eddy-covariance system, whereas CH4 oxidation was recorded in persistently dry areas where the soil is sandy and salt-crusted. The chamber measurements corroborated the findings of the eddy-covariance measurements and soil moisture is likely the dominant control of methane fluxes at the seasonal wetland.
The methane emissions from the floating papyrus mat in the permanent wetland exhibited a marked seasonal cycle, characterised by relatively high emissions (of the order of 250 nmol.m-2.s-1; 2.5 larger than peak emissions recorded at the seasonal wetland) in the summer months (November-March) and minimum emissions in winter (typically 50 nmol.m-2.s-1 in June-August). At the seasonal timescale, methane emissions were strongly correlated to the phenological cycle of papyrus (lowest emissions during the senescence phase), suggesting that plant-mediated transport is the dominant control. The annual budgets of CH4 and CO2 in the permanent wetland were estimated at 153.4 ± 27.9 tons.km-2 (3835.0 ± 697.5 CO2-eq) and -874.0 ± 200.4 tons.km-2 respectively, making the permanent wetland a potent net source of carbon to the atmosphere.
How to cite: Helfter, C., Gondwe, M., Murray-Hudson, M., and Skiba, U.: Methane and carbon dioxide emissions from two contrasting wetlands in the Okavango Delta, Botswana., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6023, https://doi.org/10.5194/egusphere-egu2020-6023, 2020.
We report on two years of continuous monitoring of methane (CH4) and carbon dioxide (CO2) emissions at two contrasting sites in the Okavango Delta, North-Western Botswana, an inland delta bordered by the Kalahari Desert. Approximately 60% of the annual water influx into the Okavango Delta results from seasonal river discharges originating in the Angolan Highlands, and the remainder comes from direct rainfall. 96-98% of the 16.1 billion m3 entering the Delta annually are lost through evapo-transpiration (1500 mm.year-1). Flooding is gradual and it takes the pulsed influx ca. 4-5 months to travel the 250 km separating the inlet in Mohembo from the main outlet in Maun. The wetlands of the Okavango Delta are in pristine condition and can be separated into three categories: permanently flooded, seasonally flooded (3-6 months per year) and occasionally flooded (typically once per decade).
Two eddy-covariance systems were set up in August 2017, one at Guma Lagoon (18°57'53.01" S; 22°22'16.20" E) at the edge of an extensive papyrus bed in the permanently-flooded section of the delta, and the second one at Nxaraga on the SW edge of Chief’s Island (19°32'53'' S; 23°10'45'' E) in the seasonal floodplain. In addition, monthly measurements of methane and carbon dioxide fluxes were taken using a clear dynamic chamber at the Nxaraga site along transects chosen to span the natural soil moisture gradient (very dry to waterlogged soils).
The emissions of methane exhibited contrasting spatial and temporal patterns between sites. At the seasonal wetland, very low fluxes of CH4 were typically observed from January to June. Emissions increased abruptly from July-August onwards after flood waters rewetted the flooplain in that area of the Delta. Throughout the year, local emission hotspots of CH4 were observed along the vegetated river channels within the flux footprint of the eddy-covariance system, whereas CH4 oxidation was recorded in persistently dry areas where the soil is sandy and salt-crusted. The chamber measurements corroborated the findings of the eddy-covariance measurements and soil moisture is likely the dominant control of methane fluxes at the seasonal wetland.
The methane emissions from the floating papyrus mat in the permanent wetland exhibited a marked seasonal cycle, characterised by relatively high emissions (of the order of 250 nmol.m-2.s-1; 2.5 larger than peak emissions recorded at the seasonal wetland) in the summer months (November-March) and minimum emissions in winter (typically 50 nmol.m-2.s-1 in June-August). At the seasonal timescale, methane emissions were strongly correlated to the phenological cycle of papyrus (lowest emissions during the senescence phase), suggesting that plant-mediated transport is the dominant control. The annual budgets of CH4 and CO2 in the permanent wetland were estimated at 153.4 ± 27.9 tons.km-2 (3835.0 ± 697.5 CO2-eq) and -874.0 ± 200.4 tons.km-2 respectively, making the permanent wetland a potent net source of carbon to the atmosphere.
How to cite: Helfter, C., Gondwe, M., Murray-Hudson, M., and Skiba, U.: Methane and carbon dioxide emissions from two contrasting wetlands in the Okavango Delta, Botswana., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6023, https://doi.org/10.5194/egusphere-egu2020-6023, 2020.
EGU2020-20112 | Displays | BG3.30
Seasonal variation of CO2, CH4 and N2O fluxes from tropical streams and rivers under forest and cropland landuses: A case study of the Mara river basin in KenyaRicky Mwanake, Gretchen Gettel, Klaus Butterbach-Bahl, and Ralf Kiese
Greenhouse gas (GHG) emission estimates from tropical African rivers are underrepresented in global datasets, resulting in uncertainties in their contributions to global emissions. To better constrain the contribution of rivers and streams to GHG emissions from tropical landscapes and to determine possible underlying controlling processes, we implemented a monthly synoptic sampling program from January 2019 – December 2019, in which CO2, CH4 and N2O concentrations and fluxes, along with water quality and sediment parameters were measured from 60 river sites in the upper and middle catchments of the Mara River in Kenya (~8450 km2).
Consistent with previous studies, Mara basin streams and rivers were mostly sources of GHGs, and were comparable to previous studies in tropical and temperate regions. Based on CO2 equivalents, CO2 accounted for >60% of the emissions, while CH4 and N2O (<35%) were minor contributors. There were higher mean values of CO2 and N2O fluxes in streams draining croplands (92±9 CO2 mmol m-2 d-1 and 14±2 N2O µmol m-2 d-1) compared to those draining forested areas (45±5 CO2 mmol m-2 d-1 and 3±0.6 N2O µmol m-2 d-1). CH4 fluxes showed no significant variation with land use. CO2 and CH4 concentrations had a negative correlation with dissolved oxygen (DO) and a positive correlation with dissolved organic carbon (DOC) and fine benthic organic matter (FBOM), while N2O was positively correlated to nitrate (NO3-N) and negatively correlated to DO. Based on the significant relationships of all three gases with DO and their substrates, we inferred that GHG concentrations were mainly controlled by in-stream biogeochemical processes - i.e. methanogenesis for CH4, net heterotrophy for CO2 and coupled nitrification-denitrification for N2O. Changes in discharge, driven by precipitation events, significantly accounted for the seasonal variation in GHGs concentration and flux, with clear differences between the driest months (March and April) and the wettest (October-December). During low-discharge periods, streams were characterized by lower DO, lower nitrate NO3-N, higher DOC, and higher FBOM concentrations compared to the wet season. This resulted in significantly higher CH4 and CO2 concentrations, which could be attributed to increased in-stream production through the aforementioned processes as a result of increased water residence times. In contrast, N2O concentrations in the dry season were lower than in the wet season, indicating that due to low DO and NO3-N concentrations, produced N2O may have been further reduced to N2 during denitrification. However, as fluxes are a function of both concentration and the discharge-related gas transfer velocity (k), all GHG’s exhibited higher fluxes in the wet season compared to the dry season. Mean monthly CO2 and N2O concentrations also responded positively to discharge, suggesting that terrestrial inputs could also account for higher fluxes during the wet season.
In future studies, we therefore plan to incorporate process measurements (e.g. nitrification, denitrification and ecosystem metabolism) across seasons in conjunction with measurements of GHG fluxes and environmental parameters. This will allow to a) elucidate the importance of in-stream production versus terrestrial inputs as controls of fluxes of GHGs and to b) attribute observed fluxes to specific biogeochemical processes.
How to cite: Mwanake, R., Gettel, G., Butterbach-Bahl, K., and Kiese, R.: Seasonal variation of CO2, CH4 and N2O fluxes from tropical streams and rivers under forest and cropland landuses: A case study of the Mara river basin in Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20112, https://doi.org/10.5194/egusphere-egu2020-20112, 2020.
Greenhouse gas (GHG) emission estimates from tropical African rivers are underrepresented in global datasets, resulting in uncertainties in their contributions to global emissions. To better constrain the contribution of rivers and streams to GHG emissions from tropical landscapes and to determine possible underlying controlling processes, we implemented a monthly synoptic sampling program from January 2019 – December 2019, in which CO2, CH4 and N2O concentrations and fluxes, along with water quality and sediment parameters were measured from 60 river sites in the upper and middle catchments of the Mara River in Kenya (~8450 km2).
Consistent with previous studies, Mara basin streams and rivers were mostly sources of GHGs, and were comparable to previous studies in tropical and temperate regions. Based on CO2 equivalents, CO2 accounted for >60% of the emissions, while CH4 and N2O (<35%) were minor contributors. There were higher mean values of CO2 and N2O fluxes in streams draining croplands (92±9 CO2 mmol m-2 d-1 and 14±2 N2O µmol m-2 d-1) compared to those draining forested areas (45±5 CO2 mmol m-2 d-1 and 3±0.6 N2O µmol m-2 d-1). CH4 fluxes showed no significant variation with land use. CO2 and CH4 concentrations had a negative correlation with dissolved oxygen (DO) and a positive correlation with dissolved organic carbon (DOC) and fine benthic organic matter (FBOM), while N2O was positively correlated to nitrate (NO3-N) and negatively correlated to DO. Based on the significant relationships of all three gases with DO and their substrates, we inferred that GHG concentrations were mainly controlled by in-stream biogeochemical processes - i.e. methanogenesis for CH4, net heterotrophy for CO2 and coupled nitrification-denitrification for N2O. Changes in discharge, driven by precipitation events, significantly accounted for the seasonal variation in GHGs concentration and flux, with clear differences between the driest months (March and April) and the wettest (October-December). During low-discharge periods, streams were characterized by lower DO, lower nitrate NO3-N, higher DOC, and higher FBOM concentrations compared to the wet season. This resulted in significantly higher CH4 and CO2 concentrations, which could be attributed to increased in-stream production through the aforementioned processes as a result of increased water residence times. In contrast, N2O concentrations in the dry season were lower than in the wet season, indicating that due to low DO and NO3-N concentrations, produced N2O may have been further reduced to N2 during denitrification. However, as fluxes are a function of both concentration and the discharge-related gas transfer velocity (k), all GHG’s exhibited higher fluxes in the wet season compared to the dry season. Mean monthly CO2 and N2O concentrations also responded positively to discharge, suggesting that terrestrial inputs could also account for higher fluxes during the wet season.
In future studies, we therefore plan to incorporate process measurements (e.g. nitrification, denitrification and ecosystem metabolism) across seasons in conjunction with measurements of GHG fluxes and environmental parameters. This will allow to a) elucidate the importance of in-stream production versus terrestrial inputs as controls of fluxes of GHGs and to b) attribute observed fluxes to specific biogeochemical processes.
How to cite: Mwanake, R., Gettel, G., Butterbach-Bahl, K., and Kiese, R.: Seasonal variation of CO2, CH4 and N2O fluxes from tropical streams and rivers under forest and cropland landuses: A case study of the Mara river basin in Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20112, https://doi.org/10.5194/egusphere-egu2020-20112, 2020.
EGU2020-11203 | Displays | BG3.30
More C uptake during the dry season? The case of a semi-arid agro-silvo-pastoral ecosystem dominated by Faidherbia albida, a tree with reverse phenology (Senegal)Olivier Roupsard, Do Frederic, Rocheteau Alain, Jourdan Christophe, Orange Didier, Tall Laure, Sow Sidy, Faye Waly, Diongue Djimm M.L., Diouf Khalisse, Agbohessou Yélognissé, Diatta Seydou, Faye Serigne, Sarr Mame Sokhna, Sanogo Diaminatou, le Maire Guerric, Vezy Remi, Seghieri Josiane, and Cournac Laurent
Agro-silvo-pastoralism is a highly representative Land Use in Africa, often presented as a strategical option for ecological intensification of cropping systems towards food security and sovereignty.
We set up a new long-term observatory (“Faidherbia-Flux”) to monitor and model microclimate, energy and C balance in Niakhar (central Senegal, rainfall ~ 500 mm), dominated by the multipurpose tree Faidherbia albida (12.5 m high; 7 tree ha-1; 5% canopy cover). Faidherbia is an attractive agroforestry tree species in order to partition fluxes, given that it is on leaf during the dry season (October-June) and defoliated during the wet season, just when crops take over. Pearl-millet and groundnut crops were conducted during the wet season, following annual rotation in a complex mixed mosaic of ca. 1 ha fields.
Early 2018, we installed an eddy-covariance (EC) tower above the whole mosaic (EC1: 20 m high). A second EC system was displayed above the crop (EC2: 4.5 m if pearl-millet, 2.5 m if groundnut) in order to partition ecosystem EC fluxes between tree layer and crop+soil layers. Sap-flow was monitored from April 2019 onwards in 5 faidherbia trees (37 sensors).
The ecosystem displayed moderate but significant daily CO2 and H2O fluxes during the dry season, when faidherbia (low canopy cover) was in leaf and the soil was evaporating. At the onset of the rainy season, the soil bursted a large amount of CO2. Just after the growth of pearl-millet in 2018, CO2 uptake by photosynthesis increased dramatically. However, this was largely compensated by high ecosystem respiration. Surprisingly in 2019, although the crop was turned to groundnut, the fluxes behaved pretty much the same as with pearl millet in 2018: comparing annual balances between 2018 and 2019 we obtained [454, 513] for rainfall (P: mm yr-1), [3500, 3486] for potential evapotranspiration (ETo: mm yr-1), [0.13, 0.15] for P/ETo, [470, 497] for actual evapotranspiration (E: mm yr-1), [2809, 2785] for net radiation (Rn: MJ m-2 yr-1), [1686, 1645] for sensible heat flux (H: MJ m-2 yr-1), [-3.2, -2.8] for net ecosystem exchange of C (NEE: tC ha-1 yr-1), [-11.8, -11.1] for gross primary productivity (GPP: tC ha-1 yr-1) and [8.6, 8.3] for ecosystem respiration (Re: tC ha-1 yr-1). The energy balance (Rn-H-LE) was nearly nil indicating that the EC system behaved reasonably. E was very close to P, indicating that little or no water would recharge the deep soil layers.
Now comparing the dry (2/3 of the year) and wet (1/3) seasons: surprisingly, NEE was more effective during the dry season [-3.9, -1.7]. This was the result of Re being much lower on a daily basis as well as cumulated over the entire seasons [57, 84], whereas GPP was similar [-10.8, -12.1].
We found a good match between E measured above the whole ecosystem (EC1), and the sum of tree transpiration (T, measured by sapflow) + E measured just above crops + soil (EC2) throughout the wet and dry seasons.
The “Faidherbia-Flux” observatory is registered in FLUXNET as SN-Nkr and is widely open for collaboration.
How to cite: Roupsard, O., Frederic, D., Alain, R., Christophe, J., Didier, O., Laure, T., Sidy, S., Waly, F., Djimm M.L., D., Khalisse, D., Yélognissé, A., Seydou, D., Serigne, F., Mame Sokhna, S., Diaminatou, S., Guerric, L. M., Remi, V., Josiane, S., and Laurent, C.: More C uptake during the dry season? The case of a semi-arid agro-silvo-pastoral ecosystem dominated by Faidherbia albida, a tree with reverse phenology (Senegal), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11203, https://doi.org/10.5194/egusphere-egu2020-11203, 2020.
Agro-silvo-pastoralism is a highly representative Land Use in Africa, often presented as a strategical option for ecological intensification of cropping systems towards food security and sovereignty.
We set up a new long-term observatory (“Faidherbia-Flux”) to monitor and model microclimate, energy and C balance in Niakhar (central Senegal, rainfall ~ 500 mm), dominated by the multipurpose tree Faidherbia albida (12.5 m high; 7 tree ha-1; 5% canopy cover). Faidherbia is an attractive agroforestry tree species in order to partition fluxes, given that it is on leaf during the dry season (October-June) and defoliated during the wet season, just when crops take over. Pearl-millet and groundnut crops were conducted during the wet season, following annual rotation in a complex mixed mosaic of ca. 1 ha fields.
Early 2018, we installed an eddy-covariance (EC) tower above the whole mosaic (EC1: 20 m high). A second EC system was displayed above the crop (EC2: 4.5 m if pearl-millet, 2.5 m if groundnut) in order to partition ecosystem EC fluxes between tree layer and crop+soil layers. Sap-flow was monitored from April 2019 onwards in 5 faidherbia trees (37 sensors).
The ecosystem displayed moderate but significant daily CO2 and H2O fluxes during the dry season, when faidherbia (low canopy cover) was in leaf and the soil was evaporating. At the onset of the rainy season, the soil bursted a large amount of CO2. Just after the growth of pearl-millet in 2018, CO2 uptake by photosynthesis increased dramatically. However, this was largely compensated by high ecosystem respiration. Surprisingly in 2019, although the crop was turned to groundnut, the fluxes behaved pretty much the same as with pearl millet in 2018: comparing annual balances between 2018 and 2019 we obtained [454, 513] for rainfall (P: mm yr-1), [3500, 3486] for potential evapotranspiration (ETo: mm yr-1), [0.13, 0.15] for P/ETo, [470, 497] for actual evapotranspiration (E: mm yr-1), [2809, 2785] for net radiation (Rn: MJ m-2 yr-1), [1686, 1645] for sensible heat flux (H: MJ m-2 yr-1), [-3.2, -2.8] for net ecosystem exchange of C (NEE: tC ha-1 yr-1), [-11.8, -11.1] for gross primary productivity (GPP: tC ha-1 yr-1) and [8.6, 8.3] for ecosystem respiration (Re: tC ha-1 yr-1). The energy balance (Rn-H-LE) was nearly nil indicating that the EC system behaved reasonably. E was very close to P, indicating that little or no water would recharge the deep soil layers.
Now comparing the dry (2/3 of the year) and wet (1/3) seasons: surprisingly, NEE was more effective during the dry season [-3.9, -1.7]. This was the result of Re being much lower on a daily basis as well as cumulated over the entire seasons [57, 84], whereas GPP was similar [-10.8, -12.1].
We found a good match between E measured above the whole ecosystem (EC1), and the sum of tree transpiration (T, measured by sapflow) + E measured just above crops + soil (EC2) throughout the wet and dry seasons.
The “Faidherbia-Flux” observatory is registered in FLUXNET as SN-Nkr and is widely open for collaboration.
How to cite: Roupsard, O., Frederic, D., Alain, R., Christophe, J., Didier, O., Laure, T., Sidy, S., Waly, F., Djimm M.L., D., Khalisse, D., Yélognissé, A., Seydou, D., Serigne, F., Mame Sokhna, S., Diaminatou, S., Guerric, L. M., Remi, V., Josiane, S., and Laurent, C.: More C uptake during the dry season? The case of a semi-arid agro-silvo-pastoral ecosystem dominated by Faidherbia albida, a tree with reverse phenology (Senegal), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11203, https://doi.org/10.5194/egusphere-egu2020-11203, 2020.
EGU2020-13719 | Displays | BG3.30
Large-scale controls of soil organic carbon in (sub)tropical soilsSophie F. von Fromm, Alison M. Hoyt, Asmeret Asefaw Berhe, Keith D. Shepherd, Tor-Gunnar Vågen, Leigh A. Winowiecki, Lulseged T. Desta, Jerome E. Tondoh, Andrew M. Sila, Erick K. Towett, Elvis Weullow, Ermias Aynekulu, Johan Six, Susan E. Trumbore, and Sebastian Doetterl
Soil organic carbon (SOC) is a key component of terrestrial ecosystems. Experimental studies have shown that soil texture and geochemistry have a strong effect on carbon stocks. However, those findings primarily rely on data from temperate regions or use model approaches that are often based on limited data from tropical and sub-tropical regions.
Here, we evaluate the controls on soil carbon stocks in Africa, using a dataset of 1,580 samples. These were collected across Sub-Saharan Africa (SSA) within the framework of the Africa Soil Information Service (AfSIS) project, which was built on the well-established Land Degradation Surveillance Framework (LDSF). Samples were taken from two depths (0–20 cm and 20–50 cm) at 46 LDSF sites that were stratified according to Koeppen-Geiger climate zones. The different pH-values, clay content, exchangeable cations and extractable elements across various soils of the different climatic zones (i.e. from arid to humid (sub)tropical) allow us to identify different soil and climate parameters that best explain SOC variance across SSA.
We tested if these SOC predictors differed across climatological conditions, using the ratio of potential evapotranspiration (PET) to mean annual precipitation (MAP) as indicator. For water-limited regions (PET/MAP > 1), the best predictors were climatic variables, likely because of their effect on the quantity of carbon inputs. Geochemistry dominated SOC storage in energy-limited systems (PET/MAP < 1), reflecting its effect on carbon protection. On a continental scale, climate (e.g. PET) is key to predicting SOC content in topsoil, whereas geochemistry, particularly iron-oxyhydroxides and aluminum-oxides, is more important in subsoil. Clay content had little influence on SOC at both depths. These findings contribute to an improved understanding of the controls on SOC stocks in tropical and sub-tropical regions.
How to cite: von Fromm, S. F., Hoyt, A. M., Asefaw Berhe, A., Shepherd, K. D., Vågen, T.-G., Winowiecki, L. A., Desta, L. T., Tondoh, J. E., Sila, A. M., Towett, E. K., Weullow, E., Aynekulu, E., Six, J., Trumbore, S. E., and Doetterl, S.: Large-scale controls of soil organic carbon in (sub)tropical soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13719, https://doi.org/10.5194/egusphere-egu2020-13719, 2020.
Soil organic carbon (SOC) is a key component of terrestrial ecosystems. Experimental studies have shown that soil texture and geochemistry have a strong effect on carbon stocks. However, those findings primarily rely on data from temperate regions or use model approaches that are often based on limited data from tropical and sub-tropical regions.
Here, we evaluate the controls on soil carbon stocks in Africa, using a dataset of 1,580 samples. These were collected across Sub-Saharan Africa (SSA) within the framework of the Africa Soil Information Service (AfSIS) project, which was built on the well-established Land Degradation Surveillance Framework (LDSF). Samples were taken from two depths (0–20 cm and 20–50 cm) at 46 LDSF sites that were stratified according to Koeppen-Geiger climate zones. The different pH-values, clay content, exchangeable cations and extractable elements across various soils of the different climatic zones (i.e. from arid to humid (sub)tropical) allow us to identify different soil and climate parameters that best explain SOC variance across SSA.
We tested if these SOC predictors differed across climatological conditions, using the ratio of potential evapotranspiration (PET) to mean annual precipitation (MAP) as indicator. For water-limited regions (PET/MAP > 1), the best predictors were climatic variables, likely because of their effect on the quantity of carbon inputs. Geochemistry dominated SOC storage in energy-limited systems (PET/MAP < 1), reflecting its effect on carbon protection. On a continental scale, climate (e.g. PET) is key to predicting SOC content in topsoil, whereas geochemistry, particularly iron-oxyhydroxides and aluminum-oxides, is more important in subsoil. Clay content had little influence on SOC at both depths. These findings contribute to an improved understanding of the controls on SOC stocks in tropical and sub-tropical regions.
How to cite: von Fromm, S. F., Hoyt, A. M., Asefaw Berhe, A., Shepherd, K. D., Vågen, T.-G., Winowiecki, L. A., Desta, L. T., Tondoh, J. E., Sila, A. M., Towett, E. K., Weullow, E., Aynekulu, E., Six, J., Trumbore, S. E., and Doetterl, S.: Large-scale controls of soil organic carbon in (sub)tropical soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13719, https://doi.org/10.5194/egusphere-egu2020-13719, 2020.
EGU2020-15473 | Displays | BG3.30
Controls over phosphorus mineralization and immobilization rates in different tropical soilsLucia Fuchslueger, David Zezula, Johann Püspök, Leandro Van Langenhove, Olga Margalef, Alberto Canarini, Christian Ranits, Carlos Alberto Quesada, Norma Salinas, Eric Cosio, Josep Penuelas, Wolfgang Wanek, Andreas Richter, and Ivan Janssens
Highly weathered soils depleted in minerals and phosphorus (P) support large tracts of the tropical rainforests in the Central Amazon, which significantly contribute to the global carbon (C) sink. In these soils (oxisols and ferrasols), P is either occluded in Al/Fe-oxides, bound to the soil mineral matrix or in soil organic matter, and therefore not directly available for uptake as inorganic phosphate (Pi). To liberate Pi for plant or microbial uptake two processes are key: (i) changes of sorption-desorption equilibria of Pi with the soil matrix and (ii) the release of Pi from organic compounds (Po) catalyzed by enzymes, such as phosphatases. Plant roots and soil microbes have developed strategies to stimulate the release of P by accelerating P dissolution and desorption and by releasing extracellular phosphatases into the soil environment, which requires however C and energy investment. Because of P limitation in this ecosystem, the relative contributions of abiotic and biotic controls over P mineralization is of pivotal importance. Yet conclusive results are still scarce.
We therefore aimed to disentangle abiotic and biotic controls over P mineralization in tropical soils. To achieve this, we collected forest soils from the Amazon Basin covering a range of soil texture and P concentrations, determined soil mineralogy and measured gross P desorption and mineralization rates using a 33P isotope pool dilution assay. Moreover, we determined acid phosphatase activity rates and microbial biomass C and P. We found significant differences between the studied sites in gross P influx and efflux rates into the Pi pool. Gross influx rates (i.e. the sum of Pi desorption and organic P mineralization) exceeded efflux (i.e. sorption or biotic Pi uptake rates) only in sandy and silty soils, while in clayey soils efflux rates dominated P fluxes indicating a very high Pi sorption capacity. However, gross influx and efflux rates were not related to total or dissolved P. Microbial biomass and acid phosphatase activity normalized to microbial biomass C were highest in sites with overall low total P microbial biomass P accounting for up to 40 % of total P in low P soils. We therefore conclude that in low P soils organic P turnover plays a major role in soil P cycling, and despite of the high P sorption capacity of clay rich soils, microbes can be strong competitors for plant available P.
How to cite: Fuchslueger, L., Zezula, D., Püspök, J., Van Langenhove, L., Margalef, O., Canarini, A., Ranits, C., Quesada, C. A., Salinas, N., Cosio, E., Penuelas, J., Wanek, W., Richter, A., and Janssens, I.: Controls over phosphorus mineralization and immobilization rates in different tropical soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15473, https://doi.org/10.5194/egusphere-egu2020-15473, 2020.
Highly weathered soils depleted in minerals and phosphorus (P) support large tracts of the tropical rainforests in the Central Amazon, which significantly contribute to the global carbon (C) sink. In these soils (oxisols and ferrasols), P is either occluded in Al/Fe-oxides, bound to the soil mineral matrix or in soil organic matter, and therefore not directly available for uptake as inorganic phosphate (Pi). To liberate Pi for plant or microbial uptake two processes are key: (i) changes of sorption-desorption equilibria of Pi with the soil matrix and (ii) the release of Pi from organic compounds (Po) catalyzed by enzymes, such as phosphatases. Plant roots and soil microbes have developed strategies to stimulate the release of P by accelerating P dissolution and desorption and by releasing extracellular phosphatases into the soil environment, which requires however C and energy investment. Because of P limitation in this ecosystem, the relative contributions of abiotic and biotic controls over P mineralization is of pivotal importance. Yet conclusive results are still scarce.
We therefore aimed to disentangle abiotic and biotic controls over P mineralization in tropical soils. To achieve this, we collected forest soils from the Amazon Basin covering a range of soil texture and P concentrations, determined soil mineralogy and measured gross P desorption and mineralization rates using a 33P isotope pool dilution assay. Moreover, we determined acid phosphatase activity rates and microbial biomass C and P. We found significant differences between the studied sites in gross P influx and efflux rates into the Pi pool. Gross influx rates (i.e. the sum of Pi desorption and organic P mineralization) exceeded efflux (i.e. sorption or biotic Pi uptake rates) only in sandy and silty soils, while in clayey soils efflux rates dominated P fluxes indicating a very high Pi sorption capacity. However, gross influx and efflux rates were not related to total or dissolved P. Microbial biomass and acid phosphatase activity normalized to microbial biomass C were highest in sites with overall low total P microbial biomass P accounting for up to 40 % of total P in low P soils. We therefore conclude that in low P soils organic P turnover plays a major role in soil P cycling, and despite of the high P sorption capacity of clay rich soils, microbes can be strong competitors for plant available P.
How to cite: Fuchslueger, L., Zezula, D., Püspök, J., Van Langenhove, L., Margalef, O., Canarini, A., Ranits, C., Quesada, C. A., Salinas, N., Cosio, E., Penuelas, J., Wanek, W., Richter, A., and Janssens, I.: Controls over phosphorus mineralization and immobilization rates in different tropical soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15473, https://doi.org/10.5194/egusphere-egu2020-15473, 2020.
EGU2020-12512 | Displays | BG3.30
Impact of Climate change on tropical terrestrial water use efficiencyShweta Kumari and Mark A Adams
Variability in precipitation and temperature are key markers of climate change. Extreme events like heat waves, droughts, frosts, wind storms, flooding rains and fires greatly affect ecosystem and terrestrial carbon balance. Tropical regions in particular make strong contributions to the global carbon cycle and are the focus of our research. Our initial analysis confirmed the long-known pattern of large variability in rainfall in the tropical southern hemisphere (i.e. between the Tropic of Capricorn and the Equator) w.r.t. the north, with less variation in temperature between the hemispheres. In the follow-up analysis, we focus on exchanges of carbon and water and water use efficiency, based on 39 eddy covariance flux sites which represent 25 years of data across the tropics. Our working hypothesis is that long-term increases in temperature and significant changes (+/-) in rainfall will be reflected in changes in water use efficiency and cropping period, albeit with greater spatial and temporal variation in the south than in the north. We are also investigating relationships between water use efficiency of tropical regions calculated using eddy covariance flux data, with that calculated using tree ring data. We seek to combine methodologies that can help drive our understanding of the impact of climate change on water use efficiency of tropical regions.
Keywords: Eddy covariance, Tropics, Water use efficiency, Carbon cycle, Tree ring data
How to cite: Kumari, S. and Adams, M. A.: Impact of Climate change on tropical terrestrial water use efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12512, https://doi.org/10.5194/egusphere-egu2020-12512, 2020.
Variability in precipitation and temperature are key markers of climate change. Extreme events like heat waves, droughts, frosts, wind storms, flooding rains and fires greatly affect ecosystem and terrestrial carbon balance. Tropical regions in particular make strong contributions to the global carbon cycle and are the focus of our research. Our initial analysis confirmed the long-known pattern of large variability in rainfall in the tropical southern hemisphere (i.e. between the Tropic of Capricorn and the Equator) w.r.t. the north, with less variation in temperature between the hemispheres. In the follow-up analysis, we focus on exchanges of carbon and water and water use efficiency, based on 39 eddy covariance flux sites which represent 25 years of data across the tropics. Our working hypothesis is that long-term increases in temperature and significant changes (+/-) in rainfall will be reflected in changes in water use efficiency and cropping period, albeit with greater spatial and temporal variation in the south than in the north. We are also investigating relationships between water use efficiency of tropical regions calculated using eddy covariance flux data, with that calculated using tree ring data. We seek to combine methodologies that can help drive our understanding of the impact of climate change on water use efficiency of tropical regions.
Keywords: Eddy covariance, Tropics, Water use efficiency, Carbon cycle, Tree ring data
How to cite: Kumari, S. and Adams, M. A.: Impact of Climate change on tropical terrestrial water use efficiency, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12512, https://doi.org/10.5194/egusphere-egu2020-12512, 2020.
EGU2020-13872 | Displays | BG3.30 | Highlight
Response of tropical terrestrial gross primary production to the super El Niño event in 2015Jiawen Zhu, Minghua Zhang, Yao Zhang, Xiaodong Zeng, and Xiangming Xiao
The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.
How to cite: Zhu, J., Zhang, M., Zhang, Y., Zeng, X., and Xiao, X.: Response of tropical terrestrial gross primary production to the super El Niño event in 2015, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13872, https://doi.org/10.5194/egusphere-egu2020-13872, 2020.
The Gross Primary Production (GPP) in tropical terrestrial ecosystems plays a critical role in the global carbon cycle and climate change. The strong 2015–2016 El Niño event offers a unique opportunity to investigate how GPP in the tropical terrestrial ecosystems responds to climatic forcing. This study uses two GPP products and concurrent climate data to investigate the GPP anomalies and their underlying causes. We find that both GPP products show an enhanced GPP in 2015 for the tropical terrestrial ecosystem as a whole relative to the multi-year mean of 2001–2015, and this enhancement is the net result of GPP increase in tropical forests and decrease in non-forests. We show that the increased GPP in tropical forests during the El Nino event is consistent with increased photosynthesis active radiation as a result of a reduction in clouds, while the decreased GPP in non-forests is consistent with increased water stress as a result of a reduction of precipitation and an increase of temperature. These results reveal the strong coupling of ecosystem and climate that is different in forest and non-forest ecosystems, and provide a test case for carbon cycle parameterization and carbon-climate feedback simulation in models.
How to cite: Zhu, J., Zhang, M., Zhang, Y., Zeng, X., and Xiao, X.: Response of tropical terrestrial gross primary production to the super El Niño event in 2015, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13872, https://doi.org/10.5194/egusphere-egu2020-13872, 2020.
EGU2020-4801 | Displays | BG3.30 | Highlight
The impacts of Amazon forest degradation and fragmentation on energy, water, and carbon cyclesMarcos Longo, Sassan Saatchi, Michael Keller, Kevin Bowman, António Ferraz, Kerry Cawse-Nicholson, Joshua Fisher, Ekena Pinagé, Paul Moorcroft, Jean Ometto, and Douglas Morton
Tropical forest degradation through selective logging, fragmentation, and understory fires substantially changes forest structure and composition. In the Amazon, degradation is as widespread as deforestation; however, studies addressing the effects of forest degradation on tropical ecosystem functions are scarce. Here, we integrate small-footprint airborne lidar over the Brazilian Amazon (> 250,000 ha), collected between 2016–2018, with recent ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) land surface temperature and evapotranspiration products (70-m resolution, data acquired in 2018–2019) to investigate the role of forest structure, forest fragmentation, and disturbance history on dry-season land surface temperature and evapotranspiration. During the dry season, degraded forests, especially those affected by multiple degradation events, are significantly warmer (up to 9.3°C) and show reduced evapotranspiration (10% less than intact forests). Likewise, forest near the edges (< 350m) experience the greatest warming (up to 6.5°C) and the greatest reduction (9%) in evapotranspiration. We also used the airborne lidar dataset to initialize the Ecosystem Demography Model (ED-2.2) to investigate the impact of degradation on the gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H) under a broader range of climate conditions, including severe droughts. Consistent with ECOSTRESS, the simulations during the dry season in typical years showed that severely degraded forests experienced water-stress with declines in ET (34% reduction), GPP (35% reduction), and increases of H (43% increases) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In the model, the simulated changes are mostly driven by increased below-ground water stress, which can be attributed to the shallower rooting profile of degraded forests. However, relative to intact forest, the impact of degradation on energy, water, and carbon cycles markedly diminishes under extreme droughts such as 2015–2016, when all forests experience severe stress. Our results indicate the potentially important role of tropical forest degradation changing the carbon, water, and energy cycles in the Amazon, and consequently a much broader influence of land use activities on functioning of tropical ecosystems.
How to cite: Longo, M., Saatchi, S., Keller, M., Bowman, K., Ferraz, A., Cawse-Nicholson, K., Fisher, J., Pinagé, E., Moorcroft, P., Ometto, J., and Morton, D.: The impacts of Amazon forest degradation and fragmentation on energy, water, and carbon cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4801, https://doi.org/10.5194/egusphere-egu2020-4801, 2020.
Tropical forest degradation through selective logging, fragmentation, and understory fires substantially changes forest structure and composition. In the Amazon, degradation is as widespread as deforestation; however, studies addressing the effects of forest degradation on tropical ecosystem functions are scarce. Here, we integrate small-footprint airborne lidar over the Brazilian Amazon (> 250,000 ha), collected between 2016–2018, with recent ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) land surface temperature and evapotranspiration products (70-m resolution, data acquired in 2018–2019) to investigate the role of forest structure, forest fragmentation, and disturbance history on dry-season land surface temperature and evapotranspiration. During the dry season, degraded forests, especially those affected by multiple degradation events, are significantly warmer (up to 9.3°C) and show reduced evapotranspiration (10% less than intact forests). Likewise, forest near the edges (< 350m) experience the greatest warming (up to 6.5°C) and the greatest reduction (9%) in evapotranspiration. We also used the airborne lidar dataset to initialize the Ecosystem Demography Model (ED-2.2) to investigate the impact of degradation on the gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H) under a broader range of climate conditions, including severe droughts. Consistent with ECOSTRESS, the simulations during the dry season in typical years showed that severely degraded forests experienced water-stress with declines in ET (34% reduction), GPP (35% reduction), and increases of H (43% increases) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In the model, the simulated changes are mostly driven by increased below-ground water stress, which can be attributed to the shallower rooting profile of degraded forests. However, relative to intact forest, the impact of degradation on energy, water, and carbon cycles markedly diminishes under extreme droughts such as 2015–2016, when all forests experience severe stress. Our results indicate the potentially important role of tropical forest degradation changing the carbon, water, and energy cycles in the Amazon, and consequently a much broader influence of land use activities on functioning of tropical ecosystems.
How to cite: Longo, M., Saatchi, S., Keller, M., Bowman, K., Ferraz, A., Cawse-Nicholson, K., Fisher, J., Pinagé, E., Moorcroft, P., Ometto, J., and Morton, D.: The impacts of Amazon forest degradation and fragmentation on energy, water, and carbon cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4801, https://doi.org/10.5194/egusphere-egu2020-4801, 2020.
EGU2020-13755 | Displays | BG3.30
Double cropping in the Amazon: its relation with moisture recyclingJohn O'Connor, Karin T. Rebel, Maria J. Santos, Stefan C. Dekker, and Obbe A. Tuinenburg
Land use and land cover change in the Amazon results in the loss and degradation of ecosystem services vital to human wellbeing. The land-use transitions from forest to grasslands and to croplands modify the hydrological cycle as the non-forest cover has lower evapotranspiration and increased runoff.
The high rates of evapotranspiration of the Amazon forest drive the atmospheric moisture recycling system, which not only supports the forest itself but provides atmospheric moisture for precipitation downwind, important for agriculture, human consumption and hydropower across central Brazil. While deforestation reduces overall precipitation, deforestation has also been correlated with a delay in the wet season onset leading to a longer dry season. Therefore agriculture presents itself as an interesting conundrum, as it is the main driver of deforestation, it also acts as both the degrader and one of the main beneficiaries of the system.
Recent advances in soybean double-cropping have increased agricultural productivity. However, as sowing is tightly coupled to the wet season onset, this strategy is dependent on a stable wet season onset.
Here, we analyse the contribution of terrestrial evapotranspiration to precipitation during the early wet season. We employed a Lagrangian moisture transport model which connects moisture source (evapotranspiration) locations with moisture sink (precipitation) locations in the agriculture state of Mato Grosso, Brazil. We calculated the fraction of precipitation derived from moisture recycling as well as estimate the delay in wet season precipitation under a scenario without moisture recycling. Finally, using this moisture transport model we identified and mapped source areas that contribute to two existing double-cropping locations, one in the Amazon biome (North) and one in the Cerrado biome (South).
We found that during the wet season transition, roughly 35% of the precipitation across Mato Grosso originates from moisture recycling. The fraction of moisture recycled precipitation is spatially correlated with latitude and longitude with the lowest fraction in the Northeast ≈20% and highest in the Southwest ≈60%. Both cropping locations showed a highly dispersed source area of precipitation. With 30% of recycled rainfall generated within 250 km of the precipitation location. The two cropping locations we analyzed shared a number of forest source areas highlighting their importance for moisture recycling. We found a 10-day delay in accumulated precipitation in our scenario without moisture recycling. This implies that double-cropping systems would become more uncertain as the sowing of soybean would most likely be delayed further into the year.
How to cite: O'Connor, J., T. Rebel, K., J. Santos, M., C. Dekker, S., and A. Tuinenburg, O.: Double cropping in the Amazon: its relation with moisture recycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13755, https://doi.org/10.5194/egusphere-egu2020-13755, 2020.
Land use and land cover change in the Amazon results in the loss and degradation of ecosystem services vital to human wellbeing. The land-use transitions from forest to grasslands and to croplands modify the hydrological cycle as the non-forest cover has lower evapotranspiration and increased runoff.
The high rates of evapotranspiration of the Amazon forest drive the atmospheric moisture recycling system, which not only supports the forest itself but provides atmospheric moisture for precipitation downwind, important for agriculture, human consumption and hydropower across central Brazil. While deforestation reduces overall precipitation, deforestation has also been correlated with a delay in the wet season onset leading to a longer dry season. Therefore agriculture presents itself as an interesting conundrum, as it is the main driver of deforestation, it also acts as both the degrader and one of the main beneficiaries of the system.
Recent advances in soybean double-cropping have increased agricultural productivity. However, as sowing is tightly coupled to the wet season onset, this strategy is dependent on a stable wet season onset.
Here, we analyse the contribution of terrestrial evapotranspiration to precipitation during the early wet season. We employed a Lagrangian moisture transport model which connects moisture source (evapotranspiration) locations with moisture sink (precipitation) locations in the agriculture state of Mato Grosso, Brazil. We calculated the fraction of precipitation derived from moisture recycling as well as estimate the delay in wet season precipitation under a scenario without moisture recycling. Finally, using this moisture transport model we identified and mapped source areas that contribute to two existing double-cropping locations, one in the Amazon biome (North) and one in the Cerrado biome (South).
We found that during the wet season transition, roughly 35% of the precipitation across Mato Grosso originates from moisture recycling. The fraction of moisture recycled precipitation is spatially correlated with latitude and longitude with the lowest fraction in the Northeast ≈20% and highest in the Southwest ≈60%. Both cropping locations showed a highly dispersed source area of precipitation. With 30% of recycled rainfall generated within 250 km of the precipitation location. The two cropping locations we analyzed shared a number of forest source areas highlighting their importance for moisture recycling. We found a 10-day delay in accumulated precipitation in our scenario without moisture recycling. This implies that double-cropping systems would become more uncertain as the sowing of soybean would most likely be delayed further into the year.
How to cite: O'Connor, J., T. Rebel, K., J. Santos, M., C. Dekker, S., and A. Tuinenburg, O.: Double cropping in the Amazon: its relation with moisture recycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13755, https://doi.org/10.5194/egusphere-egu2020-13755, 2020.
EGU2020-16550 | Displays | BG3.30 | Highlight
Quantifying forest growth and uncertainty across Brazil under potential future climates: combing models and Earth ObservationThomas Smallman, David Milodowski, and Mathew Williams
Forest play a major role in the global carbon cycle storing large amounts of carbon in both living and dead organic matter. Forests can be either a sink or source of carbon depending on the net of far larger fluxes of carbon into (photosynthesis) and out of (mortality, decomposition and disturbance) forest ecosystems. Due to the potential for substantial accumulation of carbon in forests, has led to nationally determined commitments (NDCs) by Governments across the world to protect existing and plant large areas of new forest. However, significant uncertainty remains in our understanding of current forest carbon cycling, especially mortality and decomposition processes, and how carbon cycling will change under climate change. These uncertainties present two connected challenges to effective forest protection and new planting; (i) which existing forests are under the greatest risk to climate change and (ii) where are the most climate safe locations for new forest planting to maximise carbon accumulation.
Here we combine a terrestrial ecosystem model of intermediate complexity (DALEC) with Earth observation (e.g. leaf area, biomass, disturbance) and databased information (soil texture and carbon stocks) within a Bayesian model-data fusion framework (CARDAMOM) to retrieve location specific carbon cycle analyse (i.e. parameter retrievals) across Brazil at 0.5 x 0.5 degree spatial resolution between 2001 and 2015. CARDAMOM allows us to retrieve, independently for each location analysed, an ensemble of parameters for DALEC which are consistent with the location specific observational constraints and their uncertainties. These ensembles give us multiple potential, but observation consistent, realisations of forest carbon cycling and ecosystem traits. We directly quantify our uncertainty in forest carbon cycling and ecosystem traits from these ensembles. The DALEC parameterisations are then simulated into the future under a range of climate scenarios from the CMIP6 model dataset. From these simulations we will, with defined uncertainty, quantify the impact on forest carbon accumulation of existing forest and the potential accumulation of new planting. This information can feed into national planning identifying locations which have the greatest confidence of being a net sink of carbon under climate change highlighting forest areas which are most important to protect and suitable for new planting.
How to cite: Smallman, T., Milodowski, D., and Williams, M.: Quantifying forest growth and uncertainty across Brazil under potential future climates: combing models and Earth Observation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16550, https://doi.org/10.5194/egusphere-egu2020-16550, 2020.
Forest play a major role in the global carbon cycle storing large amounts of carbon in both living and dead organic matter. Forests can be either a sink or source of carbon depending on the net of far larger fluxes of carbon into (photosynthesis) and out of (mortality, decomposition and disturbance) forest ecosystems. Due to the potential for substantial accumulation of carbon in forests, has led to nationally determined commitments (NDCs) by Governments across the world to protect existing and plant large areas of new forest. However, significant uncertainty remains in our understanding of current forest carbon cycling, especially mortality and decomposition processes, and how carbon cycling will change under climate change. These uncertainties present two connected challenges to effective forest protection and new planting; (i) which existing forests are under the greatest risk to climate change and (ii) where are the most climate safe locations for new forest planting to maximise carbon accumulation.
Here we combine a terrestrial ecosystem model of intermediate complexity (DALEC) with Earth observation (e.g. leaf area, biomass, disturbance) and databased information (soil texture and carbon stocks) within a Bayesian model-data fusion framework (CARDAMOM) to retrieve location specific carbon cycle analyse (i.e. parameter retrievals) across Brazil at 0.5 x 0.5 degree spatial resolution between 2001 and 2015. CARDAMOM allows us to retrieve, independently for each location analysed, an ensemble of parameters for DALEC which are consistent with the location specific observational constraints and their uncertainties. These ensembles give us multiple potential, but observation consistent, realisations of forest carbon cycling and ecosystem traits. We directly quantify our uncertainty in forest carbon cycling and ecosystem traits from these ensembles. The DALEC parameterisations are then simulated into the future under a range of climate scenarios from the CMIP6 model dataset. From these simulations we will, with defined uncertainty, quantify the impact on forest carbon accumulation of existing forest and the potential accumulation of new planting. This information can feed into national planning identifying locations which have the greatest confidence of being a net sink of carbon under climate change highlighting forest areas which are most important to protect and suitable for new planting.
How to cite: Smallman, T., Milodowski, D., and Williams, M.: Quantifying forest growth and uncertainty across Brazil under potential future climates: combing models and Earth Observation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16550, https://doi.org/10.5194/egusphere-egu2020-16550, 2020.
EGU2020-12561 | Displays | BG3.30 | Highlight
Modeling of greenhouse gas emissions from fires in the Brazilian CerradoManoel Cardoso, Aline Castro, Celso von Randow, and Marcos Sanches
Vegetation fires have a large impact on greenhouse gas emissions in Brazil. In the Brazilian Cerrado, fires occur as part of the natural dynamics of the leading savanna landscapes, but can have their frequency and extent greatly increased by changes in land cover and use, and climate. In addition to atmospheric composition, fires are also linked to deforestation and land degradation, so modeling tools to estimate their occurrence and effects are of significant interest in analyses of climate forcing and sustainable management of the study region. In order to contribute to modeling tools that may support quantifying the impacts of vegetation fires and help sustainable management of the Cerrado in Brazil, we are working on improving the Integrated Model of Land-surface Processes (INLAND) to estimate fire emissions based on the model’s calculation of vegetation properties and burned area. Based on data from remote sensing, we are calibrating INLAND burned area outputs, which in combination to modeled vegetation biomass will provide the basis for the emissions estimates, following the Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas inventories. Our current estimates present correct timing and spatial patterns at regional scales, which we plan to improve to match information from other studies and databases.
How to cite: Cardoso, M., Castro, A., von Randow, C., and Sanches, M.: Modeling of greenhouse gas emissions from fires in the Brazilian Cerrado, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12561, https://doi.org/10.5194/egusphere-egu2020-12561, 2020.
Vegetation fires have a large impact on greenhouse gas emissions in Brazil. In the Brazilian Cerrado, fires occur as part of the natural dynamics of the leading savanna landscapes, but can have their frequency and extent greatly increased by changes in land cover and use, and climate. In addition to atmospheric composition, fires are also linked to deforestation and land degradation, so modeling tools to estimate their occurrence and effects are of significant interest in analyses of climate forcing and sustainable management of the study region. In order to contribute to modeling tools that may support quantifying the impacts of vegetation fires and help sustainable management of the Cerrado in Brazil, we are working on improving the Integrated Model of Land-surface Processes (INLAND) to estimate fire emissions based on the model’s calculation of vegetation properties and burned area. Based on data from remote sensing, we are calibrating INLAND burned area outputs, which in combination to modeled vegetation biomass will provide the basis for the emissions estimates, following the Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas inventories. Our current estimates present correct timing and spatial patterns at regional scales, which we plan to improve to match information from other studies and databases.
How to cite: Cardoso, M., Castro, A., von Randow, C., and Sanches, M.: Modeling of greenhouse gas emissions from fires in the Brazilian Cerrado, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12561, https://doi.org/10.5194/egusphere-egu2020-12561, 2020.
EGU2020-11500 | Displays | BG3.30 | Highlight
Measured greenhouse gas budgets challenge emission savings from palm-oil biodieselAna Meijide, Cristina de la Rúa, Thomas Guillaume, Alexander Röll, Evelyn Hassler, Christian Steigler, Aiyen Tjoa, Tania June, Marife D. Corre, Edzo Veldkamp, and Alexander Knohl
The potential of palm-oil biodiesel to reduce greenhouse gas (GHG) emissions compared to fossil fuels is increasingly questioned. So far, no measurement-based ecosystem GHG budgets were available, and plantation age was ignored in Life Cycle Analyses (LCA). We conducted LCA based on measured CO2, CH4 and N2O fluxes in young and mature Indonesian oil palm plantations. CO2 dominated the on-site GHG budgets in both the young and mature plantations. The young plantation was a carbon source (1012 ± 51 gC m-2 yr-1), while the mature plantation was a carbon sink (-754 ± 38 gC m-2 yr-1). LCA considering the measured fluxes showed higher GHG emissions for palm-oil biodiesel than traditional LCA assuming carbon neutrality. Plantation rotation-cycle extension and earlier-yielding varieties potentially decrease GHG emissions. Due to the high emissions associated with forest conversion to oil palm, our results indicate that no emission savings are achieved from biodiesel from first rotation-cycle oil palm plantations. Only biodiesel from second rotation-cycle plantations or plantations established on degraded land has the potential for pronounced GHG emission savings.
How to cite: Meijide, A., de la Rúa, C., Guillaume, T., Röll, A., Hassler, E., Steigler, C., Tjoa, A., June, T., Corre, M. D., Veldkamp, E., and Knohl, A.: Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11500, https://doi.org/10.5194/egusphere-egu2020-11500, 2020.
The potential of palm-oil biodiesel to reduce greenhouse gas (GHG) emissions compared to fossil fuels is increasingly questioned. So far, no measurement-based ecosystem GHG budgets were available, and plantation age was ignored in Life Cycle Analyses (LCA). We conducted LCA based on measured CO2, CH4 and N2O fluxes in young and mature Indonesian oil palm plantations. CO2 dominated the on-site GHG budgets in both the young and mature plantations. The young plantation was a carbon source (1012 ± 51 gC m-2 yr-1), while the mature plantation was a carbon sink (-754 ± 38 gC m-2 yr-1). LCA considering the measured fluxes showed higher GHG emissions for palm-oil biodiesel than traditional LCA assuming carbon neutrality. Plantation rotation-cycle extension and earlier-yielding varieties potentially decrease GHG emissions. Due to the high emissions associated with forest conversion to oil palm, our results indicate that no emission savings are achieved from biodiesel from first rotation-cycle oil palm plantations. Only biodiesel from second rotation-cycle plantations or plantations established on degraded land has the potential for pronounced GHG emission savings.
How to cite: Meijide, A., de la Rúa, C., Guillaume, T., Röll, A., Hassler, E., Steigler, C., Tjoa, A., June, T., Corre, M. D., Veldkamp, E., and Knohl, A.: Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11500, https://doi.org/10.5194/egusphere-egu2020-11500, 2020.
EGU2020-20747 | Displays | BG3.30
Methane emission and oxidation in canals draining tropical peatlandsLauren Somers, Alison Hoyt, Suhailah Bte Isnin, Alex Cobb, and Charles Harvey
Drainage canals are a potentially important source of methane from tropical peatlands. Groundwater flow transports dissolved methane to canals, where it has the potential to escape to the atmosphere. However, these emissions are poorly characterized, and the extent to which methane is oxidised before being emitted to the atmosphere is unknown. In this study, we present preliminary data from a deforested tropical peatland in Brunei Darussalam. We use measurements of stable carbon isotopes to track methane production in the peatland. To determine the fraction of methane which is emitted vs. oxidized in a canal draining the site, we use measurements of the δ13C and δD of CH4 in ditch water samples as well as surface gas samples. In addition, we monitor outflow and oxygen content in the ditch. Together, these measurements, in combination with a reactive transport hydrological model will enable us to estimate methane production, oxidation and fluvial export.
How to cite: Somers, L., Hoyt, A., Bte Isnin, S., Cobb, A., and Harvey, C.: Methane emission and oxidation in canals draining tropical peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20747, https://doi.org/10.5194/egusphere-egu2020-20747, 2020.
Drainage canals are a potentially important source of methane from tropical peatlands. Groundwater flow transports dissolved methane to canals, where it has the potential to escape to the atmosphere. However, these emissions are poorly characterized, and the extent to which methane is oxidised before being emitted to the atmosphere is unknown. In this study, we present preliminary data from a deforested tropical peatland in Brunei Darussalam. We use measurements of stable carbon isotopes to track methane production in the peatland. To determine the fraction of methane which is emitted vs. oxidized in a canal draining the site, we use measurements of the δ13C and δD of CH4 in ditch water samples as well as surface gas samples. In addition, we monitor outflow and oxygen content in the ditch. Together, these measurements, in combination with a reactive transport hydrological model will enable us to estimate methane production, oxidation and fluvial export.
How to cite: Somers, L., Hoyt, A., Bte Isnin, S., Cobb, A., and Harvey, C.: Methane emission and oxidation in canals draining tropical peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20747, https://doi.org/10.5194/egusphere-egu2020-20747, 2020.
EGU2020-12299 | Displays | BG3.30
Effects of changing drainage networks on carbon storage capacity of Southeast Asian peatlandsAlex Cobb, René Dommain, Fangyi Tan, Naomi Heng, and Charles Harvey
Since 1990, intact forest cover in tropical peatlands of western insular Southeast Asia has dropped to less than 10%. Most deforested and degraded areas are also affected by drainage, which modifies most important ecological and biogeochemical processes, including carbon dioxide fluxes, methane fluxes, fire risk, and vegetational succession. Therefore, in this region, peatland ecosystem processes and their response to anthropogenic change occur against the background of long-term spatial impacts from changing drainage networks. We build on earlier work on tropical peatland morphology to develop spatial predictions of the long-term effects of drainage network configuration on tropical peatlands. We apply this analysis to examine the impacts of anthropogenic drainage on the capacity for carbon storage within natural and artificial drainage networks in Southeast Asia. With a case study, we then show how this approach can be used to produce quantitative estimates of how much peat will be lost or gained in the long term, and where, after drainage or restoration projects.
How to cite: Cobb, A., Dommain, R., Tan, F., Heng, N., and Harvey, C.: Effects of changing drainage networks on carbon storage capacity of Southeast Asian peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12299, https://doi.org/10.5194/egusphere-egu2020-12299, 2020.
Since 1990, intact forest cover in tropical peatlands of western insular Southeast Asia has dropped to less than 10%. Most deforested and degraded areas are also affected by drainage, which modifies most important ecological and biogeochemical processes, including carbon dioxide fluxes, methane fluxes, fire risk, and vegetational succession. Therefore, in this region, peatland ecosystem processes and their response to anthropogenic change occur against the background of long-term spatial impacts from changing drainage networks. We build on earlier work on tropical peatland morphology to develop spatial predictions of the long-term effects of drainage network configuration on tropical peatlands. We apply this analysis to examine the impacts of anthropogenic drainage on the capacity for carbon storage within natural and artificial drainage networks in Southeast Asia. With a case study, we then show how this approach can be used to produce quantitative estimates of how much peat will be lost or gained in the long term, and where, after drainage or restoration projects.
How to cite: Cobb, A., Dommain, R., Tan, F., Heng, N., and Harvey, C.: Effects of changing drainage networks on carbon storage capacity of Southeast Asian peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12299, https://doi.org/10.5194/egusphere-egu2020-12299, 2020.
EGU2020-12567 | Displays | BG3.30
How do tropical peatland greenhouse gas emissions respond in the immediate aftermath of a fire?Thomas Smith, Stephanie Evers, Massimo Lupascu, and Hayli Chiu
Southeast Asia is a region where forest clearance, drainage of peatlands for agriculture, and ongoing use of fire to ‘manage’ land leads to extensive emissions of greenhouse gases to the atmosphere, and significant disturbance to peatland soils. While recent campaigns investigating tropical peatland fire emissions have improved our knowledge and understanding of ‘direct’ greenhouse gas emissions during fires, there remains a significant gap in our knowledge of the immediate post-fire impacts on peat respiration and methanogenesis. Ongoing research shows that peatland microbial communities (responsible for respiration), including methanogens and methanotrophs (responsible for controlling net methane emissions), are considerably altered following fire disturbance. As such, we hypothesise that peatland fires will lead to significant alterations to GHG emissions, compared to sites that have not burned. Further, we also hypothesise that the magnitude of this post-fire effect will be predictably interrelated to different forms of peatland degradation and land-use history.
Here we present results from seven fire locations (recently burnt) and their corresponding neighbouring control sites (not recently burnt), three of our fire locations were associated with forest clearance fires, while the other four locations were slash fires on oil palm plantations. We characterize the post-fire disturbance emissions of carbon dioxide (CO2) and methane (CH4) in situ, in the immediate aftermath of a fire (within days or weeks), and in the subsequent months following a fire at our burn sites. For comparison, we also measure CO2 and CH4 emissions from neighbouring control sites that remained unburnt. We find substantial, significant differences in CH4 emissions between the burn sites and control sites for all seven of our measurement locations. We suggest a number of mechanisms responsible for this post-fire effect, including disturbance to the methanotroph microbial communities at the burn sites, as well as reduced elevation at the burn sites, leading to higher water tables.
How to cite: Smith, T., Evers, S., Lupascu, M., and Chiu, H.: How do tropical peatland greenhouse gas emissions respond in the immediate aftermath of a fire?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12567, https://doi.org/10.5194/egusphere-egu2020-12567, 2020.
Southeast Asia is a region where forest clearance, drainage of peatlands for agriculture, and ongoing use of fire to ‘manage’ land leads to extensive emissions of greenhouse gases to the atmosphere, and significant disturbance to peatland soils. While recent campaigns investigating tropical peatland fire emissions have improved our knowledge and understanding of ‘direct’ greenhouse gas emissions during fires, there remains a significant gap in our knowledge of the immediate post-fire impacts on peat respiration and methanogenesis. Ongoing research shows that peatland microbial communities (responsible for respiration), including methanogens and methanotrophs (responsible for controlling net methane emissions), are considerably altered following fire disturbance. As such, we hypothesise that peatland fires will lead to significant alterations to GHG emissions, compared to sites that have not burned. Further, we also hypothesise that the magnitude of this post-fire effect will be predictably interrelated to different forms of peatland degradation and land-use history.
Here we present results from seven fire locations (recently burnt) and their corresponding neighbouring control sites (not recently burnt), three of our fire locations were associated with forest clearance fires, while the other four locations were slash fires on oil palm plantations. We characterize the post-fire disturbance emissions of carbon dioxide (CO2) and methane (CH4) in situ, in the immediate aftermath of a fire (within days or weeks), and in the subsequent months following a fire at our burn sites. For comparison, we also measure CO2 and CH4 emissions from neighbouring control sites that remained unburnt. We find substantial, significant differences in CH4 emissions between the burn sites and control sites for all seven of our measurement locations. We suggest a number of mechanisms responsible for this post-fire effect, including disturbance to the methanotroph microbial communities at the burn sites, as well as reduced elevation at the burn sites, leading to higher water tables.
How to cite: Smith, T., Evers, S., Lupascu, M., and Chiu, H.: How do tropical peatland greenhouse gas emissions respond in the immediate aftermath of a fire?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12567, https://doi.org/10.5194/egusphere-egu2020-12567, 2020.
EGU2020-12743 | Displays | BG3.30
Impact of fire on vegetation, soil microbes and CH4 emission from a degraded tropical peatlandHasan Akhtar, Massimo Lupascu, Omkar S. Kulkarni, Aditya Bandla, Rahayu S. Sukri, Alexander R. Cobb, Thomas E. L. Smith, and Sanjay Swarup
Over the past few decades, tropical peatlands in Southeast Asia have been heavily degraded for multiple land uses, mainly by employing drainage and fire. More importantly, the extent of these degraded areas, primarily covered with ferns and sedges, have increased to almost 10% of the total peatland area in Southeast Asia. In particular, the role of sedges in plant-mediated gas transport to the atmosphere has been recognized as a significant CH4 pathway in northern peatlands, however, in the Tropics this is still unknown. Within this context, we adopted an integrated approach using on-site measurements (CH4, porewater physicochemical characteristics) with genomics to investigate the role of hydrology, vegetation structure, and microbiome on CH4 emission from fire-degraded tropical peatland in Brunei.
We found for the first time that in degraded tropical peatlands of Southeast Asia, sedges transported 70-80% of the total CH4 emission and significantly varied with values ranging from 1.22±0.13 to 6.15±0.57 mg CH4 m-2 hr-1, during dry and wet period, respectively. This variation was mainly attributed to water table position along with changes in sedge cover and porewater properties, which created more optimal methanogenesis conditions. Total emissions via this process might increase in the future as the extent of degraded tropical peatlands expands due to more frequent fire episodes and flooding.
Further, we used 16S rRNA high-throughput sequencing to investigate the microbiomes in peat profile (above and below water table) as well as rhizo-compartments (Rhizosphere, Rhizoplane, Endosphere) of sedges. We found that the peat profile as well as rhizo-compartments of sedge harboured a higher number of methanogenic archaea in the order Methanomicrobiales and Methanobacteriales, compared to non-burnt and bulk soil, which further explains our findings of higher CH4 emission from degraded tropical peatland areas covered with sedges. These insights into the impact of fire on hydrology, vegetation structure, and microbial community composition on CH4 emissions provide an important basis for future studies on CH4 dynamics in degraded tropical peatland areas.
How to cite: Akhtar, H., Lupascu, M., S. Kulkarni, O., Bandla, A., S. Sukri, R., R. Cobb, A., E. L. Smith, T., and Swarup, S.: Impact of fire on vegetation, soil microbes and CH4 emission from a degraded tropical peatland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12743, https://doi.org/10.5194/egusphere-egu2020-12743, 2020.
Over the past few decades, tropical peatlands in Southeast Asia have been heavily degraded for multiple land uses, mainly by employing drainage and fire. More importantly, the extent of these degraded areas, primarily covered with ferns and sedges, have increased to almost 10% of the total peatland area in Southeast Asia. In particular, the role of sedges in plant-mediated gas transport to the atmosphere has been recognized as a significant CH4 pathway in northern peatlands, however, in the Tropics this is still unknown. Within this context, we adopted an integrated approach using on-site measurements (CH4, porewater physicochemical characteristics) with genomics to investigate the role of hydrology, vegetation structure, and microbiome on CH4 emission from fire-degraded tropical peatland in Brunei.
We found for the first time that in degraded tropical peatlands of Southeast Asia, sedges transported 70-80% of the total CH4 emission and significantly varied with values ranging from 1.22±0.13 to 6.15±0.57 mg CH4 m-2 hr-1, during dry and wet period, respectively. This variation was mainly attributed to water table position along with changes in sedge cover and porewater properties, which created more optimal methanogenesis conditions. Total emissions via this process might increase in the future as the extent of degraded tropical peatlands expands due to more frequent fire episodes and flooding.
Further, we used 16S rRNA high-throughput sequencing to investigate the microbiomes in peat profile (above and below water table) as well as rhizo-compartments (Rhizosphere, Rhizoplane, Endosphere) of sedges. We found that the peat profile as well as rhizo-compartments of sedge harboured a higher number of methanogenic archaea in the order Methanomicrobiales and Methanobacteriales, compared to non-burnt and bulk soil, which further explains our findings of higher CH4 emission from degraded tropical peatland areas covered with sedges. These insights into the impact of fire on hydrology, vegetation structure, and microbial community composition on CH4 emissions provide an important basis for future studies on CH4 dynamics in degraded tropical peatland areas.
How to cite: Akhtar, H., Lupascu, M., S. Kulkarni, O., Bandla, A., S. Sukri, R., R. Cobb, A., E. L. Smith, T., and Swarup, S.: Impact of fire on vegetation, soil microbes and CH4 emission from a degraded tropical peatland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12743, https://doi.org/10.5194/egusphere-egu2020-12743, 2020.
EGU2020-6337 | Displays | BG3.30
Post-fire carbon emissions from degraded tropical peat swamp forests in BruneiMassimo Lupascu, Hasan Akhtar, Thomas E.L. Smith, and Rahayu S. Sukri
Tropical peat swamp forests hold about 15–19% of the global organic carbon (C) pool of which 77% is found in Southeast Asia. Nonetheless, these ecosystems have been drained, exploited for timber and land for agriculture, leading to frequent fires in the region. Fire alters the physico-chemical characteristics of peat as well as the hydrology, which may convert these ecosystems into a source of C for decades as C emissions to the atmosphere exceeds photosynthesis.
To understand the long-term impacts of fire on C cycling, we investigated C emissions in intact and degraded PSFs in Brunei Darussalam, which has experienced 7 fires over the last 40 years. We quantified the magnitude and patterns of C loss (CO2, CH4, and Dissolved Organic carbon) and soil-water quality characteristics along with continuous monitoring of soil temperature and water table level from June 2017 to January 2019. To investigate the age and sources of C contributing to ecosystem respiration (Reco) and CH4, we used natural tracers such as 14C.
We observed a major difference in the physico-chemical parameters, which in turn affected C dynamics, especially CH4. In burnt areas (7.8±2.2 mg CH4 m-2 hr-1) the CH4 emission was approximately twice compared to the intact peat swamp forest (4.0±2.0 mg CH4 m-2 hr-1) due to prolonged higher water table creating optimum methanogenesis conditions. On the contrary, Reco did not show a significant difference between burnt (432±83 mg CO2 m-2 hr-1) and intact areas (359±76 mg CO2 m-2 hr-1). Further, radiocarbon (14C) analysis showed an overall modern signature for both CO2 and CH4 fluxes implying a microbial preference for the more labile C fraction in solution.
With frequent fires and more flooding in the future, these degraded tropical peat swamp forests areas may remain a hot spot of C emissions as suggested by our findings.
How to cite: Lupascu, M., Akhtar, H., Smith, T. E. L., and Sukri, R. S.: Post-fire carbon emissions from degraded tropical peat swamp forests in Brunei, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6337, https://doi.org/10.5194/egusphere-egu2020-6337, 2020.
Tropical peat swamp forests hold about 15–19% of the global organic carbon (C) pool of which 77% is found in Southeast Asia. Nonetheless, these ecosystems have been drained, exploited for timber and land for agriculture, leading to frequent fires in the region. Fire alters the physico-chemical characteristics of peat as well as the hydrology, which may convert these ecosystems into a source of C for decades as C emissions to the atmosphere exceeds photosynthesis.
To understand the long-term impacts of fire on C cycling, we investigated C emissions in intact and degraded PSFs in Brunei Darussalam, which has experienced 7 fires over the last 40 years. We quantified the magnitude and patterns of C loss (CO2, CH4, and Dissolved Organic carbon) and soil-water quality characteristics along with continuous monitoring of soil temperature and water table level from June 2017 to January 2019. To investigate the age and sources of C contributing to ecosystem respiration (Reco) and CH4, we used natural tracers such as 14C.
We observed a major difference in the physico-chemical parameters, which in turn affected C dynamics, especially CH4. In burnt areas (7.8±2.2 mg CH4 m-2 hr-1) the CH4 emission was approximately twice compared to the intact peat swamp forest (4.0±2.0 mg CH4 m-2 hr-1) due to prolonged higher water table creating optimum methanogenesis conditions. On the contrary, Reco did not show a significant difference between burnt (432±83 mg CO2 m-2 hr-1) and intact areas (359±76 mg CO2 m-2 hr-1). Further, radiocarbon (14C) analysis showed an overall modern signature for both CO2 and CH4 fluxes implying a microbial preference for the more labile C fraction in solution.
With frequent fires and more flooding in the future, these degraded tropical peat swamp forests areas may remain a hot spot of C emissions as suggested by our findings.
How to cite: Lupascu, M., Akhtar, H., Smith, T. E. L., and Sukri, R. S.: Post-fire carbon emissions from degraded tropical peat swamp forests in Brunei, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6337, https://doi.org/10.5194/egusphere-egu2020-6337, 2020.
EGU2020-12960 | Displays | BG3.30
Isotopic Insights into Methane Production and Emission in Diverse Amazonian PeatlandsAlison Hoyt, Hinsby Cadillo-Quiroz, Xiaomei Xu, Margaret Torn, Arturo Bazán Pacaya, Marie Jacobs, Rony Shapiama Peña, Diego Ramirez Navarro, David Urquiza-Muñoz, and Susan Trumbore
Tropical peatlands have the potential to be significant sources of methane (CH4) to the atmosphere but their contribution to the global methane budget remains uncertain. Although much prior work has focused in Southeast Asia, other tropical regions, such as the Congo and the Amazon, have a much wider diversity of peatlands with more variable CH4 emissions. Our work aims to better understand CH4 production and emissions in these diverse peatlands, and how they are controlled by hydrology, geochemistry and vegetation. Using stable isotope and radiocarbon measurements, we assess the production pathway for methanogenesis and its carbon source at sites across the Pastaza-Marañon basin in Peru. As the largest peatland complex in the Amazon, this region is home to many peatland types, from palm swamps to open peatlands to pole forests. We find clear links between site geochemistry, hydrology, and CH4 production. In rain-fed ombrotrophic sites (pH 3-4), we observe low emissions and highly depleted δ13CH4 values (as low as -100‰). The lack of external nutrients and acidic conditions likely limit methanogenesis, and hydrogenotrophic methanogenesis dominates. In more minerotrophic sites (pH 5-6), more enriched methane (-75 to -60‰) suggests a contribution from acetoclastic methanogenesis. Emissions rates are also higher, likely fueled by external nutrient inputs from seasonal flooding. Across sites, modern, vegetation-derived inputs are the dominant carbon source for methanogenesis, with a limited contribution from old peat carbon in some ombrotrophic sites. The strong relationships we observe between peatland hydrology, vegetation, geochemistry and methane emissions will enable future work to upscale methane emissions across the region.
How to cite: Hoyt, A., Cadillo-Quiroz, H., Xu, X., Torn, M., Bazán Pacaya, A., Jacobs, M., Shapiama Peña, R., Ramirez Navarro, D., Urquiza-Muñoz, D., and Trumbore, S.: Isotopic Insights into Methane Production and Emission in Diverse Amazonian Peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12960, https://doi.org/10.5194/egusphere-egu2020-12960, 2020.
Tropical peatlands have the potential to be significant sources of methane (CH4) to the atmosphere but their contribution to the global methane budget remains uncertain. Although much prior work has focused in Southeast Asia, other tropical regions, such as the Congo and the Amazon, have a much wider diversity of peatlands with more variable CH4 emissions. Our work aims to better understand CH4 production and emissions in these diverse peatlands, and how they are controlled by hydrology, geochemistry and vegetation. Using stable isotope and radiocarbon measurements, we assess the production pathway for methanogenesis and its carbon source at sites across the Pastaza-Marañon basin in Peru. As the largest peatland complex in the Amazon, this region is home to many peatland types, from palm swamps to open peatlands to pole forests. We find clear links between site geochemistry, hydrology, and CH4 production. In rain-fed ombrotrophic sites (pH 3-4), we observe low emissions and highly depleted δ13CH4 values (as low as -100‰). The lack of external nutrients and acidic conditions likely limit methanogenesis, and hydrogenotrophic methanogenesis dominates. In more minerotrophic sites (pH 5-6), more enriched methane (-75 to -60‰) suggests a contribution from acetoclastic methanogenesis. Emissions rates are also higher, likely fueled by external nutrient inputs from seasonal flooding. Across sites, modern, vegetation-derived inputs are the dominant carbon source for methanogenesis, with a limited contribution from old peat carbon in some ombrotrophic sites. The strong relationships we observe between peatland hydrology, vegetation, geochemistry and methane emissions will enable future work to upscale methane emissions across the region.
How to cite: Hoyt, A., Cadillo-Quiroz, H., Xu, X., Torn, M., Bazán Pacaya, A., Jacobs, M., Shapiama Peña, R., Ramirez Navarro, D., Urquiza-Muñoz, D., and Trumbore, S.: Isotopic Insights into Methane Production and Emission in Diverse Amazonian Peatlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12960, https://doi.org/10.5194/egusphere-egu2020-12960, 2020.
EGU2020-7695 | Displays | BG3.30
Challenges to peatland restoration in IndonesiaNyoman Suryadiputra
Challenges to peatland restoration in Indonesia
By
Nyoman Suryadiputra*)
Tropical peat swamps in Indonesia are currently experiencing degradation at a very alarming rate. Degradation starts from the time of land clearing (generally burned / uses fire) for both private and community-owned plantations, then a very massive network of drainage canals is built (every 1 Ha of peat land cleared, about 120 m - 700 m long canals are needed). These drainage canals aim to reduce the surface water level of peat so that the land can be planted (especially for) oil palm or acacia. However, peat water release can go out of control, beyond the peatland water level threshold determined by government regulation No 71/2014 on Peatland Management, as a result peat becomes dry, flammable and emits large amount of GHGs. In the long run, if drainage and fires continue, peatlands will experience subsidence, form basins, peat even disappear, flooded during rain and eventually the land becomes unproductive (stranded) and difficult to restore. Such conditions will be more severe and difficult to overcome if in the landscape (peatland hydrology unit) there are various activities by various parties, each of whom has different interests and understandings of peatland use. Regarding the above, restoration of peatland that has been damaged has a very serious challenge. Damage that is getting heavier will have a high level of difficulty and a long recovery time. In addition, the success rate of restoration is determined by benchmarks or recovery criteria that have not been scientifically determined and adopted by the Indonesian government.
Keywords : peatland, degradation, landscape, restoration
*) Director of Wetlands International Indonesia
How to cite: Suryadiputra, N.: Challenges to peatland restoration in Indonesia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7695, https://doi.org/10.5194/egusphere-egu2020-7695, 2020.
Challenges to peatland restoration in Indonesia
By
Nyoman Suryadiputra*)
Tropical peat swamps in Indonesia are currently experiencing degradation at a very alarming rate. Degradation starts from the time of land clearing (generally burned / uses fire) for both private and community-owned plantations, then a very massive network of drainage canals is built (every 1 Ha of peat land cleared, about 120 m - 700 m long canals are needed). These drainage canals aim to reduce the surface water level of peat so that the land can be planted (especially for) oil palm or acacia. However, peat water release can go out of control, beyond the peatland water level threshold determined by government regulation No 71/2014 on Peatland Management, as a result peat becomes dry, flammable and emits large amount of GHGs. In the long run, if drainage and fires continue, peatlands will experience subsidence, form basins, peat even disappear, flooded during rain and eventually the land becomes unproductive (stranded) and difficult to restore. Such conditions will be more severe and difficult to overcome if in the landscape (peatland hydrology unit) there are various activities by various parties, each of whom has different interests and understandings of peatland use. Regarding the above, restoration of peatland that has been damaged has a very serious challenge. Damage that is getting heavier will have a high level of difficulty and a long recovery time. In addition, the success rate of restoration is determined by benchmarks or recovery criteria that have not been scientifically determined and adopted by the Indonesian government.
Keywords : peatland, degradation, landscape, restoration
*) Director of Wetlands International Indonesia
How to cite: Suryadiputra, N.: Challenges to peatland restoration in Indonesia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7695, https://doi.org/10.5194/egusphere-egu2020-7695, 2020.
EGU2020-10859 | Displays | BG3.30
Degraded peatlands of South East Asia : a source of Trace Metal to surface watersLaure Gandois, Alison M. Hoyt, Stéphane Mounier, Gaël Le Roux, Charles F. Harvey, Adrien Claustres, Mohammed Nuriman, and Gusti Anshari
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TM) to surface waters and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. The black rivers draining these peatland areas have high concentrations of DOM. However, the fate of this fluvial carbon export is uncertain, and its role as a trace metal carrier has never been investigated. This work aims to address these gaps in our understanding of tropical peatland DOM and associated elements in the context of degraded tropical peatlands of Indonesian Borneo. We quantified dissolved organic carbon and trace metals concentrations in the dissolved, fine colloidal and coarse colloidal fractions and determined the characteristics (optical and isotopic) of the peatland-derived DOM as it drains from peatland canals, flows along black river and eventually mixes with the Kapuas Kecil River before meeting the ocean near the city of Pontianak in West Kalimantan, Indonesia. Black rivers draining degraded peatlands show significantly higher concentrations of Al, Fe, Pb, As, Ni, and Cd, compared the white river. A strong association is observed between DOM, Fe, As, Cd and Zn in the dissolved and fine colloid fraction, while Al is associated to Pb and Ni and present in a higher proportion in the coarse colloidal fraction. We additionally measured the isotopic composition of lead released from degraded tropical peatlands for the first time and show that Pb originates from anthropogenic atmospheric deposition. Degraded tropical peatlands are important sources of DOM and trace metals to rivers and a secondary source of atmospherically deposited contaminants.
How to cite: Gandois, L., Hoyt, A. M., Mounier, S., Le Roux, G., Harvey, C. F., Claustres, A., Nuriman, M., and Anshari, G.: Degraded peatlands of South East Asia : a source of Trace Metal to surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10859, https://doi.org/10.5194/egusphere-egu2020-10859, 2020.
Worldwide, peatlands are important sources of dissolved organic matter (DOM) and trace metals (TM) to surface waters and these fluxes may increase with peatland degradation. In Southeast Asia, tropical peatlands are being rapidly deforested and drained. The black rivers draining these peatland areas have high concentrations of DOM. However, the fate of this fluvial carbon export is uncertain, and its role as a trace metal carrier has never been investigated. This work aims to address these gaps in our understanding of tropical peatland DOM and associated elements in the context of degraded tropical peatlands of Indonesian Borneo. We quantified dissolved organic carbon and trace metals concentrations in the dissolved, fine colloidal and coarse colloidal fractions and determined the characteristics (optical and isotopic) of the peatland-derived DOM as it drains from peatland canals, flows along black river and eventually mixes with the Kapuas Kecil River before meeting the ocean near the city of Pontianak in West Kalimantan, Indonesia. Black rivers draining degraded peatlands show significantly higher concentrations of Al, Fe, Pb, As, Ni, and Cd, compared the white river. A strong association is observed between DOM, Fe, As, Cd and Zn in the dissolved and fine colloid fraction, while Al is associated to Pb and Ni and present in a higher proportion in the coarse colloidal fraction. We additionally measured the isotopic composition of lead released from degraded tropical peatlands for the first time and show that Pb originates from anthropogenic atmospheric deposition. Degraded tropical peatlands are important sources of DOM and trace metals to rivers and a secondary source of atmospherically deposited contaminants.
How to cite: Gandois, L., Hoyt, A. M., Mounier, S., Le Roux, G., Harvey, C. F., Claustres, A., Nuriman, M., and Anshari, G.: Degraded peatlands of South East Asia : a source of Trace Metal to surface waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10859, https://doi.org/10.5194/egusphere-egu2020-10859, 2020.
EGU2020-8219 | Displays | BG3.30
The biogeochemical research of microbial hopanoids in Dajiuhu peatland, central ChinaJiantao Xue and Xianyu Huang
Peatlands are a vast store of organic carbon and play a significant role in the global carbon cycle. The abundance of lipids, especially microbial hopanoids are, directly or indirectly, participating in the carbon cycle in peatlands. Although the hopanoids and their compound-specific carbon isotope composition have been applied to some extent in the study of paleoenvironment and paleoecology, it is still misty about the diagenetic transformation process and the main controlling factors of the early diagenetic transformation of hopanoids. The potential of paleo-ecological application of hopanoids is still lack of systematic understanding. Previously we investigated several typical peatlands in China and found pH plays an important role in the early diagenetic transformation of bacteriohopanepolyols (BHPs) into geohopanoids. We also found the pH value promotes the isomerization of geohopanoids. Here, we focus on the biogeochemical research of microbial hopanoids in Dajiuhu peatland. We first carried out a series of modern process monitoring on a seasonal scale, such as monthly investigating the climate factors (air temperature, air humidity, rainfall), water, soil temperature, soil moisture, water chemistry (pH, ORP, conductivity, dissolved oxygen), the main nutrient (nitrate, phosphate, etc.), dissolved organic carbon (content, composition and isotopic composition). On this basis, we discussed the relationship between those compounds (composition, carbon and hydrogen isotopes) and the climate-environmental conditions as well as the carbon dynamics. Further on, we examined the response of the carbon cycle based on hopanoid index in a peat core (18ka BP) in Dajiuhu peatland. Our results showed that in acidic peat deposits in Dajiuhu peatland, the carbon isotopes of hopane are generally more than 5‰ positive compared with the carbon isotopes of n-alkanes from higher plants both the surface peat samples and core peat samples, which indicates that in acidic peat environment, the hopanoid-produced bacteria mainly take carbohydrate as carbon source. We also showed that the difference of the carbon isotopes between hopane and n-alkanes is not stable, suggesting that these hopanoids may use different carbon sources.
How to cite: Xue, J. and Huang, X.: The biogeochemical research of microbial hopanoids in Dajiuhu peatland, central China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8219, https://doi.org/10.5194/egusphere-egu2020-8219, 2020.
Peatlands are a vast store of organic carbon and play a significant role in the global carbon cycle. The abundance of lipids, especially microbial hopanoids are, directly or indirectly, participating in the carbon cycle in peatlands. Although the hopanoids and their compound-specific carbon isotope composition have been applied to some extent in the study of paleoenvironment and paleoecology, it is still misty about the diagenetic transformation process and the main controlling factors of the early diagenetic transformation of hopanoids. The potential of paleo-ecological application of hopanoids is still lack of systematic understanding. Previously we investigated several typical peatlands in China and found pH plays an important role in the early diagenetic transformation of bacteriohopanepolyols (BHPs) into geohopanoids. We also found the pH value promotes the isomerization of geohopanoids. Here, we focus on the biogeochemical research of microbial hopanoids in Dajiuhu peatland. We first carried out a series of modern process monitoring on a seasonal scale, such as monthly investigating the climate factors (air temperature, air humidity, rainfall), water, soil temperature, soil moisture, water chemistry (pH, ORP, conductivity, dissolved oxygen), the main nutrient (nitrate, phosphate, etc.), dissolved organic carbon (content, composition and isotopic composition). On this basis, we discussed the relationship between those compounds (composition, carbon and hydrogen isotopes) and the climate-environmental conditions as well as the carbon dynamics. Further on, we examined the response of the carbon cycle based on hopanoid index in a peat core (18ka BP) in Dajiuhu peatland. Our results showed that in acidic peat deposits in Dajiuhu peatland, the carbon isotopes of hopane are generally more than 5‰ positive compared with the carbon isotopes of n-alkanes from higher plants both the surface peat samples and core peat samples, which indicates that in acidic peat environment, the hopanoid-produced bacteria mainly take carbohydrate as carbon source. We also showed that the difference of the carbon isotopes between hopane and n-alkanes is not stable, suggesting that these hopanoids may use different carbon sources.
How to cite: Xue, J. and Huang, X.: The biogeochemical research of microbial hopanoids in Dajiuhu peatland, central China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8219, https://doi.org/10.5194/egusphere-egu2020-8219, 2020.
EGU2020-6796 | Displays | BG3.30
Air mixing and sub-canopy advection in an oil palm plantation in IndonesiaChristian Stiegler, Tania June, and Alexander Knohl
In tall vegetation canopies, such as forest or oil palm monoculture plantations, the below-canopy airflow can be influenced by the local topography and thereby cause horizontal exchange of the below-canopy air. Especially during night time, calm weather conditions may result in the formation of an isolated layer near the surface, which is decoupled from the above-canopy air layer. When decoupling and below-canopy horizontal air flow occurs, there is a high potential that above-canopy measured carbon dioxide (CO2) fluxes based on eddy covariance measurements might not represent the true ecosystem CO2 flux as below-canopy respiration might be undetected by the eddy covariance system. Nevertheless, eddy covariance data are frequently used as the reference for fluxes of tall vegetation ecosystems or for validation of modelling approaches estimating gross primary production (GPP) and net ecosystem exchange (NEE). It is therefore important to have accurate information on air mixing, decoupling and sub-canopy drainage flow to understand the complex CO2 exchange behaviour in tall vegetation ecosystems.
In this context, we investigate wind and micrometeorological dynamics of a mature oil palm monoculture plantation (tropical lowland, Jambi Province, Sumatra, Indonesia). We use data from above- and below-canopy eddy covariance and micrometeorological measurements within the oil palm plantation to assess the wind dynamics and the strength of the turbulent mixing as an estimator for the degree of coupling. Further, we explore the potential implications of decoupling and horizontal below-canopy flow on the above-canopy derived NEE.
Preliminary results show that wind is generally weak in the oil palm plantation. Using a breakpoint analysis, the correlation of below- and above-canopy standard deviation of vertical wind speed (σw) derived from sonic eddy covariance measurements below (2.4 m height) and above the canopy (22 m height), we identified a site-specific σw threshold of 0.11 m s-1 (below-canopy) and 0.26 m s-1 (above-canopy) above which the atmospheric conditions are in fully coupled state. During the day, unstable conditions dominate over stable conditions while in the twilight hours and during the night, the reverse is the case. Below-canopy wind comes mostly from south-eastern directions during both day and night, and tends to blow independently from wind above the canopy for conditions with above-canopy u* < 0.3 m s-1. Based on the above-canopy eddy covariance NEE measurements and on the direction difference (ΔWD) between above- and below-canopy wind, we observe a threshold of ~70° ΔWD above which the two layers might be decoupled. Below-canopy air flow might therefore influence the above-canopy NEE detections, biasing carbon balance estimates.
How to cite: Stiegler, C., June, T., and Knohl, A.: Air mixing and sub-canopy advection in an oil palm plantation in Indonesia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6796, https://doi.org/10.5194/egusphere-egu2020-6796, 2020.
In tall vegetation canopies, such as forest or oil palm monoculture plantations, the below-canopy airflow can be influenced by the local topography and thereby cause horizontal exchange of the below-canopy air. Especially during night time, calm weather conditions may result in the formation of an isolated layer near the surface, which is decoupled from the above-canopy air layer. When decoupling and below-canopy horizontal air flow occurs, there is a high potential that above-canopy measured carbon dioxide (CO2) fluxes based on eddy covariance measurements might not represent the true ecosystem CO2 flux as below-canopy respiration might be undetected by the eddy covariance system. Nevertheless, eddy covariance data are frequently used as the reference for fluxes of tall vegetation ecosystems or for validation of modelling approaches estimating gross primary production (GPP) and net ecosystem exchange (NEE). It is therefore important to have accurate information on air mixing, decoupling and sub-canopy drainage flow to understand the complex CO2 exchange behaviour in tall vegetation ecosystems.
In this context, we investigate wind and micrometeorological dynamics of a mature oil palm monoculture plantation (tropical lowland, Jambi Province, Sumatra, Indonesia). We use data from above- and below-canopy eddy covariance and micrometeorological measurements within the oil palm plantation to assess the wind dynamics and the strength of the turbulent mixing as an estimator for the degree of coupling. Further, we explore the potential implications of decoupling and horizontal below-canopy flow on the above-canopy derived NEE.
Preliminary results show that wind is generally weak in the oil palm plantation. Using a breakpoint analysis, the correlation of below- and above-canopy standard deviation of vertical wind speed (σw) derived from sonic eddy covariance measurements below (2.4 m height) and above the canopy (22 m height), we identified a site-specific σw threshold of 0.11 m s-1 (below-canopy) and 0.26 m s-1 (above-canopy) above which the atmospheric conditions are in fully coupled state. During the day, unstable conditions dominate over stable conditions while in the twilight hours and during the night, the reverse is the case. Below-canopy wind comes mostly from south-eastern directions during both day and night, and tends to blow independently from wind above the canopy for conditions with above-canopy u* < 0.3 m s-1. Based on the above-canopy eddy covariance NEE measurements and on the direction difference (ΔWD) between above- and below-canopy wind, we observe a threshold of ~70° ΔWD above which the two layers might be decoupled. Below-canopy air flow might therefore influence the above-canopy NEE detections, biasing carbon balance estimates.
How to cite: Stiegler, C., June, T., and Knohl, A.: Air mixing and sub-canopy advection in an oil palm plantation in Indonesia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6796, https://doi.org/10.5194/egusphere-egu2020-6796, 2020.
EGU2020-21003 | Displays | BG3.30
CO2 gas exchange in oil palm plantation under 2015 ENSO conditions in eastern AmazoniaJulie A. de F. Silva, Alessandro C. de Araujo, Celson von Randow, Antonio O. Manzi, and Leonardo R. de Oliveira
The 2015/2016 El Niño Southern Oscillation (ENSO) was one of the most severe, as strong as in 1997/1998, and reached mainly the eastern Amazon. ENSO in the Amazon causes a decrease in precipitation and increase in temperature. Oil palm in dry conditions, low humidity, high temperatures and soil water deficit has its photosynthesis inhibited, decreased evapotranspiration and stomatal conductance and inflorescence abortion, for example. The objective of this study was to estimate the CO2 gas exchange in interspecific hybrid oil palm plantation (Elaeis guineensis Jacq x Elaeis oleifera (Kunth) Cortés), relating to the effects of the meteorological variables in the 2015 ENOS in the eastern Amazon. The study area was a 12-year-old oil palm plantation (01º51’43.2’’S, 048º36’52.2’’W) in the municipality of Moju, Pará, Brazil, where a micrometeorological observation tower was installed. Were quantified the meteorological variables such as photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and soil moisture. And the fluxes of CO2 and H2O for application of the eddy covariance method. Photosynthetic parameters were estimated using the light response curve (LCR) in the non-rectangular hyperbole model. The results were shown seasonally, the months of the wet season (December to June) presented precipitation greater than 150 mm/month and the dry season (July to November) with monthly precipitation less than 150 mm, being a threshold that influences the water deficit for the oil palm. The dry season presented a reduction of more than 57% in the precipitation, when compared to the climatological normal data of Belém. The daily average of net CO2 exchange was higher in the wet season of -22.50 (± 0.40) µmol m-² s-¹ at 11:00 am and -22.14 (± 0.68) µmol m-² s-¹ at 10:30 am (local hour) in the dry season. In the wet season the parameters of LCR were lower quantum efficiency (0.0479 ± 0.0039 μmol CO2 μmol-¹ photon absorbed), higher CO2 assimilation rate (35.82 ± 1.92 µmol m-² s-¹) and lower ecosystem respiration (6.11 ± 0.39 μmol m-² s-¹). The dry season exhibited a quantum efficiency of 0,0494 (± 0,0063) μmol CO2 μmol-¹ photon absorbed, CO2 assimilation rate of 31,02 (± 1,93) µmol m-² s-¹ and higher ecosystem respiration (6.61 ± 0.65 μmol m-² s-¹). PAR and VPD preconditioned to net CO2 exchange with a correlation coefficient of 0.75 and 0.72 and of determination of 0.56 and 0.52, in the wet and dry seasons, respectively. These results are important for a better understanding of oil palm behavior in the face of a severe weather event in eastern Amazonia.
How to cite: Silva, J. A. D. F., Araujo, A. C. D., von Randow, C., Manzi, A. O., and Oliveira, L. R. D.: CO2 gas exchange in oil palm plantation under 2015 ENSO conditions in eastern Amazonia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21003, https://doi.org/10.5194/egusphere-egu2020-21003, 2020.
The 2015/2016 El Niño Southern Oscillation (ENSO) was one of the most severe, as strong as in 1997/1998, and reached mainly the eastern Amazon. ENSO in the Amazon causes a decrease in precipitation and increase in temperature. Oil palm in dry conditions, low humidity, high temperatures and soil water deficit has its photosynthesis inhibited, decreased evapotranspiration and stomatal conductance and inflorescence abortion, for example. The objective of this study was to estimate the CO2 gas exchange in interspecific hybrid oil palm plantation (Elaeis guineensis Jacq x Elaeis oleifera (Kunth) Cortés), relating to the effects of the meteorological variables in the 2015 ENOS in the eastern Amazon. The study area was a 12-year-old oil palm plantation (01º51’43.2’’S, 048º36’52.2’’W) in the municipality of Moju, Pará, Brazil, where a micrometeorological observation tower was installed. Were quantified the meteorological variables such as photosynthetically active radiation (PAR), vapor pressure deficit (VPD) and soil moisture. And the fluxes of CO2 and H2O for application of the eddy covariance method. Photosynthetic parameters were estimated using the light response curve (LCR) in the non-rectangular hyperbole model. The results were shown seasonally, the months of the wet season (December to June) presented precipitation greater than 150 mm/month and the dry season (July to November) with monthly precipitation less than 150 mm, being a threshold that influences the water deficit for the oil palm. The dry season presented a reduction of more than 57% in the precipitation, when compared to the climatological normal data of Belém. The daily average of net CO2 exchange was higher in the wet season of -22.50 (± 0.40) µmol m-² s-¹ at 11:00 am and -22.14 (± 0.68) µmol m-² s-¹ at 10:30 am (local hour) in the dry season. In the wet season the parameters of LCR were lower quantum efficiency (0.0479 ± 0.0039 μmol CO2 μmol-¹ photon absorbed), higher CO2 assimilation rate (35.82 ± 1.92 µmol m-² s-¹) and lower ecosystem respiration (6.11 ± 0.39 μmol m-² s-¹). The dry season exhibited a quantum efficiency of 0,0494 (± 0,0063) μmol CO2 μmol-¹ photon absorbed, CO2 assimilation rate of 31,02 (± 1,93) µmol m-² s-¹ and higher ecosystem respiration (6.61 ± 0.65 μmol m-² s-¹). PAR and VPD preconditioned to net CO2 exchange with a correlation coefficient of 0.75 and 0.72 and of determination of 0.56 and 0.52, in the wet and dry seasons, respectively. These results are important for a better understanding of oil palm behavior in the face of a severe weather event in eastern Amazonia.
How to cite: Silva, J. A. D. F., Araujo, A. C. D., von Randow, C., Manzi, A. O., and Oliveira, L. R. D.: CO2 gas exchange in oil palm plantation under 2015 ENSO conditions in eastern Amazonia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21003, https://doi.org/10.5194/egusphere-egu2020-21003, 2020.
EGU2020-2860 | Displays | BG3.30
The impact of diversifying understory vegetation in oil palm plantations on greenhouse gas emissionsJulia Drewer, Ribka Sionita, Pujianto Pujianto, Stella White, Sarah Luke, Edgar Turner, Lindsay Banin, Ute Skiba, Andreas Dwi Advento, and Jean-Pierre Caliman
Tropical oil palm (OP) plantations are major emitters of greenhouse gases (GHGs), but there are management options, which may reduce these emissions, including increasing understory biomass. Managing the vegetation within and around plantations could potentially minimise environmental damage and maximise co-benefits such as soil protection, pest control and diversity. Such practices include creating reserves, buffer strips and management of vegetation in the plantations themselves. The impact of these management practices is uncertain, and there is a real need for an evidence-base to guide improvements in the environmental sustainability of OP management.
The timing for research related to management options is critical for influencing current decision-making. In Indonesia, most OP plantations were established in the late 1980s and early 1990s and due to the 25 – 30-year life cycle of OP plantations, nearly half are due to be clear-cut for replanting in the near-future. Hence, it is vital to understand replanting and restoration options which simultaneously allow for high productivity as well as supporting biodiversity and minimising GHG emissions.
The scope and specific objectives of our study were:
- 1) To measure GHG emissions under different understory management techniques (with/without vegetation through use of herbicides).
- 2) To link GHG data to soil data to develop understanding of ecosystem function under different OP plantation management approaches.
We will present monthly static chamber measurements of GHG emissions for the duration of one year starting October 2018, established on an existing long-term experiment investigating the impact of diversifying understory vegetation on biodiversity, ecosystem functioning and yield in Sumatra, Indonesia (The Biodiversity and Ecosystem Function in Tropical Agriculture Project (BEFTA)). The three different understory management treatments were:
- 1) Normal biodiversity complexity: standard industry practice, intermediate level of herbicide use in harvest circles.
- 2) Reduced biodiversity complexity: spraying/removing all understory vegetation with herbicides.
- 3) Enhanced biodiversity complexity: reduced-input management with no herbicide application and limited understory cutting.
We measured the GHG fluxes of nitrous oxide (N2O), methane (CH4) and soil ecosystem respiration/carbon dioxide (CO2) using static chambers and analysis by gas chromatography (GC-µECD/FID).
Preliminary results show little difference amongst the different understory treatments in terms of N2O fluxes. Fluxes were generally low (0-0.1 µg m-2 h-1) with high variability. However, there is a trend towards slightly higher emissions during the wetter months (Oct-Dec 2018) of up to 0.2 µg m-2 h-1.
Methane (CH4) fluxes were generally small and fluctuated around zero. During the wet months, (Oct to Dec 2018) small emission fluxes up to 3 µg m-2 h-1 were observed; whereas during the dry months uptake of methane, prevailed. No distinctive differences between the different treatments was observed.
Due to the age of the plantation and imminent replanting, none of the plots were being fertilised at the time of measurement – greater differences between vegetation treatments may be observed under fertilisation.
In conclusion, initial results showed that the presence or absence of understorey did not increase soil emissions of N2O and CH4. This suggests that the within-crop ecological benefits do not result in an increased GHG burden.
How to cite: Drewer, J., Sionita, R., Pujianto, P., White, S., Luke, S., Turner, E., Banin, L., Skiba, U., Dwi Advento, A., and Caliman, J.-P.: The impact of diversifying understory vegetation in oil palm plantations on greenhouse gas emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2860, https://doi.org/10.5194/egusphere-egu2020-2860, 2020.
Tropical oil palm (OP) plantations are major emitters of greenhouse gases (GHGs), but there are management options, which may reduce these emissions, including increasing understory biomass. Managing the vegetation within and around plantations could potentially minimise environmental damage and maximise co-benefits such as soil protection, pest control and diversity. Such practices include creating reserves, buffer strips and management of vegetation in the plantations themselves. The impact of these management practices is uncertain, and there is a real need for an evidence-base to guide improvements in the environmental sustainability of OP management.
The timing for research related to management options is critical for influencing current decision-making. In Indonesia, most OP plantations were established in the late 1980s and early 1990s and due to the 25 – 30-year life cycle of OP plantations, nearly half are due to be clear-cut for replanting in the near-future. Hence, it is vital to understand replanting and restoration options which simultaneously allow for high productivity as well as supporting biodiversity and minimising GHG emissions.
The scope and specific objectives of our study were:
- 1) To measure GHG emissions under different understory management techniques (with/without vegetation through use of herbicides).
- 2) To link GHG data to soil data to develop understanding of ecosystem function under different OP plantation management approaches.
We will present monthly static chamber measurements of GHG emissions for the duration of one year starting October 2018, established on an existing long-term experiment investigating the impact of diversifying understory vegetation on biodiversity, ecosystem functioning and yield in Sumatra, Indonesia (The Biodiversity and Ecosystem Function in Tropical Agriculture Project (BEFTA)). The three different understory management treatments were:
- 1) Normal biodiversity complexity: standard industry practice, intermediate level of herbicide use in harvest circles.
- 2) Reduced biodiversity complexity: spraying/removing all understory vegetation with herbicides.
- 3) Enhanced biodiversity complexity: reduced-input management with no herbicide application and limited understory cutting.
We measured the GHG fluxes of nitrous oxide (N2O), methane (CH4) and soil ecosystem respiration/carbon dioxide (CO2) using static chambers and analysis by gas chromatography (GC-µECD/FID).
Preliminary results show little difference amongst the different understory treatments in terms of N2O fluxes. Fluxes were generally low (0-0.1 µg m-2 h-1) with high variability. However, there is a trend towards slightly higher emissions during the wetter months (Oct-Dec 2018) of up to 0.2 µg m-2 h-1.
Methane (CH4) fluxes were generally small and fluctuated around zero. During the wet months, (Oct to Dec 2018) small emission fluxes up to 3 µg m-2 h-1 were observed; whereas during the dry months uptake of methane, prevailed. No distinctive differences between the different treatments was observed.
Due to the age of the plantation and imminent replanting, none of the plots were being fertilised at the time of measurement – greater differences between vegetation treatments may be observed under fertilisation.
In conclusion, initial results showed that the presence or absence of understorey did not increase soil emissions of N2O and CH4. This suggests that the within-crop ecological benefits do not result in an increased GHG burden.
How to cite: Drewer, J., Sionita, R., Pujianto, P., White, S., Luke, S., Turner, E., Banin, L., Skiba, U., Dwi Advento, A., and Caliman, J.-P.: The impact of diversifying understory vegetation in oil palm plantations on greenhouse gas emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2860, https://doi.org/10.5194/egusphere-egu2020-2860, 2020.
EGU2020-20992 | Displays | BG3.30
What controls microbial growth in tropical soils? The role of carbon and phosphorus.Christian Ranits, Lucia Fuchslueger, Leandro Van Langenhove, Ivan Janssens, Josep Peñuelas, and Andreas Richter
Tropical forest ecosystems are important components of global biogeochemical cycling. Many tropical rainforests grow in old and highly weathered soils, depleted in phosphorus (P) and net primary productivity in tropical forests is often limited by P availability. It is unclear, however, if heterotrophic microbial communities in tropical soils are also limited by P or rather by carbon (C). Elemental limitations of microorganisms in soil have often been approached by measurements of respiration rates in response to additions of nutrients or carbon. However, it has been argued lately, that microbial growth rather than respiration should be used to assess limitations.
In this study we therefore ask the question whether the growth of heterotrophic microbial communities in tropical soil is limited by available phosphorus or by carbon. We collected soils from three sites along a topographic gradient (plateau, slope, bottom) differing in soil texture, total and available P concentrations from a well-studied, P-poor region in Nouragues, French Guiana. We incubated these soils in the laboratory with C in the form of cellulose, inorganic phosphorus and with a combination of both, and studied microbial growth by measuring the 18O incorporation from labelled water into microbial DNA. Moreover, we measured microbial respiration and determined microbial biomass C, N (nitrogen) and P.
Our results demonstrate that, although microbial biomass C and N was similar in soil collected from all three topographic sites, soil respiration rates were significantly higher in soils from the plateau indicating a more active microbial community. Microbial C and N did not respond to cellulose and inorganic P additions, only microbial P increased significantly when P was added in all soils. Although microbial biomass C was not increased, C and P additions stimulated microbial respiration in clay rich plateau soils. In slope soils microbial communities initially only increased respiration activity in response to P additions, however at the end of the incubation also C showed significant differences in respiration activity, with strongest increases when C and P were added in combination. In sandier bottom soils microorganisms responded with increased activity to C addition, but also here respiration showed strongest increases in response to combined carbon and phosphorus additions. We will discuss these findings in relation to the pattern of gross growth rates in these soils and evaluate the stoichiometric limitations of microbial activity and turnover.
How to cite: Ranits, C., Fuchslueger, L., Van Langenhove, L., Janssens, I., Peñuelas, J., and Richter, A.: What controls microbial growth in tropical soils? The role of carbon and phosphorus., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20992, https://doi.org/10.5194/egusphere-egu2020-20992, 2020.
Tropical forest ecosystems are important components of global biogeochemical cycling. Many tropical rainforests grow in old and highly weathered soils, depleted in phosphorus (P) and net primary productivity in tropical forests is often limited by P availability. It is unclear, however, if heterotrophic microbial communities in tropical soils are also limited by P or rather by carbon (C). Elemental limitations of microorganisms in soil have often been approached by measurements of respiration rates in response to additions of nutrients or carbon. However, it has been argued lately, that microbial growth rather than respiration should be used to assess limitations.
In this study we therefore ask the question whether the growth of heterotrophic microbial communities in tropical soil is limited by available phosphorus or by carbon. We collected soils from three sites along a topographic gradient (plateau, slope, bottom) differing in soil texture, total and available P concentrations from a well-studied, P-poor region in Nouragues, French Guiana. We incubated these soils in the laboratory with C in the form of cellulose, inorganic phosphorus and with a combination of both, and studied microbial growth by measuring the 18O incorporation from labelled water into microbial DNA. Moreover, we measured microbial respiration and determined microbial biomass C, N (nitrogen) and P.
Our results demonstrate that, although microbial biomass C and N was similar in soil collected from all three topographic sites, soil respiration rates were significantly higher in soils from the plateau indicating a more active microbial community. Microbial C and N did not respond to cellulose and inorganic P additions, only microbial P increased significantly when P was added in all soils. Although microbial biomass C was not increased, C and P additions stimulated microbial respiration in clay rich plateau soils. In slope soils microbial communities initially only increased respiration activity in response to P additions, however at the end of the incubation also C showed significant differences in respiration activity, with strongest increases when C and P were added in combination. In sandier bottom soils microorganisms responded with increased activity to C addition, but also here respiration showed strongest increases in response to combined carbon and phosphorus additions. We will discuss these findings in relation to the pattern of gross growth rates in these soils and evaluate the stoichiometric limitations of microbial activity and turnover.
How to cite: Ranits, C., Fuchslueger, L., Van Langenhove, L., Janssens, I., Peñuelas, J., and Richter, A.: What controls microbial growth in tropical soils? The role of carbon and phosphorus., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20992, https://doi.org/10.5194/egusphere-egu2020-20992, 2020.
EGU2020-19752 | Displays | BG3.30
Land use change in Amazonian Dark Earth and Acrisol: Responses of organic carbon, organic matter composition and microbial carbon utilisationKlaus Jarosch, Luis Carlos Colocho Hurtarte, Konstantin Gavazov, Aleksander Westphal Muniz, Christoph Müller, and Steffen Schweizer
The conversion of tropical forest for cassava cultivation is widely known to decrease the soil organic matter (OM) and nutrient contents of highly weathered soils in the tropics. Amazonian Dark Earth (ADE) might be affected less due to their historical anthropogenic amelioration with e.g. charcoal, ceramics and bones, leading to higher soil OM and nutrient concentrations. In this study, we analysed the effect of land use change on the OM dynamics and its composition under tropical conditions, using ADE and an adjacent Acrisol (ACR) as model systems. Soil samples were obtained south of Manaus (Brazil), from a secondary forest and an adjacently located 40-year-old cassava plantation. The land use change induced a severe decrease of organic carbon (OC) concentrations in ADE (from 35 to 15 g OC kg‑1) while OC in the adjacent ACR was less affected (18 to 16 g OC kg‑1). Soils were analysed by 13C NMR spectroscopy to obtain information on how the conversion of secondary forest to cassava affected the chemical composition of OM. Our results show that land use change induces differences in the OM composition: The OM in ADE changes to a more decomposed state (increase of alkyl:O/N-alkyl ratio) whereas the OM in ACR changes to a less decomposed state (decrease of alkyl:O/N-alkyl ratio). According to a molecular mixing model, land use change influenced mostly the proportion of lipids, which might be related with a change of the plant input. The incubation of the soils with 13C glucose enabled resolving how soil microorganisms were affected by land use change. In both soil types ADE and ACR, land use change caused a reduction of the total 13C glucose respiration by approximately one third in a 7-days incubation, implying lower microbial activity. Microorganisms in both soil types appear to be more readily active in soils under forest, since we observed a distinct lag time between 13C glucose addition and respiration under cassava planation. This indicated differences in microbial community structure, which we will assess further by determining the 13C label uptake by the microbial biomass and the microbial community structure using 13C PLFA analysis. Preliminary results from synchrotron-based STXM demonstrate a distinct arrangement of OM at fine-sized charcoal-particle interfaces. Samples of soils receiving 13C label will be further analysed by NanoSIMS with the hypothesis that charcoal interfaces foster nutrient dynamics at the microscale. Despite the high loss of OC in the ameliorated ADE through land use change, the remaining OM might improve the nutrient availability thanks to charcoal interactions compared to the ACR. Our results contribute to a better understanding of the sensitivity of OM upon land use change and how the microbial community is responding to land use change in highly weathered tropical soils.
How to cite: Jarosch, K., Colocho Hurtarte, L. C., Gavazov, K., Westphal Muniz, A., Müller, C., and Schweizer, S.: Land use change in Amazonian Dark Earth and Acrisol: Responses of organic carbon, organic matter composition and microbial carbon utilisation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19752, https://doi.org/10.5194/egusphere-egu2020-19752, 2020.
The conversion of tropical forest for cassava cultivation is widely known to decrease the soil organic matter (OM) and nutrient contents of highly weathered soils in the tropics. Amazonian Dark Earth (ADE) might be affected less due to their historical anthropogenic amelioration with e.g. charcoal, ceramics and bones, leading to higher soil OM and nutrient concentrations. In this study, we analysed the effect of land use change on the OM dynamics and its composition under tropical conditions, using ADE and an adjacent Acrisol (ACR) as model systems. Soil samples were obtained south of Manaus (Brazil), from a secondary forest and an adjacently located 40-year-old cassava plantation. The land use change induced a severe decrease of organic carbon (OC) concentrations in ADE (from 35 to 15 g OC kg‑1) while OC in the adjacent ACR was less affected (18 to 16 g OC kg‑1). Soils were analysed by 13C NMR spectroscopy to obtain information on how the conversion of secondary forest to cassava affected the chemical composition of OM. Our results show that land use change induces differences in the OM composition: The OM in ADE changes to a more decomposed state (increase of alkyl:O/N-alkyl ratio) whereas the OM in ACR changes to a less decomposed state (decrease of alkyl:O/N-alkyl ratio). According to a molecular mixing model, land use change influenced mostly the proportion of lipids, which might be related with a change of the plant input. The incubation of the soils with 13C glucose enabled resolving how soil microorganisms were affected by land use change. In both soil types ADE and ACR, land use change caused a reduction of the total 13C glucose respiration by approximately one third in a 7-days incubation, implying lower microbial activity. Microorganisms in both soil types appear to be more readily active in soils under forest, since we observed a distinct lag time between 13C glucose addition and respiration under cassava planation. This indicated differences in microbial community structure, which we will assess further by determining the 13C label uptake by the microbial biomass and the microbial community structure using 13C PLFA analysis. Preliminary results from synchrotron-based STXM demonstrate a distinct arrangement of OM at fine-sized charcoal-particle interfaces. Samples of soils receiving 13C label will be further analysed by NanoSIMS with the hypothesis that charcoal interfaces foster nutrient dynamics at the microscale. Despite the high loss of OC in the ameliorated ADE through land use change, the remaining OM might improve the nutrient availability thanks to charcoal interactions compared to the ACR. Our results contribute to a better understanding of the sensitivity of OM upon land use change and how the microbial community is responding to land use change in highly weathered tropical soils.
How to cite: Jarosch, K., Colocho Hurtarte, L. C., Gavazov, K., Westphal Muniz, A., Müller, C., and Schweizer, S.: Land use change in Amazonian Dark Earth and Acrisol: Responses of organic carbon, organic matter composition and microbial carbon utilisation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19752, https://doi.org/10.5194/egusphere-egu2020-19752, 2020.
EGU2020-3658 | Displays | BG3.30
Soil organic carbon sequestration potential of reforesting riparian areas in an agricultural watershed in the state of São Paulo, BrazilLeonardo de Aro Galera and Luiz Antonio Martinelli
Fighting climate change has never been so urgent as today. As geoscientific research advances, more realistic and appalling future climate scenarios are unraveled. Decreasing greenhouse gases (GHG) emissions is not sufficient to avoid a bad outcome; hence, mitigation actions are needed to reduce climate-related risks in the future. The depletion of the soil organic carbon (SOC) pool due to land use change and soil degradation have substantially contributed to the increase in the atmospheric CO2 concentration. Likewise, the sequestration of C by the soil is crucial to reverse this issue. These are especially important processes in the tropics where the replacement of native vegetation by agriculture still occurs at a high rate. Brazil is one of the biggest agricultural producers in the world. In 2018, agriculture and land use change represented 70% of the total Brazilian GHG emissions. Fortunately, Brazil also has opportune mitigation options. Since 1965, the Brazilian Forest Code requires landowners to conserve native vegetation by means of Riparian Preservation Areas, among other categories. Riparian forests provides several ecosystem services like water protection, biodiversity conservation and carbon sequestration. Frequently, the discussion over the carbon sequestration potential of riparian forests focus on the aboveground carbon, nevertheless, SOC stocks are more stable and protected from natural and anthropogenic hazards. We consider that the mandatory reforestation of riparian zones is a significant mitigation strategy in Brazil, owing to the potential of SOC sequestration by Brazilian biomes and the extensive area to be reforested. The objective of this study was to assess the SOC stocks of the main land uses of an agricultural watershed located in the state of São Paulo, Southeastern Brazil, and estimate the change in the SOC stocks that would occur with the reforestation of the riparian areas of this watershed. In order to achieve this goal, we compared the SOC stocks of riparian forests with the two main agricultural uses of the region, namely pasture and sugarcane. The mean SOC stock at 30 cm for riparian forests was of 44 Mg.ha-1, for pastures was of 26 Mg.ha-1 and for sugarcane was of 27 Mg.ha-1. Although the riparian forests of the region are often poorly preserved, they contained considerably more SOC at 30 cm than the agricultural uses. Based on the estimates of the SOC stocks of the main land uses and the extent of the riparian zones of the sampled sites, we could foresee an accretion of 20% of organic carbon in the 30 cm soil layer of those areas. We hope that this study highlight the importance of the riparian forests and the ecosystem services they provide, and the relevance of the Brazilian Forest Code in the mitigation of climate change.
How to cite: Galera, L. D. A. and Martinelli, L. A.: Soil organic carbon sequestration potential of reforesting riparian areas in an agricultural watershed in the state of São Paulo, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3658, https://doi.org/10.5194/egusphere-egu2020-3658, 2020.
Fighting climate change has never been so urgent as today. As geoscientific research advances, more realistic and appalling future climate scenarios are unraveled. Decreasing greenhouse gases (GHG) emissions is not sufficient to avoid a bad outcome; hence, mitigation actions are needed to reduce climate-related risks in the future. The depletion of the soil organic carbon (SOC) pool due to land use change and soil degradation have substantially contributed to the increase in the atmospheric CO2 concentration. Likewise, the sequestration of C by the soil is crucial to reverse this issue. These are especially important processes in the tropics where the replacement of native vegetation by agriculture still occurs at a high rate. Brazil is one of the biggest agricultural producers in the world. In 2018, agriculture and land use change represented 70% of the total Brazilian GHG emissions. Fortunately, Brazil also has opportune mitigation options. Since 1965, the Brazilian Forest Code requires landowners to conserve native vegetation by means of Riparian Preservation Areas, among other categories. Riparian forests provides several ecosystem services like water protection, biodiversity conservation and carbon sequestration. Frequently, the discussion over the carbon sequestration potential of riparian forests focus on the aboveground carbon, nevertheless, SOC stocks are more stable and protected from natural and anthropogenic hazards. We consider that the mandatory reforestation of riparian zones is a significant mitigation strategy in Brazil, owing to the potential of SOC sequestration by Brazilian biomes and the extensive area to be reforested. The objective of this study was to assess the SOC stocks of the main land uses of an agricultural watershed located in the state of São Paulo, Southeastern Brazil, and estimate the change in the SOC stocks that would occur with the reforestation of the riparian areas of this watershed. In order to achieve this goal, we compared the SOC stocks of riparian forests with the two main agricultural uses of the region, namely pasture and sugarcane. The mean SOC stock at 30 cm for riparian forests was of 44 Mg.ha-1, for pastures was of 26 Mg.ha-1 and for sugarcane was of 27 Mg.ha-1. Although the riparian forests of the region are often poorly preserved, they contained considerably more SOC at 30 cm than the agricultural uses. Based on the estimates of the SOC stocks of the main land uses and the extent of the riparian zones of the sampled sites, we could foresee an accretion of 20% of organic carbon in the 30 cm soil layer of those areas. We hope that this study highlight the importance of the riparian forests and the ecosystem services they provide, and the relevance of the Brazilian Forest Code in the mitigation of climate change.
How to cite: Galera, L. D. A. and Martinelli, L. A.: Soil organic carbon sequestration potential of reforesting riparian areas in an agricultural watershed in the state of São Paulo, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3658, https://doi.org/10.5194/egusphere-egu2020-3658, 2020.
EGU2020-21746 | Displays | BG3.30
Effects of tree species on soil enzyme activities in natural mixed forest and monoculture plantations in EthiopiaIftekhar Uddin Ahmed, Hodaddis K Mengistie, Hans Sandén, and Douglas Godbold
Soil extracellular enzymes are crucial for belowground functioning and are sensitive to anthropogenic land use change. The potential effects of tree species on soil microbial and biochemical properties provide crucial feedbacks on mineralization, a key ecosystem function beneath the tree canopy. In the highlands of northern Ethiopia, remnants of the original Afromontane forests are largely restricted to church forests with indigenous tree species. However the impacts on potential soil enzymatic activity by conversion of those forests to monocultures for wood production is largely unknown. We investigated potential soil enzyme activities under four indigenous tree species and adjacent Eucalyptus globulus and Cupressus lusitanica plantations in Gelawdios, Amhara Regional State, Ethiopia. The potential activities of six enzymes associated with soil C, N and P cycling were measured following the fluorometrically labelled substrates techniques. All enzymes exhibited significantly higher activities in soils under the indigenous trees than the plantation species except, N-acetylglucosaminidase, that was the highest in Eucalyptus globulus soil due to the ectomycorrhizae, associated with the Eucalyptus root systems. Among the four indigenous species Apodytes dimidiata showed the lowest activitie for most of the enzymes. A stronger positive correlation was observed between enzyme activity and total N than with total C in the soil. Acid phosphatase had the highest activity followed by β-Glucosidase (482 and 167 nmol mg-1 microbial biomass respectively). The activities of leucine aminopeptidase, β-xylosidase, N-Acetylglucosaminidase and cellobiohydrolase in soils under indigenous trees ranged between 63-23 nmol mg-1 microbial biomass. The species specific effects of trees on soil enzyme activities indicate strong influence of tree traits on mineralization processes.
How to cite: Ahmed, I. U., Mengistie, H. K., Sandén, H., and Godbold, D.: Effects of tree species on soil enzyme activities in natural mixed forest and monoculture plantations in Ethiopia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21746, https://doi.org/10.5194/egusphere-egu2020-21746, 2020.
Soil extracellular enzymes are crucial for belowground functioning and are sensitive to anthropogenic land use change. The potential effects of tree species on soil microbial and biochemical properties provide crucial feedbacks on mineralization, a key ecosystem function beneath the tree canopy. In the highlands of northern Ethiopia, remnants of the original Afromontane forests are largely restricted to church forests with indigenous tree species. However the impacts on potential soil enzymatic activity by conversion of those forests to monocultures for wood production is largely unknown. We investigated potential soil enzyme activities under four indigenous tree species and adjacent Eucalyptus globulus and Cupressus lusitanica plantations in Gelawdios, Amhara Regional State, Ethiopia. The potential activities of six enzymes associated with soil C, N and P cycling were measured following the fluorometrically labelled substrates techniques. All enzymes exhibited significantly higher activities in soils under the indigenous trees than the plantation species except, N-acetylglucosaminidase, that was the highest in Eucalyptus globulus soil due to the ectomycorrhizae, associated with the Eucalyptus root systems. Among the four indigenous species Apodytes dimidiata showed the lowest activitie for most of the enzymes. A stronger positive correlation was observed between enzyme activity and total N than with total C in the soil. Acid phosphatase had the highest activity followed by β-Glucosidase (482 and 167 nmol mg-1 microbial biomass respectively). The activities of leucine aminopeptidase, β-xylosidase, N-Acetylglucosaminidase and cellobiohydrolase in soils under indigenous trees ranged between 63-23 nmol mg-1 microbial biomass. The species specific effects of trees on soil enzyme activities indicate strong influence of tree traits on mineralization processes.
How to cite: Ahmed, I. U., Mengistie, H. K., Sandén, H., and Godbold, D.: Effects of tree species on soil enzyme activities in natural mixed forest and monoculture plantations in Ethiopia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21746, https://doi.org/10.5194/egusphere-egu2020-21746, 2020.
EGU2020-13578 | Displays | BG3.30
How land management and water availability control ecosystem-atmosphere carbon exchange in the Karoo, South AfricaOksana Rybchak, Kanisios Mukwashi, Justin Du Toit, Gregor Feig, Mari Bieri, and Christian Brümmer
South African ecosystems are highly vulnerable to the effects of climate change, such as increasing temperatures, modifications in rainfall patterns, increasing frequency of extreme weather events and fire, and increased concentration of atmospheric carbon dioxide (CO2). At the same time, ecosystems are impacted by livestock grazing, cultivation, fuelwood collection, urbanization and other types of human land use. Climatic and land management factors, such as water availability and grazing intensity, play a dominant role in influencing primary production and carbon fluxes. However, the relative role of those parameters still remains less known in many South African ecosystems. Investigation of the carbon inter-annual variability at dwarf shrub Karoo sites will assist in understanding savanna dynamics and in constraining climate change scenarios as basis for climate adaptation strategies.
This research is part of the EMSAfrica (Ecosystem Management Support for Climate Change in Southern Africa) project, which aims at producing data and information relevant to land users and land managers such as South African National Parks (SANParks). A particular focus is given on the importance of carbon cycling in degraded vs. intact systems. We investigate the impacts of climate parameters and diverse land management on ecosystem-atmosphere variability of carbon fluxes, latent and sensible energy. Long-term measurements were collected and analyzed from two eddy-covariance towers in the Karoo, Eastern Cape, South Africa. Study areas had almost identical climatic conditions but differ in the intensity of livestock grazing. The first site represents controlled grazing and comprises a diverse balance of dwarf shrubs and grasses, while the second site is degraded through overgrazing in the past (rested for approximately 8 years) and mainly consists of unpalatable grasses and short-lived species. These ecosystems are generally characterized by alternating wet (December to May) and dry seasons (June to November) with the amount and distribution of rain (average 373 mm per year) and soil moisture as the main drivers of carbon fluxes. We observed peak CO2 uptake occurring during the wet season (January to April) and a progressive decrease from wet to dry periods being highly controlled by the amount of precipitation. At the end of the observation period (November 2015 – November 2019), we found that both study sites were considerable carbon sources, but during wet periods 'overgrazed in the past' site had stronger carbon sequestration compared to 'controlled grazing' site. The higher carbon uptake could be an indication that resting of the highly degraded site for a long period may improve carbon uptake in the Karoo ecosystems. Our study shows that CO2 dynamics in the Karoo are largely driven by water availability and the effects of grazing intensity on above-ground biomass.
How to cite: Rybchak, O., Mukwashi, K., Du Toit, J., Feig, G., Bieri, M., and Brümmer, C.: How land management and water availability control ecosystem-atmosphere carbon exchange in the Karoo, South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13578, https://doi.org/10.5194/egusphere-egu2020-13578, 2020.
South African ecosystems are highly vulnerable to the effects of climate change, such as increasing temperatures, modifications in rainfall patterns, increasing frequency of extreme weather events and fire, and increased concentration of atmospheric carbon dioxide (CO2). At the same time, ecosystems are impacted by livestock grazing, cultivation, fuelwood collection, urbanization and other types of human land use. Climatic and land management factors, such as water availability and grazing intensity, play a dominant role in influencing primary production and carbon fluxes. However, the relative role of those parameters still remains less known in many South African ecosystems. Investigation of the carbon inter-annual variability at dwarf shrub Karoo sites will assist in understanding savanna dynamics and in constraining climate change scenarios as basis for climate adaptation strategies.
This research is part of the EMSAfrica (Ecosystem Management Support for Climate Change in Southern Africa) project, which aims at producing data and information relevant to land users and land managers such as South African National Parks (SANParks). A particular focus is given on the importance of carbon cycling in degraded vs. intact systems. We investigate the impacts of climate parameters and diverse land management on ecosystem-atmosphere variability of carbon fluxes, latent and sensible energy. Long-term measurements were collected and analyzed from two eddy-covariance towers in the Karoo, Eastern Cape, South Africa. Study areas had almost identical climatic conditions but differ in the intensity of livestock grazing. The first site represents controlled grazing and comprises a diverse balance of dwarf shrubs and grasses, while the second site is degraded through overgrazing in the past (rested for approximately 8 years) and mainly consists of unpalatable grasses and short-lived species. These ecosystems are generally characterized by alternating wet (December to May) and dry seasons (June to November) with the amount and distribution of rain (average 373 mm per year) and soil moisture as the main drivers of carbon fluxes. We observed peak CO2 uptake occurring during the wet season (January to April) and a progressive decrease from wet to dry periods being highly controlled by the amount of precipitation. At the end of the observation period (November 2015 – November 2019), we found that both study sites were considerable carbon sources, but during wet periods 'overgrazed in the past' site had stronger carbon sequestration compared to 'controlled grazing' site. The higher carbon uptake could be an indication that resting of the highly degraded site for a long period may improve carbon uptake in the Karoo ecosystems. Our study shows that CO2 dynamics in the Karoo are largely driven by water availability and the effects of grazing intensity on above-ground biomass.
How to cite: Rybchak, O., Mukwashi, K., Du Toit, J., Feig, G., Bieri, M., and Brümmer, C.: How land management and water availability control ecosystem-atmosphere carbon exchange in the Karoo, South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13578, https://doi.org/10.5194/egusphere-egu2020-13578, 2020.
EGU2020-12657 | Displays | BG3.30
Continuous observations of CO2, H2O and CH4 exchange in an East-African rangelandLutz Merbold, Thomas Dowling, Sonja Leitner, Martin Wooster, Anton Vrieling, Francesco Fava, and Ilona Gluecks
Semi-arid rangelands, common across Sub-Saharan Africa (SSA), are under increased anthropogenic pressure by a growing population and the necessity to produce sufficient amounts of food and nutrition. Rangelands in SSA are characterized by nutrient-poor soils and distinct wet and dry season(s). Due to the soil and climate combination, conventional crop farming is often not feasible without additional inputs in terms of water and mineral fertilizer. Instead, livestock keeping constitutes a valuable option to use these marginal lands and has been practiced in SSA for centuries. As a result, livestock and wildlife jointly feed on these pastures, a trait that distinguishes these systems from most western rangelands, where large herbivore herds are the exception rather than the norm. To date a thorough, climate-smart assessment that includes continuous greenhouse gas (GHG) exchange measurements in combined wildlife-livestock systems has not been undertaken. Here we provide eddy covariance (EC) measurements of CO2/CH4/H2O from Kapiti Research Station in Kenya - a benchmark site for sustainable food production while also hosting wildlife. The GHG exchange measurements were complemented with wildlife camera traps to monitor both animal movement as well as plant phenology in the footprint of the EC tower. Our results show continuous CO2 uptake during the wet seasons with considerable CO2 emissions following distinct (>10mm) precipitation events after prolonged dry periods. Temporal dynamics of net ecosystem exchange of CO2 was strongly correlated with canopy greenness (green chromatic coordinate) derived from field camera imagery. Methane flux measurements were highly variable and were particularly related to the presence of wildlife and/or livestock in the fetch of the EC tower. Our data suggest that these rangeland systems are accumulating carbon and thus compensate the methane emissions from livestock.
How to cite: Merbold, L., Dowling, T., Leitner, S., Wooster, M., Vrieling, A., Fava, F., and Gluecks, I.: Continuous observations of CO2, H2O and CH4 exchange in an East-African rangeland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12657, https://doi.org/10.5194/egusphere-egu2020-12657, 2020.
Semi-arid rangelands, common across Sub-Saharan Africa (SSA), are under increased anthropogenic pressure by a growing population and the necessity to produce sufficient amounts of food and nutrition. Rangelands in SSA are characterized by nutrient-poor soils and distinct wet and dry season(s). Due to the soil and climate combination, conventional crop farming is often not feasible without additional inputs in terms of water and mineral fertilizer. Instead, livestock keeping constitutes a valuable option to use these marginal lands and has been practiced in SSA for centuries. As a result, livestock and wildlife jointly feed on these pastures, a trait that distinguishes these systems from most western rangelands, where large herbivore herds are the exception rather than the norm. To date a thorough, climate-smart assessment that includes continuous greenhouse gas (GHG) exchange measurements in combined wildlife-livestock systems has not been undertaken. Here we provide eddy covariance (EC) measurements of CO2/CH4/H2O from Kapiti Research Station in Kenya - a benchmark site for sustainable food production while also hosting wildlife. The GHG exchange measurements were complemented with wildlife camera traps to monitor both animal movement as well as plant phenology in the footprint of the EC tower. Our results show continuous CO2 uptake during the wet seasons with considerable CO2 emissions following distinct (>10mm) precipitation events after prolonged dry periods. Temporal dynamics of net ecosystem exchange of CO2 was strongly correlated with canopy greenness (green chromatic coordinate) derived from field camera imagery. Methane flux measurements were highly variable and were particularly related to the presence of wildlife and/or livestock in the fetch of the EC tower. Our data suggest that these rangeland systems are accumulating carbon and thus compensate the methane emissions from livestock.
How to cite: Merbold, L., Dowling, T., Leitner, S., Wooster, M., Vrieling, A., Fava, F., and Gluecks, I.: Continuous observations of CO2, H2O and CH4 exchange in an East-African rangeland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12657, https://doi.org/10.5194/egusphere-egu2020-12657, 2020.
EGU2020-22135 | Displays | BG3.30
Earth Observation models help management of tropical dry savannah forests in the Okavango-Zambezi transfrontier conservation zone (KAZA) region of Southern Africa.Ruusa David, Daniel Donoghue, and Nick Rosser
The Kavango Zambezi Transfrontier Conservation Area (KAZA) is the World’s largest conservation area with an enclosed area the size of Sweden (519,912 km2), and is characterized by savannah forest, woodland and protected lands. KAZA is situated at the heart of the area most vulnerable to climate change in Africa, and forest loss and degradation are major concerns which directly impact wildlife species distributions and a growing human populations. In particular, detailed knowledge of current vegetation density change and forest area estimates throughout the conservation area is sorely missing, which hampers all efforts to mitigate the threats against KAZA and its unique ecosystems. A combination of remotely sensed data and plot-based estimates can provide forest area estimates and above ground biomass (AGB). Previous AGB mapping efforts in Africa focused on tropical humid forests, with little attention on tropical and subtropical savannah forest. The aim of the current study was to establish a link between remote sensing spectral data derived from Landsat 8 and ground characteristics to improve precision of AGB and forest area estimates in savannah forest. We used 114 sample plots distributed on 6 clusters collected over the 2019 winter growing season in Chobe National Park of Botswana and Landsat 8 spectral variables.
Restricting analysis to sampling dates, before the onset of fire burning and leaf yellowing resulted in increased estimation accuracy. We found a linear relationship between above ground biomass and Landsat 8 derived spectral variables (p < 0.001 and p < 0.005). The normalized difference vegetation index (NDVI) and Green-Red Difference Index (GRVI) exhibited a strong correlation with AGB than other indices (R2 = 0.76) and (R2 = 0.67), respectively. An improvement in the correlation is seen when AGB (t/ha) and variables relationship is performed in the woodland/forest cluster (n=74), excluding the shrubland and grassland. The AGB of savannah forest in the study area based on spatial analysis was 111.6 Mg/ha. A root-mean-square error (RMSE) value from predicted and observed AGB was 25.6 Mg/ha. The high total AGB value from savannah forest in the study area highlight the importance of the savannah-forest mosaic as a biomass storage and carbon pool. Overall, spectral variables and indices, particularly the NDVI and GRVI and Landsat 8 band 5 (NIR), would be useful predictors and suitable auxiliary information of AGB in the savannah forest. The results of this study show that taking into account stratification/clustering of different vegetation types and senescence period can greatly increase the accuracy of AGB estimation. This results will allow us to build new models to quantify savannah forest change and long-term trends using Landsat time series from 1980 to 2019. Time series modelling will help inform how changing climate threaten the biodiversity of the KAZA region and be able to respond to these threats with appropriate, evidence-based strategies and measures.
How to cite: David, R., Donoghue, D., and Rosser, N.: Earth Observation models help management of tropical dry savannah forests in the Okavango-Zambezi transfrontier conservation zone (KAZA) region of Southern Africa., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22135, https://doi.org/10.5194/egusphere-egu2020-22135, 2020.
The Kavango Zambezi Transfrontier Conservation Area (KAZA) is the World’s largest conservation area with an enclosed area the size of Sweden (519,912 km2), and is characterized by savannah forest, woodland and protected lands. KAZA is situated at the heart of the area most vulnerable to climate change in Africa, and forest loss and degradation are major concerns which directly impact wildlife species distributions and a growing human populations. In particular, detailed knowledge of current vegetation density change and forest area estimates throughout the conservation area is sorely missing, which hampers all efforts to mitigate the threats against KAZA and its unique ecosystems. A combination of remotely sensed data and plot-based estimates can provide forest area estimates and above ground biomass (AGB). Previous AGB mapping efforts in Africa focused on tropical humid forests, with little attention on tropical and subtropical savannah forest. The aim of the current study was to establish a link between remote sensing spectral data derived from Landsat 8 and ground characteristics to improve precision of AGB and forest area estimates in savannah forest. We used 114 sample plots distributed on 6 clusters collected over the 2019 winter growing season in Chobe National Park of Botswana and Landsat 8 spectral variables.
Restricting analysis to sampling dates, before the onset of fire burning and leaf yellowing resulted in increased estimation accuracy. We found a linear relationship between above ground biomass and Landsat 8 derived spectral variables (p < 0.001 and p < 0.005). The normalized difference vegetation index (NDVI) and Green-Red Difference Index (GRVI) exhibited a strong correlation with AGB than other indices (R2 = 0.76) and (R2 = 0.67), respectively. An improvement in the correlation is seen when AGB (t/ha) and variables relationship is performed in the woodland/forest cluster (n=74), excluding the shrubland and grassland. The AGB of savannah forest in the study area based on spatial analysis was 111.6 Mg/ha. A root-mean-square error (RMSE) value from predicted and observed AGB was 25.6 Mg/ha. The high total AGB value from savannah forest in the study area highlight the importance of the savannah-forest mosaic as a biomass storage and carbon pool. Overall, spectral variables and indices, particularly the NDVI and GRVI and Landsat 8 band 5 (NIR), would be useful predictors and suitable auxiliary information of AGB in the savannah forest. The results of this study show that taking into account stratification/clustering of different vegetation types and senescence period can greatly increase the accuracy of AGB estimation. This results will allow us to build new models to quantify savannah forest change and long-term trends using Landsat time series from 1980 to 2019. Time series modelling will help inform how changing climate threaten the biodiversity of the KAZA region and be able to respond to these threats with appropriate, evidence-based strategies and measures.
How to cite: David, R., Donoghue, D., and Rosser, N.: Earth Observation models help management of tropical dry savannah forests in the Okavango-Zambezi transfrontier conservation zone (KAZA) region of Southern Africa., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22135, https://doi.org/10.5194/egusphere-egu2020-22135, 2020.
EGU2020-389 | Displays | BG3.30
Multi-temporal mapping of pantropical post-loss land cover using dense earth-observation time series and global pre-existing mapsAlejandro Coca Castro, Louis Reymondin, and Mark Mulligan
Deforestation remains one of the largest contributors to global greenhouse emissions. Despite the efforts in monitoring forest change, there is still a lack of pan-tropical spatially-explicit data informing the subsequent land cover (LC) changes over deforested areas (also known as post-loss LC). Based on this premise, this research focuses on predicting post-loss LC over deforested areas as detected by Terra-i, an early warning system of pantropical forest change providing alerts every 16-days from 2004 to present at spatial resolution of 250 m. A supervised deep neural network model suited to extract spatio-temporal patterns from dense earth observation time series data was leveraged in this work by using 16-day MODIS images of 2015. The model was trained according to nine labelled datasets representing different number of LC classes and complexity. These datasets were generated from pre-existing global LC maps with a native spatial resolution ranging from 100 m to 500 m. The effectiveness of the trained models in producing accurate predictions of post-loss LC was assessed over the Amazon region, the largest continuous region of tropical forest in the world. A two-stage assessment approach was conducted to determine the most suitable labelled datasets to predict post-loss LC over Terra-i’s areas. For the first stage, traditional metrics for the assessment of the quality of LC thematic data — e.g. overall accuracy, per-class mapping accuracy, area (or quantity) disagreement and allocation disagreement — were computed according to the test partitions from the labelled datasets. A second stage consisted in using the trained models in 2015 to make predictions for all available years of MODIS satellite imagery, from 2001 to 2018, across seven representative areas distributed in the Amazon. The observed LC predictions were masked using annual aggregated data of Terra-i from 2004 to 2010. The post-LC data by trained model, which represents a given labelled dataset, was verified by i) visualising the temporal and spatial distribution of the most frequent subsequent LC changes; and ii) comparing with Mapbiomas Amazonia, a regional-tuned multi-temporal LC dataset from 2000 to 2017 for the whole Amazon. The results showed that one out of the nine labelled datasets allowed the supervised deep learning model to produce reasonable spatial predictions and classification accuracies (overall accuracy of 86.36±0.64, area disagreement of 5.34±0.39 and allocation disagreement of 8.31±0.64) according to the test partition data. Moreover, the trained model provided similar patterns of post-loss LC as informed by the Mapbiomas dataset. Due to the nature of the model (i.e. neural network) and input data (i.e. global), it is expected the model is scalable to other pantropical areas. The insights and products derived throughout this study are targeted to reduce current uncertainties and challenges in the calculation of global and regional drivers and impacts of deforestation in tropical forests and landscapes.
How to cite: Coca Castro, A., Reymondin, L., and Mulligan, M.: Multi-temporal mapping of pantropical post-loss land cover using dense earth-observation time series and global pre-existing maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-389, https://doi.org/10.5194/egusphere-egu2020-389, 2020.
Deforestation remains one of the largest contributors to global greenhouse emissions. Despite the efforts in monitoring forest change, there is still a lack of pan-tropical spatially-explicit data informing the subsequent land cover (LC) changes over deforested areas (also known as post-loss LC). Based on this premise, this research focuses on predicting post-loss LC over deforested areas as detected by Terra-i, an early warning system of pantropical forest change providing alerts every 16-days from 2004 to present at spatial resolution of 250 m. A supervised deep neural network model suited to extract spatio-temporal patterns from dense earth observation time series data was leveraged in this work by using 16-day MODIS images of 2015. The model was trained according to nine labelled datasets representing different number of LC classes and complexity. These datasets were generated from pre-existing global LC maps with a native spatial resolution ranging from 100 m to 500 m. The effectiveness of the trained models in producing accurate predictions of post-loss LC was assessed over the Amazon region, the largest continuous region of tropical forest in the world. A two-stage assessment approach was conducted to determine the most suitable labelled datasets to predict post-loss LC over Terra-i’s areas. For the first stage, traditional metrics for the assessment of the quality of LC thematic data — e.g. overall accuracy, per-class mapping accuracy, area (or quantity) disagreement and allocation disagreement — were computed according to the test partitions from the labelled datasets. A second stage consisted in using the trained models in 2015 to make predictions for all available years of MODIS satellite imagery, from 2001 to 2018, across seven representative areas distributed in the Amazon. The observed LC predictions were masked using annual aggregated data of Terra-i from 2004 to 2010. The post-LC data by trained model, which represents a given labelled dataset, was verified by i) visualising the temporal and spatial distribution of the most frequent subsequent LC changes; and ii) comparing with Mapbiomas Amazonia, a regional-tuned multi-temporal LC dataset from 2000 to 2017 for the whole Amazon. The results showed that one out of the nine labelled datasets allowed the supervised deep learning model to produce reasonable spatial predictions and classification accuracies (overall accuracy of 86.36±0.64, area disagreement of 5.34±0.39 and allocation disagreement of 8.31±0.64) according to the test partition data. Moreover, the trained model provided similar patterns of post-loss LC as informed by the Mapbiomas dataset. Due to the nature of the model (i.e. neural network) and input data (i.e. global), it is expected the model is scalable to other pantropical areas. The insights and products derived throughout this study are targeted to reduce current uncertainties and challenges in the calculation of global and regional drivers and impacts of deforestation in tropical forests and landscapes.
How to cite: Coca Castro, A., Reymondin, L., and Mulligan, M.: Multi-temporal mapping of pantropical post-loss land cover using dense earth-observation time series and global pre-existing maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-389, https://doi.org/10.5194/egusphere-egu2020-389, 2020.
EGU2020-18104 | Displays | BG3.30 | Highlight
Mapping Forest Degradation with ALOS PALSAR: Case studies from Mexico and GhanaCharlotte Wheeler, Edward Mitchard, Hugo Nolasco Rayes, and Yakubu Mohammed
Forest degradation is one of the least understood processes in the terrestrial biome. Information about both the extent and rate of degradation is limited; meaning that estimation of subsequent carbon emissions are poorly quantified. Countries are required to report emissions from forest degradation to the UNFCCC, therefore, increased efforts to improve mapping and monitoring of forest degradation are essential for national reporting. As forest degradation is related to more subtle changes within a forest, resulting from loss of trees, then earth observation technologies, which can quantify changes in Aboveground Biomass (AGB) offer great opportunities in mapping forest degradation.
We test a methodology for monitoring forest degradation, which combines time-series forest plot data with L-band Synthetic Aperture Radar (SAR) data (ALOS/ ALOS-2) to map changes in AGB over time. We test this method in two countries (Mexico and Ghana), to determine if a single methodology can be used to map forest degradation across the tropics. Our study-sites span two tropical continents, covering a range of precipitation, AGB values, forest types, and modes of degradation, from seasonally dry pine forests in Mexico to humid lowland forests in Ghana,
In lower biomass forest, we could map changes in AGB over time, including small AGB losses, associated with minor degradation events (<20% loss of AGB). These minor degradation events are far more widespread than major degradation events (>50% loss of AGB) and therefore are an important source of emissions from degradation. However, in high biomass forest there was some saturation of the radar backscatter signal (>200 Mg ha-1).
The use of ground-based AGB change data is essential for calibration of SAR data, therefore well managed national forest plot networks, which include degraded forest, are essential for accurate monitoring of degradation. Additionally, using longer wavelength P-Band SAR data, alongside L-Band SAR, could help overcome some issues related to saturation in high biomass forest. If this method were adopted at the regional or national level, it would allow countries, particularly those with lower biomass forest, to quantify emissions from degradation more accurately.
How to cite: Wheeler, C., Mitchard, E., Nolasco Rayes, H., and Mohammed, Y.: Mapping Forest Degradation with ALOS PALSAR: Case studies from Mexico and Ghana, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18104, https://doi.org/10.5194/egusphere-egu2020-18104, 2020.
Forest degradation is one of the least understood processes in the terrestrial biome. Information about both the extent and rate of degradation is limited; meaning that estimation of subsequent carbon emissions are poorly quantified. Countries are required to report emissions from forest degradation to the UNFCCC, therefore, increased efforts to improve mapping and monitoring of forest degradation are essential for national reporting. As forest degradation is related to more subtle changes within a forest, resulting from loss of trees, then earth observation technologies, which can quantify changes in Aboveground Biomass (AGB) offer great opportunities in mapping forest degradation.
We test a methodology for monitoring forest degradation, which combines time-series forest plot data with L-band Synthetic Aperture Radar (SAR) data (ALOS/ ALOS-2) to map changes in AGB over time. We test this method in two countries (Mexico and Ghana), to determine if a single methodology can be used to map forest degradation across the tropics. Our study-sites span two tropical continents, covering a range of precipitation, AGB values, forest types, and modes of degradation, from seasonally dry pine forests in Mexico to humid lowland forests in Ghana,
In lower biomass forest, we could map changes in AGB over time, including small AGB losses, associated with minor degradation events (<20% loss of AGB). These minor degradation events are far more widespread than major degradation events (>50% loss of AGB) and therefore are an important source of emissions from degradation. However, in high biomass forest there was some saturation of the radar backscatter signal (>200 Mg ha-1).
The use of ground-based AGB change data is essential for calibration of SAR data, therefore well managed national forest plot networks, which include degraded forest, are essential for accurate monitoring of degradation. Additionally, using longer wavelength P-Band SAR data, alongside L-Band SAR, could help overcome some issues related to saturation in high biomass forest. If this method were adopted at the regional or national level, it would allow countries, particularly those with lower biomass forest, to quantify emissions from degradation more accurately.
How to cite: Wheeler, C., Mitchard, E., Nolasco Rayes, H., and Mohammed, Y.: Mapping Forest Degradation with ALOS PALSAR: Case studies from Mexico and Ghana, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18104, https://doi.org/10.5194/egusphere-egu2020-18104, 2020.
EGU2020-1993 | Displays | BG3.30
A new perspective for transpiration estimation using an extended framework of isohydricity linking to drought-driven changes in VPD and leaf areaChangming Li and Hanbo Yang
The framework of isohydry or anisohydry, which is usually defined as the sensitivity of leaf water potential (ΨL) to soil water potential (Ψs), has been rapidly adopted to solve a range of eco-hydrologic problems. While its reliability to describe the impacts of land-atmosphere interaction and seasonal phenology on plants has been recently questioned. In this study, we propose an expansion of the modern isohydricity framework to coordinate the dynamics of ΨL derived from vapor pressure deficit (VPD) and leaf area index (AL), respectively. The contributions of VPD and AL to the sensitivity of ΨL to Ψs are calculated and further evaluated using the FLUXNET dataset, as to validate the applicability of the extended concept. Then, we suggested a new method to calculate transpiration based on the new framework to establish relationship between ΨL and Ψs at ecosystem scale. Our results illustrate that the new framework is reasonable for describing the dynamics of ΨL and provides a promising potential for transpiration estimation.
How to cite: Li, C. and Yang, H.: A new perspective for transpiration estimation using an extended framework of isohydricity linking to drought-driven changes in VPD and leaf area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1993, https://doi.org/10.5194/egusphere-egu2020-1993, 2020.
The framework of isohydry or anisohydry, which is usually defined as the sensitivity of leaf water potential (ΨL) to soil water potential (Ψs), has been rapidly adopted to solve a range of eco-hydrologic problems. While its reliability to describe the impacts of land-atmosphere interaction and seasonal phenology on plants has been recently questioned. In this study, we propose an expansion of the modern isohydricity framework to coordinate the dynamics of ΨL derived from vapor pressure deficit (VPD) and leaf area index (AL), respectively. The contributions of VPD and AL to the sensitivity of ΨL to Ψs are calculated and further evaluated using the FLUXNET dataset, as to validate the applicability of the extended concept. Then, we suggested a new method to calculate transpiration based on the new framework to establish relationship between ΨL and Ψs at ecosystem scale. Our results illustrate that the new framework is reasonable for describing the dynamics of ΨL and provides a promising potential for transpiration estimation.
How to cite: Li, C. and Yang, H.: A new perspective for transpiration estimation using an extended framework of isohydricity linking to drought-driven changes in VPD and leaf area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1993, https://doi.org/10.5194/egusphere-egu2020-1993, 2020.
EGU2020-20531 | Displays | BG3.30
Estimating the Above Ground Biomass of Brazilian Savanna using multi-sensor approachPolyanna da Conceição Bispo, Pedro Rodriguez-Veiga, Barbara Zimbres, Sabrina do Couto de Miranda, Cassio Henrique Giusti Cezare, Sam Fleming, Francesca Baldacchino, Julia Zanin Shimbo, Ane Auxiliadora Costa Alencar, Iris Roitman, Mercedes Bustamante, Ana Maria Pacheco-Pascagaza, Yaqing Gou, John Roberts, Valentin Louis, Kirsten Barret, Iain Woodhouse, Eráclito Sousa-Neto, Jean P.H.B. Ometto, and Heiko Balzter
The Brazilian Savanna, known as Cerrado (Cerrado sensu lato (s.l.)), is the second largest biome in South America. It comprises different physiognomies due to variations of soil, topography and human impacts. The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the Cerrado formation, ranging from different grassland formations (Campo limpo, campo sujo), savanna intermediary formations (Campo cerrado and Cerrado sensu stricto - s.s) and forest formations (Cerradão, Mata ciliar, Mata de galeria and Mata Seca).
Although the carbon stock in Cerrado is lower than in the Brazilian Amazon, the conversion of this biome to other types of land use is occurring much faster. In the last ten years, the degradation of Cerrado forest was the second largest source of carbon emissions in Brazil. Therefore, effective methods for assessing and monitoring aboveground woody biomass and carbon stocks are needed. A multi-sensor Earth observation approach and machine learning techniques have shown potential for the large-scale characterization of Cerrado forest structure.The aim of this study is to present a method to estimate the AGB of an area of the Brazilian Cerrado using ALOS-PALSAR (L-band SAR), Landsat, LIDAR (LIght Detection And Ranging) and field datasets. Field data consisted of 15 plots of 1 ha area located in Rio Vermelho watershed in Goiás-State (Brazil). We used a 2-step AGB estimation (i) from the field AGB using LIDAR metrics and (ii) from LIDAR-AGB to satellite Earth Observation scales following a Random Forest regression algorithm. The methodology to estimate ABG of Cerrado Stricto Sensu vegetation is part of the Forests 2020 project which is the largest investment by the UK Space Agency, as part of the International Partnerships Programme (IPP), to support in the improvement of the forest monitoring in six partner countries through advanced uses of satellite data.
How to cite: da Conceição Bispo, P., Rodriguez-Veiga, P., Zimbres, B., do Couto de Miranda, S., Henrique Giusti Cezare, C., Fleming, S., Baldacchino, F., Zanin Shimbo, J., Auxiliadora Costa Alencar, A., Roitman, I., Bustamante, M., Pacheco-Pascagaza, A. M., Gou, Y., Roberts, J., Louis, V., Barret, K., Woodhouse, I., Sousa-Neto, E., P.H.B. Ometto, J., and Balzter, H.: Estimating the Above Ground Biomass of Brazilian Savanna using multi-sensor approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20531, https://doi.org/10.5194/egusphere-egu2020-20531, 2020.
The Brazilian Savanna, known as Cerrado (Cerrado sensu lato (s.l.)), is the second largest biome in South America. It comprises different physiognomies due to variations of soil, topography and human impacts. The gradients of tree density, tree height, above ground biomass (AGB) and wood species cover vary according to the Cerrado formation, ranging from different grassland formations (Campo limpo, campo sujo), savanna intermediary formations (Campo cerrado and Cerrado sensu stricto - s.s) and forest formations (Cerradão, Mata ciliar, Mata de galeria and Mata Seca).
Although the carbon stock in Cerrado is lower than in the Brazilian Amazon, the conversion of this biome to other types of land use is occurring much faster. In the last ten years, the degradation of Cerrado forest was the second largest source of carbon emissions in Brazil. Therefore, effective methods for assessing and monitoring aboveground woody biomass and carbon stocks are needed. A multi-sensor Earth observation approach and machine learning techniques have shown potential for the large-scale characterization of Cerrado forest structure.The aim of this study is to present a method to estimate the AGB of an area of the Brazilian Cerrado using ALOS-PALSAR (L-band SAR), Landsat, LIDAR (LIght Detection And Ranging) and field datasets. Field data consisted of 15 plots of 1 ha area located in Rio Vermelho watershed in Goiás-State (Brazil). We used a 2-step AGB estimation (i) from the field AGB using LIDAR metrics and (ii) from LIDAR-AGB to satellite Earth Observation scales following a Random Forest regression algorithm. The methodology to estimate ABG of Cerrado Stricto Sensu vegetation is part of the Forests 2020 project which is the largest investment by the UK Space Agency, as part of the International Partnerships Programme (IPP), to support in the improvement of the forest monitoring in six partner countries through advanced uses of satellite data.
How to cite: da Conceição Bispo, P., Rodriguez-Veiga, P., Zimbres, B., do Couto de Miranda, S., Henrique Giusti Cezare, C., Fleming, S., Baldacchino, F., Zanin Shimbo, J., Auxiliadora Costa Alencar, A., Roitman, I., Bustamante, M., Pacheco-Pascagaza, A. M., Gou, Y., Roberts, J., Louis, V., Barret, K., Woodhouse, I., Sousa-Neto, E., P.H.B. Ometto, J., and Balzter, H.: Estimating the Above Ground Biomass of Brazilian Savanna using multi-sensor approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20531, https://doi.org/10.5194/egusphere-egu2020-20531, 2020.
EGU2020-22268 | Displays | BG3.30
The impact of lianas on radiative transfer and albedo of tropical forestsFélicien Meunier, Alexey Shiklomanov, Michael Dietze, Marco Visser, and Hans Verbeeck
Forest albedo changes with vegetation dynamics, ecosystem demography and succession as different plant species can be characterized by contrasting leaf traits, as well as different allocation strategies. In tropical ecosystems, lianas (woody vines) strongly impact the forest biogeochemical cycles by competing with co-occurring trees for above- and below-ground resources. In addition to the particular location of their foliage (often at the top of the canopy), lianas were shown to contrast with tropical trees in terms of biochemical and structural leaf properties, as well as allocation strategies. As a consequence, liana spectral signature differs in several regions of the leaf spectrum (visible, near infrared and shortwave infrared) from tree’s one. At larger scale, the forest canopy reflectance spectrum is also affected by the relative abundance of lianas.
To evaluate the impact of lianas on the radiative transfer and albedo of tropical forests, we collected all published reflectance spectra of liana and co-occurring tree leaves as well as the canopy reflectance spectra characterized by high and low liana coverage. We then calibrated both a leaf (PROSPECT-5) and a canopy (ED2-RTM) radiative transfer model on those data to reproduce the spectral signatures together with their differences, for each single study and site. The Bayesian framework that we used generated leaf biochemical and structural trait distributions, as well as allocation pattern strategies that could be compared between both growth forms.
Collected spectra could be fairly well reproduced at both leaf and canopy levels by the selected mechanistic models. In most studies, calibration led to significantly lower chlorophyll and carotenoid contents, higher relative water content, and larger specific leaf areas for liana leaves, which allowed reproducing observed higher leaf reflectance values in the visible and shortwave infrared and the lower ones in the near infrared. We then validated our findings with independent field data on leaf chemistry and structure from the same studies.
These calibrated radiative transfer models are tools that can be used in future research to investigate the liana impact on the global energy budget of tropical forests, as well as to monitor spatial and temporal liana abundance.
How to cite: Meunier, F., Shiklomanov, A., Dietze, M., Visser, M., and Verbeeck, H.: The impact of lianas on radiative transfer and albedo of tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22268, https://doi.org/10.5194/egusphere-egu2020-22268, 2020.
Forest albedo changes with vegetation dynamics, ecosystem demography and succession as different plant species can be characterized by contrasting leaf traits, as well as different allocation strategies. In tropical ecosystems, lianas (woody vines) strongly impact the forest biogeochemical cycles by competing with co-occurring trees for above- and below-ground resources. In addition to the particular location of their foliage (often at the top of the canopy), lianas were shown to contrast with tropical trees in terms of biochemical and structural leaf properties, as well as allocation strategies. As a consequence, liana spectral signature differs in several regions of the leaf spectrum (visible, near infrared and shortwave infrared) from tree’s one. At larger scale, the forest canopy reflectance spectrum is also affected by the relative abundance of lianas.
To evaluate the impact of lianas on the radiative transfer and albedo of tropical forests, we collected all published reflectance spectra of liana and co-occurring tree leaves as well as the canopy reflectance spectra characterized by high and low liana coverage. We then calibrated both a leaf (PROSPECT-5) and a canopy (ED2-RTM) radiative transfer model on those data to reproduce the spectral signatures together with their differences, for each single study and site. The Bayesian framework that we used generated leaf biochemical and structural trait distributions, as well as allocation pattern strategies that could be compared between both growth forms.
Collected spectra could be fairly well reproduced at both leaf and canopy levels by the selected mechanistic models. In most studies, calibration led to significantly lower chlorophyll and carotenoid contents, higher relative water content, and larger specific leaf areas for liana leaves, which allowed reproducing observed higher leaf reflectance values in the visible and shortwave infrared and the lower ones in the near infrared. We then validated our findings with independent field data on leaf chemistry and structure from the same studies.
These calibrated radiative transfer models are tools that can be used in future research to investigate the liana impact on the global energy budget of tropical forests, as well as to monitor spatial and temporal liana abundance.
How to cite: Meunier, F., Shiklomanov, A., Dietze, M., Visser, M., and Verbeeck, H.: The impact of lianas on radiative transfer and albedo of tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22268, https://doi.org/10.5194/egusphere-egu2020-22268, 2020.
EGU2020-13740 | Displays | BG3.30
Modelling the impact of lianas on the biogeochemical cycles of tropical forestsFélicien Meunier, Michael Dietze, Manfredo di Porcia e Brugnera, Marcos Longo, and Hans Verbeeck
Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests where they compete with free-standing plants for below- and above-ground resources. Doing so, they negatively impact individual tree growth, as well as the net productivity and the long-term carbon storage of the ecosystem.
However, lianas remain largely ignored in field-scale studies as well as modelling forecasts. Therefore, their exact impact on tropical forest biogeochemical cycles is very uncertain. In particular, it is unclear which resource (light, water) is the most competed for between growth forms and so is is the future impact of lianas on forests in a global climate change context in which brighter, drier and CO2-enriched conditions are expected in the Tropics.
To answer those burning questions, we incorporated for the very first time a plant functional type accounting for the lianescent growth form into a dynamic global vegetation model (ED2). We implemented several liana-specific processes in the modelling framework (climbing, resprouting, height limitation due to lack of self-supporting tissues etc.), and integrated liana-specific parameters according to data from multiple studies in order to account for significant differences of functional and structural traits between lianas and trees. These parameters included (but were not limited to) leaf biochemical and photosynthesis properties, stem hydraulic traits, root distribution, and allometric relationships.
Baseline runs successfully reproduced ecosystem gas exchange fluxes (GPP and latent heat), forest structural features (LAI, AGB), and several other benchmarking observations in multiple tropical sites characterized by different rainfall regimes and levels of liana abundance. In those simulations, lianas negatively reduced forest productivity and total carbon storage, by increasing tree mortality (+ 30% on average) and decreasing tree growth (-35%). The inclusion of lianas in the simulations reduced the forest net productivity by up to 0.5 tC ha−1 year−1, which resulted in significantly reduced accumulated above‐ground biomass by up to 20 tC/ha in regrowth forests. The negative impact of lianas on carbon storage almost disappeared in wetter, old-growth forest sites. Model uncertainty analyses also revealed that water limitation was the dominant factor driving competition between trees and lianas, even in sites with a short dry season.
These two-key findings (higher impact in regrowth forests and water-dominated competition) are expected to lead to a reinforcement of the negative impact of lianas on forest productivity under future aggravated forest disturbance and warmer climate conditions. The modelling workflow also allowed to identify key liana traits (quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the overall model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of liana-infested forest carbon dynamics.
How to cite: Meunier, F., Dietze, M., di Porcia e Brugnera, M., Longo, M., and Verbeeck, H.: Modelling the impact of lianas on the biogeochemical cycles of tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13740, https://doi.org/10.5194/egusphere-egu2020-13740, 2020.
Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests where they compete with free-standing plants for below- and above-ground resources. Doing so, they negatively impact individual tree growth, as well as the net productivity and the long-term carbon storage of the ecosystem.
However, lianas remain largely ignored in field-scale studies as well as modelling forecasts. Therefore, their exact impact on tropical forest biogeochemical cycles is very uncertain. In particular, it is unclear which resource (light, water) is the most competed for between growth forms and so is is the future impact of lianas on forests in a global climate change context in which brighter, drier and CO2-enriched conditions are expected in the Tropics.
To answer those burning questions, we incorporated for the very first time a plant functional type accounting for the lianescent growth form into a dynamic global vegetation model (ED2). We implemented several liana-specific processes in the modelling framework (climbing, resprouting, height limitation due to lack of self-supporting tissues etc.), and integrated liana-specific parameters according to data from multiple studies in order to account for significant differences of functional and structural traits between lianas and trees. These parameters included (but were not limited to) leaf biochemical and photosynthesis properties, stem hydraulic traits, root distribution, and allometric relationships.
Baseline runs successfully reproduced ecosystem gas exchange fluxes (GPP and latent heat), forest structural features (LAI, AGB), and several other benchmarking observations in multiple tropical sites characterized by different rainfall regimes and levels of liana abundance. In those simulations, lianas negatively reduced forest productivity and total carbon storage, by increasing tree mortality (+ 30% on average) and decreasing tree growth (-35%). The inclusion of lianas in the simulations reduced the forest net productivity by up to 0.5 tC ha−1 year−1, which resulted in significantly reduced accumulated above‐ground biomass by up to 20 tC/ha in regrowth forests. The negative impact of lianas on carbon storage almost disappeared in wetter, old-growth forest sites. Model uncertainty analyses also revealed that water limitation was the dominant factor driving competition between trees and lianas, even in sites with a short dry season.
These two-key findings (higher impact in regrowth forests and water-dominated competition) are expected to lead to a reinforcement of the negative impact of lianas on forest productivity under future aggravated forest disturbance and warmer climate conditions. The modelling workflow also allowed to identify key liana traits (quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the overall model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of liana-infested forest carbon dynamics.
How to cite: Meunier, F., Dietze, M., di Porcia e Brugnera, M., Longo, M., and Verbeeck, H.: Modelling the impact of lianas on the biogeochemical cycles of tropical forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13740, https://doi.org/10.5194/egusphere-egu2020-13740, 2020.
EGU2020-20772 | Displays | BG3.30
Carbon dynamics in the Brazilian Cerrado: stocks and fluxes estimated by a model data fusion framework (CARDAMOM)Eráclito Sousa-Neto, Luke Smallman, Jean Ometto, and Mathew Williams
Savannas are a major component of the world’s vegetation and cover a land surface of about 15 Mkm2, accounting for about 30% of the terrestrial primary production. In the South America, the Brazilian Savanna (Cerrado) is the second largest biome (2 Mkm2), after the Amazon biome, and a hotspot of biodiversity. The Cerrado region is heterogeneous, with savanna vegetation ranging from open grassland, through a gradient of increasing tree density to nearly closed-canopy woodland. The cerrado vegetation is markedly seasonal in phenology and is often burned, either naturally or as part of a management cycle. Due its large occupation, Cerrado have the potential to influence the regional and possibly the global energy, water and carbon (C) balances. The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of an ecosystem, and an important feature to correctly represent in terrestrial ecosystem models for carbon rates estimation, as well as their residence time, variation with climate and disturbance, and in order to make better forecasts. Such estimation in Cerrado regions remains still difficult given the lack of important soil and vegetation data. Previous studies have showed that the fluxes of water and C are closely related to each other, and to the diurnal cycle of solar radiation. However, there is no study clearly assessing the allocation of C through the different types of vegetation, either in the different types of physiognomies. To help estimating the C flows across the different C pools and types of vegetation, we are using Carbon Data Model Framework (CARDAMOM) which is a computer programme that retrieves terrestrial carbon (C) cycle variables by combining C cycle observations with a mass balance model. CARDAMOM produces global dynamic estimates of plant and soil C pools, their exchanges with each other and with the atmosphere, and C cycling variables for processes driving change. It also produces a C cycle analysis consistent with C measurements and climate, and it is suited for using with global-scale satellite observations such as aboveground biomass (ABG) or leaf area index (LAI). For that, we count on field data available (AGB, BGB) and satellite data (LAI, AGB, soil C), which will help to present robust analyses of C cycling across gradients of biomass in the Brazilian Cerrado.
How to cite: Sousa-Neto, E., Smallman, L., Ometto, J., and Williams, M.: Carbon dynamics in the Brazilian Cerrado: stocks and fluxes estimated by a model data fusion framework (CARDAMOM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20772, https://doi.org/10.5194/egusphere-egu2020-20772, 2020.
Savannas are a major component of the world’s vegetation and cover a land surface of about 15 Mkm2, accounting for about 30% of the terrestrial primary production. In the South America, the Brazilian Savanna (Cerrado) is the second largest biome (2 Mkm2), after the Amazon biome, and a hotspot of biodiversity. The Cerrado region is heterogeneous, with savanna vegetation ranging from open grassland, through a gradient of increasing tree density to nearly closed-canopy woodland. The cerrado vegetation is markedly seasonal in phenology and is often burned, either naturally or as part of a management cycle. Due its large occupation, Cerrado have the potential to influence the regional and possibly the global energy, water and carbon (C) balances. The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of an ecosystem, and an important feature to correctly represent in terrestrial ecosystem models for carbon rates estimation, as well as their residence time, variation with climate and disturbance, and in order to make better forecasts. Such estimation in Cerrado regions remains still difficult given the lack of important soil and vegetation data. Previous studies have showed that the fluxes of water and C are closely related to each other, and to the diurnal cycle of solar radiation. However, there is no study clearly assessing the allocation of C through the different types of vegetation, either in the different types of physiognomies. To help estimating the C flows across the different C pools and types of vegetation, we are using Carbon Data Model Framework (CARDAMOM) which is a computer programme that retrieves terrestrial carbon (C) cycle variables by combining C cycle observations with a mass balance model. CARDAMOM produces global dynamic estimates of plant and soil C pools, their exchanges with each other and with the atmosphere, and C cycling variables for processes driving change. It also produces a C cycle analysis consistent with C measurements and climate, and it is suited for using with global-scale satellite observations such as aboveground biomass (ABG) or leaf area index (LAI). For that, we count on field data available (AGB, BGB) and satellite data (LAI, AGB, soil C), which will help to present robust analyses of C cycling across gradients of biomass in the Brazilian Cerrado.
How to cite: Sousa-Neto, E., Smallman, L., Ometto, J., and Williams, M.: Carbon dynamics in the Brazilian Cerrado: stocks and fluxes estimated by a model data fusion framework (CARDAMOM), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20772, https://doi.org/10.5194/egusphere-egu2020-20772, 2020.
EGU2020-18241 | Displays | BG3.30
Soil organic matter dynamics in changing forests: linking ecosystem manipulation experiments with soil inventories across SwitzerlandFrank Hagedorn, Sia Gosheva, Stephan Zimmermann, and Konstantin Gavazov
Forest soils are storing large quantities of carbon, but their quantitative role in sequestering C is less certain. In principal, soils developed over millennia are assumed to be ‘in equilibrium’ with minimal C stock changes. This concept is challenged by forest soil inventories (in Germany and France) indicate a substantial increase in soil C storage. However, soil organic matter (SOM) storage is susceptible to recent changes in forests - climate warming and droughts, increasing forest disturbances, and a more intensive forest management are all potentially increasing SOM turnover which may turn forest soils into C sources. Here, I will critically discuss the role in Swiss forest soils as C sinks by presenting data from 1000 soil profiles across environmental gradients and from flux measurements in large scale ecosystem manipulation experiments.
Swiss forests soils are among the C-richest soils in Europe storing on average 140 t C/ha. Analysis of 1000 forest soils show that these SOM stocks are caused by their high contents in potential SOM sorbents (pH, Al+Fe-oxides, Ca, clay), but also by the cool temperatures and high amounts of precipitation. Climate manipulation experiments suggest Swiss forest soils are vulnerable to loose C with expected climatic changes. A six year long soil warming experiment at treeline revealed soil C losses, while a 15 year long irrigation experiment in a dry forest induced C gains in the mineral soil, implying that a warmer and more frequent droughts will lead to C losses.
Switzerland - as other European mountainous areas – is currently experiencing a major change in land-use due to land abandonment, with the forests expanding by 3 to 4% per decade. Forest expansion affects a multitude of factors driving SOM cycling and storage, including the quantity and quality of organic matter inputs above and below the ground, a cooler and drier microclimate, and change in microbial diversity and activity. In contrast to the intuitive assumption that forests expansion leads to C gains in soils, measurements along an afforestation chronosequence of alpine grassland show that forest expansion leads to minimal changes in SOM stocks but a strong change in SOM quality. Soils gains in particulate organic matter with increasing forest age but lose C in mineral-associated organic matter. In support, reconstructing forest cover ages of 850 soil profiles showed that forest age and hence time since conversion into forest (predominantly from grasslands) did not significantly affect total SOM stocks, while other factors, especially physico-chemical soil characteristics and climate were more important. Overall, these results show that the inherently C rich forest soils in Switzerland are unlikely to gain additional C but rather loose it in response to the ongoing changes in climate and land-use.
How to cite: Hagedorn, F., Gosheva, S., Zimmermann, S., and Gavazov, K.: Soil organic matter dynamics in changing forests: linking ecosystem manipulation experiments with soil inventories across Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18241, https://doi.org/10.5194/egusphere-egu2020-18241, 2020.
Forest soils are storing large quantities of carbon, but their quantitative role in sequestering C is less certain. In principal, soils developed over millennia are assumed to be ‘in equilibrium’ with minimal C stock changes. This concept is challenged by forest soil inventories (in Germany and France) indicate a substantial increase in soil C storage. However, soil organic matter (SOM) storage is susceptible to recent changes in forests - climate warming and droughts, increasing forest disturbances, and a more intensive forest management are all potentially increasing SOM turnover which may turn forest soils into C sources. Here, I will critically discuss the role in Swiss forest soils as C sinks by presenting data from 1000 soil profiles across environmental gradients and from flux measurements in large scale ecosystem manipulation experiments.
Swiss forests soils are among the C-richest soils in Europe storing on average 140 t C/ha. Analysis of 1000 forest soils show that these SOM stocks are caused by their high contents in potential SOM sorbents (pH, Al+Fe-oxides, Ca, clay), but also by the cool temperatures and high amounts of precipitation. Climate manipulation experiments suggest Swiss forest soils are vulnerable to loose C with expected climatic changes. A six year long soil warming experiment at treeline revealed soil C losses, while a 15 year long irrigation experiment in a dry forest induced C gains in the mineral soil, implying that a warmer and more frequent droughts will lead to C losses.
Switzerland - as other European mountainous areas – is currently experiencing a major change in land-use due to land abandonment, with the forests expanding by 3 to 4% per decade. Forest expansion affects a multitude of factors driving SOM cycling and storage, including the quantity and quality of organic matter inputs above and below the ground, a cooler and drier microclimate, and change in microbial diversity and activity. In contrast to the intuitive assumption that forests expansion leads to C gains in soils, measurements along an afforestation chronosequence of alpine grassland show that forest expansion leads to minimal changes in SOM stocks but a strong change in SOM quality. Soils gains in particulate organic matter with increasing forest age but lose C in mineral-associated organic matter. In support, reconstructing forest cover ages of 850 soil profiles showed that forest age and hence time since conversion into forest (predominantly from grasslands) did not significantly affect total SOM stocks, while other factors, especially physico-chemical soil characteristics and climate were more important. Overall, these results show that the inherently C rich forest soils in Switzerland are unlikely to gain additional C but rather loose it in response to the ongoing changes in climate and land-use.
How to cite: Hagedorn, F., Gosheva, S., Zimmermann, S., and Gavazov, K.: Soil organic matter dynamics in changing forests: linking ecosystem manipulation experiments with soil inventories across Switzerland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18241, https://doi.org/10.5194/egusphere-egu2020-18241, 2020.
BG3.31 – Ecology and management of natural disturbances in forest ecosystems
EGU2020-2344 | Displays | BG3.31
Salvage logging cause short- and mid-term changes of successional trajectories following forest disturbanceSimon Thorn
Following natural forest disturbances, additional anthropogenic disturbance may alter community recovery and successional trajectories by affecting the occurrences of species, functional groups and evolutionary lineages. However, our understanding is limited of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, such as salvage logging. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds following disturbances and experimental salvage logging. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first years of succession, indicating that salvage logging did not contribute to an accelerated decrease of initial dissimilarities. These dissimilarities between communities of were mainly driven by rare species. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. This talk highlights that salvage logging following natural disturbances can alter successional trajectories in early stages of forest succession following natural disturbances and that those changes persist over time. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.
How to cite: Thorn, S.: Salvage logging cause short- and mid-term changes of successional trajectories following forest disturbance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2344, https://doi.org/10.5194/egusphere-egu2020-2344, 2020.
Following natural forest disturbances, additional anthropogenic disturbance may alter community recovery and successional trajectories by affecting the occurrences of species, functional groups and evolutionary lineages. However, our understanding is limited of whether rare, common, or dominant species, functional groups, or evolutionary lineages are most strongly affected by an additional disturbance, such as salvage logging. Here, we used a generalized diversity concept based on Hill numbers to quantify the community differences of vascular plants, bryophytes, lichens, wood-inhabiting fungi, saproxylic beetles, and birds following disturbances and experimental salvage logging. Most species groups showed no significant changes in dissimilarities between logged and unlogged plots over the first years of succession, indicating that salvage logging did not contribute to an accelerated decrease of initial dissimilarities. These dissimilarities between communities of were mainly driven by rare species. Trends in species dissimilarities only partially match the trends in dissimilarities of functional groups and evolutionary lineages, with little significant changes in successional trajectories. This talk highlights that salvage logging following natural disturbances can alter successional trajectories in early stages of forest succession following natural disturbances and that those changes persist over time. However, community changes over time may differ remarkably in different taxonomic groups and are best detected based on taxonomic, rather than functional or phylogenetic dissimilarities.
How to cite: Thorn, S.: Salvage logging cause short- and mid-term changes of successional trajectories following forest disturbance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2344, https://doi.org/10.5194/egusphere-egu2020-2344, 2020.
EGU2020-2910 | Displays | BG3.31
What is the natural rhythm of temperate and boreal forest disturbances in the absence of human management?Thomas Pugh, Cornelius Senf, and Rupert Seidl
The vast majority of temperate and much of the boreal forest have been completely transformed by human activities, changing forest composition and disturbance regimes. Whilst our capability to observe this transformed state has improved dramatically in recent years, we have precious little information on the state of these forests in the absence of management. To what extent do our forests currently suffer from a surplus or a deficit of disturbance relative to their natural state? What are the implications of this for carbon turnover? Using a novel fusion of satellite observations of stand-replacing disturbances in 80 protected areas, statistical analysis and dynamic vegetation modelling, we generated wall-to-wall estimates of disturbance frequency across northern hemisphere temperate and boreal forests. Analysis of disturbance events in the protected areas revealed that the probability of disturbances from agents including fire, wind-throw and bark beetles was related to community mean functional traits and climate. We used the LPJ-GUESS dynamic vegetation model, which explicitly simulates plant functional types covering different successional stages, to simulate forest functional composition in the absence of human management. We interactively coupled this simulation to a new disturbance probability module to generate estimates of natural disturbance probability across all northern-hemisphere temperate and boreal forests. Disturbance frequency ranged from ca. one stand-replacing event per hundred years in parts of the boreal to less than one per thousand years in broadleaved temperate forests. In many regions the unmanaged disturbance frequencies differed dramatically from those observed in reality over the last two decades, with both disturbance surplus and deficits being recorded. In addition to providing the first quantitative continental-scale assessment of human impact on forest disturbance regimes, our results also provide a lightweight modelling approach for the inclusion of natural disturbances in large-scale vegetation models. They thus facilitate simulation of forest structure, a crucial driver of ecosystem function, from carbon uptake to biodiversity.
How to cite: Pugh, T., Senf, C., and Seidl, R.: What is the natural rhythm of temperate and boreal forest disturbances in the absence of human management?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2910, https://doi.org/10.5194/egusphere-egu2020-2910, 2020.
The vast majority of temperate and much of the boreal forest have been completely transformed by human activities, changing forest composition and disturbance regimes. Whilst our capability to observe this transformed state has improved dramatically in recent years, we have precious little information on the state of these forests in the absence of management. To what extent do our forests currently suffer from a surplus or a deficit of disturbance relative to their natural state? What are the implications of this for carbon turnover? Using a novel fusion of satellite observations of stand-replacing disturbances in 80 protected areas, statistical analysis and dynamic vegetation modelling, we generated wall-to-wall estimates of disturbance frequency across northern hemisphere temperate and boreal forests. Analysis of disturbance events in the protected areas revealed that the probability of disturbances from agents including fire, wind-throw and bark beetles was related to community mean functional traits and climate. We used the LPJ-GUESS dynamic vegetation model, which explicitly simulates plant functional types covering different successional stages, to simulate forest functional composition in the absence of human management. We interactively coupled this simulation to a new disturbance probability module to generate estimates of natural disturbance probability across all northern-hemisphere temperate and boreal forests. Disturbance frequency ranged from ca. one stand-replacing event per hundred years in parts of the boreal to less than one per thousand years in broadleaved temperate forests. In many regions the unmanaged disturbance frequencies differed dramatically from those observed in reality over the last two decades, with both disturbance surplus and deficits being recorded. In addition to providing the first quantitative continental-scale assessment of human impact on forest disturbance regimes, our results also provide a lightweight modelling approach for the inclusion of natural disturbances in large-scale vegetation models. They thus facilitate simulation of forest structure, a crucial driver of ecosystem function, from carbon uptake to biodiversity.
How to cite: Pugh, T., Senf, C., and Seidl, R.: What is the natural rhythm of temperate and boreal forest disturbances in the absence of human management?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2910, https://doi.org/10.5194/egusphere-egu2020-2910, 2020.
EGU2020-3030 | Displays | BG3.31
How to manage windthrows in Central Europe to prevent bark beetle outbreaks?Laura Dobor, Tomáš Hlásny, Werner Rammer, Soňa Zimová, and Rupert Seidl
Bark beetle (Ips typographus) epidemics in Europe are typically triggered by excessive availability of freshly dead trees and trees with compromised defense, which often occur after windstorms or droughts. Subsequently, enlarged beetle populations migrate to the surrounding forests, which were not affected by the primary disturbance. Removal of windfelled trees (salvage or sanitation logging) is therefore a frequent management response to prevent the build-up of bark beetle populations. Yet, the effectivity of the removal remains poorly understood, particularly when the outbreaks are amplified by faster beetle development cycles and reduced tree defense under climate change conditions.
Moreover, diverse ownership, management objectives and limited resources often restrict salvaging operations, and the final effect on bark beetle populations is thus even less clear. To better understand the interplay between climate, management, bark beetle populations, and host trees, we use the process-based forest landscape and disturbance model iLand. We studied differences between the removal of windfelled trees applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives) on a 16 050 ha forest landscape in Central Europe. We found that the removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing on the vicinity of roads created a “fire break effect” on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Our research suggests that the management of interacting disturbances from wind and bark beetles requires much more complex considerations than are currently practiced.
How to cite: Dobor, L., Hlásny, T., Rammer, W., Zimová, S., and Seidl, R.: How to manage windthrows in Central Europe to prevent bark beetle outbreaks?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3030, https://doi.org/10.5194/egusphere-egu2020-3030, 2020.
Bark beetle (Ips typographus) epidemics in Europe are typically triggered by excessive availability of freshly dead trees and trees with compromised defense, which often occur after windstorms or droughts. Subsequently, enlarged beetle populations migrate to the surrounding forests, which were not affected by the primary disturbance. Removal of windfelled trees (salvage or sanitation logging) is therefore a frequent management response to prevent the build-up of bark beetle populations. Yet, the effectivity of the removal remains poorly understood, particularly when the outbreaks are amplified by faster beetle development cycles and reduced tree defense under climate change conditions.
Moreover, diverse ownership, management objectives and limited resources often restrict salvaging operations, and the final effect on bark beetle populations is thus even less clear. To better understand the interplay between climate, management, bark beetle populations, and host trees, we use the process-based forest landscape and disturbance model iLand. We studied differences between the removal of windfelled trees applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives) on a 16 050 ha forest landscape in Central Europe. We found that the removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing on the vicinity of roads created a “fire break effect” on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Our research suggests that the management of interacting disturbances from wind and bark beetles requires much more complex considerations than are currently practiced.
How to cite: Dobor, L., Hlásny, T., Rammer, W., Zimová, S., and Seidl, R.: How to manage windthrows in Central Europe to prevent bark beetle outbreaks?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3030, https://doi.org/10.5194/egusphere-egu2020-3030, 2020.
EGU2020-4112 | Displays | BG3.31
Onset of the rainy season: a paradigm shift for conservation of the AmazonMarcos Heil Costa
It has been recently demonstrated that large-scale mechanisms interact with Amazon deforestation to delay the onset and decrease the duration of the rainy season in Southern Amazonia. A short rainy season increases the exposure of the rainforest to drought and possibly fires, but also increases the climate risk to the intensive double cropping (soy/maize) agriculture system practiced in the region, which requires at least 200 days of rains. Here we show that areas in Southern Amazonia that have more than 20% deforestation, i.e., areas that have not respected the maximum deforestation allowed by Brazil´s Forest Code, have increased climate risk for agriculture when compared to areas that have less than 20% deforested. These results show how environmentally sensible the Brazilian Forest Code is. The legislation, if strictly followed, supports the climate regulation service provided by the rainforest, in a way that benefit the farmers that collectively respect the legislation by anticipating the onset and increasing the duration of the rainy season and decreasing the climate risk to the double cropping systems. These results introduce a new paradigm for conservation of the Amazon, in which there are economic and social reasons to preserve the native vegetation, and it is in the best interest of the agribusiness, local governments and people, to conserve and restore the remaining natural vegetation.
How to cite: Heil Costa, M.: Onset of the rainy season: a paradigm shift for conservation of the Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4112, https://doi.org/10.5194/egusphere-egu2020-4112, 2020.
It has been recently demonstrated that large-scale mechanisms interact with Amazon deforestation to delay the onset and decrease the duration of the rainy season in Southern Amazonia. A short rainy season increases the exposure of the rainforest to drought and possibly fires, but also increases the climate risk to the intensive double cropping (soy/maize) agriculture system practiced in the region, which requires at least 200 days of rains. Here we show that areas in Southern Amazonia that have more than 20% deforestation, i.e., areas that have not respected the maximum deforestation allowed by Brazil´s Forest Code, have increased climate risk for agriculture when compared to areas that have less than 20% deforested. These results show how environmentally sensible the Brazilian Forest Code is. The legislation, if strictly followed, supports the climate regulation service provided by the rainforest, in a way that benefit the farmers that collectively respect the legislation by anticipating the onset and increasing the duration of the rainy season and decreasing the climate risk to the double cropping systems. These results introduce a new paradigm for conservation of the Amazon, in which there are economic and social reasons to preserve the native vegetation, and it is in the best interest of the agribusiness, local governments and people, to conserve and restore the remaining natural vegetation.
How to cite: Heil Costa, M.: Onset of the rainy season: a paradigm shift for conservation of the Amazon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4112, https://doi.org/10.5194/egusphere-egu2020-4112, 2020.
EGU2020-7429 | Displays | BG3.31
Topographic effects on the initial establishment and growth of pine trees as a riparian vegetation after debris flow-induced disturbance in a mountain streamSuk Woo Kim, Jae Uk Lee, Young Hyup Lim, Sooyoun Nam, Kun Woo Chun, and Min Seok Kim
On July 15, 2006, heavy rainstorm-triggered debris flow destroyed mature riparian forests and altered the channel geomorphology along the Hangye stream, Mt. Seorak National Park, Republic of Korea. We examined the effect of the topographic site condition on the initial establishment and growth of pine trees (Pinus densiflora) as one a dominant species of riparian vegetation along transects on new debris flow terraces formed along the Hangye stream. In the 2019 field investigation, the tree age and internode length of all P. densiflora seedlings were measured in each 25-m2 plot placed at 5-m intervals for a total of 19 cross-section lines marked by a topographic survey using an auto level. For data analysis, stream channel morphology was classified into two typical types: a single channel segment with only the main channel (type A; total of 14 cross-section lines) and divergent channel segment with the main and several secondary channels (type B; total of 5 cross-section lines). The height (Hq) and distance (Dq) of each surveyed plot from the thalweg line of the main channel were considered as topographic site conditions with reference to the establishment and growth of riparian vegetation. As a result, the mean Hq and mean Dq were all greater in plots with the appearance of pine trees than in those without in both type A and type B segments, showing statistical significances at the 1% level. This study also showed that the mean age and mean annual growth rate of P. densiflora seedlings were positively correlated with Hq in type A segments but not in type B segments. Dq showed no correlation with the mean age and mean annual growth rate of P. densiflora seedlings in both type A and type B segments. These results demonstrate that the initial establishment and growth of riparian vegetation were affected by the height above the channel bed associated with the flood frequency and divergent flood flows.
Acknowledgement: This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B5076781).
How to cite: Kim, S. W., Lee, J. U., Lim, Y. H., Nam, S., Chun, K. W., and Kim, M. S.: Topographic effects on the initial establishment and growth of pine trees as a riparian vegetation after debris flow-induced disturbance in a mountain stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7429, https://doi.org/10.5194/egusphere-egu2020-7429, 2020.
On July 15, 2006, heavy rainstorm-triggered debris flow destroyed mature riparian forests and altered the channel geomorphology along the Hangye stream, Mt. Seorak National Park, Republic of Korea. We examined the effect of the topographic site condition on the initial establishment and growth of pine trees (Pinus densiflora) as one a dominant species of riparian vegetation along transects on new debris flow terraces formed along the Hangye stream. In the 2019 field investigation, the tree age and internode length of all P. densiflora seedlings were measured in each 25-m2 plot placed at 5-m intervals for a total of 19 cross-section lines marked by a topographic survey using an auto level. For data analysis, stream channel morphology was classified into two typical types: a single channel segment with only the main channel (type A; total of 14 cross-section lines) and divergent channel segment with the main and several secondary channels (type B; total of 5 cross-section lines). The height (Hq) and distance (Dq) of each surveyed plot from the thalweg line of the main channel were considered as topographic site conditions with reference to the establishment and growth of riparian vegetation. As a result, the mean Hq and mean Dq were all greater in plots with the appearance of pine trees than in those without in both type A and type B segments, showing statistical significances at the 1% level. This study also showed that the mean age and mean annual growth rate of P. densiflora seedlings were positively correlated with Hq in type A segments but not in type B segments. Dq showed no correlation with the mean age and mean annual growth rate of P. densiflora seedlings in both type A and type B segments. These results demonstrate that the initial establishment and growth of riparian vegetation were affected by the height above the channel bed associated with the flood frequency and divergent flood flows.
Acknowledgement: This work was supported by the National Research Foundation (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1C1B5076781).
How to cite: Kim, S. W., Lee, J. U., Lim, Y. H., Nam, S., Chun, K. W., and Kim, M. S.: Topographic effects on the initial establishment and growth of pine trees as a riparian vegetation after debris flow-induced disturbance in a mountain stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7429, https://doi.org/10.5194/egusphere-egu2020-7429, 2020.
EGU2020-8248 | Displays | BG3.31
The role of alpha and beta diversity in buffering the effects of intensifying natural disturbance regimesJulius Sebald, Timothy Thrippleton, Werner Rammer, Harald Bugmann, and Rupert Seidl
Forests are strongly affected by climatic changes, but impacts vary between tree species and prevailing site conditions. A number of studies suggest that increasing tree species diversity is a potent management strategy to decrease climate change impacts in general, and increase the resilience of forest ecosystems to changing disturbance regimes. However, most studies to date have focused on stand-level diversity in tree species (alpha diversity), which is often difficult to implement in operational forest management. Inter-species competition requires frequent management interventions to maintain species mixture and complicates the production of high-quality stemwood. An alternative option to increasing alpha diversity is to increase tree species diversity between forest stands (beta diversity). Here we quantify the effects of alpha and beta diversity on the impact of forest disturbances under climate change. We conducted a simulation experiment applying two forest landscape models (i.e. iLand and LandClim) in two landscapes with strongly contrasting environmental conditions in Central Europe. Simulations investigate different levels of tree species diversity (no diversity, low diversity and high diversity) in different spatial arrangements (alpha diversity, beta diversity). Subsequently a standard forest management regime and a series of prescribed disturbances are applied over 200 years. By analyzing biomass values relative to a no-disturbance run, variation in biomass over time and the number of trees > 30 cm dbh per hectare, we isolate the effect of tree species diversity on the resistance of forests to disturbances.
How to cite: Sebald, J., Thrippleton, T., Rammer, W., Bugmann, H., and Seidl, R.: The role of alpha and beta diversity in buffering the effects of intensifying natural disturbance regimes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8248, https://doi.org/10.5194/egusphere-egu2020-8248, 2020.
Forests are strongly affected by climatic changes, but impacts vary between tree species and prevailing site conditions. A number of studies suggest that increasing tree species diversity is a potent management strategy to decrease climate change impacts in general, and increase the resilience of forest ecosystems to changing disturbance regimes. However, most studies to date have focused on stand-level diversity in tree species (alpha diversity), which is often difficult to implement in operational forest management. Inter-species competition requires frequent management interventions to maintain species mixture and complicates the production of high-quality stemwood. An alternative option to increasing alpha diversity is to increase tree species diversity between forest stands (beta diversity). Here we quantify the effects of alpha and beta diversity on the impact of forest disturbances under climate change. We conducted a simulation experiment applying two forest landscape models (i.e. iLand and LandClim) in two landscapes with strongly contrasting environmental conditions in Central Europe. Simulations investigate different levels of tree species diversity (no diversity, low diversity and high diversity) in different spatial arrangements (alpha diversity, beta diversity). Subsequently a standard forest management regime and a series of prescribed disturbances are applied over 200 years. By analyzing biomass values relative to a no-disturbance run, variation in biomass over time and the number of trees > 30 cm dbh per hectare, we isolate the effect of tree species diversity on the resistance of forests to disturbances.
How to cite: Sebald, J., Thrippleton, T., Rammer, W., Bugmann, H., and Seidl, R.: The role of alpha and beta diversity in buffering the effects of intensifying natural disturbance regimes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8248, https://doi.org/10.5194/egusphere-egu2020-8248, 2020.
EGU2020-9910 | Displays | BG3.31
Exploring the long-term vegetation and fire-disturbance history of the Biogradska Gora old-growth forest (Montenegro)Eleonora Cagliero, Donato Morresi, Laure Paradis, Niccolò Marchi, Fabio Meloni, Milic Curovic, Velibor Spalevic, Ilham Bentaleb, Renzo Motta, Walter Finsinger, Matteo Garbarino, and Emanuele Lingua
As disturbances are predicted to increase both in terms of frequency and severity due to global changes, it is important to improve our knowledge on their natural regimes in order to adopt an appropriate management to enhance the resilience of forest stands. In this context, the assessment of disturbance regimes in old-growth forests is becoming increasingly important because these ecosystems are considered as reference systems that developed without significant human impact for long periods of time. In the temperate zone of Europe only few fragments of mountain forests perhaps succeeded to persist despite millennia-long anthropogenic land-use pressure. However, few studies support their long-term stability and continuity in a changing landscape. Our study focuses on one of the largest and well-preserved old-growth forests in the Balkans. It is situated in the Biogradska Gora National Park reserve, whose extension (c. 6000 ha) is large enough to recognize the natural range of variability of disturbance processes. Under informal protection (hunting reserve) since 1878, the area became National Park in 1952. At present the forest is dominated by beech, silver fir and Norway spruce. We assume that the old-growth forest stands dominated by coniferous trees, which are currently confined to the inner part of the reserve, were more widespread in the past, and that their area was strongly reduced due natural disturbances and land-uses (e.g. grazing activities, fires, forest exploitation) that may have promoted the spread of beech. We used orthorectified high-resolution Pléiades satellite images (0.5-2 m) and field surveys of forest structures and composition to assess the spatial patterns of successional stages of forest development, thereby indirectly tracing the recent disturbance regime. However, such datasets are unable to unfold longer-term trends and to identify the type of disturbances. Moreover, carrying out dendrochronological research both on living and dead biomass is banned in the reserve area. Thus, we reconstructed longer-term changes in species composition, and disturbance and land use histories using pollen, plant-macrofossils, and charcoal analyses from sediments spanning the past 1000 years. Sediments were collected from a small forest hollow situated on the edge of the present old-growth forest reserve. We found that on the edges of the reserve forest cover dominated by conifers (mainly Abies) was reduced due to land-use activities (agriculture, cattle grazing), as suggested by Cerealia-type pollen and Sporormiella spores. The expansion of beech populations, which are dominant around the forest hollow today, occurred very recently. What emerges with the current level of detail achieved in our study is that tree cover and composition changed substantially over time on the edge of the old-growth forest reserve. This suggests that the edges of the reserve were disturbed and consequently not characterized by long-term stability and continuity of vegetation. Expected results will advance awareness of the legacies of past environmental changes and forest-management on current ecosystems. This multidisciplinary study, in a poorly explored area as the Balkans, will permit to anticipate biotic responses of these important mountain ecosystems in front of future environmental changes, providing useful information for their management and conservation.
How to cite: Cagliero, E., Morresi, D., Paradis, L., Marchi, N., Meloni, F., Curovic, M., Spalevic, V., Bentaleb, I., Motta, R., Finsinger, W., Garbarino, M., and Lingua, E.: Exploring the long-term vegetation and fire-disturbance history of the Biogradska Gora old-growth forest (Montenegro), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9910, https://doi.org/10.5194/egusphere-egu2020-9910, 2020.
As disturbances are predicted to increase both in terms of frequency and severity due to global changes, it is important to improve our knowledge on their natural regimes in order to adopt an appropriate management to enhance the resilience of forest stands. In this context, the assessment of disturbance regimes in old-growth forests is becoming increasingly important because these ecosystems are considered as reference systems that developed without significant human impact for long periods of time. In the temperate zone of Europe only few fragments of mountain forests perhaps succeeded to persist despite millennia-long anthropogenic land-use pressure. However, few studies support their long-term stability and continuity in a changing landscape. Our study focuses on one of the largest and well-preserved old-growth forests in the Balkans. It is situated in the Biogradska Gora National Park reserve, whose extension (c. 6000 ha) is large enough to recognize the natural range of variability of disturbance processes. Under informal protection (hunting reserve) since 1878, the area became National Park in 1952. At present the forest is dominated by beech, silver fir and Norway spruce. We assume that the old-growth forest stands dominated by coniferous trees, which are currently confined to the inner part of the reserve, were more widespread in the past, and that their area was strongly reduced due natural disturbances and land-uses (e.g. grazing activities, fires, forest exploitation) that may have promoted the spread of beech. We used orthorectified high-resolution Pléiades satellite images (0.5-2 m) and field surveys of forest structures and composition to assess the spatial patterns of successional stages of forest development, thereby indirectly tracing the recent disturbance regime. However, such datasets are unable to unfold longer-term trends and to identify the type of disturbances. Moreover, carrying out dendrochronological research both on living and dead biomass is banned in the reserve area. Thus, we reconstructed longer-term changes in species composition, and disturbance and land use histories using pollen, plant-macrofossils, and charcoal analyses from sediments spanning the past 1000 years. Sediments were collected from a small forest hollow situated on the edge of the present old-growth forest reserve. We found that on the edges of the reserve forest cover dominated by conifers (mainly Abies) was reduced due to land-use activities (agriculture, cattle grazing), as suggested by Cerealia-type pollen and Sporormiella spores. The expansion of beech populations, which are dominant around the forest hollow today, occurred very recently. What emerges with the current level of detail achieved in our study is that tree cover and composition changed substantially over time on the edge of the old-growth forest reserve. This suggests that the edges of the reserve were disturbed and consequently not characterized by long-term stability and continuity of vegetation. Expected results will advance awareness of the legacies of past environmental changes and forest-management on current ecosystems. This multidisciplinary study, in a poorly explored area as the Balkans, will permit to anticipate biotic responses of these important mountain ecosystems in front of future environmental changes, providing useful information for their management and conservation.
How to cite: Cagliero, E., Morresi, D., Paradis, L., Marchi, N., Meloni, F., Curovic, M., Spalevic, V., Bentaleb, I., Motta, R., Finsinger, W., Garbarino, M., and Lingua, E.: Exploring the long-term vegetation and fire-disturbance history of the Biogradska Gora old-growth forest (Montenegro), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9910, https://doi.org/10.5194/egusphere-egu2020-9910, 2020.
EGU2020-10583 | Displays | BG3.31 | Highlight
New methodology for mapping wildfire risk in the wildland-urban interfaceFlavio Taccaliti, Raffaella Marzano, Rolando Rizzolo, Tina Bell, Domenico Fischetti, and Emanuele Lingua
Wildfires pose a great threat to the wildland-urban interface (WUI), the zone of contact between wildland vegetation and the human-settled environment. In these areas, high fuel loads often coexist with high value assets, which are more exposed to ignition than equivalent structures in an urban context. At the WUI, wildfires can quickly exhaust the resources normally available to urban firefighters, and the value of assets do not allow the use of large-scale, resource-saving techniques common in wildland fires management.
Mapping the WUI represents a first important step in wildfire risk management due to the primary importance of prevention in a setting that is difficult to defend in the face of emergencies. In addition, as the WUI is not only a possible target for wildfires, it is often a source of them, prevention of fire in these areas is a critical part of risk management.
Several methods are currently available to detect and map the WUI, differing according to the scale and the scope of the analysis. Pioneering methods mainly used aggregated data (e.g. census data, large scale vegetation maps) while recent techniques are increasingly using high precision remote sensing data to identify single structures and local changes in topography and vegetation.
In the context of the UE Interreg project Italia-Slovenija CROSSIT SAFER, a new methodology will be described to analyse and map wildfire risk at the WUI relying on state-of-the-art data and technologies. Specifically, high precision LiDAR data and segmentation processes are used to characterise wildland fuel precisely and efficiently.
How to cite: Taccaliti, F., Marzano, R., Rizzolo, R., Bell, T., Fischetti, D., and Lingua, E.: New methodology for mapping wildfire risk in the wildland-urban interface, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10583, https://doi.org/10.5194/egusphere-egu2020-10583, 2020.
Wildfires pose a great threat to the wildland-urban interface (WUI), the zone of contact between wildland vegetation and the human-settled environment. In these areas, high fuel loads often coexist with high value assets, which are more exposed to ignition than equivalent structures in an urban context. At the WUI, wildfires can quickly exhaust the resources normally available to urban firefighters, and the value of assets do not allow the use of large-scale, resource-saving techniques common in wildland fires management.
Mapping the WUI represents a first important step in wildfire risk management due to the primary importance of prevention in a setting that is difficult to defend in the face of emergencies. In addition, as the WUI is not only a possible target for wildfires, it is often a source of them, prevention of fire in these areas is a critical part of risk management.
Several methods are currently available to detect and map the WUI, differing according to the scale and the scope of the analysis. Pioneering methods mainly used aggregated data (e.g. census data, large scale vegetation maps) while recent techniques are increasingly using high precision remote sensing data to identify single structures and local changes in topography and vegetation.
In the context of the UE Interreg project Italia-Slovenija CROSSIT SAFER, a new methodology will be described to analyse and map wildfire risk at the WUI relying on state-of-the-art data and technologies. Specifically, high precision LiDAR data and segmentation processes are used to characterise wildland fuel precisely and efficiently.
How to cite: Taccaliti, F., Marzano, R., Rizzolo, R., Bell, T., Fischetti, D., and Lingua, E.: New methodology for mapping wildfire risk in the wildland-urban interface, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10583, https://doi.org/10.5194/egusphere-egu2020-10583, 2020.
EGU2020-10592 | Displays | BG3.31
Mitigation of drought stress in forest stands - insights from a throughfall-exclusion and a thinning experimentTimo Gebhardt, Benjamin D. Hesse, Thorsten E.E. Grams, Christian Ammer, and Karl-Heinz Häberle
Due to climate change suitable forest management measures are required to mitigate the proposed exacerbating drought events as already observed in central Europe in summer 2003, 2015, 2018, and 2019. This contribution summarizes the findings of two long-term field experiments studying different forest management measures aiming at mitigating drought in forest stands.
The first study investigated the potential of mixing tree composition for mitigating drought stress in Norway spruce (Picea abies [L.] Karst.). To this end, a five-year study with repeated summer droughts, experimentally induced via throughfall-exclusion (TE), was performed. The study objects were mature (60-80 years) old stands of Norway spruce in monoculture and mixture with European beech (Fagus sylvatica (L.). The impacts of repeated summer droughts were assessed on about 100 trees distributed on 12 plots and accessible via canopy crane (Kranzberg forest ROOF experiment in southern Germany). Predawn leaf water potentials of Norway spruce reached minima of -1.8 MPa, but were not affected by species mixture. Nevertheless, daily xylem sapflow density was increased up to 40% in mixture compared to pure strands. Likewise, stem growth, i.e. relative basal area increment, showed significantly higher drought resistance in mixture compared to monocultures.
While altering forest stand composition seems to be promising on the long-term, the conversion from monocultures is often economically not suitable for young stands in the short- to medium-term. Therefore, reducing intraspecific competition via thinning is a frequently discussed option investigated in the second, eight-year-long study. In a 26-year old Norway spruce monoculture, three thinning intensities, i.e. unchanged (control), moderate thinning (MT with reduced basal area by 43%) and heavy thinning (HT, reduced basal area by 67%) were applied, potentially mitigating drought by reducing intraspecific competition and increasing soil water availability. Indeed, in both thinning intensities the duration of drought stress for the trees (soil water content below critical value) was reduced compared to controls for up to 5-7 years following the event. However, increased radiation and higher growth rates of the individual trees accompanied by the fast establishment of a vital ground vegetation diminished the difference in stand transpiration between MT and HT within two years. Moreover, belowground competition with the understorey vegetation suppressed fine root recovery under HT compared to MT in contradiction to increased leaf area on HT on tree-level and therefore increased transpirational demand.
The presented studies suggest admixing of broadleaved beech into monocultures of Norway spruce to be a promising management measure in the long-term. In juvenile monocultures of Norway spruce frequent and intense thinning interventions while preventing the establishment of a vital understorey vegetation appears to be a promising forest measure, mitigating drought without losing sight of economic needs.
How to cite: Gebhardt, T., Hesse, B. D., Grams, T. E. E., Ammer, C., and Häberle, K.-H.: Mitigation of drought stress in forest stands - insights from a throughfall-exclusion and a thinning experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10592, https://doi.org/10.5194/egusphere-egu2020-10592, 2020.
Due to climate change suitable forest management measures are required to mitigate the proposed exacerbating drought events as already observed in central Europe in summer 2003, 2015, 2018, and 2019. This contribution summarizes the findings of two long-term field experiments studying different forest management measures aiming at mitigating drought in forest stands.
The first study investigated the potential of mixing tree composition for mitigating drought stress in Norway spruce (Picea abies [L.] Karst.). To this end, a five-year study with repeated summer droughts, experimentally induced via throughfall-exclusion (TE), was performed. The study objects were mature (60-80 years) old stands of Norway spruce in monoculture and mixture with European beech (Fagus sylvatica (L.). The impacts of repeated summer droughts were assessed on about 100 trees distributed on 12 plots and accessible via canopy crane (Kranzberg forest ROOF experiment in southern Germany). Predawn leaf water potentials of Norway spruce reached minima of -1.8 MPa, but were not affected by species mixture. Nevertheless, daily xylem sapflow density was increased up to 40% in mixture compared to pure strands. Likewise, stem growth, i.e. relative basal area increment, showed significantly higher drought resistance in mixture compared to monocultures.
While altering forest stand composition seems to be promising on the long-term, the conversion from monocultures is often economically not suitable for young stands in the short- to medium-term. Therefore, reducing intraspecific competition via thinning is a frequently discussed option investigated in the second, eight-year-long study. In a 26-year old Norway spruce monoculture, three thinning intensities, i.e. unchanged (control), moderate thinning (MT with reduced basal area by 43%) and heavy thinning (HT, reduced basal area by 67%) were applied, potentially mitigating drought by reducing intraspecific competition and increasing soil water availability. Indeed, in both thinning intensities the duration of drought stress for the trees (soil water content below critical value) was reduced compared to controls for up to 5-7 years following the event. However, increased radiation and higher growth rates of the individual trees accompanied by the fast establishment of a vital ground vegetation diminished the difference in stand transpiration between MT and HT within two years. Moreover, belowground competition with the understorey vegetation suppressed fine root recovery under HT compared to MT in contradiction to increased leaf area on HT on tree-level and therefore increased transpirational demand.
The presented studies suggest admixing of broadleaved beech into monocultures of Norway spruce to be a promising management measure in the long-term. In juvenile monocultures of Norway spruce frequent and intense thinning interventions while preventing the establishment of a vital understorey vegetation appears to be a promising forest measure, mitigating drought without losing sight of economic needs.
How to cite: Gebhardt, T., Hesse, B. D., Grams, T. E. E., Ammer, C., and Häberle, K.-H.: Mitigation of drought stress in forest stands - insights from a throughfall-exclusion and a thinning experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10592, https://doi.org/10.5194/egusphere-egu2020-10592, 2020.
EGU2020-10829 | Displays | BG3.31
Flexible open-source software for modelling wind disturbance and damage to trees and forestsTom Locatelli, Sophie Hale, Bruce Nicoll, and Barry Gardiner
Wind disturbance to forests extends across spatial and temporal scales and encompasses direct and indirect wind effects on the dynamics of forest ecosystems. It is detrimental to the provision of ecosystem services and reduces forest resistance and resilience to future natural disturbances. Historically, in the ecological and land-use scientific communities, forecasting the extent and probability of wind disturbance to forests has represented a serious challenge, with most studies electing to adopt qualitative or statistical approaches. The low degree of portability of statistical assessments of vulnerability to wind has limited their applicability and use, but it is recognised that they have a role in building hypotheses of the processes involved in wind damage that can be subsequently tested under experimental conditions. Results from tree stability experiments have contributed, in the last two decades, to the development of a mechanistic model of wind damage - ForestGALES. This is a process-based wind risk model that was originally created to inform the management of commercial forest plantations in the UK. Built on principles of forest science, physics, and ecology, ForestGALES requires a simple set of inputs and it has now been expanded to cover more than 20 common conifer species from across three continents, and multiple broadleaved species (e.g. Oak, Beech, Birch, and Eucalypts). Two methods of assessing vulnerability to wind damage are available in ForestGALES, one designed for application at stand level, and a novel approach that estimates vulnerability to wind at the individual tree within a stand – the latter allowing for use in complex forest stands, and for the effect of competition between trees in a stand. Until recently, ForestGALES was only available as desktop software and as an online tool as part of forest decision support systems (only for selected countries and species). These formats can be limiting for research and academic projects that aim to model and understanding wind disturbance dynamics across diverse landscapes, and that require a bespoke approach with a high degree of flexibility. To accommodate these broader requirements, ForestGALES has recently been redeveloped and released as a FOSS R package (“fgr”) that is fully customisable and easily integrated in R and modelling workflows and FOSS GIS frameworks. With this poster we present two exemplar studies of assessing wind damage risk to forested landscapes, one for each ForestGALES method (stand- and individual trees level), to showcase the capabilities and flexibility of the model in working with e.g. climate projection data, with other process-based models (e.g. 3PG) within an R modelling framework, and with LiDAR data, at the individual tree level.
How to cite: Locatelli, T., Hale, S., Nicoll, B., and Gardiner, B.: Flexible open-source software for modelling wind disturbance and damage to trees and forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10829, https://doi.org/10.5194/egusphere-egu2020-10829, 2020.
Wind disturbance to forests extends across spatial and temporal scales and encompasses direct and indirect wind effects on the dynamics of forest ecosystems. It is detrimental to the provision of ecosystem services and reduces forest resistance and resilience to future natural disturbances. Historically, in the ecological and land-use scientific communities, forecasting the extent and probability of wind disturbance to forests has represented a serious challenge, with most studies electing to adopt qualitative or statistical approaches. The low degree of portability of statistical assessments of vulnerability to wind has limited their applicability and use, but it is recognised that they have a role in building hypotheses of the processes involved in wind damage that can be subsequently tested under experimental conditions. Results from tree stability experiments have contributed, in the last two decades, to the development of a mechanistic model of wind damage - ForestGALES. This is a process-based wind risk model that was originally created to inform the management of commercial forest plantations in the UK. Built on principles of forest science, physics, and ecology, ForestGALES requires a simple set of inputs and it has now been expanded to cover more than 20 common conifer species from across three continents, and multiple broadleaved species (e.g. Oak, Beech, Birch, and Eucalypts). Two methods of assessing vulnerability to wind damage are available in ForestGALES, one designed for application at stand level, and a novel approach that estimates vulnerability to wind at the individual tree within a stand – the latter allowing for use in complex forest stands, and for the effect of competition between trees in a stand. Until recently, ForestGALES was only available as desktop software and as an online tool as part of forest decision support systems (only for selected countries and species). These formats can be limiting for research and academic projects that aim to model and understanding wind disturbance dynamics across diverse landscapes, and that require a bespoke approach with a high degree of flexibility. To accommodate these broader requirements, ForestGALES has recently been redeveloped and released as a FOSS R package (“fgr”) that is fully customisable and easily integrated in R and modelling workflows and FOSS GIS frameworks. With this poster we present two exemplar studies of assessing wind damage risk to forested landscapes, one for each ForestGALES method (stand- and individual trees level), to showcase the capabilities and flexibility of the model in working with e.g. climate projection data, with other process-based models (e.g. 3PG) within an R modelling framework, and with LiDAR data, at the individual tree level.
How to cite: Locatelli, T., Hale, S., Nicoll, B., and Gardiner, B.: Flexible open-source software for modelling wind disturbance and damage to trees and forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10829, https://doi.org/10.5194/egusphere-egu2020-10829, 2020.
EGU2020-16742 | Displays | BG3.31
Salinity and species richness determine mangrove canopy heightSaverio Perri, Matteo Detto, and Annalisa Molini
Mangrove ecosystems play an important role in carbon sequestration of coastal wetlands through litterfall and soil carbon accumulation. Maximum canopy height (Hmax) is a key variable in assessing above-ground carbon stocks and productivity, and it is relatively easy obtained from forest inventories or satellite remote sensing products. However, the drivers that regulate canopy height in these ecosystems are still poorly understood. It is a common assumption that climatic drivers, such as precipitation and air temperature, account for most of the mangrove height variability. Nevertheless, local productivity and carbon allocation are known to be largely controlled by salinity, which represents one of the dominant sources of abiotic stress in tidal environments. Yet, the control of salinity on canopy height has received scarce attention in the literature.
In this study, we present a global analysis of Hmax as a function of seawater salinity, species richness, and air temperature. Our results identify both salinity and air temperature as major abiotic co-factors in control species richness and Hmax. For example, the largest number of species is observed in Southeast Asia (> 25), where high temperature co-occurs with low salinity. In contrast, low temperatures in subtropical zones and high salinity in arid regions strongly limit diversity. Such low diversity is generally associated with mangrove ecosystems with short canopy. The multivariate analysis of both global and regional patterns reveals that salinity is the main limiting factor for Hmax, while the air temperature is mostly unrelated to Hmax. The effects of salt-stress are particularly evident in ecosystems with low species richness (number of species ≤10), while it does not have a detectable effect on Hmax in species‐rich communities (number of species >10).
We hypothesize that high stress induced by salinity reduces the niche breadth and decreases competition for above-ground resources, limiting diversity and Hmax. On the other hand, more tolerable salinity conditions might promote species coexistence, competition for light, therefore increasing canopy height and mangrove productivity through complementary resource utilizations.
How to cite: Perri, S., Detto, M., and Molini, A.: Salinity and species richness determine mangrove canopy height, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16742, https://doi.org/10.5194/egusphere-egu2020-16742, 2020.
Mangrove ecosystems play an important role in carbon sequestration of coastal wetlands through litterfall and soil carbon accumulation. Maximum canopy height (Hmax) is a key variable in assessing above-ground carbon stocks and productivity, and it is relatively easy obtained from forest inventories or satellite remote sensing products. However, the drivers that regulate canopy height in these ecosystems are still poorly understood. It is a common assumption that climatic drivers, such as precipitation and air temperature, account for most of the mangrove height variability. Nevertheless, local productivity and carbon allocation are known to be largely controlled by salinity, which represents one of the dominant sources of abiotic stress in tidal environments. Yet, the control of salinity on canopy height has received scarce attention in the literature.
In this study, we present a global analysis of Hmax as a function of seawater salinity, species richness, and air temperature. Our results identify both salinity and air temperature as major abiotic co-factors in control species richness and Hmax. For example, the largest number of species is observed in Southeast Asia (> 25), where high temperature co-occurs with low salinity. In contrast, low temperatures in subtropical zones and high salinity in arid regions strongly limit diversity. Such low diversity is generally associated with mangrove ecosystems with short canopy. The multivariate analysis of both global and regional patterns reveals that salinity is the main limiting factor for Hmax, while the air temperature is mostly unrelated to Hmax. The effects of salt-stress are particularly evident in ecosystems with low species richness (number of species ≤10), while it does not have a detectable effect on Hmax in species‐rich communities (number of species >10).
We hypothesize that high stress induced by salinity reduces the niche breadth and decreases competition for above-ground resources, limiting diversity and Hmax. On the other hand, more tolerable salinity conditions might promote species coexistence, competition for light, therefore increasing canopy height and mangrove productivity through complementary resource utilizations.
How to cite: Perri, S., Detto, M., and Molini, A.: Salinity and species richness determine mangrove canopy height, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16742, https://doi.org/10.5194/egusphere-egu2020-16742, 2020.
EGU2020-19901 | Displays | BG3.31
Mapping forest natural disturbances dynamics in the Aosta Valley (Italy) through long-term trends derived from Landsat time series and innovative statistical approachesRaffaella Marzano, Donato Morresi, Emanuele Lingua, Renzo Motta, and Matteo Garbarino
Forest dynamics triggered by natural disturbances occurred in the Aosta Valley region were spatially mapped over time using long-term trends derived from Landsat time series spanning over 35 years, from 1985 to 2019. Among biotic and abiotic disturbance agents, the following were selected: wildfires, windthrows, snow avalanches, landslides and insect outbreaks. Landsat TM, ETM+ and OLI images acquired during the vegetative season (from June to September) with less than 80% cloud cover were employed to create synthetic images at one-year interval using the geometric median approach at the pixel-level. Forest dynamics due to disturbance occurrence and the following vegetation recovery were explored through inter-annual time series of different spectral indices such as normalized vegetation indices (Normalized Burn Ratio, Normalized Moisture Index) and the tasseled cap band transformations (wetness, angle). Changes in the linear trends of the spectral indices time series caused by disturbance occurrence were detected using a novel bottom-up approach in which a wavelet basis is adaptively constructed by merging neighbouring segments of the data. This method doesn’t require a priori knowledge of the time series parameters making it fully automated. Prior to perform the trend analysis, vegetation indices time series were filtered to remove residual invalid pixels and fill gaps of one-year length. Considering abrupt disturbances, this method highlighted sensitivity toward both high and low magnitude events and was able to accurately detect different severity degrees within the perimeter of the affected forest area. Historical wildfire perimeters and crown fires patches provided by the forest fire fighting corps of the Aosta Valley were used to perform preliminary severity maps validation. Considering two severity classes, ‘low to moderate’ and ‘moderate to high’, maps produced using the Normalized Burn Ratio achieved an overall accuracy of 83%. Future work is aimed to validate all the selected natural disturbance agents using historical field data available at the regional scale. Moreover, a rigorous and wide scale-based assessment of the capabilities of the algorithm in tracking post-fire forest recovery will be performed by integrating forest structure data from filed surveys and airborne LiDAR measurements.
How to cite: Marzano, R., Morresi, D., Lingua, E., Motta, R., and Garbarino, M.: Mapping forest natural disturbances dynamics in the Aosta Valley (Italy) through long-term trends derived from Landsat time series and innovative statistical approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19901, https://doi.org/10.5194/egusphere-egu2020-19901, 2020.
Forest dynamics triggered by natural disturbances occurred in the Aosta Valley region were spatially mapped over time using long-term trends derived from Landsat time series spanning over 35 years, from 1985 to 2019. Among biotic and abiotic disturbance agents, the following were selected: wildfires, windthrows, snow avalanches, landslides and insect outbreaks. Landsat TM, ETM+ and OLI images acquired during the vegetative season (from June to September) with less than 80% cloud cover were employed to create synthetic images at one-year interval using the geometric median approach at the pixel-level. Forest dynamics due to disturbance occurrence and the following vegetation recovery were explored through inter-annual time series of different spectral indices such as normalized vegetation indices (Normalized Burn Ratio, Normalized Moisture Index) and the tasseled cap band transformations (wetness, angle). Changes in the linear trends of the spectral indices time series caused by disturbance occurrence were detected using a novel bottom-up approach in which a wavelet basis is adaptively constructed by merging neighbouring segments of the data. This method doesn’t require a priori knowledge of the time series parameters making it fully automated. Prior to perform the trend analysis, vegetation indices time series were filtered to remove residual invalid pixels and fill gaps of one-year length. Considering abrupt disturbances, this method highlighted sensitivity toward both high and low magnitude events and was able to accurately detect different severity degrees within the perimeter of the affected forest area. Historical wildfire perimeters and crown fires patches provided by the forest fire fighting corps of the Aosta Valley were used to perform preliminary severity maps validation. Considering two severity classes, ‘low to moderate’ and ‘moderate to high’, maps produced using the Normalized Burn Ratio achieved an overall accuracy of 83%. Future work is aimed to validate all the selected natural disturbance agents using historical field data available at the regional scale. Moreover, a rigorous and wide scale-based assessment of the capabilities of the algorithm in tracking post-fire forest recovery will be performed by integrating forest structure data from filed surveys and airborne LiDAR measurements.
How to cite: Marzano, R., Morresi, D., Lingua, E., Motta, R., and Garbarino, M.: Mapping forest natural disturbances dynamics in the Aosta Valley (Italy) through long-term trends derived from Landsat time series and innovative statistical approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19901, https://doi.org/10.5194/egusphere-egu2020-19901, 2020.
EGU2020-21067 | Displays | BG3.31
Ecological security assessment for environmental restoration and management in SW Chinaxiaoyong Bai and huan Chen
Regional ecological security diagnosis is the most basic prerequisite for environmental management and restoration. However, the traditional single method is greatly affected by human and difficult to quickly identify. Thus, This paper combined principal component analysis and unsupervised k-means clustering algorithm to provide a fast and efficient method for safety evaluation of environmental management. Basing on this method, the clustering result was defined as five different levels of ecological safety zone combining with the principle of place name + landform + danger degree. The results showed that there were more than half of the study area were unsafe (56.3%), what was even more surprising was that there were many high-value of NDVI and NPP in these areas. The partition result was finally verified in order to ensure the accuracy of the partition, and it had been proved that the ecological environment is not necessarily safe where in the areas with good vegetation coverage. This article provided a new technical reference for the evaluation of ecological areas.
How to cite: Bai, X. and Chen, H.: Ecological security assessment for environmental restoration and management in SW China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21067, https://doi.org/10.5194/egusphere-egu2020-21067, 2020.
Regional ecological security diagnosis is the most basic prerequisite for environmental management and restoration. However, the traditional single method is greatly affected by human and difficult to quickly identify. Thus, This paper combined principal component analysis and unsupervised k-means clustering algorithm to provide a fast and efficient method for safety evaluation of environmental management. Basing on this method, the clustering result was defined as five different levels of ecological safety zone combining with the principle of place name + landform + danger degree. The results showed that there were more than half of the study area were unsafe (56.3%), what was even more surprising was that there were many high-value of NDVI and NPP in these areas. The partition result was finally verified in order to ensure the accuracy of the partition, and it had been proved that the ecological environment is not necessarily safe where in the areas with good vegetation coverage. This article provided a new technical reference for the evaluation of ecological areas.
How to cite: Bai, X. and Chen, H.: Ecological security assessment for environmental restoration and management in SW China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21067, https://doi.org/10.5194/egusphere-egu2020-21067, 2020.
EGU2020-21348 | Displays | BG3.31
Predict potential risk of bark beetle disturbance applying Bayesian Belief NetworksMeryem Tahri, Jan Kašpar, Harald Vacik, and Robert Marušák
In recent years, due to climate and environmental change, most forest areas suffer from land degradation, mainly caused by the bark beetle disturbance which damaged many tree species. The complex multiple interactions between climate and influence factors have highlighted the need for an efficiency integrated model based on decision support system, determining important implications and support for forest management planning. Based on expert perceptions, the Bayesian Belief Networks (BBN) approach provides a more consistent method of handling uncertainties, aiming to facilitate the interpretation of interdependencies between factors considered against risk. In this research, we have developed a BBN algorithm and program to estimate the potential risk in national scale, this technique was compared to the fuzzy logic model. Both models propose rapid solution for solving complex decision problems, they could be reused in other worldwide similar study areas.
How to cite: Tahri, M., Kašpar, J., Vacik, H., and Marušák, R.: Predict potential risk of bark beetle disturbance applying Bayesian Belief Networks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21348, https://doi.org/10.5194/egusphere-egu2020-21348, 2020.
In recent years, due to climate and environmental change, most forest areas suffer from land degradation, mainly caused by the bark beetle disturbance which damaged many tree species. The complex multiple interactions between climate and influence factors have highlighted the need for an efficiency integrated model based on decision support system, determining important implications and support for forest management planning. Based on expert perceptions, the Bayesian Belief Networks (BBN) approach provides a more consistent method of handling uncertainties, aiming to facilitate the interpretation of interdependencies between factors considered against risk. In this research, we have developed a BBN algorithm and program to estimate the potential risk in national scale, this technique was compared to the fuzzy logic model. Both models propose rapid solution for solving complex decision problems, they could be reused in other worldwide similar study areas.
How to cite: Tahri, M., Kašpar, J., Vacik, H., and Marušák, R.: Predict potential risk of bark beetle disturbance applying Bayesian Belief Networks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21348, https://doi.org/10.5194/egusphere-egu2020-21348, 2020.
BG3.32 – Holocene land-use and land-cover change: advances and applications - from quantifying vegetation change to estimating human impacts on biodiversity
EGU2020-4417 | Displays | BG3.32
Determinants of ~1000-year woody vegetation dynamics at the southern boreal forest margin in Northeast ChinaChenyi Zhu, Hongyan Liu, Hongya Wang, Siwen Feng, and Yue Han
The most dramatic permafrost degradation is expected to occur at its southernmost distribution, which causes significant vegetation changes in the southernmost boreal forests and consequently affects the carbon stock. To reveal determinants of vegetation change and, in particular, the role of permafrost dynamics, the reconstruction of the long- term vegetation history spanning a warming-cooling cycle is required. Here, we showed that over the last 990 years, vegetation development was characterized by changes in the relative proportions of taxa, such as Larix, Pinus and Corylus, corresponding to the variation in temperature. However, since ~1950 AD, rapid warming has led to the breakdown of the stable relationship among vegetation, climate and permafrost, and the proportion of conifers has shown an increasing trend in the short term due to the influence of permafrost thawing regulated by terrain. In general, we have observed that the coupling system of vegetation, climate and permafrost was stable before ~1950 AD; however, there has been a transition in the most recent rapid warming-induced permafrost thawing. As the southern boundary of permafrost moves northward, it is suspected that the boreal forest in this region will be unstable or may even collapse in the future, and the complete replacement of conifers by broad-leaved trees could greatly reduce the carbon stock in this area by that time.
How to cite: Zhu, C., Liu, H., Wang, H., Feng, S., and Han, Y.: Determinants of ~1000-year woody vegetation dynamics at the southern boreal forest margin in Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4417, https://doi.org/10.5194/egusphere-egu2020-4417, 2020.
The most dramatic permafrost degradation is expected to occur at its southernmost distribution, which causes significant vegetation changes in the southernmost boreal forests and consequently affects the carbon stock. To reveal determinants of vegetation change and, in particular, the role of permafrost dynamics, the reconstruction of the long- term vegetation history spanning a warming-cooling cycle is required. Here, we showed that over the last 990 years, vegetation development was characterized by changes in the relative proportions of taxa, such as Larix, Pinus and Corylus, corresponding to the variation in temperature. However, since ~1950 AD, rapid warming has led to the breakdown of the stable relationship among vegetation, climate and permafrost, and the proportion of conifers has shown an increasing trend in the short term due to the influence of permafrost thawing regulated by terrain. In general, we have observed that the coupling system of vegetation, climate and permafrost was stable before ~1950 AD; however, there has been a transition in the most recent rapid warming-induced permafrost thawing. As the southern boundary of permafrost moves northward, it is suspected that the boreal forest in this region will be unstable or may even collapse in the future, and the complete replacement of conifers by broad-leaved trees could greatly reduce the carbon stock in this area by that time.
How to cite: Zhu, C., Liu, H., Wang, H., Feng, S., and Han, Y.: Determinants of ~1000-year woody vegetation dynamics at the southern boreal forest margin in Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4417, https://doi.org/10.5194/egusphere-egu2020-4417, 2020.
EGU2020-7169 | Displays | BG3.32 | Highlight
Exploring Driving Forces of Avian Diversity in a Subtropical Asian City.Chun-Wei Huang, Yi-Lei Hsu, Hui Xian Lau, and Jerome Chie-Jen Ko
Global urbanization has led to biodiversity decline. Although some case studies reveal rich biodiversity in cities, we still know little about the underlying factors that shape biodiversity at different levels of urbanization. This study statistically analyzes the relationships between environmental, socio-economic and landscape-ecological factors with avian diversity along the rural-urban gradient of Taipei, Taiwan. We use stepwise regression to explore factors that are correlated to variation of bird diversity. First, based on a citizen-science based breeding bird survey in Taiwan (BBS Taiwan), we identify avian richness at different levels of urbanization, using population density as a proxy. Then we correct median income, proportion of tertiary education attainment, precipitation and temperature data from open government data of Taiwan. Finally, we quantify landscape structures using landscape metrics. The results indicate that landscape-ecological factors, such as cohesion of forest, the edge length between building and wetland and area size of building, etc. are correlated with avian richness. On the other hand, socio-economic factors, such as median income and education level are not correlated with avian diversity. Our results reveal that the luxury effect, which describes the positive influence of wealth on urban biodiversity, may not be influential at a subtropical compact city in Asia. On the contrary, we suggest an eco-friendly landscape design that creates a landscape mosaic with scattered trees or wetlands can lead to a network of ecological stepping stones through urban areas for improving bird diversity.
How to cite: Huang, C.-W., Hsu, Y.-L., Lau, H. X., and Ko, J. C.-J.: Exploring Driving Forces of Avian Diversity in a Subtropical Asian City., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7169, https://doi.org/10.5194/egusphere-egu2020-7169, 2020.
Global urbanization has led to biodiversity decline. Although some case studies reveal rich biodiversity in cities, we still know little about the underlying factors that shape biodiversity at different levels of urbanization. This study statistically analyzes the relationships between environmental, socio-economic and landscape-ecological factors with avian diversity along the rural-urban gradient of Taipei, Taiwan. We use stepwise regression to explore factors that are correlated to variation of bird diversity. First, based on a citizen-science based breeding bird survey in Taiwan (BBS Taiwan), we identify avian richness at different levels of urbanization, using population density as a proxy. Then we correct median income, proportion of tertiary education attainment, precipitation and temperature data from open government data of Taiwan. Finally, we quantify landscape structures using landscape metrics. The results indicate that landscape-ecological factors, such as cohesion of forest, the edge length between building and wetland and area size of building, etc. are correlated with avian richness. On the other hand, socio-economic factors, such as median income and education level are not correlated with avian diversity. Our results reveal that the luxury effect, which describes the positive influence of wealth on urban biodiversity, may not be influential at a subtropical compact city in Asia. On the contrary, we suggest an eco-friendly landscape design that creates a landscape mosaic with scattered trees or wetlands can lead to a network of ecological stepping stones through urban areas for improving bird diversity.
How to cite: Huang, C.-W., Hsu, Y.-L., Lau, H. X., and Ko, J. C.-J.: Exploring Driving Forces of Avian Diversity in a Subtropical Asian City., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7169, https://doi.org/10.5194/egusphere-egu2020-7169, 2020.
EGU2020-9054 | Displays | BG3.32
Quantitative land-cover change in West Africa over the Holocene: case study in CameroonEsther Githumbi, Marie-Jose Gaillard, Anne-Marie Lezine, Gaston Achoundong, Christelle Hély, Judicael Lebamba, Laurent Marquer, Florence Mazier, and Shinya Sugita
Currently interaction between climate and land-cover change in the past across the globe, and whether drivers are anthropogenic or natural are among the biggest debates. The impacts of climate and land-cover change are having significant consequences on biodiversity and ecosystems. Wide ranging palaeoenvironmental methods have contributed to this debate by providing long-term records of both climate and land-cover change. This provide the context for evaluating the effect of land-cover change on climate. Inferred past land-cover and climate change from palaeoecological proxies therefore need to be quantified to provide reliable estimates of change; there are several methods of quantifying land-cover change in the past of which the Landscape Reconstruction Algorithm (LRA) can estimate past land-cover change quantitatively at both regional and local spatial scales using fossil pollen records. The LRA includes two models (REVEALS and LOVE) and has already been tested and validated in Europe, North America, and China.
In this study, we apply the LRA on Holocene pollen records in Cameroon to estimate past land-cover change. This is the first pollen-based, quantitative land-cover reconstruction using LRA in Africa. It will provide a comparison with land-cover change described from raw pollen data and useful information for climate modelling. The first phase involved the estimation of relative pollen productivity (RPP) for 13 taxa using the pollen-vegetation relationship described by the ERV model. The second phase involves the application of LRA using the RPPs from the 13 taxa.
Acknowledgements: We thank the French ANR (National Research Agency; projects C3A ANR-09-PEXT-001 and VULPES ANR-15-MASC-0003) and the Belgian project BR/132/A1/AFRIFORD for financial support, IRD (France) and the Ministry of Research and National Herbarium of Cameroon for research facilities and authorizations, and A. Vincens, J.-P. Cazet, G. Buchet, L. Février, and K. Lemonnier (CNRS) for laboratory and field assistance. The study is a contribution to PAGES LandCover6k (www.pastglobalchanges.org/ini/wg/landcover6k/intro).
How to cite: Githumbi, E., Gaillard, M.-J., Lezine, A.-M., Achoundong, G., Hély, C., Lebamba, J., Marquer, L., Mazier, F., and Sugita, S.: Quantitative land-cover change in West Africa over the Holocene: case study in Cameroon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9054, https://doi.org/10.5194/egusphere-egu2020-9054, 2020.
Currently interaction between climate and land-cover change in the past across the globe, and whether drivers are anthropogenic or natural are among the biggest debates. The impacts of climate and land-cover change are having significant consequences on biodiversity and ecosystems. Wide ranging palaeoenvironmental methods have contributed to this debate by providing long-term records of both climate and land-cover change. This provide the context for evaluating the effect of land-cover change on climate. Inferred past land-cover and climate change from palaeoecological proxies therefore need to be quantified to provide reliable estimates of change; there are several methods of quantifying land-cover change in the past of which the Landscape Reconstruction Algorithm (LRA) can estimate past land-cover change quantitatively at both regional and local spatial scales using fossil pollen records. The LRA includes two models (REVEALS and LOVE) and has already been tested and validated in Europe, North America, and China.
In this study, we apply the LRA on Holocene pollen records in Cameroon to estimate past land-cover change. This is the first pollen-based, quantitative land-cover reconstruction using LRA in Africa. It will provide a comparison with land-cover change described from raw pollen data and useful information for climate modelling. The first phase involved the estimation of relative pollen productivity (RPP) for 13 taxa using the pollen-vegetation relationship described by the ERV model. The second phase involves the application of LRA using the RPPs from the 13 taxa.
Acknowledgements: We thank the French ANR (National Research Agency; projects C3A ANR-09-PEXT-001 and VULPES ANR-15-MASC-0003) and the Belgian project BR/132/A1/AFRIFORD for financial support, IRD (France) and the Ministry of Research and National Herbarium of Cameroon for research facilities and authorizations, and A. Vincens, J.-P. Cazet, G. Buchet, L. Février, and K. Lemonnier (CNRS) for laboratory and field assistance. The study is a contribution to PAGES LandCover6k (www.pastglobalchanges.org/ini/wg/landcover6k/intro).
How to cite: Githumbi, E., Gaillard, M.-J., Lezine, A.-M., Achoundong, G., Hély, C., Lebamba, J., Marquer, L., Mazier, F., and Sugita, S.: Quantitative land-cover change in West Africa over the Holocene: case study in Cameroon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9054, https://doi.org/10.5194/egusphere-egu2020-9054, 2020.
EGU2020-9322 | Displays | BG3.32
Quantitative reconstruction of Holocene vegetation cover in Flanders, Belgium - a study based on pollen-records from alluvial floodplainsRenske Hoevers, Nils Broothaerts, and Gert Verstraeten
Rivers and alluvial floodplains are dynamic environments facing natural and anthropogenic impacts. A thorough knowledge of the functioning of alluvial floodplains and their sensitivity to changes in internal and external driving forces is required for sustainable management of these ecosystems.
During the Early and Middle Holocene, most floodplains in northern and central Belgium were stable environments with limited floodplain aggradation resulting in the formation of peat. During these times, floodplains consisted mainly of large marshes where peat accumulated and river channels were absent or small. During the Late Holocene, these environments changed completely towards single channel meandering rivers with overbank deposits, impeding peat accumulation, largely as a result of increasing anthropogenic impact. However, this evolution in floodplain geoecology is diachronous as some river valleys transform a few thousand years before others.
Previous research already showed that river systems respond non-linearly to changes in land-use and land-cover in their catchments, as land-use intensity and slope-channel coupling need to cross a certain threshold to result in significant change. Hence, the differences in timing of floodplain response can to some extent be related to different land-use trajectories in the river catchments. Based on previous qualitative and semi-quantitative research the exact land-cover threshold, i.e. the land-use intensity required to result in transformation of the fluvial system, as well as the timing at which this threshold is crossed, could not be detected. Hence, a quantitative assessment of the resilience of floodplain environments to regional land-use changes is needed. A successful pilot REVEALS-based reconstruction of the Dijle catchment, showed a decrease in forest cover from the Bronze Age onwards, accompanied by an increase in the proportion of cereals.
In this study, we constructed a database of pollen-records collected in the eastern part of Flanders, mainly retrieved from river floodplains, as deposits from large lakes are not available in the area. We selected sites with varying soil properties, topographies, and histories of human impact in their catchments, to uncover regional differences in land-cover evolution through the application of the REVEALS model. To assess the applicability of this model to alluvial deposits, modern pollen data will be included and outcomes will be compared to modern vegetation maps. In addition, vegetation reconstructions will be compared with historical maps (available from 1778 AD onwards).
Results will help to answer questions regarding the sensitivity of Flanders to (future) environmental changes. Our study contributes to the understanding of Holocene land-cover change and its drivers, by providing quantitative vegetation cover reconstructions for Belgium that are currently lacking in the European REVEALS reconstructions. Moreover, it extends the application of the REVEALS model to pollen-records retrieved from alluvial deposits.
How to cite: Hoevers, R., Broothaerts, N., and Verstraeten, G.: Quantitative reconstruction of Holocene vegetation cover in Flanders, Belgium - a study based on pollen-records from alluvial floodplains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9322, https://doi.org/10.5194/egusphere-egu2020-9322, 2020.
Rivers and alluvial floodplains are dynamic environments facing natural and anthropogenic impacts. A thorough knowledge of the functioning of alluvial floodplains and their sensitivity to changes in internal and external driving forces is required for sustainable management of these ecosystems.
During the Early and Middle Holocene, most floodplains in northern and central Belgium were stable environments with limited floodplain aggradation resulting in the formation of peat. During these times, floodplains consisted mainly of large marshes where peat accumulated and river channels were absent or small. During the Late Holocene, these environments changed completely towards single channel meandering rivers with overbank deposits, impeding peat accumulation, largely as a result of increasing anthropogenic impact. However, this evolution in floodplain geoecology is diachronous as some river valleys transform a few thousand years before others.
Previous research already showed that river systems respond non-linearly to changes in land-use and land-cover in their catchments, as land-use intensity and slope-channel coupling need to cross a certain threshold to result in significant change. Hence, the differences in timing of floodplain response can to some extent be related to different land-use trajectories in the river catchments. Based on previous qualitative and semi-quantitative research the exact land-cover threshold, i.e. the land-use intensity required to result in transformation of the fluvial system, as well as the timing at which this threshold is crossed, could not be detected. Hence, a quantitative assessment of the resilience of floodplain environments to regional land-use changes is needed. A successful pilot REVEALS-based reconstruction of the Dijle catchment, showed a decrease in forest cover from the Bronze Age onwards, accompanied by an increase in the proportion of cereals.
In this study, we constructed a database of pollen-records collected in the eastern part of Flanders, mainly retrieved from river floodplains, as deposits from large lakes are not available in the area. We selected sites with varying soil properties, topographies, and histories of human impact in their catchments, to uncover regional differences in land-cover evolution through the application of the REVEALS model. To assess the applicability of this model to alluvial deposits, modern pollen data will be included and outcomes will be compared to modern vegetation maps. In addition, vegetation reconstructions will be compared with historical maps (available from 1778 AD onwards).
Results will help to answer questions regarding the sensitivity of Flanders to (future) environmental changes. Our study contributes to the understanding of Holocene land-cover change and its drivers, by providing quantitative vegetation cover reconstructions for Belgium that are currently lacking in the European REVEALS reconstructions. Moreover, it extends the application of the REVEALS model to pollen-records retrieved from alluvial deposits.
How to cite: Hoevers, R., Broothaerts, N., and Verstraeten, G.: Quantitative reconstruction of Holocene vegetation cover in Flanders, Belgium - a study based on pollen-records from alluvial floodplains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9322, https://doi.org/10.5194/egusphere-egu2020-9322, 2020.
EGU2020-9417 | Displays | BG3.32
REVEALS-based reconstruction of Holocene vegetation abundance in temperate China: new insights on past human-induced land-cover change for climate modellingFurong Li, Marie-José Gaillard, Shinya Sugita, Xianyong Cao, Ulrike Herzschuh, Yan Zhao, Qinghai Xu, and Jian Ni
Quantification of the effects of human-induced vegetation-cover change on past (present and future) climate is still a subject of debate. Our understanding of these effects greatly depends on the availability of empirical reconstructions of past anthropogenic vegetation cover. Such reconstructions can be used to evaluate Anthropogenic Land-Cover Change (ALCC) scenarios for the past (such as HYDE and KK), and simulated past vegetation using dynamic vegetation models such as LPJGUESS. In this context, China is an important region given that agriculture started already in early Holocene, and expanded rapidly over large areas throughout the eastern part of the country. Quantitative reconstructions of plant cover based on pollen data has long been a challenge. The REVEALS model (Sugita, 2007) is one of the approaches for quantitative reconstruction of past plant cover that has been applied, tested, and validated in many regions of the world over the last years. Relative pollen productivity (RPP) of plant taxa is a key parameter required for REVEALS applications. A synthesis of all RPP estimates available in temperate China is published in Li et al. (2018). These RPPs were used with pollen records from lakes and bogs to produce REVEALS-based estimates of Holocene regional vegetation-cover change in temperate China. In order to interpret the REVEALS reconstructions in terms of climate or anthropogenic land-cover change, we compared the REVEALS estimates of vegetation-cover change with existing palaeoclimatic data and archaeological evidences on human history and past land-use change. We also compared the REVEALS estimates with fractions of plant functional types simulated by LPJGUESS and ALCC scenarios from HYDE and KK.
The results suggest that the REVEALS-based values of plant cover strongly differ from the pollen percentages and provide new insights on past changes in plant composition and vegetation dynamics over the Holocene. Human-induced deforestation is highest in eastern China with 3 major phases at ca. 5500, 3000 and 2000 calibrated years before present. Disentangling human-induced from climate-induced pollen-based open-land cover remains a challenge. However, thorough comparison of the REVEALS reconstructions with historical and archaeological information on settlement and land-use history, and with palaeoclimate reconstructions provide important clues to the question. This study is a contribution to PAGES LandCover6k.
References: Li et al., 2018. Front Plant Sci; Sugita, 2007. Holocene.
How to cite: Li, F., Gaillard, M.-J., Sugita, S., Cao, X., Herzschuh, U., Zhao, Y., Xu, Q., and Ni, J.: REVEALS-based reconstruction of Holocene vegetation abundance in temperate China: new insights on past human-induced land-cover change for climate modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9417, https://doi.org/10.5194/egusphere-egu2020-9417, 2020.
Quantification of the effects of human-induced vegetation-cover change on past (present and future) climate is still a subject of debate. Our understanding of these effects greatly depends on the availability of empirical reconstructions of past anthropogenic vegetation cover. Such reconstructions can be used to evaluate Anthropogenic Land-Cover Change (ALCC) scenarios for the past (such as HYDE and KK), and simulated past vegetation using dynamic vegetation models such as LPJGUESS. In this context, China is an important region given that agriculture started already in early Holocene, and expanded rapidly over large areas throughout the eastern part of the country. Quantitative reconstructions of plant cover based on pollen data has long been a challenge. The REVEALS model (Sugita, 2007) is one of the approaches for quantitative reconstruction of past plant cover that has been applied, tested, and validated in many regions of the world over the last years. Relative pollen productivity (RPP) of plant taxa is a key parameter required for REVEALS applications. A synthesis of all RPP estimates available in temperate China is published in Li et al. (2018). These RPPs were used with pollen records from lakes and bogs to produce REVEALS-based estimates of Holocene regional vegetation-cover change in temperate China. In order to interpret the REVEALS reconstructions in terms of climate or anthropogenic land-cover change, we compared the REVEALS estimates of vegetation-cover change with existing palaeoclimatic data and archaeological evidences on human history and past land-use change. We also compared the REVEALS estimates with fractions of plant functional types simulated by LPJGUESS and ALCC scenarios from HYDE and KK.
The results suggest that the REVEALS-based values of plant cover strongly differ from the pollen percentages and provide new insights on past changes in plant composition and vegetation dynamics over the Holocene. Human-induced deforestation is highest in eastern China with 3 major phases at ca. 5500, 3000 and 2000 calibrated years before present. Disentangling human-induced from climate-induced pollen-based open-land cover remains a challenge. However, thorough comparison of the REVEALS reconstructions with historical and archaeological information on settlement and land-use history, and with palaeoclimate reconstructions provide important clues to the question. This study is a contribution to PAGES LandCover6k.
References: Li et al., 2018. Front Plant Sci; Sugita, 2007. Holocene.
How to cite: Li, F., Gaillard, M.-J., Sugita, S., Cao, X., Herzschuh, U., Zhao, Y., Xu, Q., and Ni, J.: REVEALS-based reconstruction of Holocene vegetation abundance in temperate China: new insights on past human-induced land-cover change for climate modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9417, https://doi.org/10.5194/egusphere-egu2020-9417, 2020.
EGU2020-10036 | Displays | BG3.32
Postglacial evolution of forest and grassland in south edge of GobiYue Han, Hongyan Liu, Lingyu Zhou, Qian Hao, and Ying Cheng
Tree and grass coexist in south edge of Gobi, northern China. In this region, forest plays an important role in windbreak and sand fixation, and grassland is the foundation of animal husbandry. Afforestation can improve the environment and regulate the climate, but it also restricts the animal husbandry by reducing grassland. Based on robust method for tree and grass cover reconstruction with 19 000-year-long pollen records from northern China, we show that, the past tree cover peaked during the early Holocene (30.7±12.3%), and grass cover was generally stable (45.3±3.9%). Temperature, precipitation, tree-grass competition and fire had driven the postglacial evolution of tree/grass cover, and forest can suppress grassland by tree-grass competition when tree cover is higher than 13.8%. Our study provides implications for weighting between afforestation and grassland protection.
How to cite: Han, Y., Liu, H., Zhou, L., Hao, Q., and Cheng, Y.: Postglacial evolution of forest and grassland in south edge of Gobi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10036, https://doi.org/10.5194/egusphere-egu2020-10036, 2020.
Tree and grass coexist in south edge of Gobi, northern China. In this region, forest plays an important role in windbreak and sand fixation, and grassland is the foundation of animal husbandry. Afforestation can improve the environment and regulate the climate, but it also restricts the animal husbandry by reducing grassland. Based on robust method for tree and grass cover reconstruction with 19 000-year-long pollen records from northern China, we show that, the past tree cover peaked during the early Holocene (30.7±12.3%), and grass cover was generally stable (45.3±3.9%). Temperature, precipitation, tree-grass competition and fire had driven the postglacial evolution of tree/grass cover, and forest can suppress grassland by tree-grass competition when tree cover is higher than 13.8%. Our study provides implications for weighting between afforestation and grassland protection.
How to cite: Han, Y., Liu, H., Zhou, L., Hao, Q., and Cheng, Y.: Postglacial evolution of forest and grassland in south edge of Gobi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10036, https://doi.org/10.5194/egusphere-egu2020-10036, 2020.
EGU2020-11082 | Displays | BG3.32 | Highlight
Goal and products of PAGES LandCover6k 2018-2020: Past Global Land Cover and Land Use for Climate ModellingMarie-Jose Gaillard, Andria Dawson, Ralph Fyfe, Esther Githumbi, Emily Hammer, Sandy Harrison, Furong Li, Marco Madella, Kathleen D. Morrison, Benjamin Stocker, Marc Vander Linden, and Nicki J. Whitehouse
The question of whether prehistoric human impacts on land cover (i.e. anthropogenic land cover change due to land use, LULC) were sufficiently large to have a major impact on regional cli-mates is still a matter of debate. Climate model simulations have shown that LULC datasets can have large regional impacts on climate in recent and prehistoric time (1). But there are major differences between the available LULC scenarios/datasets such as HYDE (History Database of the Global En-vironment) and Kaplan’s KK10 (2), and diagnoses of inferred carbon-cycle impacts show that none of the scenarios are realistic (3). The only way to provide a useful assessment of the potential for LULC changes to affect climate in the past, is to provide more realistic LULC data based on palaeovegetation and archaeological evidence to improve the LULC datasets used in climate modelling(4). We use the REVEALS model to reconstruct LC from pollen data at a regional scale, and archaeological data to map LU types and distribution, and estimate per capita LU. The archaeology-based LU maps and per-capita LU estimates are used to improve LULC datasets. Pollen-based REVEALS LC estimates are then used to evaluate/validate the new, improved LULC datasets. These new datasets will be used to implement past land use in palaeoclimate and carbon cycle model simulations. Such simulations are necessary to assess the impact of LULC changes in the past and understand the effect of ecosys-tem management on future climate. We present results from five years of PAGES LandCover6k activities.
(1) Strandberg G, Kjellström E, Poska A, Wagner S, Gaillard M-J et al. (2014) Regional climate model sim-ulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Clim. Past 10, 661–680.
(2) Gaillard M-J, Sugita S, Mazier F et al (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim. Past 6, 483-499.
(3) Stocker B, Yud Z, Massae C, Joos F (2017) Holocene peatland and ice-core data constraints on the tim-ing and magnitude of CO2 emissions from past land use. www.pnas.org/cgi/doi/10.1073/ pnas.1613889114.
(4) Harrison S P, Gaillard M-J, Stocker B D, Vander Linden M, Klein Goldewijk K, Boles O, Braconnot P, Dawson A, Fluet-Chouinard E, Kaplan J O, Kastner T, Pausata F S R, Robinson E, Whitehouse N J, Madella M, and Morrison K D (2019) Development and testing of scenarios for implementing Holocene LULC in Earth Sys-tem Model Experiments, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-125, in review, 2019.
How to cite: Gaillard, M.-J., Dawson, A., Fyfe, R., Githumbi, E., Hammer, E., Harrison, S., Li, F., Madella, M., Morrison, K. D., Stocker, B., Vander Linden, M., and Whitehouse, N. J.: Goal and products of PAGES LandCover6k 2018-2020: Past Global Land Cover and Land Use for Climate Modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11082, https://doi.org/10.5194/egusphere-egu2020-11082, 2020.
The question of whether prehistoric human impacts on land cover (i.e. anthropogenic land cover change due to land use, LULC) were sufficiently large to have a major impact on regional cli-mates is still a matter of debate. Climate model simulations have shown that LULC datasets can have large regional impacts on climate in recent and prehistoric time (1). But there are major differences between the available LULC scenarios/datasets such as HYDE (History Database of the Global En-vironment) and Kaplan’s KK10 (2), and diagnoses of inferred carbon-cycle impacts show that none of the scenarios are realistic (3). The only way to provide a useful assessment of the potential for LULC changes to affect climate in the past, is to provide more realistic LULC data based on palaeovegetation and archaeological evidence to improve the LULC datasets used in climate modelling(4). We use the REVEALS model to reconstruct LC from pollen data at a regional scale, and archaeological data to map LU types and distribution, and estimate per capita LU. The archaeology-based LU maps and per-capita LU estimates are used to improve LULC datasets. Pollen-based REVEALS LC estimates are then used to evaluate/validate the new, improved LULC datasets. These new datasets will be used to implement past land use in palaeoclimate and carbon cycle model simulations. Such simulations are necessary to assess the impact of LULC changes in the past and understand the effect of ecosys-tem management on future climate. We present results from five years of PAGES LandCover6k activities.
(1) Strandberg G, Kjellström E, Poska A, Wagner S, Gaillard M-J et al. (2014) Regional climate model sim-ulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic deforestation. Clim. Past 10, 661–680.
(2) Gaillard M-J, Sugita S, Mazier F et al (2010) Holocene land-cover reconstructions for studies on land cover-climate feedbacks. Clim. Past 6, 483-499.
(3) Stocker B, Yud Z, Massae C, Joos F (2017) Holocene peatland and ice-core data constraints on the tim-ing and magnitude of CO2 emissions from past land use. www.pnas.org/cgi/doi/10.1073/ pnas.1613889114.
(4) Harrison S P, Gaillard M-J, Stocker B D, Vander Linden M, Klein Goldewijk K, Boles O, Braconnot P, Dawson A, Fluet-Chouinard E, Kaplan J O, Kastner T, Pausata F S R, Robinson E, Whitehouse N J, Madella M, and Morrison K D (2019) Development and testing of scenarios for implementing Holocene LULC in Earth Sys-tem Model Experiments, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-125, in review, 2019.
How to cite: Gaillard, M.-J., Dawson, A., Fyfe, R., Githumbi, E., Hammer, E., Harrison, S., Li, F., Madella, M., Morrison, K. D., Stocker, B., Vander Linden, M., and Whitehouse, N. J.: Goal and products of PAGES LandCover6k 2018-2020: Past Global Land Cover and Land Use for Climate Modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11082, https://doi.org/10.5194/egusphere-egu2020-11082, 2020.
EGU2020-12288 | Displays | BG3.32
Temporal heterogeneity affects the process of succession but not its direction in abandoned croplands in a semi-arid area of northwest ChinaFujiang Hou, An Hu, Shenghua Chang, and Xianjiang Chen
Spatial heterogeneity has been widely used in the study of succession in abandoned croplands worldwide, and it is often accompanied by time heterogeneity. However, the effect of temporal heterogeneity on succession dynamics over decades is not well understood. Here, we used croplands with same history in northwest China that were abandoned in 1998, 1999, and 2000 and continuously monitored vegetation characteristics for ten years. Croplands were left undisturbed throughout the study. Non-metric multidimensional scaling was used to interpret changes in the plant community, and taxonomic and functional diversity measures were compared in three treatment over time. Our results show that the directions of succession in all three croplands were similar, from single superior community (Salsolacollina Pall.) with higher aboveground biomass to multi-superior community (Artemisia capillaris Thunb., Stipa bungeana Trin., Lespedeza davurica (Laxm.) Schindl, Heteropappus altaicus (Willd.) Novopokr) with lower aboveground biomass. Taxonomic and functional diversity increased rapidly in the first 4–6 years, followed by a slow increase, decrease or stabilization. Temporal heterogeneity had no effect on species richness after the 7th year, on the Shannon-Wiener index, species evenness, modified functional attribute diversity, or functional divergence after the 8th year, or functional evenness after 5th year. We conclude that temporal heterogeneity can affect the process of secondary succession but has no effect on the direction of community succession. Our findings provide evidence for using temporal heterogeneity to study succession in abandoned croplands in semi-arid areas.
How to cite: Hou, F., Hu, A., Chang, S., and Chen, X.: Temporal heterogeneity affects the process of succession but not its direction in abandoned croplands in a semi-arid area of northwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12288, https://doi.org/10.5194/egusphere-egu2020-12288, 2020.
Spatial heterogeneity has been widely used in the study of succession in abandoned croplands worldwide, and it is often accompanied by time heterogeneity. However, the effect of temporal heterogeneity on succession dynamics over decades is not well understood. Here, we used croplands with same history in northwest China that were abandoned in 1998, 1999, and 2000 and continuously monitored vegetation characteristics for ten years. Croplands were left undisturbed throughout the study. Non-metric multidimensional scaling was used to interpret changes in the plant community, and taxonomic and functional diversity measures were compared in three treatment over time. Our results show that the directions of succession in all three croplands were similar, from single superior community (Salsolacollina Pall.) with higher aboveground biomass to multi-superior community (Artemisia capillaris Thunb., Stipa bungeana Trin., Lespedeza davurica (Laxm.) Schindl, Heteropappus altaicus (Willd.) Novopokr) with lower aboveground biomass. Taxonomic and functional diversity increased rapidly in the first 4–6 years, followed by a slow increase, decrease or stabilization. Temporal heterogeneity had no effect on species richness after the 7th year, on the Shannon-Wiener index, species evenness, modified functional attribute diversity, or functional divergence after the 8th year, or functional evenness after 5th year. We conclude that temporal heterogeneity can affect the process of secondary succession but has no effect on the direction of community succession. Our findings provide evidence for using temporal heterogeneity to study succession in abandoned croplands in semi-arid areas.
How to cite: Hou, F., Hu, A., Chang, S., and Chen, X.: Temporal heterogeneity affects the process of succession but not its direction in abandoned croplands in a semi-arid area of northwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12288, https://doi.org/10.5194/egusphere-egu2020-12288, 2020.
EGU2020-12778 | Displays | BG3.32 | Highlight
Late Holocene ecosystem change and disturbance dynamics in central European mountain forestsNiina Kuosmanen, Petr Kuneš, Karen Halsall, Helena Svitavska Svobodova, Jana Beranova, Gina Hannon, Peter Fleischer, Richard Chiverrell, and Jennifer L. Clear
Investigating past changes in temperate mountain spruce forest ecosystems and the processes behind them can provide valuable information for understanding present and future ecosystem dynamics. To assess the late Holocene ecosystem change and disturbance history in mountain spruce forests, we sampled four small forest hollows from the High Tatra mountains in Slovakia.
We use pollen analysis to reconstruct changes in forest composition over the last circa 5000 cal. yr BP. Fire history is analysed using macroscopic charcoal counts and charcoal area measurements. As disturbance is one of the key factors shaping mountain forest dynamics, the analysed pollen records will be processed with a new method quantifying disturbance based on plant ecological indices (Kuneš et al. 2019). These indices for disturbance will be attributed to pollen taxa and then disturbance frequency and severity for the whole community will be calculated. We assess the role of climate and human impact as potential drivers on the past forest and disturbance dynamics. The climate variable will be constructed from modelled climate data for the last 4000 years and for the past 1000 years we will use climate reconstruction from the tree-ring records from the region. We use human indicator pollen taxa as the variable for human influence on ecosystem dynamics, and to indicate human activity in the region.
Preliminary results demonstrate opening of the landscape circa 800-500 cal. yr BP in connection with a change in the disturbance regime as indicated by the disturbance indices. The presence of human indicator pollen taxa in all small hollow records suggest landscape opening in connection with anthropogenic activity in the region. In addition, the charcoal records demonstrate periods of fire, which coincide with the opening of landscape and it is plausible that change in the fire regime is connected to the intensified human activity in the region. These results will be discussed further in the presentation in the light of climate data and further data analysis.
Reference:
Kuneš, P. Abraham, V. & Herben, T. 2019. Changing disturbance-diversity relationships in temperate ecosystems over the past 12 000 years. Journal of Ecology 107:1678–1688.
How to cite: Kuosmanen, N., Kuneš, P., Halsall, K., Svitavska Svobodova, H., Beranova, J., Hannon, G., Fleischer, P., Chiverrell, R., and Clear, J. L.: Late Holocene ecosystem change and disturbance dynamics in central European mountain forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12778, https://doi.org/10.5194/egusphere-egu2020-12778, 2020.
Investigating past changes in temperate mountain spruce forest ecosystems and the processes behind them can provide valuable information for understanding present and future ecosystem dynamics. To assess the late Holocene ecosystem change and disturbance history in mountain spruce forests, we sampled four small forest hollows from the High Tatra mountains in Slovakia.
We use pollen analysis to reconstruct changes in forest composition over the last circa 5000 cal. yr BP. Fire history is analysed using macroscopic charcoal counts and charcoal area measurements. As disturbance is one of the key factors shaping mountain forest dynamics, the analysed pollen records will be processed with a new method quantifying disturbance based on plant ecological indices (Kuneš et al. 2019). These indices for disturbance will be attributed to pollen taxa and then disturbance frequency and severity for the whole community will be calculated. We assess the role of climate and human impact as potential drivers on the past forest and disturbance dynamics. The climate variable will be constructed from modelled climate data for the last 4000 years and for the past 1000 years we will use climate reconstruction from the tree-ring records from the region. We use human indicator pollen taxa as the variable for human influence on ecosystem dynamics, and to indicate human activity in the region.
Preliminary results demonstrate opening of the landscape circa 800-500 cal. yr BP in connection with a change in the disturbance regime as indicated by the disturbance indices. The presence of human indicator pollen taxa in all small hollow records suggest landscape opening in connection with anthropogenic activity in the region. In addition, the charcoal records demonstrate periods of fire, which coincide with the opening of landscape and it is plausible that change in the fire regime is connected to the intensified human activity in the region. These results will be discussed further in the presentation in the light of climate data and further data analysis.
Reference:
Kuneš, P. Abraham, V. & Herben, T. 2019. Changing disturbance-diversity relationships in temperate ecosystems over the past 12 000 years. Journal of Ecology 107:1678–1688.
How to cite: Kuosmanen, N., Kuneš, P., Halsall, K., Svitavska Svobodova, H., Beranova, J., Hannon, G., Fleischer, P., Chiverrell, R., and Clear, J. L.: Late Holocene ecosystem change and disturbance dynamics in central European mountain forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12778, https://doi.org/10.5194/egusphere-egu2020-12778, 2020.
EGU2020-19229 | Displays | BG3.32
Response of vegetation to past climate changes in Central AsiaLaurent Marquer, Andrea Seim, and Anne Dallmeyer and the Data Contributors
Quantifying the long-term trend of climate versus land use influence on vulnerable ecosystems is of great importance to identify the threats of landscape modifications on biodiversity and ecosystem services, and therefore on societies. The evaluation of the resilience of ecosystems is particularly important considering the ongoing climate change.
As ecosystems in arid Central Asia are mainly influenced by climate and physical geography and most species are growing near their physiological limit, the predicted increased aridity for this region likely increases the threat on the ecosystems in this region.
Pollen are the main proxy to explore changes in vegetation at different spatial (local to subcontinental) and temporal (decades to millennia) scales. To quantify human- and climate-induced changes in vegetation, past land-cover (pollen-based estimates), land use (human deforestation scenarios and human population size) and climate (variables derived from climate models) data can be combined, as it has been done in Europe (e.g. Marquer et al., 2017).
This study aims at quantifying the effect of past climate changes on vegetation in Central Asia over the past millennia at century time scale. For this purpose, we use 49 pollen data from sedimentary records (lakes and mires) which were transformed into vegetation composition and diversity indices. Pollen data as point estimates and spatial grids of past vegetation are combined with available annually resolved gridded summer temperature and precipitation estimates inferred from tree-ring chronologies in this region. The reconstructed climate and vegetation trends are compared to different transient Earth System model simulations with the help of the biome-model BIOME4 (c.f. Dallmeyer et al., 2017). Statistical analyses have been performed to compare all data.
We found clear spatial pattern in the plant distribution with i) a large abundance of coniferous trees in northernmost areas and to a lesser extend in the mountains (e.g. Tian Shan), ii) steppes in the lowlands and at high plateaus, and iii) semi-deserts and steppes in the lowlands. The vegetation composition and diversity have significantly changed over the past millennia. Those changes are mainly related to modifications in composition and diversity of plant species in steppes and semi-deserts, of coniferous trees in the mountains, and changes in land use. Our results reveal that precipitation is the major driver of vegetation composition and diversity in Central Asia whereas temperature mainly explains the spatial variation, in particular during major climate events, e.g. the Little Ice Age and the Warm Medieval Period. Further studies are now in progress to quantify the relative (to climate) influence of land use (e.g. anthropogenic land-cover change; ALCC) in the region.
This study demonstrates the climate dependency of vegetation composition and diversity in Central Asia, especially during the major climate events over the last two millennia. This opens the discussion about the resilience of vulnerable ecosystems facing severe impacts of ongoing and predicted climate changes in arid Central Asia.
Dallmeyer et al. (2017) Climate of the Past 13, 107-134. / Marquer et al. (2017) Quaternary Science Reviews 171, 20-37.
How to cite: Marquer, L., Seim, A., and Dallmeyer, A. and the Data Contributors: Response of vegetation to past climate changes in Central Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19229, https://doi.org/10.5194/egusphere-egu2020-19229, 2020.
Quantifying the long-term trend of climate versus land use influence on vulnerable ecosystems is of great importance to identify the threats of landscape modifications on biodiversity and ecosystem services, and therefore on societies. The evaluation of the resilience of ecosystems is particularly important considering the ongoing climate change.
As ecosystems in arid Central Asia are mainly influenced by climate and physical geography and most species are growing near their physiological limit, the predicted increased aridity for this region likely increases the threat on the ecosystems in this region.
Pollen are the main proxy to explore changes in vegetation at different spatial (local to subcontinental) and temporal (decades to millennia) scales. To quantify human- and climate-induced changes in vegetation, past land-cover (pollen-based estimates), land use (human deforestation scenarios and human population size) and climate (variables derived from climate models) data can be combined, as it has been done in Europe (e.g. Marquer et al., 2017).
This study aims at quantifying the effect of past climate changes on vegetation in Central Asia over the past millennia at century time scale. For this purpose, we use 49 pollen data from sedimentary records (lakes and mires) which were transformed into vegetation composition and diversity indices. Pollen data as point estimates and spatial grids of past vegetation are combined with available annually resolved gridded summer temperature and precipitation estimates inferred from tree-ring chronologies in this region. The reconstructed climate and vegetation trends are compared to different transient Earth System model simulations with the help of the biome-model BIOME4 (c.f. Dallmeyer et al., 2017). Statistical analyses have been performed to compare all data.
We found clear spatial pattern in the plant distribution with i) a large abundance of coniferous trees in northernmost areas and to a lesser extend in the mountains (e.g. Tian Shan), ii) steppes in the lowlands and at high plateaus, and iii) semi-deserts and steppes in the lowlands. The vegetation composition and diversity have significantly changed over the past millennia. Those changes are mainly related to modifications in composition and diversity of plant species in steppes and semi-deserts, of coniferous trees in the mountains, and changes in land use. Our results reveal that precipitation is the major driver of vegetation composition and diversity in Central Asia whereas temperature mainly explains the spatial variation, in particular during major climate events, e.g. the Little Ice Age and the Warm Medieval Period. Further studies are now in progress to quantify the relative (to climate) influence of land use (e.g. anthropogenic land-cover change; ALCC) in the region.
This study demonstrates the climate dependency of vegetation composition and diversity in Central Asia, especially during the major climate events over the last two millennia. This opens the discussion about the resilience of vulnerable ecosystems facing severe impacts of ongoing and predicted climate changes in arid Central Asia.
Dallmeyer et al. (2017) Climate of the Past 13, 107-134. / Marquer et al. (2017) Quaternary Science Reviews 171, 20-37.
How to cite: Marquer, L., Seim, A., and Dallmeyer, A. and the Data Contributors: Response of vegetation to past climate changes in Central Asia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19229, https://doi.org/10.5194/egusphere-egu2020-19229, 2020.
EGU2020-22407 | Displays | BG3.32 | Highlight
Human land-use change and biodiversity trends in the British IslesJessie Woodbridge, Ralph Fyfe, Ruth Pelling, David Smith, and Anne DeVareilles
Conservation and promotion of biodiverse landscapes is a major target for ecological conservation and landscape management, as biodiversity is a key determinant of ecosystem functioning. Recent accelerations in the intensity of human land-use have been implicated for changes in biodiversity, but the relationships between land-use change and diversity are complex, include important historical legacies and major transformations are likely to have occurred across much longer time-scales than those covered by direct observation records. This collaborative research between Historic England and the Universities of Plymouth and Birmingham, is synthesising palaeoecological datasets from across the British Isles from both the natural and archaeological sciences to reconstruct biodiversity patterns and evaluate relationships between these patterns and land-use over multi-millennial time-scales. The fossil remains of plants, pollen and insects preserved in sediments are being compared and critically evaluated with the aim to provide valuable information about past land-use strategies, biodiversity, habitat resilience to disturbance and recovery rates. Exploring environmental change within the context of the Holocene (the last 11,700 years) allows comparison of ecosystem states across a wide range of land-use strategies, from hunter-gathering to complex patterns of land-use in later prehistoric and historical periods.
How to cite: Woodbridge, J., Fyfe, R., Pelling, R., Smith, D., and DeVareilles, A.: Human land-use change and biodiversity trends in the British Isles , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22407, https://doi.org/10.5194/egusphere-egu2020-22407, 2020.
Conservation and promotion of biodiverse landscapes is a major target for ecological conservation and landscape management, as biodiversity is a key determinant of ecosystem functioning. Recent accelerations in the intensity of human land-use have been implicated for changes in biodiversity, but the relationships between land-use change and diversity are complex, include important historical legacies and major transformations are likely to have occurred across much longer time-scales than those covered by direct observation records. This collaborative research between Historic England and the Universities of Plymouth and Birmingham, is synthesising palaeoecological datasets from across the British Isles from both the natural and archaeological sciences to reconstruct biodiversity patterns and evaluate relationships between these patterns and land-use over multi-millennial time-scales. The fossil remains of plants, pollen and insects preserved in sediments are being compared and critically evaluated with the aim to provide valuable information about past land-use strategies, biodiversity, habitat resilience to disturbance and recovery rates. Exploring environmental change within the context of the Holocene (the last 11,700 years) allows comparison of ecosystem states across a wide range of land-use strategies, from hunter-gathering to complex patterns of land-use in later prehistoric and historical periods.
How to cite: Woodbridge, J., Fyfe, R., Pelling, R., Smith, D., and DeVareilles, A.: Human land-use change and biodiversity trends in the British Isles , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22407, https://doi.org/10.5194/egusphere-egu2020-22407, 2020.
EGU2020-22566 | Displays | BG3.32
Effects of land use and livestock watering on greenhouse gas emissions and water quality in rivers and water pans in tropical highland and semi-arid agroecosystems in Taita-Taveta County, KenyaGretchen Gettel, Elizabeth Wangari, Collins Muhadia, and Sharon Gubamwoyo
Economic development and food insecurity are an important drivers of land use change in tropical ecosystems. In sub-Saharan Africa, forest and wetland conversion to agriculture and zero-grazing policies are common in highland systems, while livestock-dominated agricultural systems are more common in the drier, semi-arid low-land systems. Greenhouse gasses (GHG) from aquatic ecosystems is increasingly appreciated as missed sources of emissions from agricultural and forested landscapes, and rivers and artificial watering pans are used for livestock watering in these systems. They therefore receive manure and urea, making them potential hotspots for greenhouse gas (GHG) emissions through biogeochemical processing, but the role of livestock has not yet been examined. We performed 4 synoptic surveys for GHG concentration and fluxes in rivers in the Taita Hills and in water pans in the semi-arid region low-lands of Taita-Taveta County, Kenya in October–December 2019, which spanned the transition of short rainy season to the dry season. We also measured water-quality parameters and related them to GHG emissions in order to assess the biogeochemical processes likely responsible for the emissions in each system type. There were 9 agricultural streams (no livestock), 8 livestock streams, and 4 water pans. Results showed ten times higher CH4 and N2O fluxes in the water pans compared to river systems (~4 vs. 40 mmol CH4 m-2day-1 and ~4 vs. 30 mmol N2O m-2day-1) while CO2 emissions were two times higher in the agricultural streams (~110 vs. 60 mmol CO2 m-2day-1). Water pans also showed higher dissolved organic carbon (DOC) concentration and higher dissolved nitrogen and phosphorus (TDN and TDP) and lower dissolved oxygen (DO) concentrations than river systems. There was a significant positive relationship between pCO2 and fine benthic organic matter (FBOM) in livestock streams but no relationship with DOC, suggesting that increased sediment respiration from livestock may be responsible for CO2 emission. In river systems, there was also a positive relationship between CH4 and CO2, which indicated that methane production from CO2 was a controlling mechanism. This contrasted with CH4 production in water pans which was related to primary production and organic inputs from livestock. N2O also showed different processes in riverine and water pan systems, with nitrification appearing to be more important in river systems, evidenced by the negative relationship of N2O production with DOC and a positive relationship with CO2. In water pans, N2O was negatively related to NO3, dissolved oxygen, and DOC. In addition, more negative fluxes of N2O occurred in water pans than the other sites, which suggests complete denitrification of N2O to N2. Diurnal measurements also indicated that fluxes were positively related to livestock density; however this effect was more pronounced in the drier season and under low discharge. Water pans were also hotspots in the landscape for CH4 and N2O emissions, showing 10 – 1000 times greater emission than the surrounding landscape. Further research should examine the water pans and riverine watering holes as distinct features with the potential to impact greenhouse gas emissions from agricultural landscapes.
How to cite: Gettel, G., Wangari, E., Muhadia, C., and Gubamwoyo, S.: Effects of land use and livestock watering on greenhouse gas emissions and water quality in rivers and water pans in tropical highland and semi-arid agroecosystems in Taita-Taveta County, Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22566, https://doi.org/10.5194/egusphere-egu2020-22566, 2020.
Economic development and food insecurity are an important drivers of land use change in tropical ecosystems. In sub-Saharan Africa, forest and wetland conversion to agriculture and zero-grazing policies are common in highland systems, while livestock-dominated agricultural systems are more common in the drier, semi-arid low-land systems. Greenhouse gasses (GHG) from aquatic ecosystems is increasingly appreciated as missed sources of emissions from agricultural and forested landscapes, and rivers and artificial watering pans are used for livestock watering in these systems. They therefore receive manure and urea, making them potential hotspots for greenhouse gas (GHG) emissions through biogeochemical processing, but the role of livestock has not yet been examined. We performed 4 synoptic surveys for GHG concentration and fluxes in rivers in the Taita Hills and in water pans in the semi-arid region low-lands of Taita-Taveta County, Kenya in October–December 2019, which spanned the transition of short rainy season to the dry season. We also measured water-quality parameters and related them to GHG emissions in order to assess the biogeochemical processes likely responsible for the emissions in each system type. There were 9 agricultural streams (no livestock), 8 livestock streams, and 4 water pans. Results showed ten times higher CH4 and N2O fluxes in the water pans compared to river systems (~4 vs. 40 mmol CH4 m-2day-1 and ~4 vs. 30 mmol N2O m-2day-1) while CO2 emissions were two times higher in the agricultural streams (~110 vs. 60 mmol CO2 m-2day-1). Water pans also showed higher dissolved organic carbon (DOC) concentration and higher dissolved nitrogen and phosphorus (TDN and TDP) and lower dissolved oxygen (DO) concentrations than river systems. There was a significant positive relationship between pCO2 and fine benthic organic matter (FBOM) in livestock streams but no relationship with DOC, suggesting that increased sediment respiration from livestock may be responsible for CO2 emission. In river systems, there was also a positive relationship between CH4 and CO2, which indicated that methane production from CO2 was a controlling mechanism. This contrasted with CH4 production in water pans which was related to primary production and organic inputs from livestock. N2O also showed different processes in riverine and water pan systems, with nitrification appearing to be more important in river systems, evidenced by the negative relationship of N2O production with DOC and a positive relationship with CO2. In water pans, N2O was negatively related to NO3, dissolved oxygen, and DOC. In addition, more negative fluxes of N2O occurred in water pans than the other sites, which suggests complete denitrification of N2O to N2. Diurnal measurements also indicated that fluxes were positively related to livestock density; however this effect was more pronounced in the drier season and under low discharge. Water pans were also hotspots in the landscape for CH4 and N2O emissions, showing 10 – 1000 times greater emission than the surrounding landscape. Further research should examine the water pans and riverine watering holes as distinct features with the potential to impact greenhouse gas emissions from agricultural landscapes.
How to cite: Gettel, G., Wangari, E., Muhadia, C., and Gubamwoyo, S.: Effects of land use and livestock watering on greenhouse gas emissions and water quality in rivers and water pans in tropical highland and semi-arid agroecosystems in Taita-Taveta County, Kenya, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22566, https://doi.org/10.5194/egusphere-egu2020-22566, 2020.
BG3.33 – Emerging constraints of photosynthesis (including chlorophyll fluorescence), respiration, and transpiration at ecosystem to global scales
EGU2020-5193 | Displays | BG3.33
Disentangling ecosystem transpiration from evapotranspiration observations employing simplified vegetation-substrate energy balance modelKaniska Mallick, Dennis Baldocchi, Andrew Jarvis, Ivonne Trebs, Mauro Sulis, and Joseph Berry
Evapotranspiration (EET) observed by eddy covariance (EC) towers is composed of physical evaporation (EE) from wet surfaces and biological transpiration (ET), that involves soil moisture uptake by roots and water vapor transfer regulated through the canopy-stomatal conductance (gC) during photosynthesis. ET plays a dominant role in the global water cycle and represents 80% of the total terrestrial EET. Understanding the magnitude and variability of ET are critical to assess the ecophysiological responses of vegetation to drought. While separating ET signals from lumped EET observations and/or simulating ET by terrestrial systems models is insufficiently constrained owing to the large uncertainties in disentangling gC from the aggregated canopy-substrate conductance (gcS), evaluating ecosystem ET derived through partitioning EET observations (or model simulation) is also challenging due to the absence of any ecosystem-scale measurements of this biotic flux and gC. To date, the main methods for partitioning EC-EET observations are largely based on regressing EET with gross photosynthesis (Pg) and atmospheric vapor pressure deficit (DA) observations. However, such methods ignore the essential feedback of the surface energy balance (SEB) and canopy temperature (TC) on gC and ET.
This study demonstrates partitioning EET observations into ET and EE [soil evaporation (EEs) and interception evaporation (EEi)] through an ‘analytical solution’ of gC, TC and canopy vapor pressures by employing a Shuttleworth-Gurney vegetation-substrate energy balance model with minimal complexity. The model is called TRANSPIRE (Top-down partitioning evapotRANSPIRation modEl), which ingests remote sensing land surface temperature (LST) and leaf area index (Lai) information in conjunction with meteorological, sensible heat flux (H) and EET observations from EC tower into the SEB equations for retrieving canopy and soil temperatures (TS, TC), gC, and ET.
ET estimates from TRANSPIRE were tested and evaluated with a remote sensing based ET estimate from an analytical model (STIC1.2), where lumped EET was partitioned by employing a moisture availability constraints across an aridity gradient in the North Australian Tropical Transect (NATT) by using time-series of 8-day MODIS Terra LST and LAI products in conjunction with EC measurements from 2011 to 2018. Both methods captured the seasonal pattern of ET/EET ratio in a very similar way. While ET accounted for 60±10% of the annual EET in the tropical savanna, ET in the arid mulga contributed 75±12% of the annual EET. Seasonal variation of ET was higher in the arid, semi-arid ecosystems (50 - 90%), as compared to the humid tropical ecosystem (10 - 50%). The TRANSPIRE model reasonably captured ET variations along with soil moisture and precipitation dynamics in both sparse and homogeneous vegetation and showed the potential of partitioning EET observations for cross-site comparison with a variety of models.
How to cite: Mallick, K., Baldocchi, D., Jarvis, A., Trebs, I., Sulis, M., and Berry, J.: Disentangling ecosystem transpiration from evapotranspiration observations employing simplified vegetation-substrate energy balance model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5193, https://doi.org/10.5194/egusphere-egu2020-5193, 2020.
Evapotranspiration (EET) observed by eddy covariance (EC) towers is composed of physical evaporation (EE) from wet surfaces and biological transpiration (ET), that involves soil moisture uptake by roots and water vapor transfer regulated through the canopy-stomatal conductance (gC) during photosynthesis. ET plays a dominant role in the global water cycle and represents 80% of the total terrestrial EET. Understanding the magnitude and variability of ET are critical to assess the ecophysiological responses of vegetation to drought. While separating ET signals from lumped EET observations and/or simulating ET by terrestrial systems models is insufficiently constrained owing to the large uncertainties in disentangling gC from the aggregated canopy-substrate conductance (gcS), evaluating ecosystem ET derived through partitioning EET observations (or model simulation) is also challenging due to the absence of any ecosystem-scale measurements of this biotic flux and gC. To date, the main methods for partitioning EC-EET observations are largely based on regressing EET with gross photosynthesis (Pg) and atmospheric vapor pressure deficit (DA) observations. However, such methods ignore the essential feedback of the surface energy balance (SEB) and canopy temperature (TC) on gC and ET.
This study demonstrates partitioning EET observations into ET and EE [soil evaporation (EEs) and interception evaporation (EEi)] through an ‘analytical solution’ of gC, TC and canopy vapor pressures by employing a Shuttleworth-Gurney vegetation-substrate energy balance model with minimal complexity. The model is called TRANSPIRE (Top-down partitioning evapotRANSPIRation modEl), which ingests remote sensing land surface temperature (LST) and leaf area index (Lai) information in conjunction with meteorological, sensible heat flux (H) and EET observations from EC tower into the SEB equations for retrieving canopy and soil temperatures (TS, TC), gC, and ET.
ET estimates from TRANSPIRE were tested and evaluated with a remote sensing based ET estimate from an analytical model (STIC1.2), where lumped EET was partitioned by employing a moisture availability constraints across an aridity gradient in the North Australian Tropical Transect (NATT) by using time-series of 8-day MODIS Terra LST and LAI products in conjunction with EC measurements from 2011 to 2018. Both methods captured the seasonal pattern of ET/EET ratio in a very similar way. While ET accounted for 60±10% of the annual EET in the tropical savanna, ET in the arid mulga contributed 75±12% of the annual EET. Seasonal variation of ET was higher in the arid, semi-arid ecosystems (50 - 90%), as compared to the humid tropical ecosystem (10 - 50%). The TRANSPIRE model reasonably captured ET variations along with soil moisture and precipitation dynamics in both sparse and homogeneous vegetation and showed the potential of partitioning EET observations for cross-site comparison with a variety of models.
How to cite: Mallick, K., Baldocchi, D., Jarvis, A., Trebs, I., Sulis, M., and Berry, J.: Disentangling ecosystem transpiration from evapotranspiration observations employing simplified vegetation-substrate energy balance model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5193, https://doi.org/10.5194/egusphere-egu2020-5193, 2020.
EGU2020-21022 | Displays | BG3.33
Species-specific relationship between sapflux density and diameter growth rates for six yearsMinsu Lee, Juhan Park, Sungsik Cho, and Hyun-Seok Kim
Transpiration and photosynthesis are connected each other through stomata, therefore, biomass increment of trees should have close relationships with their water use. However, the relationship is species specific and it is also dependent on various biotic and abiotic factors. The purpose of this study is to investigate the relationship of sapflux with diameter increment of individual trees among six different species using Granier type sapflow sensors and diameter growth band installed from 2012. The growth of two conifer (Pinus koraiensis, Abies holophylla), five broadleaf (Quercus aliena, Q. variabilis, Q. serrata, Carpinus laxiflora, C. cordata) were investigated at Mt. Taehwa and Gwangneung National Arboretum. Net Primary Production was calcualted based on speceis specific allometric equations. The relationship between sapflux density and diameter growth was different among species. For example, Q. aliena and A. holophylla had positive relationship between sapflux density and diameter growth (p = 0.037 and p =0.001, respectively), while P. koraiensis did not follow the trend (p = 0.5). However, when tree level transpiration was calculated by mulitiplying sapflux density with its sapwood area. In general, all species showed significant positive correlations between the transpiration and NPP (e.g., P. koraiensis(p = 0.003), Q. aliena and A. holophylla(p <0.001). In addition, comparison between conifer and broad leaves species, the conifers show the bigger changes in diameter growth and eventually NPP than that of the broad leaves tree in the same change of transpiration. Therefore, WUE for biomass increment was higher in conifer than broadleaf species.
How to cite: Lee, M., Park, J., Cho, S., and Kim, H.-S.: Species-specific relationship between sapflux density and diameter growth rates for six years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21022, https://doi.org/10.5194/egusphere-egu2020-21022, 2020.
Transpiration and photosynthesis are connected each other through stomata, therefore, biomass increment of trees should have close relationships with their water use. However, the relationship is species specific and it is also dependent on various biotic and abiotic factors. The purpose of this study is to investigate the relationship of sapflux with diameter increment of individual trees among six different species using Granier type sapflow sensors and diameter growth band installed from 2012. The growth of two conifer (Pinus koraiensis, Abies holophylla), five broadleaf (Quercus aliena, Q. variabilis, Q. serrata, Carpinus laxiflora, C. cordata) were investigated at Mt. Taehwa and Gwangneung National Arboretum. Net Primary Production was calcualted based on speceis specific allometric equations. The relationship between sapflux density and diameter growth was different among species. For example, Q. aliena and A. holophylla had positive relationship between sapflux density and diameter growth (p = 0.037 and p =0.001, respectively), while P. koraiensis did not follow the trend (p = 0.5). However, when tree level transpiration was calculated by mulitiplying sapflux density with its sapwood area. In general, all species showed significant positive correlations between the transpiration and NPP (e.g., P. koraiensis(p = 0.003), Q. aliena and A. holophylla(p <0.001). In addition, comparison between conifer and broad leaves species, the conifers show the bigger changes in diameter growth and eventually NPP than that of the broad leaves tree in the same change of transpiration. Therefore, WUE for biomass increment was higher in conifer than broadleaf species.
How to cite: Lee, M., Park, J., Cho, S., and Kim, H.-S.: Species-specific relationship between sapflux density and diameter growth rates for six years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21022, https://doi.org/10.5194/egusphere-egu2020-21022, 2020.
EGU2020-21335 | Displays | BG3.33
Long-term evolution of evapotranspiration components in a semi-arid forest using chambers measurement of soil evaporationDan Yakir, Rafat Qubaja, Madi Amer, Fyodor Tatarinov, Eyal Rotenberg, and Yakir Preisler
Soil evaporation (Es) is a significant hydrological component in dry ecosystems and its quantification is critical to the understanding of ecosystem response to change. It is, however, often estimated as a residual in the hydrological balance because of measurement difficulties. Here, we use continuous, high precision chamber-based direct measurements of soil evaporation (Es) in a semi-arid Pinus halepensis forest to partition eddy covariance-based evapotranspiration (ET) to Es and tree transpiration (Et) and assess its daily and seasonal dynamics, and for comparison with measurements carried out at the same site ten years earlier. The ecosystem is characterized by a high annual Es/ET ratio of 0.26, and an Et/ET of 0.63. Es diminished in the long dry season, but as much as 74 ± 5% of the residual flux was due to the re-evaporation of nighttime moisture adsorption (negative Es), which may provide critical protection from soil drying in summer. Across the long-term observation period (over 10 years), an increase in the transpiration ratio (ΔTR, where TR=Et/ET) of +29% (from 0.49 to 0.63) was associated with the increase in leaf area index (LAI) of +44% observed. However, the ratio of TR/LAI remained constant at ~0.31, with persistently closed hydrological balance (ET/P of 0.94 to 1.07). Rainfall use efficiency (the ratio of annual net primary production/annual precipitation; NPP/P) was on average 0.82 (g C m-2/Kg H2O) across the observation period. The observed mean Et/ET values are similar to the estimated global mean values (0.64 ± 0.13), but are attained at a much higher aridity index of 5.5 than the mean one, reflecting adjustments that indicate the potential for expanding forestation into dry regions, and highlight the importance of soil evaporation fluxes in low-density semi-arid forests.
How to cite: Yakir, D., Qubaja, R., Amer, M., Tatarinov, F., Rotenberg, E., and Preisler, Y.: Long-term evolution of evapotranspiration components in a semi-arid forest using chambers measurement of soil evaporation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21335, https://doi.org/10.5194/egusphere-egu2020-21335, 2020.
Soil evaporation (Es) is a significant hydrological component in dry ecosystems and its quantification is critical to the understanding of ecosystem response to change. It is, however, often estimated as a residual in the hydrological balance because of measurement difficulties. Here, we use continuous, high precision chamber-based direct measurements of soil evaporation (Es) in a semi-arid Pinus halepensis forest to partition eddy covariance-based evapotranspiration (ET) to Es and tree transpiration (Et) and assess its daily and seasonal dynamics, and for comparison with measurements carried out at the same site ten years earlier. The ecosystem is characterized by a high annual Es/ET ratio of 0.26, and an Et/ET of 0.63. Es diminished in the long dry season, but as much as 74 ± 5% of the residual flux was due to the re-evaporation of nighttime moisture adsorption (negative Es), which may provide critical protection from soil drying in summer. Across the long-term observation period (over 10 years), an increase in the transpiration ratio (ΔTR, where TR=Et/ET) of +29% (from 0.49 to 0.63) was associated with the increase in leaf area index (LAI) of +44% observed. However, the ratio of TR/LAI remained constant at ~0.31, with persistently closed hydrological balance (ET/P of 0.94 to 1.07). Rainfall use efficiency (the ratio of annual net primary production/annual precipitation; NPP/P) was on average 0.82 (g C m-2/Kg H2O) across the observation period. The observed mean Et/ET values are similar to the estimated global mean values (0.64 ± 0.13), but are attained at a much higher aridity index of 5.5 than the mean one, reflecting adjustments that indicate the potential for expanding forestation into dry regions, and highlight the importance of soil evaporation fluxes in low-density semi-arid forests.
How to cite: Yakir, D., Qubaja, R., Amer, M., Tatarinov, F., Rotenberg, E., and Preisler, Y.: Long-term evolution of evapotranspiration components in a semi-arid forest using chambers measurement of soil evaporation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21335, https://doi.org/10.5194/egusphere-egu2020-21335, 2020.
EGU2020-6776 | Displays | BG3.33
Combining isotopic and sap flux data to estimate GPP: an alternative ecophysiological approach to eddy-covariance based dataAntoine Vernay, Xianglin Tian, Jose Lopez, Niles Hasselquist, Annikki Mäkelä, Ram Oren, Pantana Tor-ngern, Zsofia R Stangl, and John D Marshall
Stand-scale estimates of gross primary production (GPP) commonly depend on eddy-covariance or eddy-covariance derived models. Chamber-based methods provide an alternative, but they are tricky to scale up to the stand. We estimate GPP by combining isotopic δ13C of phloem sugars with sap-flow measurements. The method consists of calculating intrinsic water-use efficiency and transpiration to determine GPP. We have improved this approach by considering mesophyll conductance and seasonal variation in photosynthetic capacity and then compared our results to a semi-empirical eddy-covariance based model, PRELES. We compared a fertilised plot and an unfertilised plot in a monospecific Scots pine forest in northern Sweden. The method captured both the stand response to fertilisation and seasonal patterns, as PRELES did. Our results demonstrate the importance of considering a finite mesophyll conductance value to avoid an unreasonable overestimate of GPP. We have now applied the method in a mixed boreal forest where we will partition total stand GPP among the three dominant tree species (pine, spruce, and birch). This approach provides an independent test of GPP estimates and provides a means of estimating GPP where eddy-covariance assumptions are not met.
How to cite: Vernay, A., Tian, X., Lopez, J., Hasselquist, N., Mäkelä, A., Oren, R., Tor-ngern, P., Stangl, Z. R., and Marshall, J. D.: Combining isotopic and sap flux data to estimate GPP: an alternative ecophysiological approach to eddy-covariance based data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6776, https://doi.org/10.5194/egusphere-egu2020-6776, 2020.
Stand-scale estimates of gross primary production (GPP) commonly depend on eddy-covariance or eddy-covariance derived models. Chamber-based methods provide an alternative, but they are tricky to scale up to the stand. We estimate GPP by combining isotopic δ13C of phloem sugars with sap-flow measurements. The method consists of calculating intrinsic water-use efficiency and transpiration to determine GPP. We have improved this approach by considering mesophyll conductance and seasonal variation in photosynthetic capacity and then compared our results to a semi-empirical eddy-covariance based model, PRELES. We compared a fertilised plot and an unfertilised plot in a monospecific Scots pine forest in northern Sweden. The method captured both the stand response to fertilisation and seasonal patterns, as PRELES did. Our results demonstrate the importance of considering a finite mesophyll conductance value to avoid an unreasonable overestimate of GPP. We have now applied the method in a mixed boreal forest where we will partition total stand GPP among the three dominant tree species (pine, spruce, and birch). This approach provides an independent test of GPP estimates and provides a means of estimating GPP where eddy-covariance assumptions are not met.
How to cite: Vernay, A., Tian, X., Lopez, J., Hasselquist, N., Mäkelä, A., Oren, R., Tor-ngern, P., Stangl, Z. R., and Marshall, J. D.: Combining isotopic and sap flux data to estimate GPP: an alternative ecophysiological approach to eddy-covariance based data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6776, https://doi.org/10.5194/egusphere-egu2020-6776, 2020.
EGU2020-13917 | Displays | BG3.33
Evaluating the effect of the 2018 drought on the NEE in the Sorø beech forest by means of trend analysis and mechanistic canopy modelling of GPP.Kim Pilegaard and Andreas Ibrom
Denmark experienced a severe drought in 2018 lasting from the beginning of May to the end of August with very little rain during this period. The influence of drought on the net ecosystem CO2 exchange (NEE) was analysed at the Danish ICOS DK-Soroe site (a mature beech forest). The site has a very long continuous flux data set starting in June 1996. The annual NEE of the site has been increasing over the years, mainly due to a prolonged growing season in the autumn and CO2 fertilisation (Pilegaard et al., 2011).
The effect of the summer drought in 2018 was analysed by means of linear trend estimation based on monthly trends during 1996-2017. The observed monthly NEE in 2018 was compared to the predicted values from the monthly time series.
The analysis showed an increased NEE in May and June and a strongly reduced NEE in July and August. Overall, the NEE was reduced 25% compared to the predicted value.
The increased NEE in May and June can be explained by the benefit for the photosynthesis of the trees of the increased light and temperature, while there was still a sufficient water content in the soil. By the end of June, the low water content in the soil affected the NEE, and despite some heavy rain in the beginning of August, the NEE only recovered by September.
We used the flux data set together with a mechanistic canopy model to examine the tree physiological nature of the photosynthesis limitation. The results showed that stomatal limitation alone was not able to explain the large reduction of GPP during the drought. Based on these findings, we extended the approach and show the seasonal development of drought induced GPP limitation contrasting stomatal and biochemical photosynthesis limitations.
The effects on NEE and energy partitioning during the 2018 summer drought are compared to previous years with (less severe) summer drought.
Reference:
Kim Pilegaard, Andreas Ibrom, Michael S. Courtney, Poul Hummelshøj, Niels Otto Jensen. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agricultural and Forest Meteorology 151 (2011) 934–946.
Acknowledgement:
The study was based on data from ICOS/DK.
How to cite: Pilegaard, K. and Ibrom, A.: Evaluating the effect of the 2018 drought on the NEE in the Sorø beech forest by means of trend analysis and mechanistic canopy modelling of GPP., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13917, https://doi.org/10.5194/egusphere-egu2020-13917, 2020.
Denmark experienced a severe drought in 2018 lasting from the beginning of May to the end of August with very little rain during this period. The influence of drought on the net ecosystem CO2 exchange (NEE) was analysed at the Danish ICOS DK-Soroe site (a mature beech forest). The site has a very long continuous flux data set starting in June 1996. The annual NEE of the site has been increasing over the years, mainly due to a prolonged growing season in the autumn and CO2 fertilisation (Pilegaard et al., 2011).
The effect of the summer drought in 2018 was analysed by means of linear trend estimation based on monthly trends during 1996-2017. The observed monthly NEE in 2018 was compared to the predicted values from the monthly time series.
The analysis showed an increased NEE in May and June and a strongly reduced NEE in July and August. Overall, the NEE was reduced 25% compared to the predicted value.
The increased NEE in May and June can be explained by the benefit for the photosynthesis of the trees of the increased light and temperature, while there was still a sufficient water content in the soil. By the end of June, the low water content in the soil affected the NEE, and despite some heavy rain in the beginning of August, the NEE only recovered by September.
We used the flux data set together with a mechanistic canopy model to examine the tree physiological nature of the photosynthesis limitation. The results showed that stomatal limitation alone was not able to explain the large reduction of GPP during the drought. Based on these findings, we extended the approach and show the seasonal development of drought induced GPP limitation contrasting stomatal and biochemical photosynthesis limitations.
The effects on NEE and energy partitioning during the 2018 summer drought are compared to previous years with (less severe) summer drought.
Reference:
Kim Pilegaard, Andreas Ibrom, Michael S. Courtney, Poul Hummelshøj, Niels Otto Jensen. Increasing net CO2 uptake by a Danish beech forest during the period from 1996 to 2009. Agricultural and Forest Meteorology 151 (2011) 934–946.
Acknowledgement:
The study was based on data from ICOS/DK.
How to cite: Pilegaard, K. and Ibrom, A.: Evaluating the effect of the 2018 drought on the NEE in the Sorø beech forest by means of trend analysis and mechanistic canopy modelling of GPP., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13917, https://doi.org/10.5194/egusphere-egu2020-13917, 2020.
EGU2020-8871 | Displays | BG3.33
Winter is coming – ecosystem-scale COS exchange during senescence of a deciduous forestFelix M. Spielmann, Albin Hammerle, Alexander Knohl, Malte Julian Deventer, and Georg Wohlfahrt
The gross uptake of CO2 on ecosystem level (GPP) can’t be measured directly, but has to be inferred from models or proxies. One of the newly emerged constrains on GPP is the trace gas carbonyl sulfide (COS). COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. Within the cytosol, it is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. Basically, this one way flux would make COS a very promising tracer for GPP on ecosystem level, but there is growing evidence that plants are also capable of emitting COS. Mosses and even vascular plants that are under high stress like drought and fungal infection, have been reported to emit COS. Furthermore, a winter wheat field, that showed a good correlation between the CO2 and COS ecosystem fluxes during the peak growing phase turned into a source for COS after going into senescence. This indicates that yet unknown COS emission processes likely related to plant degradation, could complicate the use of COS as a tracer for GPP.
Since the majority of studies have focused on measuring COS ecosystem fluxes during peak growing times or on evergreen forests, we seek to quantify the relationship between the ecosystem-scale exchange of CO2 and COS of an ecosystem going into senescence.
Between September and November 2019 we deployed our quantum cascade laser (Aerodyne Research Inc., MA, USA) at a beech forest in Leinefelde, Germany to conduct eddy covariance measurements for COS, CO2 and H2O. Our observations started when the beech forest was still green and in full leaf and ended when most of the trees had already shed their leaves. The ecosystem fluxes of COS and CO2 concurrently decreased over the course of our campaign up to the point when we could not observe a net uptake of CO2 anymore. We will further compare the GPP estimates resulting from classical flux partitioning and flux partitioning with the additional use of COS to determine if the model differences increase towards the end of the season.
How to cite: Spielmann, F. M., Hammerle, A., Knohl, A., Deventer, M. J., and Wohlfahrt, G.: Winter is coming – ecosystem-scale COS exchange during senescence of a deciduous forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8871, https://doi.org/10.5194/egusphere-egu2020-8871, 2020.
The gross uptake of CO2 on ecosystem level (GPP) can’t be measured directly, but has to be inferred from models or proxies. One of the newly emerged constrains on GPP is the trace gas carbonyl sulfide (COS). COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. Within the cytosol, it is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. Basically, this one way flux would make COS a very promising tracer for GPP on ecosystem level, but there is growing evidence that plants are also capable of emitting COS. Mosses and even vascular plants that are under high stress like drought and fungal infection, have been reported to emit COS. Furthermore, a winter wheat field, that showed a good correlation between the CO2 and COS ecosystem fluxes during the peak growing phase turned into a source for COS after going into senescence. This indicates that yet unknown COS emission processes likely related to plant degradation, could complicate the use of COS as a tracer for GPP.
Since the majority of studies have focused on measuring COS ecosystem fluxes during peak growing times or on evergreen forests, we seek to quantify the relationship between the ecosystem-scale exchange of CO2 and COS of an ecosystem going into senescence.
Between September and November 2019 we deployed our quantum cascade laser (Aerodyne Research Inc., MA, USA) at a beech forest in Leinefelde, Germany to conduct eddy covariance measurements for COS, CO2 and H2O. Our observations started when the beech forest was still green and in full leaf and ended when most of the trees had already shed their leaves. The ecosystem fluxes of COS and CO2 concurrently decreased over the course of our campaign up to the point when we could not observe a net uptake of CO2 anymore. We will further compare the GPP estimates resulting from classical flux partitioning and flux partitioning with the additional use of COS to determine if the model differences increase towards the end of the season.
How to cite: Spielmann, F. M., Hammerle, A., Knohl, A., Deventer, M. J., and Wohlfahrt, G.: Winter is coming – ecosystem-scale COS exchange during senescence of a deciduous forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8871, https://doi.org/10.5194/egusphere-egu2020-8871, 2020.
EGU2020-8440 | Displays | BG3.33
Using Sun-induced fluorescence and Carbonyl Sulfide flux to assess the response to seasonal heatwave in a citrus orchardAmnon Cochavi, Madi Amer, Rafael Stern, and Dan Yakir
Springtime heatwaves are common phenomena in the Mediterranean region, named ‘Sharav’ or ‘Hamsin’. During these heatwaves, air temperatures (Ta) and vapor pressure demand (VPD) increase rapidly over 3-5 days, followed by a dramatic drop of at least 5℃ in Ta and 1 kPa in VPD back to the pre-event values.
Here, we used our mobile lab in an irrigated lemon orchard in Rehovot, Israel to carry out eddy covariance (EC) flux measurements of net ecosystem exchange of CO2 (NEE), water vapor, and carbonyl sulfide (COS), as well as canopy Sun-induced fluorescence (SIF) together with other spectral indices (NDVI, PRI, NIRv). This was supplemented with leaf-scale measurements of Pulse Amplitude modulated (PAM). Five heatwave events were detected during a two-months measurement campaign. Two other events were defined as intermediate days, with VPD values higher than normal but lower than in the full-scale heatwaves.
During both the heatwave and intermediate days, the COS fluxes (Fcos), far-red SIF, and electron transport rate (ETR), decreased during midday to the same level, compared to the control days. In contrast, NEE responded differentially between the heatwave and intermediate days, with midday values of -5.9±0.9, -3.7±0.7 and -0.69±0.62 µmol m-2s-1 CO2, in the control, intermediate and heatwave days, respectively. No differences were detected in both NDVI and NIRv values. The PRI index, related to energy transfer through the non-photochemical quenching (NPQ) pathway, showed a similar pattern to that of NEE. The recovery of the ecosystem from the heatwave events was rapid and occurred within a day after the end of the events.
The results indicate a link between the far-red SIF and the ETR in the response to the heatwaves. Moreover, the reduction in far-red SIF was negatively associated with the increase in NPQ, which was reflected in both the spectral (PRI) and the PAM (NPQ value) measurements. The observed decrease in Fcos is expected to reflect a decrease in stomatal conductance to a similar extent in the heatwave and intermediate days. However, the lower rate of CO2 assimilation in the full-scale heat wave days suggests that additional factors further decreased its rates beyond that limited by conductance. This can be related to the increased effect of the heat stress on other energy-demanding pathways (e.g. photorespiratory, isoprene production) that can suppress net assimilation in these days.
This work demonstrated that the relation between carbon assimilation and far-red SIF can be complex, and that combining SIF and COS measurements can help partition the effects of heat stress on conductance and other physiological effects.
How to cite: Cochavi, A., Amer, M., Stern, R., and Yakir, D.: Using Sun-induced fluorescence and Carbonyl Sulfide flux to assess the response to seasonal heatwave in a citrus orchard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8440, https://doi.org/10.5194/egusphere-egu2020-8440, 2020.
Springtime heatwaves are common phenomena in the Mediterranean region, named ‘Sharav’ or ‘Hamsin’. During these heatwaves, air temperatures (Ta) and vapor pressure demand (VPD) increase rapidly over 3-5 days, followed by a dramatic drop of at least 5℃ in Ta and 1 kPa in VPD back to the pre-event values.
Here, we used our mobile lab in an irrigated lemon orchard in Rehovot, Israel to carry out eddy covariance (EC) flux measurements of net ecosystem exchange of CO2 (NEE), water vapor, and carbonyl sulfide (COS), as well as canopy Sun-induced fluorescence (SIF) together with other spectral indices (NDVI, PRI, NIRv). This was supplemented with leaf-scale measurements of Pulse Amplitude modulated (PAM). Five heatwave events were detected during a two-months measurement campaign. Two other events were defined as intermediate days, with VPD values higher than normal but lower than in the full-scale heatwaves.
During both the heatwave and intermediate days, the COS fluxes (Fcos), far-red SIF, and electron transport rate (ETR), decreased during midday to the same level, compared to the control days. In contrast, NEE responded differentially between the heatwave and intermediate days, with midday values of -5.9±0.9, -3.7±0.7 and -0.69±0.62 µmol m-2s-1 CO2, in the control, intermediate and heatwave days, respectively. No differences were detected in both NDVI and NIRv values. The PRI index, related to energy transfer through the non-photochemical quenching (NPQ) pathway, showed a similar pattern to that of NEE. The recovery of the ecosystem from the heatwave events was rapid and occurred within a day after the end of the events.
The results indicate a link between the far-red SIF and the ETR in the response to the heatwaves. Moreover, the reduction in far-red SIF was negatively associated with the increase in NPQ, which was reflected in both the spectral (PRI) and the PAM (NPQ value) measurements. The observed decrease in Fcos is expected to reflect a decrease in stomatal conductance to a similar extent in the heatwave and intermediate days. However, the lower rate of CO2 assimilation in the full-scale heat wave days suggests that additional factors further decreased its rates beyond that limited by conductance. This can be related to the increased effect of the heat stress on other energy-demanding pathways (e.g. photorespiratory, isoprene production) that can suppress net assimilation in these days.
This work demonstrated that the relation between carbon assimilation and far-red SIF can be complex, and that combining SIF and COS measurements can help partition the effects of heat stress on conductance and other physiological effects.
How to cite: Cochavi, A., Amer, M., Stern, R., and Yakir, D.: Using Sun-induced fluorescence and Carbonyl Sulfide flux to assess the response to seasonal heatwave in a citrus orchard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8440, https://doi.org/10.5194/egusphere-egu2020-8440, 2020.
EGU2020-9713 | Displays | BG3.33
The pigment antenna constraining the light reactions: photosynthetic energy redistribution indicated by leaf absorbance changesShari Van Wittenberghe, Valero Laparra, Nacho Ignacio Garcia, Luis Alonso, Beatriz Fernandez Marín, Zbynek Malenovsky, Albert Porcar-Castell, and Jose Moreno
The solar energy absorbed by the vegetation light-harvesting antenna complexes supplies the photosynthetic light reactions with a highly efficient transfer of quantum energy. The absorbed energy is efficiently transferred from one molecule to another, until being used by the reaction centres for the further carbon reactions. The energy transfer to the reaction centres is hereby highly regulated by the variable aggregation of pigments in the antenna complexes, allowing for quick and slower adjustments according to the incoming solar radiance. To control and protect the pigment antenna and the reaction centres from a potentially harmful solar radiance excess, these regulated photoprotective mechanisms are activated at different time scales at the antenna level, allowing vegetation to adapt to changing light conditions. The understanding of these energy regulative processes from optical measurements is essential in order to monitor plants' adaptation strategies to stressful environments and changing climates from remote sensing data.
Using high-spectral resolution leaf spectroscopy in a controlled laboratory set-up, we have observed detailed and significant absorbance shifts controlled by the pigment antennas themselves. Simultaneous measurements of both upward and downward spectrally-resolved leaf radiance (Lup(λ), Ldw(λ), W m-2 sr-1 nm-1) allowed us to observe the specific absorbance changes at leaf level, including changes in chlorophyll (Chl) a fluorescence emission (Fup(λ), Fdw(λ), W m-2 sr-1 nm-1). Interestingly, these changes due to shifts in energy redistribution were: 1) observed in the PAR region and even far beyond 700 nm, and 2) indicated a prominent role of both Carotenoid and Chl a molecules in the creation of alternative energy sinks, i.e. constraining the energy transfer to the reaction centres. Hereby, a significant redistribution of photosynthetic light energy was observed in the 500-800 nm range, highlighting this spectral region to be of potential interest for remote sensing. We further revealed that these energy redistributions do not necessary occur in parallel with Chl a fluorescence changes, illustrating the importance of different energy redistribution mechanisms constraining the photosynthetic light reactions. To conclude, a good quantitative understanding of all mechanisms of energy regulation in plants based on VIS-NIR wavelengths is essential 1) to be able to understand these trends using remote sensing data, 2) to better model the adaptations of vegetation to changing climate and environmental conditions, and 3) potentially better predict future trends in dynamic global vegetation models.
How to cite: Van Wittenberghe, S., Laparra, V., Ignacio Garcia, N., Alonso, L., Fernandez Marín, B., Malenovsky, Z., Porcar-Castell, A., and Moreno, J.: The pigment antenna constraining the light reactions: photosynthetic energy redistribution indicated by leaf absorbance changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9713, https://doi.org/10.5194/egusphere-egu2020-9713, 2020.
The solar energy absorbed by the vegetation light-harvesting antenna complexes supplies the photosynthetic light reactions with a highly efficient transfer of quantum energy. The absorbed energy is efficiently transferred from one molecule to another, until being used by the reaction centres for the further carbon reactions. The energy transfer to the reaction centres is hereby highly regulated by the variable aggregation of pigments in the antenna complexes, allowing for quick and slower adjustments according to the incoming solar radiance. To control and protect the pigment antenna and the reaction centres from a potentially harmful solar radiance excess, these regulated photoprotective mechanisms are activated at different time scales at the antenna level, allowing vegetation to adapt to changing light conditions. The understanding of these energy regulative processes from optical measurements is essential in order to monitor plants' adaptation strategies to stressful environments and changing climates from remote sensing data.
Using high-spectral resolution leaf spectroscopy in a controlled laboratory set-up, we have observed detailed and significant absorbance shifts controlled by the pigment antennas themselves. Simultaneous measurements of both upward and downward spectrally-resolved leaf radiance (Lup(λ), Ldw(λ), W m-2 sr-1 nm-1) allowed us to observe the specific absorbance changes at leaf level, including changes in chlorophyll (Chl) a fluorescence emission (Fup(λ), Fdw(λ), W m-2 sr-1 nm-1). Interestingly, these changes due to shifts in energy redistribution were: 1) observed in the PAR region and even far beyond 700 nm, and 2) indicated a prominent role of both Carotenoid and Chl a molecules in the creation of alternative energy sinks, i.e. constraining the energy transfer to the reaction centres. Hereby, a significant redistribution of photosynthetic light energy was observed in the 500-800 nm range, highlighting this spectral region to be of potential interest for remote sensing. We further revealed that these energy redistributions do not necessary occur in parallel with Chl a fluorescence changes, illustrating the importance of different energy redistribution mechanisms constraining the photosynthetic light reactions. To conclude, a good quantitative understanding of all mechanisms of energy regulation in plants based on VIS-NIR wavelengths is essential 1) to be able to understand these trends using remote sensing data, 2) to better model the adaptations of vegetation to changing climate and environmental conditions, and 3) potentially better predict future trends in dynamic global vegetation models.
How to cite: Van Wittenberghe, S., Laparra, V., Ignacio Garcia, N., Alonso, L., Fernandez Marín, B., Malenovsky, Z., Porcar-Castell, A., and Moreno, J.: The pigment antenna constraining the light reactions: photosynthetic energy redistribution indicated by leaf absorbance changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9713, https://doi.org/10.5194/egusphere-egu2020-9713, 2020.
EGU2020-9759 | Displays | BG3.33
Non-monotonic relationship of sun-induced fluorescence to photosynthesisSebastian Wieneke, Manuela Balzarolo, Han Asard, Hamada AbdElgawad, Josep Peñuelas, Uwe Rascher, Arne Ven, Melanie Verlinden, Ivan Janssens, and Sara Vicca
Due to its close link to the photosynthetic process, sun-induced fluorescence (SIF) is one of the most promising signals to assess spatio-temporal variation in photosynthesis. Yet the positive linear relationship between SIF and photosynthesis, often reported from satellite and proximal remote sensing, contradicts findings from leaf-level studies, particularly under stress conditions. In two separate experiments, we grew Mays (Zea mays L.) under increasing phosphorus limitation and potato (Solanum tuberosum L.) under increasing drought stress to assess whether SIF can detect the phosphorus and drought induced reduction in photosynthesis. We demonstrate that the relationship between photosynthesis and APAR (absorbed photochemical active radiation) normalized SIF (FY) is non-monotonic under increasing environmental stress conditions, rendering the prediction of photosynthesis by FY alone unfeasible. The use of FY in combination with a pigment corrected photochemical reflectance index (PRI) as an indicator of the stress stage, allows the estimation of photosynthesis. However, this approach is strongly affected by uncertainties in PRI and we therefore propose the pigment-corrected ratio of the two SIF peaks (cFratio) as a precise and robust estimator of photosynthesis (R² = 0.90, rRMSE = 10%). Due to its independence on the absorbed photosynthetic active radiation, the cFratio is a promising novel estimator of spatio-temporal variation in photosynthesis.
How to cite: Wieneke, S., Balzarolo, M., Asard, H., AbdElgawad, H., Peñuelas, J., Rascher, U., Ven, A., Verlinden, M., Janssens, I., and Vicca, S.: Non-monotonic relationship of sun-induced fluorescence to photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9759, https://doi.org/10.5194/egusphere-egu2020-9759, 2020.
Due to its close link to the photosynthetic process, sun-induced fluorescence (SIF) is one of the most promising signals to assess spatio-temporal variation in photosynthesis. Yet the positive linear relationship between SIF and photosynthesis, often reported from satellite and proximal remote sensing, contradicts findings from leaf-level studies, particularly under stress conditions. In two separate experiments, we grew Mays (Zea mays L.) under increasing phosphorus limitation and potato (Solanum tuberosum L.) under increasing drought stress to assess whether SIF can detect the phosphorus and drought induced reduction in photosynthesis. We demonstrate that the relationship between photosynthesis and APAR (absorbed photochemical active radiation) normalized SIF (FY) is non-monotonic under increasing environmental stress conditions, rendering the prediction of photosynthesis by FY alone unfeasible. The use of FY in combination with a pigment corrected photochemical reflectance index (PRI) as an indicator of the stress stage, allows the estimation of photosynthesis. However, this approach is strongly affected by uncertainties in PRI and we therefore propose the pigment-corrected ratio of the two SIF peaks (cFratio) as a precise and robust estimator of photosynthesis (R² = 0.90, rRMSE = 10%). Due to its independence on the absorbed photosynthetic active radiation, the cFratio is a promising novel estimator of spatio-temporal variation in photosynthesis.
How to cite: Wieneke, S., Balzarolo, M., Asard, H., AbdElgawad, H., Peñuelas, J., Rascher, U., Ven, A., Verlinden, M., Janssens, I., and Vicca, S.: Non-monotonic relationship of sun-induced fluorescence to photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9759, https://doi.org/10.5194/egusphere-egu2020-9759, 2020.
EGU2020-18251 | Displays | BG3.33
Use of leaf hyperspectral data and different regression models to estimate photosynthetic parameters (Vcmax and Jmax) in three different row cropsMaria Luisa Buchaillot, David Soba, Tianchu Shu, Liu Juan, José Luis Araus, Shawn C. Kefauver, and Alvaro Sanz-Saez
By 2050 future global food demand is projected to require a doubling of agricultural output, and climate change will exacerbate this challenge by intensifying the exposure of field crops to abiotic stress conditions, including rising temperature, increased drought, and increased CO2 concentration ([CO2]). One of the keys to improving crop yield under different stresses is studying is photosynthesis. Photosynthetic parameters, such as the maximum rate of carboxylation of RuBP (Vc,max), and the maximum rate of electron transport driving RuBP regeneration (Jmax) vary in response to climate conditions and have been identified as a target for improvement. However, the techniques used to measure these physiological parameters are very time consuming, ranging from 30 to 70 min per measurement and require specialized personnel. Therefore, breeding or genetic mapping for these traits under these conditions is prohibitively time-consuming. Spatial and temporal variation in plant photosynthesis can be estimated using remote sensing-derived spectral vegetation indices. Spectral estimates of green vegetation biomass and vigor, including vegetation indices such as the Normalized Difference Vegetation Index (NDVI), are widely used to estimate vegetation productivity across spatial and temporal scales but are unable to provide assessments of specific photosynthetic parameters. For that reason, hyperspectral remote sensing shows promise for predicting photosynthetic capacity based on more detailed leaf optical properties. In this study, we developed and assessed estimates of Vcmax and Jmax through four different advanced regression models: PLS, BR, ARDR, and LASSO based on leaf reflectance metrics measured with an ASD FieldSpec4 Hi-RES of different crops under different environmental conditions such as (1) different varieties of soybean under high [CO2] and high temperature, (2) different varieties of peanut under drought stress and (3) 20 varieties of cotton diverse origin and grown under field conditions. Both phenotypic variability and varying levels of stress were employed with each crop to ensure adequate ranges of responses. Model sensitivities were assessed for each crop and treatment separately and in combination in order to better understand the strengths and weaknesses of each model in all the different conditions. For the combination of three species, all the models suggest a robust prediction of Vcmax around R2:0.67 and the same for the Jmax R2: 0.55.
How to cite: Buchaillot, M. L., Soba, D., Shu, T., Juan, L., Araus, J. L., Kefauver, S. C., and Sanz-Saez, A.: Use of leaf hyperspectral data and different regression models to estimate photosynthetic parameters (Vcmax and Jmax) in three different row crops , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18251, https://doi.org/10.5194/egusphere-egu2020-18251, 2020.
By 2050 future global food demand is projected to require a doubling of agricultural output, and climate change will exacerbate this challenge by intensifying the exposure of field crops to abiotic stress conditions, including rising temperature, increased drought, and increased CO2 concentration ([CO2]). One of the keys to improving crop yield under different stresses is studying is photosynthesis. Photosynthetic parameters, such as the maximum rate of carboxylation of RuBP (Vc,max), and the maximum rate of electron transport driving RuBP regeneration (Jmax) vary in response to climate conditions and have been identified as a target for improvement. However, the techniques used to measure these physiological parameters are very time consuming, ranging from 30 to 70 min per measurement and require specialized personnel. Therefore, breeding or genetic mapping for these traits under these conditions is prohibitively time-consuming. Spatial and temporal variation in plant photosynthesis can be estimated using remote sensing-derived spectral vegetation indices. Spectral estimates of green vegetation biomass and vigor, including vegetation indices such as the Normalized Difference Vegetation Index (NDVI), are widely used to estimate vegetation productivity across spatial and temporal scales but are unable to provide assessments of specific photosynthetic parameters. For that reason, hyperspectral remote sensing shows promise for predicting photosynthetic capacity based on more detailed leaf optical properties. In this study, we developed and assessed estimates of Vcmax and Jmax through four different advanced regression models: PLS, BR, ARDR, and LASSO based on leaf reflectance metrics measured with an ASD FieldSpec4 Hi-RES of different crops under different environmental conditions such as (1) different varieties of soybean under high [CO2] and high temperature, (2) different varieties of peanut under drought stress and (3) 20 varieties of cotton diverse origin and grown under field conditions. Both phenotypic variability and varying levels of stress were employed with each crop to ensure adequate ranges of responses. Model sensitivities were assessed for each crop and treatment separately and in combination in order to better understand the strengths and weaknesses of each model in all the different conditions. For the combination of three species, all the models suggest a robust prediction of Vcmax around R2:0.67 and the same for the Jmax R2: 0.55.
How to cite: Buchaillot, M. L., Soba, D., Shu, T., Juan, L., Araus, J. L., Kefauver, S. C., and Sanz-Saez, A.: Use of leaf hyperspectral data and different regression models to estimate photosynthetic parameters (Vcmax and Jmax) in three different row crops , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18251, https://doi.org/10.5194/egusphere-egu2020-18251, 2020.
EGU2020-18679 | Displays | BG3.33
Spatial analysis of ground-based sun induced fluorescence data and canopy pigment content in a dry grasslandSzilvia Fóti, János Balogh, Krisztina Pintér, and Zoltán Nagy
Monitoring of canopy photosynthetic performance in optimal and stress conditions has major importance in carbon budget estimates or in precision agriculture. Photosynthesis responds very rapidly to the environmental conditions balancing photochemical processes with different other processes through which excitation energy is lost from the system, including photo-protective heat loss and fluorescent light emission. Although the ratio of photosynthesis to fluorescence in optimal and stress conditions differ, it is not an easy task to assess their actual share, because of the quick adjustment of the pigment-protein complexes or the changing intensity of light re-absorption by chlorophylls.
Sun induced fluorescence (SIF) measured by ground-based instrument provided direct data of the photosynthetic capacity of the canopy. The O2 absorptions bands filled with fluorescence served to calculate actual fluorescence intensity within the total upwelling signal. Furthermore, field leaf samples were collected and laboratory analysis was performed to determine photosynthetic pigment contents (both chlorophylls and carotenoids).
The sampling, both for SIF and pigment data collection followed spatial grid arrangements with different resolutions, 10 × 10 m and 30 × 30 m. Spatial analysis lays on a relatively large number of samples, collected within a very short time period. Our aim was to link the spatial distribution of one target phenomenon to the distribution or intensity of different driving forces, such as terrain features, soil moisture content, soil temperature etc., which were also simultaneously collected in the field work. One measuring occasion at both spatial scales were selected for detailed spatial data processing with geostatistics and kriging.
How to cite: Fóti, S., Balogh, J., Pintér, K., and Nagy, Z.: Spatial analysis of ground-based sun induced fluorescence data and canopy pigment content in a dry grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18679, https://doi.org/10.5194/egusphere-egu2020-18679, 2020.
Monitoring of canopy photosynthetic performance in optimal and stress conditions has major importance in carbon budget estimates or in precision agriculture. Photosynthesis responds very rapidly to the environmental conditions balancing photochemical processes with different other processes through which excitation energy is lost from the system, including photo-protective heat loss and fluorescent light emission. Although the ratio of photosynthesis to fluorescence in optimal and stress conditions differ, it is not an easy task to assess their actual share, because of the quick adjustment of the pigment-protein complexes or the changing intensity of light re-absorption by chlorophylls.
Sun induced fluorescence (SIF) measured by ground-based instrument provided direct data of the photosynthetic capacity of the canopy. The O2 absorptions bands filled with fluorescence served to calculate actual fluorescence intensity within the total upwelling signal. Furthermore, field leaf samples were collected and laboratory analysis was performed to determine photosynthetic pigment contents (both chlorophylls and carotenoids).
The sampling, both for SIF and pigment data collection followed spatial grid arrangements with different resolutions, 10 × 10 m and 30 × 30 m. Spatial analysis lays on a relatively large number of samples, collected within a very short time period. Our aim was to link the spatial distribution of one target phenomenon to the distribution or intensity of different driving forces, such as terrain features, soil moisture content, soil temperature etc., which were also simultaneously collected in the field work. One measuring occasion at both spatial scales were selected for detailed spatial data processing with geostatistics and kriging.
How to cite: Fóti, S., Balogh, J., Pintér, K., and Nagy, Z.: Spatial analysis of ground-based sun induced fluorescence data and canopy pigment content in a dry grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18679, https://doi.org/10.5194/egusphere-egu2020-18679, 2020.
EGU2020-7284 | Displays | BG3.33
Photosynthesis - Solar Induced Fluorescence relationships in polar ecosystemsKadmiel Maseyk, Holly Croft, Cheryl Rogers, Terenzio Zenone, Walter Oechel, and Donnatella Zona
The rapid warming of polar regions is having a demonstrable impact on ecosystem composition and there is a pressing need to understand the carbon cycle implications of these changes. A promising approach for investigating photosynthesis at ecosystem and regional scales involves the remote sensing of Solar Induced Fluorescence (SIF). However, ground-validation of SIF and its association with carbon assimilation and other ecophysiological parameters is largely missing from the polar regions. We will present results of measurements of ground-level SIF and hyperspectral reflectance that were coupled with CO2 exchange measurements in three contrasting polar regions: shrub and bog ecosystems in northern Sweden, wet coastal tundra in Alaska and moss turf in Antarctica. We show good agreement between SIF and photosynthesis across scales, from leaf-level to surface fluxes, but with variable relationships between ecosystem types. Our results show strong potential for using SIF to help understand the impact of change in these regions.
How to cite: Maseyk, K., Croft, H., Rogers, C., Zenone, T., Oechel, W., and Zona, D.: Photosynthesis - Solar Induced Fluorescence relationships in polar ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7284, https://doi.org/10.5194/egusphere-egu2020-7284, 2020.
The rapid warming of polar regions is having a demonstrable impact on ecosystem composition and there is a pressing need to understand the carbon cycle implications of these changes. A promising approach for investigating photosynthesis at ecosystem and regional scales involves the remote sensing of Solar Induced Fluorescence (SIF). However, ground-validation of SIF and its association with carbon assimilation and other ecophysiological parameters is largely missing from the polar regions. We will present results of measurements of ground-level SIF and hyperspectral reflectance that were coupled with CO2 exchange measurements in three contrasting polar regions: shrub and bog ecosystems in northern Sweden, wet coastal tundra in Alaska and moss turf in Antarctica. We show good agreement between SIF and photosynthesis across scales, from leaf-level to surface fluxes, but with variable relationships between ecosystem types. Our results show strong potential for using SIF to help understand the impact of change in these regions.
How to cite: Maseyk, K., Croft, H., Rogers, C., Zenone, T., Oechel, W., and Zona, D.: Photosynthesis - Solar Induced Fluorescence relationships in polar ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7284, https://doi.org/10.5194/egusphere-egu2020-7284, 2020.
EGU2020-19486 | Displays | BG3.33
Disentangling the Control of Canopy Structure and Plant Physiology on the Diurnal Dynamics of SIF and PhotosynthesisChristine Chang, Jiaming Wen, Ruiqing Zhou, and Ying Sun
Solar-induced chlorophyll fluorescence (SIF) offers a promising tool to remotely monitor photosynthesis from the canopy to regional scale. However, in order to interpret instantaneous satellite SIF measurements in a biological context, there needs to be a better understanding of the diurnal dynamics of SIF and photosynthesis. Using two maize sites with contrasting row orientations, we acquired canopy scale SIF and hyperspectral reflectance using a tower and UAV, in conjunction with concurrent leaf-level measurements of photosynthesis and chlorophyll fluorescence. We show that SIF dynamics are impacted by a combination of canopy structure and plant physiology, which can lead to a divergent SIF-photosynthesis relationship, particularly at certain times of day. These findings have significant implications for upscaling and interpreting satellite SIF retrievals, which rely on daily mean integrals.
How to cite: Chang, C., Wen, J., Zhou, R., and Sun, Y.: Disentangling the Control of Canopy Structure and Plant Physiology on the Diurnal Dynamics of SIF and Photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19486, https://doi.org/10.5194/egusphere-egu2020-19486, 2020.
Solar-induced chlorophyll fluorescence (SIF) offers a promising tool to remotely monitor photosynthesis from the canopy to regional scale. However, in order to interpret instantaneous satellite SIF measurements in a biological context, there needs to be a better understanding of the diurnal dynamics of SIF and photosynthesis. Using two maize sites with contrasting row orientations, we acquired canopy scale SIF and hyperspectral reflectance using a tower and UAV, in conjunction with concurrent leaf-level measurements of photosynthesis and chlorophyll fluorescence. We show that SIF dynamics are impacted by a combination of canopy structure and plant physiology, which can lead to a divergent SIF-photosynthesis relationship, particularly at certain times of day. These findings have significant implications for upscaling and interpreting satellite SIF retrievals, which rely on daily mean integrals.
How to cite: Chang, C., Wen, J., Zhou, R., and Sun, Y.: Disentangling the Control of Canopy Structure and Plant Physiology on the Diurnal Dynamics of SIF and Photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19486, https://doi.org/10.5194/egusphere-egu2020-19486, 2020.
EGU2020-21926 | Displays | BG3.33
Drought stress detection with a coupled AgroC-SCOPE modelSimon De Cannière, Michael Herbst, and François Jonard
Photosynthesis is the cornerstone of all life on earth. Light energy, captured by chlorophyll, fuels photosynthesis. As an excess of absorbed light leads to harmful products, the excess light is either dissipated as heat or it is re-emitted in the atmosphere. The latter pathway results in a weak, but very specific spectral signal, right from the heart of the photosynthetic apparatus, called chlorophyll fluorescence. Recent advancements in spectrometry have allowed the retrieval of fluorescence with remote sensing. Given its close link to photosynthesis, it has the potential of informing crop growth models. The aim of this study is to estimate the stress parameter of the crop growth model AgroC by incorporating remotely-sensed sun-induced chlorophyll fluorescence (SIF) data. The radiative transfer model SCOPE converts the leaf-level fluorescence obtained from AgroC to canopy-scale SIF. In case of a stress, the SIF at 760 nm decreases, while the SIF at 687 nm shows a more complex relationship to stress. Comparing the modelled canopy-scale and observed SIF provides information on the plant water stress status, allowing a more precise estimate of the photosynthetic activity. Downstream, this leads to a better estimation of the plant growth, as well as a better estimation of the carbon and water fluxes. A field campaign is conducted over a sugar beet field in Merzenhausen, Germany, in which the fluorescence was measured alongside the water and carbon fluxes. As the fluorescence provides an additional constraint on the photosynthesis, the AgroC-SCOPE model is expected to provide significantly better estimates of the carbon fluxes compared to the AgroC model. The results of the coupled AgroC-SCOPE model will be presented at this meeting. This study provides information on the link between drought stress and fluorescence. An approach similar to the one proposed in this study will allow detecting drought stress at the regional to global scale with FLEX data.
How to cite: De Cannière, S., Herbst, M., and Jonard, F.: Drought stress detection with a coupled AgroC-SCOPE model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21926, https://doi.org/10.5194/egusphere-egu2020-21926, 2020.
Photosynthesis is the cornerstone of all life on earth. Light energy, captured by chlorophyll, fuels photosynthesis. As an excess of absorbed light leads to harmful products, the excess light is either dissipated as heat or it is re-emitted in the atmosphere. The latter pathway results in a weak, but very specific spectral signal, right from the heart of the photosynthetic apparatus, called chlorophyll fluorescence. Recent advancements in spectrometry have allowed the retrieval of fluorescence with remote sensing. Given its close link to photosynthesis, it has the potential of informing crop growth models. The aim of this study is to estimate the stress parameter of the crop growth model AgroC by incorporating remotely-sensed sun-induced chlorophyll fluorescence (SIF) data. The radiative transfer model SCOPE converts the leaf-level fluorescence obtained from AgroC to canopy-scale SIF. In case of a stress, the SIF at 760 nm decreases, while the SIF at 687 nm shows a more complex relationship to stress. Comparing the modelled canopy-scale and observed SIF provides information on the plant water stress status, allowing a more precise estimate of the photosynthetic activity. Downstream, this leads to a better estimation of the plant growth, as well as a better estimation of the carbon and water fluxes. A field campaign is conducted over a sugar beet field in Merzenhausen, Germany, in which the fluorescence was measured alongside the water and carbon fluxes. As the fluorescence provides an additional constraint on the photosynthesis, the AgroC-SCOPE model is expected to provide significantly better estimates of the carbon fluxes compared to the AgroC model. The results of the coupled AgroC-SCOPE model will be presented at this meeting. This study provides information on the link between drought stress and fluorescence. An approach similar to the one proposed in this study will allow detecting drought stress at the regional to global scale with FLEX data.
How to cite: De Cannière, S., Herbst, M., and Jonard, F.: Drought stress detection with a coupled AgroC-SCOPE model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21926, https://doi.org/10.5194/egusphere-egu2020-21926, 2020.
EGU2020-5066 | Displays | BG3.33
Photosynthesis in a widespread and important sub-Arctic moss and lichens species in pine ecosystems of the ZOTTO tower footprint areaDaria Polosukhina, Oxana Masyagina, and Anatoly Prokushkin
In boreal forests, bryophytes and lichens usually dominate the ground floor layer and contribute up to 50% of ecosystem gross CO2 exchange (Bisbee et al. 2001; Goulden & Crill 1997). Sphagnum spp. are the most important contributors in wetland C uptake, and feathermosses and lichens play a significant role in well-drained sites (Nilsson & Wardle 2005; O’Connell et al. 2003; Jarle W. Bjerke et al. 2013). Given their important ecological roles in such a widespread biome, it is surprising that still a few studies have attempted to understand the intrinsic factors that control moss-lichen cover carbon dynamics specifically under ongoing climate change in high latitudes.
The aim of this work was to determine the stocks of moss-lichen stratum and photoassimilation activity of its dominant species during the growing season. The study has been conducted in Central Siberia near Zotino tall tower observatory (ZOTTO, 60 ° N, 89 ° E) in lichen- and feathermoss-dominated pine forests. First, to assess the phyto (bio) mass stocks the grass-shrub and moss-lichen layers were sampled in 100 replicates in each type of forest from 20x25 cm subplots (S = 50 cm2). The intensity of CO2 photoassimilation was determined in situ by Walz GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany) infrared gas analyzer. Photosynthetic activity of lichens and feathermosses was measured during the growing season of 2018 in June, July, August and September around the mid-day time. For every time point we also analyzed CO2 exchange dependence from temperature, photosynthetically active radiation (PAR) and CO2 concentration.
The dominants of ground vegetation for the moss-lichen layer were Cladonia stellaris, Cladonia rangiferina, Cetraria islandica, Pleurozium schreberi, Hylocomium splendens, Aulacomnium palustre. The moss-lichen layer accounted for 78-96% of the total phytomass of ground floor in studied pine forests and comparable (486 g/m2) to the photosynthetic phytomass of the tree canopy (pine needles). During the growing season, carbon assimilation by the moss-lichen layer varied in a relatively narrow range: from 38 ± 4 to 42 ± 5 mgCO2 / m2 / hour for lichen C. stellaris and from 93 ± 11 to 99 ± 13 mgCO2 / m2 / hour for moss P. schreberi. Thus, moss-lichen layer dominants maintained high photoassimilation activity throughout the growing season. Temperature increased the intensity of CO2 assimilation and no inhibition was observed at maximum T used in our study (+40 ° C). There were no differences in the temperature dependence of CO2 photoassimilation between feathermosses and lichens. However, they differed in dependence from PAR. Mosses showed 2-fold larger response of CO2 assimilation intensity to increase of PAR comparatively to lichens. The rate of photosynthesis of both moss and lichen showed log growth with increasing CO2 levels up to 2000 ppm. Compensation poit was varying from 170 to 284 ppm.
This study was supported by the Russian Foundation for Basic Research project № 18-05-60203 "Landscape and hydrobiological controls on the transport of terrigenic carbon to the Arctic Ocean".
How to cite: Polosukhina, D., Masyagina, O., and Prokushkin, A.: Photosynthesis in a widespread and important sub-Arctic moss and lichens species in pine ecosystems of the ZOTTO tower footprint area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5066, https://doi.org/10.5194/egusphere-egu2020-5066, 2020.
In boreal forests, bryophytes and lichens usually dominate the ground floor layer and contribute up to 50% of ecosystem gross CO2 exchange (Bisbee et al. 2001; Goulden & Crill 1997). Sphagnum spp. are the most important contributors in wetland C uptake, and feathermosses and lichens play a significant role in well-drained sites (Nilsson & Wardle 2005; O’Connell et al. 2003; Jarle W. Bjerke et al. 2013). Given their important ecological roles in such a widespread biome, it is surprising that still a few studies have attempted to understand the intrinsic factors that control moss-lichen cover carbon dynamics specifically under ongoing climate change in high latitudes.
The aim of this work was to determine the stocks of moss-lichen stratum and photoassimilation activity of its dominant species during the growing season. The study has been conducted in Central Siberia near Zotino tall tower observatory (ZOTTO, 60 ° N, 89 ° E) in lichen- and feathermoss-dominated pine forests. First, to assess the phyto (bio) mass stocks the grass-shrub and moss-lichen layers were sampled in 100 replicates in each type of forest from 20x25 cm subplots (S = 50 cm2). The intensity of CO2 photoassimilation was determined in situ by Walz GFS-3000 (Heinz Walz GmbH, Effeltrich, Germany) infrared gas analyzer. Photosynthetic activity of lichens and feathermosses was measured during the growing season of 2018 in June, July, August and September around the mid-day time. For every time point we also analyzed CO2 exchange dependence from temperature, photosynthetically active radiation (PAR) and CO2 concentration.
The dominants of ground vegetation for the moss-lichen layer were Cladonia stellaris, Cladonia rangiferina, Cetraria islandica, Pleurozium schreberi, Hylocomium splendens, Aulacomnium palustre. The moss-lichen layer accounted for 78-96% of the total phytomass of ground floor in studied pine forests and comparable (486 g/m2) to the photosynthetic phytomass of the tree canopy (pine needles). During the growing season, carbon assimilation by the moss-lichen layer varied in a relatively narrow range: from 38 ± 4 to 42 ± 5 mgCO2 / m2 / hour for lichen C. stellaris and from 93 ± 11 to 99 ± 13 mgCO2 / m2 / hour for moss P. schreberi. Thus, moss-lichen layer dominants maintained high photoassimilation activity throughout the growing season. Temperature increased the intensity of CO2 assimilation and no inhibition was observed at maximum T used in our study (+40 ° C). There were no differences in the temperature dependence of CO2 photoassimilation between feathermosses and lichens. However, they differed in dependence from PAR. Mosses showed 2-fold larger response of CO2 assimilation intensity to increase of PAR comparatively to lichens. The rate of photosynthesis of both moss and lichen showed log growth with increasing CO2 levels up to 2000 ppm. Compensation poit was varying from 170 to 284 ppm.
This study was supported by the Russian Foundation for Basic Research project № 18-05-60203 "Landscape and hydrobiological controls on the transport of terrigenic carbon to the Arctic Ocean".
How to cite: Polosukhina, D., Masyagina, O., and Prokushkin, A.: Photosynthesis in a widespread and important sub-Arctic moss and lichens species in pine ecosystems of the ZOTTO tower footprint area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5066, https://doi.org/10.5194/egusphere-egu2020-5066, 2020.
EGU2020-8785 | Displays | BG3.33
Effects of water stress on photosynthesis,growth and yield in winter wheatWenhui Zhao, Jianjun Wu, Leizhen Liu, Jianhua Yang, Xinyi Han, Feng Tian, and Qiu Shen
Drought has become one of the major constraints on agricultural development, particularly in areas lacking water. By studying the effects of different water stresses on photosynthesis, growth, yield, water use efficiency (WUE) and other indicators of winter wheat, this study provides scientific irrigation strategies for developing water-saving agriculture. According to the size of the water field capacity, four different water stress levels were set, i.e., 30–40% water field capacity (severe stress), 40–50% (moderate stress), 50–60% (mild stress) and 60–80% (well-watered irrigation), through an automatic irrigation system to create different water stress gradients by controlling the irrigation amount. The results showed that the diurnal and seasonal changes in photosynthetic parameters such as net photosynthetic rate (Pn), intercellular carbon concentration (Ci), stomatal conductance (Gs), and transpiration (E) significantly decreased with water stress intensification. The Pn of mild stress only slightly decreased compared to that of well-watered irrigation and was even higher than after May 16th, resulting in an increase in the dry biomass and 1000-grain weight under mild stress. Under all water stresses, the heights and stem weights of the winter wheat significantly decreased. Moderate and severe stress also significantly reduced the fresh weight of the aboveground biomass, dry weight, spike weight, grain weight, WUE and irrigation water productivity (IWP), while mild stress only slightly decreased the fresh weight of aboveground biomass, spike weight and grain weight. Mild stress increased the WUE and IWP. Thus, mild stress results in the optimal use of water resources without a significant reduction in yield. Therefore, mild stress can be considered as a suitable environment for winter wheat growth in arid areas.
How to cite: Zhao, W., Wu, J., Liu, L., Yang, J., Han, X., Tian, F., and Shen, Q.: Effects of water stress on photosynthesis,growth and yield in winter wheat, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8785, https://doi.org/10.5194/egusphere-egu2020-8785, 2020.
Drought has become one of the major constraints on agricultural development, particularly in areas lacking water. By studying the effects of different water stresses on photosynthesis, growth, yield, water use efficiency (WUE) and other indicators of winter wheat, this study provides scientific irrigation strategies for developing water-saving agriculture. According to the size of the water field capacity, four different water stress levels were set, i.e., 30–40% water field capacity (severe stress), 40–50% (moderate stress), 50–60% (mild stress) and 60–80% (well-watered irrigation), through an automatic irrigation system to create different water stress gradients by controlling the irrigation amount. The results showed that the diurnal and seasonal changes in photosynthetic parameters such as net photosynthetic rate (Pn), intercellular carbon concentration (Ci), stomatal conductance (Gs), and transpiration (E) significantly decreased with water stress intensification. The Pn of mild stress only slightly decreased compared to that of well-watered irrigation and was even higher than after May 16th, resulting in an increase in the dry biomass and 1000-grain weight under mild stress. Under all water stresses, the heights and stem weights of the winter wheat significantly decreased. Moderate and severe stress also significantly reduced the fresh weight of the aboveground biomass, dry weight, spike weight, grain weight, WUE and irrigation water productivity (IWP), while mild stress only slightly decreased the fresh weight of aboveground biomass, spike weight and grain weight. Mild stress increased the WUE and IWP. Thus, mild stress results in the optimal use of water resources without a significant reduction in yield. Therefore, mild stress can be considered as a suitable environment for winter wheat growth in arid areas.
How to cite: Zhao, W., Wu, J., Liu, L., Yang, J., Han, X., Tian, F., and Shen, Q.: Effects of water stress on photosynthesis,growth and yield in winter wheat, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8785, https://doi.org/10.5194/egusphere-egu2020-8785, 2020.
EGU2020-11474 | Displays | BG3.33
Better constraining the CO2 plant uptake at global scale: joint assimilation of COS and CO2 atmospheric measurements into a transport model.Marine Remaud, Frédéric Chevallier, Philippe Peylin, Antoine Berchet, and Fabienne Maignan
Inverse systems that assimilate atmospheric carbon dioxide measurements (CO2) into a global atmospheric transport model, are commonly used together with anthropogenic emission inventories to infer net biospheric surface fluxes. However, when assimilating CO2 measurements only, the respiration fluxes cannot be disentangled from the gross primary production (GPP) fluxes, leaving few possibilities to interpret the inferred fluxes from a mechanistic point of view. Measurements of carbonyl sulfide (COS) may help to fill this gap: COS has similar diffusion pathway inside leaves as CO2 but is not re-emitted into the atmosphere by the plant respiration. We explore here the benefit of assimilating both COS and CO2 measurements into the LMDz atmospheric transport model to constrain GPP and respiration fluxes separately. To this end, we develop an analytic inverse system based on the 14 Plant functional Type (PFTs) as defined in the ORCHIDEE land surface model. The vegetation uptake of COS is parameterized as a linear function of GPP and of the leaf relative uptake (LRU), which is the ratio of COS to CO2 deposition velocities in plants. A new parameterization of the atmosphere soil exchanges is also included. We use the system to optimize GPP and respiration fluxes separately at the seasonal scale over the globe. The results lead to a balanced COS global budget and a seasonality of the COS fluxes in better agreement with observations. We find a large sensitivity of the partition between the ocean emissions and the COS plant uptake to the LRU parameterizations.
How to cite: Remaud, M., Chevallier, F., Peylin, P., Berchet, A., and Maignan, F.: Better constraining the CO2 plant uptake at global scale: joint assimilation of COS and CO2 atmospheric measurements into a transport model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11474, https://doi.org/10.5194/egusphere-egu2020-11474, 2020.
Inverse systems that assimilate atmospheric carbon dioxide measurements (CO2) into a global atmospheric transport model, are commonly used together with anthropogenic emission inventories to infer net biospheric surface fluxes. However, when assimilating CO2 measurements only, the respiration fluxes cannot be disentangled from the gross primary production (GPP) fluxes, leaving few possibilities to interpret the inferred fluxes from a mechanistic point of view. Measurements of carbonyl sulfide (COS) may help to fill this gap: COS has similar diffusion pathway inside leaves as CO2 but is not re-emitted into the atmosphere by the plant respiration. We explore here the benefit of assimilating both COS and CO2 measurements into the LMDz atmospheric transport model to constrain GPP and respiration fluxes separately. To this end, we develop an analytic inverse system based on the 14 Plant functional Type (PFTs) as defined in the ORCHIDEE land surface model. The vegetation uptake of COS is parameterized as a linear function of GPP and of the leaf relative uptake (LRU), which is the ratio of COS to CO2 deposition velocities in plants. A new parameterization of the atmosphere soil exchanges is also included. We use the system to optimize GPP and respiration fluxes separately at the seasonal scale over the globe. The results lead to a balanced COS global budget and a seasonality of the COS fluxes in better agreement with observations. We find a large sensitivity of the partition between the ocean emissions and the COS plant uptake to the LRU parameterizations.
How to cite: Remaud, M., Chevallier, F., Peylin, P., Berchet, A., and Maignan, F.: Better constraining the CO2 plant uptake at global scale: joint assimilation of COS and CO2 atmospheric measurements into a transport model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11474, https://doi.org/10.5194/egusphere-egu2020-11474, 2020.
EGU2020-17609 | Displays | BG3.33
SENSECO: Optical synergies for spatiotemporal sensing of scalable ecophysiological traits. (COST Action CA17134)Javier Pacheco-Labrador, Helge Aasen, Agnieszka Bialek, Marco Celesti, Maria Pilar Cendrero-Mateo, Andreas Hueni, Lammert Kooistra, Marlena Kycko, Miriam Machwitz, Laura Mihai, Uwe Rascher, Jean-Louis Roujean, Enrico Tomelleri, Christiaan van der Tol, Shari Van Wittenberghe, Alasdair MacArthur, Jochem Verrelst, and Martin Schlerf
Vegetation in terrestrial ecosystems controls a significant part of the gas and energy exchanges at the atmosphere-biosphere-pedosphere interface. Continuous spatial information about vegetation status (biophysical properties) and photosynthetic rates are needed to understand and model the responses of terrestrial ecosystems to environmental changes induced by human activity. This information is therefore critical to climate change monitoring, adaptation and mitigation.
Earth Observation (EO) allows the collection spatially continuous Earths surface reflectance at ecologically relevant scales. Recent advances in EO are bringing the chance to retrieve from space a subtle emission from vegetation originated at the core of the photosynthetic machinery of the plants: the chlorophyll sun-induced fluorescence (F). The upcoming Fluorescence Explorer (FLEX) mission from the European Space Agency (ESA) will be the first EO mission dedicated to the exploitation of this signal for the study of vegetation photosynthetic activity. FLEX will fly in tandem with Sentinel-3 (S3). This multi-sensor approach brings new opportunities to test the potential of synergistic use of multi-source data to capture scalable ecophysiological traits. The information provided by FLEX-S3 tandem together with observations from other Copernicus missions will boost the development of novel data analytical techniques, still to be realized. The development of these techniques will requires the combination of EO data with drone-based proximal sensing and tower-based eddy covariance (EC) observations. Together with modeling, this approach will allow solving critical and still open spatiotemporal scaling questions. Recent advances allow nowadays the synergistic use, processing and interpretation of data provided by multiple optical sensors featuring different spatial, spectral and temporal resolutions. The implementation of these techniques requires of the collaboration of the remote sensing, EC, and modeling communities; this need has motivated the development of a network within recently approved COST Action SENSECO.
SENSECO aims to ensure the multi-scale compatibility of EO measurements and protocols dedicated to the study of ecophysiological properties. This is needed to enable the synergistic use of multi-sensor data, as well as to ensure the transfer and exchange of knowledge on scaling approaches within the European communities. SENSECO achieves his objectives via dedicated expert workshops, training schools and short term scientific missions.
How to cite: Pacheco-Labrador, J., Aasen, H., Bialek, A., Celesti, M., Cendrero-Mateo, M. P., Hueni, A., Kooistra, L., Kycko, M., Machwitz, M., Mihai, L., Rascher, U., Roujean, J.-L., Tomelleri, E., van der Tol, C., Van Wittenberghe, S., MacArthur, A., Verrelst, J., and Schlerf, M.: SENSECO: Optical synergies for spatiotemporal sensing of scalable ecophysiological traits. (COST Action CA17134), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17609, https://doi.org/10.5194/egusphere-egu2020-17609, 2020.
Vegetation in terrestrial ecosystems controls a significant part of the gas and energy exchanges at the atmosphere-biosphere-pedosphere interface. Continuous spatial information about vegetation status (biophysical properties) and photosynthetic rates are needed to understand and model the responses of terrestrial ecosystems to environmental changes induced by human activity. This information is therefore critical to climate change monitoring, adaptation and mitigation.
Earth Observation (EO) allows the collection spatially continuous Earths surface reflectance at ecologically relevant scales. Recent advances in EO are bringing the chance to retrieve from space a subtle emission from vegetation originated at the core of the photosynthetic machinery of the plants: the chlorophyll sun-induced fluorescence (F). The upcoming Fluorescence Explorer (FLEX) mission from the European Space Agency (ESA) will be the first EO mission dedicated to the exploitation of this signal for the study of vegetation photosynthetic activity. FLEX will fly in tandem with Sentinel-3 (S3). This multi-sensor approach brings new opportunities to test the potential of synergistic use of multi-source data to capture scalable ecophysiological traits. The information provided by FLEX-S3 tandem together with observations from other Copernicus missions will boost the development of novel data analytical techniques, still to be realized. The development of these techniques will requires the combination of EO data with drone-based proximal sensing and tower-based eddy covariance (EC) observations. Together with modeling, this approach will allow solving critical and still open spatiotemporal scaling questions. Recent advances allow nowadays the synergistic use, processing and interpretation of data provided by multiple optical sensors featuring different spatial, spectral and temporal resolutions. The implementation of these techniques requires of the collaboration of the remote sensing, EC, and modeling communities; this need has motivated the development of a network within recently approved COST Action SENSECO.
SENSECO aims to ensure the multi-scale compatibility of EO measurements and protocols dedicated to the study of ecophysiological properties. This is needed to enable the synergistic use of multi-sensor data, as well as to ensure the transfer and exchange of knowledge on scaling approaches within the European communities. SENSECO achieves his objectives via dedicated expert workshops, training schools and short term scientific missions.
How to cite: Pacheco-Labrador, J., Aasen, H., Bialek, A., Celesti, M., Cendrero-Mateo, M. P., Hueni, A., Kooistra, L., Kycko, M., Machwitz, M., Mihai, L., Rascher, U., Roujean, J.-L., Tomelleri, E., van der Tol, C., Van Wittenberghe, S., MacArthur, A., Verrelst, J., and Schlerf, M.: SENSECO: Optical synergies for spatiotemporal sensing of scalable ecophysiological traits. (COST Action CA17134), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17609, https://doi.org/10.5194/egusphere-egu2020-17609, 2020.
EGU2020-18194 | Displays | BG3.33
Exploring the scattering and reabsorption of chlorophyll fluorescence: implications for remote sensing of photosynthesisKarolina Sakowska, Maria Pilar Cendrero-Mateo*, Christiaan van der Tol, Marco Celesti, Giorgio Alberti, Radosław Juszczak, Franco Miglietta, and Uwe Rascher and the other members of the SOYFLEX campaign team
In recent years, technological progress in high-resolution field spectrometers have enabled the use of alternative tracer for constraining ecosystem-scale photosynthesis, i.e. sun-induced fluorescence (SIF). The principle underlying the use of SIF as a proxy of gross primary productivity (GPP) is based on the fact that the light energy absorbed by chlorophyll molecules can proceed into three different pathways: photochemistry, heat dissipation, and chlorophyll fluorescence. Since these processes directly compete for the same excitation energy, measurements of SIF and non-photochemical quenching (NPQ) are expected to provide information on photosynthetic performance.
However, SIF signal measured at the leaf level or beyond is affected by several processes, including wavelength dependent scattering and reabsorption, which may need to be considered when linking SIF data and photosynthetic CO2 assimilation.
To address this question, we conducted a multi-scale and multi-technique study that considered measurements of photosynthetic (GPP), optical (SIF, reflectance - R and transmittance - T), physiological (NPQ) and biophysical (the amount of absorbed photosynthetically active radiation - APAR) parameters of two soybean varieties: the MinnGold mutant, characterized by significantly reduced chlorophyll content (Chl), and the wild type, non-Chl deficient Eiko. We further used the “Soil-Canopy Observation Photosynthesis and Energy fluxes” (SCOPE) model to investigate the reabsorption and scattering of SIF. The measured leaf R, T and SIF and top-of-the-canopy R were used to retrieve biochemical and structural parameters of both varieties by inversion of the SCOPE model, while its forward mode was used to determine and correct for the scattering and reabsorption of SIF at both leaf and canopy level.
Our study revealed that despite the large difference in Chl content (the ratio of Chl between MinnGold and Eiko was nearly 1:5), similar leaf and canopy photosynthesis rates were maintained in the Chl‐deficient mutant. This phenomenon was captured neither by traditional spectral vegetation indices related to canopy greenness, nor by SIF measured in-situ. However, the modelling simulations revealed that when correcting for leaf and canopy scattering and reabsorption processes both varieties presented similar SIF yield (SIF/APAR). Furthermore, field measurements showed that APAR and NPQ in MinnGold were lower than in Eiko. This together explains the similar measured GPP and simulated SIF yield between the two varieties, and indicates that interpretation and application of SIF as a GPP tracer requires understanding and quantification of all these processes.
How to cite: Sakowska, K., Cendrero-Mateo*, M. P., van der Tol, C., Celesti, M., Alberti, G., Juszczak, R., Miglietta, F., and Rascher, U. and the other members of the SOYFLEX campaign team: Exploring the scattering and reabsorption of chlorophyll fluorescence: implications for remote sensing of photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18194, https://doi.org/10.5194/egusphere-egu2020-18194, 2020.
In recent years, technological progress in high-resolution field spectrometers have enabled the use of alternative tracer for constraining ecosystem-scale photosynthesis, i.e. sun-induced fluorescence (SIF). The principle underlying the use of SIF as a proxy of gross primary productivity (GPP) is based on the fact that the light energy absorbed by chlorophyll molecules can proceed into three different pathways: photochemistry, heat dissipation, and chlorophyll fluorescence. Since these processes directly compete for the same excitation energy, measurements of SIF and non-photochemical quenching (NPQ) are expected to provide information on photosynthetic performance.
However, SIF signal measured at the leaf level or beyond is affected by several processes, including wavelength dependent scattering and reabsorption, which may need to be considered when linking SIF data and photosynthetic CO2 assimilation.
To address this question, we conducted a multi-scale and multi-technique study that considered measurements of photosynthetic (GPP), optical (SIF, reflectance - R and transmittance - T), physiological (NPQ) and biophysical (the amount of absorbed photosynthetically active radiation - APAR) parameters of two soybean varieties: the MinnGold mutant, characterized by significantly reduced chlorophyll content (Chl), and the wild type, non-Chl deficient Eiko. We further used the “Soil-Canopy Observation Photosynthesis and Energy fluxes” (SCOPE) model to investigate the reabsorption and scattering of SIF. The measured leaf R, T and SIF and top-of-the-canopy R were used to retrieve biochemical and structural parameters of both varieties by inversion of the SCOPE model, while its forward mode was used to determine and correct for the scattering and reabsorption of SIF at both leaf and canopy level.
Our study revealed that despite the large difference in Chl content (the ratio of Chl between MinnGold and Eiko was nearly 1:5), similar leaf and canopy photosynthesis rates were maintained in the Chl‐deficient mutant. This phenomenon was captured neither by traditional spectral vegetation indices related to canopy greenness, nor by SIF measured in-situ. However, the modelling simulations revealed that when correcting for leaf and canopy scattering and reabsorption processes both varieties presented similar SIF yield (SIF/APAR). Furthermore, field measurements showed that APAR and NPQ in MinnGold were lower than in Eiko. This together explains the similar measured GPP and simulated SIF yield between the two varieties, and indicates that interpretation and application of SIF as a GPP tracer requires understanding and quantification of all these processes.
How to cite: Sakowska, K., Cendrero-Mateo*, M. P., van der Tol, C., Celesti, M., Alberti, G., Juszczak, R., Miglietta, F., and Rascher, U. and the other members of the SOYFLEX campaign team: Exploring the scattering and reabsorption of chlorophyll fluorescence: implications for remote sensing of photosynthesis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18194, https://doi.org/10.5194/egusphere-egu2020-18194, 2020.
EGU2020-9397 | Displays | BG3.33
Carbonyl sulfide and sun-induced fluorescence as joint constraints on terrestrial carbon cycling in a temperate alpine grassland ecosystemGeorg Wohlfahrt, Karolina Sakowska, Christiaan Van der Tol, Albin Hammerle, Felix Spielmann, and Katharina Gerdel
Quantitative understanding and monitoring of gross primary productivity (GPP) and its response to environmental variables is critical for understanding the feedbacks of ecosystems to the changing climate and projecting the future climate state.
Due to limitations of the eddy covariance (EC) method related to the restricted spatial coverage obtained with the method, as well as drawbacks of the so-called CO2 flux partitioning approaches, adding scale-appropriate extra-information on canopy physiological status and flux partitioning is crucial for constraining gross photosynthesis (GPP), also beyond the ecosystem scale.
Here, we present the outcome of the H2020-MSCA-IF COSIF project aiming at investigating the potential of two novel GPP traces, i.e. carbonyl sulfide (COS) and sun-induced fluorescence (SIF) for inferring GPP.
The major result of the presented study are three independent GPP data sets obtained with different methods of contrasting theoretical backgrounds (CO2 flux partitioning, COS and SIF) in a temperate mountain grassland in Neustift, Austria (AT-Neu). Moreover, the study compares empirical approaches with a process-based estimates obtained using the “Soil-Canopy Observation Photosynthesis and Energy fluxes” (SCOPE) model, updated with a soil and leaf COS exchange module. The obtained results foster the use of repeated hyperspectral remote sensing observations together with radiative transfer and biochemical models for carbon assimilation monitoring.
How to cite: Wohlfahrt, G., Sakowska, K., Van der Tol, C., Hammerle, A., Spielmann, F., and Gerdel, K.: Carbonyl sulfide and sun-induced fluorescence as joint constraints on terrestrial carbon cycling in a temperate alpine grassland ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9397, https://doi.org/10.5194/egusphere-egu2020-9397, 2020.
Quantitative understanding and monitoring of gross primary productivity (GPP) and its response to environmental variables is critical for understanding the feedbacks of ecosystems to the changing climate and projecting the future climate state.
Due to limitations of the eddy covariance (EC) method related to the restricted spatial coverage obtained with the method, as well as drawbacks of the so-called CO2 flux partitioning approaches, adding scale-appropriate extra-information on canopy physiological status and flux partitioning is crucial for constraining gross photosynthesis (GPP), also beyond the ecosystem scale.
Here, we present the outcome of the H2020-MSCA-IF COSIF project aiming at investigating the potential of two novel GPP traces, i.e. carbonyl sulfide (COS) and sun-induced fluorescence (SIF) for inferring GPP.
The major result of the presented study are three independent GPP data sets obtained with different methods of contrasting theoretical backgrounds (CO2 flux partitioning, COS and SIF) in a temperate mountain grassland in Neustift, Austria (AT-Neu). Moreover, the study compares empirical approaches with a process-based estimates obtained using the “Soil-Canopy Observation Photosynthesis and Energy fluxes” (SCOPE) model, updated with a soil and leaf COS exchange module. The obtained results foster the use of repeated hyperspectral remote sensing observations together with radiative transfer and biochemical models for carbon assimilation monitoring.
How to cite: Wohlfahrt, G., Sakowska, K., Van der Tol, C., Hammerle, A., Spielmann, F., and Gerdel, K.: Carbonyl sulfide and sun-induced fluorescence as joint constraints on terrestrial carbon cycling in a temperate alpine grassland ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9397, https://doi.org/10.5194/egusphere-egu2020-9397, 2020.
EGU2020-20467 | Displays | BG3.33
Satellite-based Sun-Induced Chlorophyll Fluorescence in the Greater Alpine Space: Spatial Patterns and Relationship to Gross Primary ProductivityUlisse Gomarasca, Gregory Duveiller, Alessandro Cescatti, and Georg Wohlfahrt
Accurate estimation of terrestrial gross primary productivity is essential for the development of credible future carbon cycle and climate simulations. Current remote sensing techniques allow retrieval of sun-induced chlorophyll fluorescence (SIF) as a valid proxy for GPP, but low resolution, sparse coverage, or resolution mismatches between the different satellite sensors hinder our ability to effectively link SIF to many environmental variables at fine scales. In order to better characterize heterogeneous landscapes, several attempts to downscale SIF products to higher resolutions have been made. We investigate the ability of the downscaled GOME-2 product developed by Duveiller et al. (2019), to capture the differences in spatiotemporal dynamics over the Greater Alpine Space. We analyse SIF in connection to land cover and elevation, and calculate land phenology metrics based on seasonal SIF time series. Ground-based GPP validation suggests biome-specific SIF-GPP relationships, but the comparison was hindered by the resolution mismatch of the data. Moreover, missing data are present at high elevations, diminishing the suitability of current SIF products to analyse cloud-prone mountainous areas. Important insights into spatial patterns and seasonal trends could be inferred at forest and other large-area land cover types, typical of mid elevations in the Alps, but many anthropogenic habitats at low elevations, as well as high elevation grasslands and other small-scale heterogeneous environments could not be thoroughly investigated and are likely to be underrepresented or prone to biases. Similar downscaling procedures might be applied at finer scales to e.g. TROPOMI products, or alternative advanced remote sensing SIF techniques and instruments might be needed in order to enable detailed and systematic evaluations of the Alpine region or similar highly heterogenous landscapes, before a process-oriented monitoring and unbiased implementation into climate models may be performed.
How to cite: Gomarasca, U., Duveiller, G., Cescatti, A., and Wohlfahrt, G.: Satellite-based Sun-Induced Chlorophyll Fluorescence in the Greater Alpine Space: Spatial Patterns and Relationship to Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20467, https://doi.org/10.5194/egusphere-egu2020-20467, 2020.
Accurate estimation of terrestrial gross primary productivity is essential for the development of credible future carbon cycle and climate simulations. Current remote sensing techniques allow retrieval of sun-induced chlorophyll fluorescence (SIF) as a valid proxy for GPP, but low resolution, sparse coverage, or resolution mismatches between the different satellite sensors hinder our ability to effectively link SIF to many environmental variables at fine scales. In order to better characterize heterogeneous landscapes, several attempts to downscale SIF products to higher resolutions have been made. We investigate the ability of the downscaled GOME-2 product developed by Duveiller et al. (2019), to capture the differences in spatiotemporal dynamics over the Greater Alpine Space. We analyse SIF in connection to land cover and elevation, and calculate land phenology metrics based on seasonal SIF time series. Ground-based GPP validation suggests biome-specific SIF-GPP relationships, but the comparison was hindered by the resolution mismatch of the data. Moreover, missing data are present at high elevations, diminishing the suitability of current SIF products to analyse cloud-prone mountainous areas. Important insights into spatial patterns and seasonal trends could be inferred at forest and other large-area land cover types, typical of mid elevations in the Alps, but many anthropogenic habitats at low elevations, as well as high elevation grasslands and other small-scale heterogeneous environments could not be thoroughly investigated and are likely to be underrepresented or prone to biases. Similar downscaling procedures might be applied at finer scales to e.g. TROPOMI products, or alternative advanced remote sensing SIF techniques and instruments might be needed in order to enable detailed and systematic evaluations of the Alpine region or similar highly heterogenous landscapes, before a process-oriented monitoring and unbiased implementation into climate models may be performed.
How to cite: Gomarasca, U., Duveiller, G., Cescatti, A., and Wohlfahrt, G.: Satellite-based Sun-Induced Chlorophyll Fluorescence in the Greater Alpine Space: Spatial Patterns and Relationship to Gross Primary Productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20467, https://doi.org/10.5194/egusphere-egu2020-20467, 2020.
EGU2020-5244 | Displays | BG3.33
Capability of maize water use efficiency estimation at field scale using Sentinel-2 dataZonghan Ma, Bingfang Wu, Nana Yan, and Weiwei Zhu
Water use efficiency (WUE) is defined as the ratio between gross primary production (GPP) and evapotranspiration (ET) at ecosystem scale, which can help understand the mechanism between water consumption and crop production in guiding field water management. Water consumption control is important in precision agriculture development. Mapping WUE at field scale using remote sensing data could provide crop water use status at high resolution and acquire the WUE spatial distribution. In this study we proposed a method to estimate field-scale maize WUE with Sentienl-2 data. The GPP of maize is estimated by a light use efficiency model with RS observed albedo, sunshine radiation, fraction of photosynthetically active radiation (fpar) fitted using in site observation. Maize ET is modelled using FAO-PM model with crop coefficient simulated using vegetation indexes acquired from Sentinel-2 bands. We compared the GPP, ET and final WUE estimation with eddy covariance (EC) observations in a maize field of North China Plain where water scarcity is a main limit factor of crop development. Comparation results show a high correlation between in site observation and modelled results. Combining the phenology development of maize, the temporal characteristics of maize WUE change is associated with phenology. WUE was low after sowing, then increased during Elongation stage. Maize WUE peaked at Heading and Grouting period and decreased in Maturation stage. Our WUE estimation method with high resolution could guide adopting various irrigation strategies based on different WUE conditions at field scale. This research could help shed light on the future WUE development under climate change background and improve our knowledge of precise water management.
How to cite: Ma, Z., Wu, B., Yan, N., and Zhu, W.: Capability of maize water use efficiency estimation at field scale using Sentinel-2 data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5244, https://doi.org/10.5194/egusphere-egu2020-5244, 2020.
Water use efficiency (WUE) is defined as the ratio between gross primary production (GPP) and evapotranspiration (ET) at ecosystem scale, which can help understand the mechanism between water consumption and crop production in guiding field water management. Water consumption control is important in precision agriculture development. Mapping WUE at field scale using remote sensing data could provide crop water use status at high resolution and acquire the WUE spatial distribution. In this study we proposed a method to estimate field-scale maize WUE with Sentienl-2 data. The GPP of maize is estimated by a light use efficiency model with RS observed albedo, sunshine radiation, fraction of photosynthetically active radiation (fpar) fitted using in site observation. Maize ET is modelled using FAO-PM model with crop coefficient simulated using vegetation indexes acquired from Sentinel-2 bands. We compared the GPP, ET and final WUE estimation with eddy covariance (EC) observations in a maize field of North China Plain where water scarcity is a main limit factor of crop development. Comparation results show a high correlation between in site observation and modelled results. Combining the phenology development of maize, the temporal characteristics of maize WUE change is associated with phenology. WUE was low after sowing, then increased during Elongation stage. Maize WUE peaked at Heading and Grouting period and decreased in Maturation stage. Our WUE estimation method with high resolution could guide adopting various irrigation strategies based on different WUE conditions at field scale. This research could help shed light on the future WUE development under climate change background and improve our knowledge of precise water management.
How to cite: Ma, Z., Wu, B., Yan, N., and Zhu, W.: Capability of maize water use efficiency estimation at field scale using Sentinel-2 data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5244, https://doi.org/10.5194/egusphere-egu2020-5244, 2020.
BG3.36 – Future urban development towards green smart cities: opportunities and challenges
EGU2020-243 | Displays | BG3.36
GIS and remote sensing-based framework for urban greenspaces management: assessment of vulnerability to typhoons in TaiwanKim-Anh Nguyen and Yuei-An Liou
Typhoon is one of the most severe natural hazards. It can cause great damages to the people, properties, and greenspace infrastructure. Greenspaces include parks, gardens, play grounds, plants, etc. In urban areas, greenspaces are highly prone to be affected by typhoons resulting dangers to humans, infrastructure, and transportation. This study introduces a vulnerable assessment framework of urban greenspaces (UGSs) to typhoons by using remote sensing data and GIS techniques. The key purpose is to mitigate potential damages of urban greenspace and other related risks associated with typhoons. Firstly, we analyze the typhoon characteristics; identify the impacts of typhoons on the UGSs in Taiwan; and derive the UGSs information (biological and physical features) from multi-sensor satellite images to build GIS database for the UGS server for further assessment. Secondly, we derive the soil characteristics from the soil map and remote sensing data; propose an vulnerable assessment framework to evaluate the vulnerability of the UGSs to typhoon in major cities in Taiwan. Thirdly, we improve and test the R3GIS platform after integrating with new tools of assessing vulnerability of UGSs to typhoons for demonstration of its benefits to UGS management in Taiwan. The outcomes will be expected to support warning system to serve the related authorities for mitigating the damages of typhoons on UGSs and communities. The vulnerability of UGS in Taiwan to typhoon winds can be assessed via three domains: (i) typhoon characteristics; (ii) UGSs features; and (iii) soil composition. These components will be captured via multi-sub indicators that reveal the possibility whether trees in the UGS will fail during the threat of typhoons and related risks. Thus, the combination of all mentioned domains/indicators in the vulnerability assessment framework thas a potential to provide a warning to related authorities with possible solutions for lesseing the damages of both UGS and public properties. In EGU meeting we are going to introduce an overall concept of the research work and the first phase results of the study such as typhoon characteristics and features of urban greenspaces in Taiwan, and the conceptual UGS vulnerability assessment framework.
How to cite: Nguyen, K.-A. and Liou, Y.-A.: GIS and remote sensing-based framework for urban greenspaces management: assessment of vulnerability to typhoons in Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-243, https://doi.org/10.5194/egusphere-egu2020-243, 2020.
Typhoon is one of the most severe natural hazards. It can cause great damages to the people, properties, and greenspace infrastructure. Greenspaces include parks, gardens, play grounds, plants, etc. In urban areas, greenspaces are highly prone to be affected by typhoons resulting dangers to humans, infrastructure, and transportation. This study introduces a vulnerable assessment framework of urban greenspaces (UGSs) to typhoons by using remote sensing data and GIS techniques. The key purpose is to mitigate potential damages of urban greenspace and other related risks associated with typhoons. Firstly, we analyze the typhoon characteristics; identify the impacts of typhoons on the UGSs in Taiwan; and derive the UGSs information (biological and physical features) from multi-sensor satellite images to build GIS database for the UGS server for further assessment. Secondly, we derive the soil characteristics from the soil map and remote sensing data; propose an vulnerable assessment framework to evaluate the vulnerability of the UGSs to typhoon in major cities in Taiwan. Thirdly, we improve and test the R3GIS platform after integrating with new tools of assessing vulnerability of UGSs to typhoons for demonstration of its benefits to UGS management in Taiwan. The outcomes will be expected to support warning system to serve the related authorities for mitigating the damages of typhoons on UGSs and communities. The vulnerability of UGS in Taiwan to typhoon winds can be assessed via three domains: (i) typhoon characteristics; (ii) UGSs features; and (iii) soil composition. These components will be captured via multi-sub indicators that reveal the possibility whether trees in the UGS will fail during the threat of typhoons and related risks. Thus, the combination of all mentioned domains/indicators in the vulnerability assessment framework thas a potential to provide a warning to related authorities with possible solutions for lesseing the damages of both UGS and public properties. In EGU meeting we are going to introduce an overall concept of the research work and the first phase results of the study such as typhoon characteristics and features of urban greenspaces in Taiwan, and the conceptual UGS vulnerability assessment framework.
How to cite: Nguyen, K.-A. and Liou, Y.-A.: GIS and remote sensing-based framework for urban greenspaces management: assessment of vulnerability to typhoons in Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-243, https://doi.org/10.5194/egusphere-egu2020-243, 2020.
EGU2020-760 | Displays | BG3.36
Examining the Effects of Heat Mitigation on the Physical Properties of Urban Green Space and Urban Blue Space: A Case StudyPruthvin Shetty and Dwarakish g s
The smart and sustainable city idea gained momentum in recent years in order to cope with population growth in urban areas and to make the city live. Cities are projected to consume 70% of the world's resources and 66% of the world population by 2050. Most of tier-3 and tier-2 cities will convert to tier-1 city, and we need to identify and protect the urban green spaces. Urban green areas have many esthetic advantages, including environmental benefits such as a fall in city temperature in the summer and absorption of rainwater. Social advantages are such as feelings of happiness and peace. Objective quantification of greenery on its neighbourhood spatial distribution may help identify essential and potential areas. Heterogeneous land uses describe urban areas. Urban heat island (UHI), with high Land surface temperatures (LST), is distinguished by its city development pattern, socioeconomic and anthropogenic activities. The LST is rising rapidly not only in cities but also in tier-3 & tier-2 cities. Urban green areas, including parks, playgrounds, gardens and areas, such as ponds, pools, lakes and rivers, will contribute to the control of land temperatures in and around the city. Such spaces also lead to the formation of the Urban Cooling Island (UCI), where temperatures are comparatively cooler than surrounding temperatures, because of their shade of the trees and their evapotranspiration. This cooling island formation is referred to as the Park Cooling Island (PCI) impact. The present work aims to describe the effect of urban green and urban blue spaces on LST using a range of data sources with geospatial technologies. Udupi town, which comes under Udupi district, Karnataka, India is a tier-3 city, selected for the present research work. The data used in the study include Landsat 8 temporal satellite images and secondary data, such as field data from various government and semi-government organisations. LST has been measured using the emissivity reference channel algorithm from Landsat 8 thermal bands. Different indices such as Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index NDWI, Land Shape Index (LSI) are determined from images from Landsat 8. The results show that LST exists with high spatial variability and urban green, blue spaces have a stronger influence on LST.
How to cite: Shetty, P. and g s, D.: Examining the Effects of Heat Mitigation on the Physical Properties of Urban Green Space and Urban Blue Space: A Case Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-760, https://doi.org/10.5194/egusphere-egu2020-760, 2020.
The smart and sustainable city idea gained momentum in recent years in order to cope with population growth in urban areas and to make the city live. Cities are projected to consume 70% of the world's resources and 66% of the world population by 2050. Most of tier-3 and tier-2 cities will convert to tier-1 city, and we need to identify and protect the urban green spaces. Urban green areas have many esthetic advantages, including environmental benefits such as a fall in city temperature in the summer and absorption of rainwater. Social advantages are such as feelings of happiness and peace. Objective quantification of greenery on its neighbourhood spatial distribution may help identify essential and potential areas. Heterogeneous land uses describe urban areas. Urban heat island (UHI), with high Land surface temperatures (LST), is distinguished by its city development pattern, socioeconomic and anthropogenic activities. The LST is rising rapidly not only in cities but also in tier-3 & tier-2 cities. Urban green areas, including parks, playgrounds, gardens and areas, such as ponds, pools, lakes and rivers, will contribute to the control of land temperatures in and around the city. Such spaces also lead to the formation of the Urban Cooling Island (UCI), where temperatures are comparatively cooler than surrounding temperatures, because of their shade of the trees and their evapotranspiration. This cooling island formation is referred to as the Park Cooling Island (PCI) impact. The present work aims to describe the effect of urban green and urban blue spaces on LST using a range of data sources with geospatial technologies. Udupi town, which comes under Udupi district, Karnataka, India is a tier-3 city, selected for the present research work. The data used in the study include Landsat 8 temporal satellite images and secondary data, such as field data from various government and semi-government organisations. LST has been measured using the emissivity reference channel algorithm from Landsat 8 thermal bands. Different indices such as Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index NDWI, Land Shape Index (LSI) are determined from images from Landsat 8. The results show that LST exists with high spatial variability and urban green, blue spaces have a stronger influence on LST.
How to cite: Shetty, P. and g s, D.: Examining the Effects of Heat Mitigation on the Physical Properties of Urban Green Space and Urban Blue Space: A Case Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-760, https://doi.org/10.5194/egusphere-egu2020-760, 2020.
EGU2020-2136 | Displays | BG3.36
Contemporary Urban Expansion in China and its diverse effectsShuqing Zhao
The scale of urbanization in China during the past 30 years is unprecedented in human history along with its fast economic growth, presenting profound impacts on socioeconomics, human well-being, and the environment. We quantified spatial patterns and temporal courses of urban land expansion for 32 major cities across China from the late 1970s to 2010 using multitemporal Landsat data of 1978, 1990, 1995, 2000, 2005, and 2010, and further explored the effects of urbanization on climate (i.e., urban heat islands), and vegetation phenology and growth in these 32 cities, together with MODIS Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) products.
We found that rapid urban expansion was observed in these 32 major cities from 1978 to 2010, with an overall annual expansion rate of 6.8 ± 2.5 %. Chinese urban expansion does not fit urban expansion theory consistently over time and has transitioned from contradicting to conforming to Gibrat’s law, which states that the growth rate is independent of city size. The surface urban heat island intensity (SUHII) differed substantially between day and night and varied greatly with season. Spatial variability of the SUHII is ultimately controlled by background climate. The growing season started 11.9 days earlier and ended 5.4 days later in urban zones compared to rural counterparts. The phenological sensitivity to temperature were 9-11 days SOS advance and 6-10 days EOS delay per 1 °C increase of LST. For the first time, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated prevalent vegetation growth enhancement in urban environment and vegetation growth was enhanced at 85% of the places along the intensity gradient. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with non-productive impervious surfaces. The urban environments, considered as the "harbingers" of global environmental change and "natural laboratories" for global change studies, shed new insights and approaches into global change science, and the urban-rural gradient provides an excellent experimental manipulations for global change studies.
How to cite: Zhao, S.: Contemporary Urban Expansion in China and its diverse effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2136, https://doi.org/10.5194/egusphere-egu2020-2136, 2020.
The scale of urbanization in China during the past 30 years is unprecedented in human history along with its fast economic growth, presenting profound impacts on socioeconomics, human well-being, and the environment. We quantified spatial patterns and temporal courses of urban land expansion for 32 major cities across China from the late 1970s to 2010 using multitemporal Landsat data of 1978, 1990, 1995, 2000, 2005, and 2010, and further explored the effects of urbanization on climate (i.e., urban heat islands), and vegetation phenology and growth in these 32 cities, together with MODIS Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) products.
We found that rapid urban expansion was observed in these 32 major cities from 1978 to 2010, with an overall annual expansion rate of 6.8 ± 2.5 %. Chinese urban expansion does not fit urban expansion theory consistently over time and has transitioned from contradicting to conforming to Gibrat’s law, which states that the growth rate is independent of city size. The surface urban heat island intensity (SUHII) differed substantially between day and night and varied greatly with season. Spatial variability of the SUHII is ultimately controlled by background climate. The growing season started 11.9 days earlier and ended 5.4 days later in urban zones compared to rural counterparts. The phenological sensitivity to temperature were 9-11 days SOS advance and 6-10 days EOS delay per 1 °C increase of LST. For the first time, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated prevalent vegetation growth enhancement in urban environment and vegetation growth was enhanced at 85% of the places along the intensity gradient. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with non-productive impervious surfaces. The urban environments, considered as the "harbingers" of global environmental change and "natural laboratories" for global change studies, shed new insights and approaches into global change science, and the urban-rural gradient provides an excellent experimental manipulations for global change studies.
How to cite: Zhao, S.: Contemporary Urban Expansion in China and its diverse effects, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2136, https://doi.org/10.5194/egusphere-egu2020-2136, 2020.
EGU2020-12446 | Displays | BG3.36
A mobile sensor-based Approach for Analyzing and Mitigating Urban Heat HazardsYanzhe Yin, Andrew Grundstein, Deepak Mishra, Navid Hashemi, and Lakshmish Lakshmish
High-quality temperature data at a finer spatial-temporal scale is critical for analyzing the risk of heat hazards in urban environments. The variability of urban landscapes makes cities a challenging landscape for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts: the spatial-temporal granularities are too coarse and the ability to track the actual ambient air temperature instead of land surface temperature. Overcoming these limitations requires radically different research approaches, both the paradigms for collecting the temperature data and developing models for high-resolution heat mapping. We present a comprehensive approach for studying urban heat hazards by harnessing a high-quality hyperlocal temperature dataset from a network of mobile sensors and using it to refine the satellite-based temperature products. We mounted vehicle-borne mobile sensors on thirty city buses to collect high-frequency (5 sec) temperature data from June 2018 to Nov 2019. The vehicle-borne data clearly show significant temperature differences across the city, with the largest differences of up to 10℃ and morning-afternoon diurnal changes at a magnitude around 20℃. Then we developed a machine learning approach to derive a hyperlocal ambient air temperature (AAT) product by combining the mobile-sensor temperature data, satellite LST data, and other influential biophysical parameters to map the variability of heat hazard over areas not covered by the buses. The machine learning model output highlighted the high spatio-temporal granularity in AAT within an urban heat island. The seasonal AAT maps derived from the model show a well-defined hyperlocal variability of heat hazards which are not evident from other research approaches. The findings from this study will be beneficial for understanding the heat exposure vulnerabilities for individual communities. It may also create a pathway for policymakers to devise targeted hazard mitigation efforts such as increasing green space and developing better heat-safety policies for workers.
How to cite: Yin, Y., Grundstein, A., Mishra, D., Hashemi, N., and Lakshmish, L.: A mobile sensor-based Approach for Analyzing and Mitigating Urban Heat Hazards, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12446, https://doi.org/10.5194/egusphere-egu2020-12446, 2020.
High-quality temperature data at a finer spatial-temporal scale is critical for analyzing the risk of heat hazards in urban environments. The variability of urban landscapes makes cities a challenging landscape for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts: the spatial-temporal granularities are too coarse and the ability to track the actual ambient air temperature instead of land surface temperature. Overcoming these limitations requires radically different research approaches, both the paradigms for collecting the temperature data and developing models for high-resolution heat mapping. We present a comprehensive approach for studying urban heat hazards by harnessing a high-quality hyperlocal temperature dataset from a network of mobile sensors and using it to refine the satellite-based temperature products. We mounted vehicle-borne mobile sensors on thirty city buses to collect high-frequency (5 sec) temperature data from June 2018 to Nov 2019. The vehicle-borne data clearly show significant temperature differences across the city, with the largest differences of up to 10℃ and morning-afternoon diurnal changes at a magnitude around 20℃. Then we developed a machine learning approach to derive a hyperlocal ambient air temperature (AAT) product by combining the mobile-sensor temperature data, satellite LST data, and other influential biophysical parameters to map the variability of heat hazard over areas not covered by the buses. The machine learning model output highlighted the high spatio-temporal granularity in AAT within an urban heat island. The seasonal AAT maps derived from the model show a well-defined hyperlocal variability of heat hazards which are not evident from other research approaches. The findings from this study will be beneficial for understanding the heat exposure vulnerabilities for individual communities. It may also create a pathway for policymakers to devise targeted hazard mitigation efforts such as increasing green space and developing better heat-safety policies for workers.
How to cite: Yin, Y., Grundstein, A., Mishra, D., Hashemi, N., and Lakshmish, L.: A mobile sensor-based Approach for Analyzing and Mitigating Urban Heat Hazards, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12446, https://doi.org/10.5194/egusphere-egu2020-12446, 2020.
EGU2020-14632 | Displays | BG3.36
Ecosystem services determination on an Italian urban greenspaceFrancesco Busca, Francesca Vigliocco, and Roberto Revelli
This paper is part of the panorama of studies on climate changes in an urban context. Starting from the concept of Ecosystem Services, we aim to underline the importance of rebalancing equally what is demanded in an urban ecosystem and what it provides people with, focusing on pollutants quantity, carbon sequestration and runoff reduction. Ecosystem services (ES) can be defined as the components of natural capital that provide direct products (food, drinking water, etc) and benefits (like biological variability and soil creation) to people. Our goal is to determinate and to quantify ES related to urban greenspaces in terms of both economic and environmental point of view.
Specifically, the study has been developed through the use of i-Tree, a suite developed in the US context, that shows on both small and large scale the economic, environmental and water-related benefits provided by a green area. Its applicability has been tested for an Italian context on a newly built park, located in “Revello Street – Turin”, with the collaboration of the Municipality of Turin, comparing past, present and future scenarios.
Eco, Hydro and Canopy tools were used for that urban greenspace, providing useful information on software usage and justifying the creation and/or the expansion of new urban green areas through economic and environmental outputs. Results show how the transition from a past residential area to an almost totally green area has led to air quality improvement, with a consequent increase in carbon storage and pollutants reduction, while in view of future improvement works in the park (intensification of arboreal and shrubby presence), the results economically justify the intervention by showing a significant water runoff reduction with consequent reduction of flood events risk.
This work aims to deepen advantages and disadvantages of i-Tree and to insert the software as an effective and innovative tool, not widely known in a European context, for the monitoring and development of methodologies to make urban spaces increasingly sustainable, within a view of smart cities.
How to cite: Busca, F., Vigliocco, F., and Revelli, R.: Ecosystem services determination on an Italian urban greenspace , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14632, https://doi.org/10.5194/egusphere-egu2020-14632, 2020.
This paper is part of the panorama of studies on climate changes in an urban context. Starting from the concept of Ecosystem Services, we aim to underline the importance of rebalancing equally what is demanded in an urban ecosystem and what it provides people with, focusing on pollutants quantity, carbon sequestration and runoff reduction. Ecosystem services (ES) can be defined as the components of natural capital that provide direct products (food, drinking water, etc) and benefits (like biological variability and soil creation) to people. Our goal is to determinate and to quantify ES related to urban greenspaces in terms of both economic and environmental point of view.
Specifically, the study has been developed through the use of i-Tree, a suite developed in the US context, that shows on both small and large scale the economic, environmental and water-related benefits provided by a green area. Its applicability has been tested for an Italian context on a newly built park, located in “Revello Street – Turin”, with the collaboration of the Municipality of Turin, comparing past, present and future scenarios.
Eco, Hydro and Canopy tools were used for that urban greenspace, providing useful information on software usage and justifying the creation and/or the expansion of new urban green areas through economic and environmental outputs. Results show how the transition from a past residential area to an almost totally green area has led to air quality improvement, with a consequent increase in carbon storage and pollutants reduction, while in view of future improvement works in the park (intensification of arboreal and shrubby presence), the results economically justify the intervention by showing a significant water runoff reduction with consequent reduction of flood events risk.
This work aims to deepen advantages and disadvantages of i-Tree and to insert the software as an effective and innovative tool, not widely known in a European context, for the monitoring and development of methodologies to make urban spaces increasingly sustainable, within a view of smart cities.
How to cite: Busca, F., Vigliocco, F., and Revelli, R.: Ecosystem services determination on an Italian urban greenspace , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14632, https://doi.org/10.5194/egusphere-egu2020-14632, 2020.
EGU2020-20662 | Displays | BG3.36
LIFE URBANGREEN: Innovative technological platform to improve management of green areas for better climate adaptationPaolo Viskanic, Alice Pasquinelli, Alessio Fini, and Piotr Wezyk
Climate change is a serious and cross-cutting issue: urban areas are particularly sensitive to climate impacts, especially to heatwaves, floods and droughts. Typically, urban phenomena (such as the ‘urban heat island effect’ – where the urban area is significantly warmer than the surrounding rural areas) and the impacts of extreme weather events demonstrate the high vulnerability of cities.
Specific urban adaptation strategies are therefore needed to make cities more resilient. In this context, green areas and green infrastructures are seen among the most widely applicable, economically viable and effective tools to combat the impacts of climate change and help people adapt to or mitigate adverse effects of this change.
LIFE URBANGREEN is a European Funded project dealing with climate adaptation through the maximisation of ecosystem services provided by urban green areas maintained in an innovative way. The main expected result is a smart, integrated, geospatial management system, to monitor and govern all activities related to urban green areas, maximizing ecological benefits.
Five innovative modules are being developed within the project, aimed at:
- providing irrigation to trees only when and where actually needed
- reducing the carbon footprint of maintenance activities through a more efficient job planning
- quantifying ecosystem services provided by green areas
- monitoring health conditions of trees using remote sensing data
- increasing citizen participation in urban green management
The project involves 5 Italian and Polish partners:
- R3 GIS (GIS software company and project coordinator, Bolzano, Italy)
- University of Milano (scientific coordinator, Milano, Italy)
- ProGea 4D (remote sensing company, Krakow, Poland)
- ZZM (manager of urban green areas in Krakow, Poland)
- Anthea (manager of urban green areas in Rimini, Italy)
Also, the National Central University (NCU) in Taiwan, under the coordination of Prof Yuei-An Liou, supports the project and participates as external partner and will test some innovations of the LIFE URBANGREEN Project in Taiwan.
During the EGU conference, results obtained during the first two years of the project will be presented. More information on the project is available at www.lifeurbangreen.eu
How to cite: Viskanic, P., Pasquinelli, A., Fini, A., and Wezyk, P.: LIFE URBANGREEN: Innovative technological platform to improve management of green areas for better climate adaptation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20662, https://doi.org/10.5194/egusphere-egu2020-20662, 2020.
Climate change is a serious and cross-cutting issue: urban areas are particularly sensitive to climate impacts, especially to heatwaves, floods and droughts. Typically, urban phenomena (such as the ‘urban heat island effect’ – where the urban area is significantly warmer than the surrounding rural areas) and the impacts of extreme weather events demonstrate the high vulnerability of cities.
Specific urban adaptation strategies are therefore needed to make cities more resilient. In this context, green areas and green infrastructures are seen among the most widely applicable, economically viable and effective tools to combat the impacts of climate change and help people adapt to or mitigate adverse effects of this change.
LIFE URBANGREEN is a European Funded project dealing with climate adaptation through the maximisation of ecosystem services provided by urban green areas maintained in an innovative way. The main expected result is a smart, integrated, geospatial management system, to monitor and govern all activities related to urban green areas, maximizing ecological benefits.
Five innovative modules are being developed within the project, aimed at:
- providing irrigation to trees only when and where actually needed
- reducing the carbon footprint of maintenance activities through a more efficient job planning
- quantifying ecosystem services provided by green areas
- monitoring health conditions of trees using remote sensing data
- increasing citizen participation in urban green management
The project involves 5 Italian and Polish partners:
- R3 GIS (GIS software company and project coordinator, Bolzano, Italy)
- University of Milano (scientific coordinator, Milano, Italy)
- ProGea 4D (remote sensing company, Krakow, Poland)
- ZZM (manager of urban green areas in Krakow, Poland)
- Anthea (manager of urban green areas in Rimini, Italy)
Also, the National Central University (NCU) in Taiwan, under the coordination of Prof Yuei-An Liou, supports the project and participates as external partner and will test some innovations of the LIFE URBANGREEN Project in Taiwan.
During the EGU conference, results obtained during the first two years of the project will be presented. More information on the project is available at www.lifeurbangreen.eu
How to cite: Viskanic, P., Pasquinelli, A., Fini, A., and Wezyk, P.: LIFE URBANGREEN: Innovative technological platform to improve management of green areas for better climate adaptation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20662, https://doi.org/10.5194/egusphere-egu2020-20662, 2020.
EGU2020-21201 | Displays | BG3.36
Comprehensive urban environment quality assessment using remote sensing satellite data for Bhopal city, IndiaSrashti Singh and Kamal Jain
KEYWORDS: Urbanisation, Remote sensing, Comprehensive environmental quality, Bhopal, India
ABSTRACT
A tremendous increase in the global human population has become a major threat to the environment mainly these situations are existing in developing nations. A higher population poses higher demands as well as pressure on the environment directly or indirectly, which is an issue for the sustainable development of the country. Most of the Indian cities are facing challenges in environmental sustainability. Bhopal the capital city of Madhya Pradesh, India is presently going through rapid urbanization and industrialization which leads to environmental degradation of the city. The study aims at analyzing the environmental sustainability of the city. The study is performed using satellite-based remote sensing data integrated with the census data. Initially, Landsat TM satellite data of the years 2001 and 2011 are utilized for extracting the land use land cover (LULC) transformations. Further, MODIS data products at 1 km resolution are used for estimating the biophysical indicators (BI) which are normalized difference vegetation index (NDVI) and land surface temperature (LST). A comprehensive environmental quality index (CEQI) is obtained by integrating BI with census data and transformations in CEQI are studied for the urban environment. The results depicted an increase in urban built-up with a phenomenal decay in the greenness of the city. The results from CEQI reveals significant changes in the different zones of the city which are highly affected due to change in urbanization and greenness pattern of the city. The study highlights the critical zones of the city and suggests measures to improve the environmental quality for the critical zones which can help the policy-makers in sustainable planning of the city.
How to cite: Singh, S. and Jain, K.: Comprehensive urban environment quality assessment using remote sensing satellite data for Bhopal city, India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21201, https://doi.org/10.5194/egusphere-egu2020-21201, 2020.
KEYWORDS: Urbanisation, Remote sensing, Comprehensive environmental quality, Bhopal, India
ABSTRACT
A tremendous increase in the global human population has become a major threat to the environment mainly these situations are existing in developing nations. A higher population poses higher demands as well as pressure on the environment directly or indirectly, which is an issue for the sustainable development of the country. Most of the Indian cities are facing challenges in environmental sustainability. Bhopal the capital city of Madhya Pradesh, India is presently going through rapid urbanization and industrialization which leads to environmental degradation of the city. The study aims at analyzing the environmental sustainability of the city. The study is performed using satellite-based remote sensing data integrated with the census data. Initially, Landsat TM satellite data of the years 2001 and 2011 are utilized for extracting the land use land cover (LULC) transformations. Further, MODIS data products at 1 km resolution are used for estimating the biophysical indicators (BI) which are normalized difference vegetation index (NDVI) and land surface temperature (LST). A comprehensive environmental quality index (CEQI) is obtained by integrating BI with census data and transformations in CEQI are studied for the urban environment. The results depicted an increase in urban built-up with a phenomenal decay in the greenness of the city. The results from CEQI reveals significant changes in the different zones of the city which are highly affected due to change in urbanization and greenness pattern of the city. The study highlights the critical zones of the city and suggests measures to improve the environmental quality for the critical zones which can help the policy-makers in sustainable planning of the city.
How to cite: Singh, S. and Jain, K.: Comprehensive urban environment quality assessment using remote sensing satellite data for Bhopal city, India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21201, https://doi.org/10.5194/egusphere-egu2020-21201, 2020.
BG4.1 – Biogeochemistry of coastal seas and continental shelves - including a brief overview of the French-German MOPGA Initiative
EGU2020-17499 | Displays | BG4.1
Organic and inorganic whole system metabolism in two acidified coastal systems in IrelandMaria Teresa Guerra and Carlos Rocha
Organic and inorganic whole system metabolism for two Irish coastal areas were compared to evaluate carbonate system resilience to acidification. The two systems are characterized by contrasting watershed input types and composition. Kinvara Bay is fed by Submarine Groundwater Discharge (SGD) derived from a karstic catchment while Killary Harbour is fed by river discharge draining a siliciclastic catchment. Freshwater sources to sea have distinct Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) concentrations, higher and lower than the open ocean, respectively, but both evidence seasonally variable low pH, ranging from 6.20 to 7.50. Retention of TA and DIC was calculated for the two areas using LOICZ methodology. In Kinvara bay, annually averaged retention of DIC was greater than for TA (5 × 104 and 1.5 × 105 mol d-1), suggesting the system is acidifying further. Conversely, Killary Harbour shows negative TA and DIC retention, with DIC:TA <1, suggesting an internal buffer against ocean acidification is operating.
Net Community Production (NCP) was calculated for both systems using Dissolved Oxygen data. Subsequently, we estimated Net Community Calcification (NCC) from the ratio between TA and DIC. NCP was always positive in Killary Harbour with an average of 318 mmol O2 m-2 d-1 (equivalent to 89 mol C m-2 y-1). However, Kinvara Bay shows relatively lower positive NCP in spring and summer (average of 46 mmol O2 m-2 d-1), but negative NCP in autumn and winter. Therefore, Kinvara Bay’s Total Organic Carbon (TOC) production was low, at ~21 g m-2 y-1 and not enough to overcome acidification driven by the SGD source composition. These results emphasize the complexity of interactions between the drivers of coastal acidification rate, affecting our ability to accurately assess the resilience of the carbonate system in these areas to ocean acidification pressure in the future.
How to cite: Guerra, M. T. and Rocha, C.: Organic and inorganic whole system metabolism in two acidified coastal systems in Ireland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17499, https://doi.org/10.5194/egusphere-egu2020-17499, 2020.
Organic and inorganic whole system metabolism for two Irish coastal areas were compared to evaluate carbonate system resilience to acidification. The two systems are characterized by contrasting watershed input types and composition. Kinvara Bay is fed by Submarine Groundwater Discharge (SGD) derived from a karstic catchment while Killary Harbour is fed by river discharge draining a siliciclastic catchment. Freshwater sources to sea have distinct Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) concentrations, higher and lower than the open ocean, respectively, but both evidence seasonally variable low pH, ranging from 6.20 to 7.50. Retention of TA and DIC was calculated for the two areas using LOICZ methodology. In Kinvara bay, annually averaged retention of DIC was greater than for TA (5 × 104 and 1.5 × 105 mol d-1), suggesting the system is acidifying further. Conversely, Killary Harbour shows negative TA and DIC retention, with DIC:TA <1, suggesting an internal buffer against ocean acidification is operating.
Net Community Production (NCP) was calculated for both systems using Dissolved Oxygen data. Subsequently, we estimated Net Community Calcification (NCC) from the ratio between TA and DIC. NCP was always positive in Killary Harbour with an average of 318 mmol O2 m-2 d-1 (equivalent to 89 mol C m-2 y-1). However, Kinvara Bay shows relatively lower positive NCP in spring and summer (average of 46 mmol O2 m-2 d-1), but negative NCP in autumn and winter. Therefore, Kinvara Bay’s Total Organic Carbon (TOC) production was low, at ~21 g m-2 y-1 and not enough to overcome acidification driven by the SGD source composition. These results emphasize the complexity of interactions between the drivers of coastal acidification rate, affecting our ability to accurately assess the resilience of the carbonate system in these areas to ocean acidification pressure in the future.
How to cite: Guerra, M. T. and Rocha, C.: Organic and inorganic whole system metabolism in two acidified coastal systems in Ireland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17499, https://doi.org/10.5194/egusphere-egu2020-17499, 2020.
EGU2020-855 | Displays | BG4.1
What's af(Fe)cting OC-Fe interactions? An experimental approach to understanding iron bound organic carbon in sediments.Ben Fisher, Christian März, Johan Faust, Oliver Moore, and Caroline Peacock
Drawdown of atmospheric CO2 over geologic timescales is largely controlled by imbalances in the carbonate-silicate cycles and the preservation of Organic Carbon (OC) in marine sediments. Up to 85% of this OC is buried in continental shelf sediments of which ~20% is associated with reactive iron (Fe) (hydr)oxides. Association with Fe (hydr)oxides may enhance OC preservation yet despite the importance of this, little is known about which Fe (hydr)oxide phase(s) is involved in OC uptake or the binding mechanism of OC to these reactive iron minerals.
To estimate the importance of this OC-Fe association, a citrate-dithionite-bicarbonate (CDB) extraction method is commonly used to dissolve an operationally defined ‘easily reducible iron oxide’ fraction and release the associated OC from the sediment. However, natural samples often contain a range of Fe (hydr)oxide phases extractable by CDB, and the Fe phases extracted are defined entirely on the susceptibility of their pure forms to chemical reduction. This suggests that factors affecting mineral stability, including association with OC, could lead to incomplete or excessive phase extraction, which would affect estimates of OC bound to these Fe phases.
To address these issues, we simplified the geochemical system by synthesising OC-iron (hydr)oxide composites with known Fe (hydr)oxide phases and OC moieties with differing chemical structures, added them to OC-free sediment, and then applied the CDB extraction method to determine i) the precise Fe phases extracted; ii) the impact of OC moiety on Fe release and iii) the optimal experimental conditions for the extraction.
We show that reduction of our composites by CDB results in only partial dissolution of the most easily reduced Fe phase (ferrihydrite) and a recovery of only ~20% of total Fe. We also find that the recovery is likely controlled by the functional groups present in the OC and the handling/storage/preparation of samples prior to analysis. These factors could lead to misidentification of the mineral phases extracted and an underestimation of the amount of OC associated with Fe. A change in the estimates for OC associated with Fe would have widespread implications for our understanding of the role of OC-Fe interactions in global carbon cycling.
How to cite: Fisher, B., März, C., Faust, J., Moore, O., and Peacock, C.: What's af(Fe)cting OC-Fe interactions? An experimental approach to understanding iron bound organic carbon in sediments., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-855, https://doi.org/10.5194/egusphere-egu2020-855, 2020.
Drawdown of atmospheric CO2 over geologic timescales is largely controlled by imbalances in the carbonate-silicate cycles and the preservation of Organic Carbon (OC) in marine sediments. Up to 85% of this OC is buried in continental shelf sediments of which ~20% is associated with reactive iron (Fe) (hydr)oxides. Association with Fe (hydr)oxides may enhance OC preservation yet despite the importance of this, little is known about which Fe (hydr)oxide phase(s) is involved in OC uptake or the binding mechanism of OC to these reactive iron minerals.
To estimate the importance of this OC-Fe association, a citrate-dithionite-bicarbonate (CDB) extraction method is commonly used to dissolve an operationally defined ‘easily reducible iron oxide’ fraction and release the associated OC from the sediment. However, natural samples often contain a range of Fe (hydr)oxide phases extractable by CDB, and the Fe phases extracted are defined entirely on the susceptibility of their pure forms to chemical reduction. This suggests that factors affecting mineral stability, including association with OC, could lead to incomplete or excessive phase extraction, which would affect estimates of OC bound to these Fe phases.
To address these issues, we simplified the geochemical system by synthesising OC-iron (hydr)oxide composites with known Fe (hydr)oxide phases and OC moieties with differing chemical structures, added them to OC-free sediment, and then applied the CDB extraction method to determine i) the precise Fe phases extracted; ii) the impact of OC moiety on Fe release and iii) the optimal experimental conditions for the extraction.
We show that reduction of our composites by CDB results in only partial dissolution of the most easily reduced Fe phase (ferrihydrite) and a recovery of only ~20% of total Fe. We also find that the recovery is likely controlled by the functional groups present in the OC and the handling/storage/preparation of samples prior to analysis. These factors could lead to misidentification of the mineral phases extracted and an underestimation of the amount of OC associated with Fe. A change in the estimates for OC associated with Fe would have widespread implications for our understanding of the role of OC-Fe interactions in global carbon cycling.
How to cite: Fisher, B., März, C., Faust, J., Moore, O., and Peacock, C.: What's af(Fe)cting OC-Fe interactions? An experimental approach to understanding iron bound organic carbon in sediments., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-855, https://doi.org/10.5194/egusphere-egu2020-855, 2020.
EGU2020-3322 | Displays | BG4.1
Molecular properties of dissolved organic matter (DOM) in the subterranean estuary of a high-energy beach: Finding proxies for reactive transportHannelore Waska, Heike Simon, Janis Ahrens, Melanie Beck, Kai Schwalfenberg, Oliver Zielinski, and Thorsten Dittmar
Advective flows of sea- and fresh groundwater through coastal aquifers form a unique ecohydrological interface, the subterranean estuary. Here, freshly produced marine organic matter and oxygen mix with groundwater, which is low in oxygen and contains aged organic carbon from terrestrial sources. Along the underground flow paths, dissolved organic matter (DOM) is degraded and inorganic electron acceptors are successively used up. Because of the different DOM sources and ages, exact degradation pathways are often difficult to delineate, especially in high-energy environments with dynamic changes in beach morphology, source composition, and hydraulic gradients. From a case study site on a barrier island in the German North Sea, we present detailed biogeochemical data from pore water samples collected in the shallow layer of the subterranean estuary. The samples were taken along the major flow paths of recirculating sea water and discharging fresh, meteoric groundwater, and analyzed for physico-chemistry, electron acceptors, and dissolved organic carbon (DOC). DOM was isolated and measured with soft-ionization ultra-high-resolution mass spectrometry, and chemical DOM characteristics were derived by assigning exact molecular formulae to the thousands of intact masses found in each sample. Using geographic and physico-(geo)chemical parameters (longitude, salinity, dissolved silicate, dissolved iron) as indicators of water origin and residence time, we evaluated the behavior of chemical DOM characteristics (H/C and O/C ratios, aromaticity) along the underground flow paths. Overall, DOC concentrations and an H/C-based molecular lability boundary index (MLB) decreased with decreasing oxygen concentrations and parallel increases of dissolved (reduced) iron and dissolved silicate concentrations, in line with the assumption that high H/C ratios are a trait of labile DOM which is continuously degraded. On the other hand, aromaticity indices and relative abundances of a “humic-like” fluorescent DOM fraction increased along the flow paths, likely through accumulation of compounds less susceptible to microbial attack. Our data indicates that even in a highly complex advective flow system like the subterranean estuary, molecular properties of DOM can be harnessed to identify key, perhaps even site- and season-specific biogeochemical processes.
How to cite: Waska, H., Simon, H., Ahrens, J., Beck, M., Schwalfenberg, K., Zielinski, O., and Dittmar, T.: Molecular properties of dissolved organic matter (DOM) in the subterranean estuary of a high-energy beach: Finding proxies for reactive transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3322, https://doi.org/10.5194/egusphere-egu2020-3322, 2020.
Advective flows of sea- and fresh groundwater through coastal aquifers form a unique ecohydrological interface, the subterranean estuary. Here, freshly produced marine organic matter and oxygen mix with groundwater, which is low in oxygen and contains aged organic carbon from terrestrial sources. Along the underground flow paths, dissolved organic matter (DOM) is degraded and inorganic electron acceptors are successively used up. Because of the different DOM sources and ages, exact degradation pathways are often difficult to delineate, especially in high-energy environments with dynamic changes in beach morphology, source composition, and hydraulic gradients. From a case study site on a barrier island in the German North Sea, we present detailed biogeochemical data from pore water samples collected in the shallow layer of the subterranean estuary. The samples were taken along the major flow paths of recirculating sea water and discharging fresh, meteoric groundwater, and analyzed for physico-chemistry, electron acceptors, and dissolved organic carbon (DOC). DOM was isolated and measured with soft-ionization ultra-high-resolution mass spectrometry, and chemical DOM characteristics were derived by assigning exact molecular formulae to the thousands of intact masses found in each sample. Using geographic and physico-(geo)chemical parameters (longitude, salinity, dissolved silicate, dissolved iron) as indicators of water origin and residence time, we evaluated the behavior of chemical DOM characteristics (H/C and O/C ratios, aromaticity) along the underground flow paths. Overall, DOC concentrations and an H/C-based molecular lability boundary index (MLB) decreased with decreasing oxygen concentrations and parallel increases of dissolved (reduced) iron and dissolved silicate concentrations, in line with the assumption that high H/C ratios are a trait of labile DOM which is continuously degraded. On the other hand, aromaticity indices and relative abundances of a “humic-like” fluorescent DOM fraction increased along the flow paths, likely through accumulation of compounds less susceptible to microbial attack. Our data indicates that even in a highly complex advective flow system like the subterranean estuary, molecular properties of DOM can be harnessed to identify key, perhaps even site- and season-specific biogeochemical processes.
How to cite: Waska, H., Simon, H., Ahrens, J., Beck, M., Schwalfenberg, K., Zielinski, O., and Dittmar, T.: Molecular properties of dissolved organic matter (DOM) in the subterranean estuary of a high-energy beach: Finding proxies for reactive transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3322, https://doi.org/10.5194/egusphere-egu2020-3322, 2020.
EGU2020-4393 | Displays | BG4.1
Climatology and trends of Dissolved Organic Carbon in coastal waters off Sarawak, BorneoNivedita Sanwlani, Patrick Martin, Nagur Cherukuru, Moritz Muller, and Christopher Evans
South-East Asian peatlands are a globally significant carbon store. Rivers draining these peatlands have some of the highest dissolved organic carbon (DOC) concentrations in the world and account for up to 10% of the global land-to-ocean carbon flux, thus representing an important input to the marine carbon cycle. The release of DOC from peatlands is a natural process, yet the rapid and extensive transformation of these peatlands for agriculture over the past two decades is thought to have increased fluvial carbon losses significantly. However, not only do we lack a firm understanding of the fate of this terrigenous DOC in tropical seas, the distribution and long-term variability in DOC have never been studied at large scales in SE Asia. We will present the seasonal climatology (2002-2018) of spatial distribution patterns of DOC concentrations and optical properties (absorption coefficients, spectral slope) of colored dissolved organic matter (CDOM) for coastal waters of Sarawak, Malaysian Borneo derived using a regionally tailored semi-analytical inversion model from MODIS Aqua. Our results reveal substantial inputs of DOC from Sarawak rivers DOC close to shore exceeds 125 µM, and CDOM across the study region shows predominantly terrigenous spectral signatures. DOC concentrations were higher during the rainier northeast monsoon than during the drier south-west monsoon. Our data suggest that long-term increases in DOC concentration have occurred across parts of our study region from 2002–2018, which has implications for the aquatic light regime and coastal biogeochemistry[PM5]. These results will be discussed in the context of past anthropogenic disturbance to coastal peatlands.
How to cite: Sanwlani, N., Martin, P., Cherukuru, N., Muller, M., and Evans, C.: Climatology and trends of Dissolved Organic Carbon in coastal waters off Sarawak, Borneo, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4393, https://doi.org/10.5194/egusphere-egu2020-4393, 2020.
South-East Asian peatlands are a globally significant carbon store. Rivers draining these peatlands have some of the highest dissolved organic carbon (DOC) concentrations in the world and account for up to 10% of the global land-to-ocean carbon flux, thus representing an important input to the marine carbon cycle. The release of DOC from peatlands is a natural process, yet the rapid and extensive transformation of these peatlands for agriculture over the past two decades is thought to have increased fluvial carbon losses significantly. However, not only do we lack a firm understanding of the fate of this terrigenous DOC in tropical seas, the distribution and long-term variability in DOC have never been studied at large scales in SE Asia. We will present the seasonal climatology (2002-2018) of spatial distribution patterns of DOC concentrations and optical properties (absorption coefficients, spectral slope) of colored dissolved organic matter (CDOM) for coastal waters of Sarawak, Malaysian Borneo derived using a regionally tailored semi-analytical inversion model from MODIS Aqua. Our results reveal substantial inputs of DOC from Sarawak rivers DOC close to shore exceeds 125 µM, and CDOM across the study region shows predominantly terrigenous spectral signatures. DOC concentrations were higher during the rainier northeast monsoon than during the drier south-west monsoon. Our data suggest that long-term increases in DOC concentration have occurred across parts of our study region from 2002–2018, which has implications for the aquatic light regime and coastal biogeochemistry[PM5]. These results will be discussed in the context of past anthropogenic disturbance to coastal peatlands.
How to cite: Sanwlani, N., Martin, P., Cherukuru, N., Muller, M., and Evans, C.: Climatology and trends of Dissolved Organic Carbon in coastal waters off Sarawak, Borneo, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4393, https://doi.org/10.5194/egusphere-egu2020-4393, 2020.
EGU2020-822 | Displays | BG4.1
A multi-tracer study of submarine groundwater discharge into Wismar Bay, southern Baltic SeaCatia Milene Ehlert von Ahn, Jan Scholten, Iris Schmiedinger, Bo Liu, and Michael Böttcher
Submarine groundwater discharge (SGD) is considered as an important route for water and dissolved material exchange between land and coastal seas. Both freshwater and (recirculated) seawater are referred to as SGD and may impact the composition and biogeochemical processes in coastal waters. The present study focuses on the identification and the spatial variability of SGD into the Wismar Bay, in the southern Baltic Sea. On across-shore transects covering Wismar Bay waters were sampled for analysis of Radium (Ra) isotopes, stable isotopes (H, O, C, S), dissolved inorganic carbon (DIC), nutrients and major cations. In addition, sediment cores were retrieved from several stations. The detection of short-living radium isotopes (223Ra and224Ra) in surface waters of the bay indicate benthic-pelagic coupling via pore water exchange with the water column that may be an indication for SGD. Moreover, enhanced concentration of dissolved manganese and barium, resulted from anoxic pore waters, were found in areas with higher Ra activity. Pore water profiles of salinity and major ions highlight the presence of freshwater about 50 cmbsf in sediments in the central part of the bay, probably related to the presence of a coastal aquifer. In contrast, other sediments demonstrate relatively constant pore water salinity distribution with increasing depth. Slight salinity maxima in almost all core at around 6 to 12 cmbsf seems to be relict from changing bottom water salinity in the past. The water isotope composition (δ18O, δ2H) of the low saline pore water is plot close to the local meteoric water line established for Warnemünde. Saline pore waters, in contrast, have water isotope composition aligned with southern Baltic Sea surface waters. The DIC concentrations increased with depths suggesting the mineralization of organic matter within the 50 cm sediments depth at all sides. Moreover, the values of DIC even exceeding the concentration found on the percolating fresh ground water. Thus, the overall contribution of elements to the coastal ecosystem is a function of the transport processes regulating element flux across the sediment-water interface.
The investigation is supported by the DFG research training school Baltic TRANSCOAST, DAAD, and Leibniz IOW.
How to cite: Ehlert von Ahn, C. M., Scholten, J., Schmiedinger, I., Liu, B., and Böttcher, M.: A multi-tracer study of submarine groundwater discharge into Wismar Bay, southern Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-822, https://doi.org/10.5194/egusphere-egu2020-822, 2020.
Submarine groundwater discharge (SGD) is considered as an important route for water and dissolved material exchange between land and coastal seas. Both freshwater and (recirculated) seawater are referred to as SGD and may impact the composition and biogeochemical processes in coastal waters. The present study focuses on the identification and the spatial variability of SGD into the Wismar Bay, in the southern Baltic Sea. On across-shore transects covering Wismar Bay waters were sampled for analysis of Radium (Ra) isotopes, stable isotopes (H, O, C, S), dissolved inorganic carbon (DIC), nutrients and major cations. In addition, sediment cores were retrieved from several stations. The detection of short-living radium isotopes (223Ra and224Ra) in surface waters of the bay indicate benthic-pelagic coupling via pore water exchange with the water column that may be an indication for SGD. Moreover, enhanced concentration of dissolved manganese and barium, resulted from anoxic pore waters, were found in areas with higher Ra activity. Pore water profiles of salinity and major ions highlight the presence of freshwater about 50 cmbsf in sediments in the central part of the bay, probably related to the presence of a coastal aquifer. In contrast, other sediments demonstrate relatively constant pore water salinity distribution with increasing depth. Slight salinity maxima in almost all core at around 6 to 12 cmbsf seems to be relict from changing bottom water salinity in the past. The water isotope composition (δ18O, δ2H) of the low saline pore water is plot close to the local meteoric water line established for Warnemünde. Saline pore waters, in contrast, have water isotope composition aligned with southern Baltic Sea surface waters. The DIC concentrations increased with depths suggesting the mineralization of organic matter within the 50 cm sediments depth at all sides. Moreover, the values of DIC even exceeding the concentration found on the percolating fresh ground water. Thus, the overall contribution of elements to the coastal ecosystem is a function of the transport processes regulating element flux across the sediment-water interface.
The investigation is supported by the DFG research training school Baltic TRANSCOAST, DAAD, and Leibniz IOW.
How to cite: Ehlert von Ahn, C. M., Scholten, J., Schmiedinger, I., Liu, B., and Böttcher, M.: A multi-tracer study of submarine groundwater discharge into Wismar Bay, southern Baltic Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-822, https://doi.org/10.5194/egusphere-egu2020-822, 2020.
EGU2020-2598 | Displays | BG4.1
Aerosol-cloud interactions from combined observations with geostationary and polar-orbiting sensorsMatthias Tesche, Torsten Seelig, Fani Alexandri, Peter Bräuer, Goutam Choudhury, Yuanyuan Hu, and Johannes Quaas
Atmospheric aerosol particles are of great importance for cloud formation in the atmosphere because they are needed to act as cloud condensation nuclei (CCN) in liquid-water clouds and as ice nucleating particles (INP) in ice-containing clouds. Changes in aerosol concentration affect the albedo, development, phase, lifetime and rain rate of clouds. These aerosol-cloud interactions (ACI) and the resulting climate effects still cause the largest uncertainty in assessing climate change as they are understood only with medium confidence.
The PACIFIC project, which is embedded in the French-German Make Our Planet Great Again (MOPGA) initiative, aims to improve our understanding of ACI by enhancing the representation of those aerosols that are relevant for cloud processes and by quantifying temporal changes in cloud properties throughout the cloud life cycle. PACIFIC uses a three-fold approach for studying ACI based on spaceborne observations by (i) using spaceborne lidar data to obtain unprecedented insight in CCN and INP concentrations at cloud level opposed to using column-integrated parameters, (ii) characterizing the development of clouds by tracking them in time-resolved geostationary observations opposed to resorting to the snap-shot view of polar-orbiting sensors, and (iii) combining the detailed observations from polar-orbiting sensors with the time-resolved observations of geostationary sensors – for clouds observed by both – to study the effects of CCN and INP on the albedo, liquid and ice water content, droplet and crystal size, development, phase and rain rate of clouds within different regimes carefully accounting for the meteorological background.
This contribution will present the scope of the MOPGA-GRI project PACIFIC and illustrate the first findings.
How to cite: Tesche, M., Seelig, T., Alexandri, F., Bräuer, P., Choudhury, G., Hu, Y., and Quaas, J.: Aerosol-cloud interactions from combined observations with geostationary and polar-orbiting sensors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2598, https://doi.org/10.5194/egusphere-egu2020-2598, 2020.
Atmospheric aerosol particles are of great importance for cloud formation in the atmosphere because they are needed to act as cloud condensation nuclei (CCN) in liquid-water clouds and as ice nucleating particles (INP) in ice-containing clouds. Changes in aerosol concentration affect the albedo, development, phase, lifetime and rain rate of clouds. These aerosol-cloud interactions (ACI) and the resulting climate effects still cause the largest uncertainty in assessing climate change as they are understood only with medium confidence.
The PACIFIC project, which is embedded in the French-German Make Our Planet Great Again (MOPGA) initiative, aims to improve our understanding of ACI by enhancing the representation of those aerosols that are relevant for cloud processes and by quantifying temporal changes in cloud properties throughout the cloud life cycle. PACIFIC uses a three-fold approach for studying ACI based on spaceborne observations by (i) using spaceborne lidar data to obtain unprecedented insight in CCN and INP concentrations at cloud level opposed to using column-integrated parameters, (ii) characterizing the development of clouds by tracking them in time-resolved geostationary observations opposed to resorting to the snap-shot view of polar-orbiting sensors, and (iii) combining the detailed observations from polar-orbiting sensors with the time-resolved observations of geostationary sensors – for clouds observed by both – to study the effects of CCN and INP on the albedo, liquid and ice water content, droplet and crystal size, development, phase and rain rate of clouds within different regimes carefully accounting for the meteorological background.
This contribution will present the scope of the MOPGA-GRI project PACIFIC and illustrate the first findings.
How to cite: Tesche, M., Seelig, T., Alexandri, F., Bräuer, P., Choudhury, G., Hu, Y., and Quaas, J.: Aerosol-cloud interactions from combined observations with geostationary and polar-orbiting sensors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2598, https://doi.org/10.5194/egusphere-egu2020-2598, 2020.
EGU2020-19578 | Displays | BG4.1
Reconstruction of anthropogenic environmental changes from a Cuban coral over the last 175 yearsMarie Harbott, Henry C. Wu, Henning Kuhnert, Simone A. Kasemann, Carlos Jimenez, Patricia Gonzales Diaz, and Tim Rixen
Ocean warming and ocean acidification (OA) are increasingly influencing marine life. Parts of the increasing amount of CO2 in the atmosphere will eventually get absorbed by the ocean, which changes the oceans carbonate chemistry and threatens the ecological competitiveness of calcareous marine organisms. Currently, the global coverage of studies on the development of pH since preindustrial times is sparse. An important region to study environmental and climate variations is the northwestern coastal part of Cuba where the Loop Current (LC) joins the Florida Current and contributes to the Gulf Stream. The tropical Atlantic is a primary region for the formation of warm surface water of the thermohaline ocean circulation and the Caribbean in particular as a habitat for coral reefs in the Atlantic making them susceptible to changes in water temperatures and carbonate chemistry. This provides a unique chance to study multiple aspects of the implications of anthropogenic activities such as changes in SST, ocean pH, and carbonate chemistry using the coral skeletal geochemistry as an archive of climate and environmental changes. Here we present results from a multi-proxy approach for the reconstruction of environmental change and natural climate variability from a North Cuban Siderastrea siderea coral. The sub-seasonally resolved records indicate interannual to decadal changes in SST and seawater carbonate chemistry since 1830 CE. The comparison with pH will provide clues on whether the regional climate variability has been directly affected by atmospheric CO2 forcing.
How to cite: Harbott, M., Wu, H. C., Kuhnert, H., Kasemann, S. A., Jimenez, C., Gonzales Diaz, P., and Rixen, T.: Reconstruction of anthropogenic environmental changes from a Cuban coral over the last 175 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19578, https://doi.org/10.5194/egusphere-egu2020-19578, 2020.
Ocean warming and ocean acidification (OA) are increasingly influencing marine life. Parts of the increasing amount of CO2 in the atmosphere will eventually get absorbed by the ocean, which changes the oceans carbonate chemistry and threatens the ecological competitiveness of calcareous marine organisms. Currently, the global coverage of studies on the development of pH since preindustrial times is sparse. An important region to study environmental and climate variations is the northwestern coastal part of Cuba where the Loop Current (LC) joins the Florida Current and contributes to the Gulf Stream. The tropical Atlantic is a primary region for the formation of warm surface water of the thermohaline ocean circulation and the Caribbean in particular as a habitat for coral reefs in the Atlantic making them susceptible to changes in water temperatures and carbonate chemistry. This provides a unique chance to study multiple aspects of the implications of anthropogenic activities such as changes in SST, ocean pH, and carbonate chemistry using the coral skeletal geochemistry as an archive of climate and environmental changes. Here we present results from a multi-proxy approach for the reconstruction of environmental change and natural climate variability from a North Cuban Siderastrea siderea coral. The sub-seasonally resolved records indicate interannual to decadal changes in SST and seawater carbonate chemistry since 1830 CE. The comparison with pH will provide clues on whether the regional climate variability has been directly affected by atmospheric CO2 forcing.
How to cite: Harbott, M., Wu, H. C., Kuhnert, H., Kasemann, S. A., Jimenez, C., Gonzales Diaz, P., and Rixen, T.: Reconstruction of anthropogenic environmental changes from a Cuban coral over the last 175 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19578, https://doi.org/10.5194/egusphere-egu2020-19578, 2020.
EGU2020-17306 | Displays | BG4.1
Variability of sulphur compounds at the Boknis Eck Time-Series Station in the Baltic Sea during 2009-2016Yanan Zhao, Dennis Booge, Cathleen Schlundt, and Hermann Bange
Dimethyl sulphide (DMS), as a volatile organic sulfur compound, plays an important role among the reduced sulphur gases in the atmosphere. DMS emitted from seawater constitutes a significant component of the global sulphur cycle and may affect climate by forming atmospheric aerosols which could form cloud condensation nuclei and thus modify cloud properties. DMS is produced from its major precursor dimethylsulphoniopropionate (DMSP) by complex interactions of phytoplankton and bacterial processes. Dimethyl sulphoxide (DMSO) is the major non-volatile dimethyl sulphur pool in the ocean and plays an important role in the biogeochemical cycle of DMS, although its formation and consumption pathways are poorly understood compared to DMSP.
Although the Baltic Sea is the largest brackish water system of the world, observations of sulphur compounds from the Baltic Sea are limited. The variations of seawater DMS, DMSP and DMSO as well as various phytoplankton marker pigments were investigated at the Boknis Eck Time-Series Station (BE, located in Eckernförde Bay, southwest Baltic Sea) during the period 2009 - 2016. Average DMS (1.8 nmol L−1), dissolved DMSP (DMSPd, 3.3 nmol L−1) and particulate DMSP (DMSPp, 10.5 nmol L−1) concentrations were generally low, while dissolved DMSO (DMSOd, 14.6 nmol L−1) and particulate DMSO (DMSOp, 13.1 nmol L−1) concentrations were comparably enhanced in the water column during the study. Strong seasonal variations in the concentrations of the sulphur compounds have been linked to the phytoplankton succession over the entire investigation period. Depth profiles of sulphur compounds were generally related to Chlorophyll a concentrations. The averaged DMS flux was 16.3 µmol m-2 day-1 suggesting that BE is a net source of atmospheric DMS. Monthly averaged air-to-sea DMS fluxes at BE varied considerably and they were well-correlated with surface DMS concentrations as well as the relative abundance of haptophytes instead of the wind speed. This time-series study illustrates the importance of phytoplankton community in shaping the distribution of the sulphur compounds and fluxes to the atmosphere in the Baltic Sea.
How to cite: Zhao, Y., Booge, D., Schlundt, C., and Bange, H.: Variability of sulphur compounds at the Boknis Eck Time-Series Station in the Baltic Sea during 2009-2016, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17306, https://doi.org/10.5194/egusphere-egu2020-17306, 2020.
Dimethyl sulphide (DMS), as a volatile organic sulfur compound, plays an important role among the reduced sulphur gases in the atmosphere. DMS emitted from seawater constitutes a significant component of the global sulphur cycle and may affect climate by forming atmospheric aerosols which could form cloud condensation nuclei and thus modify cloud properties. DMS is produced from its major precursor dimethylsulphoniopropionate (DMSP) by complex interactions of phytoplankton and bacterial processes. Dimethyl sulphoxide (DMSO) is the major non-volatile dimethyl sulphur pool in the ocean and plays an important role in the biogeochemical cycle of DMS, although its formation and consumption pathways are poorly understood compared to DMSP.
Although the Baltic Sea is the largest brackish water system of the world, observations of sulphur compounds from the Baltic Sea are limited. The variations of seawater DMS, DMSP and DMSO as well as various phytoplankton marker pigments were investigated at the Boknis Eck Time-Series Station (BE, located in Eckernförde Bay, southwest Baltic Sea) during the period 2009 - 2016. Average DMS (1.8 nmol L−1), dissolved DMSP (DMSPd, 3.3 nmol L−1) and particulate DMSP (DMSPp, 10.5 nmol L−1) concentrations were generally low, while dissolved DMSO (DMSOd, 14.6 nmol L−1) and particulate DMSO (DMSOp, 13.1 nmol L−1) concentrations were comparably enhanced in the water column during the study. Strong seasonal variations in the concentrations of the sulphur compounds have been linked to the phytoplankton succession over the entire investigation period. Depth profiles of sulphur compounds were generally related to Chlorophyll a concentrations. The averaged DMS flux was 16.3 µmol m-2 day-1 suggesting that BE is a net source of atmospheric DMS. Monthly averaged air-to-sea DMS fluxes at BE varied considerably and they were well-correlated with surface DMS concentrations as well as the relative abundance of haptophytes instead of the wind speed. This time-series study illustrates the importance of phytoplankton community in shaping the distribution of the sulphur compounds and fluxes to the atmosphere in the Baltic Sea.
How to cite: Zhao, Y., Booge, D., Schlundt, C., and Bange, H.: Variability of sulphur compounds at the Boknis Eck Time-Series Station in the Baltic Sea during 2009-2016, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17306, https://doi.org/10.5194/egusphere-egu2020-17306, 2020.
EGU2020-6807 | Displays | BG4.1
Drivers of the variability of dimethylsulfonioproprionate (DMSP) and dimethylsulfoxide (DMSO) in the Southern North SeaColin Royer, Alberto V. Borges, Jon Lapeyra Martin, and Nathalie Gypens
The influence of abiotic and biotic drivers on the concentration of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) was investigated and compared during two annual cycles in 2016 and 2018 within the Belgian Coastal Zone (BCZ, North Sea) at five fixed stations chosen to cover both the near-offshore gradient and a longitudinal gradient from the stations close to the Scheldt estuary to the most marine stations. Due to differences in light and temperature, significant differences of Chlorophyll a (Chl a) concentrations were observed between the two years with higher values in spring– and, to a lesser extent, in summer 2018 compared to 2016. The higher springtime phytoplankton biomass in 2018 compared to 2016 seemed to be related to better light conditions in early spring coupling with colder winter. Nevertheless, the seasonal and spatial DMS(P,O) patterns were nearly identical in 2016 and 2018. We then tested if the phytoplankton diversity based on genomic data and Chl a concentration could be used to predict the DMS(P,O)p concentration and better understand the observed variability in the field. The phytoplankton composition was characterized with high DMS(P,O) producers (mainly Dinophyceae such as Gymnodinium clade and Prymnesiophyceae with Phaeocystis sp.), occurring in spring, and low DMSP producers (various diatom species), occurring in early spring and in autumn, that influenced the most the DMS(P,O) concentrations observed in our field samples. We were able to estimate the DMSP concentrations with DMSP:Chl a ratio (mmol:g) for the main observed classes but the DMSO concentration was not properly assessed. The ratio used was not enough accurate to reproduce faithfully the interactions between the sulfur compound and the environmental stress.
How to cite: Royer, C., Borges, A. V., Lapeyra Martin, J., and Gypens, N.: Drivers of the variability of dimethylsulfonioproprionate (DMSP) and dimethylsulfoxide (DMSO) in the Southern North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6807, https://doi.org/10.5194/egusphere-egu2020-6807, 2020.
The influence of abiotic and biotic drivers on the concentration of dimethylsulfoniopropionate (DMSP) and dimethylsulfoxide (DMSO) was investigated and compared during two annual cycles in 2016 and 2018 within the Belgian Coastal Zone (BCZ, North Sea) at five fixed stations chosen to cover both the near-offshore gradient and a longitudinal gradient from the stations close to the Scheldt estuary to the most marine stations. Due to differences in light and temperature, significant differences of Chlorophyll a (Chl a) concentrations were observed between the two years with higher values in spring– and, to a lesser extent, in summer 2018 compared to 2016. The higher springtime phytoplankton biomass in 2018 compared to 2016 seemed to be related to better light conditions in early spring coupling with colder winter. Nevertheless, the seasonal and spatial DMS(P,O) patterns were nearly identical in 2016 and 2018. We then tested if the phytoplankton diversity based on genomic data and Chl a concentration could be used to predict the DMS(P,O)p concentration and better understand the observed variability in the field. The phytoplankton composition was characterized with high DMS(P,O) producers (mainly Dinophyceae such as Gymnodinium clade and Prymnesiophyceae with Phaeocystis sp.), occurring in spring, and low DMSP producers (various diatom species), occurring in early spring and in autumn, that influenced the most the DMS(P,O) concentrations observed in our field samples. We were able to estimate the DMSP concentrations with DMSP:Chl a ratio (mmol:g) for the main observed classes but the DMSO concentration was not properly assessed. The ratio used was not enough accurate to reproduce faithfully the interactions between the sulfur compound and the environmental stress.
How to cite: Royer, C., Borges, A. V., Lapeyra Martin, J., and Gypens, N.: Drivers of the variability of dimethylsulfonioproprionate (DMSP) and dimethylsulfoxide (DMSO) in the Southern North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6807, https://doi.org/10.5194/egusphere-egu2020-6807, 2020.
EGU2020-11427 | Displays | BG4.1
Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summerJørgen Bendtsen and Katherine Richardson
The potential for vertical mixing to support new production in the upper layers of the northeastern portion of the North Sea was analysed from observations obtained during the stratified period in July 2016. Five transects across the shelf edge between the relatively shallow central North Sea and the deep Norwegian trench showed a clear frontal structure in hydrography, turbulent mixing, nutrients and chlorophyll a across the shelf edge. Relatively large (up to >0.5 mmol N m−2 d−1) nitrate fluxes due to turbulent vertical mixing into the euphotic zone were found at some stations over the shelf edge, while low values (< 0.1 mmol N m−2 d−1) were found in the deeper open area north of the shelf edge. The low vertical mixing rates implied f ratios less than 0.02 in the open waters north of the shelf edge. In the shallow (<50 m) southern and central part of the study area, inorganic nutrients were low and nitrate undetectable, suggesting negligible new production here, despite relatively high concentrations of chlorophyll a being found in the bottom layer. Thus, high rates of new production seem to be concentrated around the shelf-edge zone and in association with localized features exhibiting enhanced vertical mixing. We find that the nutricline depth is significantly deeper at the shelf edge and interference with increased mixing in this deeper depth range can explain the increased diapycnal nitrate fluxes. Overall, this suggests that the shelf-edge zone may be the major nutrient supplier to the euphotic zone in this area during the period of summer stratification. Potential impacts on plankton ecosystem structure are discussed.
Reference:
Bendtsen, J. and Richardson, K.: Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer, Biogeosciences, 15, 7315–7332, https://doi.org/10.5194/bg-15-7315-2018, 2018.
How to cite: Bendtsen, J. and Richardson, K.: Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11427, https://doi.org/10.5194/egusphere-egu2020-11427, 2020.
The potential for vertical mixing to support new production in the upper layers of the northeastern portion of the North Sea was analysed from observations obtained during the stratified period in July 2016. Five transects across the shelf edge between the relatively shallow central North Sea and the deep Norwegian trench showed a clear frontal structure in hydrography, turbulent mixing, nutrients and chlorophyll a across the shelf edge. Relatively large (up to >0.5 mmol N m−2 d−1) nitrate fluxes due to turbulent vertical mixing into the euphotic zone were found at some stations over the shelf edge, while low values (< 0.1 mmol N m−2 d−1) were found in the deeper open area north of the shelf edge. The low vertical mixing rates implied f ratios less than 0.02 in the open waters north of the shelf edge. In the shallow (<50 m) southern and central part of the study area, inorganic nutrients were low and nitrate undetectable, suggesting negligible new production here, despite relatively high concentrations of chlorophyll a being found in the bottom layer. Thus, high rates of new production seem to be concentrated around the shelf-edge zone and in association with localized features exhibiting enhanced vertical mixing. We find that the nutricline depth is significantly deeper at the shelf edge and interference with increased mixing in this deeper depth range can explain the increased diapycnal nitrate fluxes. Overall, this suggests that the shelf-edge zone may be the major nutrient supplier to the euphotic zone in this area during the period of summer stratification. Potential impacts on plankton ecosystem structure are discussed.
Reference:
Bendtsen, J. and Richardson, K.: Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer, Biogeosciences, 15, 7315–7332, https://doi.org/10.5194/bg-15-7315-2018, 2018.
How to cite: Bendtsen, J. and Richardson, K.: Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11427, https://doi.org/10.5194/egusphere-egu2020-11427, 2020.
EGU2020-20219 | Displays | BG4.1
Physical preconditioning of oxygen depletion in shelf seasCharlotte Williams, Claire Mahaffey, Matthew Palmer, and Naomi Greenwood
The global ocean dissolved oxygen (DO) inventory is decreasing and the areal extent of DO deficiency is increasing. In the shelf sea BML, net DO removal can occur as a result of restricted ventilation due to seasonal thermal stratification, oxygen consumption via pelagic and benthic respiration of organic matter, and nitrification. DO decline is becoming evident in several shelf seas, with recent model studies estimating that large regions of the Northwest European continental shelf seas (325,000 to 400,000 km2) have the potential to become seasonally deficient in DO in late summer. It is therefore of vital importance that DO is monitored accurately and effectively in shelf seas.
Here we present results from AlterECO project, which aimed to provide an alternative, novel framework for the monitoring of shelf sea ecosystem health indicators, including DO, via the deployment of 20 gliders in the North Sea (NW European shelf). Between November 2017 and May 2019 the gliders provided 18 month continuous measurements of T, S, chlorophyll fluorescence, and DO in the seasonally stratified study area, capturing the onset and breakdown of two spring blooms. In both years the gliders captured a weakly stratified, deep (>60m) thermocline in late autumn which was responsible for oxygen deplete (75%) ‘pools’ in the North Sea. Our results show that preconditioning of pre-bloom transitional periods as well as episodic mixing events drive inter-annual differences in BML DO concentrations. Large inter-annual variability between pre-bloom physical conditions was observed, with the occurrence of anticyclone Hartmut in February 2018 resulting in a much colder water column (and therefore higher solubility of DO) in spring 2018 than 2019. Additionally we will demonstrate that the erosion of mini-blooms during the onset of stratification results in mixing of supersaturated DO surface water into the BML, helping to prevent DO deficiency in the BML in late summer. Comparisons of our high resolution glider data with the latest state of the art biogeochemical models (AMM15-ERSEM) will also be presented. We postulate that understanding the drivers of inter-annual variability in pre-bloom physical conditions is crucial in terms of understanding and predicting DO depletion in shelf seas.
How to cite: Williams, C., Mahaffey, C., Palmer, M., and Greenwood, N.: Physical preconditioning of oxygen depletion in shelf seas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20219, https://doi.org/10.5194/egusphere-egu2020-20219, 2020.
The global ocean dissolved oxygen (DO) inventory is decreasing and the areal extent of DO deficiency is increasing. In the shelf sea BML, net DO removal can occur as a result of restricted ventilation due to seasonal thermal stratification, oxygen consumption via pelagic and benthic respiration of organic matter, and nitrification. DO decline is becoming evident in several shelf seas, with recent model studies estimating that large regions of the Northwest European continental shelf seas (325,000 to 400,000 km2) have the potential to become seasonally deficient in DO in late summer. It is therefore of vital importance that DO is monitored accurately and effectively in shelf seas.
Here we present results from AlterECO project, which aimed to provide an alternative, novel framework for the monitoring of shelf sea ecosystem health indicators, including DO, via the deployment of 20 gliders in the North Sea (NW European shelf). Between November 2017 and May 2019 the gliders provided 18 month continuous measurements of T, S, chlorophyll fluorescence, and DO in the seasonally stratified study area, capturing the onset and breakdown of two spring blooms. In both years the gliders captured a weakly stratified, deep (>60m) thermocline in late autumn which was responsible for oxygen deplete (75%) ‘pools’ in the North Sea. Our results show that preconditioning of pre-bloom transitional periods as well as episodic mixing events drive inter-annual differences in BML DO concentrations. Large inter-annual variability between pre-bloom physical conditions was observed, with the occurrence of anticyclone Hartmut in February 2018 resulting in a much colder water column (and therefore higher solubility of DO) in spring 2018 than 2019. Additionally we will demonstrate that the erosion of mini-blooms during the onset of stratification results in mixing of supersaturated DO surface water into the BML, helping to prevent DO deficiency in the BML in late summer. Comparisons of our high resolution glider data with the latest state of the art biogeochemical models (AMM15-ERSEM) will also be presented. We postulate that understanding the drivers of inter-annual variability in pre-bloom physical conditions is crucial in terms of understanding and predicting DO depletion in shelf seas.
How to cite: Williams, C., Mahaffey, C., Palmer, M., and Greenwood, N.: Physical preconditioning of oxygen depletion in shelf seas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20219, https://doi.org/10.5194/egusphere-egu2020-20219, 2020.
EGU2020-7528 | Displays | BG4.1
Impact of glacial meltwater on biogeochemical cycling in coastal and shelf waters off South West Greenland: Insights from ship-board and glider observationsKatharine Hendry, Nathan Briggs, Jacob Opher, J. Alexander Brearley, Michael Meredith, Melanie Leng, E. Malcolm Woodward, and Stephanie Henson
The high-latitude regions are experiencing some of the most rapid environmental changes observed anywhere on Earth, especially in recent years. The Greenland Ice Sheet, for example, is experiencing significant mass loss largely through surface melting, but also via ice discharge at glacier fronts. As well as changing freshwater budgets and ocean stratification and mixing, there has been increasing focus on the role of glaciers and ice sheets in supplying particulate and dissolved organic material and inorganic nutrients to marine systems. Here, we explore how a combination of ship-board and high-resolution ocean glider observations in shelf waters off SW Greenland inform on how these nutrients reach the coastal oceans and, eventually, mix off the shelf and into the open ocean. We find that the proportion of meltwater calculated using salinity and oxygen isotope mass balance agrees well with estimates from glider sensors. These meltwaters contain low dissolved macronutrients, but are characterised by high particulate and high dissolved organic content. Bio-optic sensors on the gliders reveal strong meltwater signals in fluorescing dissolved organic matter (FDOM), and a detectable signal in optical backscatter; these signals can be now observed extending further out into the open ocean in compiled biogeochemical (BGC) argo float data. The mixing of both dissolved and particulate macronutrients and organic matter off the shelf is likely driven by advection in geostrophic currents, tidal and buoyancy forcing, and is also impacted by storm events via wind-driven changes in mixed layer depth and resuspension.
How to cite: Hendry, K., Briggs, N., Opher, J., Brearley, J. A., Meredith, M., Leng, M., Woodward, E. M., and Henson, S.: Impact of glacial meltwater on biogeochemical cycling in coastal and shelf waters off South West Greenland: Insights from ship-board and glider observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7528, https://doi.org/10.5194/egusphere-egu2020-7528, 2020.
The high-latitude regions are experiencing some of the most rapid environmental changes observed anywhere on Earth, especially in recent years. The Greenland Ice Sheet, for example, is experiencing significant mass loss largely through surface melting, but also via ice discharge at glacier fronts. As well as changing freshwater budgets and ocean stratification and mixing, there has been increasing focus on the role of glaciers and ice sheets in supplying particulate and dissolved organic material and inorganic nutrients to marine systems. Here, we explore how a combination of ship-board and high-resolution ocean glider observations in shelf waters off SW Greenland inform on how these nutrients reach the coastal oceans and, eventually, mix off the shelf and into the open ocean. We find that the proportion of meltwater calculated using salinity and oxygen isotope mass balance agrees well with estimates from glider sensors. These meltwaters contain low dissolved macronutrients, but are characterised by high particulate and high dissolved organic content. Bio-optic sensors on the gliders reveal strong meltwater signals in fluorescing dissolved organic matter (FDOM), and a detectable signal in optical backscatter; these signals can be now observed extending further out into the open ocean in compiled biogeochemical (BGC) argo float data. The mixing of both dissolved and particulate macronutrients and organic matter off the shelf is likely driven by advection in geostrophic currents, tidal and buoyancy forcing, and is also impacted by storm events via wind-driven changes in mixed layer depth and resuspension.
How to cite: Hendry, K., Briggs, N., Opher, J., Brearley, J. A., Meredith, M., Leng, M., Woodward, E. M., and Henson, S.: Impact of glacial meltwater on biogeochemical cycling in coastal and shelf waters off South West Greenland: Insights from ship-board and glider observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7528, https://doi.org/10.5194/egusphere-egu2020-7528, 2020.
EGU2020-2861 | Displays | BG4.1
Alkalinity and CO2 fluxes in a tropical seagrass meadowBryce Van Dam, James Fourqurean, and Ashley Smyth
Total alkalinity (TA) production in vegetated coastal systems is considered a putative sink for atmospheric CO2, due to the increase in the seawater buffer capacity when TA is produced in excess of DIC. Much of the TA generated in these habitats is derived from the reduction of NO3 and Fe, but in oligotrophic tropical waters dominated by carbonate sediments, these sources of TA may be minimal. To address this uncertainty, we measured a suite of sediment-water fluxes (SO4, N2, TA, DIC, DOC, etc) in a tropical and calcifying seagrass meadow, allowing us to identify the biogeochemical processes responsible for TA generation and consumption. We placed this information into the context of water-air CO2 exchange, which was measured by atmospheric eddy covariance. Net N2 fluxes indicated that denitrification was a negligible TA source in this oligotrophic seagrass meadow, which at times was net N2-fixing. Instead, sediment-water TA fluxes were dominated by the balance between SO2 reduction, H2S oxidation, and carbonate dissolution/precipitation. Air-water CO2 exchange was small and variable, reflecting the highly-buffered seawater chemistry and oligotrophic nature of this seagrass meadow.
How to cite: Van Dam, B., Fourqurean, J., and Smyth, A.: Alkalinity and CO2 fluxes in a tropical seagrass meadow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2861, https://doi.org/10.5194/egusphere-egu2020-2861, 2020.
Total alkalinity (TA) production in vegetated coastal systems is considered a putative sink for atmospheric CO2, due to the increase in the seawater buffer capacity when TA is produced in excess of DIC. Much of the TA generated in these habitats is derived from the reduction of NO3 and Fe, but in oligotrophic tropical waters dominated by carbonate sediments, these sources of TA may be minimal. To address this uncertainty, we measured a suite of sediment-water fluxes (SO4, N2, TA, DIC, DOC, etc) in a tropical and calcifying seagrass meadow, allowing us to identify the biogeochemical processes responsible for TA generation and consumption. We placed this information into the context of water-air CO2 exchange, which was measured by atmospheric eddy covariance. Net N2 fluxes indicated that denitrification was a negligible TA source in this oligotrophic seagrass meadow, which at times was net N2-fixing. Instead, sediment-water TA fluxes were dominated by the balance between SO2 reduction, H2S oxidation, and carbonate dissolution/precipitation. Air-water CO2 exchange was small and variable, reflecting the highly-buffered seawater chemistry and oligotrophic nature of this seagrass meadow.
How to cite: Van Dam, B., Fourqurean, J., and Smyth, A.: Alkalinity and CO2 fluxes in a tropical seagrass meadow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2861, https://doi.org/10.5194/egusphere-egu2020-2861, 2020.
EGU2020-8419 | Displays | BG4.1
Carbon and oxygen budget in the deep, strongly stratified Congo River EstuaryValentin Valleys, Johannes Pätsch, Jonathan Lambrechts, Philippe Delandmeter, Emmanuel Hanert, Alejandro Spitzy, and Eric Deleersnijder
EGU2020-3952 | Displays | BG4.1
Exploring the Affinity and Selectivity of Sedimentary Mackinawite (FeS) Towards Natural Organic MatterAlexandre Tétrault and Yves Gélinas
Marine sediments represent the most important sink for organic matter across geological time spans, in which carbon-containing molecules are sequestered away and can escape remineralization to CO2 by microbial degradation. Strong associations between minerals such as iron oxides and organic matter reaching the seafloor play a fundamental role in this preservation and have been known for some decades. Despite the importance of this protective mechanism in the balances of the global carbon budget, very little is known of the fate of bound organic matter as it is shuttled across the redox gradient into the reducing layers of sediment, particularly with respect to the Fe-OM associations. This study focuses on measuring the selective affinity of ferric and ferrous iron species for various functional groups commonly associated with the degradation products of organic molecules in marine systems as the iron cycles from +3 (oxides: goethite, lepidocrocite and ferrihydrite) to +2 (sulfides: mackinawite) oxidation states. This approach involves following model compounds across an artificial iron redox shuttle while probing Fe-OM bonding via quantitative FTIR and calculating mass balances using elemental analysis. A predicted outcome of this study will be a greater understanding of the fate of mineral-bound organic matter as it traverses the sedimentary redox gradient and the importance of iron sulfides such as mackinawite in their preservation.
How to cite: Tétrault, A. and Gélinas, Y.: Exploring the Affinity and Selectivity of Sedimentary Mackinawite (FeS) Towards Natural Organic Matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3952, https://doi.org/10.5194/egusphere-egu2020-3952, 2020.
Marine sediments represent the most important sink for organic matter across geological time spans, in which carbon-containing molecules are sequestered away and can escape remineralization to CO2 by microbial degradation. Strong associations between minerals such as iron oxides and organic matter reaching the seafloor play a fundamental role in this preservation and have been known for some decades. Despite the importance of this protective mechanism in the balances of the global carbon budget, very little is known of the fate of bound organic matter as it is shuttled across the redox gradient into the reducing layers of sediment, particularly with respect to the Fe-OM associations. This study focuses on measuring the selective affinity of ferric and ferrous iron species for various functional groups commonly associated with the degradation products of organic molecules in marine systems as the iron cycles from +3 (oxides: goethite, lepidocrocite and ferrihydrite) to +2 (sulfides: mackinawite) oxidation states. This approach involves following model compounds across an artificial iron redox shuttle while probing Fe-OM bonding via quantitative FTIR and calculating mass balances using elemental analysis. A predicted outcome of this study will be a greater understanding of the fate of mineral-bound organic matter as it traverses the sedimentary redox gradient and the importance of iron sulfides such as mackinawite in their preservation.
How to cite: Tétrault, A. and Gélinas, Y.: Exploring the Affinity and Selectivity of Sedimentary Mackinawite (FeS) Towards Natural Organic Matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3952, https://doi.org/10.5194/egusphere-egu2020-3952, 2020.
EGU2020-2812 | Displays | BG4.1
Phosphorus dynamics associated with partitioning of organic carbon oxidation pathways in the surface sediments of the deep Ulleung Basin, East SeaJin-Sook Mok, Bomina Kim, Hyeyoun Cho, Sung-Uk An, Hyun-Ji Lee, and Jung-Ho Hyun
As sediments play an important role as either a sink or a source of phosphorus (P) for water column, it is important to elucidate the major P fractions and behaviors (i.e., mobilization and immobilization) in the sediments to better understand P cycles in local and global scale. We investigated major P speciation associated with the partitioning of organic carbon (Corg) oxidation in the sediments to elucidate the P dynamics at two contrasting sediments in the continental shelf (EB1) and rise (EC1) in the Ulleung Basin (UB), East Sea. Sulfate reduction (SR) pre-dominated Corg oxidation at shelf site (EB 1), comprising % of Corg oxidation, whereas Mn- and Fe-reduction combined accounted for >80% of Corg oxidation in Mn-oxide and Fe-oxide-rich basin site (EC 1). Under SR-dominated condition (EB 1), H2S oxidation coupled to reductive dissolution of FeOOH to form precipitation of FeS induced the accumulation of dissolved iron and phosphate in the pore water. On the other hand, phosphate in the Mn- and Fe-oxide-rich basin sediments (EC 1) was depleted because the P released through organic matter decomposition or reductive dissolution of Fe oxide/Mn oxide was effectively adsorbed to the metal-oxides in the surface sediments. Sequential extraction of P phases revealed that Fe bound P (52-65% of total P) was the major phase in the surface sediments of both sites. Interestingly, the organic P (Porg) fraction was 2.4-times higher at the basin site (12 μmol g-1) than at the shelf site (5 μmol g-1). Corg : Porg ratios presented as redox proxies in sediments were 644 and 191 for EB1 and EC1, respectively,. The results indicate that Porg has an effective preservation relative to Corg under sub-oxic conditions (EC1), whereas Porg was preferentially regenerated under anoxic conditions (EB1). Overall, the dynamics of P in the UB sediments were largely regulated by the partitioning of Corg oxidation pathways (i.e., sulfate reduction vs. metal reduction) and resultant interaction between Fe/Mn-S-P.
How to cite: Mok, J.-S., Kim, B., Cho, H., An, S.-U., Lee, H.-J., and Hyun, J.-H.: Phosphorus dynamics associated with partitioning of organic carbon oxidation pathways in the surface sediments of the deep Ulleung Basin, East Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2812, https://doi.org/10.5194/egusphere-egu2020-2812, 2020.
As sediments play an important role as either a sink or a source of phosphorus (P) for water column, it is important to elucidate the major P fractions and behaviors (i.e., mobilization and immobilization) in the sediments to better understand P cycles in local and global scale. We investigated major P speciation associated with the partitioning of organic carbon (Corg) oxidation in the sediments to elucidate the P dynamics at two contrasting sediments in the continental shelf (EB1) and rise (EC1) in the Ulleung Basin (UB), East Sea. Sulfate reduction (SR) pre-dominated Corg oxidation at shelf site (EB 1), comprising % of Corg oxidation, whereas Mn- and Fe-reduction combined accounted for >80% of Corg oxidation in Mn-oxide and Fe-oxide-rich basin site (EC 1). Under SR-dominated condition (EB 1), H2S oxidation coupled to reductive dissolution of FeOOH to form precipitation of FeS induced the accumulation of dissolved iron and phosphate in the pore water. On the other hand, phosphate in the Mn- and Fe-oxide-rich basin sediments (EC 1) was depleted because the P released through organic matter decomposition or reductive dissolution of Fe oxide/Mn oxide was effectively adsorbed to the metal-oxides in the surface sediments. Sequential extraction of P phases revealed that Fe bound P (52-65% of total P) was the major phase in the surface sediments of both sites. Interestingly, the organic P (Porg) fraction was 2.4-times higher at the basin site (12 μmol g-1) than at the shelf site (5 μmol g-1). Corg : Porg ratios presented as redox proxies in sediments were 644 and 191 for EB1 and EC1, respectively,. The results indicate that Porg has an effective preservation relative to Corg under sub-oxic conditions (EC1), whereas Porg was preferentially regenerated under anoxic conditions (EB1). Overall, the dynamics of P in the UB sediments were largely regulated by the partitioning of Corg oxidation pathways (i.e., sulfate reduction vs. metal reduction) and resultant interaction between Fe/Mn-S-P.
How to cite: Mok, J.-S., Kim, B., Cho, H., An, S.-U., Lee, H.-J., and Hyun, J.-H.: Phosphorus dynamics associated with partitioning of organic carbon oxidation pathways in the surface sediments of the deep Ulleung Basin, East Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2812, https://doi.org/10.5194/egusphere-egu2020-2812, 2020.
EGU2020-5424 | Displays | BG4.1
Königshafen Submarine Groundwater Discharge Network (KiSNet)Ulf Mallast, Hannelore Waska, and Nils Moosdorf
Submarine groundwater discharge (SGD) as a pathway for water and chemical constituents between land and ocean is a rather young topic. For a long time it has been neglected by the scientific community and coastal managers. However, it has increasingly attracted attention since the turn of the millennium. Yet, SGD is mostly investigated either by terrestrial or marine disciplines although a broader, interdisciplinary approach would benefit SGD research. Moreover, so far reported SGD flux data at local to regional scale are a) hardly comparable as, to our best knowledge, only a few, mostly isolated studies directly compared available SGD methods in a quantitative fashion and b) flux data contain large uncertainties, either because they were up-scaled from local discrete (point) measurements to regional scales or because they were derived from modelling/ budgeting of regional or even global matter fluxes despite the known high spatial and temporal variability.
In order to pave the way for a more standardized and interdisciplinary SGD research that would reduce inherited measurement/ extrapolation uncertainties, the Königshafen Submarine Groundwater Discharge Network (KiSNet) seeks to contribute through three concrete aims:
- forming an interdisciplinary group of SGD experts to initiate and intensify collaborative ties across disciplines
- improving individual methodologies by groundtruthing through interdisciplinary intercomparison, which includes a focus on spatial and temporal variability, and
- providing a method catalogue which outlines optimal combinations for qualitative and quantitative SGD investigations that may serve as basis for future standardized SGD research.
The network will convene at the bay of Königshafen on Sylt, Germany, during two different points in time. Each time, all members of the network will apply qualitative (remote sensing, marine and terrestrial ground-based geophysics, biological indicators and socio-scientific methods) and quantitative (seepage meters, temperature rods, natural tracers, numerical simulation) methods from terrestrial and marine disciplines to investigate SGD synchronously and provide a robust basis to tackle above mentioned aims.
Here, we will outline exact procedures, methods and anticipated results the network will produce and provide an overview on future actions the network anticipates.
How to cite: Mallast, U., Waska, H., and Moosdorf, N.: Königshafen Submarine Groundwater Discharge Network (KiSNet), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5424, https://doi.org/10.5194/egusphere-egu2020-5424, 2020.
Submarine groundwater discharge (SGD) as a pathway for water and chemical constituents between land and ocean is a rather young topic. For a long time it has been neglected by the scientific community and coastal managers. However, it has increasingly attracted attention since the turn of the millennium. Yet, SGD is mostly investigated either by terrestrial or marine disciplines although a broader, interdisciplinary approach would benefit SGD research. Moreover, so far reported SGD flux data at local to regional scale are a) hardly comparable as, to our best knowledge, only a few, mostly isolated studies directly compared available SGD methods in a quantitative fashion and b) flux data contain large uncertainties, either because they were up-scaled from local discrete (point) measurements to regional scales or because they were derived from modelling/ budgeting of regional or even global matter fluxes despite the known high spatial and temporal variability.
In order to pave the way for a more standardized and interdisciplinary SGD research that would reduce inherited measurement/ extrapolation uncertainties, the Königshafen Submarine Groundwater Discharge Network (KiSNet) seeks to contribute through three concrete aims:
- forming an interdisciplinary group of SGD experts to initiate and intensify collaborative ties across disciplines
- improving individual methodologies by groundtruthing through interdisciplinary intercomparison, which includes a focus on spatial and temporal variability, and
- providing a method catalogue which outlines optimal combinations for qualitative and quantitative SGD investigations that may serve as basis for future standardized SGD research.
The network will convene at the bay of Königshafen on Sylt, Germany, during two different points in time. Each time, all members of the network will apply qualitative (remote sensing, marine and terrestrial ground-based geophysics, biological indicators and socio-scientific methods) and quantitative (seepage meters, temperature rods, natural tracers, numerical simulation) methods from terrestrial and marine disciplines to investigate SGD synchronously and provide a robust basis to tackle above mentioned aims.
Here, we will outline exact procedures, methods and anticipated results the network will produce and provide an overview on future actions the network anticipates.
How to cite: Mallast, U., Waska, H., and Moosdorf, N.: Königshafen Submarine Groundwater Discharge Network (KiSNet), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5424, https://doi.org/10.5194/egusphere-egu2020-5424, 2020.
EGU2020-6993 | Displays | BG4.1
An antioxidant function for dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) within three different phytoplankton groupsNathalie Gypens, Stéphane Roberty, Alberto V. Borges, Pierre Cardol, and Colin Royer
Dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) are two compounds involved in the carbon and sulfur cycle and are the precursors of the climate cooling gas dimethylsulfide (DMS). Despite decades of research, their role as osmoregulator, cryoprotector or antioxidant within the phytoplankton cells remains uncertain in some part. Since the antioxidant cascade system from the DMSP reported by Sunda & al. (2002), more investigation need to be conducted to confirm or accurate these interactions. This study aims to improve the knowledge about DMSP and DMSO and their hypothetic role of antioxidant on three different classes of phytoplankton (Dinophyceae – Prymnesiophyceae – diatom) and one diatom no-DMSP producer Chaetoceros sp. as negative control. Laboratory cultures were submitted to three oxidative stress to produce Reactive Oxygen Species (ROS) with (1) increasing light intensity from 100 to 600 and up to 1200 µmole/m²s for a global and natural oxidative stress; (2) using the menadone bisulfite (MSB) to generate ·O2 and (3) using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to inhibit the photosystem II (PSII). The PSII activity, the Chlorophyll a concentration (Chl a), the lipidic peroxidation (LOP), the ROS production and the pigment variation were analysed after 6h of incubation and related to the evolution of the DMSP and DMSO concentrations to better understand the cellular oxidative stress and its impact on the phytoplankton cell and DMSP and DMSO production.
How to cite: Gypens, N., Roberty, S., Borges, A. V., Cardol, P., and Royer, C.: An antioxidant function for dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) within three different phytoplankton groups, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6993, https://doi.org/10.5194/egusphere-egu2020-6993, 2020.
Dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) are two compounds involved in the carbon and sulfur cycle and are the precursors of the climate cooling gas dimethylsulfide (DMS). Despite decades of research, their role as osmoregulator, cryoprotector or antioxidant within the phytoplankton cells remains uncertain in some part. Since the antioxidant cascade system from the DMSP reported by Sunda & al. (2002), more investigation need to be conducted to confirm or accurate these interactions. This study aims to improve the knowledge about DMSP and DMSO and their hypothetic role of antioxidant on three different classes of phytoplankton (Dinophyceae – Prymnesiophyceae – diatom) and one diatom no-DMSP producer Chaetoceros sp. as negative control. Laboratory cultures were submitted to three oxidative stress to produce Reactive Oxygen Species (ROS) with (1) increasing light intensity from 100 to 600 and up to 1200 µmole/m²s for a global and natural oxidative stress; (2) using the menadone bisulfite (MSB) to generate ·O2 and (3) using 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to inhibit the photosystem II (PSII). The PSII activity, the Chlorophyll a concentration (Chl a), the lipidic peroxidation (LOP), the ROS production and the pigment variation were analysed after 6h of incubation and related to the evolution of the DMSP and DMSO concentrations to better understand the cellular oxidative stress and its impact on the phytoplankton cell and DMSP and DMSO production.
How to cite: Gypens, N., Roberty, S., Borges, A. V., Cardol, P., and Royer, C.: An antioxidant function for dimethylsulfonopropionate (DMSP) and dimethylsulfoxide (DMSO) within three different phytoplankton groups, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6993, https://doi.org/10.5194/egusphere-egu2020-6993, 2020.
EGU2020-6820 | Displays | BG4.1
Hurricanes accelerate dissolved organic carbon cycling in coastal ecosystemsGe Yan, Jessica Labonté, Antonietta Quigg, and Karl Kaiser
Extreme weather events such as tropical storms and hurricanes deliver large amounts of
freshwater (stormwater and river discharge) and associated dissolved organic carbon (DOC)
to estuaries and the coastal ocean, affecting water quality and carbon budgets. Hurricane
Harvey produced an unprecedented 1000-year flood event in 2017 that inundated the heavily
urbanized and industrialized Houston/Galveston region (Texas, USA). Within a week, storm-
associated floodwater delivered 105±10 Gg of terrigenous dissolved organic carbon (tDOC)
to Galveston Bay and the Gulf of Mexico continental shelves. In-situ decay constants of
8.75-28.33 yr -1 resulted in the biomineralization of ~70% of tDOC within one month of
discharge from the flood plain. The high removal efficiency of tDOC was linked to a diverse
microbial community capable of degrading a wide repertoire of dissolved organic matter
(DOM), and suggested hurricane-induced flood events affect net CO2 exchange and nutrient
budgets in estuarine watersheds and coastal seas.
How to cite: Yan, G., Labonté, J., Quigg, A., and Kaiser, K.: Hurricanes accelerate dissolved organic carbon cycling in coastal ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6820, https://doi.org/10.5194/egusphere-egu2020-6820, 2020.
Extreme weather events such as tropical storms and hurricanes deliver large amounts of
freshwater (stormwater and river discharge) and associated dissolved organic carbon (DOC)
to estuaries and the coastal ocean, affecting water quality and carbon budgets. Hurricane
Harvey produced an unprecedented 1000-year flood event in 2017 that inundated the heavily
urbanized and industrialized Houston/Galveston region (Texas, USA). Within a week, storm-
associated floodwater delivered 105±10 Gg of terrigenous dissolved organic carbon (tDOC)
to Galveston Bay and the Gulf of Mexico continental shelves. In-situ decay constants of
8.75-28.33 yr -1 resulted in the biomineralization of ~70% of tDOC within one month of
discharge from the flood plain. The high removal efficiency of tDOC was linked to a diverse
microbial community capable of degrading a wide repertoire of dissolved organic matter
(DOM), and suggested hurricane-induced flood events affect net CO2 exchange and nutrient
budgets in estuarine watersheds and coastal seas.
How to cite: Yan, G., Labonté, J., Quigg, A., and Kaiser, K.: Hurricanes accelerate dissolved organic carbon cycling in coastal ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6820, https://doi.org/10.5194/egusphere-egu2020-6820, 2020.
EGU2020-8935 | Displays | BG4.1
Impact of depositional regimes on biogeochemical cycling of iron and stable Fe signatures in sediments from the Argentina Continental MarginAnne-Christin Melcher, Susann Henkel, Thomas Pape, Anette Meixner, Simone A. Kasemann, Male Köster, Jessica Volz, Thomas Frederichs, Elda Miramontes, and Sabine Kasten
The Argentina Continental Margin represents a unique geologic setting where fundamental interactions between bottom currents and sediment deposition as well as their impact on biogeochemical processes and element cycling, in particular iron, can be studied. The aims of this study were to investigate 1) the consequences of different depositional conditions on biogeochemical processes and 2) diagenetic cycling of Fe mineral phases in surface sediments. Furthermore, it was 3) studied how sedimentary stable Fe isotope signatures (δ56Fe) are affected during early diagenesis and finally 4) evaluated, under which conditions δ56Fe might be used as proxy for microbial Fe reduction in methanic sediments. During RV SONNE expedition SO260, carried out in the framework of the DFG-funded Cluster of Excellence “The Ocean in the Earth System”, surface sediments from two depositional environments were sampled each using gravity corer and multi corer. One study site is located on the lower continental slope at 3605 m water depth (Biogeochemistry Site), while the other site is situated in a contourite system on the Northern Ewing Terrace at 1078 m water depth (Contourite Terrace Site). Sequential Fe extractions were performed on the collected sediments to determine four operationally defined reactive Fe phases targeting Fe carbonates, (easily) reducible Fe (oxyhydr)oxides and hardly reducible Fe oxides [1]. Purification of extracts for δ56Fe analysis of the Fe carbonates and easily reducible Fe (oxyhydr)oxide fractions followed [2]. The dataset was combined with pore-water data obtained during the cruise and complemented by concentrations and stable carbon isotope signatures of dissolved methane determined post-cruise. The extent of the redox zonation and depth of the sulfate-methane-transition (SMT) differ between the two sites. It is suggested that sedimentation rates at the Biogeochemistry Site are low and that steady state conditions prevail, leading to a strong diagenetic overprint of sedimentary Fe phases. In contrast the Contourite Terrace Site is characterized by high sedimentation rates and a lack of pronounced diagenetic overprint [3]. Reactive Fe phases are subject to reductive dissolution at the SMT. Nevertheless, significant amounts of reactive Fe phases are preserved below the SMT as evidenced by the presence of dissolved Fe in the methanic sediments, and are available for deep Fe reduction possibly through Fe-mediated anaerobic oxidation of methane [4]. In this study, δ56Fe signatures of reactive Fe phases in methanic sediments were determined for the first time. These data suggest significant microbial fractionation of Fe isotopes during deep Fe reduction at the Biogeochemistry Site, whereas at the Contourite Terrace Site the δ56Fe signatures do not indicate remarkable microbial Fe isotope fractionation. It is concluded that the applicability of δ56Fe signatures as tracer for microbial Fe reduction might be sensitive to the depositional regime, and thus may be limited in high sedimentation areas.
References:
Poulton, SW. and Canfield, DE., 2005. Chemical Geology 214: 209-221.
Henkel, S. et al., 2016. Chemical Geology 421: 93-102.
Riedinger, N. et al., 2005. Geochimica et Cosmochimica Acta 69: 4117-4126.
Riedinger, N. et al., 2014. Geobiology 12: 172-181.
How to cite: Melcher, A.-C., Henkel, S., Pape, T., Meixner, A., Kasemann, S. A., Köster, M., Volz, J., Frederichs, T., Miramontes, E., and Kasten, S.: Impact of depositional regimes on biogeochemical cycling of iron and stable Fe signatures in sediments from the Argentina Continental Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8935, https://doi.org/10.5194/egusphere-egu2020-8935, 2020.
The Argentina Continental Margin represents a unique geologic setting where fundamental interactions between bottom currents and sediment deposition as well as their impact on biogeochemical processes and element cycling, in particular iron, can be studied. The aims of this study were to investigate 1) the consequences of different depositional conditions on biogeochemical processes and 2) diagenetic cycling of Fe mineral phases in surface sediments. Furthermore, it was 3) studied how sedimentary stable Fe isotope signatures (δ56Fe) are affected during early diagenesis and finally 4) evaluated, under which conditions δ56Fe might be used as proxy for microbial Fe reduction in methanic sediments. During RV SONNE expedition SO260, carried out in the framework of the DFG-funded Cluster of Excellence “The Ocean in the Earth System”, surface sediments from two depositional environments were sampled each using gravity corer and multi corer. One study site is located on the lower continental slope at 3605 m water depth (Biogeochemistry Site), while the other site is situated in a contourite system on the Northern Ewing Terrace at 1078 m water depth (Contourite Terrace Site). Sequential Fe extractions were performed on the collected sediments to determine four operationally defined reactive Fe phases targeting Fe carbonates, (easily) reducible Fe (oxyhydr)oxides and hardly reducible Fe oxides [1]. Purification of extracts for δ56Fe analysis of the Fe carbonates and easily reducible Fe (oxyhydr)oxide fractions followed [2]. The dataset was combined with pore-water data obtained during the cruise and complemented by concentrations and stable carbon isotope signatures of dissolved methane determined post-cruise. The extent of the redox zonation and depth of the sulfate-methane-transition (SMT) differ between the two sites. It is suggested that sedimentation rates at the Biogeochemistry Site are low and that steady state conditions prevail, leading to a strong diagenetic overprint of sedimentary Fe phases. In contrast the Contourite Terrace Site is characterized by high sedimentation rates and a lack of pronounced diagenetic overprint [3]. Reactive Fe phases are subject to reductive dissolution at the SMT. Nevertheless, significant amounts of reactive Fe phases are preserved below the SMT as evidenced by the presence of dissolved Fe in the methanic sediments, and are available for deep Fe reduction possibly through Fe-mediated anaerobic oxidation of methane [4]. In this study, δ56Fe signatures of reactive Fe phases in methanic sediments were determined for the first time. These data suggest significant microbial fractionation of Fe isotopes during deep Fe reduction at the Biogeochemistry Site, whereas at the Contourite Terrace Site the δ56Fe signatures do not indicate remarkable microbial Fe isotope fractionation. It is concluded that the applicability of δ56Fe signatures as tracer for microbial Fe reduction might be sensitive to the depositional regime, and thus may be limited in high sedimentation areas.
References:
Poulton, SW. and Canfield, DE., 2005. Chemical Geology 214: 209-221.
Henkel, S. et al., 2016. Chemical Geology 421: 93-102.
Riedinger, N. et al., 2005. Geochimica et Cosmochimica Acta 69: 4117-4126.
Riedinger, N. et al., 2014. Geobiology 12: 172-181.
How to cite: Melcher, A.-C., Henkel, S., Pape, T., Meixner, A., Kasemann, S. A., Köster, M., Volz, J., Frederichs, T., Miramontes, E., and Kasten, S.: Impact of depositional regimes on biogeochemical cycling of iron and stable Fe signatures in sediments from the Argentina Continental Margin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8935, https://doi.org/10.5194/egusphere-egu2020-8935, 2020.
EGU2020-9026 | Displays | BG4.1
Biologically driven variability in coastal carbon fluxes - A model studyHarshal Chavan and Inga Hense
Benthic-pelagic coupling is responsible for the sudden appearance and disappearance of many coastal plankton blooms. Whether this signature is also reflected in pCO2 and whether the processes involved are important for the carbon fluxes in the coastal ocean is unclear. To address these questions, we use an ecosystem model that accounts for benthic-pelagic coupling of three different functional phytoplankton groups. Coupled with the water column model GOTM, we investigate the air-sea CO2 fluxes in the Baltic Sea and compared them with observations. We show that the variability is very well captured by the model. The relative importance of the life cycle processes in regulating carbon fluxes is demonstrated.
How to cite: Chavan, H. and Hense, I.: Biologically driven variability in coastal carbon fluxes - A model study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9026, https://doi.org/10.5194/egusphere-egu2020-9026, 2020.
Benthic-pelagic coupling is responsible for the sudden appearance and disappearance of many coastal plankton blooms. Whether this signature is also reflected in pCO2 and whether the processes involved are important for the carbon fluxes in the coastal ocean is unclear. To address these questions, we use an ecosystem model that accounts for benthic-pelagic coupling of three different functional phytoplankton groups. Coupled with the water column model GOTM, we investigate the air-sea CO2 fluxes in the Baltic Sea and compared them with observations. We show that the variability is very well captured by the model. The relative importance of the life cycle processes in regulating carbon fluxes is demonstrated.
How to cite: Chavan, H. and Hense, I.: Biologically driven variability in coastal carbon fluxes - A model study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9026, https://doi.org/10.5194/egusphere-egu2020-9026, 2020.
EGU2020-21523 | Displays | BG4.1
Variability in planktonic community caused by sub-mesoscale eddies and spatial features of the Baltic Sea coastElena Kudryavtseva, Tatiana Bukanova, Sergey Aleksandrov, Sergey Mosharov, Olga Dmitrieva, Anastasia Melnik, Alexander Krek, and Elena Ezhova
Our study examines the features of photosynthetic processes that occurred in the coastal area of the south-eastern Baltic Sea during the advanced phase of intensive summer bloom of 2018. We aim for a better understanding of short-time variability in primary production coupled with planktonic composition and phytoplankton functional activity in relation to location of nutrients sources on the coast and sub-mesoscale eddies, which appear over the coastal slope of Cape Taran and move alongside the Sambia Peninsula coast. These two-day studies, conducted on board of research vessels, represent a snapshot of a highly variable ecosystem alongside the Sambia Peninsula and Curonian Spit at the end of summer. Satellite images of sea surface temperatures and chlorophyll «a» concentration were also used for identification of spatial variations and eddies; the circulation conditions were derived from the operational system SatBaltyk. Across the coastal area, the effects of physico-chemical conditions influenced the phytoplankton composition and photosynthetic activity. In the south, the hot weather as well as the impacts of the Vistula Lagoon and the Amber combine affected the increase of nutrients and caused the strongest cyanobacterial bloom. In the Cape Taran area, the plankton community was transformed as a result of sub-mesoscale eddies development. Substantial gradients of nutrients, composition, biomasses and functional activity of phytoplankton along transects through eddies field was shown.
Collecting of samples was done with a support of the state assignment of Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. 0149-2019-0013). Data processing was supported by the state assignment of Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. 0149-2019-0006) and RFBR grant ( no.19-05-50090).
How to cite: Kudryavtseva, E., Bukanova, T., Aleksandrov, S., Mosharov, S., Dmitrieva, O., Melnik, A., Krek, A., and Ezhova, E.: Variability in planktonic community caused by sub-mesoscale eddies and spatial features of the Baltic Sea coast, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21523, https://doi.org/10.5194/egusphere-egu2020-21523, 2020.
Our study examines the features of photosynthetic processes that occurred in the coastal area of the south-eastern Baltic Sea during the advanced phase of intensive summer bloom of 2018. We aim for a better understanding of short-time variability in primary production coupled with planktonic composition and phytoplankton functional activity in relation to location of nutrients sources on the coast and sub-mesoscale eddies, which appear over the coastal slope of Cape Taran and move alongside the Sambia Peninsula coast. These two-day studies, conducted on board of research vessels, represent a snapshot of a highly variable ecosystem alongside the Sambia Peninsula and Curonian Spit at the end of summer. Satellite images of sea surface temperatures and chlorophyll «a» concentration were also used for identification of spatial variations and eddies; the circulation conditions were derived from the operational system SatBaltyk. Across the coastal area, the effects of physico-chemical conditions influenced the phytoplankton composition and photosynthetic activity. In the south, the hot weather as well as the impacts of the Vistula Lagoon and the Amber combine affected the increase of nutrients and caused the strongest cyanobacterial bloom. In the Cape Taran area, the plankton community was transformed as a result of sub-mesoscale eddies development. Substantial gradients of nutrients, composition, biomasses and functional activity of phytoplankton along transects through eddies field was shown.
Collecting of samples was done with a support of the state assignment of Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. 0149-2019-0013). Data processing was supported by the state assignment of Shirshov Institute of Oceanology, Russian Academy of Sciences (topic no. 0149-2019-0006) and RFBR grant ( no.19-05-50090).
How to cite: Kudryavtseva, E., Bukanova, T., Aleksandrov, S., Mosharov, S., Dmitrieva, O., Melnik, A., Krek, A., and Ezhova, E.: Variability in planktonic community caused by sub-mesoscale eddies and spatial features of the Baltic Sea coast, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21523, https://doi.org/10.5194/egusphere-egu2020-21523, 2020.
EGU2020-21448 | Displays | BG4.1
Nutrient sources in the Bohai Sea and Yellow Sea: results from seasonal sampling in 2018Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Tina Sanders, Kirstin Dähnke, and Kay-Christian Emeis
The Bohai Sea and Yellow Sea are semi-enclosed basins strongly affected by human activities due to climate change and growing industries in China. Changes of hydrology, nutrient concentrations and sources and resulting ecosystem responses are therefore progressively intensifying during the last decades. In order to characterize nutrient sources and dynamics and to estimate the anthropogenic impact, we investigated nutrient concentrations and dual isotopes of nitrate in spring and summer 2018 in Bohai Sea and Yellow Sea. Furthermore, we sampled suspended matter and surface sediments and determined organic carbon, nitrogen and stable nitrogen isotopic ratios.
In spring, the water column was well mixed and the study area was mainly affected by the Yellow River diluted water and the Yellow Sea Warm Current water, which were the main nitrate sources. In summer, the water was stratified, and the Yellow River and Changjiang River diluted water supplied nutrients to an even larger region than in spring. During this season, the Yellow Sea Cold Water mass formed the bottom water of the Yellow Sea where nutrients became enriched. In contrast to other polluted marginal seas, the stable isotopic ratios of dissolved and particulate nitrogen are relatively low in the study area, which could be due to nutrient supply from the atmosphere or the open ocean. Using nitrogen isotopes, we developed a box model of reactive nitrogen for the Bohai Sea and quantified the input of atmospheric and riverine reactive nitrogen, submarine groundwater and water exchange with the Yellow Sea, constraining the budgets of reactive nitrogen combining mass fluxes with an isotopic balance. Including the isotopic balance improved the mass balance based only on nutrient concentrations.
How to cite: Tian, S., Gaye, B., Tang, J., Luo, Y., Sanders, T., Dähnke, K., and Emeis, K.-C.: Nutrient sources in the Bohai Sea and Yellow Sea: results from seasonal sampling in 2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21448, https://doi.org/10.5194/egusphere-egu2020-21448, 2020.
The Bohai Sea and Yellow Sea are semi-enclosed basins strongly affected by human activities due to climate change and growing industries in China. Changes of hydrology, nutrient concentrations and sources and resulting ecosystem responses are therefore progressively intensifying during the last decades. In order to characterize nutrient sources and dynamics and to estimate the anthropogenic impact, we investigated nutrient concentrations and dual isotopes of nitrate in spring and summer 2018 in Bohai Sea and Yellow Sea. Furthermore, we sampled suspended matter and surface sediments and determined organic carbon, nitrogen and stable nitrogen isotopic ratios.
In spring, the water column was well mixed and the study area was mainly affected by the Yellow River diluted water and the Yellow Sea Warm Current water, which were the main nitrate sources. In summer, the water was stratified, and the Yellow River and Changjiang River diluted water supplied nutrients to an even larger region than in spring. During this season, the Yellow Sea Cold Water mass formed the bottom water of the Yellow Sea where nutrients became enriched. In contrast to other polluted marginal seas, the stable isotopic ratios of dissolved and particulate nitrogen are relatively low in the study area, which could be due to nutrient supply from the atmosphere or the open ocean. Using nitrogen isotopes, we developed a box model of reactive nitrogen for the Bohai Sea and quantified the input of atmospheric and riverine reactive nitrogen, submarine groundwater and water exchange with the Yellow Sea, constraining the budgets of reactive nitrogen combining mass fluxes with an isotopic balance. Including the isotopic balance improved the mass balance based only on nutrient concentrations.
How to cite: Tian, S., Gaye, B., Tang, J., Luo, Y., Sanders, T., Dähnke, K., and Emeis, K.-C.: Nutrient sources in the Bohai Sea and Yellow Sea: results from seasonal sampling in 2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21448, https://doi.org/10.5194/egusphere-egu2020-21448, 2020.
EGU2020-19291 | Displays | BG4.1
Coupled benthic cycling of iron, phosphorus and sulfur in the Benguela upwelling systemKristin Anna Ungerhofer, Gert-Jan Reichart, and Peter Kraal
The Benguela upwelling system (BUS) offshore Namibia is among the most productive ocean regions worldwide and is a globally important reservoir of biodiversity and biomass. The forcing of cold, nutrient-rich deep waters up the coastal shelf leads to high rates of primary productivity in surface waters, intense carbon remineralization and consequently to (bottom water) oxygen depletion on the shelf that varies temporally and spatially with the intensity of the upwelling.
Recurring events of deoxygenation have a severe impact on marine ecosystems, for instance increased mortality and altered biogeochemical cycles of key elements such as carbon (C), iron (Fe), phosphorus (P) and sulfur (S). Therefore, it is crucial that we establish a clear mechanistic framework of the impact of oxygen depletion on (global) biogeochemical cycles, not only to allow for the reconstruction of climate-ocean feedbacks in upwelling regions in the past, but to enable predictions of future behavior.
During an expedition with RV Pelagia in February of 2019, we collected water column and sediment samples from the shelf and slope off Namibia (100 to 1517 m water depth, bottom water O2 between 0.5 and 175 µmol L-1) and measured nutrient fluxes in on-board sediment incubations to understand the early diagenetic behavior of those key elements and trace metals underlying the (periodically) oxygen-depleted waters of the BUS.
We analyzed dissolved concentrations as well as solid-phase speciation of key elements such as iron (Fe), manganese (Mn), phosphorus (P) and sulfur (S) to understand the chemical and physical processes controlling their distribution along the depth/redox-transect.
Our results show intense P cycling on the shelf, as evidenced by very high pore-water P concentrations, an enhanced efflux of PO4 to suboxic bottom waters and indications of phosphorite formation at depth in the sediment. N/P ratios well below Redfield indicate N depletion and (relative) P accumulation in the water column, a shift in nutrient stoichiometry that can impact the composition of microbial communities in such waters. Meanwhile, the slope sediments are overlain by oxic bottom waters, retain P more efficiently and exhibit N/P ratios close to Redfield stoichiometry.
The capacity of the sediment to buffer toxic sulfide and prevent its release to the water column was dependent on the abundance of sulfide oxidizers at the sediment surface. Furthermore, the variable accumulation of sulfide affected Fe speciation and sedimentary P retention.
Overall, we show an intimate coupling between sedimentary cycles of essential elements in the Benguela upwelling system, a stark contrast between shelf and slope environments that is further enhanced by local variation of oxygen depletion and a very strong role of microbes in driving the cycles.
How to cite: Ungerhofer, K. A., Reichart, G.-J., and Kraal, P.: Coupled benthic cycling of iron, phosphorus and sulfur in the Benguela upwelling system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19291, https://doi.org/10.5194/egusphere-egu2020-19291, 2020.
The Benguela upwelling system (BUS) offshore Namibia is among the most productive ocean regions worldwide and is a globally important reservoir of biodiversity and biomass. The forcing of cold, nutrient-rich deep waters up the coastal shelf leads to high rates of primary productivity in surface waters, intense carbon remineralization and consequently to (bottom water) oxygen depletion on the shelf that varies temporally and spatially with the intensity of the upwelling.
Recurring events of deoxygenation have a severe impact on marine ecosystems, for instance increased mortality and altered biogeochemical cycles of key elements such as carbon (C), iron (Fe), phosphorus (P) and sulfur (S). Therefore, it is crucial that we establish a clear mechanistic framework of the impact of oxygen depletion on (global) biogeochemical cycles, not only to allow for the reconstruction of climate-ocean feedbacks in upwelling regions in the past, but to enable predictions of future behavior.
During an expedition with RV Pelagia in February of 2019, we collected water column and sediment samples from the shelf and slope off Namibia (100 to 1517 m water depth, bottom water O2 between 0.5 and 175 µmol L-1) and measured nutrient fluxes in on-board sediment incubations to understand the early diagenetic behavior of those key elements and trace metals underlying the (periodically) oxygen-depleted waters of the BUS.
We analyzed dissolved concentrations as well as solid-phase speciation of key elements such as iron (Fe), manganese (Mn), phosphorus (P) and sulfur (S) to understand the chemical and physical processes controlling their distribution along the depth/redox-transect.
Our results show intense P cycling on the shelf, as evidenced by very high pore-water P concentrations, an enhanced efflux of PO4 to suboxic bottom waters and indications of phosphorite formation at depth in the sediment. N/P ratios well below Redfield indicate N depletion and (relative) P accumulation in the water column, a shift in nutrient stoichiometry that can impact the composition of microbial communities in such waters. Meanwhile, the slope sediments are overlain by oxic bottom waters, retain P more efficiently and exhibit N/P ratios close to Redfield stoichiometry.
The capacity of the sediment to buffer toxic sulfide and prevent its release to the water column was dependent on the abundance of sulfide oxidizers at the sediment surface. Furthermore, the variable accumulation of sulfide affected Fe speciation and sedimentary P retention.
Overall, we show an intimate coupling between sedimentary cycles of essential elements in the Benguela upwelling system, a stark contrast between shelf and slope environments that is further enhanced by local variation of oxygen depletion and a very strong role of microbes in driving the cycles.
How to cite: Ungerhofer, K. A., Reichart, G.-J., and Kraal, P.: Coupled benthic cycling of iron, phosphorus and sulfur in the Benguela upwelling system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19291, https://doi.org/10.5194/egusphere-egu2020-19291, 2020.
EGU2020-9573 | Displays | BG4.1
Towards a Sedimentary Carbon Stock Estimate for Scotland's EEZ: A Tiered Mapping Approach.William Austin and Craig Smeaton
Coastal and shelf sediments trap and bury significant quantities carbon (Berner, 1982) and provide an conditions allowing for the long-term storage of carbon. Through burying this carbon these sediments potentially provide a climate mitigation services. Currently our understanding of the spatial distribution of C within the surficial sediments of coastal and shelf seas is limited. Using Scotland’s EEZ as a natural laboratory in conjunction with the tiered seabed mapping methodology developed by Smeaton and Austin (2019), we show that coastal and shelf sediments are highly heterogenous in both sediment type and C content. The tiered approach utilised in this study is ideally suited to global applications where data availability may differ significantly. Improved spatial mapping of seabed C will provide policy makers with a new tool for the targeted management and protection of these globally important C stores.
Berner, R. A., 1982, Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance.Am. J. Sci.282,451–473 (1982)
Smeaton, C. and Austin, W.E.N., 2019. Where’s the Carbon: Exploring the Spatial Heterogeneity of Sedimentary Carbon in Mid-Latitude Fjords. Frontiers in Earth Science, 7, p.269.
How to cite: Austin, W. and Smeaton, C.: Towards a Sedimentary Carbon Stock Estimate for Scotland's EEZ: A Tiered Mapping Approach. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9573, https://doi.org/10.5194/egusphere-egu2020-9573, 2020.
Coastal and shelf sediments trap and bury significant quantities carbon (Berner, 1982) and provide an conditions allowing for the long-term storage of carbon. Through burying this carbon these sediments potentially provide a climate mitigation services. Currently our understanding of the spatial distribution of C within the surficial sediments of coastal and shelf seas is limited. Using Scotland’s EEZ as a natural laboratory in conjunction with the tiered seabed mapping methodology developed by Smeaton and Austin (2019), we show that coastal and shelf sediments are highly heterogenous in both sediment type and C content. The tiered approach utilised in this study is ideally suited to global applications where data availability may differ significantly. Improved spatial mapping of seabed C will provide policy makers with a new tool for the targeted management and protection of these globally important C stores.
Berner, R. A., 1982, Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance.Am. J. Sci.282,451–473 (1982)
Smeaton, C. and Austin, W.E.N., 2019. Where’s the Carbon: Exploring the Spatial Heterogeneity of Sedimentary Carbon in Mid-Latitude Fjords. Frontiers in Earth Science, 7, p.269.
How to cite: Austin, W. and Smeaton, C.: Towards a Sedimentary Carbon Stock Estimate for Scotland's EEZ: A Tiered Mapping Approach. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9573, https://doi.org/10.5194/egusphere-egu2020-9573, 2020.
EGU2020-12503 | Displays | BG4.1
Distribution and constraining factors of planktonic and benthic foraminifers in bottom sediments of the southern South China SeaJian Yin, Chunlian Liu, and Xiaoqiang Yang
Consisted of shallower Sunda Shelf, deeper Zengmu Basin, and Nansha Trough Basin, the southern South China Sea (SCS) provides an ideal scene for oceanography studies. Spreading all over nearly from 50 to 3000m at depth, a total of 93 surface sediment samples were collected to analyze the environmental factors constraining the foraminiferal distribution pattern in the southern South China Sea (SCS). Species distributions and stable isotopic compositions were combined to reveal the controlling factors, such as depth, salinity, substrate, runoff, currents, and cold seep activities. Water depth is the dominant factor controlling both assemblage composition and δ18O of benthic foraminiferal tests. The 1000 m isobath separates the sites into two clusters (Cluster A and B), which are dominated by deep-water species and shallow-water species, respectively. The sites in the deep-water zone (Cluster A) are characterized by lower absolute abundances, species richness and Shannon Index values (a measure of diversity), and higher proportions of planktonic foraminifers compared with the sites in the shallow-water zone (Cluster B). Increasing proportions of agglutinated tests with depth and rapidly decreasing proportions of planktonic foraminifera in the Nansha Trough Basin provide evidence of calcium dissolution occurring at a depth corresponding with previous reports. Oxygen stable isotopes (δ18OB) of benthic foraminifera become more positive with depth only up to 1000 m and remain constant beyond. Differences in the proportion of agglutinated and porcelaneous tests in the shallow-water zone suggest that terrestrial runoff from nearby river systems (Mekong River and northern Borneo rivers) and seasonal surface currents (SCS Southern Cyclonic Gyre and SCS Southern Anticyclonic Gyre) jointly influence the distribution patterns of foraminifera in the study area. Enrichment of planktonic δ18O is a response to cold waters brought by the SCS southern cyclonic gyre during winter. An upwelling current (Winter Natuna Off-Shelf Current) containing higher amounts of organic matter/nutrients contributes to the depleted δ13C of planktonic foraminifera and to the abnormal abundance of foraminifera at the sites within its area of influence. The dominance of the foraminifer Melonis barleeanus at sites belonging to Subcluster A1 and the stable isotope compositions of benthic foraminifera (δ18O > 0, δ13C < 0) across the sites suggest the influence of active cold seeps in the southern SCS. This research highlights the complexity of environmental variables that interact to influence the foraminiferal assemblages and geochemistry in the southern South China Sea, which could serve as a model for paleoenvironmental and palaeoceanographic reconstructions.
How to cite: Yin, J., Liu, C., and Yang, X.: Distribution and constraining factors of planktonic and benthic foraminifers in bottom sediments of the southern South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12503, https://doi.org/10.5194/egusphere-egu2020-12503, 2020.
Consisted of shallower Sunda Shelf, deeper Zengmu Basin, and Nansha Trough Basin, the southern South China Sea (SCS) provides an ideal scene for oceanography studies. Spreading all over nearly from 50 to 3000m at depth, a total of 93 surface sediment samples were collected to analyze the environmental factors constraining the foraminiferal distribution pattern in the southern South China Sea (SCS). Species distributions and stable isotopic compositions were combined to reveal the controlling factors, such as depth, salinity, substrate, runoff, currents, and cold seep activities. Water depth is the dominant factor controlling both assemblage composition and δ18O of benthic foraminiferal tests. The 1000 m isobath separates the sites into two clusters (Cluster A and B), which are dominated by deep-water species and shallow-water species, respectively. The sites in the deep-water zone (Cluster A) are characterized by lower absolute abundances, species richness and Shannon Index values (a measure of diversity), and higher proportions of planktonic foraminifers compared with the sites in the shallow-water zone (Cluster B). Increasing proportions of agglutinated tests with depth and rapidly decreasing proportions of planktonic foraminifera in the Nansha Trough Basin provide evidence of calcium dissolution occurring at a depth corresponding with previous reports. Oxygen stable isotopes (δ18OB) of benthic foraminifera become more positive with depth only up to 1000 m and remain constant beyond. Differences in the proportion of agglutinated and porcelaneous tests in the shallow-water zone suggest that terrestrial runoff from nearby river systems (Mekong River and northern Borneo rivers) and seasonal surface currents (SCS Southern Cyclonic Gyre and SCS Southern Anticyclonic Gyre) jointly influence the distribution patterns of foraminifera in the study area. Enrichment of planktonic δ18O is a response to cold waters brought by the SCS southern cyclonic gyre during winter. An upwelling current (Winter Natuna Off-Shelf Current) containing higher amounts of organic matter/nutrients contributes to the depleted δ13C of planktonic foraminifera and to the abnormal abundance of foraminifera at the sites within its area of influence. The dominance of the foraminifer Melonis barleeanus at sites belonging to Subcluster A1 and the stable isotope compositions of benthic foraminifera (δ18O > 0, δ13C < 0) across the sites suggest the influence of active cold seeps in the southern SCS. This research highlights the complexity of environmental variables that interact to influence the foraminiferal assemblages and geochemistry in the southern South China Sea, which could serve as a model for paleoenvironmental and palaeoceanographic reconstructions.
How to cite: Yin, J., Liu, C., and Yang, X.: Distribution and constraining factors of planktonic and benthic foraminifers in bottom sediments of the southern South China Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12503, https://doi.org/10.5194/egusphere-egu2020-12503, 2020.
EGU2020-15864 | Displays | BG4.1
A novel approach to quantifying resuspension resistance of sediment organic matter against coastal flowNaiyu Zhang, Charlotte Thompson, and Ian Townend
In order to estimate sediment organic carbon budget in coastal oceans and continental shelves, a first step is to estimate how much of the deposited organic matter is retained within a sediment matrix, for further remineralization and preservation on a geological timescale, rather being physically flushed away by benthic flow1. This question becomes more challenging for the regions where ‘mobile’ layers (e.g. fluff layer, fluid mud and nepheloid layer) are formed due to the massive organic matter inputs, and often frequent resuspension and deposition2. Organic matter remineralization and preservation in sediments has been mostly investigated but often overlooks the role of flow-induced shear stresses on suspending the organic matter. While such flow influences in sediment organic matter budget may have little influence on sediment organic matter budget in deep oceans, it cannot be neglected in shallow-water coastal seas and continental shelves where cyclic resuspension, deposition and frequent storm events occur3,4. To our knowledge, the resistance strengths of organic matter in sediments against flow resuspension has received little attention.
To investigate this knowledge gap, various organo-clay aggregates and organo-clay-sand aggregates formed under different flow conditions were investigated by a series of laboratory flume5 and high resolution X-ray Microcomputed Tomography (micro-CT) experiments6. Herein, a novel methodology is proposed, which successfully establishes quantitative relationships between the resuspension resistance strengths of these organic aggregates and a wide range of flow intensities, from moderate to storm conditions. The results provide a basis for computing resuspension under a range of flow conditions and, hence improving estimates of the organic matter budget in the coastal zone.
References
- Burdige, D. J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).
- McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S. & Kineke, G. C. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. Cont. Shelf Res. (2004). doi:10.1016/j.csr.2004.02.009
- Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochem. Cycles 19, 1–7 (2005).
- Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science (2010). doi:10.1126/science.1185782
- Thompson, C. E. L., Couceiro, F., Fones, G. R. & Amos, C. L. Shipboard measurements of sediment stability using a small annular flume-core mini flume (cmf). Limnol. Oceanogr. Methods (2013). doi:10.4319/lom.2013.11.604
- Zhang, N. et al. Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X-ray Microcomputed Tomography. Environ. Sci. Technol. 52, 13306–13313 (2018).
How to cite: Zhang, N., Thompson, C., and Townend, I.: A novel approach to quantifying resuspension resistance of sediment organic matter against coastal flow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15864, https://doi.org/10.5194/egusphere-egu2020-15864, 2020.
In order to estimate sediment organic carbon budget in coastal oceans and continental shelves, a first step is to estimate how much of the deposited organic matter is retained within a sediment matrix, for further remineralization and preservation on a geological timescale, rather being physically flushed away by benthic flow1. This question becomes more challenging for the regions where ‘mobile’ layers (e.g. fluff layer, fluid mud and nepheloid layer) are formed due to the massive organic matter inputs, and often frequent resuspension and deposition2. Organic matter remineralization and preservation in sediments has been mostly investigated but often overlooks the role of flow-induced shear stresses on suspending the organic matter. While such flow influences in sediment organic matter budget may have little influence on sediment organic matter budget in deep oceans, it cannot be neglected in shallow-water coastal seas and continental shelves where cyclic resuspension, deposition and frequent storm events occur3,4. To our knowledge, the resistance strengths of organic matter in sediments against flow resuspension has received little attention.
To investigate this knowledge gap, various organo-clay aggregates and organo-clay-sand aggregates formed under different flow conditions were investigated by a series of laboratory flume5 and high resolution X-ray Microcomputed Tomography (micro-CT) experiments6. Herein, a novel methodology is proposed, which successfully establishes quantitative relationships between the resuspension resistance strengths of these organic aggregates and a wide range of flow intensities, from moderate to storm conditions. The results provide a basis for computing resuspension under a range of flow conditions and, hence improving estimates of the organic matter budget in the coastal zone.
References
- Burdige, D. J. Preservation of organic matter in marine sediments: Controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).
- McKee, B. A., Aller, R. C., Allison, M. A., Bianchi, T. S. & Kineke, G. C. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. Cont. Shelf Res. (2004). doi:10.1016/j.csr.2004.02.009
- Burdige, D. J. Burial of terrestrial organic matter in marine sediments: A re-assessment. Global Biogeochem. Cycles 19, 1–7 (2005).
- Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science (2010). doi:10.1126/science.1185782
- Thompson, C. E. L., Couceiro, F., Fones, G. R. & Amos, C. L. Shipboard measurements of sediment stability using a small annular flume-core mini flume (cmf). Limnol. Oceanogr. Methods (2013). doi:10.4319/lom.2013.11.604
- Zhang, N. et al. Nondestructive 3D Imaging and Quantification of Hydrated Biofilm-Sediment Aggregates Using X-ray Microcomputed Tomography. Environ. Sci. Technol. 52, 13306–13313 (2018).
How to cite: Zhang, N., Thompson, C., and Townend, I.: A novel approach to quantifying resuspension resistance of sediment organic matter against coastal flow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15864, https://doi.org/10.5194/egusphere-egu2020-15864, 2020.
EGU2020-18139 | Displays | BG4.1
Mechanisms driving seawater pCO2 spatiotemporal variability in the Canary-Iberian Upwelling SystemDaniel Broullón, Rita Nolasco, Rosa Reboreda, Jesus Dubert, Marion Gehlen, James Orr, and Fiz F. Pérez
Upwelling systems are very productive regions of the ocean that strongly contribute to the local economies holding very different fisheries. These dynamic systems are characterized by a high degree of spatial and temporal variability of biogeochemical properties, including carbon, which is generally poorly represented in coarse-resolution global models. The importance of the marine carbon system characterizing these systems has been demonstrated in different regions from multiple perspectives. For the first time, we evaluate the drivers of the spatiotemporal variability of the seawater partial pressure of CO2 (pCO2) in the Canary-Iberian Upwelling System (25.5-45ºN, 5.5-20.5ºW) to better understand the inorganic carbon cycle in this highly-productive upwelling region. To do so, we first coupled a regional high-resolution ocean circulation model CROCO with the ocean biogeochemical model PISCES and run a climatological simulation. A first-order Taylor expansion was applied over this simulation to compute the contribution of four variables to the pCO2 spatiotemporal variability: salinity-normalized dissolved inorganic carbon (sCT), salinity-normalized total alkalinity (sAT), temperature (T) and freshwater fluxes (FW). Modeled pCO2 is in agreement with that of recent data-based monthly climatologies (open ocean RMSE: 5.2-10.8 µatm; coastal ocean RMSE: 7.9-18.7 µatm), measured data from the Surface Ocean CO₂ Atlas (SOCAT) (RMSE: 6.6-13.9 µatm) and computed pCO2 from measured AT and pH at the European Station for Time series in the Ocean Canary islands (ESTOC) (RMSE: 5.1 µatm). The spatial distribution of the pCO2 anomalies relative to the domain mean shows two different areas with opposite anomalies: positive anomalies around the coast in the entire domain and in open ocean south of 33ºN and negative anomalies in open ocean north of 33ºN. This pattern is mainly driven by the contribution of the T component and a minor influence of sAT and FW, with the sCT component largely counteracting the effects of the other drivers but contributing to the positive anomaly along the Iberian coast. The seasonal variability is controlled by T and sCT, with a minor influence of sAT and a negligible importance of FW. The seasonal cycle shows a direct covariation between the T contribution and the δpCO2 (monthly mean minus annual mean of pCO2) and an inverse covariation between the sCT contribution and the δpCO2 that counteracts the effect of T in the δpCO2 amplitude. A decrease in the δpCO2 amplitude was found from open ocean (depths > 200m) to coastal ocean (depths < 200m) determined mainly by a decrease in the influence of the T driver and, less significant, also by a reduction of the sCT contribution. The general agreement between modeled and observed contributions to pCO2 variability at the ESTOC time-series station, in terms of both phase and amplitude, lends credibility to our deconvolution and model, which has been applied across the Canary-Iberian Upwelling System, to assess the processes behind the spatiotemporal variability of pCO2.
How to cite: Broullón, D., Nolasco, R., Reboreda, R., Dubert, J., Gehlen, M., Orr, J., and Pérez, F. F.: Mechanisms driving seawater pCO2 spatiotemporal variability in the Canary-Iberian Upwelling System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18139, https://doi.org/10.5194/egusphere-egu2020-18139, 2020.
Upwelling systems are very productive regions of the ocean that strongly contribute to the local economies holding very different fisheries. These dynamic systems are characterized by a high degree of spatial and temporal variability of biogeochemical properties, including carbon, which is generally poorly represented in coarse-resolution global models. The importance of the marine carbon system characterizing these systems has been demonstrated in different regions from multiple perspectives. For the first time, we evaluate the drivers of the spatiotemporal variability of the seawater partial pressure of CO2 (pCO2) in the Canary-Iberian Upwelling System (25.5-45ºN, 5.5-20.5ºW) to better understand the inorganic carbon cycle in this highly-productive upwelling region. To do so, we first coupled a regional high-resolution ocean circulation model CROCO with the ocean biogeochemical model PISCES and run a climatological simulation. A first-order Taylor expansion was applied over this simulation to compute the contribution of four variables to the pCO2 spatiotemporal variability: salinity-normalized dissolved inorganic carbon (sCT), salinity-normalized total alkalinity (sAT), temperature (T) and freshwater fluxes (FW). Modeled pCO2 is in agreement with that of recent data-based monthly climatologies (open ocean RMSE: 5.2-10.8 µatm; coastal ocean RMSE: 7.9-18.7 µatm), measured data from the Surface Ocean CO₂ Atlas (SOCAT) (RMSE: 6.6-13.9 µatm) and computed pCO2 from measured AT and pH at the European Station for Time series in the Ocean Canary islands (ESTOC) (RMSE: 5.1 µatm). The spatial distribution of the pCO2 anomalies relative to the domain mean shows two different areas with opposite anomalies: positive anomalies around the coast in the entire domain and in open ocean south of 33ºN and negative anomalies in open ocean north of 33ºN. This pattern is mainly driven by the contribution of the T component and a minor influence of sAT and FW, with the sCT component largely counteracting the effects of the other drivers but contributing to the positive anomaly along the Iberian coast. The seasonal variability is controlled by T and sCT, with a minor influence of sAT and a negligible importance of FW. The seasonal cycle shows a direct covariation between the T contribution and the δpCO2 (monthly mean minus annual mean of pCO2) and an inverse covariation between the sCT contribution and the δpCO2 that counteracts the effect of T in the δpCO2 amplitude. A decrease in the δpCO2 amplitude was found from open ocean (depths > 200m) to coastal ocean (depths < 200m) determined mainly by a decrease in the influence of the T driver and, less significant, also by a reduction of the sCT contribution. The general agreement between modeled and observed contributions to pCO2 variability at the ESTOC time-series station, in terms of both phase and amplitude, lends credibility to our deconvolution and model, which has been applied across the Canary-Iberian Upwelling System, to assess the processes behind the spatiotemporal variability of pCO2.
How to cite: Broullón, D., Nolasco, R., Reboreda, R., Dubert, J., Gehlen, M., Orr, J., and Pérez, F. F.: Mechanisms driving seawater pCO2 spatiotemporal variability in the Canary-Iberian Upwelling System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18139, https://doi.org/10.5194/egusphere-egu2020-18139, 2020.
EGU2020-16497 | Displays | BG4.1
Distribution of major and trace elements in marine sediments deposited next to Doce river discharge after the break of the Mariana tailing dam.Rut Díaz, Natan Santarém, Manuel Moreira, Bruna Dias, Emmanoel Vieira da Silva Filho, André Bahr, and Ana Luiza Albuquerque
Besides hosting large mining complexes, the Rio Doce basin is widely exploited for agricultural activities and, industrial supplies. The Rio Doce is one of the main water bodies in the southeast region of Brazil, with an estimated sedimentary load of 11.22x106 tons/year and just only it’s sediment transport capacity, associated with the activities along its watershed, justify a deep study at the continent-ocean interface. However, in addition, in November 2015 the collapse of the Fundão tailing dam, a property of the Samarco mining company, described as one of the largest environmental disasters in Brazilian history, mobilized around 55 million m³ of mining waste through the Rio Doce basin. A reddish, fine granulometry mud, composed of silica, hematite, magnetite, manganese oxides and organic matter was transported in the river system through more than 600 km and released in the ocean. In this sense, the present study evaluated the distribution of major and trace elements in six marine sediments located in the discharge zone of the Rio Doce, three in the continental shelf and three in the slope, after the arrival of the mine tailings. The sediments cores M125-39-2, M125-43-2, M125-44-2, M125-49-2, M125-50-2 and M125-55-8 were collected with a multi-corer during the RV Meteor cruise M125. The major and trace metals were determined through the total digestion method (USEPA 3052) and analyzed by an ICP-OES, also were determined the granulometry, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N. The core M125-39-2 closer to the discharge zone of the Rio Doce registered the Mariana event. Two distinct events can be suggested in this core, one associated with the deposition of the mining tailings from the dam rupture and the second by the possible subsequent remobilization of these materials under high rainfall conditions, where an increase in Fe, Al, Si, Ti, As, Pb among other elements was recognized. Interpolation of the δ13C and δ15N with TOC and TN led to identified two distinct groups in this core, one with a mixed organic matter source (bottom of M125-39-2) and the other with a marine isotopic signature (top of M125-39-2).Also, the granulometric data and the elemental ratios when interpreted together show that the influence of the Rio Doce discharge was predominant to the M125-39-2 core, consistent with an abrupt, localized increase of the terrestrial contribution. The most superficial centimeter of the core, M125-50-2 presented an increase in the concentrations of Fe, Al, Si, K and, Ti, as in the other trace elements concentrations. The proximity to the source area, the patterns of marine currents and winds in the region were fundamental for the accumulation of major and trace elements from the tailing dam rupture in the core M125-39-2. Finally, organic matter content and the granulometry, despite their secondary role in this study, are factors with some potential that could enhance the adsorption of metals from the ore plume.
How to cite: Díaz, R., Santarém, N., Moreira, M., Dias, B., Vieira da Silva Filho, E., Bahr, A., and Albuquerque, A. L.: Distribution of major and trace elements in marine sediments deposited next to Doce river discharge after the break of the Mariana tailing dam., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16497, https://doi.org/10.5194/egusphere-egu2020-16497, 2020.
Besides hosting large mining complexes, the Rio Doce basin is widely exploited for agricultural activities and, industrial supplies. The Rio Doce is one of the main water bodies in the southeast region of Brazil, with an estimated sedimentary load of 11.22x106 tons/year and just only it’s sediment transport capacity, associated with the activities along its watershed, justify a deep study at the continent-ocean interface. However, in addition, in November 2015 the collapse of the Fundão tailing dam, a property of the Samarco mining company, described as one of the largest environmental disasters in Brazilian history, mobilized around 55 million m³ of mining waste through the Rio Doce basin. A reddish, fine granulometry mud, composed of silica, hematite, magnetite, manganese oxides and organic matter was transported in the river system through more than 600 km and released in the ocean. In this sense, the present study evaluated the distribution of major and trace elements in six marine sediments located in the discharge zone of the Rio Doce, three in the continental shelf and three in the slope, after the arrival of the mine tailings. The sediments cores M125-39-2, M125-43-2, M125-44-2, M125-49-2, M125-50-2 and M125-55-8 were collected with a multi-corer during the RV Meteor cruise M125. The major and trace metals were determined through the total digestion method (USEPA 3052) and analyzed by an ICP-OES, also were determined the granulometry, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N. The core M125-39-2 closer to the discharge zone of the Rio Doce registered the Mariana event. Two distinct events can be suggested in this core, one associated with the deposition of the mining tailings from the dam rupture and the second by the possible subsequent remobilization of these materials under high rainfall conditions, where an increase in Fe, Al, Si, Ti, As, Pb among other elements was recognized. Interpolation of the δ13C and δ15N with TOC and TN led to identified two distinct groups in this core, one with a mixed organic matter source (bottom of M125-39-2) and the other with a marine isotopic signature (top of M125-39-2).Also, the granulometric data and the elemental ratios when interpreted together show that the influence of the Rio Doce discharge was predominant to the M125-39-2 core, consistent with an abrupt, localized increase of the terrestrial contribution. The most superficial centimeter of the core, M125-50-2 presented an increase in the concentrations of Fe, Al, Si, K and, Ti, as in the other trace elements concentrations. The proximity to the source area, the patterns of marine currents and winds in the region were fundamental for the accumulation of major and trace elements from the tailing dam rupture in the core M125-39-2. Finally, organic matter content and the granulometry, despite their secondary role in this study, are factors with some potential that could enhance the adsorption of metals from the ore plume.
How to cite: Díaz, R., Santarém, N., Moreira, M., Dias, B., Vieira da Silva Filho, E., Bahr, A., and Albuquerque, A. L.: Distribution of major and trace elements in marine sediments deposited next to Doce river discharge after the break of the Mariana tailing dam., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16497, https://doi.org/10.5194/egusphere-egu2020-16497, 2020.
EGU2020-13130 | Displays | BG4.1
Numerical modelling of the benthic-pelagic coupling in coastal marine ecosystems at contrasting sitesCarolina Amadio, Marco Zavatarelli, Tomas Lovato, and Momme Butenschoen
Continental shelves cover less than 5% of the global ocean surface, but play a crucial role in the marine global biogeochemical cycling. Coastal ecosystem dynamics are governed and constrained to a wide extent by the biogeochemical processes occurring in the benthic domain. Such processes define the so called benthic-pelagic coupling (hereafter BPC), i.e. two-way exchange of organic matter (particulate and dissolved) and inorganic compounds. The physically mediated exchanges structuring the BPC are constituted by the sinking and resuspension fluxes of particulate organic matter and by the diffusion of inorganic nutrients. Despite its importance and the continuous enhancement of model resolution, the BPC in global marine ecosystem models is generally roughly approximated. Moreover, observational data focusing on the BPC dynamics are fairly scanty in time and space, thereby hampering model parameterization and validation. The main objectives of this study are to develop and test a numerical model addressing BPC processes and to evaluate ecosystem dynamics in marine areas with different climatic and ecological characteristics. In particular, we here focused on two key interaction processes: the sinking velocity of particulate matter and the diffusive fluxes of inorganic dissolved nutrients at the benthic-pelagic interface. The benthic sub-model has been calibrated accounting for the complex pelagic food web and for the main ecological and physical characteristics of continental shelf areas in different sites: Gulf of Trieste (Italy), St. Helena Bay (South Africa), Svinoy Fyr (Norway). At each study area, the one-dimensional coupled BFM-NEMO modelling system was setup by prescribing temperature and salinity vertical profiles in NEMO, while the shortwave radiation acts as a primary forcing of BFM. Model results have been validated with available in situ data.
Sensitivity tests has been performed to investigate the role of the BPC exchanges in determining the pelagic biogeochemical cycles and to carry out a comparative analysis accounting for each site characteristics.
How to cite: Amadio, C., Zavatarelli, M., Lovato, T., and Butenschoen, M.: Numerical modelling of the benthic-pelagic coupling in coastal marine ecosystems at contrasting sites , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13130, https://doi.org/10.5194/egusphere-egu2020-13130, 2020.
Continental shelves cover less than 5% of the global ocean surface, but play a crucial role in the marine global biogeochemical cycling. Coastal ecosystem dynamics are governed and constrained to a wide extent by the biogeochemical processes occurring in the benthic domain. Such processes define the so called benthic-pelagic coupling (hereafter BPC), i.e. two-way exchange of organic matter (particulate and dissolved) and inorganic compounds. The physically mediated exchanges structuring the BPC are constituted by the sinking and resuspension fluxes of particulate organic matter and by the diffusion of inorganic nutrients. Despite its importance and the continuous enhancement of model resolution, the BPC in global marine ecosystem models is generally roughly approximated. Moreover, observational data focusing on the BPC dynamics are fairly scanty in time and space, thereby hampering model parameterization and validation. The main objectives of this study are to develop and test a numerical model addressing BPC processes and to evaluate ecosystem dynamics in marine areas with different climatic and ecological characteristics. In particular, we here focused on two key interaction processes: the sinking velocity of particulate matter and the diffusive fluxes of inorganic dissolved nutrients at the benthic-pelagic interface. The benthic sub-model has been calibrated accounting for the complex pelagic food web and for the main ecological and physical characteristics of continental shelf areas in different sites: Gulf of Trieste (Italy), St. Helena Bay (South Africa), Svinoy Fyr (Norway). At each study area, the one-dimensional coupled BFM-NEMO modelling system was setup by prescribing temperature and salinity vertical profiles in NEMO, while the shortwave radiation acts as a primary forcing of BFM. Model results have been validated with available in situ data.
Sensitivity tests has been performed to investigate the role of the BPC exchanges in determining the pelagic biogeochemical cycles and to carry out a comparative analysis accounting for each site characteristics.
How to cite: Amadio, C., Zavatarelli, M., Lovato, T., and Butenschoen, M.: Numerical modelling of the benthic-pelagic coupling in coastal marine ecosystems at contrasting sites , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13130, https://doi.org/10.5194/egusphere-egu2020-13130, 2020.
EGU2020-19618 | Displays | BG4.1
Spatio-temporal survey of the coastal carbonate system offshore Lebanon-Levantine Mediterranean SeaAbed El Rahman Hassoun, Milad Fakhri, Majd Habib, Anthony Ouba, Sharif Jemaa, Céline Mahfouz, Houssein Jaber, Abeer Ghanem, Mariam Tannous, and Mohamad El Kheir
The coastal carbonate system regulates the pH of the coastal waters and controls the circulation of CO2 between land-sea interfaces and open sea system. In the context of the ELME (Evaluation of the Lebanese Marine Environment: A multidisciplinary study) project, a seasonal survey of the carbonate system has been started in 2019 through the sampling of 3 different transects starting from the coast towards the open sea, offshore two Lebanese cities (Beirut and Tyre) to evaluate the spatio-temporal variations of this system in coastal areas. The carbonate chemistry is being studied by measuring both total alkalinity (AT) and total dissolved inorganic carbon (CT), together with other critical parameters in coastal ecosystems such as temperature, salinity, pH, dissolved oxygen, nutrients (phosphates, nitrates, nitrites, silicates), and chlorophyll a. The preliminary results show that the highest carbonate system inventories (2546.4 and 2266 µmol kg-1 for AT and CT respectively) were measured in transects influenced by discharges of dumpsite and port areas (offshore Beirut) where positive and significant correlations (p << 0.005) have been recorded with nutrients, particularly with nitrites (> 10 µmol kg-1). Furthermore, TrOCA approach was used to estimate the anthropogenic CO2 concentrations (CANT) below the mixed layer depth. The results demonstrate that all waters in both studied areas are contaminated by CANT, even the deep ones (> 400 m) located in the furthest monitored station, with values greater than 70 µmol kg-1. This fact raises concerns about the effects of such relatively high CANT concentrations on coastal organisms therein. This work presents the preliminary results of an ongoing study. The continuity of this project will help to assess the relationship between land-based anthropogenic pressures and the coastal biogeochemistry in a changing Eastern Mediterranean Sea.
How to cite: Hassoun, A. E. R., Fakhri, M., Habib, M., Ouba, A., Jemaa, S., Mahfouz, C., Jaber, H., Ghanem, A., Tannous, M., and El Kheir, M.: Spatio-temporal survey of the coastal carbonate system offshore Lebanon-Levantine Mediterranean Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19618, https://doi.org/10.5194/egusphere-egu2020-19618, 2020.
The coastal carbonate system regulates the pH of the coastal waters and controls the circulation of CO2 between land-sea interfaces and open sea system. In the context of the ELME (Evaluation of the Lebanese Marine Environment: A multidisciplinary study) project, a seasonal survey of the carbonate system has been started in 2019 through the sampling of 3 different transects starting from the coast towards the open sea, offshore two Lebanese cities (Beirut and Tyre) to evaluate the spatio-temporal variations of this system in coastal areas. The carbonate chemistry is being studied by measuring both total alkalinity (AT) and total dissolved inorganic carbon (CT), together with other critical parameters in coastal ecosystems such as temperature, salinity, pH, dissolved oxygen, nutrients (phosphates, nitrates, nitrites, silicates), and chlorophyll a. The preliminary results show that the highest carbonate system inventories (2546.4 and 2266 µmol kg-1 for AT and CT respectively) were measured in transects influenced by discharges of dumpsite and port areas (offshore Beirut) where positive and significant correlations (p << 0.005) have been recorded with nutrients, particularly with nitrites (> 10 µmol kg-1). Furthermore, TrOCA approach was used to estimate the anthropogenic CO2 concentrations (CANT) below the mixed layer depth. The results demonstrate that all waters in both studied areas are contaminated by CANT, even the deep ones (> 400 m) located in the furthest monitored station, with values greater than 70 µmol kg-1. This fact raises concerns about the effects of such relatively high CANT concentrations on coastal organisms therein. This work presents the preliminary results of an ongoing study. The continuity of this project will help to assess the relationship between land-based anthropogenic pressures and the coastal biogeochemistry in a changing Eastern Mediterranean Sea.
How to cite: Hassoun, A. E. R., Fakhri, M., Habib, M., Ouba, A., Jemaa, S., Mahfouz, C., Jaber, H., Ghanem, A., Tannous, M., and El Kheir, M.: Spatio-temporal survey of the coastal carbonate system offshore Lebanon-Levantine Mediterranean Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19618, https://doi.org/10.5194/egusphere-egu2020-19618, 2020.
EGU2020-2156 | Displays | BG4.1
Rapid changes in distribution and fate of Polycyclic aromatic hydrocarbons (PAHs) in sediments from the East China Sea and their response to human-induced catchment changesChenglong Wang, Zhe Hao, Ziyue Feng, Chuchu Zhang, and Xinqing Zou
Human-induced catchment changes have affected the sedimentary processes in marginal seas, which will impact the transport and burial processes of materials and inevitably impact marine biogeochemical cycles. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the East China Sea (ECS) at two time nodes (2006 and 2018) were compared to understand the response of PAHs to human-induced catchment changes. PAH concentrations in the ECS ranged from 8–414 ng g-1 (dry weight), with a mean value of 112±77 ng g-1, relatively lower than that in 2006 (38–308 ng g-1, with a mean of 122±60 ng g-1). Sharp decreases in sediment loads have triggered erosion in subaqueous delta and changed the distribution of sediment components, which may eventually influence the distribution pattern of PAHs. The obvious spatial differentiation of PAHs between 2006 and 2018 suggested that the depositional center of PAHs shifted from the estuary to the inner shelf area. PAH deposition patterns in the ECS were primarily influenced by riverine input before 2006, but are now dominated by winnowing processes related to long-distance transport due to sharply decreased sediment loads. Dam construction in the river catchment intercepted large amounts of sediments and PAHs, shifting the Changjiang-derived PAH depositional center from the ocean to reservoirs. Overall, depositional patterns of PAHs in the ECS were largely altered by human-induced catchment changes, which may cause significant impacts on the region’s biogeochemical cycles and ecosystem health.
How to cite: Wang, C., Hao, Z., Feng, Z., Zhang, C., and Zou, X.: Rapid changes in distribution and fate of Polycyclic aromatic hydrocarbons (PAHs) in sediments from the East China Sea and their response to human-induced catchment changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2156, https://doi.org/10.5194/egusphere-egu2020-2156, 2020.
Human-induced catchment changes have affected the sedimentary processes in marginal seas, which will impact the transport and burial processes of materials and inevitably impact marine biogeochemical cycles. Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the East China Sea (ECS) at two time nodes (2006 and 2018) were compared to understand the response of PAHs to human-induced catchment changes. PAH concentrations in the ECS ranged from 8–414 ng g-1 (dry weight), with a mean value of 112±77 ng g-1, relatively lower than that in 2006 (38–308 ng g-1, with a mean of 122±60 ng g-1). Sharp decreases in sediment loads have triggered erosion in subaqueous delta and changed the distribution of sediment components, which may eventually influence the distribution pattern of PAHs. The obvious spatial differentiation of PAHs between 2006 and 2018 suggested that the depositional center of PAHs shifted from the estuary to the inner shelf area. PAH deposition patterns in the ECS were primarily influenced by riverine input before 2006, but are now dominated by winnowing processes related to long-distance transport due to sharply decreased sediment loads. Dam construction in the river catchment intercepted large amounts of sediments and PAHs, shifting the Changjiang-derived PAH depositional center from the ocean to reservoirs. Overall, depositional patterns of PAHs in the ECS were largely altered by human-induced catchment changes, which may cause significant impacts on the region’s biogeochemical cycles and ecosystem health.
How to cite: Wang, C., Hao, Z., Feng, Z., Zhang, C., and Zou, X.: Rapid changes in distribution and fate of Polycyclic aromatic hydrocarbons (PAHs) in sediments from the East China Sea and their response to human-induced catchment changes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2156, https://doi.org/10.5194/egusphere-egu2020-2156, 2020.
EGU2020-4740 | Displays | BG4.1
Lateral particle supply as a key vector in the oceanic carbon cycleMinkyoung Kim, Jeomshik Hwang, Timothy I. Eglinton, and Ellen R. M. Druffel
Despite the potential importance in the oceanic carbon cycle and benthic ecosystem, global feature of lateral supply of aged organic matter hosted on lithogenic particles derived from sediment resuspension has not been systematically examined. We compiled concentrations and fluxes of lithogenic material in the ocean in a global-scale by using literature data of sediment trap studies to understand the contribution of resuspended sediment to sinking particulate matter. We find that these contributions are significant in various oceanic settings, particularly over continental margins. Lithogenic material flux decreased with increasing distance from the margins and above the seafloor. Examination of Δ14C values of sinking POC revealed strong relationships with parameters that represent contribution of resuspended sediment. We then derive estimates for the contribution of aged POC from sediment resuspension to sinking POC based on these relationships and global lithogenic material flux data.
How to cite: Kim, M., Hwang, J., Eglinton, T. I., and Druffel, E. R. M.: Lateral particle supply as a key vector in the oceanic carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4740, https://doi.org/10.5194/egusphere-egu2020-4740, 2020.
Despite the potential importance in the oceanic carbon cycle and benthic ecosystem, global feature of lateral supply of aged organic matter hosted on lithogenic particles derived from sediment resuspension has not been systematically examined. We compiled concentrations and fluxes of lithogenic material in the ocean in a global-scale by using literature data of sediment trap studies to understand the contribution of resuspended sediment to sinking particulate matter. We find that these contributions are significant in various oceanic settings, particularly over continental margins. Lithogenic material flux decreased with increasing distance from the margins and above the seafloor. Examination of Δ14C values of sinking POC revealed strong relationships with parameters that represent contribution of resuspended sediment. We then derive estimates for the contribution of aged POC from sediment resuspension to sinking POC based on these relationships and global lithogenic material flux data.
How to cite: Kim, M., Hwang, J., Eglinton, T. I., and Druffel, E. R. M.: Lateral particle supply as a key vector in the oceanic carbon cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4740, https://doi.org/10.5194/egusphere-egu2020-4740, 2020.
EGU2020-123 | Displays | BG4.1
Geographic features of the distribution of bottom fluxes of nutrients (N, P, Si) in the frontal zone of the Ob River estuaryGennadii Borisenko
Gulf of Ob - the closing estuary of the Ob River, where fresh and saltwater are mixing. This is a very large and long stretch of water: about 800km in length and 30 to 90 km in width. The impressive size of the Gulf of Ob and the impact on the Kara Sea (runoff 530 km3 / year) give to Ob Estuary regional significance. River Ob bringing the largest amount (75%) of freshwater to the Gulf of Ob - an important industry flux and transport artery of Western Siberia, which in turn creates anthropogenic load on the estuary (surfactants, oil products, excess amounts of organic substances).
Changes in salinity, acidity, alkalinity in frontal zones cause a chain reaction of subsequent physicochemical processes leading, in turn, to the deposition of more than 90% of sedimentary material and dissolved organic matter inputted by Ob. Inorganic forms flows of phosphorus from the sediment at the frontal zone is low, which is explained by the high content of Ferrum(III+) oxide.
The fluxes of silicon and nitrogen did not significantly change, however, high absolute values of the silicon content in the mixing zone of fresh and sea waters are observed, which may be associated with the phenomenon of "avalanche" sedimentation observed in this zone.
This work was supported by the grant of the Russian Science Foundation 19-17-00196 Dissolved transformation runoff in estuarine regions of Russian rivers of various climatic zones
How to cite: Borisenko, G.: Geographic features of the distribution of bottom fluxes of nutrients (N, P, Si) in the frontal zone of the Ob River estuary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-123, https://doi.org/10.5194/egusphere-egu2020-123, 2020.
Gulf of Ob - the closing estuary of the Ob River, where fresh and saltwater are mixing. This is a very large and long stretch of water: about 800km in length and 30 to 90 km in width. The impressive size of the Gulf of Ob and the impact on the Kara Sea (runoff 530 km3 / year) give to Ob Estuary regional significance. River Ob bringing the largest amount (75%) of freshwater to the Gulf of Ob - an important industry flux and transport artery of Western Siberia, which in turn creates anthropogenic load on the estuary (surfactants, oil products, excess amounts of organic substances).
Changes in salinity, acidity, alkalinity in frontal zones cause a chain reaction of subsequent physicochemical processes leading, in turn, to the deposition of more than 90% of sedimentary material and dissolved organic matter inputted by Ob. Inorganic forms flows of phosphorus from the sediment at the frontal zone is low, which is explained by the high content of Ferrum(III+) oxide.
The fluxes of silicon and nitrogen did not significantly change, however, high absolute values of the silicon content in the mixing zone of fresh and sea waters are observed, which may be associated with the phenomenon of "avalanche" sedimentation observed in this zone.
This work was supported by the grant of the Russian Science Foundation 19-17-00196 Dissolved transformation runoff in estuarine regions of Russian rivers of various climatic zones
How to cite: Borisenko, G.: Geographic features of the distribution of bottom fluxes of nutrients (N, P, Si) in the frontal zone of the Ob River estuary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-123, https://doi.org/10.5194/egusphere-egu2020-123, 2020.
EGU2020-8379 | Displays | BG4.1
Biogeochemistry of the Western Irish Shelf: The role of picoplankton as assessed by flow cytometry and remote sensingMonica Mullins and Prof. Peter Croot
A key challenge in understanding how climate change will impact continental shelf ecosystems is to understand the physical and chemical drivers of primary productivity in these systems and to assess the natural variability on spatial and temporal scales. Presently the impacts of climate change on ecosystem processes/services along the western Irish shelf are poorly known due to a lack of in situ data, this is most notable for the contribution from picoplankton. In this project, we were able to take advantage of the annual WESPAS Fisheries surveys along the Western Shelf waters from 47°N northwards to 58°30’N onboard the Celtic Explorer to obtain biogeochemical data for this region. A number of key Essential Ocean Variables (EOVs) have been measured annually since 2016; including nutrients, baseline optical measurements of CDOM and FDOM, phytoplankton abundance via flow cytometry (Accuri C6) and Chlorophyll concentration in surface waters. Utilizing data from the Sentinel series of satellite allows us then to examine in more detail the potential drivers of picoplankton abundance and their impact on C and other elemental biogeochemical cycles in these waters.
The overarching aim of this work is to provide baseline data for developing biogeochemical climatologies for this region and for determining Good Environmental Status (GES) as per the EU Marine Strategy Framework Directive.
This publication/presentation* has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 13/RC/2092 and is co-funded under the European Regional Development Fund and by PIPCO RSG and its member companies.
How to cite: Mullins, M. and Croot, P. P.: Biogeochemistry of the Western Irish Shelf: The role of picoplankton as assessed by flow cytometry and remote sensing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8379, https://doi.org/10.5194/egusphere-egu2020-8379, 2020.
A key challenge in understanding how climate change will impact continental shelf ecosystems is to understand the physical and chemical drivers of primary productivity in these systems and to assess the natural variability on spatial and temporal scales. Presently the impacts of climate change on ecosystem processes/services along the western Irish shelf are poorly known due to a lack of in situ data, this is most notable for the contribution from picoplankton. In this project, we were able to take advantage of the annual WESPAS Fisheries surveys along the Western Shelf waters from 47°N northwards to 58°30’N onboard the Celtic Explorer to obtain biogeochemical data for this region. A number of key Essential Ocean Variables (EOVs) have been measured annually since 2016; including nutrients, baseline optical measurements of CDOM and FDOM, phytoplankton abundance via flow cytometry (Accuri C6) and Chlorophyll concentration in surface waters. Utilizing data from the Sentinel series of satellite allows us then to examine in more detail the potential drivers of picoplankton abundance and their impact on C and other elemental biogeochemical cycles in these waters.
The overarching aim of this work is to provide baseline data for developing biogeochemical climatologies for this region and for determining Good Environmental Status (GES) as per the EU Marine Strategy Framework Directive.
This publication/presentation* has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 13/RC/2092 and is co-funded under the European Regional Development Fund and by PIPCO RSG and its member companies.
How to cite: Mullins, M. and Croot, P. P.: Biogeochemistry of the Western Irish Shelf: The role of picoplankton as assessed by flow cytometry and remote sensing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8379, https://doi.org/10.5194/egusphere-egu2020-8379, 2020.
EGU2020-19914 | Displays | BG4.1
Variations of microbial activity and diversity in mesoscale eddies formed in the Eastern boundary upwelling system off West AfricaKevin W. Becker, Quentin Devresse, and Anja Engel
Mesoscale eddies formed at Eastern boundary upwelling systems (EBUS) are important vehicles for nutrients and carbon to the open oligotrophic ocean that influence the biogeochemistry on relatively small spatial scales (on the order of 100 km). They impact upper-ocean chemistry and biology through a number of processes. For example, in cyclonic eddies upward nutrient supply to the euphotic zone typically results in intensified primary productivity and changes in community structure, both of which affect export fluxes of carbon to the deep ocean. Therefore, the factors that control the (sub)mesoscale dynamics of the upper ocean are essential to understanding the efficiency of the biological carbon pump. However, the governing dynamical processes are largely unknown, and so is the overall biogeochemical and ecosystem response. To investigate the horizontal and vertical variability of phytoplankton and heterotrophic bacteria within and around mesoscale eddies, we collected samples along a zonal corridor of the westward propagation of eddies between the Cape Verde Islands and Mauretania as well as from a cyclonic eddy along this transect at high spatial resolution. In the eddy, we generally observed enhanced primary production, based on 14C incorporation, and heterotrophic microbial activity, based on 3H leucine incorporation, compared to the surrounding waters. Similarly, microbial heterotrophic respiration rates obtained from optode‐based oxygen consumption measurements during dark incubations were highest inside the eddy. However, the detailed eddy survey revealed a patchy distribution of all microbial process rates. The rates were highest in the Northern and Western periphery of the eddy where depth-integrated primary and heterotrophic production were more than three times higher than in the eddy core. The patchy distribution was also apparent from flow cytometry data, which showed higher relative abundances of larger eukaryotic phytoplankton (nanoplankton) compared to picoplankton in the most productive regions of the eddy. The higher activities were additionally accompanied by a higher relative abundance of high nucleic acid containing bacteria, which are considered the more active members of the given community compared to low nucleic acid-containing bacteria. The enhanced primary production, particularly in the Northern and Western eddy peripheries, will fuel export production particularly in these regions. To gain further insight into the organic carbon dynamics, data on the spatial distribution and the lateral and vertical fluxes of dissolved and particulate organic matter are currently underway. While our data confirm previous studies of enhanced biological activity within eddies formed in EBUS regions, it also indicates that the effect of variable phytoplankton and heterotrophic bacterial distributions and activity within an eddy leads to consequences for the spatial and temporal representativeness of measurements from only a few samples. This study thus contributes to a more comprehensive view on the functioning of eddy dynamics and it will facilitate modelling efforts on the role that eddies play in the ocean carbon budget.
How to cite: Becker, K. W., Devresse, Q., and Engel, A.: Variations of microbial activity and diversity in mesoscale eddies formed in the Eastern boundary upwelling system off West Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19914, https://doi.org/10.5194/egusphere-egu2020-19914, 2020.
Mesoscale eddies formed at Eastern boundary upwelling systems (EBUS) are important vehicles for nutrients and carbon to the open oligotrophic ocean that influence the biogeochemistry on relatively small spatial scales (on the order of 100 km). They impact upper-ocean chemistry and biology through a number of processes. For example, in cyclonic eddies upward nutrient supply to the euphotic zone typically results in intensified primary productivity and changes in community structure, both of which affect export fluxes of carbon to the deep ocean. Therefore, the factors that control the (sub)mesoscale dynamics of the upper ocean are essential to understanding the efficiency of the biological carbon pump. However, the governing dynamical processes are largely unknown, and so is the overall biogeochemical and ecosystem response. To investigate the horizontal and vertical variability of phytoplankton and heterotrophic bacteria within and around mesoscale eddies, we collected samples along a zonal corridor of the westward propagation of eddies between the Cape Verde Islands and Mauretania as well as from a cyclonic eddy along this transect at high spatial resolution. In the eddy, we generally observed enhanced primary production, based on 14C incorporation, and heterotrophic microbial activity, based on 3H leucine incorporation, compared to the surrounding waters. Similarly, microbial heterotrophic respiration rates obtained from optode‐based oxygen consumption measurements during dark incubations were highest inside the eddy. However, the detailed eddy survey revealed a patchy distribution of all microbial process rates. The rates were highest in the Northern and Western periphery of the eddy where depth-integrated primary and heterotrophic production were more than three times higher than in the eddy core. The patchy distribution was also apparent from flow cytometry data, which showed higher relative abundances of larger eukaryotic phytoplankton (nanoplankton) compared to picoplankton in the most productive regions of the eddy. The higher activities were additionally accompanied by a higher relative abundance of high nucleic acid containing bacteria, which are considered the more active members of the given community compared to low nucleic acid-containing bacteria. The enhanced primary production, particularly in the Northern and Western eddy peripheries, will fuel export production particularly in these regions. To gain further insight into the organic carbon dynamics, data on the spatial distribution and the lateral and vertical fluxes of dissolved and particulate organic matter are currently underway. While our data confirm previous studies of enhanced biological activity within eddies formed in EBUS regions, it also indicates that the effect of variable phytoplankton and heterotrophic bacterial distributions and activity within an eddy leads to consequences for the spatial and temporal representativeness of measurements from only a few samples. This study thus contributes to a more comprehensive view on the functioning of eddy dynamics and it will facilitate modelling efforts on the role that eddies play in the ocean carbon budget.
How to cite: Becker, K. W., Devresse, Q., and Engel, A.: Variations of microbial activity and diversity in mesoscale eddies formed in the Eastern boundary upwelling system off West Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19914, https://doi.org/10.5194/egusphere-egu2020-19914, 2020.
EGU2020-4972 | Displays | BG4.1
Spatial variability and driving factors of carbon in typical estuarine sediments in northern ChinaZhitong Yu, Xiujun Wang, Luojia Hu, and Wei Yao
Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is designed to investigate the spatial variability of organic (TOC) and inorganic carbon (TIC), and to explore the mechanisms regulating their dynamics in the Yellow River Estuary (YRE) and Liao River Estuary (LRE). Based on data of the surface sediment cores, we found that TIC (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the YRE, but TIC (0.4 - 4.2 g kg-1) much lower than TOC (0.1 - 8.7 g kg-1) in the LRE. Both TOC and TIC were generally higher to the north than to the south in the YRE, and higher offshore than nearshore in the LRE, primarily due to the differences in kinetic energy level (i.e., higher to the south and nearshore). The ranges of C:N and δ13Corg were smaller in the YRE (2.1 - 10.1 and -24.26‰ ~ -22.66‰) than in the LRE (0.8 - 13.4 and -27.80‰ ~ -22.12‰). Our analysis suggested that TOC was mainly from marine sources in the YER, except in the southern shallow bay where approximately 75% of TOC was terrigenous. The contribution of terrestrial sources TOC was much higher in the nearshore area than in the offshore area in the LRE. The overall low levels of TOC were due to profound resuspension that could cause enhanced decomposition. On the other hand, high levels of TIC resulted partly from higher rates of biological production, and partly from decomposition of TOC associated with sediment resuspension. The isotopic signiture in TIC seems to imply that the latter is dominant in forming more TIC in both the YRE and LRE, and there may be transfer of OC to IC in the water column. Further studies with integrative and quantitative approaches are needed not only to assess the spatial and temporal variations of major carbon forms in the water column and sediments, but also to quantify the contributions of various sources and transformations among the different carbon pools, which aims to better understand the carbon cycle in northern China in a changing climate.
How to cite: Yu, Z., Wang, X., Hu, L., and Yao, W.: Spatial variability and driving factors of carbon in typical estuarine sediments in northern China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4972, https://doi.org/10.5194/egusphere-egu2020-4972, 2020.
Studying the carbon dynamics of estuarine sediment is crucial to understanding of carbon cycle in the coastal ocean. This study is designed to investigate the spatial variability of organic (TOC) and inorganic carbon (TIC), and to explore the mechanisms regulating their dynamics in the Yellow River Estuary (YRE) and Liao River Estuary (LRE). Based on data of the surface sediment cores, we found that TIC (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the YRE, but TIC (0.4 - 4.2 g kg-1) much lower than TOC (0.1 - 8.7 g kg-1) in the LRE. Both TOC and TIC were generally higher to the north than to the south in the YRE, and higher offshore than nearshore in the LRE, primarily due to the differences in kinetic energy level (i.e., higher to the south and nearshore). The ranges of C:N and δ13Corg were smaller in the YRE (2.1 - 10.1 and -24.26‰ ~ -22.66‰) than in the LRE (0.8 - 13.4 and -27.80‰ ~ -22.12‰). Our analysis suggested that TOC was mainly from marine sources in the YER, except in the southern shallow bay where approximately 75% of TOC was terrigenous. The contribution of terrestrial sources TOC was much higher in the nearshore area than in the offshore area in the LRE. The overall low levels of TOC were due to profound resuspension that could cause enhanced decomposition. On the other hand, high levels of TIC resulted partly from higher rates of biological production, and partly from decomposition of TOC associated with sediment resuspension. The isotopic signiture in TIC seems to imply that the latter is dominant in forming more TIC in both the YRE and LRE, and there may be transfer of OC to IC in the water column. Further studies with integrative and quantitative approaches are needed not only to assess the spatial and temporal variations of major carbon forms in the water column and sediments, but also to quantify the contributions of various sources and transformations among the different carbon pools, which aims to better understand the carbon cycle in northern China in a changing climate.
How to cite: Yu, Z., Wang, X., Hu, L., and Yao, W.: Spatial variability and driving factors of carbon in typical estuarine sediments in northern China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4972, https://doi.org/10.5194/egusphere-egu2020-4972, 2020.
EGU2020-13458 | Displays | BG4.1
Modeling the biogeochemical dynamics of the Northern Adriatic Sea with an explicit benthic-pelagic couplingIsabella Scroccaro, Marco Zavatarelli, and Tomas Lovato
A high resolution three-dimensional (physical-biogeochemical) numerical model of the Northern Adriatic Sea has been implemented by coupling the European general circulation model - NEMO (Nucleus for European Modeling of the Ocean, https://www.nemo-ocean.eu/), with the marine biogeochemical model BFM (Biogeochemical Flux Model, bfm-community.eu/).
The modeling system is implemented with a horizontal resolution of about 800 m and a vertical resolution of 2 m, in z coordinates. The NEMO model is off-line nested at its open boundary with the Mediterranean Sea physical model of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/).
The BFM component of the modeling system now includes a detailed and explicit representation of the benthic biogeochemical cycling (benthic fauna, organic matter, nutrients), as well as the dynamics of the benthic-pelagic processes.
The inclusion of the benthic dynamics in the 3D biogeochemical modeling of a shallow coastal basin, such as the Northern Adriatic Sea, represents an innovative application in the field of coastal and shelf biogeochemistry, since benthic biogeochemical processes can significantly constrain the coastal environmental dynamics.
Simulations have been performed in hindcasting mode with interannually varying physical (surface heat and water fluxes, including river runoff) and biogeochemical (river nutrient load) forcing. Results are validated against available observations from in situ and satellite platforms for sea surface temperatures, chlorophyll-a and dissolved inorganic nutrients, in order to explore the sensitivity of the pelagic environment to the inclusion of an explicit benthic dynamics and to evaluate issues related to model coupling and error/prediction limits.
The study is carried out in the framework of the European Project H2020 "ODYSSEA" (Operating a network of integrated observatory systems in the Mediterranean SEA, http://odysseaplatform.eu/), with the final goal to build an on-line forecasting modeling system of the Northern Adriatic Sea.
How to cite: Scroccaro, I., Zavatarelli, M., and Lovato, T.: Modeling the biogeochemical dynamics of the Northern Adriatic Sea with an explicit benthic-pelagic coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13458, https://doi.org/10.5194/egusphere-egu2020-13458, 2020.
A high resolution three-dimensional (physical-biogeochemical) numerical model of the Northern Adriatic Sea has been implemented by coupling the European general circulation model - NEMO (Nucleus for European Modeling of the Ocean, https://www.nemo-ocean.eu/), with the marine biogeochemical model BFM (Biogeochemical Flux Model, bfm-community.eu/).
The modeling system is implemented with a horizontal resolution of about 800 m and a vertical resolution of 2 m, in z coordinates. The NEMO model is off-line nested at its open boundary with the Mediterranean Sea physical model of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/).
The BFM component of the modeling system now includes a detailed and explicit representation of the benthic biogeochemical cycling (benthic fauna, organic matter, nutrients), as well as the dynamics of the benthic-pelagic processes.
The inclusion of the benthic dynamics in the 3D biogeochemical modeling of a shallow coastal basin, such as the Northern Adriatic Sea, represents an innovative application in the field of coastal and shelf biogeochemistry, since benthic biogeochemical processes can significantly constrain the coastal environmental dynamics.
Simulations have been performed in hindcasting mode with interannually varying physical (surface heat and water fluxes, including river runoff) and biogeochemical (river nutrient load) forcing. Results are validated against available observations from in situ and satellite platforms for sea surface temperatures, chlorophyll-a and dissolved inorganic nutrients, in order to explore the sensitivity of the pelagic environment to the inclusion of an explicit benthic dynamics and to evaluate issues related to model coupling and error/prediction limits.
The study is carried out in the framework of the European Project H2020 "ODYSSEA" (Operating a network of integrated observatory systems in the Mediterranean SEA, http://odysseaplatform.eu/), with the final goal to build an on-line forecasting modeling system of the Northern Adriatic Sea.
How to cite: Scroccaro, I., Zavatarelli, M., and Lovato, T.: Modeling the biogeochemical dynamics of the Northern Adriatic Sea with an explicit benthic-pelagic coupling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13458, https://doi.org/10.5194/egusphere-egu2020-13458, 2020.
EGU2020-1555 | Displays | BG4.1
In-situ investigation of alkalinity - denitrification coupling in the sediment - water column interfaceMona Norbisrath
Abstract: EGU 2020
Session: BG4.1: Biogeochemistry of coastal seas and continental shelves (Helmuth Thomas)
Mona Norbisrath1, Kirstin Dähnke1, Andreas Neumann1, Justus van Beusekom1, Nele Treblin1, Bryce van Dam1, Helmuth Thomas1
1Institute for Coastal Research, Helmholtz-Zentrum Geesthacht
Contact: mona.norbisrath@hzg.de
In-situ investigation of alkalinity - denitrification coupling in the sediment - water column interface
As a shallow shelf sea, the North Sea is very vulnerable to anthropogenic impacts like rising CO2 concentrations, increasing nutrient inflows and coincident oxygen loss.
Two important processes that determine the role of the coastal ocean as a net sink for anthropogenic CO2 are alkalinity and denitrification. Alkalinity, the acid binding capacity of the ocean, buffers natural and anthropogenic changes in the oceans’ CO2 and pH system. Denitrification, an anaerobic microbial process in which organic matter is respired, uses NO3- instead of O2 as a terminal electron acceptor. Denitrification reduces NO3- to N2 and in turn produces alkalinity.
Eutrophication, caused by leaching of excess fertilizer nutrients into coastal seas, leads to enhanced denitrification and therefore to enhanced alkalinity as well as an increased uptake of CO2. However, the quantitative relationship between denitrification and alkalinity production and its control under changing environmental conditions is yet to be determined.
In the German Bight, denitrification is usually restricted to anoxic sediments. In this study, we therefore focus on in-situ experiments in the sediment - water column interface. Batch core incubations in combination with the isotope pairing technique (IPT) and labelled nitrate additions were used to detect denitrification and gauge its effect on alkalinity production during a cruise on RV Heincke (HE541) in September 2019 in the German Bight. To quantify denitrification, the production of all three N2 isotope species (28N2, 29N2 and 30N2) is measured using a membrane inlet mass spectrometer (MIMS). We expect an increase of denitrification rates with nitrate concentrations and incubation times, and we will quantify benthic denitrification. We will further evaluate the assumption of concurrent increases in alkalinity production and will investigate the benthic-pelagic coupling of these processes. Investigating the in-situ interaction of metabolic alkalinity and denitrification will give an estimation of the alkalinity impact on the reduction of anthropogenic CO2 in the atmosphere.
How to cite: Norbisrath, M.: In-situ investigation of alkalinity - denitrification coupling in the sediment - water column interface, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1555, https://doi.org/10.5194/egusphere-egu2020-1555, 2020.
Abstract: EGU 2020
Session: BG4.1: Biogeochemistry of coastal seas and continental shelves (Helmuth Thomas)
Mona Norbisrath1, Kirstin Dähnke1, Andreas Neumann1, Justus van Beusekom1, Nele Treblin1, Bryce van Dam1, Helmuth Thomas1
1Institute for Coastal Research, Helmholtz-Zentrum Geesthacht
Contact: mona.norbisrath@hzg.de
In-situ investigation of alkalinity - denitrification coupling in the sediment - water column interface
As a shallow shelf sea, the North Sea is very vulnerable to anthropogenic impacts like rising CO2 concentrations, increasing nutrient inflows and coincident oxygen loss.
Two important processes that determine the role of the coastal ocean as a net sink for anthropogenic CO2 are alkalinity and denitrification. Alkalinity, the acid binding capacity of the ocean, buffers natural and anthropogenic changes in the oceans’ CO2 and pH system. Denitrification, an anaerobic microbial process in which organic matter is respired, uses NO3- instead of O2 as a terminal electron acceptor. Denitrification reduces NO3- to N2 and in turn produces alkalinity.
Eutrophication, caused by leaching of excess fertilizer nutrients into coastal seas, leads to enhanced denitrification and therefore to enhanced alkalinity as well as an increased uptake of CO2. However, the quantitative relationship between denitrification and alkalinity production and its control under changing environmental conditions is yet to be determined.
In the German Bight, denitrification is usually restricted to anoxic sediments. In this study, we therefore focus on in-situ experiments in the sediment - water column interface. Batch core incubations in combination with the isotope pairing technique (IPT) and labelled nitrate additions were used to detect denitrification and gauge its effect on alkalinity production during a cruise on RV Heincke (HE541) in September 2019 in the German Bight. To quantify denitrification, the production of all three N2 isotope species (28N2, 29N2 and 30N2) is measured using a membrane inlet mass spectrometer (MIMS). We expect an increase of denitrification rates with nitrate concentrations and incubation times, and we will quantify benthic denitrification. We will further evaluate the assumption of concurrent increases in alkalinity production and will investigate the benthic-pelagic coupling of these processes. Investigating the in-situ interaction of metabolic alkalinity and denitrification will give an estimation of the alkalinity impact on the reduction of anthropogenic CO2 in the atmosphere.
How to cite: Norbisrath, M.: In-situ investigation of alkalinity - denitrification coupling in the sediment - water column interface, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1555, https://doi.org/10.5194/egusphere-egu2020-1555, 2020.
EGU2020-2855 | Displays | BG4.1
The Ocean's Alkalinity: Connecting geological and metabolic processes and time-scalesHelmuth Thomas, Mona Norbisrath, Nele Treblin, Bryce van Dam, Johannes Pätsch, and Kay-Christian Emeis
The Earth system has entered a new geological epoch, the Anthropocene. The oceans’ capacity to regulate atmospheric carbon dioxide (CO 2 ) at various
timescales is amongst the most crucial players to maintain climate on Earth in a habitable range. The biogeochemical property exerting this regulatory mechanism is alkalinity, the oceans’ CO 2 and pH buffer capacity. The proposed project will investigate how the oceans’ alkalinity is impacted firstly by human measures, required by the Paris agreement (COP 21) to mitigate climate change via bioenergy production and its downstream effects on shallow oceans, and secondly by climate change, in particular by increased weathering in the Arctic because of ice retreat.
How to cite: Thomas, H., Norbisrath, M., Treblin, N., van Dam, B., Pätsch, J., and Emeis, K.-C.: The Ocean's Alkalinity: Connecting geological and metabolic processes and time-scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2855, https://doi.org/10.5194/egusphere-egu2020-2855, 2020.
The Earth system has entered a new geological epoch, the Anthropocene. The oceans’ capacity to regulate atmospheric carbon dioxide (CO 2 ) at various
timescales is amongst the most crucial players to maintain climate on Earth in a habitable range. The biogeochemical property exerting this regulatory mechanism is alkalinity, the oceans’ CO 2 and pH buffer capacity. The proposed project will investigate how the oceans’ alkalinity is impacted firstly by human measures, required by the Paris agreement (COP 21) to mitigate climate change via bioenergy production and its downstream effects on shallow oceans, and secondly by climate change, in particular by increased weathering in the Arctic because of ice retreat.
How to cite: Thomas, H., Norbisrath, M., Treblin, N., van Dam, B., Pätsch, J., and Emeis, K.-C.: The Ocean's Alkalinity: Connecting geological and metabolic processes and time-scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2855, https://doi.org/10.5194/egusphere-egu2020-2855, 2020.
EGU2020-1556 | Displays | BG4.1
Investigation of different anaerobic respiratory pathways and their impacts on the release ratio of DIC/alkalinity at selected North Sea regionsNele Treblin, Michael E. Böttcher, Tristan Zimmermann, Daniel Pröfrock, Mona Norbisrath, Bryce van Dam, and Helmuth Thomas
Investigation of different anaerobic respiratory pathways and their impacts on the release ratio of DIC/alkalinity at selected North Sea regions
Tentative authors: Nele Treblin1,2, Michael E. Böttcher3, Tristan Zimmermann1, Daniel Pröfrock1, Mona Norbisrath1, Bryce van Dam1, Helmuth Thomas1
1Institute for Coastal Research, Helmholtz Center Geesthacht
2Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research
3Leibniz Institute for Baltic Sea Research Warnemünde
Coastal sediments play a crucial role in carbon metabolism, which decreases with increasing distance from the shoreline. The North Sea, a NW European shelf sea, represents a relatively shallow, well-ventilated (on annual timescales) system, connected to the Baltic Sea and the North Atlantic. Especially the southern part of the North Sea receives a large amount of organic matter (OM), both from riverine input and internal North Sea sources. After the depletion of oxygen due to aerobic OM respiration, anaerobic metabolic activities become dominant in the sediment. In the absence of oxygen, electron acceptors, such as NO3-, Fe3+, Mn4+ and SO42-, facilitate not only the release of respired CO2, but also of alkalinity, furthermore enhanced by potential dissolution of sedimentary carbonates. Therefore, under these conditions, benthic-pelagic coupling may impact on the potential to absorb CO2 from the atmosphere.
To investigate the described processes, porewater and sediment samples, collected from six different stations in the German Bight (North Sea) during the RV Heincke cruise HE541 in September 2019, have been analyzed for their vertical concentration profiles of nutrients, various trace metals, sulfur, DIC and alkalinity.
Benthic oxic and anoxic zones have been identified based on the vertical concentration gradients. Furthermore, alkalinity and DIC are set in relation to anaerobic metabolic activities. Finally, active reworking and ventilation becomes pivotal in areas such as the North Sea. Thus, the influence of bioturbation on anaerobic respiration is also considered.
How to cite: Treblin, N., Böttcher, M. E., Zimmermann, T., Pröfrock, D., Norbisrath, M., van Dam, B., and Thomas, H.: Investigation of different anaerobic respiratory pathways and their impacts on the release ratio of DIC/alkalinity at selected North Sea regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1556, https://doi.org/10.5194/egusphere-egu2020-1556, 2020.
Investigation of different anaerobic respiratory pathways and their impacts on the release ratio of DIC/alkalinity at selected North Sea regions
Tentative authors: Nele Treblin1,2, Michael E. Böttcher3, Tristan Zimmermann1, Daniel Pröfrock1, Mona Norbisrath1, Bryce van Dam1, Helmuth Thomas1
1Institute for Coastal Research, Helmholtz Center Geesthacht
2Alfred-Wegener-Institute Helmholtz Center for Polar and Marine Research
3Leibniz Institute for Baltic Sea Research Warnemünde
Coastal sediments play a crucial role in carbon metabolism, which decreases with increasing distance from the shoreline. The North Sea, a NW European shelf sea, represents a relatively shallow, well-ventilated (on annual timescales) system, connected to the Baltic Sea and the North Atlantic. Especially the southern part of the North Sea receives a large amount of organic matter (OM), both from riverine input and internal North Sea sources. After the depletion of oxygen due to aerobic OM respiration, anaerobic metabolic activities become dominant in the sediment. In the absence of oxygen, electron acceptors, such as NO3-, Fe3+, Mn4+ and SO42-, facilitate not only the release of respired CO2, but also of alkalinity, furthermore enhanced by potential dissolution of sedimentary carbonates. Therefore, under these conditions, benthic-pelagic coupling may impact on the potential to absorb CO2 from the atmosphere.
To investigate the described processes, porewater and sediment samples, collected from six different stations in the German Bight (North Sea) during the RV Heincke cruise HE541 in September 2019, have been analyzed for their vertical concentration profiles of nutrients, various trace metals, sulfur, DIC and alkalinity.
Benthic oxic and anoxic zones have been identified based on the vertical concentration gradients. Furthermore, alkalinity and DIC are set in relation to anaerobic metabolic activities. Finally, active reworking and ventilation becomes pivotal in areas such as the North Sea. Thus, the influence of bioturbation on anaerobic respiration is also considered.
How to cite: Treblin, N., Böttcher, M. E., Zimmermann, T., Pröfrock, D., Norbisrath, M., van Dam, B., and Thomas, H.: Investigation of different anaerobic respiratory pathways and their impacts on the release ratio of DIC/alkalinity at selected North Sea regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1556, https://doi.org/10.5194/egusphere-egu2020-1556, 2020.
EGU2020-21539 | Displays | BG4.1
Preindustrial to modern variability of sea surface temperatures and CO2 uptake in the South PacificSara Todorovic, Henry C. Wu, Braddock K. Linsley, Henning Kuhnert, and Delphine Dissard
The modern increase in atmospheric CO2 driven by fossil fuel combustion and land-use change is warming our atmosphere and surface oceans. The absorption of this excess CO2 by the oceans decreases seawater pH in a process known as ocean acidification (OA), which represents a threat to marine ecosystems with adverse impacts on coral health. It is important to understand how modern climate change impacts interannual and interdecadal climatic cycles and atmospheric phenomena which are originating in the Pacific and modulating global climate. There is a scarcity of data necessary to study the impacts of these changes on natural variability on longer timescales. In this study, we present multi-proxy (e.g. Sr/Ca, δ18O, δ13C, B/Ca) reconstructions of sea surface temperature (SST), surface seawater carbonate chemistry, with implications for pH variability of the South Pacific back to preindustrial times. This region of the Pacific is interesting for tracking the development of OA because of the well-constrained interannual to interdecadal SST and SSS variability from existing coral-based reconstructions. Massive corals (Porites sp.) from Rotuma and Tonga will be analyzed to extend the currently available SST reconstructions and expand the spatio-temporal coverage beyond the instrumental records. New monthly-resolved SST records will provide larger analyses exploring the influence of interannual and decadal-interdecadal climatic fluctuations on CO2 absorption and pH variation. We aim to quantify the anthropogenic impact on SST, pH and the ocean carbonate system to achieve a better understanding of the status in the South Pacific under open ocean conditions.
How to cite: Todorovic, S., C. Wu, H., K. Linsley, B., Kuhnert, H., and Dissard, D.: Preindustrial to modern variability of sea surface temperatures and CO2 uptake in the South Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21539, https://doi.org/10.5194/egusphere-egu2020-21539, 2020.
The modern increase in atmospheric CO2 driven by fossil fuel combustion and land-use change is warming our atmosphere and surface oceans. The absorption of this excess CO2 by the oceans decreases seawater pH in a process known as ocean acidification (OA), which represents a threat to marine ecosystems with adverse impacts on coral health. It is important to understand how modern climate change impacts interannual and interdecadal climatic cycles and atmospheric phenomena which are originating in the Pacific and modulating global climate. There is a scarcity of data necessary to study the impacts of these changes on natural variability on longer timescales. In this study, we present multi-proxy (e.g. Sr/Ca, δ18O, δ13C, B/Ca) reconstructions of sea surface temperature (SST), surface seawater carbonate chemistry, with implications for pH variability of the South Pacific back to preindustrial times. This region of the Pacific is interesting for tracking the development of OA because of the well-constrained interannual to interdecadal SST and SSS variability from existing coral-based reconstructions. Massive corals (Porites sp.) from Rotuma and Tonga will be analyzed to extend the currently available SST reconstructions and expand the spatio-temporal coverage beyond the instrumental records. New monthly-resolved SST records will provide larger analyses exploring the influence of interannual and decadal-interdecadal climatic fluctuations on CO2 absorption and pH variation. We aim to quantify the anthropogenic impact on SST, pH and the ocean carbonate system to achieve a better understanding of the status in the South Pacific under open ocean conditions.
How to cite: Todorovic, S., C. Wu, H., K. Linsley, B., Kuhnert, H., and Dissard, D.: Preindustrial to modern variability of sea surface temperatures and CO2 uptake in the South Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21539, https://doi.org/10.5194/egusphere-egu2020-21539, 2020.
EGU2020-18756 | Displays | BG4.1
Climate change, reactive nitrogen, denitrification and N2O: identifying sustainable solutions for the globe.Edwin Haas, Clemens Scheer, Kathrin Fuchs, and Klaus Butterbach-Bahl
EGU2020-5924 | Displays | BG4.1
Paleogene Polar Plankton and export productivity changes between the Eocene and OligoceneGabrielle Rodrigues de Faria, David Lazarus, Ulrich Struck, Gayane Asatryan, Johan Renaudie, and Volkan Ozen
Aiming to support the prediction of future climate developments, this project investigates the role on geological timescale of the ocean plankton in reducing atmospheric carbon concentration by exporting carbon to the deep-sea. While it is well-known that the transition from the Eocene to the Oligocene brought significant climate changes and, in connection, also a change of the oceans’ carbon export production, the important role of phytoplankton and the links to changing ocean circulation are still poorly understood, as is, similarly, the impact on those changes on the diversity of the plankton contributing to the carbon pump. Investigating the nature of this interaction will provide significant insight into the functions of the oceans as climate regulators.
To address those question, we are generating diversity and absolute abundance data for diatoms and radiolarians, biogeographic data for radiolarians, as well as oxygen and carbon isotope data on planktic and benthic foraminifera, and on the fine fraction (<45µm, i. e. coccoliths), as well as other proxies to estimate surface and deep ocean temperatures and export productivity. These will be generated as paired data from individual samples in various deep-sea drilling sites in and around the Southern Ocean (as it is the focal point of the climatic/oceanographic changes at that period). These data will then be compiled and confronted to an ocean circulation model.
Here we will present our results so far (oxygen and carbon isotope on the bulk fine fraction, as well as radiolarian and diatom diversity estimates), based on two main localities from the antarctic (ODP Site 689B from the Weddell Sea) and the subantarctic (ODP Site 1090B on the southern flank of the Agulhas ridge) South Atlantic. A comparison with a newly generated, database-driven diversity analysis of the same groups in the same region, using the Neptune (NSB) database, will also be shown. While the exhaustive taxonomical compilation made on these two sites for the diatoms records three times more species than what was recorded in the literature for the Southern Ocean biome, it still shows an evolutionary turnover at the Eocene-Oligocene, just as the classic, NSB-driven analysis does. The fine fraction oxygen isotope at both sites 689B and 1090B show a pattern similar to that recorded in planktonic foraminifera in neighbour sites, indicating a significant drop in SST close to the Eocene-Oligocene boundary, while the fine fraction carbon isotope signal in the antarctic site shows a subsequent decrease indicating changes in exported productivity 2Myr after the global cooling.
How to cite: Rodrigues de Faria, G., Lazarus, D., Struck, U., Asatryan, G., Renaudie, J., and Ozen, V.: Paleogene Polar Plankton and export productivity changes between the Eocene and Oligocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5924, https://doi.org/10.5194/egusphere-egu2020-5924, 2020.
Aiming to support the prediction of future climate developments, this project investigates the role on geological timescale of the ocean plankton in reducing atmospheric carbon concentration by exporting carbon to the deep-sea. While it is well-known that the transition from the Eocene to the Oligocene brought significant climate changes and, in connection, also a change of the oceans’ carbon export production, the important role of phytoplankton and the links to changing ocean circulation are still poorly understood, as is, similarly, the impact on those changes on the diversity of the plankton contributing to the carbon pump. Investigating the nature of this interaction will provide significant insight into the functions of the oceans as climate regulators.
To address those question, we are generating diversity and absolute abundance data for diatoms and radiolarians, biogeographic data for radiolarians, as well as oxygen and carbon isotope data on planktic and benthic foraminifera, and on the fine fraction (<45µm, i. e. coccoliths), as well as other proxies to estimate surface and deep ocean temperatures and export productivity. These will be generated as paired data from individual samples in various deep-sea drilling sites in and around the Southern Ocean (as it is the focal point of the climatic/oceanographic changes at that period). These data will then be compiled and confronted to an ocean circulation model.
Here we will present our results so far (oxygen and carbon isotope on the bulk fine fraction, as well as radiolarian and diatom diversity estimates), based on two main localities from the antarctic (ODP Site 689B from the Weddell Sea) and the subantarctic (ODP Site 1090B on the southern flank of the Agulhas ridge) South Atlantic. A comparison with a newly generated, database-driven diversity analysis of the same groups in the same region, using the Neptune (NSB) database, will also be shown. While the exhaustive taxonomical compilation made on these two sites for the diatoms records three times more species than what was recorded in the literature for the Southern Ocean biome, it still shows an evolutionary turnover at the Eocene-Oligocene, just as the classic, NSB-driven analysis does. The fine fraction oxygen isotope at both sites 689B and 1090B show a pattern similar to that recorded in planktonic foraminifera in neighbour sites, indicating a significant drop in SST close to the Eocene-Oligocene boundary, while the fine fraction carbon isotope signal in the antarctic site shows a subsequent decrease indicating changes in exported productivity 2Myr after the global cooling.
How to cite: Rodrigues de Faria, G., Lazarus, D., Struck, U., Asatryan, G., Renaudie, J., and Ozen, V.: Paleogene Polar Plankton and export productivity changes between the Eocene and Oligocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5924, https://doi.org/10.5194/egusphere-egu2020-5924, 2020.
EGU2020-3544 | Displays | BG4.1
Quantifying cloud development from geostationary observationsTorsten Seelig, Yuanyuan Hu, Hartwig Deneke, and Matthias Tesche
Clouds and their interaction with short- and longwave radiation represent one of the major uncertainties in our understanding of global climate change. The presence of clouds, particularly of bright low-level water clouds, doubles the Earth’s albedo and they are responsible for half of the solar radiation reflected into space.
Contrary to spaceborne, polar-orbiting observations which are of great detail at fixed time we focus on spaceborne time-resolved measurements of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation. We present an innovative method to track warm low-level clouds. The method widely used in experimental fluid mechanics and known as particle image velocimetry (PIV) [1, 2] relies on basic pattern matching. The principle of pattern matching is usually referred to as cross-correlation. It tells us something about displacements and enables the reconstruction of cloud trajectories. Thereby, we quantify cloud development and in combination with the CLAAS-2 dataset [3] we characterize temporal changes of cloud properties.
References
[1] Keane, R. D., Adrian, R. J.: Theory of cross-correlation analysis of PIV images. Applied Scientific Research 49, 191–215 (1992). DOI: 10.1007/BF00384623
[2] Tropea, C., Alexander, L., Yarin, L., (Eds.), F.: Handbook of experimental fluid mechanics. Springer (2007)
[3] Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., Meirink, J. F.: The MSG-SEVIRI-based cloud property data
record CLAAS-2. Earth System Science Data 9(2), 415–434 (2017). DOI: 10.5194/essd-9-415-2017
How to cite: Seelig, T., Hu, Y., Deneke, H., and Tesche, M.: Quantifying cloud development from geostationary observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3544, https://doi.org/10.5194/egusphere-egu2020-3544, 2020.
Clouds and their interaction with short- and longwave radiation represent one of the major uncertainties in our understanding of global climate change. The presence of clouds, particularly of bright low-level water clouds, doubles the Earth’s albedo and they are responsible for half of the solar radiation reflected into space.
Contrary to spaceborne, polar-orbiting observations which are of great detail at fixed time we focus on spaceborne time-resolved measurements of the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation. We present an innovative method to track warm low-level clouds. The method widely used in experimental fluid mechanics and known as particle image velocimetry (PIV) [1, 2] relies on basic pattern matching. The principle of pattern matching is usually referred to as cross-correlation. It tells us something about displacements and enables the reconstruction of cloud trajectories. Thereby, we quantify cloud development and in combination with the CLAAS-2 dataset [3] we characterize temporal changes of cloud properties.
References
[1] Keane, R. D., Adrian, R. J.: Theory of cross-correlation analysis of PIV images. Applied Scientific Research 49, 191–215 (1992). DOI: 10.1007/BF00384623
[2] Tropea, C., Alexander, L., Yarin, L., (Eds.), F.: Handbook of experimental fluid mechanics. Springer (2007)
[3] Benas, N., Finkensieper, S., Stengel, M., van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., Meirink, J. F.: The MSG-SEVIRI-based cloud property data
record CLAAS-2. Earth System Science Data 9(2), 415–434 (2017). DOI: 10.5194/essd-9-415-2017
How to cite: Seelig, T., Hu, Y., Deneke, H., and Tesche, M.: Quantifying cloud development from geostationary observations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3544, https://doi.org/10.5194/egusphere-egu2020-3544, 2020.
BG4.3 – Mobilization of permafrost material to aquatic systems and its biogeochemical fate
EGU2020-2214 | Displays | BG4.3 | Highlight
How Permafrost-Affected Arctic Rivers May Become Net Carbon Sinks Over the 21st CenturySimon Bowring, Ronny Lauerwald, Bertrand Guenet, Albert Jornet-Puig, and Philippe Ciais
The rivers of the Arctic permafrost region discharge about 11% of the global volumetric river water flux into oceans, doing so into an ocean (the Arctic) with 1% of global ocean water volume and a very high surface area: volume ratio, making it comparatively sensitive to influxes of terrestrially derived matter. This river flux is sourced from precipitation as either rain or snow, which, upon initial contact with the landscape has the immediate potential to interact with carbon(C) in one of two ways: Water running over carbonate or silicate –bearing rocks will cause a reaction whose reactant requires the uptake of atmospheric CO2, which is subsequently transported in river water. This ‘inorganic’ C derived from interaction of water, atmosphere and lithosphere thus represents a C storage or ‘sink’ vector. In addition, water interacting with organic matter in tree canopies, litter or soil can dissolve C contained therein, and transfer it via surface and subsurface water flows into rivers, whereupon it may either be metabolised to the atmosphere or exported to the sea. Recent improvements in understanding of terrestrial C dynamics indicate that this hydrologic transfer of organic matter represents the dominant fate of organic carbon, after plant and soil respiration are accounted for. In the context of amplified Arctic anthropogenic warming, the thermal exposure imposed on the permafrost C stock with expectations of enhanced future precipitation point toward substantial shifts in the lateral flux-mediated organic and inorganic C cycle. However, the complex totality of the processes involved make prediction of this shift difficult.
Here, we build upon previous advances in earth system modelling to include the production and lateral transport of dissolved organic C (DOC), respiration-derived CO2, and rock-weathering derived alkalinity in a global land surface model (ORCHIDEE) previously developed to specifically resolve permafrost-region processes. By subjecting the resulting model to state of the art soil, water, vegetation and climatology datasets, we are able to reproduce existing lateral transport processes and fluxes, and project them into the future. In what follows, we show that while Pan-Arctic alkalinity exports and attendant CO2 uptake increase over the 20th and 21st Centuries under warming, DOC fluxes decline largely as a result of deeper soil water flow-paths and the resulting changes in carbon-water interactions. Rather than displaying a clear continuous (linear or non-linear) temperature sensitivity, future Arctic DOC release can increase or decrease with temperature depending on changes in the thermal state and hydrologic flow paths in the deep soil. The net marine effect of these fluxes is to decrease future terrestrially derived seawater acidification. Conversely, our simulations show that CO2 uptake from chemical weathering exceeds its evasion from river water, meaning that when weathering is considered, the inland water carbon cycle shifts from being a net C-source to a sink. Further, this sink increases into the 21st C, partially buffering soil C loss from permafrost thaw.
How to cite: Bowring, S., Lauerwald, R., Guenet, B., Jornet-Puig, A., and Ciais, P.: How Permafrost-Affected Arctic Rivers May Become Net Carbon Sinks Over the 21st Century , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2214, https://doi.org/10.5194/egusphere-egu2020-2214, 2020.
The rivers of the Arctic permafrost region discharge about 11% of the global volumetric river water flux into oceans, doing so into an ocean (the Arctic) with 1% of global ocean water volume and a very high surface area: volume ratio, making it comparatively sensitive to influxes of terrestrially derived matter. This river flux is sourced from precipitation as either rain or snow, which, upon initial contact with the landscape has the immediate potential to interact with carbon(C) in one of two ways: Water running over carbonate or silicate –bearing rocks will cause a reaction whose reactant requires the uptake of atmospheric CO2, which is subsequently transported in river water. This ‘inorganic’ C derived from interaction of water, atmosphere and lithosphere thus represents a C storage or ‘sink’ vector. In addition, water interacting with organic matter in tree canopies, litter or soil can dissolve C contained therein, and transfer it via surface and subsurface water flows into rivers, whereupon it may either be metabolised to the atmosphere or exported to the sea. Recent improvements in understanding of terrestrial C dynamics indicate that this hydrologic transfer of organic matter represents the dominant fate of organic carbon, after plant and soil respiration are accounted for. In the context of amplified Arctic anthropogenic warming, the thermal exposure imposed on the permafrost C stock with expectations of enhanced future precipitation point toward substantial shifts in the lateral flux-mediated organic and inorganic C cycle. However, the complex totality of the processes involved make prediction of this shift difficult.
Here, we build upon previous advances in earth system modelling to include the production and lateral transport of dissolved organic C (DOC), respiration-derived CO2, and rock-weathering derived alkalinity in a global land surface model (ORCHIDEE) previously developed to specifically resolve permafrost-region processes. By subjecting the resulting model to state of the art soil, water, vegetation and climatology datasets, we are able to reproduce existing lateral transport processes and fluxes, and project them into the future. In what follows, we show that while Pan-Arctic alkalinity exports and attendant CO2 uptake increase over the 20th and 21st Centuries under warming, DOC fluxes decline largely as a result of deeper soil water flow-paths and the resulting changes in carbon-water interactions. Rather than displaying a clear continuous (linear or non-linear) temperature sensitivity, future Arctic DOC release can increase or decrease with temperature depending on changes in the thermal state and hydrologic flow paths in the deep soil. The net marine effect of these fluxes is to decrease future terrestrially derived seawater acidification. Conversely, our simulations show that CO2 uptake from chemical weathering exceeds its evasion from river water, meaning that when weathering is considered, the inland water carbon cycle shifts from being a net C-source to a sink. Further, this sink increases into the 21st C, partially buffering soil C loss from permafrost thaw.
How to cite: Bowring, S., Lauerwald, R., Guenet, B., Jornet-Puig, A., and Ciais, P.: How Permafrost-Affected Arctic Rivers May Become Net Carbon Sinks Over the 21st Century , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2214, https://doi.org/10.5194/egusphere-egu2020-2214, 2020.
EGU2020-8311 | Displays | BG4.3
Degradation of permafrost carbon in the Kolyma RiverKirsi Keskitalo, Lisa Bröder, Dirk Jong, Nikita Zimov, Anya Davydova, Sergey Davydov, Tommaso Tesi, Paul Mann, Negar Haghipour, Timothy Eglinton, and Jorien Vonk
Soil temperatures in permafrost (i.e. perennially frozen ground) are rising globally. The increasing temperatures accelerate permafrost thaw and release of organic carbon, that has been locked in permafrost soils since the last glacial period, to the contemporary carbon cycle. The potential remineralisation of organic carbon to greenhouse gases can contribute to further climate warming. Particulate organic carbon (POC) in the Kolyma River is older than dissolved organic carbon (DOC) thus serves as a good tracer for abrupt permafrost thaw (i.e. river bank erosion and thermokarst) that dominantly releases old POC. While dissolved organic carbon (DOC) mobilised from the old Yedoma outcrops on the banks of the Kolyma River is shown to be highly labile, vulnerability of POC to biodegradation is not yet known. In this study we aim to constrain degradation rates for POC in the Kolyma River. To capture seasonal variability of the POC pool and its degradation rate the incubation was conducted both during the spring freshet and in late summer (2019 and 2018, respectively). We incubated whole-water samples over 9 to 15 days and quantified POC (and DOC) loss over time, as well as dissolved inorganic carbon (DIC). The incubation was carried out in the dark. We also tracked changes in POC composition and age with carbon isotopes (d13C-OC, d13C-DIC, ∆14C). Preliminary results from 2018 suggest a decrease in POC concentrations of up to 30 % while those of DOC decrease by up to 11 %. The rate of POC degradation is nearly three times faster than DOC though the absolute amounts of DOC are in turn higher than those of POC (< 1 mg L-1 for POC and ~3 mg L-1 for DOC). Furthermore, the changes in d13C of POC, DOC and DIC suggest ongoing microbial degradation and conversion of organic carbon into inorganic carbon. These first estimates show that POC degrades fairly rapidly while transported in the Kolyma River. A better understanding of POC degradation along lateral flow paths is critical for improving our knowledge of permafrost thaw and its possible climate impacts in the future.
How to cite: Keskitalo, K., Bröder, L., Jong, D., Zimov, N., Davydova, A., Davydov, S., Tesi, T., Mann, P., Haghipour, N., Eglinton, T., and Vonk, J.: Degradation of permafrost carbon in the Kolyma River , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8311, https://doi.org/10.5194/egusphere-egu2020-8311, 2020.
Soil temperatures in permafrost (i.e. perennially frozen ground) are rising globally. The increasing temperatures accelerate permafrost thaw and release of organic carbon, that has been locked in permafrost soils since the last glacial period, to the contemporary carbon cycle. The potential remineralisation of organic carbon to greenhouse gases can contribute to further climate warming. Particulate organic carbon (POC) in the Kolyma River is older than dissolved organic carbon (DOC) thus serves as a good tracer for abrupt permafrost thaw (i.e. river bank erosion and thermokarst) that dominantly releases old POC. While dissolved organic carbon (DOC) mobilised from the old Yedoma outcrops on the banks of the Kolyma River is shown to be highly labile, vulnerability of POC to biodegradation is not yet known. In this study we aim to constrain degradation rates for POC in the Kolyma River. To capture seasonal variability of the POC pool and its degradation rate the incubation was conducted both during the spring freshet and in late summer (2019 and 2018, respectively). We incubated whole-water samples over 9 to 15 days and quantified POC (and DOC) loss over time, as well as dissolved inorganic carbon (DIC). The incubation was carried out in the dark. We also tracked changes in POC composition and age with carbon isotopes (d13C-OC, d13C-DIC, ∆14C). Preliminary results from 2018 suggest a decrease in POC concentrations of up to 30 % while those of DOC decrease by up to 11 %. The rate of POC degradation is nearly three times faster than DOC though the absolute amounts of DOC are in turn higher than those of POC (< 1 mg L-1 for POC and ~3 mg L-1 for DOC). Furthermore, the changes in d13C of POC, DOC and DIC suggest ongoing microbial degradation and conversion of organic carbon into inorganic carbon. These first estimates show that POC degrades fairly rapidly while transported in the Kolyma River. A better understanding of POC degradation along lateral flow paths is critical for improving our knowledge of permafrost thaw and its possible climate impacts in the future.
How to cite: Keskitalo, K., Bröder, L., Jong, D., Zimov, N., Davydova, A., Davydov, S., Tesi, T., Mann, P., Haghipour, N., Eglinton, T., and Vonk, J.: Degradation of permafrost carbon in the Kolyma River , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8311, https://doi.org/10.5194/egusphere-egu2020-8311, 2020.
EGU2020-7206 | Displays | BG4.3
Permafrost organic carbon transport and degradation on a transect from the Kolyma River to the East Siberian ShelfDirk Jong, Lisa Bröder, Kirsi Keskitalo, Oscar Kloostra, Tommaso Tesi, Nikita Zimov, Anya Davydova, Negar Haghipour, Timothy Eglinton, and Jorien Vonk
Arctic rivers will be increasingly affected by the hydrological and biogeochemical effects of thawing permafrost. During transport, permafrost thaw-derived organic carbon (OC) can be degraded into greenhouse gases and potentially add to further climate warming, or transported to the shelf seas and buried in marine sediments, attenuating this ‘permafrost carbon feedback’. To assess the transport pathways and fate of permafrost-OC, we focus on the river-shelf continuum of the Kolyma River, the largest river on Earth completely underlain by continuous permafrost. Three pools of riverine OC were investigated: dissolved OC (DOC), suspended particulate OC (POC), and river sediment OC (SOC). Preliminary results of bulk carbon isotopes (δ13C, Δ14C) and molecular biomarkers (lignin phenols, leaf wax lipids) show contrasts in composition and degradation state for these carbon pools. Old permafrost-OC seems to be mostly associated with SOC, and less dominant in POC. However, while SOC shows the oldest Δ14C signal, lignin phenol results (e.g., acid to aldehyde ratios) suggest this material is the least degraded. In contrast, DOC shows more degraded signal, even at the outflow of an active permafrost thaw site. Our study serves as a terrestrial extension to earlier investigated marine sediments from the Kolyma paleoriver transect in the East Siberian Sea. It also highlights the value of connecting terrestrial and marine observations to gain insight into the complete pathway of permafrost-OC, from the moment of thaw, via aquatic transport and degradation, towards storage in marine sediments.
How to cite: Jong, D., Bröder, L., Keskitalo, K., Kloostra, O., Tesi, T., Zimov, N., Davydova, A., Haghipour, N., Eglinton, T., and Vonk, J.: Permafrost organic carbon transport and degradation on a transect from the Kolyma River to the East Siberian Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7206, https://doi.org/10.5194/egusphere-egu2020-7206, 2020.
Arctic rivers will be increasingly affected by the hydrological and biogeochemical effects of thawing permafrost. During transport, permafrost thaw-derived organic carbon (OC) can be degraded into greenhouse gases and potentially add to further climate warming, or transported to the shelf seas and buried in marine sediments, attenuating this ‘permafrost carbon feedback’. To assess the transport pathways and fate of permafrost-OC, we focus on the river-shelf continuum of the Kolyma River, the largest river on Earth completely underlain by continuous permafrost. Three pools of riverine OC were investigated: dissolved OC (DOC), suspended particulate OC (POC), and river sediment OC (SOC). Preliminary results of bulk carbon isotopes (δ13C, Δ14C) and molecular biomarkers (lignin phenols, leaf wax lipids) show contrasts in composition and degradation state for these carbon pools. Old permafrost-OC seems to be mostly associated with SOC, and less dominant in POC. However, while SOC shows the oldest Δ14C signal, lignin phenol results (e.g., acid to aldehyde ratios) suggest this material is the least degraded. In contrast, DOC shows more degraded signal, even at the outflow of an active permafrost thaw site. Our study serves as a terrestrial extension to earlier investigated marine sediments from the Kolyma paleoriver transect in the East Siberian Sea. It also highlights the value of connecting terrestrial and marine observations to gain insight into the complete pathway of permafrost-OC, from the moment of thaw, via aquatic transport and degradation, towards storage in marine sediments.
How to cite: Jong, D., Bröder, L., Keskitalo, K., Kloostra, O., Tesi, T., Zimov, N., Davydova, A., Haghipour, N., Eglinton, T., and Vonk, J.: Permafrost organic carbon transport and degradation on a transect from the Kolyma River to the East Siberian Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7206, https://doi.org/10.5194/egusphere-egu2020-7206, 2020.
EGU2020-4244 | Displays | BG4.3
Burial and origin of permafrost organic carbon in the Arctic nearshore zoneMichael Fritz, Hendrik Grotheer, Vera Meyer, Thorsten Riedel, Gregor Pfalz, Laura Mathieu, Jens Hefter, Torben Gentz, Hugues Lantuit, and Gesine Mollenhauer
Increasing air and sea surface temperatures at high latitudes lead to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean that can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments and thus removed from the short-term carbon cycle. Basins, canyons and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes (δ13C) and radiocarbon (Δ14C) to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that 40% of all carbon released by coastal erosion is efficiently trapped and sequestered in the nearshore zone. We conclude that permafrost coastal erosion releases huge amounts of sediment and organic matter into the nearshore zone. Rapid burial removes large quantities of carbon from the carbon cycle in depositional settings.
How to cite: Fritz, M., Grotheer, H., Meyer, V., Riedel, T., Pfalz, G., Mathieu, L., Hefter, J., Gentz, T., Lantuit, H., and Mollenhauer, G.: Burial and origin of permafrost organic carbon in the Arctic nearshore zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4244, https://doi.org/10.5194/egusphere-egu2020-4244, 2020.
Increasing air and sea surface temperatures at high latitudes lead to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean that can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments and thus removed from the short-term carbon cycle. Basins, canyons and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes (δ13C) and radiocarbon (Δ14C) to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that 40% of all carbon released by coastal erosion is efficiently trapped and sequestered in the nearshore zone. We conclude that permafrost coastal erosion releases huge amounts of sediment and organic matter into the nearshore zone. Rapid burial removes large quantities of carbon from the carbon cycle in depositional settings.
How to cite: Fritz, M., Grotheer, H., Meyer, V., Riedel, T., Pfalz, G., Mathieu, L., Hefter, J., Gentz, T., Lantuit, H., and Mollenhauer, G.: Burial and origin of permafrost organic carbon in the Arctic nearshore zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4244, https://doi.org/10.5194/egusphere-egu2020-4244, 2020.
EGU2020-22421 | Displays | BG4.3
Bacterial oxidation of methane within seeps in the northern Laptev SeaAnna Yurchenko, Elizaveta Krasnova, Igor Semiletov, Natal'ia Shakhova, and Mikhail Spasennykh
Increase of methane concentration in atmosphere due to emission from Arctic shelf subsea deposits can play considerable role in climate change [1-2]. Methane seeps in East-Siberian and Laptev Seas were investigated in frames of complex research cruise АМК-78 onboard R/V «Akademik Mstislav Keldysh», (September 17 - October 22, 2019).
In the seep areas gas was collected to study its molecular and stable isotopes composition and reveal the genesis of discharging methane. Sediments were collected using box-corer for detailed lithological investigations and characterization of mineral inclusions. At the sampling station within methane seep in the Northern Laptev Sea, dark grey to black clays with hydrotroilite were collected. They contained rounded inclusions of light grey carbonates with size up to 3x4cm.
Methane that migrates to the seafloor surface is characterized by wide range of stable isotopes composition values with predominance of 13C depleted biogenic component [3-4].
Stable carbon and oxygen isotopes composition of carbonate inclusions was measured. The carbonates are strongly depleted in 13C up to -32,4 ‰VPDB. δ18О varies in wide range between -3 and +4,4 ‰VPDB. Depletion of the carbonates in 13C indicates its formation as a result of bacterial oxidation of methane in anaerobic conditions. Anaerobic oxidation of methane is an important biogeochemical process in the areas of methane emissions. The size and isotopes data of the authigenic methane-derived carbonates provide information on the intensity and time of methane discharge, geochemical characteristics of the fluids, including water. Enrichment of the carbonate inclusions in 18O can be explained by the migration of isotopically heavy water from dissociating gas hydrates [5].
Obtained results of the complex study of discharging fluids and authigenic minerals allow to characterize the biochemogenic processes in seep sediments, local variations in the environmental conditions and methane flux and isotopic effects during bacterial oxidation of methane.
Literature:
- Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost-hydrate system and associated methane releases in the East Siberian Arctic Shelf // Geosciences, 2019, 9, 251.
- Shakhova N.E., Sergienko V.I., Semiletov I.P. Contribution of East-Siberian shelf to the modern methane cycle // RAS bulletin, 2009, vol. 79, №6, pp. 507-518.
- Whiticar, M.J. Correlation of natural gases with their sources. In: Magoon, L., Dow, W. Eds., The Petroleum System — From Source to Trap. AAPG Memoir 60, 1994, pp. 261–284.
- Sapart, C. J., Shakhova, N., Semiletov, I., Jansen, J., Szidat, S., Kosmach, D., Dudarev, O., van der Veen, C., Egger, M., Sergienko, V.,; Salyuk, A., Tumskoy, V., Tison, J.L., Rockmann, T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis // Biogeosciences, 14, 9, 2283-2292, 2017.
- Bohrman G., Suess E., Greinert J., Teichert B., Naehr T. Has hydrate carbonates from Hydrate ridge, Cascadia convergent margin: indicators of near-seafloor clathrate deposits // Fourth Int. Conf. Gas Hydrates: Yokohama, Japan, 19023:102-107. 2002.
How to cite: Yurchenko, A., Krasnova, E., Semiletov, I., Shakhova, N., and Spasennykh, M.: Bacterial oxidation of methane within seeps in the northern Laptev Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22421, https://doi.org/10.5194/egusphere-egu2020-22421, 2020.
Increase of methane concentration in atmosphere due to emission from Arctic shelf subsea deposits can play considerable role in climate change [1-2]. Methane seeps in East-Siberian and Laptev Seas were investigated in frames of complex research cruise АМК-78 onboard R/V «Akademik Mstislav Keldysh», (September 17 - October 22, 2019).
In the seep areas gas was collected to study its molecular and stable isotopes composition and reveal the genesis of discharging methane. Sediments were collected using box-corer for detailed lithological investigations and characterization of mineral inclusions. At the sampling station within methane seep in the Northern Laptev Sea, dark grey to black clays with hydrotroilite were collected. They contained rounded inclusions of light grey carbonates with size up to 3x4cm.
Methane that migrates to the seafloor surface is characterized by wide range of stable isotopes composition values with predominance of 13C depleted biogenic component [3-4].
Stable carbon and oxygen isotopes composition of carbonate inclusions was measured. The carbonates are strongly depleted in 13C up to -32,4 ‰VPDB. δ18О varies in wide range between -3 and +4,4 ‰VPDB. Depletion of the carbonates in 13C indicates its formation as a result of bacterial oxidation of methane in anaerobic conditions. Anaerobic oxidation of methane is an important biogeochemical process in the areas of methane emissions. The size and isotopes data of the authigenic methane-derived carbonates provide information on the intensity and time of methane discharge, geochemical characteristics of the fluids, including water. Enrichment of the carbonate inclusions in 18O can be explained by the migration of isotopically heavy water from dissociating gas hydrates [5].
Obtained results of the complex study of discharging fluids and authigenic minerals allow to characterize the biochemogenic processes in seep sediments, local variations in the environmental conditions and methane flux and isotopic effects during bacterial oxidation of methane.
Literature:
- Shakhova N., Semiletov I., Chuvilin E. Understanding the permafrost-hydrate system and associated methane releases in the East Siberian Arctic Shelf // Geosciences, 2019, 9, 251.
- Shakhova N.E., Sergienko V.I., Semiletov I.P. Contribution of East-Siberian shelf to the modern methane cycle // RAS bulletin, 2009, vol. 79, №6, pp. 507-518.
- Whiticar, M.J. Correlation of natural gases with their sources. In: Magoon, L., Dow, W. Eds., The Petroleum System — From Source to Trap. AAPG Memoir 60, 1994, pp. 261–284.
- Sapart, C. J., Shakhova, N., Semiletov, I., Jansen, J., Szidat, S., Kosmach, D., Dudarev, O., van der Veen, C., Egger, M., Sergienko, V.,; Salyuk, A., Tumskoy, V., Tison, J.L., Rockmann, T. The origin of methane in the East Siberian Arctic Shelf unraveled with triple isotope analysis // Biogeosciences, 14, 9, 2283-2292, 2017.
- Bohrman G., Suess E., Greinert J., Teichert B., Naehr T. Has hydrate carbonates from Hydrate ridge, Cascadia convergent margin: indicators of near-seafloor clathrate deposits // Fourth Int. Conf. Gas Hydrates: Yokohama, Japan, 19023:102-107. 2002.
How to cite: Yurchenko, A., Krasnova, E., Semiletov, I., Shakhova, N., and Spasennykh, M.: Bacterial oxidation of methane within seeps in the northern Laptev Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22421, https://doi.org/10.5194/egusphere-egu2020-22421, 2020.
EGU2020-5734 | Displays | BG4.3
The role of permafrost soils in Arctic mercury cycling: source tracing with Hg stable isotopes and revised soil pool estimateMartin Jiskra, Jeroen E. Sonke, Artem G. Lim, Sergey V. Loiko, Natalia Kosykh, Oleg Pokrovsky, Yannick Agnan, Detlev Helmig, and Daniel Obrist
Mercury (Hg) is a pollutant of great concern for indigenous populations in the Arctic, which are exposed to high dietary Hg from fish and marine mammal consumption. Hg in marine biota can be derived from direct atmospheric deposition to the Arctic Ocean or from terrestrial sources by river runoff. Permafrost soils thereby play a pivotal role in the Arctic Hg cycle by storing atmospheric Hg deposition and providing a reservoir for later mobilization to the Arctic Ocean. The stability of Hg in permafrost soils depends on the pathway of atmospheric Hg deposition and Hg release processes, i.e. reduction and re-emission to the atmosphere and transfer to river runoff. We combined Hg stable isotope with Hg flux measurements in a field study on the Arctic Coastal Plain in northern Alaska. We could show that gaseous elemental Hg uptake by vegetation represents 70% of total atmospheric Hg deposition. Atmospheric Hg uptake by vegetation results in a characteristic Hg isotope fingerprint. This fingerprint dominates Hg signatures in permafrost soils measured across the Arctic coastal plain and is also imprinted in marine mammals and Ocean sediments, suggesting that Hg from Arctic permafrost soils represent a major source to the Arctic Ocean. Knowing the pool and spatial distribution of Hg in permafrost soils is therefore essential to assess current Hg mobilization to aquatic ecosystems and potential future changes due to permafrost thaw and climate change. Two recent studies have used Hg to carbon (C) ratios, RHgC, measured in Alaskan permafrost mineral and peat soils, together with a northern soil carbon inventory, to estimate that these soils contain large amounts, 184 to 755 Gg of Hg in the upper 1 m. In a second part, we present new Hg and C data for six peat cores, down to mineral horizons, across a latitudinal permafrost gradient in the Western Siberian lowlands. Hg concentrations increase from south to north in all soil horizons, reflecting enhanced net accumulation of atmospheric gaseous elemental Hg by the vegetation Hg pump. We reviewed and estimate pan-arctic organic and mineral soil RHgC to be 0.19 and 0.77 Gg Pg-1, and use a soil C budget to revise the northern soil Hg pool to be 67 Gg (37-88 Gg, interquartile range (IQR)) in the upper 30 cm and 225 Gg (102-320 Gg, IQR) in the upper 1 m. Finally, we discuss how climate change may affect the mobilization of Hg from permafrost soils to the atmosphere and the Arctic Ocean.
How to cite: Jiskra, M., Sonke, J. E., Lim, A. G., Loiko, S. V., Kosykh, N., Pokrovsky, O., Agnan, Y., Helmig, D., and Obrist, D.: The role of permafrost soils in Arctic mercury cycling: source tracing with Hg stable isotopes and revised soil pool estimate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5734, https://doi.org/10.5194/egusphere-egu2020-5734, 2020.
Mercury (Hg) is a pollutant of great concern for indigenous populations in the Arctic, which are exposed to high dietary Hg from fish and marine mammal consumption. Hg in marine biota can be derived from direct atmospheric deposition to the Arctic Ocean or from terrestrial sources by river runoff. Permafrost soils thereby play a pivotal role in the Arctic Hg cycle by storing atmospheric Hg deposition and providing a reservoir for later mobilization to the Arctic Ocean. The stability of Hg in permafrost soils depends on the pathway of atmospheric Hg deposition and Hg release processes, i.e. reduction and re-emission to the atmosphere and transfer to river runoff. We combined Hg stable isotope with Hg flux measurements in a field study on the Arctic Coastal Plain in northern Alaska. We could show that gaseous elemental Hg uptake by vegetation represents 70% of total atmospheric Hg deposition. Atmospheric Hg uptake by vegetation results in a characteristic Hg isotope fingerprint. This fingerprint dominates Hg signatures in permafrost soils measured across the Arctic coastal plain and is also imprinted in marine mammals and Ocean sediments, suggesting that Hg from Arctic permafrost soils represent a major source to the Arctic Ocean. Knowing the pool and spatial distribution of Hg in permafrost soils is therefore essential to assess current Hg mobilization to aquatic ecosystems and potential future changes due to permafrost thaw and climate change. Two recent studies have used Hg to carbon (C) ratios, RHgC, measured in Alaskan permafrost mineral and peat soils, together with a northern soil carbon inventory, to estimate that these soils contain large amounts, 184 to 755 Gg of Hg in the upper 1 m. In a second part, we present new Hg and C data for six peat cores, down to mineral horizons, across a latitudinal permafrost gradient in the Western Siberian lowlands. Hg concentrations increase from south to north in all soil horizons, reflecting enhanced net accumulation of atmospheric gaseous elemental Hg by the vegetation Hg pump. We reviewed and estimate pan-arctic organic and mineral soil RHgC to be 0.19 and 0.77 Gg Pg-1, and use a soil C budget to revise the northern soil Hg pool to be 67 Gg (37-88 Gg, interquartile range (IQR)) in the upper 30 cm and 225 Gg (102-320 Gg, IQR) in the upper 1 m. Finally, we discuss how climate change may affect the mobilization of Hg from permafrost soils to the atmosphere and the Arctic Ocean.
How to cite: Jiskra, M., Sonke, J. E., Lim, A. G., Loiko, S. V., Kosykh, N., Pokrovsky, O., Agnan, Y., Helmig, D., and Obrist, D.: The role of permafrost soils in Arctic mercury cycling: source tracing with Hg stable isotopes and revised soil pool estimate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5734, https://doi.org/10.5194/egusphere-egu2020-5734, 2020.
EGU2020-21011 | Displays | BG4.3
Fate and transport of nitrogen in soils, sediment and water of the Lena Delta, Northeast SiberiaTina Sanders, Matthias Fuchs, and Kirstin Dähnke
Soils and sediments in the Lena Delta in Northeast Siberia store large amounts of organic matter including organic bound nitrogen. This nitrogen is not directly available for plants and primary production, but can be remineralised in the soils or in sediments after erosion to the Lena River. Our study aims to estimate the load of reactive nitrogen from terrestrial sources into the Arctic Ocean. Therefore, water and sediment samples were collected along a transect (~200 km) from the centre of the Delta to the open Laptev Sea in summer 2019. On the collected samples, we will measure dissolved organic and inorganic nitrogen, particulate nitrogen and CN ratio. In addition, the 15N stable isotope values of these components will be determined to identify nitrogen sources, sinks and processes of nitrogen transformation. Additionally, we carried out incubation experiments in the field to determine the potential remineralisation rates of various soil types in Lena water and nutrients fluxes of the sediments. The load of dissolved inorganic nitrogen in the Lena water in the delta was very low and low nitrate and silicate concentration indicate uptake by phytoplankton. Outside the Lena Delta, a lens of nutrient depleted freshwater covered the salty Arctic Ocean water, which had higher loads of reactive nitrogen. The organic matter content of the soils and sediment is highly variable and ranges from 1 to 45 %. This organic matter is the source of reactive nitrogen, which is determined in incubation experiments and using nitrogen stable isotopes. We found that especially the unvegetated soils and sediment are sources of reactive nitrogen in the end of vegetation period, and are potentially sources of nitrous oxide emissions.
How to cite: Sanders, T., Fuchs, M., and Dähnke, K.: Fate and transport of nitrogen in soils, sediment and water of the Lena Delta, Northeast Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21011, https://doi.org/10.5194/egusphere-egu2020-21011, 2020.
Soils and sediments in the Lena Delta in Northeast Siberia store large amounts of organic matter including organic bound nitrogen. This nitrogen is not directly available for plants and primary production, but can be remineralised in the soils or in sediments after erosion to the Lena River. Our study aims to estimate the load of reactive nitrogen from terrestrial sources into the Arctic Ocean. Therefore, water and sediment samples were collected along a transect (~200 km) from the centre of the Delta to the open Laptev Sea in summer 2019. On the collected samples, we will measure dissolved organic and inorganic nitrogen, particulate nitrogen and CN ratio. In addition, the 15N stable isotope values of these components will be determined to identify nitrogen sources, sinks and processes of nitrogen transformation. Additionally, we carried out incubation experiments in the field to determine the potential remineralisation rates of various soil types in Lena water and nutrients fluxes of the sediments. The load of dissolved inorganic nitrogen in the Lena water in the delta was very low and low nitrate and silicate concentration indicate uptake by phytoplankton. Outside the Lena Delta, a lens of nutrient depleted freshwater covered the salty Arctic Ocean water, which had higher loads of reactive nitrogen. The organic matter content of the soils and sediment is highly variable and ranges from 1 to 45 %. This organic matter is the source of reactive nitrogen, which is determined in incubation experiments and using nitrogen stable isotopes. We found that especially the unvegetated soils and sediment are sources of reactive nitrogen in the end of vegetation period, and are potentially sources of nitrous oxide emissions.
How to cite: Sanders, T., Fuchs, M., and Dähnke, K.: Fate and transport of nitrogen in soils, sediment and water of the Lena Delta, Northeast Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21011, https://doi.org/10.5194/egusphere-egu2020-21011, 2020.
EGU2020-736 | Displays | BG4.3
Study of sea water chemistry changes due to thawing permafrostMaria Pogojeva, Evgeniy Yakushev, Ilya Petrov, Evgeniy Yaeski, and Alexander Polukhin
Influence of thawing permafrost on the chemical properties of the sea water was studied in 2 experiments organized in Svalbard in 2017 and 2018. Permafrost samples were collected at an abrasive cliff 10 km west of Longyearbyen. Experiments were focused on identifying the possible changes in concentrations of nutrients, carbonate system parameters and pollutant composition related to permafrost thawing. During the experiment, the samples of permafrost were added to the seawater. The solution was exposed to natural conditions for 24 hours in 2017 and 5 days in 2018 while water samples from the solution were taken at specified time intervals. The results of the experiment show that the sea water composition changes are connected to the permafrost thawing. Data from this experiment allowed us to estimate the total annual supply of nutrients to the Arctic from permafrost thawing by multiplying the change in concentration from this study by the annual eroded permafrost total volume in Siberia.
How to cite: Pogojeva, M., Yakushev, E., Petrov, I., Yaeski, E., and Polukhin, A.: Study of sea water chemistry changes due to thawing permafrost, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-736, https://doi.org/10.5194/egusphere-egu2020-736, 2020.
Influence of thawing permafrost on the chemical properties of the sea water was studied in 2 experiments organized in Svalbard in 2017 and 2018. Permafrost samples were collected at an abrasive cliff 10 km west of Longyearbyen. Experiments were focused on identifying the possible changes in concentrations of nutrients, carbonate system parameters and pollutant composition related to permafrost thawing. During the experiment, the samples of permafrost were added to the seawater. The solution was exposed to natural conditions for 24 hours in 2017 and 5 days in 2018 while water samples from the solution were taken at specified time intervals. The results of the experiment show that the sea water composition changes are connected to the permafrost thawing. Data from this experiment allowed us to estimate the total annual supply of nutrients to the Arctic from permafrost thawing by multiplying the change in concentration from this study by the annual eroded permafrost total volume in Siberia.
How to cite: Pogojeva, M., Yakushev, E., Petrov, I., Yaeski, E., and Polukhin, A.: Study of sea water chemistry changes due to thawing permafrost, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-736, https://doi.org/10.5194/egusphere-egu2020-736, 2020.
EGU2020-5253 | Displays | BG4.3
Seasonality in Lena River biogeochemistry and dissolved organic matterBennet Juhls, Pier Paul Overduin, Colin Andrew Stedmon, Anne Morgenstern, Hanno Meyer, Birgit Heim, Jens Hölemann, and Vasily Povazhnyi
The carbon export by rivers to the Arctic Ocean is expected to increase in response to the rapidly changing climate in the Arctic (Camill, 2005; Freeman et al., 2001; Frey and Smith, 2005). This is in part due to thawing permafrost and mobilization of particulate and dissolved organic matter (DOM). The Lena River delivers approximately one fifth of the total river discharge to the Arctic Ocean and is the main source of DOM in the Laptev Sea shelf (Thibodeau et al., 2014). To date river fluxes of DOM have been based on sparse coverage of sample across the hydrograph about 700 km upstream (Cooper et al 2005; Raymond et al 2007; Stedmon et al 2011; Amon et al 2012). The effects of low frequency sampling on load estimates are unknown and potentially large for systems such as these where there are considerable changes across the hydrograph. Here we present results from a unique high frequency sampling program and evaluate its viability to monitor export fluxes of DOM and its biogeochemistry in the Lena River. The sampling takes place close to the river mouth at the research station Samoylov in the central Lena River Delta. The Samoylov research station allows a unique chance for continuous sampling since it operates throughout the year. The sampling program includes measurements of several water parameters, such as temperature, electric conductivity, dissolved organic carbon (DOC), spectral CDOM absorption (aCDOM), fluorescent dissolved organic matter (FDOM) and water stable isotopes.
The data facilitated the identification of the main drivers behind the seasonality of DOM concentration and biogeochemistry of the Lena River. Three main water sources could be identified (1) (snow) melt water, (2) rain water and (3) subsurface water. Melt and rain water are found to be the prevailing water sources that combined transport 5.8 Tg C dissolved organic matter (~ 85 % of annual flux (6.8 Tg C)) into the Lena River. The high number of samples throughout the whole year allowed flux calculations that are independently from load models that likely lead to a large variation of earlier studies.
The absorption properties of DOM revealed changing composition and sources of DOM throughout the year. Decreasing SUVA values during the summer point towards an increasing fraction of old DOM which potentially originates from degrading permafrost. In contrast, during the spring freshet, high SUVA indicate mostly fresh organic matter with high molecular weight and high aromaticity.
This dataset represents the first year of a planned long-term monitoring program at the Research Station Samoylov Island and provides a baseline data set against which future change of this large integrative system may be measured. A continuous sampling of Arctic River water will facilitate to identify intra and inter-annual trends with ongoing climate change.
How to cite: Juhls, B., Overduin, P. P., Stedmon, C. A., Morgenstern, A., Meyer, H., Heim, B., Hölemann, J., and Povazhnyi, V.: Seasonality in Lena River biogeochemistry and dissolved organic matter , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5253, https://doi.org/10.5194/egusphere-egu2020-5253, 2020.
The carbon export by rivers to the Arctic Ocean is expected to increase in response to the rapidly changing climate in the Arctic (Camill, 2005; Freeman et al., 2001; Frey and Smith, 2005). This is in part due to thawing permafrost and mobilization of particulate and dissolved organic matter (DOM). The Lena River delivers approximately one fifth of the total river discharge to the Arctic Ocean and is the main source of DOM in the Laptev Sea shelf (Thibodeau et al., 2014). To date river fluxes of DOM have been based on sparse coverage of sample across the hydrograph about 700 km upstream (Cooper et al 2005; Raymond et al 2007; Stedmon et al 2011; Amon et al 2012). The effects of low frequency sampling on load estimates are unknown and potentially large for systems such as these where there are considerable changes across the hydrograph. Here we present results from a unique high frequency sampling program and evaluate its viability to monitor export fluxes of DOM and its biogeochemistry in the Lena River. The sampling takes place close to the river mouth at the research station Samoylov in the central Lena River Delta. The Samoylov research station allows a unique chance for continuous sampling since it operates throughout the year. The sampling program includes measurements of several water parameters, such as temperature, electric conductivity, dissolved organic carbon (DOC), spectral CDOM absorption (aCDOM), fluorescent dissolved organic matter (FDOM) and water stable isotopes.
The data facilitated the identification of the main drivers behind the seasonality of DOM concentration and biogeochemistry of the Lena River. Three main water sources could be identified (1) (snow) melt water, (2) rain water and (3) subsurface water. Melt and rain water are found to be the prevailing water sources that combined transport 5.8 Tg C dissolved organic matter (~ 85 % of annual flux (6.8 Tg C)) into the Lena River. The high number of samples throughout the whole year allowed flux calculations that are independently from load models that likely lead to a large variation of earlier studies.
The absorption properties of DOM revealed changing composition and sources of DOM throughout the year. Decreasing SUVA values during the summer point towards an increasing fraction of old DOM which potentially originates from degrading permafrost. In contrast, during the spring freshet, high SUVA indicate mostly fresh organic matter with high molecular weight and high aromaticity.
This dataset represents the first year of a planned long-term monitoring program at the Research Station Samoylov Island and provides a baseline data set against which future change of this large integrative system may be measured. A continuous sampling of Arctic River water will facilitate to identify intra and inter-annual trends with ongoing climate change.
How to cite: Juhls, B., Overduin, P. P., Stedmon, C. A., Morgenstern, A., Meyer, H., Heim, B., Hölemann, J., and Povazhnyi, V.: Seasonality in Lena River biogeochemistry and dissolved organic matter , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5253, https://doi.org/10.5194/egusphere-egu2020-5253, 2020.
EGU2020-7532 | Displays | BG4.3
Freeze-thaw dynamics in synthetic permafrost soil columns with variable organic carbon contentJelte de Bruin, Victor Bense, and Martine van der Ploeg
Cold-regions hold a pool of organic carbon that has accumulated over many thousands to millions of years and which is currently kept immobile by permafrost. However, in a warming climate, a deepening of the active layer results in the release of greenhouse gasses CO2 and CH4 into the atmosphere from this carbon pool. Additionally, due to the degradation of deeper permafost, soil hydraulic properties and associated groundwater flow paths are shifting rapidly as a result of which also organic carbon in deeper permafrost is being dissolved into groundwater, which can then reach the surface environment via groundwater flow. This provides an additional mechanism by which permafrost carbon can be mobilized in a warming climate, and one which is likely increasingly important for progressive surface warming.
Although the process of carbon leaching from thawing organic rich permafrost layers into the groundwater is an increasingly important part of the carbon cycle of cold-regions, it is notoriously difficult to measure in situ or incorporate into numerical model assessments due to the highly heterogeneous properties of the permafrost, and lack of process knowledge. In particular, the crucial understanding of the influence of different soil physical properties such as soil grain size and organic matter content on permafrost thawing processes is missing, as well the precise release mechanisms of organic matter into pore waters in thawing soils.
This study employs lab soil column experiments to investigate the interplay between soil physical properties and thawing dynamics of permafrost. One meter high soil columns are frozen to create controlled permafrost conditions. A range of sand grain sizes (0.1 to 0.8mm) and organic matter contents (1 to 10 wt%) representative for sedimentary permafrost are used. The column is thermally insulated on the sides and top, exposing only one face to ambient temperature in the climate chamber. In this way one-dimensional heat flow conditions are created. So far, the columns are equipped with arrays of temperature sensors. Experiments consist of a cycle of freezing and thawing. Our initial data and analysis illustrate how a fast evolving thawing front develops through the frozen soil column including the effects of latent heat at the thawing front. Numerical modeling allows to infer the soil thermal properties relevant to model the permafrost thawing process.
How to cite: de Bruin, J., Bense, V., and van der Ploeg, M.: Freeze-thaw dynamics in synthetic permafrost soil columns with variable organic carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7532, https://doi.org/10.5194/egusphere-egu2020-7532, 2020.
Cold-regions hold a pool of organic carbon that has accumulated over many thousands to millions of years and which is currently kept immobile by permafrost. However, in a warming climate, a deepening of the active layer results in the release of greenhouse gasses CO2 and CH4 into the atmosphere from this carbon pool. Additionally, due to the degradation of deeper permafost, soil hydraulic properties and associated groundwater flow paths are shifting rapidly as a result of which also organic carbon in deeper permafrost is being dissolved into groundwater, which can then reach the surface environment via groundwater flow. This provides an additional mechanism by which permafrost carbon can be mobilized in a warming climate, and one which is likely increasingly important for progressive surface warming.
Although the process of carbon leaching from thawing organic rich permafrost layers into the groundwater is an increasingly important part of the carbon cycle of cold-regions, it is notoriously difficult to measure in situ or incorporate into numerical model assessments due to the highly heterogeneous properties of the permafrost, and lack of process knowledge. In particular, the crucial understanding of the influence of different soil physical properties such as soil grain size and organic matter content on permafrost thawing processes is missing, as well the precise release mechanisms of organic matter into pore waters in thawing soils.
This study employs lab soil column experiments to investigate the interplay between soil physical properties and thawing dynamics of permafrost. One meter high soil columns are frozen to create controlled permafrost conditions. A range of sand grain sizes (0.1 to 0.8mm) and organic matter contents (1 to 10 wt%) representative for sedimentary permafrost are used. The column is thermally insulated on the sides and top, exposing only one face to ambient temperature in the climate chamber. In this way one-dimensional heat flow conditions are created. So far, the columns are equipped with arrays of temperature sensors. Experiments consist of a cycle of freezing and thawing. Our initial data and analysis illustrate how a fast evolving thawing front develops through the frozen soil column including the effects of latent heat at the thawing front. Numerical modeling allows to infer the soil thermal properties relevant to model the permafrost thawing process.
How to cite: de Bruin, J., Bense, V., and van der Ploeg, M.: Freeze-thaw dynamics in synthetic permafrost soil columns with variable organic carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7532, https://doi.org/10.5194/egusphere-egu2020-7532, 2020.
EGU2020-9776 | Displays | BG4.3
Characterization of dissolved and particulate organic matter exported during late summer from a glacio-nival river, Zackenberg, GreenlandJulien Fouche, Catherine Hirst, Sophie Opfergelt, Jorien Vonk, Steeve Bonneville, Negar Haghipour, Timothy Eglinton, and Lisa Bröder
With Arctic warming, both gradual and abrupt thaw of permafrost may trigger a positive feedback loop, since large amounts of organic matter (OM) are released into rivers and thus exposed to mineralization along the fluvial continuum. Both dissolved (DOM) and particulate organic matter (POM) mineralization during lateral transport generates greenhouse gases that may fuel further global warming. In addition to glacier retreat, the extent of permafrost thaw is predicted to increase across the Arctic, which will change the release of DOM and POM to aquatic environments. However, the fate of DOM and POM will likely differ during transport in surface waters due to POM-DOM exchange and biodegradation control from organo-mineral interactions. The contrasting behavior between POM and DOM may affect the strength of the permafrost-carbon feedback to climate but is currently afflicted with high uncertainties.
This study characterizes the export of DOM and POM along the fluvial continuum at time of maximum thaw depth and investigates the impacts of permafrost thaw on OM composition and age in the Zackenberg watershed (Northeastern Greenland). In August 2019, streams were sampled twice, before and after a rain event. We collected water and suspended sediments from rivers, the river delta, snow patches and permafrost ice from thermokarst features. Besides in situ river chemistry, we analyzed stable water isotopes (δ18O, δ2H) and dissolved organic carbon (DOC) concentrations. The composition of DOM was characterized using absorbance and fluorescence spectroscopy and both DOM and POM were analyzed for radiocarbon (Δ14C).
DOC concentrations increase from 3.1 mg L-1 upstream to 15.6 mg L-1 after the confluence with the main tributaries, which are characterized by a nival river regime, and decreased to 4.3 mg L-1 at the outlet. Optical properties of DOM highlight that low molecular weight microbial-derived organic compounds contribute most to the fluorescent DOM (fDOM) in the upstream part of the river, likely originating from glacial waters. The contribution of soil and plant derived fDOM increases downstream, and corresponding Δ14CDOC values increase from upstream (-240‰, i.e. ~2200 yr) to downstream (-30‰, i.e. ~200 yr) resulting from the increasing tributary inputs. Interestingly, POM displays more depleted Δ14C (older ages) than DOC.
We observed contrasting patterns in river chemistry before and after the rain event with temperature decreasing and pH and EC increasing. δ18O and δ2H compositions were less depleted after the rain event, DOC concentrations were lower and DOM displayed a greater contribution of soil and plant derived fDOM. This evidence illustrates the increasing contribution of rain fed streams draining organic-rich top soil and the dilution of the glacial inputs after the rain event. We conclude that, in this glacio-nival Arctic watershed, affected by both permafrost degradation and glacier retreat, old DOM and POM is released and evolves differently in the fluvial continuum.
How to cite: Fouche, J., Hirst, C., Opfergelt, S., Vonk, J., Bonneville, S., Haghipour, N., Eglinton, T., and Bröder, L.: Characterization of dissolved and particulate organic matter exported during late summer from a glacio-nival river, Zackenberg, Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9776, https://doi.org/10.5194/egusphere-egu2020-9776, 2020.
With Arctic warming, both gradual and abrupt thaw of permafrost may trigger a positive feedback loop, since large amounts of organic matter (OM) are released into rivers and thus exposed to mineralization along the fluvial continuum. Both dissolved (DOM) and particulate organic matter (POM) mineralization during lateral transport generates greenhouse gases that may fuel further global warming. In addition to glacier retreat, the extent of permafrost thaw is predicted to increase across the Arctic, which will change the release of DOM and POM to aquatic environments. However, the fate of DOM and POM will likely differ during transport in surface waters due to POM-DOM exchange and biodegradation control from organo-mineral interactions. The contrasting behavior between POM and DOM may affect the strength of the permafrost-carbon feedback to climate but is currently afflicted with high uncertainties.
This study characterizes the export of DOM and POM along the fluvial continuum at time of maximum thaw depth and investigates the impacts of permafrost thaw on OM composition and age in the Zackenberg watershed (Northeastern Greenland). In August 2019, streams were sampled twice, before and after a rain event. We collected water and suspended sediments from rivers, the river delta, snow patches and permafrost ice from thermokarst features. Besides in situ river chemistry, we analyzed stable water isotopes (δ18O, δ2H) and dissolved organic carbon (DOC) concentrations. The composition of DOM was characterized using absorbance and fluorescence spectroscopy and both DOM and POM were analyzed for radiocarbon (Δ14C).
DOC concentrations increase from 3.1 mg L-1 upstream to 15.6 mg L-1 after the confluence with the main tributaries, which are characterized by a nival river regime, and decreased to 4.3 mg L-1 at the outlet. Optical properties of DOM highlight that low molecular weight microbial-derived organic compounds contribute most to the fluorescent DOM (fDOM) in the upstream part of the river, likely originating from glacial waters. The contribution of soil and plant derived fDOM increases downstream, and corresponding Δ14CDOC values increase from upstream (-240‰, i.e. ~2200 yr) to downstream (-30‰, i.e. ~200 yr) resulting from the increasing tributary inputs. Interestingly, POM displays more depleted Δ14C (older ages) than DOC.
We observed contrasting patterns in river chemistry before and after the rain event with temperature decreasing and pH and EC increasing. δ18O and δ2H compositions were less depleted after the rain event, DOC concentrations were lower and DOM displayed a greater contribution of soil and plant derived fDOM. This evidence illustrates the increasing contribution of rain fed streams draining organic-rich top soil and the dilution of the glacial inputs after the rain event. We conclude that, in this glacio-nival Arctic watershed, affected by both permafrost degradation and glacier retreat, old DOM and POM is released and evolves differently in the fluvial continuum.
How to cite: Fouche, J., Hirst, C., Opfergelt, S., Vonk, J., Bonneville, S., Haghipour, N., Eglinton, T., and Bröder, L.: Characterization of dissolved and particulate organic matter exported during late summer from a glacio-nival river, Zackenberg, Greenland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9776, https://doi.org/10.5194/egusphere-egu2020-9776, 2020.
EGU2020-13091 | Displays | BG4.3
Tracing terrestrial organic matter in surface sediments in Laptev Sea and East Siberian Sea: a Rock-Eval pyrolysis approachElena Gershelis, Roman Kashapov, Alexey Ruban, Andrey Grin'ko, Oleg Dudarev, Natalia Shakhova, and Igor Semiletov
The East Siberian Arctic shelf (ESAS), the world’s largest continental shelf, receives substantial input of terrestrial organic carbon (TerrOC) both from increasing river discharge and from amplifying coastal erosion. Increasing TerrOC supply directly affects the Arctic marine carbon cycle, and, therefore, the fate of TerrOC upon its translocation to the Arctic continental margin has been the subject of growing interest in recent decades. Previous studies reported a strong decrease in sedimentary bulk TerrOC and terrestrial biomarkers with increasing distance from the coast during cross-shelf transport with much higher extent of degradation in the ESAS nearshore zone. Despite major progress has been made in estimating TerrOC inputs and quantifying its degradation rates in the Arctic land-shelf system, there are still important pieces insufficiently understood. Rock-Eval (RE) pyrolysis contributes to the traditional geochemical interpretations, based on elemental, isotopic and biomarker analyses and provides additional insight into the distribution, source and degradation state of organic carbon compounds of sedimentary organic matter.
In this study, the analytical approach included the characterization of marine and terrestrial carbon compounds using RE data coupled with organic carbon stable isotope composition. Rock-Eval analyses was performed on over 80 surface sediments samples from the Laptev Sea and western part of the East Siberian Sea collected during Arctic expeditions in 2011-2019. A track of rapidly degrading terrOC in shallow deposits may be traced using the ratios between hydrogen and oxygen indices and from the distribution of labile organic carbon fraction. Our results indicated high content of heavily degraded material with low hydrogen index, high oxygen index and a high content of residual carbon in sediments on the outer shelf of the western Laptev Sea and on the continental slope. Sharp decreasing of oxygen content in the eastern part of Laptev Sea and the western East Siberian Sea marked intensive dilution of degraded carbon with fresher material exported from New Siberian Islands. Furthermore, the RE data indicated a relatively high content of residual carbon (up to 87 %) stored in the studied surface sediments.
This research is supported by Russian Science Foundation, project # 19-77-00067.
How to cite: Gershelis, E., Kashapov, R., Ruban, A., Grin'ko, A., Dudarev, O., Shakhova, N., and Semiletov, I.: Tracing terrestrial organic matter in surface sediments in Laptev Sea and East Siberian Sea: a Rock-Eval pyrolysis approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13091, https://doi.org/10.5194/egusphere-egu2020-13091, 2020.
The East Siberian Arctic shelf (ESAS), the world’s largest continental shelf, receives substantial input of terrestrial organic carbon (TerrOC) both from increasing river discharge and from amplifying coastal erosion. Increasing TerrOC supply directly affects the Arctic marine carbon cycle, and, therefore, the fate of TerrOC upon its translocation to the Arctic continental margin has been the subject of growing interest in recent decades. Previous studies reported a strong decrease in sedimentary bulk TerrOC and terrestrial biomarkers with increasing distance from the coast during cross-shelf transport with much higher extent of degradation in the ESAS nearshore zone. Despite major progress has been made in estimating TerrOC inputs and quantifying its degradation rates in the Arctic land-shelf system, there are still important pieces insufficiently understood. Rock-Eval (RE) pyrolysis contributes to the traditional geochemical interpretations, based on elemental, isotopic and biomarker analyses and provides additional insight into the distribution, source and degradation state of organic carbon compounds of sedimentary organic matter.
In this study, the analytical approach included the characterization of marine and terrestrial carbon compounds using RE data coupled with organic carbon stable isotope composition. Rock-Eval analyses was performed on over 80 surface sediments samples from the Laptev Sea and western part of the East Siberian Sea collected during Arctic expeditions in 2011-2019. A track of rapidly degrading terrOC in shallow deposits may be traced using the ratios between hydrogen and oxygen indices and from the distribution of labile organic carbon fraction. Our results indicated high content of heavily degraded material with low hydrogen index, high oxygen index and a high content of residual carbon in sediments on the outer shelf of the western Laptev Sea and on the continental slope. Sharp decreasing of oxygen content in the eastern part of Laptev Sea and the western East Siberian Sea marked intensive dilution of degraded carbon with fresher material exported from New Siberian Islands. Furthermore, the RE data indicated a relatively high content of residual carbon (up to 87 %) stored in the studied surface sediments.
This research is supported by Russian Science Foundation, project # 19-77-00067.
How to cite: Gershelis, E., Kashapov, R., Ruban, A., Grin'ko, A., Dudarev, O., Shakhova, N., and Semiletov, I.: Tracing terrestrial organic matter in surface sediments in Laptev Sea and East Siberian Sea: a Rock-Eval pyrolysis approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13091, https://doi.org/10.5194/egusphere-egu2020-13091, 2020.
EGU2020-13305 | Displays | BG4.3
Characteristics of organic carbon in surface sediments of Laptev Sea shelfIrina Oberemok, Elena Gershelis, Andrey Grin’ko, Alexey Ruban, Elizaveta Klevantseva, Natalia Zhivotova, Oleg Dudarev, Natalia Shakhova, and Igor Semiletov
Accelerating coastal erosion and enhancing river sediment discharge are expected to greatly increase the delivery of terrestrial organic carbon (terrOC) to the Arctic Ocean. Remobilized terrOC may be buried in shallow or outer shelf sediments, degraded and translocated to the deeper basins, or remineralized in the water column causing a positive feedback to amplified global warming. The East Siberian Arctic Shelf (ESAS), represented by the Laptev Sea, the East Siberian Sea, and the Russian part of the Chukchi Sea, is the widest and shallowest continental shelf of the World Ocean. In the current study, we investigated surface sediment samples collected across the Laptev Sea shelf (from the coastline to the outer shelf) during the Arctic expedition onboard the Russian R/V Academician M. Keldysh during fall 2018.
We analyzed 16 samples for bulk (TOC, δ13C) and molecular (distribution and concentration of n-alkanes and PAHs) parameters. We also performed Rock-Eval (RE) analysis in order to compare its results with the signatures provided by traditional geochemical tracers and thereby to gain new insights into the sources of organic matter in modern surface sediments. In addition, a grain-size analysis was carried out to reveal hydrodynamic control on the organic carbon transport across the studied transect. Using a combination of traditional molecular interpretations (performed in this study and published earlier) and RE parameters (Hydrogen index, Oxygen index and Tpeak) we attempted to distinguish riverine input and coastal erosion and disentangle processes of terrOC degradation and its replacement with fresh/marine OC during cross-shelf transport. Overall, a strong decrease of terrigenous contribution to the sedimentary organic carbon was observed on molecular level with increasing distance from the coast. According to the RE data, intensive terrOC degradation takes place in the shallow and mid-shelf sediments which is traced by sharply increasing oxygen index. The clear correlation between OI and the clay content points toward the perception that mineral matrix do not seem to be such good protector as expected, and intensive microbial degradation of the sedimentary organic matter contained in fine particles occurs during repeated resuspension.
This research is supported by Russian Science Foundation, project # 19-77-00067.
How to cite: Oberemok, I., Gershelis, E., Grin’ko, A., Ruban, A., Klevantseva, E., Zhivotova, N., Dudarev, O., Shakhova, N., and Semiletov, I.: Characteristics of organic carbon in surface sediments of Laptev Sea shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13305, https://doi.org/10.5194/egusphere-egu2020-13305, 2020.
Accelerating coastal erosion and enhancing river sediment discharge are expected to greatly increase the delivery of terrestrial organic carbon (terrOC) to the Arctic Ocean. Remobilized terrOC may be buried in shallow or outer shelf sediments, degraded and translocated to the deeper basins, or remineralized in the water column causing a positive feedback to amplified global warming. The East Siberian Arctic Shelf (ESAS), represented by the Laptev Sea, the East Siberian Sea, and the Russian part of the Chukchi Sea, is the widest and shallowest continental shelf of the World Ocean. In the current study, we investigated surface sediment samples collected across the Laptev Sea shelf (from the coastline to the outer shelf) during the Arctic expedition onboard the Russian R/V Academician M. Keldysh during fall 2018.
We analyzed 16 samples for bulk (TOC, δ13C) and molecular (distribution and concentration of n-alkanes and PAHs) parameters. We also performed Rock-Eval (RE) analysis in order to compare its results with the signatures provided by traditional geochemical tracers and thereby to gain new insights into the sources of organic matter in modern surface sediments. In addition, a grain-size analysis was carried out to reveal hydrodynamic control on the organic carbon transport across the studied transect. Using a combination of traditional molecular interpretations (performed in this study and published earlier) and RE parameters (Hydrogen index, Oxygen index and Tpeak) we attempted to distinguish riverine input and coastal erosion and disentangle processes of terrOC degradation and its replacement with fresh/marine OC during cross-shelf transport. Overall, a strong decrease of terrigenous contribution to the sedimentary organic carbon was observed on molecular level with increasing distance from the coast. According to the RE data, intensive terrOC degradation takes place in the shallow and mid-shelf sediments which is traced by sharply increasing oxygen index. The clear correlation between OI and the clay content points toward the perception that mineral matrix do not seem to be such good protector as expected, and intensive microbial degradation of the sedimentary organic matter contained in fine particles occurs during repeated resuspension.
This research is supported by Russian Science Foundation, project # 19-77-00067.
How to cite: Oberemok, I., Gershelis, E., Grin’ko, A., Ruban, A., Klevantseva, E., Zhivotova, N., Dudarev, O., Shakhova, N., and Semiletov, I.: Characteristics of organic carbon in surface sediments of Laptev Sea shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13305, https://doi.org/10.5194/egusphere-egu2020-13305, 2020.
EGU2020-13727 | Displays | BG4.3
Mercury and methylmercury along a transect from the Lena river estuary across the Laptev Sea ShelfVan Liem Nguyen, Birgit Wild, Örjan Gustafsson, Igor Semiletov, Oleg Dudarev, and Sofi Jonsson
Widespread accelerated permafrost thawing is predicted for this century and beyond. This threatens to remobilize the large amounts of Mercury (Hg) currently ‘locked’ in Arctic permafrost soils to the Arctic Ocean and thus potentially lead to severe consequences for human and wildlife health. Future risks of Arctic Hg in a warmer climate are, however, poorly understood. One crucial knowledge gap to fill is the fate of Hg once it enters the marine environment on the continental shelves. Arctic rivers are already today suggested to be the main source of Hg into the Arctic Ocean, with dissolved and particulate organic matter (DOM and POM, respectively) identified as important vectors for the land to sea transport.
In this study, we have investigated total Hg (HgT) and monomethylmercury (MeHg) concentrations in surface sediments from the East Siberian Arctic Shelf (ESAS) along a transect from the Lena river delta to the Laptev Sea continental slope. The ESAS is the world’s largest continental shelf and receives large amounts of organic carbon by the great Arctic Russian rivers (e.g., Lena, Indigirka and Kolyma), remobilized from continuous and discontinuous permafrost regions in the river catchments, and from coastal erosion. Data on HgT and MeHg levels in ESAS sediments is however limited. Here, we observed concentrations of Hg ranging from 30 to 96 ng Hg g-1 d.w. of HgT, and 0.03 to 9.5 ng Hg g-1 d.w. of MeHg. Similar concentrations of HgT were observed close to the river delta (54 ± 19 ng Hg g-1 d.w.), where >95 % of the organic matter is of terrestrial origin, and the other section of the transect (42 ± 7 ng Hg g-1 d.w.) where the terrestrial organic matter is diluted with carbon from marine sources. In contrast, we observed higher concentrations of MeHg close to the river delta (0.72 ± 0.71 ng Hg g-1 d.w. as MeHg) than further out on the continental shelf (0.031 ± 0.71 ng Hg g-1 d.w. as MeHg). We also observed a positive correlation between the MeHg:Hg ratio and previously characterized molecular markers of terrestrial organic matter (Bröder et al. Biogeosciences (2016) & Nature Com. (2018)). We thus suggest riverine inputs, rather than in situ MeHg formation, to explain observed MeHg trends.
How to cite: Nguyen, V. L., Wild, B., Gustafsson, Ö., Semiletov, I., Dudarev, O., and Jonsson, S.: Mercury and methylmercury along a transect from the Lena river estuary across the Laptev Sea Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13727, https://doi.org/10.5194/egusphere-egu2020-13727, 2020.
Widespread accelerated permafrost thawing is predicted for this century and beyond. This threatens to remobilize the large amounts of Mercury (Hg) currently ‘locked’ in Arctic permafrost soils to the Arctic Ocean and thus potentially lead to severe consequences for human and wildlife health. Future risks of Arctic Hg in a warmer climate are, however, poorly understood. One crucial knowledge gap to fill is the fate of Hg once it enters the marine environment on the continental shelves. Arctic rivers are already today suggested to be the main source of Hg into the Arctic Ocean, with dissolved and particulate organic matter (DOM and POM, respectively) identified as important vectors for the land to sea transport.
In this study, we have investigated total Hg (HgT) and monomethylmercury (MeHg) concentrations in surface sediments from the East Siberian Arctic Shelf (ESAS) along a transect from the Lena river delta to the Laptev Sea continental slope. The ESAS is the world’s largest continental shelf and receives large amounts of organic carbon by the great Arctic Russian rivers (e.g., Lena, Indigirka and Kolyma), remobilized from continuous and discontinuous permafrost regions in the river catchments, and from coastal erosion. Data on HgT and MeHg levels in ESAS sediments is however limited. Here, we observed concentrations of Hg ranging from 30 to 96 ng Hg g-1 d.w. of HgT, and 0.03 to 9.5 ng Hg g-1 d.w. of MeHg. Similar concentrations of HgT were observed close to the river delta (54 ± 19 ng Hg g-1 d.w.), where >95 % of the organic matter is of terrestrial origin, and the other section of the transect (42 ± 7 ng Hg g-1 d.w.) where the terrestrial organic matter is diluted with carbon from marine sources. In contrast, we observed higher concentrations of MeHg close to the river delta (0.72 ± 0.71 ng Hg g-1 d.w. as MeHg) than further out on the continental shelf (0.031 ± 0.71 ng Hg g-1 d.w. as MeHg). We also observed a positive correlation between the MeHg:Hg ratio and previously characterized molecular markers of terrestrial organic matter (Bröder et al. Biogeosciences (2016) & Nature Com. (2018)). We thus suggest riverine inputs, rather than in situ MeHg formation, to explain observed MeHg trends.
How to cite: Nguyen, V. L., Wild, B., Gustafsson, Ö., Semiletov, I., Dudarev, O., and Jonsson, S.: Mercury and methylmercury along a transect from the Lena river estuary across the Laptev Sea Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13727, https://doi.org/10.5194/egusphere-egu2020-13727, 2020.
EGU2020-17679 | Displays | BG4.3
When mobilized organic matter and glacial suspended sediment meet: effects of adsorption, photo- and biodegradationMarloes Groeneveld, Elizabeth Jakobsson, Jeffrey Hawkes, Jörg Tittel, Dolly Kothawala, and Lars Tranvik
The thawing of permafrost is leading to increased export of organic matter into aquatic ecosystems that was previously stored within frozen peatland soils. This organic matter has been found to be reactive to microbial and photochemical processes, so that permafrost thaw is expected to lead to an increased production of greenhouse gases. Being able to predict the fate of these increased loads of terrestrial organic carbon in aquatic systems is therefore important from a climate change perspective. In a previous study we suggest that terrestrial organic compounds susceptible to photodegradation are also prone to adsorb to mineral particles. Whereas photodegradation stimulates CO2 production, adsorption has the potential to remove organic matter from the water column and store it in the sediment. Warming at high latitudes involves both permafrost thaw and glacial melt. Glacial runoff streams often contain high loads of suspended sediment. As these minerogenic particles are transported downstream the aquatic continuum, they can eventually mix with water containing high concentrations of freshly released organic matter, and act as an adsorbent.
In order to predict CO2 production from mobilized permafrost organic matter, we need to study the bioavailability of this material before and after alteration by physical and chemical processes such as photodegradation and adsorption to mineral particles. In this study, we compared the effect of adsorption to glacial suspended sediment to that of photodegradation on the dissolved organic matter composition of surface water collected from a thawing peat plateau in northern Sweden. We used optical measurements and mass spectrometry to evaluate changes in the composition of the organic matter and employed a three-month incubation to determine its bioavailability. Initial results from optical measurements indicate that while chromophoric compounds in general were removed by both photodegradation and adsorption, humic-like fluorescent compounds were more susceptible to photodegradation than adsorption. UV-irradiation increased bioavailability of the organic matter, whereas pre-treatment by adsorption to mineral particles slightly decreased bioavailability compared to the control. Results from this study will help advance our understanding of interactive effects between physico-chemical processes and microbial degradation at an increasingly relevant interface where melting permafrost meets glacial meltwaters.
How to cite: Groeneveld, M., Jakobsson, E., Hawkes, J., Tittel, J., Kothawala, D., and Tranvik, L.: When mobilized organic matter and glacial suspended sediment meet: effects of adsorption, photo- and biodegradation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17679, https://doi.org/10.5194/egusphere-egu2020-17679, 2020.
The thawing of permafrost is leading to increased export of organic matter into aquatic ecosystems that was previously stored within frozen peatland soils. This organic matter has been found to be reactive to microbial and photochemical processes, so that permafrost thaw is expected to lead to an increased production of greenhouse gases. Being able to predict the fate of these increased loads of terrestrial organic carbon in aquatic systems is therefore important from a climate change perspective. In a previous study we suggest that terrestrial organic compounds susceptible to photodegradation are also prone to adsorb to mineral particles. Whereas photodegradation stimulates CO2 production, adsorption has the potential to remove organic matter from the water column and store it in the sediment. Warming at high latitudes involves both permafrost thaw and glacial melt. Glacial runoff streams often contain high loads of suspended sediment. As these minerogenic particles are transported downstream the aquatic continuum, they can eventually mix with water containing high concentrations of freshly released organic matter, and act as an adsorbent.
In order to predict CO2 production from mobilized permafrost organic matter, we need to study the bioavailability of this material before and after alteration by physical and chemical processes such as photodegradation and adsorption to mineral particles. In this study, we compared the effect of adsorption to glacial suspended sediment to that of photodegradation on the dissolved organic matter composition of surface water collected from a thawing peat plateau in northern Sweden. We used optical measurements and mass spectrometry to evaluate changes in the composition of the organic matter and employed a three-month incubation to determine its bioavailability. Initial results from optical measurements indicate that while chromophoric compounds in general were removed by both photodegradation and adsorption, humic-like fluorescent compounds were more susceptible to photodegradation than adsorption. UV-irradiation increased bioavailability of the organic matter, whereas pre-treatment by adsorption to mineral particles slightly decreased bioavailability compared to the control. Results from this study will help advance our understanding of interactive effects between physico-chemical processes and microbial degradation at an increasingly relevant interface where melting permafrost meets glacial meltwaters.
How to cite: Groeneveld, M., Jakobsson, E., Hawkes, J., Tittel, J., Kothawala, D., and Tranvik, L.: When mobilized organic matter and glacial suspended sediment meet: effects of adsorption, photo- and biodegradation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17679, https://doi.org/10.5194/egusphere-egu2020-17679, 2020.
EGU2020-19668 | Displays | BG4.3
Degradation of terrigenous organic matter on the East Siberian Arctic Shelf assessed by lipid and lignin oxidation productsFelipe Matsubara, Birgit Wild, Jannik Martens, Rickard Wennström, Tommaso Tesi, Oleg Dudarev, Natalia Shakhova, Igor Semiletov, and Örjan Gustafsson
Warming-induced permafrost thawing is expected to intensify the remobilization of terrigenous organic matter (terrOM) to the East Siberian Arctic Shelf (ESAS) via increasing river discharge and coastal erosion. Earlier studies have focused on source apportionment and transport of terrOM, with less emphasis on its degradation state during cross-shelf transport. Since degradation of terrOM is the link between permafrost thawing and release of GHGs such as CO2, this study focuses on the degradation characteristics. Hence, the main objective of this study is to assess the patterns of terrOM degradation across the East Siberian Arctic Shelf using molecular proxies that are specific to terrOM.
Lignin phenols and high molecular weight (HMW) n-alkanes and n-alkanoic acids are only produced by terrestrial plants which make them suitable biomarkers to assess degradation of terrestrial material throughout the ESAS. The lignin-based proxies acid to aldehyde ratios of vanillyl (Vd/Vl) and syringyl (Sd/Sl) structural units, as well as the ratio of 3,5-dihydroxybenzoic acid over vanillin (3,5-Bd/V) are expected to increase during degradation under oxic conditions. Fresh terrestrial plant material is predominated by long odd-numbered (>C25) and even-numbered (>C24) carbon chain length of n-alkanes and n-alkanoic acids, respectively. This dominance is described in the Carbon Preference Index (CPI). When degradation takes place, CPI values decrease accordingly, describing how much of the original material was preserved. Ratios of HMW n-alkanoic acids to HMW n-alkanes are also expected to decrease during microbial degradation owing to preferential loss of functional groups.
The data show increasing Vd/Vl, Sd/Sl and 3,5-Bd/V ratios, and decreasing HMW n-alkanes CPI values toward the outer shelf, consistent with continuous degradation of terrOM across the ESAS. While Vd/Vl and HMW n-alkane CPI did not show strong differences between east and west, Sd/Sl ratios were highest in the outer western ESAS, and 3,5-Bd/V ratios were highest in the outer east. These differences may reflect different terrOM pools along the ESAS due to differences in vegetation zones releasing the input material through river discharge and coastal erosion. In contrast, HMW n-alkanoic acid to HMW n-alkane ratio and HMW n-alkanoic acid CPI showed inconsistent patterns across the ESAS; reasons for it are currently being investigated. These results will also be complemented by additional biomarkers to better understand the degradation of terrOM during cross-shelf transport.
How to cite: Matsubara, F., Wild, B., Martens, J., Wennström, R., Tesi, T., Dudarev, O., Shakhova, N., Semiletov, I., and Gustafsson, Ö.: Degradation of terrigenous organic matter on the East Siberian Arctic Shelf assessed by lipid and lignin oxidation products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19668, https://doi.org/10.5194/egusphere-egu2020-19668, 2020.
Warming-induced permafrost thawing is expected to intensify the remobilization of terrigenous organic matter (terrOM) to the East Siberian Arctic Shelf (ESAS) via increasing river discharge and coastal erosion. Earlier studies have focused on source apportionment and transport of terrOM, with less emphasis on its degradation state during cross-shelf transport. Since degradation of terrOM is the link between permafrost thawing and release of GHGs such as CO2, this study focuses on the degradation characteristics. Hence, the main objective of this study is to assess the patterns of terrOM degradation across the East Siberian Arctic Shelf using molecular proxies that are specific to terrOM.
Lignin phenols and high molecular weight (HMW) n-alkanes and n-alkanoic acids are only produced by terrestrial plants which make them suitable biomarkers to assess degradation of terrestrial material throughout the ESAS. The lignin-based proxies acid to aldehyde ratios of vanillyl (Vd/Vl) and syringyl (Sd/Sl) structural units, as well as the ratio of 3,5-dihydroxybenzoic acid over vanillin (3,5-Bd/V) are expected to increase during degradation under oxic conditions. Fresh terrestrial plant material is predominated by long odd-numbered (>C25) and even-numbered (>C24) carbon chain length of n-alkanes and n-alkanoic acids, respectively. This dominance is described in the Carbon Preference Index (CPI). When degradation takes place, CPI values decrease accordingly, describing how much of the original material was preserved. Ratios of HMW n-alkanoic acids to HMW n-alkanes are also expected to decrease during microbial degradation owing to preferential loss of functional groups.
The data show increasing Vd/Vl, Sd/Sl and 3,5-Bd/V ratios, and decreasing HMW n-alkanes CPI values toward the outer shelf, consistent with continuous degradation of terrOM across the ESAS. While Vd/Vl and HMW n-alkane CPI did not show strong differences between east and west, Sd/Sl ratios were highest in the outer western ESAS, and 3,5-Bd/V ratios were highest in the outer east. These differences may reflect different terrOM pools along the ESAS due to differences in vegetation zones releasing the input material through river discharge and coastal erosion. In contrast, HMW n-alkanoic acid to HMW n-alkane ratio and HMW n-alkanoic acid CPI showed inconsistent patterns across the ESAS; reasons for it are currently being investigated. These results will also be complemented by additional biomarkers to better understand the degradation of terrOM during cross-shelf transport.
How to cite: Matsubara, F., Wild, B., Martens, J., Wennström, R., Tesi, T., Dudarev, O., Shakhova, N., Semiletov, I., and Gustafsson, Ö.: Degradation of terrigenous organic matter on the East Siberian Arctic Shelf assessed by lipid and lignin oxidation products, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19668, https://doi.org/10.5194/egusphere-egu2020-19668, 2020.
EGU2020-20028 | Displays | BG4.3 | Highlight
The role of inland freshwaters in summer CO2, CH4 and N2O emissions from northeast Siberian Arctic tundraMelanie Martyn, Joshua Dean, Han Dolman, and Jorien Vonk
Inland waters can be significant sources of greenhouse gases (GHGs; CO2, CH4 and N2O) to the atmosphere, yet they are often excluded from terrestrial GHG balances. Vast stocks of carbon stored in Arctic tundra permafrost soils are vulnerable to mobilisation due to permafrost thawing accelerated by the amplified effects of climate warming at high latitudes. The carbon that is released becomes available to (partial) degradation producing GHGs which inland waters emit to the atmosphere, thus forming a positive feedback to climate warming. Rising temperatures, longer summers and increased precipitation in the Arctic tundra are expected to increase permafrost thaw and degradation rates, therefore the contribution of inland waters to the tundra terrestrial GHG budgets needs to be better understood to assess the strength and timing of the feedback effect in the future.
Field data from lakes, ponds and streams throughout the summer season of three years and from floodplain water present in one of the years was collected. This data was used to calculate CO2 equivalent diffusive fluxes from inland freshwaters, and combined with eddy covariance flux tower measurements and with satellite remote sensing to calculate total GHG emissions of the study area.
The results indicate that ponds are the largest contributors to upscaled inland water GHG emissions (around 50%) followed by streams and finally lakes. Streams had the highest emission rates followed by lakes and ponds the lowest, however due to the large surface area coverage of ponds (15% of the study area) they become the largest contributor to the upscaled freshwater GHG emissions. Upscaling of CH4 and CO2 fluxes shows that while the study region remains a GHG sink, inclusion of freshwater emissions reduces its sink capacity by 28% during our reference month July. Assuming that 10% of the study area is flooded in this month, it reduces the terrestrial GHG sink estimate to 45% instead of 28%, partially due to N2O oversaturation in the flood water in relation to the atmosphere whereas N2O concentrations in lakes, streams and ponds are close to zero. Overall the results show that if the Siberian Arctic tundra becomes wetter or more frequently flooded due to climate warming it will significantly affect the total terrestrial GHG balance.
How to cite: Martyn, M., Dean, J., Dolman, H., and Vonk, J.: The role of inland freshwaters in summer CO2, CH4 and N2O emissions from northeast Siberian Arctic tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20028, https://doi.org/10.5194/egusphere-egu2020-20028, 2020.
Inland waters can be significant sources of greenhouse gases (GHGs; CO2, CH4 and N2O) to the atmosphere, yet they are often excluded from terrestrial GHG balances. Vast stocks of carbon stored in Arctic tundra permafrost soils are vulnerable to mobilisation due to permafrost thawing accelerated by the amplified effects of climate warming at high latitudes. The carbon that is released becomes available to (partial) degradation producing GHGs which inland waters emit to the atmosphere, thus forming a positive feedback to climate warming. Rising temperatures, longer summers and increased precipitation in the Arctic tundra are expected to increase permafrost thaw and degradation rates, therefore the contribution of inland waters to the tundra terrestrial GHG budgets needs to be better understood to assess the strength and timing of the feedback effect in the future.
Field data from lakes, ponds and streams throughout the summer season of three years and from floodplain water present in one of the years was collected. This data was used to calculate CO2 equivalent diffusive fluxes from inland freshwaters, and combined with eddy covariance flux tower measurements and with satellite remote sensing to calculate total GHG emissions of the study area.
The results indicate that ponds are the largest contributors to upscaled inland water GHG emissions (around 50%) followed by streams and finally lakes. Streams had the highest emission rates followed by lakes and ponds the lowest, however due to the large surface area coverage of ponds (15% of the study area) they become the largest contributor to the upscaled freshwater GHG emissions. Upscaling of CH4 and CO2 fluxes shows that while the study region remains a GHG sink, inclusion of freshwater emissions reduces its sink capacity by 28% during our reference month July. Assuming that 10% of the study area is flooded in this month, it reduces the terrestrial GHG sink estimate to 45% instead of 28%, partially due to N2O oversaturation in the flood water in relation to the atmosphere whereas N2O concentrations in lakes, streams and ponds are close to zero. Overall the results show that if the Siberian Arctic tundra becomes wetter or more frequently flooded due to climate warming it will significantly affect the total terrestrial GHG balance.
How to cite: Martyn, M., Dean, J., Dolman, H., and Vonk, J.: The role of inland freshwaters in summer CO2, CH4 and N2O emissions from northeast Siberian Arctic tundra, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20028, https://doi.org/10.5194/egusphere-egu2020-20028, 2020.
EGU2020-20836 | Displays | BG4.3
Quantifying and characterising organic carbon in newly-developed soils following glacier retreat in northern latitudesSaule Akhmetkaliyeva, Robert Sparkes, Leon Clarke, Andrew Dean, and Simon Cook
Arctic and sub-arctic regions contain a globally significant reservoir of easily degradable glacial organic carbon (GOC) held within glacier ice, subglacial sediments, and proglacial sediments and soils. 21st century warming will result in global glacier retreat with the potential to expose and release GOC, degradation of which can produce CO2 and/or CH4 through physical, chemical or biological processes. Newly-exposed nutrient rich glacial landscapes may develop soils and ecosystems. However, current understanding of the nature of glacial carbon cycling is very weak. In this study, sources and transformations of organic carbon (OC) within proglacial environments were determined using a combination of organic biomarkers, DNA sequencing and elemental concentrations.
Soil development was characterised in three contrasting glacial systems (Oræfajökull ice cap in Iceland, Tarfala in Sweden and Zackenberg in Greenland) in order to understand the main source of OC in soils exposed after glacier retreat and soil development along downstream transects from the glacier front. Water, soil and sediment samples were collected during four successful field campaigns (Iceland and Sweden in summer 2018, Greenland and Iceland in summer 2019). Soil and sediment samples were analysed for organic carbon and nitrogen concentrations, bacteriohopanepolyol biomarkers (BHPs), a group of membrane lipids that can be used to trace major microbial groups, DNA sequencing and major elements (using ICP-OES and IC).
Soil samples from moraines showed highest OC concentrations (up to 5.5% in Iceland), while fluvial sediment samples from all study areas had low to no OC. BHPs were rare in fluvial sediments, observed in riverbank soils and most common in moraines. Both total BHP concentration and R’soil index (up to 50.5 µg/g ΣBHPs in a Little Ice Age and 0.41 R’soil in a 2500-year-old Icelandic moraines) show development of soils over time along the downstream transect from the glacier front. DNA concentrations in soil extracts are much higher than fluvial sediment samples. Particulate OC concentration in glacial meltwater streams and proglacial lakes was low (up to 0.03 mg/L), perhaps due to the high total suspended sediment concentrations (up to 0.96 mg/L) in most of the streams. Water chemistry analyses showed significant Ca, S, Na, Fe, Mg and Al concentrations, that potentially would fertilise the Arctic Ocean.
Based on these preliminary data, it can be concluded that direct glacial output of organic carbon is low, but soil and ecosystem development in front of retreating glaciers leads to the build-up of new terrestrial OC stores. Erosion of OC from these pro-glacial landscapes by glacial meltwater might highly affect estimates of GOC. Future glacier retreat in deglaciating systems in the Arctic (Greenland and Sweden) and sub-arctic (Iceland) regions might increase terrestrial OC productivity and carbon export, as well as seeding biological production downstream.
How to cite: Akhmetkaliyeva, S., Sparkes, R., Clarke, L., Dean, A., and Cook, S.: Quantifying and characterising organic carbon in newly-developed soils following glacier retreat in northern latitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20836, https://doi.org/10.5194/egusphere-egu2020-20836, 2020.
Arctic and sub-arctic regions contain a globally significant reservoir of easily degradable glacial organic carbon (GOC) held within glacier ice, subglacial sediments, and proglacial sediments and soils. 21st century warming will result in global glacier retreat with the potential to expose and release GOC, degradation of which can produce CO2 and/or CH4 through physical, chemical or biological processes. Newly-exposed nutrient rich glacial landscapes may develop soils and ecosystems. However, current understanding of the nature of glacial carbon cycling is very weak. In this study, sources and transformations of organic carbon (OC) within proglacial environments were determined using a combination of organic biomarkers, DNA sequencing and elemental concentrations.
Soil development was characterised in three contrasting glacial systems (Oræfajökull ice cap in Iceland, Tarfala in Sweden and Zackenberg in Greenland) in order to understand the main source of OC in soils exposed after glacier retreat and soil development along downstream transects from the glacier front. Water, soil and sediment samples were collected during four successful field campaigns (Iceland and Sweden in summer 2018, Greenland and Iceland in summer 2019). Soil and sediment samples were analysed for organic carbon and nitrogen concentrations, bacteriohopanepolyol biomarkers (BHPs), a group of membrane lipids that can be used to trace major microbial groups, DNA sequencing and major elements (using ICP-OES and IC).
Soil samples from moraines showed highest OC concentrations (up to 5.5% in Iceland), while fluvial sediment samples from all study areas had low to no OC. BHPs were rare in fluvial sediments, observed in riverbank soils and most common in moraines. Both total BHP concentration and R’soil index (up to 50.5 µg/g ΣBHPs in a Little Ice Age and 0.41 R’soil in a 2500-year-old Icelandic moraines) show development of soils over time along the downstream transect from the glacier front. DNA concentrations in soil extracts are much higher than fluvial sediment samples. Particulate OC concentration in glacial meltwater streams and proglacial lakes was low (up to 0.03 mg/L), perhaps due to the high total suspended sediment concentrations (up to 0.96 mg/L) in most of the streams. Water chemistry analyses showed significant Ca, S, Na, Fe, Mg and Al concentrations, that potentially would fertilise the Arctic Ocean.
Based on these preliminary data, it can be concluded that direct glacial output of organic carbon is low, but soil and ecosystem development in front of retreating glaciers leads to the build-up of new terrestrial OC stores. Erosion of OC from these pro-glacial landscapes by glacial meltwater might highly affect estimates of GOC. Future glacier retreat in deglaciating systems in the Arctic (Greenland and Sweden) and sub-arctic (Iceland) regions might increase terrestrial OC productivity and carbon export, as well as seeding biological production downstream.
How to cite: Akhmetkaliyeva, S., Sparkes, R., Clarke, L., Dean, A., and Cook, S.: Quantifying and characterising organic carbon in newly-developed soils following glacier retreat in northern latitudes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20836, https://doi.org/10.5194/egusphere-egu2020-20836, 2020.
EGU2020-21915 | Displays | BG4.3
Landscape-driven carbon export from small coastal permafrost watershedsNiek Speetjens, George Tanski, Victoria Martin, Julia Wagner, Andreas Richter, Gustaf Hugelius, Rachele Lodi, Christian Knoblauch, Boris Koch, Colin Stedmon, and Jorien Vonk
Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter (OM) pool. Part of this mobilized terrestrial OM enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized DOM is an important source of nutrients for ecosystems as it is available for microbial breakdown, the consequent turnover of the dissolved organic carbon (DOC) fraction of DOM serving as a potential source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large arctic rivers, but these processes remain systematically understudied in small, high-arctic watersheds, despite the fact that these particular watersheds experience strongest warming.
We sampled soil (active layer and permafrost) and water (porewater and stream water) from two small catchments along the Yukon coast, Canada, during the summers of 2018 and 2019. We assessed the organic carbon quantity (using DOC and soil OC content), quality (d13C-DOC, C/N ratios and optical properties including components modelled with EEMs-PARAFAC), the turnover of DOM through incubation experiments as well as nutrients and stable water isotopes. We classify and compare different landscape units by quantitative and qualitative change across gradients from soil stocks down to the catchment outflow.
Our results show that substantial variation in DOC concentrations exists among various landscape units as well as between active layer and permafrost. We find high soil carbon stocks and leaching potentials from these coastal tundra soils. Moreover, we find that permafrost DOM is utilized rapidly upon thaw. Using remote sensing-based landscape classification, we are planning to upscale carbon and nutrient fluxes for the panarctic coastal zone to account for small yet numerous high-arctic watersheds in lateral terrestrial OM transfer from land to sea Under current climate projections and with continued permafrost thaw altered lateral fluxes may have profound impacts on the arctic aquatic ecosystem and arctic carbon cycling.
How to cite: Speetjens, N., Tanski, G., Martin, V., Wagner, J., Richter, A., Hugelius, G., Lodi, R., Knoblauch, C., Koch, B., Stedmon, C., and Vonk, J.: Landscape-driven carbon export from small coastal permafrost watersheds , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21915, https://doi.org/10.5194/egusphere-egu2020-21915, 2020.
Ongoing climate warming in the western Canadian Arctic is leading to thawing of permafrost soils and subsequent mobilization of its organic matter (OM) pool. Part of this mobilized terrestrial OM enters the aquatic system as dissolved organic matter (DOM) and is laterally transported from land to sea. Mobilized DOM is an important source of nutrients for ecosystems as it is available for microbial breakdown, the consequent turnover of the dissolved organic carbon (DOC) fraction of DOM serving as a potential source of greenhouse gases. We are beginning to understand spatial controls on the release of DOM as well as the quantities and fate of this material in large arctic rivers, but these processes remain systematically understudied in small, high-arctic watersheds, despite the fact that these particular watersheds experience strongest warming.
We sampled soil (active layer and permafrost) and water (porewater and stream water) from two small catchments along the Yukon coast, Canada, during the summers of 2018 and 2019. We assessed the organic carbon quantity (using DOC and soil OC content), quality (d13C-DOC, C/N ratios and optical properties including components modelled with EEMs-PARAFAC), the turnover of DOM through incubation experiments as well as nutrients and stable water isotopes. We classify and compare different landscape units by quantitative and qualitative change across gradients from soil stocks down to the catchment outflow.
Our results show that substantial variation in DOC concentrations exists among various landscape units as well as between active layer and permafrost. We find high soil carbon stocks and leaching potentials from these coastal tundra soils. Moreover, we find that permafrost DOM is utilized rapidly upon thaw. Using remote sensing-based landscape classification, we are planning to upscale carbon and nutrient fluxes for the panarctic coastal zone to account for small yet numerous high-arctic watersheds in lateral terrestrial OM transfer from land to sea Under current climate projections and with continued permafrost thaw altered lateral fluxes may have profound impacts on the arctic aquatic ecosystem and arctic carbon cycling.
How to cite: Speetjens, N., Tanski, G., Martin, V., Wagner, J., Richter, A., Hugelius, G., Lodi, R., Knoblauch, C., Koch, B., Stedmon, C., and Vonk, J.: Landscape-driven carbon export from small coastal permafrost watersheds , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21915, https://doi.org/10.5194/egusphere-egu2020-21915, 2020.
EGU2020-8174 | Displays | BG4.3
First Pan-Arctic Assessment of Dissolved Organic Carbon Concentration in Permafrost-Region LakesLydia Stolpmann, Anne Morgenstern, Julia Boike, Michael Fritz, Ulrike Herzschuh, Yury Dvornikov, Birgit Heim, Josefine Lenz, Caroline Coch, Amy Larsen, Katey Walter Anthony, Christopher Arp, Benjamin Jones, Karen Frey, and Guido Grosse
Permafrost-region lakes are dynamic landscape systems and play an important role for climate change feedbacks. Lake processes such as mineralization and flocculation of DOC, one of the main carbon fraction in lakes, contribute to the global carbon cycle. These processes are in focus of climate research but studies have been limited in geographic extent. We synthesized published datasets and unpublished datasets from the author team totaling 1,691 water samples from 1,387 lakes across the Subarctic and Arctic in permafrost regions of Alaska, Canada, Siberia, and Greenland to provide first insights for linkages between DOC concentration to the basin. In our synthesis, we find regional differences in DOC concentration of permafrost-region lakes. We focussed on relations between lake DOC concentration and latitude, permafrost zones, ecoregions, lake surrounding deposit type, and ground ice classification of each lake basin. Additionally, we analysed the lake surrounding soil organic carbon content from 0-100 cm depth and 0-300 cm depth. Individual lake DOC concentrations of our dataset range from below detection limit assigned to 0 mg L-1 (North Slope, Alaska) to 1,130 mg L-1 (Yukon Flats, Alaska). We found regional median lake DOC concentrations of 18.8 mg L-1 (Greenland, n=25), 12.2 mg L-1 (Alaska, n= 1,135), 9.6 mg L-1 (Siberia, n=252), and 7.2 mg L-1 (Canada, n=279). Lakes in the isolated permafrost zone had the highest median DOC concentration compared to lakes in the sporadic, discontinuous, and continuous permafrost zones. Our synthesis shows increasing lake DOC concentration with decreasing latitude and, due to a larger availability of biomass and organic carbon, a significant relationship of lake DOC concentration and ecoregion of the lake. We found higher lake DOC concentrations in boreal permafrost sites compared to tundra sites. About 22 % of lakes in our dataset are located in regions with ice-rich syngenetic permafrost deposits (yedoma). Because yedoma contains large amounts of organic carbon, we assumed to find higher DOC concentrations in yedoma lakes compared to non-yedoma lakes. Our analysis shows a significant relationship of lake DOC concentration and surrounding deposit type but not a higher DOC concentration in yedoma lakes compared to non-yedoma lakes. Finally, we found a relationship of soil organic carbon content from 0-100 cm depth and lake DOC concentration. In contrast, a comparison of soil organic carbon content from 0-300 cm depth and lake DOC concentration shows no significant correlation. This was also found for ground-ice content and lake DOC concentration. Our dataset of lakes across the Arctic shows that the DOC concentration of a lake strongly depends on its environmental properties. This dataset will be fundamental to establish a pan-Arctic lake DOC pool for estimations of the impact of lake DOC on the global carbon cycle and further on climate change.
How to cite: Stolpmann, L., Morgenstern, A., Boike, J., Fritz, M., Herzschuh, U., Dvornikov, Y., Heim, B., Lenz, J., Coch, C., Larsen, A., Walter Anthony, K., Arp, C., Jones, B., Frey, K., and Grosse, G.: First Pan-Arctic Assessment of Dissolved Organic Carbon Concentration in Permafrost-Region Lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8174, https://doi.org/10.5194/egusphere-egu2020-8174, 2020.
Permafrost-region lakes are dynamic landscape systems and play an important role for climate change feedbacks. Lake processes such as mineralization and flocculation of DOC, one of the main carbon fraction in lakes, contribute to the global carbon cycle. These processes are in focus of climate research but studies have been limited in geographic extent. We synthesized published datasets and unpublished datasets from the author team totaling 1,691 water samples from 1,387 lakes across the Subarctic and Arctic in permafrost regions of Alaska, Canada, Siberia, and Greenland to provide first insights for linkages between DOC concentration to the basin. In our synthesis, we find regional differences in DOC concentration of permafrost-region lakes. We focussed on relations between lake DOC concentration and latitude, permafrost zones, ecoregions, lake surrounding deposit type, and ground ice classification of each lake basin. Additionally, we analysed the lake surrounding soil organic carbon content from 0-100 cm depth and 0-300 cm depth. Individual lake DOC concentrations of our dataset range from below detection limit assigned to 0 mg L-1 (North Slope, Alaska) to 1,130 mg L-1 (Yukon Flats, Alaska). We found regional median lake DOC concentrations of 18.8 mg L-1 (Greenland, n=25), 12.2 mg L-1 (Alaska, n= 1,135), 9.6 mg L-1 (Siberia, n=252), and 7.2 mg L-1 (Canada, n=279). Lakes in the isolated permafrost zone had the highest median DOC concentration compared to lakes in the sporadic, discontinuous, and continuous permafrost zones. Our synthesis shows increasing lake DOC concentration with decreasing latitude and, due to a larger availability of biomass and organic carbon, a significant relationship of lake DOC concentration and ecoregion of the lake. We found higher lake DOC concentrations in boreal permafrost sites compared to tundra sites. About 22 % of lakes in our dataset are located in regions with ice-rich syngenetic permafrost deposits (yedoma). Because yedoma contains large amounts of organic carbon, we assumed to find higher DOC concentrations in yedoma lakes compared to non-yedoma lakes. Our analysis shows a significant relationship of lake DOC concentration and surrounding deposit type but not a higher DOC concentration in yedoma lakes compared to non-yedoma lakes. Finally, we found a relationship of soil organic carbon content from 0-100 cm depth and lake DOC concentration. In contrast, a comparison of soil organic carbon content from 0-300 cm depth and lake DOC concentration shows no significant correlation. This was also found for ground-ice content and lake DOC concentration. Our dataset of lakes across the Arctic shows that the DOC concentration of a lake strongly depends on its environmental properties. This dataset will be fundamental to establish a pan-Arctic lake DOC pool for estimations of the impact of lake DOC on the global carbon cycle and further on climate change.
How to cite: Stolpmann, L., Morgenstern, A., Boike, J., Fritz, M., Herzschuh, U., Dvornikov, Y., Heim, B., Lenz, J., Coch, C., Larsen, A., Walter Anthony, K., Arp, C., Jones, B., Frey, K., and Grosse, G.: First Pan-Arctic Assessment of Dissolved Organic Carbon Concentration in Permafrost-Region Lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8174, https://doi.org/10.5194/egusphere-egu2020-8174, 2020.
EGU2020-8991 | Displays | BG4.3
Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River DeltaLutz Beckebanze, Josefine Walz, Benjamin R.K. Runkle, David Holl, Irina V. Fedorova Fedorova, Manuel Helbig, and Lars Kutzbach
Permafrost-affected soils contain a large quantity of soil organic carbon (SOC). Two processes control the amount of carbon stored in soils. The photosynthetic activity of plants produces biomass that may accumulate in the soil, while microorganism’s respiration leads to a depletion of the soil carbon stocks through decomposition. The carbon balance defines whether a soil acts as a source or sink of carbon. In recent decades, many researchers observed and analyzed the carbon balance of permafrost soils. In most cases, the focus lays on observations of the vertical carbon flux (CO2 and CH4) to estimate the carbon balance. However, there is lack of information regarding the lateral losses of carbon via dissolved organic carbon (DOC) or dissolved inorganic carbon (DIC) in ground- or rainwater.
In this study, we estimate the lateral carbon fluxes from a permafrost-affected site in north-eastern Siberia, Russia. Long-term measurements of vertical carbon fluxes have been conducted at this study site. By considering both, the vertical and the lateral carbon fluxes, we estimate the complete carbon balance for one growing season in 2014 and discuss the contribution of the lateral carbon flux to the overall carbon balance.
The results show that the vertical CO2 fluxes dominate the carbon balance during the growing season from June 8th – September 8th (-19 ± 1.2 kg-C m-2). The lateral fluxes of DOC and DIC reached values of +0.1 ± 0.01 and +1.4 ± 0.09 kg-C m-2, respectively, whereas the vertical fluxes of CH4 had values of +0.7 ± 0.02 kg-C m-2 integrated over this time. By considering the lateral carbon export, the net ecosystem carbon balance of the study area was reduced by 8%. On shorter time scales of days, the relationship between lateral and vertical flux changes within the growing season. Early in the growing season, the lateral carbon flux outpaces the weak vertical CO2 uptake for a few days and converts the estimated carbon balance from a sink to a source.
We conclude that lateral carbon fluxes have a larger influence on the carbon balance of our study site on time scales of days (early and late growing season) and that this influence decreases with annual time scales. Therefore, the vertical carbon flux can be seen as a good approximation for the carbon balance of this study site on annual time scales.
How to cite: Beckebanze, L., Walz, J., Runkle, B. R. K., Holl, D., Fedorova, I. V. F., Helbig, M., and Kutzbach, L.: Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8991, https://doi.org/10.5194/egusphere-egu2020-8991, 2020.
Permafrost-affected soils contain a large quantity of soil organic carbon (SOC). Two processes control the amount of carbon stored in soils. The photosynthetic activity of plants produces biomass that may accumulate in the soil, while microorganism’s respiration leads to a depletion of the soil carbon stocks through decomposition. The carbon balance defines whether a soil acts as a source or sink of carbon. In recent decades, many researchers observed and analyzed the carbon balance of permafrost soils. In most cases, the focus lays on observations of the vertical carbon flux (CO2 and CH4) to estimate the carbon balance. However, there is lack of information regarding the lateral losses of carbon via dissolved organic carbon (DOC) or dissolved inorganic carbon (DIC) in ground- or rainwater.
In this study, we estimate the lateral carbon fluxes from a permafrost-affected site in north-eastern Siberia, Russia. Long-term measurements of vertical carbon fluxes have been conducted at this study site. By considering both, the vertical and the lateral carbon fluxes, we estimate the complete carbon balance for one growing season in 2014 and discuss the contribution of the lateral carbon flux to the overall carbon balance.
The results show that the vertical CO2 fluxes dominate the carbon balance during the growing season from June 8th – September 8th (-19 ± 1.2 kg-C m-2). The lateral fluxes of DOC and DIC reached values of +0.1 ± 0.01 and +1.4 ± 0.09 kg-C m-2, respectively, whereas the vertical fluxes of CH4 had values of +0.7 ± 0.02 kg-C m-2 integrated over this time. By considering the lateral carbon export, the net ecosystem carbon balance of the study area was reduced by 8%. On shorter time scales of days, the relationship between lateral and vertical flux changes within the growing season. Early in the growing season, the lateral carbon flux outpaces the weak vertical CO2 uptake for a few days and converts the estimated carbon balance from a sink to a source.
We conclude that lateral carbon fluxes have a larger influence on the carbon balance of our study site on time scales of days (early and late growing season) and that this influence decreases with annual time scales. Therefore, the vertical carbon flux can be seen as a good approximation for the carbon balance of this study site on annual time scales.
How to cite: Beckebanze, L., Walz, J., Runkle, B. R. K., Holl, D., Fedorova, I. V. F., Helbig, M., and Kutzbach, L.: Lateral carbon export from polygonal tundra catchments on Samoylov Island, Lena River Delta, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8991, https://doi.org/10.5194/egusphere-egu2020-8991, 2020.
EGU2020-11944 | Displays | BG4.3
From pre-freshet to pre-freeze: a field survey of the fate of organic matter remobilized from the thawing permafrost to the coastal waters of the Mackenzie Delta regionMartine Lizotte and the Nunataryuk WP4 team
Thawing of permafrost in the Mackenzie Delta region of northern Canada, coupled with an increase in river discharge, prompts the release of particulate and dissolved organic matter from the largest Arctic drainage basin in North America into the Arctic Ocean. While this ongoing process is well-recognized and its rate is accelerating, the fate of the newly-mobilized organic matter as it transits from the watershed through the delta and into the marine system remains poorly understood. In the framework of the H2020 Nunataryuk project, and in partnership with ArcticNet and Sentinel North, we conducted intensive field expeditions in the Mackenzie Delta from April to September 2019. The temporal sampling scheme of this project allowed the investigation of ambient conditions in the coastal waters under a full ice cover prior to the spring freshet, during the ice break-up, in summer, as well as in fall prior to the freeze-up period. In order to capture the fluvial-marine transition zone and with specific challenges related to shallow waters and changing seasons, the field sampling was conducted using several platforms: helicopters, snowmobiles and small boats. Water column profiles of physical and optical variables were measured on site, and water and sediment samples were collected and preserved for the determination of the composition and sources of particulate and dissolved organic matter, as well as its biogeochemical cycling in the coastal environment. Beyond improving our understanding of the origin and fate of this re-mobilized organic matter, the data gathered will serve as a new basis for the ground truthing of remotely sensed images in a changing arctic environment. Finally, the tuned satellite data will be incorporated into numerical models, providing better predictions of the impacts of permafrost thaw on local biogeochemical cycling and ultimately on sea-air fluxes of carbon dioxide and global climate.
How to cite: Lizotte, M. and the Nunataryuk WP4 team: From pre-freshet to pre-freeze: a field survey of the fate of organic matter remobilized from the thawing permafrost to the coastal waters of the Mackenzie Delta region , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11944, https://doi.org/10.5194/egusphere-egu2020-11944, 2020.
Thawing of permafrost in the Mackenzie Delta region of northern Canada, coupled with an increase in river discharge, prompts the release of particulate and dissolved organic matter from the largest Arctic drainage basin in North America into the Arctic Ocean. While this ongoing process is well-recognized and its rate is accelerating, the fate of the newly-mobilized organic matter as it transits from the watershed through the delta and into the marine system remains poorly understood. In the framework of the H2020 Nunataryuk project, and in partnership with ArcticNet and Sentinel North, we conducted intensive field expeditions in the Mackenzie Delta from April to September 2019. The temporal sampling scheme of this project allowed the investigation of ambient conditions in the coastal waters under a full ice cover prior to the spring freshet, during the ice break-up, in summer, as well as in fall prior to the freeze-up period. In order to capture the fluvial-marine transition zone and with specific challenges related to shallow waters and changing seasons, the field sampling was conducted using several platforms: helicopters, snowmobiles and small boats. Water column profiles of physical and optical variables were measured on site, and water and sediment samples were collected and preserved for the determination of the composition and sources of particulate and dissolved organic matter, as well as its biogeochemical cycling in the coastal environment. Beyond improving our understanding of the origin and fate of this re-mobilized organic matter, the data gathered will serve as a new basis for the ground truthing of remotely sensed images in a changing arctic environment. Finally, the tuned satellite data will be incorporated into numerical models, providing better predictions of the impacts of permafrost thaw on local biogeochemical cycling and ultimately on sea-air fluxes of carbon dioxide and global climate.
How to cite: Lizotte, M. and the Nunataryuk WP4 team: From pre-freshet to pre-freeze: a field survey of the fate of organic matter remobilized from the thawing permafrost to the coastal waters of the Mackenzie Delta region , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11944, https://doi.org/10.5194/egusphere-egu2020-11944, 2020.
EGU2020-12326 | Displays | BG4.3
Elemental and isotopic signatures of terrestrial organic matter along the Delta coastline of Lena River (Laptev Sea)Dudarev Oleg, Charkin Alexander, Ruban Aleksey, Pipko Irina, Pugach Svetlana, Wild Birgit, Leusov Andrey, Tesi Tomasso, Martens Jannik, Semiletov Igor, Shakhova Natalia, and Gustafsson Örjan
A complex multydisciplinary oceanographic research was carried out along 358 km transect along the Lena Delta coastline (DCL): 58 stations were accomplished in 7 days in early September 2009. Our study focuses on structure of bottom sediments, dynamics of suspended particulate matter (SPM), content of particulate organic carbon (POC), total nitrogen (ON), C/N value, stable carbon (δ13С) and nitrogen isotopes (δ15N). It has been found a close connection between channels morthology, tectonic features and distribution of bottom sediments, SPM, water runoff along the DCL.
Neotectonic movements happened about 6,000 yr BP led to uplift of the DCL western part, which caused redistribution of river runoff to the eastern channels of the DCL. The boundary between these “tectonic” parts of the DCL is the submeridional fault, to which the Tumatsky Channel is currently confined. Shelf waters with salinity (S) > 20‰ penetrated to the channel mouth, causing formation of a frontal hydrological zone with increased gradients of thermohaline characteristics. Almost fresh river waters (S<1 ‰) are distributed along the eastern part of the DCL (EDCL), and brackish water are distributed to the west of Tumatsky Channel (WDCL). The differences in the SPM average content between EDCL and WDCL are only 1.5 times, but the density of the river net in EDCL is almost 3 times higher. The reason is a more intense sedimentation of the SPM, causing the DCL progradation to the east and northeast of Laptev Sea. This is supported by 2-fold decrease by SPM from the inlets of Sardakhskaya, Bykovskaya and Trofimovskaya Channels to their mouths. Only fine SPM remain in transfer from the central DCL to the mixing water zone “river-sea”. A circumterral narrow strip of sand-silt sediments formed along the DCL’s edge, and a vast field of relict sands is distributed near the northwestern elevated ledge of the delta (WDCL). Seaward direction from DCL sand-silt sediments are quickly replaced by silt-mud. The average POC content in EDCL and WDCL, respectively, is 1.6 and 2.7%; average C-13 isotopic signal is -26.5 and -26.0 ‰; average C/N values are 9.8 and 9.3. That is confirmed by similar terrestrial geochemical signature in the nearshore sediments adjacent to EDCL and WDCL
Acknowledgements. This study was supported by Ministry of Science and Education of Russia (project № АААА-А17-117030110039-2), the Russian Science Foundation (grants № 19-17-00058), the Russian Foundation for Basic Research (grants №№ 18-05-70047, 18-05-00559, 19-77-00016, 20-05-00545).
How to cite: Oleg, D., Alexander, C., Aleksey, R., Irina, P., Svetlana, P., Birgit, W., Andrey, L., Tomasso, T., Jannik, M., Igor, S., Natalia, S., and Örjan, G.: Elemental and isotopic signatures of terrestrial organic matter along the Delta coastline of Lena River (Laptev Sea), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12326, https://doi.org/10.5194/egusphere-egu2020-12326, 2020.
A complex multydisciplinary oceanographic research was carried out along 358 km transect along the Lena Delta coastline (DCL): 58 stations were accomplished in 7 days in early September 2009. Our study focuses on structure of bottom sediments, dynamics of suspended particulate matter (SPM), content of particulate organic carbon (POC), total nitrogen (ON), C/N value, stable carbon (δ13С) and nitrogen isotopes (δ15N). It has been found a close connection between channels morthology, tectonic features and distribution of bottom sediments, SPM, water runoff along the DCL.
Neotectonic movements happened about 6,000 yr BP led to uplift of the DCL western part, which caused redistribution of river runoff to the eastern channels of the DCL. The boundary between these “tectonic” parts of the DCL is the submeridional fault, to which the Tumatsky Channel is currently confined. Shelf waters with salinity (S) > 20‰ penetrated to the channel mouth, causing formation of a frontal hydrological zone with increased gradients of thermohaline characteristics. Almost fresh river waters (S<1 ‰) are distributed along the eastern part of the DCL (EDCL), and brackish water are distributed to the west of Tumatsky Channel (WDCL). The differences in the SPM average content between EDCL and WDCL are only 1.5 times, but the density of the river net in EDCL is almost 3 times higher. The reason is a more intense sedimentation of the SPM, causing the DCL progradation to the east and northeast of Laptev Sea. This is supported by 2-fold decrease by SPM from the inlets of Sardakhskaya, Bykovskaya and Trofimovskaya Channels to their mouths. Only fine SPM remain in transfer from the central DCL to the mixing water zone “river-sea”. A circumterral narrow strip of sand-silt sediments formed along the DCL’s edge, and a vast field of relict sands is distributed near the northwestern elevated ledge of the delta (WDCL). Seaward direction from DCL sand-silt sediments are quickly replaced by silt-mud. The average POC content in EDCL and WDCL, respectively, is 1.6 and 2.7%; average C-13 isotopic signal is -26.5 and -26.0 ‰; average C/N values are 9.8 and 9.3. That is confirmed by similar terrestrial geochemical signature in the nearshore sediments adjacent to EDCL and WDCL
Acknowledgements. This study was supported by Ministry of Science and Education of Russia (project № АААА-А17-117030110039-2), the Russian Science Foundation (grants № 19-17-00058), the Russian Foundation for Basic Research (grants №№ 18-05-70047, 18-05-00559, 19-77-00016, 20-05-00545).
How to cite: Oleg, D., Alexander, C., Aleksey, R., Irina, P., Svetlana, P., Birgit, W., Andrey, L., Tomasso, T., Jannik, M., Igor, S., Natalia, S., and Örjan, G.: Elemental and isotopic signatures of terrestrial organic matter along the Delta coastline of Lena River (Laptev Sea), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12326, https://doi.org/10.5194/egusphere-egu2020-12326, 2020.
EGU2020-1144 | Displays | BG4.3
The role of photodegradation on the mineralization of permafrost DOMFlora Mazoyer, Isabelle Laurion, and Milla Rautio
Permafrost thaw leads to the formation of shallow water bodies in which large quantities of terrestrial organic carbon are mobilized as dissolved organic matter (DOM), partly turned into greenhouse gases (GHG). DOM comes from ancient carbon pools trapped in frozen soils for hundreds to thousands of years but also from present-day primary producers. Determining the fate of these pools is fundamental to evaluate the potential of these water bodies to amplify climate warming through their GHG emissions. In addition to the microbial degradation pathways producing CO2 and CH4, DOM can be directly mineralized into CO2 by sunlight. The CO2 production rates from photodegradation vary extensively across Arctic regions. The controlling factors and interactions with the microbial communities are not well understood, while photodegradation is likely to rise as the open-water season extends. Determining the photo- and bio-lability of the carbon pools available on thawing permafrost landscapes is needed to predict to what extent these systems can affect the global carbon cycle.
Various DOM and environmental characteristics are considered in my PhD project, including mixing regime, seasonal exposure and light attenuation, as well as the microbial community response to photo-induced chemistry changes in DOM. Study sites include subarctic and arctic peatland areas of Eastern Canada, rich in thaw ponds and where organic matter started to accumulate between 3700 and 5600 years BP. These are non-Yedoma systems that have been poorly studied despite the large amount of organic carbon they store. This presentation will show the results of a lab experiment using a solar simulator where DOM of various origins and ages were tested: thaw pond water and leachates from plants, permafrost active layer, and previously unthawed permafrost. Short term incubations were carried out under five treatments: exposure to light without bacteria (0.2 µm filtration), exposure to light followed by a dark incubation with a bacterial inoculum, dark incubation with a bacterial inoculum, dark incubation with the whole bacterial community (2.7 µm filtration), and dark control without bacteria. A set of optical, biological and chemical characteristics were measured at the beginning and end of incubation. DOM losses (DOC, CDOM, and FDOM) and CO2 production vary extensively among treatments and DOM pools. They were the highest in dark bacterial incubations of plants leachates. DOM of the subarctic area was quite refractory to degradation in general, except for the biodegradation of the unthawed permafrost leachate (- 50%). Photodegradation was observed in all water types, with DOM losses faster than biodegradation ones for the Arctic soils leachates and all the ponds waters. The highest CO2 photoproduction was measured in Arctic unthawed permafrost leachates. Finally, the enhancement of DOM lability to microbes caused by photodegradation was generally observed for unthawed permafrost leachates. Incoming biological and 14C data, along with multivariate analyses, will improve the characterisation of the trends.
How to cite: Mazoyer, F., Laurion, I., and Rautio, M.: The role of photodegradation on the mineralization of permafrost DOM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1144, https://doi.org/10.5194/egusphere-egu2020-1144, 2020.
Permafrost thaw leads to the formation of shallow water bodies in which large quantities of terrestrial organic carbon are mobilized as dissolved organic matter (DOM), partly turned into greenhouse gases (GHG). DOM comes from ancient carbon pools trapped in frozen soils for hundreds to thousands of years but also from present-day primary producers. Determining the fate of these pools is fundamental to evaluate the potential of these water bodies to amplify climate warming through their GHG emissions. In addition to the microbial degradation pathways producing CO2 and CH4, DOM can be directly mineralized into CO2 by sunlight. The CO2 production rates from photodegradation vary extensively across Arctic regions. The controlling factors and interactions with the microbial communities are not well understood, while photodegradation is likely to rise as the open-water season extends. Determining the photo- and bio-lability of the carbon pools available on thawing permafrost landscapes is needed to predict to what extent these systems can affect the global carbon cycle.
Various DOM and environmental characteristics are considered in my PhD project, including mixing regime, seasonal exposure and light attenuation, as well as the microbial community response to photo-induced chemistry changes in DOM. Study sites include subarctic and arctic peatland areas of Eastern Canada, rich in thaw ponds and where organic matter started to accumulate between 3700 and 5600 years BP. These are non-Yedoma systems that have been poorly studied despite the large amount of organic carbon they store. This presentation will show the results of a lab experiment using a solar simulator where DOM of various origins and ages were tested: thaw pond water and leachates from plants, permafrost active layer, and previously unthawed permafrost. Short term incubations were carried out under five treatments: exposure to light without bacteria (0.2 µm filtration), exposure to light followed by a dark incubation with a bacterial inoculum, dark incubation with a bacterial inoculum, dark incubation with the whole bacterial community (2.7 µm filtration), and dark control without bacteria. A set of optical, biological and chemical characteristics were measured at the beginning and end of incubation. DOM losses (DOC, CDOM, and FDOM) and CO2 production vary extensively among treatments and DOM pools. They were the highest in dark bacterial incubations of plants leachates. DOM of the subarctic area was quite refractory to degradation in general, except for the biodegradation of the unthawed permafrost leachate (- 50%). Photodegradation was observed in all water types, with DOM losses faster than biodegradation ones for the Arctic soils leachates and all the ponds waters. The highest CO2 photoproduction was measured in Arctic unthawed permafrost leachates. Finally, the enhancement of DOM lability to microbes caused by photodegradation was generally observed for unthawed permafrost leachates. Incoming biological and 14C data, along with multivariate analyses, will improve the characterisation of the trends.
How to cite: Mazoyer, F., Laurion, I., and Rautio, M.: The role of photodegradation on the mineralization of permafrost DOM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1144, https://doi.org/10.5194/egusphere-egu2020-1144, 2020.
EGU2020-3094 | Displays | BG4.3
Detecting the signature and transformations of water from coastal permafrost thaw in the Beaufort SeaGwénaëlle Chaillou, Lauren Kipp, Frederik Bélanger, and Dustin Whalen
The Canadian Beaufort Sea is experiencing coastal erosion at unprecedent rates due to waves impacts and permafrost thaw. Water derived from permafrost thaw has profound impacts on coastal hydrogeology and carbon dynamics. The quality and volume of permafrost water (as surficial and groundwater) discharging to the ocean controls on coastal water chemistry and turbidity. These disturbances alter coastal ecosystems and endanger species with ecological, cultural, and economic value. Robust estimates of these solute and solid inputs are needed on a site-specific scale to obtain accurate regional and global estimations. However, the determination of appropriate endmembers to estimate these fluxes is not straightforward; and yet, little is known about the chemical composition and reactivity of carbon, nutrients and metals of water in coastal permafrost settings. The main objective here is to trace permafrost-derived solutes and study their transport and transformation to coastal water. Several coastal permafrost slumps were visited last summer in the Tuktoyaktuk Peninsula region. Melting-ice, surficial and groundwater were collected to systematically measure short-live isotopes (Rn-222, Ra-223, Ra-224), the stable isotopes of water (δ18O, δD), dissolved organic and inorganic carbon (DOC and DIC), chromophoric component of the organic matter (CDOM), total and non-carbonate alkalinity. In front of these systems, surface seawater samples were collected to 1 to 2 km from the shore to trace these chemical inputs to the coastal ocean. Preliminary results will be presented with a specific focus on the geochemical signature of waters at the nearshore. This project is a part of the WP4 Nunataryuk Program, in collaboration with Natural Resources Canada
How to cite: Chaillou, G., Kipp, L., Bélanger, F., and Whalen, D.: Detecting the signature and transformations of water from coastal permafrost thaw in the Beaufort Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3094, https://doi.org/10.5194/egusphere-egu2020-3094, 2020.
The Canadian Beaufort Sea is experiencing coastal erosion at unprecedent rates due to waves impacts and permafrost thaw. Water derived from permafrost thaw has profound impacts on coastal hydrogeology and carbon dynamics. The quality and volume of permafrost water (as surficial and groundwater) discharging to the ocean controls on coastal water chemistry and turbidity. These disturbances alter coastal ecosystems and endanger species with ecological, cultural, and economic value. Robust estimates of these solute and solid inputs are needed on a site-specific scale to obtain accurate regional and global estimations. However, the determination of appropriate endmembers to estimate these fluxes is not straightforward; and yet, little is known about the chemical composition and reactivity of carbon, nutrients and metals of water in coastal permafrost settings. The main objective here is to trace permafrost-derived solutes and study their transport and transformation to coastal water. Several coastal permafrost slumps were visited last summer in the Tuktoyaktuk Peninsula region. Melting-ice, surficial and groundwater were collected to systematically measure short-live isotopes (Rn-222, Ra-223, Ra-224), the stable isotopes of water (δ18O, δD), dissolved organic and inorganic carbon (DOC and DIC), chromophoric component of the organic matter (CDOM), total and non-carbonate alkalinity. In front of these systems, surface seawater samples were collected to 1 to 2 km from the shore to trace these chemical inputs to the coastal ocean. Preliminary results will be presented with a specific focus on the geochemical signature of waters at the nearshore. This project is a part of the WP4 Nunataryuk Program, in collaboration with Natural Resources Canada
How to cite: Chaillou, G., Kipp, L., Bélanger, F., and Whalen, D.: Detecting the signature and transformations of water from coastal permafrost thaw in the Beaufort Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3094, https://doi.org/10.5194/egusphere-egu2020-3094, 2020.
EGU2020-17595 | Displays | BG4.3
Transport and fate of different components of terrestrial organic matter across the Siberian-Arctic shelvesÖrjan Gustafsson, Igor Semiletov, Natalia Shakhova, Oleg Dudarev, Jorien Vonk, Bart van Dongen, Tim Eglinton, Tommaso Tesi, Lisa Bröder, August Andersson, Birgit Wild, Felipe Matsubara, and Jannik Martens
About one-third to half of the global soil carbon is held in the top 1-3 m of tundra+taiga permafrost PF (~1000 Pg-C) with deeper layers below as Deep-PF (~400 Pg-C) and in Pleistocene Ice Complex Deposit permafrost (ICD-PF, ~400 Pg-C), lining 4000 km of the East Siberian Arctic coast. In order to overcome the landscape heterogeneity and the stochastic nature of e.g. erosional release processes, we use the East Siberian Arctic Shelf (ESAS) in an inverse approach – as a natural integrator of the TerrOM releases from both the river drainage basins and from the erosion of ICD-containing bluffs. We are exploring how source-dependent transport and translocated degradation affect the released TerrOM.
The sources of released terrOM have been increasingly constrained using great rivers and the ESAS as natural integrators through a combination of biomarkers and δ13C/Δ14C on bulk-C and on compound level. There are significant gradients in sources both E-W and S-N across each shelf sea and between water column DOM, POM and sedimentary OM. The largest source of OC to ESAS sediments is not rivers or marine plankton – it is coastal erosion of old ICD. Our initial limited dataset has now been much expanded, as has the end-member database while the statistical source apportionment method has been refined. They combine to show more efficient cross-shelf transport of river-borne “topsoil-PF” compared to ICD-PF and a clear distinction in sources of TerrOM between western and eastern ESAS regimes separated roughly along 165E, consistent with the local oceanography.
There have been good strides also in understanding degradation of TerrOM exported to ESAS. Studies are demonstrating continuous offshoreward degradation of all TerrOM, yet with large differences between compound classes. Physical association of TerrOM with different sediment components, and sorting of the sediments exert first-order control on TerrOM distribution and degradation. An expanded dataset on specific surface area (SSA) and CuO oxidation products reveals spatial patterns across ESAS. The combination of compound-specific radiocarbon analysis of terrestrial biomarkers with SSA-normalized TerrOM signals constrains the ambient degradation rates and fluxes during the 3-4000 year timescale of cross-shelf transport. The degradation of TerrOM also causes severe ocean acidification of the ESAS.
Investigations of sources and fate of TerrOM on the ESAS – the World’s largest shelf sea– provides a window to constrain permafrost-C remobilization and to study mechanisms of transport and degradability of different components of released terrestrial organic matter.
How to cite: Gustafsson, Ö., Semiletov, I., Shakhova, N., Dudarev, O., Vonk, J., van Dongen, B., Eglinton, T., Tesi, T., Bröder, L., Andersson, A., Wild, B., Matsubara, F., and Martens, J.: Transport and fate of different components of terrestrial organic matter across the Siberian-Arctic shelves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17595, https://doi.org/10.5194/egusphere-egu2020-17595, 2020.
About one-third to half of the global soil carbon is held in the top 1-3 m of tundra+taiga permafrost PF (~1000 Pg-C) with deeper layers below as Deep-PF (~400 Pg-C) and in Pleistocene Ice Complex Deposit permafrost (ICD-PF, ~400 Pg-C), lining 4000 km of the East Siberian Arctic coast. In order to overcome the landscape heterogeneity and the stochastic nature of e.g. erosional release processes, we use the East Siberian Arctic Shelf (ESAS) in an inverse approach – as a natural integrator of the TerrOM releases from both the river drainage basins and from the erosion of ICD-containing bluffs. We are exploring how source-dependent transport and translocated degradation affect the released TerrOM.
The sources of released terrOM have been increasingly constrained using great rivers and the ESAS as natural integrators through a combination of biomarkers and δ13C/Δ14C on bulk-C and on compound level. There are significant gradients in sources both E-W and S-N across each shelf sea and between water column DOM, POM and sedimentary OM. The largest source of OC to ESAS sediments is not rivers or marine plankton – it is coastal erosion of old ICD. Our initial limited dataset has now been much expanded, as has the end-member database while the statistical source apportionment method has been refined. They combine to show more efficient cross-shelf transport of river-borne “topsoil-PF” compared to ICD-PF and a clear distinction in sources of TerrOM between western and eastern ESAS regimes separated roughly along 165E, consistent with the local oceanography.
There have been good strides also in understanding degradation of TerrOM exported to ESAS. Studies are demonstrating continuous offshoreward degradation of all TerrOM, yet with large differences between compound classes. Physical association of TerrOM with different sediment components, and sorting of the sediments exert first-order control on TerrOM distribution and degradation. An expanded dataset on specific surface area (SSA) and CuO oxidation products reveals spatial patterns across ESAS. The combination of compound-specific radiocarbon analysis of terrestrial biomarkers with SSA-normalized TerrOM signals constrains the ambient degradation rates and fluxes during the 3-4000 year timescale of cross-shelf transport. The degradation of TerrOM also causes severe ocean acidification of the ESAS.
Investigations of sources and fate of TerrOM on the ESAS – the World’s largest shelf sea– provides a window to constrain permafrost-C remobilization and to study mechanisms of transport and degradability of different components of released terrestrial organic matter.
How to cite: Gustafsson, Ö., Semiletov, I., Shakhova, N., Dudarev, O., Vonk, J., van Dongen, B., Eglinton, T., Tesi, T., Bröder, L., Andersson, A., Wild, B., Matsubara, F., and Martens, J.: Transport and fate of different components of terrestrial organic matter across the Siberian-Arctic shelves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17595, https://doi.org/10.5194/egusphere-egu2020-17595, 2020.
EGU2020-17935 | Displays | BG4.3
Vulnerability of subsea permafrost organic matter to degradation after thawBirgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
Subsea permafrost contains a potentially large and vulnerable organic carbon pool that might be or become a source of greenhouse gases to the atmosphere. While organic carbon stocks and vulnerability of terrestrial permafrost are increasingly well constrained, the dynamics of subsea permafrost remain highly uncertain due to limited observational data from these hard-to-access systems. Based on a unique set of drill cores from the near-coastal Laptev Sea, we here assess the vulnerability of subsea permafrost organic matter to degradation after thaw. To that end, we combine biomarker analyses of organic matter above and below the in-situ thaw front with incubation of subsea permafrost material in the laboratory. Biomarker degradation proxies based on the lignin phenol composition of organic matter (acid/aldehyde ratios of syringyl and vanillyl phenols; 3,5-dihydroxybenzoic acid/vanillyl ratio) suggest an overall low degradation state of lignin compared to terrestrial permafrost deposits and marine sediments in the region, and no systematic change across the thaw front. These lignin-based proxies are mostly sensitive to degradation under oxic conditions, i.e. before organic matter burial in subsea permafrost deposits, and less to degradation under anoxic conditions that prevail at the thaw front of subsea permafrost. Lignin phenol proxies will therefore be complemented by other biomarker degradation proxies sensitive to degradation under anoxic conditions, as well as by first data from incubation of subsea permafrost material under cold, anoxic conditions. Together, these data will enhance our understanding of organic matter in subsea permafrost, its vulnerability to degradation after thaw and the potential for greenhouse gas emissions from this system.
How to cite: Wild, B., Shakhova, N., Dudarev, O., Ruban, A., Kosmach, D., Tumskoy, V., Tesi, T., Joß, H., Alexanderson, H., Jakobsson, M., Mazurov, A., Semiletov, I., and Gustafsson, Ö.: Vulnerability of subsea permafrost organic matter to degradation after thaw, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17935, https://doi.org/10.5194/egusphere-egu2020-17935, 2020.
Subsea permafrost contains a potentially large and vulnerable organic carbon pool that might be or become a source of greenhouse gases to the atmosphere. While organic carbon stocks and vulnerability of terrestrial permafrost are increasingly well constrained, the dynamics of subsea permafrost remain highly uncertain due to limited observational data from these hard-to-access systems. Based on a unique set of drill cores from the near-coastal Laptev Sea, we here assess the vulnerability of subsea permafrost organic matter to degradation after thaw. To that end, we combine biomarker analyses of organic matter above and below the in-situ thaw front with incubation of subsea permafrost material in the laboratory. Biomarker degradation proxies based on the lignin phenol composition of organic matter (acid/aldehyde ratios of syringyl and vanillyl phenols; 3,5-dihydroxybenzoic acid/vanillyl ratio) suggest an overall low degradation state of lignin compared to terrestrial permafrost deposits and marine sediments in the region, and no systematic change across the thaw front. These lignin-based proxies are mostly sensitive to degradation under oxic conditions, i.e. before organic matter burial in subsea permafrost deposits, and less to degradation under anoxic conditions that prevail at the thaw front of subsea permafrost. Lignin phenol proxies will therefore be complemented by other biomarker degradation proxies sensitive to degradation under anoxic conditions, as well as by first data from incubation of subsea permafrost material under cold, anoxic conditions. Together, these data will enhance our understanding of organic matter in subsea permafrost, its vulnerability to degradation after thaw and the potential for greenhouse gas emissions from this system.
How to cite: Wild, B., Shakhova, N., Dudarev, O., Ruban, A., Kosmach, D., Tumskoy, V., Tesi, T., Joß, H., Alexanderson, H., Jakobsson, M., Mazurov, A., Semiletov, I., and Gustafsson, Ö.: Vulnerability of subsea permafrost organic matter to degradation after thaw, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17935, https://doi.org/10.5194/egusphere-egu2020-17935, 2020.
EGU2020-19501 | Displays | BG4.3
Integrating mineral interactions with organic carbon in thawing permafrost to assess climate feedbacksSophie Opfergelt, Catherine Hirst, Arthur Monhonval, Elisabeth Mauclet, and Maxime Thomas
Permafrost contains 1400-1660 Gt of organic carbon (OC), from which 5-15% will likely be emitted as greenhouse gases (GHG) by 2100. The soil organic carbon stock is distributed between a pool of particulate organic matter (POM), and a pool of mineral-associated OM (MOM). POM can be free, i.e., more readily available for microbial decomposition, or occluded within soil aggregates (involving clay minerals or Fe-Al (hydr)oxides), i.e., spatially inaccessible for microorganisms. MOM includes OC sorbed onto mineral surfaces (such as clay minerals or Fe-oxides) and OC complexed with metal cations (e.g., Al, Fe, Ca), i.e., stabilized OC. The interactions between OC and minerals influence the accessibility of OC for microbial decomposition and OC stability and are therefore a factor in controlling the C emissions rate upon thawing permafrost.
In the warming Arctic, there is growing evidence for soil disturbance such as coastal erosion, thermokarst and soil drainage as a consequence of abrupt and gradual permafrost thaw. These disturbances induce changes in the physico-chemical conditions controlling mineral solubility in permafrost soils which directly affect the stability of the MOM and of the occluded POM. As a consequence, a portion of OC can be unlocked and transferred into the free POM. This additional pool of freely available OC may be degraded and amplify C emissions from permafrost to the atmosphere. Conversely, the concomitant release of metal cations upon permafrost thaw may partly mitigate permafrost C emissions by stabilization of OC via complexation or sorption onto mineral surfaces and return a portion of freely available OC to the MOM. The majority of C is emitted as CO2 but 1.5 and 3.5% of the total permafrost C emissions will be released as CH4, with implications for the atmospheric radiative forcing balance. Importantly, the proportion CH4 emitted relative to CO2 is likely to increase with increasing abrupt thaw and associated anoxic conditions, but a portion of CH4 emissions could be mitigated by the anoxic oxidation of methane mediated by the presence of Fe-oxides exposed by abrupt thaw of deep permafrost.
This contribution aims at assessing how changing soil physico-chemical conditions affect interactions between mineral surfaces and OC in thawing permafrost. Scenarios of mineral-organic interactions during gradual thaw, including changes in water drainage and talik formation, and abrupt thaw including shifting redox conditions associated with thermokarst will be presented. Approaches to quantify changes in mineral-organic interactions will be discussed. By integrating the most recent studies from the permafrost carbon community with soil mineralogy, soil chemistry and soil hydrology, this contribution demonstrates that the fate of mineral-organic interactions upon thawing must be considered given their potential implications for GHG emissions. If we do not include the role of mineral-organic interactions in this puzzle, the complexities involved in soil carbon decomposition may propagate large uncertainties into coupled soil carbon-climate feedback predictions.
How to cite: Opfergelt, S., Hirst, C., Monhonval, A., Mauclet, E., and Thomas, M.: Integrating mineral interactions with organic carbon in thawing permafrost to assess climate feedbacks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19501, https://doi.org/10.5194/egusphere-egu2020-19501, 2020.
Permafrost contains 1400-1660 Gt of organic carbon (OC), from which 5-15% will likely be emitted as greenhouse gases (GHG) by 2100. The soil organic carbon stock is distributed between a pool of particulate organic matter (POM), and a pool of mineral-associated OM (MOM). POM can be free, i.e., more readily available for microbial decomposition, or occluded within soil aggregates (involving clay minerals or Fe-Al (hydr)oxides), i.e., spatially inaccessible for microorganisms. MOM includes OC sorbed onto mineral surfaces (such as clay minerals or Fe-oxides) and OC complexed with metal cations (e.g., Al, Fe, Ca), i.e., stabilized OC. The interactions between OC and minerals influence the accessibility of OC for microbial decomposition and OC stability and are therefore a factor in controlling the C emissions rate upon thawing permafrost.
In the warming Arctic, there is growing evidence for soil disturbance such as coastal erosion, thermokarst and soil drainage as a consequence of abrupt and gradual permafrost thaw. These disturbances induce changes in the physico-chemical conditions controlling mineral solubility in permafrost soils which directly affect the stability of the MOM and of the occluded POM. As a consequence, a portion of OC can be unlocked and transferred into the free POM. This additional pool of freely available OC may be degraded and amplify C emissions from permafrost to the atmosphere. Conversely, the concomitant release of metal cations upon permafrost thaw may partly mitigate permafrost C emissions by stabilization of OC via complexation or sorption onto mineral surfaces and return a portion of freely available OC to the MOM. The majority of C is emitted as CO2 but 1.5 and 3.5% of the total permafrost C emissions will be released as CH4, with implications for the atmospheric radiative forcing balance. Importantly, the proportion CH4 emitted relative to CO2 is likely to increase with increasing abrupt thaw and associated anoxic conditions, but a portion of CH4 emissions could be mitigated by the anoxic oxidation of methane mediated by the presence of Fe-oxides exposed by abrupt thaw of deep permafrost.
This contribution aims at assessing how changing soil physico-chemical conditions affect interactions between mineral surfaces and OC in thawing permafrost. Scenarios of mineral-organic interactions during gradual thaw, including changes in water drainage and talik formation, and abrupt thaw including shifting redox conditions associated with thermokarst will be presented. Approaches to quantify changes in mineral-organic interactions will be discussed. By integrating the most recent studies from the permafrost carbon community with soil mineralogy, soil chemistry and soil hydrology, this contribution demonstrates that the fate of mineral-organic interactions upon thawing must be considered given their potential implications for GHG emissions. If we do not include the role of mineral-organic interactions in this puzzle, the complexities involved in soil carbon decomposition may propagate large uncertainties into coupled soil carbon-climate feedback predictions.
How to cite: Opfergelt, S., Hirst, C., Monhonval, A., Mauclet, E., and Thomas, M.: Integrating mineral interactions with organic carbon in thawing permafrost to assess climate feedbacks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19501, https://doi.org/10.5194/egusphere-egu2020-19501, 2020.
EGU2020-20689 | Displays | BG4.3
Modelling the impact of changing riverine permafrost input on an Arctic coastal ecosystemMichael Bedington, Ricardo Torres, Luca Polimene, Paul Mann, and Jens Strauss
The Arctic ocean receives 11% of the global river discharge and the Arctic rivers drain large permafrost rich catchments. Where these rivers outflow into the marginal shelf seas of the Arctic ocean the terrestrial dissolved organic matter (tDOM) which they transport has an important role to play in the coastal ecosystem. This tDom is derived from inland permafrost and as it thaws under future climate scenarios there are expected to be changes to both the composition and quantity of riverine tDOM. At the same time there will be changes to the seasonality and magnitude of river discharge, due to increased precipitation and earlier snow melt, and to the light availability, due to reduced seasonal sea ice. To understand the possible impact of these changes on the coastal ecosystem it is important to understand the present role of permafrost derived tDOM and the possible changes to the nearshore circulation.
We model the hydrodynamics of the extensive shallow shelf of the Laptev sea, into which drains the Lena river – the 13th largest in the world by discharge. The output from the hydrodynamic model is used to drive the ecosystem model ERSEM which has been adapted to explicitly include a permafrost tDOM input. This coupled model system allows us to investigate both the role of present day tDOM in an Arctic coastal ecosystem and to hypothesise on the impact of increases in future. In particular we attempt to quantify the efficacy of the microbial carbon pump under different tDOM inputs.
How to cite: Bedington, M., Torres, R., Polimene, L., Mann, P., and Strauss, J.: Modelling the impact of changing riverine permafrost input on an Arctic coastal ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20689, https://doi.org/10.5194/egusphere-egu2020-20689, 2020.
The Arctic ocean receives 11% of the global river discharge and the Arctic rivers drain large permafrost rich catchments. Where these rivers outflow into the marginal shelf seas of the Arctic ocean the terrestrial dissolved organic matter (tDOM) which they transport has an important role to play in the coastal ecosystem. This tDom is derived from inland permafrost and as it thaws under future climate scenarios there are expected to be changes to both the composition and quantity of riverine tDOM. At the same time there will be changes to the seasonality and magnitude of river discharge, due to increased precipitation and earlier snow melt, and to the light availability, due to reduced seasonal sea ice. To understand the possible impact of these changes on the coastal ecosystem it is important to understand the present role of permafrost derived tDOM and the possible changes to the nearshore circulation.
We model the hydrodynamics of the extensive shallow shelf of the Laptev sea, into which drains the Lena river – the 13th largest in the world by discharge. The output from the hydrodynamic model is used to drive the ecosystem model ERSEM which has been adapted to explicitly include a permafrost tDOM input. This coupled model system allows us to investigate both the role of present day tDOM in an Arctic coastal ecosystem and to hypothesise on the impact of increases in future. In particular we attempt to quantify the efficacy of the microbial carbon pump under different tDOM inputs.
How to cite: Bedington, M., Torres, R., Polimene, L., Mann, P., and Strauss, J.: Modelling the impact of changing riverine permafrost input on an Arctic coastal ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20689, https://doi.org/10.5194/egusphere-egu2020-20689, 2020.
EGU2020-21660 | Displays | BG4.3
Siberian-Arctic Subsea Permafrost and Methane: Spatial variability and isotope-based source apportionmentHenry Holmstrand, Natalia Shakhova, Igor Semiletov, Julia Steinbach, Arkadiy Kurilenko, Anatoly Salyuk, Denis Kosmach, Denis Chernykh, Andrey Koshurnikov, Vladimir Tumskoy, Leopold Lobkovsky, and Örjan Gustafsson
There are only a few Earth System processes that can cause a net transfer of carbon from land/ocean to the atmosphere (as CO2 and CH4) on the century timescale– top candidates are thawing permafrost and collapsing CH4 hydrates in the Arctic. Nevertheless, there are huge uncertainties regarding the composition, inventories and functioning of these different Cryosphere-Carbon pools.
Most investigations of Arctic CH4/CO2 releases have studied inland permafrost (PF), yet there is increasing attention towards coastal and subsea permafrost and hydrates. The East Siberian Arctic Ocean (ESAO) is the target area as it is experiencing among the highest climate warming and because of its vast, yet poorly constrained stores of vulnerable carbon. The ESAO is the largest yet shallowest shelf of the World Ocean, being a seaward extension of the Siberian tundra that was flooded during the Holocene transgression 7-15 kyr ago.
Recent drilling campaigns of the Laptev Sea subsea permafrost have provided the opportunity for progress in understanding its current state, composition and functioning. The temperature profiles of the PF underneath the coastal waters were in general much higher and close to zero, compared to nearby still on-land permafrost. Several sites that were drilled 30 years ago were recently re-drilled, which revealed that the thaw horizon has been moving down by several meters in just a few decades. There is thus both a potential for degradation of the organic matter (including to methane) in this subsea PF as well as an increasing permeability for pre-formed methane to penetrate toward the surface.
Methane in the ESAS water column is over extensive scales present at concentrations much above what would be predicted from equilibrium with overlying atmospheric mixing ratios. The spatial patterns can now start to be compared with geophysical data on the composition of the sediments. The water column to atmosphere transfer of methane is affected both by the relative importance of diffusive exchange of dissolved methane and through ebullition. Storm-induced ventilation of the water column is shown to be an important process.
The relative contributions of different subsea compartments to the methane fluxes is also approached through isotopes. We are exploring triple isotope fingerprinting of bottom water methane to apportion its sources (i.e. d13C/dD/D14C-CH4.). Preliminary results from two active seep regions, one in Laptev Sea and one in the East Siberian Sea will be presented.
How to cite: Holmstrand, H., Shakhova, N., Semiletov, I., Steinbach, J., Kurilenko, A., Salyuk, A., Kosmach, D., Chernykh, D., Koshurnikov, A., Tumskoy, V., Lobkovsky, L., and Gustafsson, Ö.: Siberian-Arctic Subsea Permafrost and Methane: Spatial variability and isotope-based source apportionment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21660, https://doi.org/10.5194/egusphere-egu2020-21660, 2020.
There are only a few Earth System processes that can cause a net transfer of carbon from land/ocean to the atmosphere (as CO2 and CH4) on the century timescale– top candidates are thawing permafrost and collapsing CH4 hydrates in the Arctic. Nevertheless, there are huge uncertainties regarding the composition, inventories and functioning of these different Cryosphere-Carbon pools.
Most investigations of Arctic CH4/CO2 releases have studied inland permafrost (PF), yet there is increasing attention towards coastal and subsea permafrost and hydrates. The East Siberian Arctic Ocean (ESAO) is the target area as it is experiencing among the highest climate warming and because of its vast, yet poorly constrained stores of vulnerable carbon. The ESAO is the largest yet shallowest shelf of the World Ocean, being a seaward extension of the Siberian tundra that was flooded during the Holocene transgression 7-15 kyr ago.
Recent drilling campaigns of the Laptev Sea subsea permafrost have provided the opportunity for progress in understanding its current state, composition and functioning. The temperature profiles of the PF underneath the coastal waters were in general much higher and close to zero, compared to nearby still on-land permafrost. Several sites that were drilled 30 years ago were recently re-drilled, which revealed that the thaw horizon has been moving down by several meters in just a few decades. There is thus both a potential for degradation of the organic matter (including to methane) in this subsea PF as well as an increasing permeability for pre-formed methane to penetrate toward the surface.
Methane in the ESAS water column is over extensive scales present at concentrations much above what would be predicted from equilibrium with overlying atmospheric mixing ratios. The spatial patterns can now start to be compared with geophysical data on the composition of the sediments. The water column to atmosphere transfer of methane is affected both by the relative importance of diffusive exchange of dissolved methane and through ebullition. Storm-induced ventilation of the water column is shown to be an important process.
The relative contributions of different subsea compartments to the methane fluxes is also approached through isotopes. We are exploring triple isotope fingerprinting of bottom water methane to apportion its sources (i.e. d13C/dD/D14C-CH4.). Preliminary results from two active seep regions, one in Laptev Sea and one in the East Siberian Sea will be presented.
How to cite: Holmstrand, H., Shakhova, N., Semiletov, I., Steinbach, J., Kurilenko, A., Salyuk, A., Kosmach, D., Chernykh, D., Koshurnikov, A., Tumskoy, V., Lobkovsky, L., and Gustafsson, Ö.: Siberian-Arctic Subsea Permafrost and Methane: Spatial variability and isotope-based source apportionment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21660, https://doi.org/10.5194/egusphere-egu2020-21660, 2020.
EGU2020-22402 | Displays | BG4.3
First quantitative estimation of growing methane release from the East Siberian Arctic seas: from a single flare to vast seepage areaDenis Chernykh, Natalia Shakhova, Denis Kosmach, Roman Ananiev, Aleksander Salomatin, Vladimir Yusupov, Valentin Sergienko, Örjan Gustafsson, Martin Jakobsson, Larry Mayer, Anatoly Saluk, Nikolay Dmitrevsky, Arcady Kurilenko, Elena Gershelis, Vyacheslav Silionov, Leopold Lobkovsky, Alexey Mazurov, and Igor Semiletov
Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our 12 years observations, we show that CH4 emissions from this shelf to be determined by the state of subsea permafrost degradation. Below we consider dramatically growing release from the area located out of known fault zones.
First time, we observed CH4 emissions from this single flare in 2007 in the ESAS mid-shelf. During 2014-2018 we revisited this area several times aiming to investigate quantitatively changing CH4 ebullition. The data show transformation of a single CH4 flare in a significant seepage area. CH4 emissions from this area emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing is much faster not only downward, but also laterally which could result in a significant increase in CH4 emissions from the ESAS.
This work was supported in part by grants from Russian Scientific Foundation (№15-17-20032, № 18-77-10004, №19-77-00067), grant from Russian Government (Grant No. 14, Z50.31.0012/03.19.2014) and Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number TPU CEP_SESE-299\2019.
How to cite: Chernykh, D., Shakhova, N., Kosmach, D., Ananiev, R., Salomatin, A., Yusupov, V., Sergienko, V., Gustafsson, Ö., Jakobsson, M., Mayer, L., Saluk, A., Dmitrevsky, N., Kurilenko, A., Gershelis, E., Silionov, V., Lobkovsky, L., Mazurov, A., and Semiletov, I.: First quantitative estimation of growing methane release from the East Siberian Arctic seas: from a single flare to vast seepage area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22402, https://doi.org/10.5194/egusphere-egu2020-22402, 2020.
Sustained release of methane (CH4) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH4 from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our 12 years observations, we show that CH4 emissions from this shelf to be determined by the state of subsea permafrost degradation. Below we consider dramatically growing release from the area located out of known fault zones.
First time, we observed CH4 emissions from this single flare in 2007 in the ESAS mid-shelf. During 2014-2018 we revisited this area several times aiming to investigate quantitatively changing CH4 ebullition. The data show transformation of a single CH4 flare in a significant seepage area. CH4 emissions from this area emerge from largely thawed sediments via strong flare-like ebullition, producing fluxes that are orders of magnitude greater than fluxes observed in background areas underlain by largely frozen sediments. We suggest that progression of subsea permafrost thawing is much faster not only downward, but also laterally which could result in a significant increase in CH4 emissions from the ESAS.
This work was supported in part by grants from Russian Scientific Foundation (№15-17-20032, № 18-77-10004, №19-77-00067), grant from Russian Government (Grant No. 14, Z50.31.0012/03.19.2014) and Tomsk Polytechnic University Competitiveness Enhancement Program grant, Project Number TPU CEP_SESE-299\2019.
How to cite: Chernykh, D., Shakhova, N., Kosmach, D., Ananiev, R., Salomatin, A., Yusupov, V., Sergienko, V., Gustafsson, Ö., Jakobsson, M., Mayer, L., Saluk, A., Dmitrevsky, N., Kurilenko, A., Gershelis, E., Silionov, V., Lobkovsky, L., Mazurov, A., and Semiletov, I.: First quantitative estimation of growing methane release from the East Siberian Arctic seas: from a single flare to vast seepage area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22402, https://doi.org/10.5194/egusphere-egu2020-22402, 2020.
BG4.4 – Macrobenthos as drivers of sediment biogeochemistry
EGU2020-3361 | Displays | BG4.4
The central importance of macrobenthos in benthic-pelagic coupling in coastal shelf seasWenyan Zhang, Andreas Neumann, Ute Daewel, and Corinna Schrum
Benthic oxygen fluxes measured in the south-eastern North Sea indicate a prominent annual cycle characterized by a low level between mid-autumn (October) and early spring (March), a slow increase since mid-spring (April) till late summer (late August/early September), and a subsequent accelerated decrease in early autumn (September). A significant positive correlation between the benthic oxygen flux, total organic carbon (TOC) and macrobenthic biomass in surface sediments suggests their potential mutual dependence. To understand their interactions quantitatively, 3-D benthic-pelagic coupled modelling was used to reconstruct the benthic status. Simulation results based on a satisfactory agreement with field data reveal that the benthic oxygen flux is determined by not only pelagic drivers (hydrodynamics, temperature and primary production) but also internal dynamics associated with the interaction between organic carbon and benthic fauna, and bedform morphodynamics. The slow increase of benthic flux since mid-spring till late summer is a compound effect of several processes with dominant contribution by accumulation of labile OC and growth of macrobenthos in surface sediments. Bioturbation intensity peaks in late summer, resulting in highest oxygen flux into sediments and promoting remineralization of subsurface OC and release of nutrients. Shutdown of pelagic primary production in combination with enhanced wind-waves in early autumn cause a systematic shift of the benthic carbon pool from deposition to erosion within a few weeks, accounting for the accelerated decrease of benthic oxygen flux. Our results indicate a central role of macrobenthos in modulating the rate of both solute and solid fluxes across the sediment-water interface.
How to cite: Zhang, W., Neumann, A., Daewel, U., and Schrum, C.: The central importance of macrobenthos in benthic-pelagic coupling in coastal shelf seas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3361, https://doi.org/10.5194/egusphere-egu2020-3361, 2020.
Benthic oxygen fluxes measured in the south-eastern North Sea indicate a prominent annual cycle characterized by a low level between mid-autumn (October) and early spring (March), a slow increase since mid-spring (April) till late summer (late August/early September), and a subsequent accelerated decrease in early autumn (September). A significant positive correlation between the benthic oxygen flux, total organic carbon (TOC) and macrobenthic biomass in surface sediments suggests their potential mutual dependence. To understand their interactions quantitatively, 3-D benthic-pelagic coupled modelling was used to reconstruct the benthic status. Simulation results based on a satisfactory agreement with field data reveal that the benthic oxygen flux is determined by not only pelagic drivers (hydrodynamics, temperature and primary production) but also internal dynamics associated with the interaction between organic carbon and benthic fauna, and bedform morphodynamics. The slow increase of benthic flux since mid-spring till late summer is a compound effect of several processes with dominant contribution by accumulation of labile OC and growth of macrobenthos in surface sediments. Bioturbation intensity peaks in late summer, resulting in highest oxygen flux into sediments and promoting remineralization of subsurface OC and release of nutrients. Shutdown of pelagic primary production in combination with enhanced wind-waves in early autumn cause a systematic shift of the benthic carbon pool from deposition to erosion within a few weeks, accounting for the accelerated decrease of benthic oxygen flux. Our results indicate a central role of macrobenthos in modulating the rate of both solute and solid fluxes across the sediment-water interface.
How to cite: Zhang, W., Neumann, A., Daewel, U., and Schrum, C.: The central importance of macrobenthos in benthic-pelagic coupling in coastal shelf seas , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3361, https://doi.org/10.5194/egusphere-egu2020-3361, 2020.
EGU2020-3840 | Displays | BG4.4
Burrowing fauna mediate alternative stable states in the redox cycling of salt marsh sedimentsSebastiaan van de Velde, Gilad Antler, and Filip Meysman
The East Anglian salt marsh system (UK) has recently generated intriguing data with respect to sediment biogeochemistry. Neighbouring ponds in these salt marshes show two distinct regimes of redox cycling: the sediments are either iron-rich and bioturbated, or they are sulphide-rich and unbioturbated. No conclusive explanation has yet been given for this remarkable spatial co-occurrence. Using pore-water analysis and solid-phase speciation, I will demonstrate that differences in solid-phase carbon and iron inputs are likely small between pond types, so these cannot act as the direct driver of the observed redox dichotomy. Instead, the results suggest that the presence of bioturbation is the driving force behind the transition from sulphur-dominated to iron-dominated sediments. The presence of burrowing fauna in marine sediments stimulates the mineralisation of organic matter, increases the iron cycling and limits the build-up of free sulphide. Subsequent early diagenetic modelling confirms that the observed regimes in pond geochemistry are caused by negligible differences in solid-phase inputs, which are amplified by positive feedbacks resulting from the impact of bioturbation on iron and sulphur cycling.
How to cite: van de Velde, S., Antler, G., and Meysman, F.: Burrowing fauna mediate alternative stable states in the redox cycling of salt marsh sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3840, https://doi.org/10.5194/egusphere-egu2020-3840, 2020.
The East Anglian salt marsh system (UK) has recently generated intriguing data with respect to sediment biogeochemistry. Neighbouring ponds in these salt marshes show two distinct regimes of redox cycling: the sediments are either iron-rich and bioturbated, or they are sulphide-rich and unbioturbated. No conclusive explanation has yet been given for this remarkable spatial co-occurrence. Using pore-water analysis and solid-phase speciation, I will demonstrate that differences in solid-phase carbon and iron inputs are likely small between pond types, so these cannot act as the direct driver of the observed redox dichotomy. Instead, the results suggest that the presence of bioturbation is the driving force behind the transition from sulphur-dominated to iron-dominated sediments. The presence of burrowing fauna in marine sediments stimulates the mineralisation of organic matter, increases the iron cycling and limits the build-up of free sulphide. Subsequent early diagenetic modelling confirms that the observed regimes in pond geochemistry are caused by negligible differences in solid-phase inputs, which are amplified by positive feedbacks resulting from the impact of bioturbation on iron and sulphur cycling.
How to cite: van de Velde, S., Antler, G., and Meysman, F.: Burrowing fauna mediate alternative stable states in the redox cycling of salt marsh sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3840, https://doi.org/10.5194/egusphere-egu2020-3840, 2020.
EGU2020-4165 | Displays | BG4.4
Ferruginous bioforms accumulations in deep marine environments: an approach to their origin and formation mechanisms in the Transitional Zone province of the Galician Continental Margin (NW Iberian Peninsula)Ángel Enrique López-Pérez, Belén Rubio, Daniel Rey, and Luís Pinheiro
Ferruginous tubular structures concretions are widely distributed over the seafloor surrounding the Gran Burato depression in the Transitional Zone (TZ) province of the Galician Continental Margin (NW Iberian Margin). These bioforms-like structures are created by iron oxides precipitations into the tube-dwelling macrozoobenthos as a result of Fe2+ upward diffusion and O2 ventilation and diffusion acting in the water-sediment interphase in a non-steady state early diagenesis. X-ray diffraction analyses display that goethite is the main mineralogical component of these bioforms-like structures. Furthermore, non-steady state diagenesis has been identified by several oxidations fronts recognised in three piston cores, reflecting that the redoxcline has not achieved the deeper equilibrium in the study area. Afterwards, these ferruginous tubes were eroded, remobilised and redistributed over the seabed by bottom currents. Ocean-floor observations show erosion and sea-bottom current structures as ripples, grooves, erratic blocks, accumulations of pteropods and carbonate crusts associated with hardgrounds. Sedimentation rates calculated in a piston core display very low values for the last 30 cal ka BP (mean of 1.57 cm ky−1) with a marked hiatus between 17.80 to 10.45 cal ka BP, meanwhile abraded surfaces have been identified by high-resolution seismic data confirming erosional processes in this area of the TZ province. We conclude that the ferruginous bioforms accumulation over the deep-ocean floor is indicative of a present-day vigorous seafloor current acting and eroding the sediments of the TZ province. This bottom current is a direct consequence of the general seafloor elevation of the TZ province that causes constriction of the water masses (MOW and LSW) that induces a general intensification of the bottom currents and greater erosional capacity. This erosional process causes the continuous oxygenation of the upper sediments, and it prevents to reach the steady-state diagenesis, playing this fact an essential role in the ferruginous formations and accumulations in the study area.
How to cite: López-Pérez, Á. E., Rubio, B., Rey, D., and Pinheiro, L.: Ferruginous bioforms accumulations in deep marine environments: an approach to their origin and formation mechanisms in the Transitional Zone province of the Galician Continental Margin (NW Iberian Peninsula), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4165, https://doi.org/10.5194/egusphere-egu2020-4165, 2020.
Ferruginous tubular structures concretions are widely distributed over the seafloor surrounding the Gran Burato depression in the Transitional Zone (TZ) province of the Galician Continental Margin (NW Iberian Margin). These bioforms-like structures are created by iron oxides precipitations into the tube-dwelling macrozoobenthos as a result of Fe2+ upward diffusion and O2 ventilation and diffusion acting in the water-sediment interphase in a non-steady state early diagenesis. X-ray diffraction analyses display that goethite is the main mineralogical component of these bioforms-like structures. Furthermore, non-steady state diagenesis has been identified by several oxidations fronts recognised in three piston cores, reflecting that the redoxcline has not achieved the deeper equilibrium in the study area. Afterwards, these ferruginous tubes were eroded, remobilised and redistributed over the seabed by bottom currents. Ocean-floor observations show erosion and sea-bottom current structures as ripples, grooves, erratic blocks, accumulations of pteropods and carbonate crusts associated with hardgrounds. Sedimentation rates calculated in a piston core display very low values for the last 30 cal ka BP (mean of 1.57 cm ky−1) with a marked hiatus between 17.80 to 10.45 cal ka BP, meanwhile abraded surfaces have been identified by high-resolution seismic data confirming erosional processes in this area of the TZ province. We conclude that the ferruginous bioforms accumulation over the deep-ocean floor is indicative of a present-day vigorous seafloor current acting and eroding the sediments of the TZ province. This bottom current is a direct consequence of the general seafloor elevation of the TZ province that causes constriction of the water masses (MOW and LSW) that induces a general intensification of the bottom currents and greater erosional capacity. This erosional process causes the continuous oxygenation of the upper sediments, and it prevents to reach the steady-state diagenesis, playing this fact an essential role in the ferruginous formations and accumulations in the study area.
How to cite: López-Pérez, Á. E., Rubio, B., Rey, D., and Pinheiro, L.: Ferruginous bioforms accumulations in deep marine environments: an approach to their origin and formation mechanisms in the Transitional Zone province of the Galician Continental Margin (NW Iberian Peninsula), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4165, https://doi.org/10.5194/egusphere-egu2020-4165, 2020.
EGU2020-7353 | Displays | BG4.4
Macrobenthos richness and biomass preferentially geared towards one half of asymmetrical sand wavesChiu Cheng, Bas Borsje, Sarah O'Flynn, Olivier Beauchard, Tom Ysebaert, and Karline Soetaert
Sand waves are dynamic, sinusoidal bedforms that have been thoroughly studied in the context of the physical and hydrodynamical processes dominating these environments. However, information about the ecological and biogeochemical characteristics within these bedform habitats have been far fewer in comparison. To address this knowledge gap, a field campaign was undertaken in the summer of 2017 to investigate the biogeomorphology of asymmetrical sand waves in the Dutch North Sea, near island Texel. The goal was specifically to address both the macrofaunal community composition and the associated biogeochemistry along the different sections of these sand waves. Using a combination of several field sampling techniques and lab incubations on board the NIOZ RV-Pelagia, we collected a comprehensive dataset covering the macrofauna assemblage, nutrient flux, oxygen consumption, sediment grain size and permeability, as well as physical and environmental data, within a transect line (< 1 km) that covered several sand waves. Here, we show considerable variability in the species abundance, composition and biomass, which were all significantly higher on the steeper sides of the sand waves; the multivariate statistical analyses on the datasets showed a significant influence of the sand wave position on benthic composition. Correspondingly, measurements from the steep slopes also exhibited a higher concentration of chl-a and organic matter, higher O2 consumption, more fine particles and lower sediment permeability. Despite the overall homogeneity (e.g., sandy sediment) of a well-developed bedform environment such as a sand wave field, it is clearly possible to find significant variations in the benthic community composition and biogeochemical activity on a small spatial scale. Oftentimes, studies look at larger spatial scales to maximize the characterization of an entire region. However, given the diverse environmental gradients within the North Sea, our observations may not be sufficiently captured or even missed altogether when superimposed upon such large spatial scales. Thus, a close examination of the interrelated parameters such as biology, biogeochemistry, sedimentology and morphology should also be considered, at a high resolution, over a small local scale for such seemingly uniform habitats. We hope our results will contribute valuable insight into small-scale patterns of variability in dynamic bedform environments.
How to cite: Cheng, C., Borsje, B., O'Flynn, S., Beauchard, O., Ysebaert, T., and Soetaert, K.: Macrobenthos richness and biomass preferentially geared towards one half of asymmetrical sand waves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7353, https://doi.org/10.5194/egusphere-egu2020-7353, 2020.
Sand waves are dynamic, sinusoidal bedforms that have been thoroughly studied in the context of the physical and hydrodynamical processes dominating these environments. However, information about the ecological and biogeochemical characteristics within these bedform habitats have been far fewer in comparison. To address this knowledge gap, a field campaign was undertaken in the summer of 2017 to investigate the biogeomorphology of asymmetrical sand waves in the Dutch North Sea, near island Texel. The goal was specifically to address both the macrofaunal community composition and the associated biogeochemistry along the different sections of these sand waves. Using a combination of several field sampling techniques and lab incubations on board the NIOZ RV-Pelagia, we collected a comprehensive dataset covering the macrofauna assemblage, nutrient flux, oxygen consumption, sediment grain size and permeability, as well as physical and environmental data, within a transect line (< 1 km) that covered several sand waves. Here, we show considerable variability in the species abundance, composition and biomass, which were all significantly higher on the steeper sides of the sand waves; the multivariate statistical analyses on the datasets showed a significant influence of the sand wave position on benthic composition. Correspondingly, measurements from the steep slopes also exhibited a higher concentration of chl-a and organic matter, higher O2 consumption, more fine particles and lower sediment permeability. Despite the overall homogeneity (e.g., sandy sediment) of a well-developed bedform environment such as a sand wave field, it is clearly possible to find significant variations in the benthic community composition and biogeochemical activity on a small spatial scale. Oftentimes, studies look at larger spatial scales to maximize the characterization of an entire region. However, given the diverse environmental gradients within the North Sea, our observations may not be sufficiently captured or even missed altogether when superimposed upon such large spatial scales. Thus, a close examination of the interrelated parameters such as biology, biogeochemistry, sedimentology and morphology should also be considered, at a high resolution, over a small local scale for such seemingly uniform habitats. We hope our results will contribute valuable insight into small-scale patterns of variability in dynamic bedform environments.
How to cite: Cheng, C., Borsje, B., O'Flynn, S., Beauchard, O., Ysebaert, T., and Soetaert, K.: Macrobenthos richness and biomass preferentially geared towards one half of asymmetrical sand waves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7353, https://doi.org/10.5194/egusphere-egu2020-7353, 2020.
EGU2020-11581 | Displays | BG4.4
Macrofauna and roots reduce methane production and attenuate nutrient recycling in organic-rich fluvial sedimentsSara Benelli and Marco Bartoli
Organic-rich freshwater sediments display millimetric oxygen and nitrate penetration and are sources of methane to the water column and to the atmosphere via diffusion and ebullition. Radial oxygen loss by submersed aquatic plants and burrow irrigation with O2 and NO3- enriched water by macrofauna can significantly alter the subsurface sediment volume where respiration processes alternative to methanogenesis occur. We tested this hypothesis in perifluvial organic sediments colonized by the submerged phanerogam Vallisneria spiralis and the oligochaete Sparganophilus tamesis. Gas ebullition and diffusive fluxes were measured in microcosms maintained under controlled laboratory conditions over a period of two weeks. Four conditions were reproduced: sediments alone, sediment with oligochaetes, sediment with plants and sediment with plants and oligochaetes. Microcosms with sediments alone released the largest methane volume whereas sediments with plants and macrofauna released the lowest amount. The presence of the oligochaete had comparatively a stronger effect than that of the macrophyte. Simultaneously, the bioturbation activity of the oligochaete enhanced the production of N2 and the consumption of oxygen and nitrate, suggesting increased rates of aerobic respiration and of denitrification. The presence of plants attenuated net N2 losses from the benthic system likely due to the competition between assimilative and dissimilative N-related processes.
How to cite: Benelli, S. and Bartoli, M.: Macrofauna and roots reduce methane production and attenuate nutrient recycling in organic-rich fluvial sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11581, https://doi.org/10.5194/egusphere-egu2020-11581, 2020.
Organic-rich freshwater sediments display millimetric oxygen and nitrate penetration and are sources of methane to the water column and to the atmosphere via diffusion and ebullition. Radial oxygen loss by submersed aquatic plants and burrow irrigation with O2 and NO3- enriched water by macrofauna can significantly alter the subsurface sediment volume where respiration processes alternative to methanogenesis occur. We tested this hypothesis in perifluvial organic sediments colonized by the submerged phanerogam Vallisneria spiralis and the oligochaete Sparganophilus tamesis. Gas ebullition and diffusive fluxes were measured in microcosms maintained under controlled laboratory conditions over a period of two weeks. Four conditions were reproduced: sediments alone, sediment with oligochaetes, sediment with plants and sediment with plants and oligochaetes. Microcosms with sediments alone released the largest methane volume whereas sediments with plants and macrofauna released the lowest amount. The presence of the oligochaete had comparatively a stronger effect than that of the macrophyte. Simultaneously, the bioturbation activity of the oligochaete enhanced the production of N2 and the consumption of oxygen and nitrate, suggesting increased rates of aerobic respiration and of denitrification. The presence of plants attenuated net N2 losses from the benthic system likely due to the competition between assimilative and dissimilative N-related processes.
How to cite: Benelli, S. and Bartoli, M.: Macrofauna and roots reduce methane production and attenuate nutrient recycling in organic-rich fluvial sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11581, https://doi.org/10.5194/egusphere-egu2020-11581, 2020.
EGU2020-16655 | Displays | BG4.4
Age distribution and organic matter degradation in bioturbated sedimentMatthias Kuderer and Jack J Middelburg
Bioturbation is an important process in the early diagenesis of soft marine sediment. Benthic infaunal activity, such as feeding, burrowing and ploughing redistributes particles within the topmost layers of the sediment. Recently deposited particles are mixed into deeper sediment depth layers and old material remains longer near the surface. A sediment layer thus contains an assemblage of particles from young to very old ages. Under certain assumptions, bioturbational mixing can be modelled as a diffusive process with the macroscopic mixing coefficient DB. Here we model the age distribution of the bioturbated sedimentary record with a depth dependent mixing coefficient DB(z). The potential age bias introduced by mixing is typically higher than multiples of the mean mixed layer residence time, which scales linearly with the ratio of mixed layer depth and sediment accumulation rate. Scaling the mixing intensity has only a minor effect, as most marine environments are mixing dominated.
The rate of organic matter degradation can been modelled empirically as an age dependent process, with recently deposited, fresh organic matter having higher reactivities than older and more refractory material. With insights into the age distribution, this allows to couple the degradation of organic matter with bioturbation and estimate the burial of carbon.
How to cite: Kuderer, M. and Middelburg, J. J.: Age distribution and organic matter degradation in bioturbated sediment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16655, https://doi.org/10.5194/egusphere-egu2020-16655, 2020.
Bioturbation is an important process in the early diagenesis of soft marine sediment. Benthic infaunal activity, such as feeding, burrowing and ploughing redistributes particles within the topmost layers of the sediment. Recently deposited particles are mixed into deeper sediment depth layers and old material remains longer near the surface. A sediment layer thus contains an assemblage of particles from young to very old ages. Under certain assumptions, bioturbational mixing can be modelled as a diffusive process with the macroscopic mixing coefficient DB. Here we model the age distribution of the bioturbated sedimentary record with a depth dependent mixing coefficient DB(z). The potential age bias introduced by mixing is typically higher than multiples of the mean mixed layer residence time, which scales linearly with the ratio of mixed layer depth and sediment accumulation rate. Scaling the mixing intensity has only a minor effect, as most marine environments are mixing dominated.
The rate of organic matter degradation can been modelled empirically as an age dependent process, with recently deposited, fresh organic matter having higher reactivities than older and more refractory material. With insights into the age distribution, this allows to couple the degradation of organic matter with bioturbation and estimate the burial of carbon.
How to cite: Kuderer, M. and Middelburg, J. J.: Age distribution and organic matter degradation in bioturbated sediment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16655, https://doi.org/10.5194/egusphere-egu2020-16655, 2020.
EGU2020-18846 | Displays | BG4.4
Laboratory- and field-based investigation on macrofaunal control of microbial community structure and activity in intertidal sedimentLonghui Deng, Annika Fiskal, Damian Bölsterli, and Mark Lever
Benthic macrofauna occupy most of the oxygenated seafloor, where they have a strong influence on microbial activity and are major regulators of carbon and other elemental cycles. To explore the yet-elusive relationships between faunal sediment alteration (bioturbation), microbial community structure, and microbial activity, we conducted aquarium incubations of Abarenicola pacifica and Nereis vexillosa in a seawater flow system and field manipulation experiments in a sandy intertidal zone. Microsensor and geochemical profiling show strong impacts of both worms on the pore-water concentrations of electron acceptors (O2, NO3-, and SO4-) and metabolites (NH4+, HS-, and Fe2+), and suggest the distinctly different advective and diffusive type of bioirrigations generated by A. pacifica and N. vexillosa, respectively, in sediment. Comprehensive analyses on microbial community structure and activity using amplicon sequencing and quantitative-(Reverse Transcription)-PCR of 16S rRNA and functional genes suggest that the metabolically active microbial community structure in intertidal sandy sediments is highly resilient to macrofaunal disturbance. This resilience likely stems from metabolic versatility that enables dominant microorganisms to switch between (micro)aerobic and anaerobic lifestyles under the fluctuating redox conditions in these environments. Significant changes of microbial community structure were only locally observed in the fecal pellet and feeding funnel of A. pacifica and mucus of N. vexillosa, likely due to the distinct organic matter composition and/or higher exposure time to oxygen in these microenvironments. Results from the field-based manipulation experiments further suggest that, in addition to macrofaunal bioturbation, conditions of temperature, tidal movement, and supply of photosynthetic organic matter also play important roles in controlling microbial activity and community structure in intertidal sediment.
How to cite: Deng, L., Fiskal, A., Bölsterli, D., and Lever, M.: Laboratory- and field-based investigation on macrofaunal control of microbial community structure and activity in intertidal sediment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18846, https://doi.org/10.5194/egusphere-egu2020-18846, 2020.
Benthic macrofauna occupy most of the oxygenated seafloor, where they have a strong influence on microbial activity and are major regulators of carbon and other elemental cycles. To explore the yet-elusive relationships between faunal sediment alteration (bioturbation), microbial community structure, and microbial activity, we conducted aquarium incubations of Abarenicola pacifica and Nereis vexillosa in a seawater flow system and field manipulation experiments in a sandy intertidal zone. Microsensor and geochemical profiling show strong impacts of both worms on the pore-water concentrations of electron acceptors (O2, NO3-, and SO4-) and metabolites (NH4+, HS-, and Fe2+), and suggest the distinctly different advective and diffusive type of bioirrigations generated by A. pacifica and N. vexillosa, respectively, in sediment. Comprehensive analyses on microbial community structure and activity using amplicon sequencing and quantitative-(Reverse Transcription)-PCR of 16S rRNA and functional genes suggest that the metabolically active microbial community structure in intertidal sandy sediments is highly resilient to macrofaunal disturbance. This resilience likely stems from metabolic versatility that enables dominant microorganisms to switch between (micro)aerobic and anaerobic lifestyles under the fluctuating redox conditions in these environments. Significant changes of microbial community structure were only locally observed in the fecal pellet and feeding funnel of A. pacifica and mucus of N. vexillosa, likely due to the distinct organic matter composition and/or higher exposure time to oxygen in these microenvironments. Results from the field-based manipulation experiments further suggest that, in addition to macrofaunal bioturbation, conditions of temperature, tidal movement, and supply of photosynthetic organic matter also play important roles in controlling microbial activity and community structure in intertidal sediment.
How to cite: Deng, L., Fiskal, A., Bölsterli, D., and Lever, M.: Laboratory- and field-based investigation on macrofaunal control of microbial community structure and activity in intertidal sediment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18846, https://doi.org/10.5194/egusphere-egu2020-18846, 2020.
EGU2020-19150 | Displays | BG4.4
Chemosymbiotic lucinid clams modify the physical, chemical and biological characteristics of marine sediments globallyJay Osvatic, Jennifer Windisch, Benedict Yuen, Bertram Hausl, Julia Polzin, and Jillian Petersen
Chemosynthetic symbioses are widespread throughout marine benthic ecosystems. Through the combined metabolic activity of the symbionts and their animal hosts, they alter the sediment’s available nutrients, affecting the surrounding biological communities from microbes to seagrasses. The chemosymbiotic bivalve family Lucinidae is a remarkable example. Lucinidae is one of the most species-rich animal families in the oceans today, with more than 400 species described. They can be found worldwide from the tropics to the poles, and can reach abundances of more than 4000 individuals per square meter of sediment. All Lucinids detoxify sediments of hydrogen sulfide and one particular species, Loripes orbiculatus, which associates with a sulfur-oxidizing symbiont, Candidatus Thiodiazotropha endoloripes, has been shown to release nitrogen compounds into the surrounding environment (Cardini et al., ISME J 2019). The symbionts of all Lucinidae, including Loripes orbiculatus, are acquired from their surrounding environment during the animal’s development, termed horizontal transmission. Although a substantial environmental population must be present for the symbiosis to persist across generations, we know very little about the environmental reservoir of horizontally transmitted symbionts, as surprisingly, symbionts are rarely, if ever, detected in surveys of sediment microbial communities. We hunted for the free-living symbionts in habitats surrounding the lucinid species Loripes orbiculatus and its symbiont, Candidatus Thiodiazotropha endoloripes, in Fetovaia Bay, Elba, Italy. Symbionts in the environment may have been previously overlooked in molecular surveys of bulk sediment, thus, we did targeted sampling of distinct environmental microhabitats including porewater and sediment. There was little evidence for an environmental symbiont population in Fetovaia Bay. Extensive 16S rRNA amplicon surveys of sediment samples found that less than 0.05% of the bacterial population belong to the Sedimeticolaceae family, which contains Candidatus Thiodiazotropha and other lucinid symbionts, and none of the 400,000 sequences we analyzed matched the symbiont’s 16S rRNA sequence. Given the absence of detectable symbionts in sediment, we considered it possible that lucinid clams engineer an environment to ‘farm’ symbionts through their sulfide mining and general burrowing activities. We therefore assessed the microbial communities in the mucus-lined burrow walls of the bivalves with molecular methods. In contrast to the surrounding sediment, ~10% of operational taxonomic units (OTUs) found in the mucus tubes created by lucinid clams were Sedimenticolaceae, and sequences matching the genus Candidatus Thiodiazotropha could be detected. The enrichment of Sedimenticolaceae in the mucus tubes created by Loripes orbiculatus suggests that the clams create an environment more suitable for Sedimenticolaceae than the ‘background’ surrounding sediment. This suggests that the population of available symbionts is environmental, but only detectable in lucinid-associated or modified environments such as the burrow walls. Considering their worldwide distribution and enormous abundance at some locations, lucinid clams and their chemosynthetic symbionts potentially have an enormous impact on structuring microbial communities in marine sediments globally, both indirectly by altering carbon, nitrogen and sulfur cycling, and directly by selecting for certain microbial groups.
How to cite: Osvatic, J., Windisch, J., Yuen, B., Hausl, B., Polzin, J., and Petersen, J.: Chemosymbiotic lucinid clams modify the physical, chemical and biological characteristics of marine sediments globally , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19150, https://doi.org/10.5194/egusphere-egu2020-19150, 2020.
Chemosynthetic symbioses are widespread throughout marine benthic ecosystems. Through the combined metabolic activity of the symbionts and their animal hosts, they alter the sediment’s available nutrients, affecting the surrounding biological communities from microbes to seagrasses. The chemosymbiotic bivalve family Lucinidae is a remarkable example. Lucinidae is one of the most species-rich animal families in the oceans today, with more than 400 species described. They can be found worldwide from the tropics to the poles, and can reach abundances of more than 4000 individuals per square meter of sediment. All Lucinids detoxify sediments of hydrogen sulfide and one particular species, Loripes orbiculatus, which associates with a sulfur-oxidizing symbiont, Candidatus Thiodiazotropha endoloripes, has been shown to release nitrogen compounds into the surrounding environment (Cardini et al., ISME J 2019). The symbionts of all Lucinidae, including Loripes orbiculatus, are acquired from their surrounding environment during the animal’s development, termed horizontal transmission. Although a substantial environmental population must be present for the symbiosis to persist across generations, we know very little about the environmental reservoir of horizontally transmitted symbionts, as surprisingly, symbionts are rarely, if ever, detected in surveys of sediment microbial communities. We hunted for the free-living symbionts in habitats surrounding the lucinid species Loripes orbiculatus and its symbiont, Candidatus Thiodiazotropha endoloripes, in Fetovaia Bay, Elba, Italy. Symbionts in the environment may have been previously overlooked in molecular surveys of bulk sediment, thus, we did targeted sampling of distinct environmental microhabitats including porewater and sediment. There was little evidence for an environmental symbiont population in Fetovaia Bay. Extensive 16S rRNA amplicon surveys of sediment samples found that less than 0.05% of the bacterial population belong to the Sedimeticolaceae family, which contains Candidatus Thiodiazotropha and other lucinid symbionts, and none of the 400,000 sequences we analyzed matched the symbiont’s 16S rRNA sequence. Given the absence of detectable symbionts in sediment, we considered it possible that lucinid clams engineer an environment to ‘farm’ symbionts through their sulfide mining and general burrowing activities. We therefore assessed the microbial communities in the mucus-lined burrow walls of the bivalves with molecular methods. In contrast to the surrounding sediment, ~10% of operational taxonomic units (OTUs) found in the mucus tubes created by lucinid clams were Sedimenticolaceae, and sequences matching the genus Candidatus Thiodiazotropha could be detected. The enrichment of Sedimenticolaceae in the mucus tubes created by Loripes orbiculatus suggests that the clams create an environment more suitable for Sedimenticolaceae than the ‘background’ surrounding sediment. This suggests that the population of available symbionts is environmental, but only detectable in lucinid-associated or modified environments such as the burrow walls. Considering their worldwide distribution and enormous abundance at some locations, lucinid clams and their chemosynthetic symbionts potentially have an enormous impact on structuring microbial communities in marine sediments globally, both indirectly by altering carbon, nitrogen and sulfur cycling, and directly by selecting for certain microbial groups.
How to cite: Osvatic, J., Windisch, J., Yuen, B., Hausl, B., Polzin, J., and Petersen, J.: Chemosymbiotic lucinid clams modify the physical, chemical and biological characteristics of marine sediments globally , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19150, https://doi.org/10.5194/egusphere-egu2020-19150, 2020.
EGU2020-20478 | Displays | BG4.4
Correlative cathodoluminescence and EDS imaging of the benthic agglutinated foraminifer Liebusella goesiSangeetha Hari, Sten Littmann, Nicolaas Glock, Jan von Arx, Toon Coenen, and Alexandra-Sophie Roy
Sedimentary rocks, formed by the accumulation of mineral and organic particles, are important both for studies of the earth’s history as well as for being a source of fossil fuels. Over the course of the last decades, it has been demonstrated that scanning electron microscope (SEM)-based cathodoluminescence (CL) spectroscopy is a valuable technique for the characterisation of sedimentary rocks, complementary to other electron microscopy-based techniques, such as backscattered electron imaging (BSE/EBSD) and energy dispersive x-ray spectroscopy (EDS). Typically the CL yield is high enough for rapid scanning and, in some cases, even video-rate scanning, allowing fast inspection of relatively large areas. It can be used to quantitatively map the quartz composition of the sample, for example, which enables the rigorous segmentation of granular and cemented material.
Textulariid benthic foraminifers live on and in seafloor sediments and form shells of agglutinated sediment particles. They are very important biostratigraphic markers, and fossil agglutinated foraminifera are important archives for paleoceanographic reconstructions. Furthermore, living textulariids show a strong diversity, populating a diverse range of marine habitats partly and can reach high living abundances, making them important for benthic ecosystems.
In this work, we show how CL spectroscopy can be employed to study agglutinated foraminifera using the species Liebusella goesi from the Swedish Gullmar Fjord as an example. Fast panchromatic imaging using a photomultiplier tube was performed over a large area of the foraminifera, which revealed textures and contrasts of interest in the shell (test). A high resolution SEM image was acquired simultaneously to provide spatial context. Such a dataset can be valuable in establishing the geological history as well as in identifying the chemical composition of the cement used for the agglutination of sediment particles. Both the composition of the agglutinated particles and the chemical composition of the cement might bear valuable information about the environmental conditions, when the test was formed. EDS measurements were performed, revealing the spatial distribution of elements such as potassium, calcium, sodium, silicon and oxygen, in the sediment particles of the shell. This was useful in indicating the presence of minerals such as quartz and feldspar, and hyperspectral CL imaging was performed to rigorously identify them, and to visualize intragranular features, not visible in the EDS data. Based on the CL spectral data, we were further able to identify different grades/types of quartz and feldspars. These results show that these foraminifera prefer different sediment materials with varying grain sizes, depending on the size of the newly formed chamber, to achieve the highest mechanical stability.
How to cite: Hari, S., Littmann, S., Glock, N., von Arx, J., Coenen, T., and Roy, A.-S.: Correlative cathodoluminescence and EDS imaging of the benthic agglutinated foraminifer Liebusella goesi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20478, https://doi.org/10.5194/egusphere-egu2020-20478, 2020.
Sedimentary rocks, formed by the accumulation of mineral and organic particles, are important both for studies of the earth’s history as well as for being a source of fossil fuels. Over the course of the last decades, it has been demonstrated that scanning electron microscope (SEM)-based cathodoluminescence (CL) spectroscopy is a valuable technique for the characterisation of sedimentary rocks, complementary to other electron microscopy-based techniques, such as backscattered electron imaging (BSE/EBSD) and energy dispersive x-ray spectroscopy (EDS). Typically the CL yield is high enough for rapid scanning and, in some cases, even video-rate scanning, allowing fast inspection of relatively large areas. It can be used to quantitatively map the quartz composition of the sample, for example, which enables the rigorous segmentation of granular and cemented material.
Textulariid benthic foraminifers live on and in seafloor sediments and form shells of agglutinated sediment particles. They are very important biostratigraphic markers, and fossil agglutinated foraminifera are important archives for paleoceanographic reconstructions. Furthermore, living textulariids show a strong diversity, populating a diverse range of marine habitats partly and can reach high living abundances, making them important for benthic ecosystems.
In this work, we show how CL spectroscopy can be employed to study agglutinated foraminifera using the species Liebusella goesi from the Swedish Gullmar Fjord as an example. Fast panchromatic imaging using a photomultiplier tube was performed over a large area of the foraminifera, which revealed textures and contrasts of interest in the shell (test). A high resolution SEM image was acquired simultaneously to provide spatial context. Such a dataset can be valuable in establishing the geological history as well as in identifying the chemical composition of the cement used for the agglutination of sediment particles. Both the composition of the agglutinated particles and the chemical composition of the cement might bear valuable information about the environmental conditions, when the test was formed. EDS measurements were performed, revealing the spatial distribution of elements such as potassium, calcium, sodium, silicon and oxygen, in the sediment particles of the shell. This was useful in indicating the presence of minerals such as quartz and feldspar, and hyperspectral CL imaging was performed to rigorously identify them, and to visualize intragranular features, not visible in the EDS data. Based on the CL spectral data, we were further able to identify different grades/types of quartz and feldspars. These results show that these foraminifera prefer different sediment materials with varying grain sizes, depending on the size of the newly formed chamber, to achieve the highest mechanical stability.
How to cite: Hari, S., Littmann, S., Glock, N., von Arx, J., Coenen, T., and Roy, A.-S.: Correlative cathodoluminescence and EDS imaging of the benthic agglutinated foraminifer Liebusella goesi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20478, https://doi.org/10.5194/egusphere-egu2020-20478, 2020.
EGU2020-20810 | Displays | BG4.4
Proxies, drivers, and impact of macrofaunal transport in sediment of the southern North Sea.Andreas Neumann, Justus van Beusekom, Annika Eisele, Kay-Christian Emeis, Jana Friedrich, Ingrid Kröncke, Julia Meyer, Ulrike Schückel, and Alexa Wrede
Coastal sediments play an important role in the nutrient cycling, and the intensities of exchange processes between bottom water and pore water control the balance between sequestration and recycling of nutrients. Pore water advection as one major exchange mechanism is determined by physical parameters and thus well describable with models. By contrast, biotransport (bioirrigation, bioturbation) as the other major transport mechanism is much more complex and observational data are often scarce to quantify these processes.
We present ex-situ observations of oxygen and nutrient fluxes, sediment characteristics, and fauna composition over the past six years from all benthic provinces of the German Bight, which enable us to describe the spatial and seasonal variability of the benthic- pelagic coupling. We employ this dataset to detect environmental drivers of the observed variability and to test several proxies of faunal activity.
Our results show that abiotic parameters (sediment type, local primary production) explain the spatial variability while the dynamics of temperature and faunal activity explain the temporal variability. Effects of the complex benthic communities on benthic exchange rates can be parameterized by surprisingly simple proxies, which may help to improve benthic exchange models. By comparing in-situ measurements of pore water advection with ex situ observations, we conclude that biotransport approximately doubles the benthic- pelagic exchange rates in the German Bight.
How to cite: Neumann, A., van Beusekom, J., Eisele, A., Emeis, K.-C., Friedrich, J., Kröncke, I., Meyer, J., Schückel, U., and Wrede, A.: Proxies, drivers, and impact of macrofaunal transport in sediment of the southern North Sea., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20810, https://doi.org/10.5194/egusphere-egu2020-20810, 2020.
Coastal sediments play an important role in the nutrient cycling, and the intensities of exchange processes between bottom water and pore water control the balance between sequestration and recycling of nutrients. Pore water advection as one major exchange mechanism is determined by physical parameters and thus well describable with models. By contrast, biotransport (bioirrigation, bioturbation) as the other major transport mechanism is much more complex and observational data are often scarce to quantify these processes.
We present ex-situ observations of oxygen and nutrient fluxes, sediment characteristics, and fauna composition over the past six years from all benthic provinces of the German Bight, which enable us to describe the spatial and seasonal variability of the benthic- pelagic coupling. We employ this dataset to detect environmental drivers of the observed variability and to test several proxies of faunal activity.
Our results show that abiotic parameters (sediment type, local primary production) explain the spatial variability while the dynamics of temperature and faunal activity explain the temporal variability. Effects of the complex benthic communities on benthic exchange rates can be parameterized by surprisingly simple proxies, which may help to improve benthic exchange models. By comparing in-situ measurements of pore water advection with ex situ observations, we conclude that biotransport approximately doubles the benthic- pelagic exchange rates in the German Bight.
How to cite: Neumann, A., van Beusekom, J., Eisele, A., Emeis, K.-C., Friedrich, J., Kröncke, I., Meyer, J., Schückel, U., and Wrede, A.: Proxies, drivers, and impact of macrofaunal transport in sediment of the southern North Sea., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20810, https://doi.org/10.5194/egusphere-egu2020-20810, 2020.
EGU2020-20817 | Displays | BG4.4
The effects of organic matter concentration on sediment reworking of Perinereis aibuhitensis : a mesocosm studyJaehwan Seo and Bon Joo Koo
The organic matter (OM) concentration is one of the most important factors influencing benthic organism sediment reworking during bioturbation. This study was designed to evaluate differences in sediment reworking rate of Perinereis aibuhitensis based on quantification of its pellet production (PP) and OM transport rate from ambient sediment to the surface due to its feeding. The mesocosm experiment was conducted in acrylic container (15×1×20 cm) with two treatments (high OM treatment and low OM treatment) and each treatment had ten replicates. The pellets in each container were removed 2h before the beginning of the pellet collection, and then newly produced pellets were collected every 2 h during 24 h at each treatment. The mean grain size of pellets (5.1 ∅) was smaller than that of ambient sediment particles (5.9 ∅), and the mean OM concentration was much higher in pellet (0.69% for C and 0.06% for N) than in ambient sediment (0.46% for C and 0.05% for N). Since an organism cannot produce more organic matter than it ingests, production of organically enriched pellets by this species indicates selective ingestion. The overall OM transport rate was 0.7 g C m-2 day-1 in carbon and 0.06 g N m-2 day-1 in nitrogen, respectively. The daily PP was much higher in high OM treatment than that of low OM treatment with mean values of 0.007 and 0.002 g ind.-1 h-1, respectively. It is expected that Perinereis feeding activity strongly depended on OM concentrations. The overall sediment reworking rate based on the pellet production was much higher in high OM concentration (0.005 mm day-1) than in low OM (0.001 mm day-1) concentration.
How to cite: Seo, J. and Koo, B. J.: The effects of organic matter concentration on sediment reworking of Perinereis aibuhitensis : a mesocosm study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20817, https://doi.org/10.5194/egusphere-egu2020-20817, 2020.
The organic matter (OM) concentration is one of the most important factors influencing benthic organism sediment reworking during bioturbation. This study was designed to evaluate differences in sediment reworking rate of Perinereis aibuhitensis based on quantification of its pellet production (PP) and OM transport rate from ambient sediment to the surface due to its feeding. The mesocosm experiment was conducted in acrylic container (15×1×20 cm) with two treatments (high OM treatment and low OM treatment) and each treatment had ten replicates. The pellets in each container were removed 2h before the beginning of the pellet collection, and then newly produced pellets were collected every 2 h during 24 h at each treatment. The mean grain size of pellets (5.1 ∅) was smaller than that of ambient sediment particles (5.9 ∅), and the mean OM concentration was much higher in pellet (0.69% for C and 0.06% for N) than in ambient sediment (0.46% for C and 0.05% for N). Since an organism cannot produce more organic matter than it ingests, production of organically enriched pellets by this species indicates selective ingestion. The overall OM transport rate was 0.7 g C m-2 day-1 in carbon and 0.06 g N m-2 day-1 in nitrogen, respectively. The daily PP was much higher in high OM treatment than that of low OM treatment with mean values of 0.007 and 0.002 g ind.-1 h-1, respectively. It is expected that Perinereis feeding activity strongly depended on OM concentrations. The overall sediment reworking rate based on the pellet production was much higher in high OM concentration (0.005 mm day-1) than in low OM (0.001 mm day-1) concentration.
How to cite: Seo, J. and Koo, B. J.: The effects of organic matter concentration on sediment reworking of Perinereis aibuhitensis : a mesocosm study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20817, https://doi.org/10.5194/egusphere-egu2020-20817, 2020.
EGU2020-21590 | Displays | BG4.4
Describing macrofaunal impact on nutrient flux – what is the potential of trait based approaches?Alexa Wrede, Henrike Andresen, Ragnhild Asmus, Karen Helen Wiltshire, and Thomas Brey
Ever-expanding human activities on land and at sea have amplified the need for easily applicable proxies to effectively predict human mediated changes in ecosystem functioning and biogeochemical cycling. Here we investigate the ability of different proxies to predict macrofaunal impact on nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate under different environmental conditions. As proxies we chose simple community descriptors (i.e. density, wet biomass, ash free dry mass) as well as two trait-based indices that were created to describe macrofauna-sediment interactions (i.e. community bioturbation potential (BPc) and community irrigation potential (IPc)). We hypothesize that trait based indices, will increase the predictability of macrofaunal impact on nutrient fluxes compared the more simple community descriptors. We correlate all proxies with experimental nutrient flux data measured under different environmental conditions using generalized linear models. Generally environmental conditions significantly affected all analysed nutrient fluxes and mostly provided better predictions than any of the proxies for macrofaunal impact by itself. Yet a combination of the proxies and the environmental conditions always increased prediction accuracy. Hereby the irrigation trait based indices enhanced the predictability of the nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate most.
How to cite: Wrede, A., Andresen, H., Asmus, R., Wiltshire, K. H., and Brey, T.: Describing macrofaunal impact on nutrient flux – what is the potential of trait based approaches?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21590, https://doi.org/10.5194/egusphere-egu2020-21590, 2020.
Ever-expanding human activities on land and at sea have amplified the need for easily applicable proxies to effectively predict human mediated changes in ecosystem functioning and biogeochemical cycling. Here we investigate the ability of different proxies to predict macrofaunal impact on nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate under different environmental conditions. As proxies we chose simple community descriptors (i.e. density, wet biomass, ash free dry mass) as well as two trait-based indices that were created to describe macrofauna-sediment interactions (i.e. community bioturbation potential (BPc) and community irrigation potential (IPc)). We hypothesize that trait based indices, will increase the predictability of macrofaunal impact on nutrient fluxes compared the more simple community descriptors. We correlate all proxies with experimental nutrient flux data measured under different environmental conditions using generalized linear models. Generally environmental conditions significantly affected all analysed nutrient fluxes and mostly provided better predictions than any of the proxies for macrofaunal impact by itself. Yet a combination of the proxies and the environmental conditions always increased prediction accuracy. Hereby the irrigation trait based indices enhanced the predictability of the nutrient fluxes of ammonium, nitrate, nitrite, silicate and phosphate most.
How to cite: Wrede, A., Andresen, H., Asmus, R., Wiltshire, K. H., and Brey, T.: Describing macrofaunal impact on nutrient flux – what is the potential of trait based approaches?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21590, https://doi.org/10.5194/egusphere-egu2020-21590, 2020.
EGU2020-22581 | Displays | BG4.4
Influence of nutrients enrichment on ecosystem functioning in a subpolar seagrass meadowLudovic Pascal, Gwénaëlle Chaillou, Pascal Bernatchez, Christian Nozais, and Philippe Archambault
Seagrass meadows are among the most productive ecosystems in the world: they store a large amount of carbon and host highly diverse macrobenthic communities. They also play a key role in biogeochemistry at the sediment-water interface. The light requirements of seagrasses limit their development to shallow coastal areas where they are facing various natural and anthropogenic disturbances, which has induced a global loss of these ecosystems over the last decades. Nutrient enrichment of coastal waters, resulting from anthropogenic activities is one of the leading causes of this decline. Subpolar seagrass meadows present a strong seasonal dynamic, with a long winter when seagrasses rely on carbon reserves that they build up during the short growing season (limited to two to three months during summer time). Hence, it has been hypothesized that the effects of nutrient enrichment on seagrass ecosystem functioning depend on seasonal dynamics. In this study, we performed a series of mesocosm experiments over a month period to investigate the effects of the timing, duration and intensity of disturbance on macrofauna bioturbation, oxygen and nutrients porewater concentration profiles and benthic fluxes using three levels (including control) of realistic nutrient enrichments at the beginning (June) and at the end (August) of the growing season. In May, effects of intermediate level of nutrient enrichment were only visible on total oxygen uptake by the sediment at day 30 of disturbance while it affected oxygen and nutrients benthic fluxes at day 15 in August. The highest level of nutrient enrichment affected oxygen and nutrients benthic fluxes in May and August. Overall, our results highlight the importance of considering the time (period and duration) in the assessment of the functional consequences of disturbances.
How to cite: Pascal, L., Chaillou, G., Bernatchez, P., Nozais, C., and Archambault, P.: Influence of nutrients enrichment on ecosystem functioning in a subpolar seagrass meadow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22581, https://doi.org/10.5194/egusphere-egu2020-22581, 2020.
Seagrass meadows are among the most productive ecosystems in the world: they store a large amount of carbon and host highly diverse macrobenthic communities. They also play a key role in biogeochemistry at the sediment-water interface. The light requirements of seagrasses limit their development to shallow coastal areas where they are facing various natural and anthropogenic disturbances, which has induced a global loss of these ecosystems over the last decades. Nutrient enrichment of coastal waters, resulting from anthropogenic activities is one of the leading causes of this decline. Subpolar seagrass meadows present a strong seasonal dynamic, with a long winter when seagrasses rely on carbon reserves that they build up during the short growing season (limited to two to three months during summer time). Hence, it has been hypothesized that the effects of nutrient enrichment on seagrass ecosystem functioning depend on seasonal dynamics. In this study, we performed a series of mesocosm experiments over a month period to investigate the effects of the timing, duration and intensity of disturbance on macrofauna bioturbation, oxygen and nutrients porewater concentration profiles and benthic fluxes using three levels (including control) of realistic nutrient enrichments at the beginning (June) and at the end (August) of the growing season. In May, effects of intermediate level of nutrient enrichment were only visible on total oxygen uptake by the sediment at day 30 of disturbance while it affected oxygen and nutrients benthic fluxes at day 15 in August. The highest level of nutrient enrichment affected oxygen and nutrients benthic fluxes in May and August. Overall, our results highlight the importance of considering the time (period and duration) in the assessment of the functional consequences of disturbances.
How to cite: Pascal, L., Chaillou, G., Bernatchez, P., Nozais, C., and Archambault, P.: Influence of nutrients enrichment on ecosystem functioning in a subpolar seagrass meadow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22581, https://doi.org/10.5194/egusphere-egu2020-22581, 2020.
BG4.7 – Advancing understanding of hydrochemical and ecological processes controlling the fate of aquatic organic matter, nutrients and pollutants using state-of-the-art methods
EGU2020-6885 | Displays | BG4.7
Understanding the long-term concentration, flux, composition and processing of dissolved organic carbon in UK riversFred Worrall, Nicholas Howden, and Timothy Burt
Dissolved organic carbon (DOC) represents an important component of the terrestrial and fluvial carbon cycle as it represents a flux from terrestrial carbon stores and while it transfers through the fluvial network it can be processed to release greenhouse gases to the atmosphere. Furthermore, DOC is a major water resource limitation as the dissolved organic matter has to be removed prior to treatment. Therefore, we need to understand the concentration and fluxes of DOC and they change across a landscape between the terrestrial source and the tidal limit.
Our ability to understand the processing of terrestrial and fluvial carbon has been limited by the range of catchments that have been considered and the time scale over which they have been considered. Studies focused on similar catchment types and very little means of comparing between catchments. However, if we can access and understand large datasets we can find general principles which control DOC and the relative importance of these controls. In this study we use two datasets. The first, is a dataset sampled across the UK for major rivers (270 catchments) from 1974 and this dataset is ideal for understanding flux to the continental shelf and this dataset has over 50000 datapoints. Secondly, many of these sites are monitored for a rang e of other parameters that are related to the composition of the dissolved organic matter. The important covariates for DOM composition are BOD, which is a measure of DOM decomposition, and COD which is measure of the oxidation state of the DOM. All the study catchments could be characterised by a range of covariate information, eg. soil cover, land use, hydro-climatology. To make maximum use of this data the dataset was considered within a Bayesian hierarchical framework.
The concentrations of DOC from the UK rose for the 1974 on to the late 1990s before a decline to 2007-08. The decline was driven by changes in urban sources, particular by improvements in sewage treatment. The DOC flux from the UK has declined since a peak in 2000 and in 2017 was 767 ktonnes C/yr (95% credible interval 644 – 909 ktonnesC/yr). Modelling composition turnover gives the DOC flux from source as 3.5 Mtonnes C/yr with 2.6 Mtonnes C/yr lost to atmosphere (14 Mtonnes CO2eq/yr = 59 tonnes CO2eq/km2/yr).
How to cite: Worrall, F., Howden, N., and Burt, T.: Understanding the long-term concentration, flux, composition and processing of dissolved organic carbon in UK rivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6885, https://doi.org/10.5194/egusphere-egu2020-6885, 2020.
Dissolved organic carbon (DOC) represents an important component of the terrestrial and fluvial carbon cycle as it represents a flux from terrestrial carbon stores and while it transfers through the fluvial network it can be processed to release greenhouse gases to the atmosphere. Furthermore, DOC is a major water resource limitation as the dissolved organic matter has to be removed prior to treatment. Therefore, we need to understand the concentration and fluxes of DOC and they change across a landscape between the terrestrial source and the tidal limit.
Our ability to understand the processing of terrestrial and fluvial carbon has been limited by the range of catchments that have been considered and the time scale over which they have been considered. Studies focused on similar catchment types and very little means of comparing between catchments. However, if we can access and understand large datasets we can find general principles which control DOC and the relative importance of these controls. In this study we use two datasets. The first, is a dataset sampled across the UK for major rivers (270 catchments) from 1974 and this dataset is ideal for understanding flux to the continental shelf and this dataset has over 50000 datapoints. Secondly, many of these sites are monitored for a rang e of other parameters that are related to the composition of the dissolved organic matter. The important covariates for DOM composition are BOD, which is a measure of DOM decomposition, and COD which is measure of the oxidation state of the DOM. All the study catchments could be characterised by a range of covariate information, eg. soil cover, land use, hydro-climatology. To make maximum use of this data the dataset was considered within a Bayesian hierarchical framework.
The concentrations of DOC from the UK rose for the 1974 on to the late 1990s before a decline to 2007-08. The decline was driven by changes in urban sources, particular by improvements in sewage treatment. The DOC flux from the UK has declined since a peak in 2000 and in 2017 was 767 ktonnes C/yr (95% credible interval 644 – 909 ktonnesC/yr). Modelling composition turnover gives the DOC flux from source as 3.5 Mtonnes C/yr with 2.6 Mtonnes C/yr lost to atmosphere (14 Mtonnes CO2eq/yr = 59 tonnes CO2eq/km2/yr).
How to cite: Worrall, F., Howden, N., and Burt, T.: Understanding the long-term concentration, flux, composition and processing of dissolved organic carbon in UK rivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6885, https://doi.org/10.5194/egusphere-egu2020-6885, 2020.
EGU2020-18118 | Displays | BG4.7
DOM biodegradability assessed in a land covering lake survey in Norway: does DOM character dominate environmental controls?Cathrine Brecke Gundersen, Camille Marie Crapart, Øyvind Aaberg Garmo, Kari Austnes, Rolf David Vogt, and Heleen de Wit
Biodegradability of DOM is controlled by both external environmental factors and by DOM character itself. Currently in the literature, more emphasis is being placed on the role of environmental parameters, and the idea of refractory molecules is being challenged. Biodegradation is the most important transformation process for DOM in lakes and has implications such as fuelling the lower food-web with energy/carbon and producing greenhouse gases. To be able to predict ecological responses to future climatic conditions, a better understanding of the controlling factors of DOM biodegradability is needed.
Here, we present a unique dataset on lake DOM characteristics from an extensive land-covering survey form Norway. The total of 333 different lakes included cover different catchment types such as lowland boreal forests, coastal impacted areas, alpine mountains, and arctic conditions, and with a wide range in catchment-to-lake ratios. The samples were collected using helicopter during the autumn of 2019, just after water mixing, and the samples were analysed immediately upon arrival at the laboratory. The lakes range in TOC concentration from 0.25 to more than 25 mg L-1.
Principal DOM characterisation methods included the acquisition of fluorescence excitation-emission matrices in combination with parallel factor analysis (EEM-PARAFAC) and the assessment of intrinsic DOM biodegradability. The latter was determined by measuring O2 consumption during 24 h using a batch experimental setup, after re-inoculating filtered (0.2 µm) lake DOM samples with a standard environmental inoculum.
The aim of this study is, by contributing with unique spatial data, to reveal the controlling factors of DOM biodegradability in lakes. The measured DOM biodegradability will be linked to structural information of the DOM molecules, extracted from the EEMs, and to environmental parameters such as water chemistry, local climatic conditions, and other catchment characteristics.
How to cite: Brecke Gundersen, C., Crapart, C. M., Garmo, Ø. A., Austnes, K., Vogt, R. D., and de Wit, H.: DOM biodegradability assessed in a land covering lake survey in Norway: does DOM character dominate environmental controls?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18118, https://doi.org/10.5194/egusphere-egu2020-18118, 2020.
Biodegradability of DOM is controlled by both external environmental factors and by DOM character itself. Currently in the literature, more emphasis is being placed on the role of environmental parameters, and the idea of refractory molecules is being challenged. Biodegradation is the most important transformation process for DOM in lakes and has implications such as fuelling the lower food-web with energy/carbon and producing greenhouse gases. To be able to predict ecological responses to future climatic conditions, a better understanding of the controlling factors of DOM biodegradability is needed.
Here, we present a unique dataset on lake DOM characteristics from an extensive land-covering survey form Norway. The total of 333 different lakes included cover different catchment types such as lowland boreal forests, coastal impacted areas, alpine mountains, and arctic conditions, and with a wide range in catchment-to-lake ratios. The samples were collected using helicopter during the autumn of 2019, just after water mixing, and the samples were analysed immediately upon arrival at the laboratory. The lakes range in TOC concentration from 0.25 to more than 25 mg L-1.
Principal DOM characterisation methods included the acquisition of fluorescence excitation-emission matrices in combination with parallel factor analysis (EEM-PARAFAC) and the assessment of intrinsic DOM biodegradability. The latter was determined by measuring O2 consumption during 24 h using a batch experimental setup, after re-inoculating filtered (0.2 µm) lake DOM samples with a standard environmental inoculum.
The aim of this study is, by contributing with unique spatial data, to reveal the controlling factors of DOM biodegradability in lakes. The measured DOM biodegradability will be linked to structural information of the DOM molecules, extracted from the EEMs, and to environmental parameters such as water chemistry, local climatic conditions, and other catchment characteristics.
How to cite: Brecke Gundersen, C., Crapart, C. M., Garmo, Ø. A., Austnes, K., Vogt, R. D., and de Wit, H.: DOM biodegradability assessed in a land covering lake survey in Norway: does DOM character dominate environmental controls?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18118, https://doi.org/10.5194/egusphere-egu2020-18118, 2020.
EGU2020-20555 | Displays | BG4.7
The effect of stream microbial inoculation on in-stream carbon processingJakob Schelker, Florian Caillon, Katharina Besemer, Peter Peduzzi, and Astrid Harjung
Hydrological events mobilize chemically diverse dissolved organic matter (DOM) from soils to streams. Further, such events can also cause an influx of soil microbial life into fluvial systems. Here we present results from the HYDRO-DIVERSITY project, which aims to investigate the dynamic transfer of DOM and microbial life from catchment soils to streams, as well as their downstream fate. We studied the microbial community composition and DOM quality using 16S Illumina sequencing and fluorescence and absorbance spectroscopy. Data from small streams showed strong changes in DOM composition and in the microbial community delivered from soils during hydrological events. Moreover, we performed a flume experiment, in which soil microbial inoculation and the processing of DOM across different biofilm ages were evaluated. As such, biofilm age did not directly affect the establishment of soil microbes in the stream ecosystem. However, in-stream processing of soil DOM appeared to be affected by the inoculation event. This poses the fundamental question, if the processing of DOM in streams and rivers depends on the transient presence of specific soil microbes in stream ecosystems. Overall our results show that soils provide a dynamic and relevant influx of microbes and DOM to first order streams and that this dynamic influx likely affects microbial community dynamics of downstream fluvial networks as well as in-stream DOM processing.
How to cite: Schelker, J., Caillon, F., Besemer, K., Peduzzi, P., and Harjung, A.: The effect of stream microbial inoculation on in-stream carbon processing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20555, https://doi.org/10.5194/egusphere-egu2020-20555, 2020.
Hydrological events mobilize chemically diverse dissolved organic matter (DOM) from soils to streams. Further, such events can also cause an influx of soil microbial life into fluvial systems. Here we present results from the HYDRO-DIVERSITY project, which aims to investigate the dynamic transfer of DOM and microbial life from catchment soils to streams, as well as their downstream fate. We studied the microbial community composition and DOM quality using 16S Illumina sequencing and fluorescence and absorbance spectroscopy. Data from small streams showed strong changes in DOM composition and in the microbial community delivered from soils during hydrological events. Moreover, we performed a flume experiment, in which soil microbial inoculation and the processing of DOM across different biofilm ages were evaluated. As such, biofilm age did not directly affect the establishment of soil microbes in the stream ecosystem. However, in-stream processing of soil DOM appeared to be affected by the inoculation event. This poses the fundamental question, if the processing of DOM in streams and rivers depends on the transient presence of specific soil microbes in stream ecosystems. Overall our results show that soils provide a dynamic and relevant influx of microbes and DOM to first order streams and that this dynamic influx likely affects microbial community dynamics of downstream fluvial networks as well as in-stream DOM processing.
How to cite: Schelker, J., Caillon, F., Besemer, K., Peduzzi, P., and Harjung, A.: The effect of stream microbial inoculation on in-stream carbon processing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20555, https://doi.org/10.5194/egusphere-egu2020-20555, 2020.
EGU2020-8466 | Displays | BG4.7
Investigating the in-situ bacterial production of aquatic fluorescent organic matter using a freshwater laboratory modelEva Perrin, John Attridge, Robin Thorn, Stephanie Sargeant, and Darren Reynolds
This research explores the in-situ bacterial production of aquatic fluorescent organic matter (AFOM) under controlled laboratory conditions. Whilst fluorescence techniques have long been used to monitor AFOM distribution, origin and dynamics within aquatic systems, the extent to which AFOM characteristics are defined by microbial processing in surface freshwaters has largely been overlooked. Current convention champions the assumption that humic-like (Peak C) and protein-like (Peak T) fluorescence signatures are exclusively derived from terrestrial (allochthonous) or microbial (autochthonous) origins respectively, with Peak T having been directly correlated with microbial enumeration. Under intensifying anthropogenic perturbations and changing catchment characteristics, the complexities associated with bacterial-organic matter (OM) interactions in freshwater systems are increasing, challenging our understanding as to the origin and fate of aquatic OM. To what extent the observed AFOM in freshwater systems is defined by bacterial processing and how such processing may be influenced by nutrient availability are key knowledge gaps that need to be addressed. Previous research has observed the in-situ bacterial production of humic-like compounds in a laboratory model system with a high-nutrient and high-carbon content synthetic growth medium. This work describes a non-fluorescing, simulated freshwater matrix which is low in both nutrient and organic carbon concentrations. Using this model, growth curve incubation experiments have been undertaken over a 48-hour period with a monoculture laboratory strain of Pseudomonas aeruginosa. Microbiological and fluorescence analyses undertaken at regular time intervals demonstrate the bacterial production of humic-like OM (Peak C) under oligotrophic (after 8hrs) and simulated high-nutrient conditions (after 6hrs). These findings, albeit under laboratory conditions, are important as they show that this fluorescence region, currently viewed as allochthonous in origin, can also represent labile OM generated in-situ by bacteria and, furthermore, that this bacterial production increases as a function of nutrient loading. In addition, the data quantitatively demonstrates that fluorescence intensities increase independently of cell density. These results challenge the assumption that humic-like AFOM is exclusively terrestrial in origin and suggest that bacteria may “engineer” OM in-situ that gives rise to these fluorescence characteristics as a function of metabolism. Importantly, nutrient availability is a key driver of metabolic activity, outlining the potential for the use of fluorescence as a marker for stream metabolism as opposed to a measure of bacterial numbers. Further development of the laboratory model via the utilisation of environmentally-sourced bacterial communities is required. Ultimately, this laboratory model will inform field studies that look to improve our understanding of how microbial communities respond to catchment stressors, and how these responses influence AFOM fluorescence signatures and ultimately the origin and fate of OM in freshwater systems.
How to cite: Perrin, E., Attridge, J., Thorn, R., Sargeant, S., and Reynolds, D.: Investigating the in-situ bacterial production of aquatic fluorescent organic matter using a freshwater laboratory model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8466, https://doi.org/10.5194/egusphere-egu2020-8466, 2020.
This research explores the in-situ bacterial production of aquatic fluorescent organic matter (AFOM) under controlled laboratory conditions. Whilst fluorescence techniques have long been used to monitor AFOM distribution, origin and dynamics within aquatic systems, the extent to which AFOM characteristics are defined by microbial processing in surface freshwaters has largely been overlooked. Current convention champions the assumption that humic-like (Peak C) and protein-like (Peak T) fluorescence signatures are exclusively derived from terrestrial (allochthonous) or microbial (autochthonous) origins respectively, with Peak T having been directly correlated with microbial enumeration. Under intensifying anthropogenic perturbations and changing catchment characteristics, the complexities associated with bacterial-organic matter (OM) interactions in freshwater systems are increasing, challenging our understanding as to the origin and fate of aquatic OM. To what extent the observed AFOM in freshwater systems is defined by bacterial processing and how such processing may be influenced by nutrient availability are key knowledge gaps that need to be addressed. Previous research has observed the in-situ bacterial production of humic-like compounds in a laboratory model system with a high-nutrient and high-carbon content synthetic growth medium. This work describes a non-fluorescing, simulated freshwater matrix which is low in both nutrient and organic carbon concentrations. Using this model, growth curve incubation experiments have been undertaken over a 48-hour period with a monoculture laboratory strain of Pseudomonas aeruginosa. Microbiological and fluorescence analyses undertaken at regular time intervals demonstrate the bacterial production of humic-like OM (Peak C) under oligotrophic (after 8hrs) and simulated high-nutrient conditions (after 6hrs). These findings, albeit under laboratory conditions, are important as they show that this fluorescence region, currently viewed as allochthonous in origin, can also represent labile OM generated in-situ by bacteria and, furthermore, that this bacterial production increases as a function of nutrient loading. In addition, the data quantitatively demonstrates that fluorescence intensities increase independently of cell density. These results challenge the assumption that humic-like AFOM is exclusively terrestrial in origin and suggest that bacteria may “engineer” OM in-situ that gives rise to these fluorescence characteristics as a function of metabolism. Importantly, nutrient availability is a key driver of metabolic activity, outlining the potential for the use of fluorescence as a marker for stream metabolism as opposed to a measure of bacterial numbers. Further development of the laboratory model via the utilisation of environmentally-sourced bacterial communities is required. Ultimately, this laboratory model will inform field studies that look to improve our understanding of how microbial communities respond to catchment stressors, and how these responses influence AFOM fluorescence signatures and ultimately the origin and fate of OM in freshwater systems.
How to cite: Perrin, E., Attridge, J., Thorn, R., Sargeant, S., and Reynolds, D.: Investigating the in-situ bacterial production of aquatic fluorescent organic matter using a freshwater laboratory model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8466, https://doi.org/10.5194/egusphere-egu2020-8466, 2020.
EGU2020-9292 | Displays | BG4.7
River water quality modeling using continuous high frequency data allows disentangling whole-stream nitrogen uptake and release pathwaysJingshui Huang and Michael Rode
River water quality models offer studying spatio-temporal variation and processes of nitrogen (N) turnover. However, the infrequent temporal resolution of monitoring data commonly limit the reliability of modeling instream N processing. These limitations of the temporal data resolution can result in equifinality of model parameter sets and considerable uncertainties due to insufficient ability of validating internal turnover processes. The combination of emerging high frequency monitoring techniques and water quality modeling may support continuous quantification of instream N processing pathways with higher reliability.
In this study, we set up a hydrodynamic and river water quality model (WASP 7.5.2) in the 27.4-km reach of the 5th order river Bode in Central Germany for a 5-year period (2014-2018). High frequency data (15-min interval) of discharge, nitrate, dissolved oxygen (DO) and Chlorophyll-a (Chl-a) at the upstream and downstream station were used as model inputs and for model testing, respectively. Chl-a and DO data were used for disentangling uptake via phytoplankton and benthic algae. Furthermore we identified the most important N-removal and release processes including denitrification, excretion from phytoplankton and benthic algae at daily, seasonal and annual scales.
The PBias of lower than 20% between the simulated and measured high-frequency values for the four variables showed general good performance of the model. Results showed that on an annual scale, net N uptake efficiency ranged from 0.2-17.2% and increased with decreasing discharge resulting in highest value for the extreme low-flow year 2018. Among seasons, net uptake efficiency was found to be the highest in summer. Over 50% of the N loading was taken up at the extreme low flow in the summer of 2018. The contributions of each pathway to total N uptake decreased from assimilatory uptake via benthic algae, denitrification, and assimilatory uptake via phytoplankton. However, in the extreme low-flow summer of 2018, the importance of denitrification was largely increased compared to former years. Besides, in autumn, the reach became a net N source, because remineralization of N from benthic algae surpassed uptake processes.
Our study highlights the value of high frequency data to support river water quality modeling allowing continuous quantification of whole-stream N uptake and release pathways.
How to cite: Huang, J. and Rode, M.: River water quality modeling using continuous high frequency data allows disentangling whole-stream nitrogen uptake and release pathways, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9292, https://doi.org/10.5194/egusphere-egu2020-9292, 2020.
River water quality models offer studying spatio-temporal variation and processes of nitrogen (N) turnover. However, the infrequent temporal resolution of monitoring data commonly limit the reliability of modeling instream N processing. These limitations of the temporal data resolution can result in equifinality of model parameter sets and considerable uncertainties due to insufficient ability of validating internal turnover processes. The combination of emerging high frequency monitoring techniques and water quality modeling may support continuous quantification of instream N processing pathways with higher reliability.
In this study, we set up a hydrodynamic and river water quality model (WASP 7.5.2) in the 27.4-km reach of the 5th order river Bode in Central Germany for a 5-year period (2014-2018). High frequency data (15-min interval) of discharge, nitrate, dissolved oxygen (DO) and Chlorophyll-a (Chl-a) at the upstream and downstream station were used as model inputs and for model testing, respectively. Chl-a and DO data were used for disentangling uptake via phytoplankton and benthic algae. Furthermore we identified the most important N-removal and release processes including denitrification, excretion from phytoplankton and benthic algae at daily, seasonal and annual scales.
The PBias of lower than 20% between the simulated and measured high-frequency values for the four variables showed general good performance of the model. Results showed that on an annual scale, net N uptake efficiency ranged from 0.2-17.2% and increased with decreasing discharge resulting in highest value for the extreme low-flow year 2018. Among seasons, net uptake efficiency was found to be the highest in summer. Over 50% of the N loading was taken up at the extreme low flow in the summer of 2018. The contributions of each pathway to total N uptake decreased from assimilatory uptake via benthic algae, denitrification, and assimilatory uptake via phytoplankton. However, in the extreme low-flow summer of 2018, the importance of denitrification was largely increased compared to former years. Besides, in autumn, the reach became a net N source, because remineralization of N from benthic algae surpassed uptake processes.
Our study highlights the value of high frequency data to support river water quality modeling allowing continuous quantification of whole-stream N uptake and release pathways.
How to cite: Huang, J. and Rode, M.: River water quality modeling using continuous high frequency data allows disentangling whole-stream nitrogen uptake and release pathways, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9292, https://doi.org/10.5194/egusphere-egu2020-9292, 2020.
EGU2020-7936 | Displays | BG4.7
The molecular composition of dissolved organic matter (DOM) and its effects on the greenhouse gas production in pristine subarctic riversTaija Saarela, Helena Jäntti, Mizue Ohashi, Jun’ichiro Ide, Frank Berninger, Anne Ojala, and Jukka Pumpanen
Controls on the degradation of dissolved organic matter (DOM) in freshwaters play a major role in the global carbon cycle. Under the changing climate, the aquatic systems are exposed to increasing terrestrial OM load due to changes in precipitation and air temperature. However, little is known about how the source and composition of this DOM influence its microbial processing in receiving waters.
In this study, we aimed to determine the composition of riverine DOM at a molecular level to gain a more comprehensive understanding on how the quality and quantity of DOM reflect its microbial degradability. Our objectives were to determine how the DOM decay patterns differ between brown-water and clearwater river and how these further regulate the potential greenhouse gas production (carbon dioxide, CO2 and methane, CH4) in these waters.
We collected water samples during two sampling occasions (June and October 2018) from two pristine subarctic rivers in Finnish Lapland and conducted 21-day incubation studies to follow the changes in the concentration and molecular composition of DOM, as well as the changes in the CO2 and CH4 concentrations. The molecular characterization of DOM was carried out using electrospray ionization (ESI) coupled to high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).
Both rivers acted as a source of CO2 and CH4. Our preliminary results show that river water surrounded by peatlands contained a higher number of compounds such as condensed aromatic structures and lignin-like molecules, which led to slower decomposition rates compared to DOM in clearwater river. Overall, the decomposition of DOM was higher during spring flow than during fall due to recently released fresh DOM in the water.
How to cite: Saarela, T., Jäntti, H., Ohashi, M., Ide, J., Berninger, F., Ojala, A., and Pumpanen, J.: The molecular composition of dissolved organic matter (DOM) and its effects on the greenhouse gas production in pristine subarctic rivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7936, https://doi.org/10.5194/egusphere-egu2020-7936, 2020.
Controls on the degradation of dissolved organic matter (DOM) in freshwaters play a major role in the global carbon cycle. Under the changing climate, the aquatic systems are exposed to increasing terrestrial OM load due to changes in precipitation and air temperature. However, little is known about how the source and composition of this DOM influence its microbial processing in receiving waters.
In this study, we aimed to determine the composition of riverine DOM at a molecular level to gain a more comprehensive understanding on how the quality and quantity of DOM reflect its microbial degradability. Our objectives were to determine how the DOM decay patterns differ between brown-water and clearwater river and how these further regulate the potential greenhouse gas production (carbon dioxide, CO2 and methane, CH4) in these waters.
We collected water samples during two sampling occasions (June and October 2018) from two pristine subarctic rivers in Finnish Lapland and conducted 21-day incubation studies to follow the changes in the concentration and molecular composition of DOM, as well as the changes in the CO2 and CH4 concentrations. The molecular characterization of DOM was carried out using electrospray ionization (ESI) coupled to high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS).
Both rivers acted as a source of CO2 and CH4. Our preliminary results show that river water surrounded by peatlands contained a higher number of compounds such as condensed aromatic structures and lignin-like molecules, which led to slower decomposition rates compared to DOM in clearwater river. Overall, the decomposition of DOM was higher during spring flow than during fall due to recently released fresh DOM in the water.
How to cite: Saarela, T., Jäntti, H., Ohashi, M., Ide, J., Berninger, F., Ojala, A., and Pumpanen, J.: The molecular composition of dissolved organic matter (DOM) and its effects on the greenhouse gas production in pristine subarctic rivers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7936, https://doi.org/10.5194/egusphere-egu2020-7936, 2020.
EGU2020-7437 | Displays | BG4.7
Shedding light into the forest: improved understanding of DOM processing in freshwater using complementary experimental and machine learning approachesOliver Lechtenfeld, Valerie Wentzky, Karsten Rinke, Norbert Kamjunke, Wolf von Tümpling, Christin Wilske, Kurt Friese, Bertram Böhrer, Thorsten Reemtsma, and Peter Herzsprung
Dissolved organic matter (DOM) plays important roles in aquatic ecosystems but can interfere with drinking water production. However, its highly complex composition and chemical diversity makes it difficult to understand molecular reactivity in natural systems. Here we used ultra-high resolution mass spectrometry (FT-ICR-MS) and data from two independent studies (a lake monitoring and a photo-irradiation experiment) to disentangle DOM reactivity based on photochemical and microbial induced transformations.
Monitoring in Germany’ largest drinking water reservoir (Rappbode reservoir, Harz Mountains) was conducted over one year on seven dates using water from nine depths. Water chemistry and limnological parameters, including chlorophyll a (chl a) concentration were determined. Stratification of the lake allowed to determine depths and periods, where an accumulation of chl a corresponded with an accumulation of DOM compounds. Chl a served as a surrogate for microbially (i.e. primary) produced DOM. In addition, we used data from a photodegradation experiment using river water from a catchment with similar land use (tributary to Muldenberg reservoir in the Ore Mountains, Germany). The water had been irradiated for 6 days in triplicates using natural sunlight. Thirteen time points had been sampled and used to determine the photochemical reactivity of DOM compounds.
We used robust rank correlations to establish relationships between predictor (chl a concentration or cumulated sunlight irradiation) and response variables (normalized FT-ICR mass peak intensities) for each dataset. Combining the resulting data further allowed for an orthogonal classification of 1277 molecular formulas, which were present in all samples. Using this approach, we could identify 11 reactivity groups and attributed chemical properties to these groups based on molecular information. Photodegradation was observed for high molecular weight molecules - similar to microbial degradation - whereas photo products were aliphatic and oxygen rich. We found that in the lake studied, DOM turnover was dominated by photochemical processes. Exclusively microbial products were comparably low in number and of small molecular weight compounds.
Based on the molecular-property-reactivity-relationships, we trained a random forest model and predicted the molecular reactivity for the remainder of molecular formulas, for which insufficient data were initially available.
The approach presented here offers an expandable tool to integrate reactivity of DOM from specific environments and link it to its molecular properties and chemistry. This will lead to enhanced understanding of the ecological function and biogeochemical cycling of DOM.
How to cite: Lechtenfeld, O., Wentzky, V., Rinke, K., Kamjunke, N., von Tümpling, W., Wilske, C., Friese, K., Böhrer, B., Reemtsma, T., and Herzsprung, P.: Shedding light into the forest: improved understanding of DOM processing in freshwater using complementary experimental and machine learning approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7437, https://doi.org/10.5194/egusphere-egu2020-7437, 2020.
Dissolved organic matter (DOM) plays important roles in aquatic ecosystems but can interfere with drinking water production. However, its highly complex composition and chemical diversity makes it difficult to understand molecular reactivity in natural systems. Here we used ultra-high resolution mass spectrometry (FT-ICR-MS) and data from two independent studies (a lake monitoring and a photo-irradiation experiment) to disentangle DOM reactivity based on photochemical and microbial induced transformations.
Monitoring in Germany’ largest drinking water reservoir (Rappbode reservoir, Harz Mountains) was conducted over one year on seven dates using water from nine depths. Water chemistry and limnological parameters, including chlorophyll a (chl a) concentration were determined. Stratification of the lake allowed to determine depths and periods, where an accumulation of chl a corresponded with an accumulation of DOM compounds. Chl a served as a surrogate for microbially (i.e. primary) produced DOM. In addition, we used data from a photodegradation experiment using river water from a catchment with similar land use (tributary to Muldenberg reservoir in the Ore Mountains, Germany). The water had been irradiated for 6 days in triplicates using natural sunlight. Thirteen time points had been sampled and used to determine the photochemical reactivity of DOM compounds.
We used robust rank correlations to establish relationships between predictor (chl a concentration or cumulated sunlight irradiation) and response variables (normalized FT-ICR mass peak intensities) for each dataset. Combining the resulting data further allowed for an orthogonal classification of 1277 molecular formulas, which were present in all samples. Using this approach, we could identify 11 reactivity groups and attributed chemical properties to these groups based on molecular information. Photodegradation was observed for high molecular weight molecules - similar to microbial degradation - whereas photo products were aliphatic and oxygen rich. We found that in the lake studied, DOM turnover was dominated by photochemical processes. Exclusively microbial products were comparably low in number and of small molecular weight compounds.
Based on the molecular-property-reactivity-relationships, we trained a random forest model and predicted the molecular reactivity for the remainder of molecular formulas, for which insufficient data were initially available.
The approach presented here offers an expandable tool to integrate reactivity of DOM from specific environments and link it to its molecular properties and chemistry. This will lead to enhanced understanding of the ecological function and biogeochemical cycling of DOM.
How to cite: Lechtenfeld, O., Wentzky, V., Rinke, K., Kamjunke, N., von Tümpling, W., Wilske, C., Friese, K., Böhrer, B., Reemtsma, T., and Herzsprung, P.: Shedding light into the forest: improved understanding of DOM processing in freshwater using complementary experimental and machine learning approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7437, https://doi.org/10.5194/egusphere-egu2020-7437, 2020.
EGU2020-2586 | Displays | BG4.7
Dissolved organic matter in two thermal springs of East African rift valleyAndrea Butturini, Peter Herzsprung, Oliver Lechtenfeld, Stefania Venturi, Stefano Amalfitano, Lydia Olaka, Nic Pacini, David Harper, Franco Tassi, and Stefano Fazi
Little is known about dissolved organic matter (DOM) in thermal springs. To fill this gap, this study describes the quantity, optical and molecular properties of dissolved organic matter (DOM) in two geothermal springs located in the East African rift valley a region extremely rich in geothermal phenomena such as hot springs, fumaroles, geysers and spouting springs and solfataras. The two sampled hot springs are located at the south of Elmentatia soda-saline lake and at the Ol Njorowa gorge. Results evidenced the abundance of reduced, saturated, little aromatic compounds that might reflect DOM altered by high temperature and pressure. Beside that, the two hots springs showed very clear distinctive signatures. At Ol Njorowa the most abundant molecules are oxygen poor and sulphur bearing like molecules which might reflect abiotic sulfurization from geo fluids rich in H2S. In contrast Elmentatia hot spring is characterized by abundant nitrogen bearing aliphatic and protein-like molecules probably mirroring perfusion of geo-fluids through organic rich sediments located below the Elmentaita lake bottom.
How to cite: Butturini, A., Herzsprung, P., Lechtenfeld, O., Venturi, S., Amalfitano, S., Olaka, L., Pacini, N., Harper, D., Tassi, F., and Fazi, S.: Dissolved organic matter in two thermal springs of East African rift valley, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2586, https://doi.org/10.5194/egusphere-egu2020-2586, 2020.
Little is known about dissolved organic matter (DOM) in thermal springs. To fill this gap, this study describes the quantity, optical and molecular properties of dissolved organic matter (DOM) in two geothermal springs located in the East African rift valley a region extremely rich in geothermal phenomena such as hot springs, fumaroles, geysers and spouting springs and solfataras. The two sampled hot springs are located at the south of Elmentatia soda-saline lake and at the Ol Njorowa gorge. Results evidenced the abundance of reduced, saturated, little aromatic compounds that might reflect DOM altered by high temperature and pressure. Beside that, the two hots springs showed very clear distinctive signatures. At Ol Njorowa the most abundant molecules are oxygen poor and sulphur bearing like molecules which might reflect abiotic sulfurization from geo fluids rich in H2S. In contrast Elmentatia hot spring is characterized by abundant nitrogen bearing aliphatic and protein-like molecules probably mirroring perfusion of geo-fluids through organic rich sediments located below the Elmentaita lake bottom.
How to cite: Butturini, A., Herzsprung, P., Lechtenfeld, O., Venturi, S., Amalfitano, S., Olaka, L., Pacini, N., Harper, D., Tassi, F., and Fazi, S.: Dissolved organic matter in two thermal springs of East African rift valley, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2586, https://doi.org/10.5194/egusphere-egu2020-2586, 2020.
EGU2020-812 | Displays | BG4.7
Is carbonate sediment dissolution a significant source of dissolved organic matter to Florida Bay?Mary Zeller, Bryce Van Dam, Chris Lopes, Ashley Smyth, Christopher Osburn, and John Kominoski
Florida Bay is subtropical embayment characterized by dense Thalassia testudinum seagrass meadows, the prevalence of carbonate-rich sediments, and relatively long residence times (~1 yr). Florida Bay seagrass meadows store appreciable quantities of allochthonous and autochthonous organic matter (OM) as so-called ‘blue carbon’, the fate of which is therefore tied to that of the carbonate minerals it is bound to. Dissolved organic carbon (DOC) concentrations are also relatively high (~7-12 mg/L), despite potential photo-oxidative loss in this shallow and long residence time system, as well as low internal DOC production due to the ecosystem’s documented oligotrophy. These carbonate sediments can dissolve through net acid production via sediment heterotrophic processes as well as sulfide oxidation, processes which may be enhanced via O2 pumping through seagrass roots.
This study investigated the impact of carbonate dissolution on the release of sediment-associated OM to surface waters, and the relative contribution of this process to surface water DOC quantity and quality. We undertook a three-part experimental approach, with analyses including EEMs, δ13C-DOC, and FT-ICR-MS, to better understand the sources and fate of DOC in Florida Bay. 1) We conducted a spatial survey of surface waters, pore waters, and acid-leachable (representing the ‘carbonate-bound’ OM fraction) sedimentary OM. 2) We conducted a DOM photodegradation study using two potential source surface waters, from a main tributary (Taylor Slough) and a central mangrove island. 3) We conducted benthic flux experiments using intact sediment cores facilitating direct measurements of the quality and quantity of DOC release from sediments. The flux information was placed into the context of sediment dissolution rates, estimated from coinciding determinations of alkalinity and inorganic carbon.
While analyses are ongoing, our initial results indicate a high degree of similarity between the fluorescence signature (PARAFAC components and fluorescence indices) of acid-leachable sedimentary OM, and that of DOC in pore water and surface water throughout Florida Bay. Taken together, our study points to sediment dissolution as an important, yet understudied, process affecting organic carbon cycling in carbonate-dominated systems like Florida Bay.
How to cite: Zeller, M., Van Dam, B., Lopes, C., Smyth, A., Osburn, C., and Kominoski, J.: Is carbonate sediment dissolution a significant source of dissolved organic matter to Florida Bay?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-812, https://doi.org/10.5194/egusphere-egu2020-812, 2020.
Florida Bay is subtropical embayment characterized by dense Thalassia testudinum seagrass meadows, the prevalence of carbonate-rich sediments, and relatively long residence times (~1 yr). Florida Bay seagrass meadows store appreciable quantities of allochthonous and autochthonous organic matter (OM) as so-called ‘blue carbon’, the fate of which is therefore tied to that of the carbonate minerals it is bound to. Dissolved organic carbon (DOC) concentrations are also relatively high (~7-12 mg/L), despite potential photo-oxidative loss in this shallow and long residence time system, as well as low internal DOC production due to the ecosystem’s documented oligotrophy. These carbonate sediments can dissolve through net acid production via sediment heterotrophic processes as well as sulfide oxidation, processes which may be enhanced via O2 pumping through seagrass roots.
This study investigated the impact of carbonate dissolution on the release of sediment-associated OM to surface waters, and the relative contribution of this process to surface water DOC quantity and quality. We undertook a three-part experimental approach, with analyses including EEMs, δ13C-DOC, and FT-ICR-MS, to better understand the sources and fate of DOC in Florida Bay. 1) We conducted a spatial survey of surface waters, pore waters, and acid-leachable (representing the ‘carbonate-bound’ OM fraction) sedimentary OM. 2) We conducted a DOM photodegradation study using two potential source surface waters, from a main tributary (Taylor Slough) and a central mangrove island. 3) We conducted benthic flux experiments using intact sediment cores facilitating direct measurements of the quality and quantity of DOC release from sediments. The flux information was placed into the context of sediment dissolution rates, estimated from coinciding determinations of alkalinity and inorganic carbon.
While analyses are ongoing, our initial results indicate a high degree of similarity between the fluorescence signature (PARAFAC components and fluorescence indices) of acid-leachable sedimentary OM, and that of DOC in pore water and surface water throughout Florida Bay. Taken together, our study points to sediment dissolution as an important, yet understudied, process affecting organic carbon cycling in carbonate-dominated systems like Florida Bay.
How to cite: Zeller, M., Van Dam, B., Lopes, C., Smyth, A., Osburn, C., and Kominoski, J.: Is carbonate sediment dissolution a significant source of dissolved organic matter to Florida Bay?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-812, https://doi.org/10.5194/egusphere-egu2020-812, 2020.
EGU2020-3186 | Displays | BG4.7
Spatio-temporal variability of natural organic matter in Lancang River: concentration, sources and destinationTing Wang
Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (δ13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.
How to cite: Wang, T.: Spatio-temporal variability of natural organic matter in Lancang River: concentration, sources and destination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3186, https://doi.org/10.5194/egusphere-egu2020-3186, 2020.
Natural organic matter (NOM) played an important role in the riverine and global carbon cycle. In order to evaluate the impact of river discharge and anthropogenic activities on the spatio-temporal variability of NOM content and sources in Lancang River, China, a comprehensive study was conducted in two years from the head to the leave-boundary section. As results, the DOC value ranged among 0.91-2.80 mg/L, with sharp decrease in the middle reaches and downstream. While the SOC value significantly enhanced along the water flow, varied from 0.06% to 3.54%. The isotopic composition of organic carbon (δ13C) suggested that predominant contribution of NOM is C3 plants in the upper reach, algae and soil organic matter in the middle reach, and aquatic plants in the downstream. EEM-PARAFAC results proved that NOM in Lancang River is mainly terrestrial organic carbon, while in situ microbial transformed NOM is very low. Moreover, the sharp increase of dissolved CO2 concentration in the lower reaches confirmed the strong respiration of microorganisms due to the higher DO and water temperature, thus resulted in the significantly different fluctuations of DOC and SOC.
How to cite: Wang, T.: Spatio-temporal variability of natural organic matter in Lancang River: concentration, sources and destination, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3186, https://doi.org/10.5194/egusphere-egu2020-3186, 2020.
EGU2020-6552 | Displays | BG4.7
How do early diagenetic processes affect the molecular composition of the sedimentary organic matter?Morgane Derrien, Jin Hur, and Sunghwan Kim
Sediments represent a large reservoir of nutrients and natural organic matter (NOM) from diverse inputs in various proportions. Indeed, sedimentary OM is derived from bacteria or plankton formed in situ, but also receives allochthonous OM from the upstream catchment. Soil OM is a representative allochthonous OM source and it is easily transported into the rivers and ends up in sediments through hydrological processes (Briand et al., 2015; van der Meij et al., 2018). Sediments are also a reactive compartment where diagenetic processes occur inducing changes. Among the diagenetic processes, biodegradation plays a key role as it is one of the main processes causing changes in the amount, composition and properties of OM in sediment (Arndt et al., 2013; Guenet et al., 2014).
In this study, we decided to examine the molecular changes under early diagenesis on sedimentary OM. In this context, we designed a controlled degradation experiment at laboratory scale using organic-rich sediments artificially composed of two contrasting OM end-members (i.e., soil and algae) at known mixing ratios. The incubations were performed under oxic and anoxic conditions in the dark at 25°C for 60 days. The sediment samples were collected on day 0 (e.g., the day where the samples were inoculated) and day 60 and were directly analyzed by laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI FT-ICR MS). LDI permits molecular analysis of the sediment to be achieved without any sample pre-treatment step and consequently limits the inherent problems related to the extraction (Aubriet and Carré, 2019).
The results allowed us, first, to identify (i) which molecules or groups of molecules are the most affected by the biodegradation processes and then, to examine (ii) the potential effect of the absence and/or occurrence of oxygen and (iii) the potential effect of the OM sources on the molecular composition during biodegradation. Finally, this study provides insights into the responding features of sedimentary OM to one of the main biogeochemical processes.
Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Rev. 123, 53–86. https://doi.org/10.1016/J.EARSCIREV.2013.02.008
Aubriet, F., Carré, V., 2019. Fourier transform ion cyclotron resonance mass spectrometry and laser: A versatile tool. Fundam. Appl. Fourier Transform Mass Spectrom. 281–322. https://doi.org/10.1016/B978-0-12-814013-0.00010-7
Briand, M.J., Bonnet, X., Goiran, C., Guillou, G., Letourneur, Y., 2015. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ(13)C and δ(15)N). PLoS One 10, e0131555. https://doi.org/10.1371/journal.pone.0131555
Guenet, B., Danger, M., Harrault, L., Allard, B., Jauset-Alcala, M., Bardoux, G., Benest, D., Abbadie, L., Lacroix, G., 2014. Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721, 35–44. https://doi.org/10.1007/s10750-013-1635-1
van der Meij, W.M., Temme, A.J.A.M., Lin, H.S., Gerke, H.H., Sommer, M., 2018. On the role of hydrologic processes in soil and landscape evolution modeling: concepts, complications and partial solutions. Earth-Science Rev. https://doi.org/10.1016/j.earscirev.2018.09.001
How to cite: Derrien, M., Hur, J., and Kim, S.: How do early diagenetic processes affect the molecular composition of the sedimentary organic matter?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6552, https://doi.org/10.5194/egusphere-egu2020-6552, 2020.
Sediments represent a large reservoir of nutrients and natural organic matter (NOM) from diverse inputs in various proportions. Indeed, sedimentary OM is derived from bacteria or plankton formed in situ, but also receives allochthonous OM from the upstream catchment. Soil OM is a representative allochthonous OM source and it is easily transported into the rivers and ends up in sediments through hydrological processes (Briand et al., 2015; van der Meij et al., 2018). Sediments are also a reactive compartment where diagenetic processes occur inducing changes. Among the diagenetic processes, biodegradation plays a key role as it is one of the main processes causing changes in the amount, composition and properties of OM in sediment (Arndt et al., 2013; Guenet et al., 2014).
In this study, we decided to examine the molecular changes under early diagenesis on sedimentary OM. In this context, we designed a controlled degradation experiment at laboratory scale using organic-rich sediments artificially composed of two contrasting OM end-members (i.e., soil and algae) at known mixing ratios. The incubations were performed under oxic and anoxic conditions in the dark at 25°C for 60 days. The sediment samples were collected on day 0 (e.g., the day where the samples were inoculated) and day 60 and were directly analyzed by laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI FT-ICR MS). LDI permits molecular analysis of the sediment to be achieved without any sample pre-treatment step and consequently limits the inherent problems related to the extraction (Aubriet and Carré, 2019).
The results allowed us, first, to identify (i) which molecules or groups of molecules are the most affected by the biodegradation processes and then, to examine (ii) the potential effect of the absence and/or occurrence of oxygen and (iii) the potential effect of the OM sources on the molecular composition during biodegradation. Finally, this study provides insights into the responding features of sedimentary OM to one of the main biogeochemical processes.
Arndt, S., Jørgensen, B.B., LaRowe, D.E., Middelburg, J.J., Pancost, R.D., Regnier, P., 2013. Quantifying the degradation of organic matter in marine sediments: A review and synthesis. Earth-Science Rev. 123, 53–86. https://doi.org/10.1016/J.EARSCIREV.2013.02.008
Aubriet, F., Carré, V., 2019. Fourier transform ion cyclotron resonance mass spectrometry and laser: A versatile tool. Fundam. Appl. Fourier Transform Mass Spectrom. 281–322. https://doi.org/10.1016/B978-0-12-814013-0.00010-7
Briand, M.J., Bonnet, X., Goiran, C., Guillou, G., Letourneur, Y., 2015. Major Sources of Organic Matter in a Complex Coral Reef Lagoon: Identification from Isotopic Signatures (δ(13)C and δ(15)N). PLoS One 10, e0131555. https://doi.org/10.1371/journal.pone.0131555
Guenet, B., Danger, M., Harrault, L., Allard, B., Jauset-Alcala, M., Bardoux, G., Benest, D., Abbadie, L., Lacroix, G., 2014. Fast mineralization of land-born C in inland waters: first experimental evidences of aquatic priming effect. Hydrobiologia 721, 35–44. https://doi.org/10.1007/s10750-013-1635-1
van der Meij, W.M., Temme, A.J.A.M., Lin, H.S., Gerke, H.H., Sommer, M., 2018. On the role of hydrologic processes in soil and landscape evolution modeling: concepts, complications and partial solutions. Earth-Science Rev. https://doi.org/10.1016/j.earscirev.2018.09.001
How to cite: Derrien, M., Hur, J., and Kim, S.: How do early diagenetic processes affect the molecular composition of the sedimentary organic matter?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6552, https://doi.org/10.5194/egusphere-egu2020-6552, 2020.
EGU2020-5145 | Displays | BG4.7
Resolution of photo chemically induced changes of dissolved organic matter as function of cumulated radiation in a sample of a humic-rich and forested streamPeter Herzsprung, Christin Wilske, Wolf von Tümpling, Norbert Kamjunke, and Oliver J. Lechtenfeld
Photochemical processing is a major transformation pathway for allochthonous and autochthonous dissolved organic matter (DOM). DOM consists of thousands or even millions of different molecules and the isomer-resolved identification molecular structures is still far from any analytical realization. The highest analytical resolution of DOM can be achieved on a molecular mass basis via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). With this technique, the molecular elemental compositions of thousands of DOM components can be assessed, given that they are extractable from water (via e.g. solid phase extraction, SPE-DOM) and ionizable (e.g. via electrospray ionization).
Increasing levels of DOC in drinking water reservoirs pose serious challenges for drinking water processing. Photochemical processes potentially influence the DOM quality in the reservoir water. The photo degradation and / or the photo production of DOM components in surface freshwater as function of cumulated radiation was rarely investigated. In order to fill this gap we performed an irradiation experiment with water from a shaded forest stream flowing into a large reservoir (Muldenberg, Germany). DOC concentration, UV absorption, excitation-emission-matrices (EEMs) including calculated PARAFAC components and fluorescence indices, and FT-ICR MS derived molecular formulas of SPE-DOM were recorded at 13 different time points. The cumulated radiation was recorded during six days of solar irradiation (sunny days in August at 50.401847 deg. latitude and 12.380528 deg. longitude). Changes in relative peak intensity of DOM components as function of cumulated radiation were evaluated both by Spearman`s rank correlation and linear regression.
We found components with different types of photo reaction behavior. Relative aliphatic components like C9H12O5 were identified as photo products showing a monotonous mass peak intensity increase with irradiation time. Highly unsaturated and oxygen-rich components like C15H6O8 showed a more or less monotonous intensity decrease indicating photo degradation. Many similar components were positively correlated to the humic-like fluorescence intensity and the humification index (HIX). The strong degradation of these components can explain the high loss of fluorescence intensity and the drop of the HIX in our experiment. As a result of the high temporal resolution in our experiment (i.e. intensity change as function of cumulated irradiation) we found another type of photo reaction. Components like C15H16O8 showed first increasing and then decreasing intensity indicating the formation of intermediate products.
In general, the river DOM from the forested catchment area showed high potential for photochemical transformations which probably occur in the sunlight exposed predam of the drinking water reservoir.
How to cite: Herzsprung, P., Wilske, C., von Tümpling, W., Kamjunke, N., and Lechtenfeld, O. J.: Resolution of photo chemically induced changes of dissolved organic matter as function of cumulated radiation in a sample of a humic-rich and forested stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5145, https://doi.org/10.5194/egusphere-egu2020-5145, 2020.
Photochemical processing is a major transformation pathway for allochthonous and autochthonous dissolved organic matter (DOM). DOM consists of thousands or even millions of different molecules and the isomer-resolved identification molecular structures is still far from any analytical realization. The highest analytical resolution of DOM can be achieved on a molecular mass basis via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). With this technique, the molecular elemental compositions of thousands of DOM components can be assessed, given that they are extractable from water (via e.g. solid phase extraction, SPE-DOM) and ionizable (e.g. via electrospray ionization).
Increasing levels of DOC in drinking water reservoirs pose serious challenges for drinking water processing. Photochemical processes potentially influence the DOM quality in the reservoir water. The photo degradation and / or the photo production of DOM components in surface freshwater as function of cumulated radiation was rarely investigated. In order to fill this gap we performed an irradiation experiment with water from a shaded forest stream flowing into a large reservoir (Muldenberg, Germany). DOC concentration, UV absorption, excitation-emission-matrices (EEMs) including calculated PARAFAC components and fluorescence indices, and FT-ICR MS derived molecular formulas of SPE-DOM were recorded at 13 different time points. The cumulated radiation was recorded during six days of solar irradiation (sunny days in August at 50.401847 deg. latitude and 12.380528 deg. longitude). Changes in relative peak intensity of DOM components as function of cumulated radiation were evaluated both by Spearman`s rank correlation and linear regression.
We found components with different types of photo reaction behavior. Relative aliphatic components like C9H12O5 were identified as photo products showing a monotonous mass peak intensity increase with irradiation time. Highly unsaturated and oxygen-rich components like C15H6O8 showed a more or less monotonous intensity decrease indicating photo degradation. Many similar components were positively correlated to the humic-like fluorescence intensity and the humification index (HIX). The strong degradation of these components can explain the high loss of fluorescence intensity and the drop of the HIX in our experiment. As a result of the high temporal resolution in our experiment (i.e. intensity change as function of cumulated irradiation) we found another type of photo reaction. Components like C15H16O8 showed first increasing and then decreasing intensity indicating the formation of intermediate products.
In general, the river DOM from the forested catchment area showed high potential for photochemical transformations which probably occur in the sunlight exposed predam of the drinking water reservoir.
How to cite: Herzsprung, P., Wilske, C., von Tümpling, W., Kamjunke, N., and Lechtenfeld, O. J.: Resolution of photo chemically induced changes of dissolved organic matter as function of cumulated radiation in a sample of a humic-rich and forested stream, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5145, https://doi.org/10.5194/egusphere-egu2020-5145, 2020.
EGU2020-7519 | Displays | BG4.7
Aromatic hydrocarbons in components of geological environment of the Norwegian and Russian parts of coastal zone of the Barents SeaAnna Kursheva, Inna Morgunova, Vera Petrova, Galina Batova, Ivan Litvinenko, Andrei Granovitch, and Paul Renaud
Information about hydrocarbons (HCs) distribution in components of geological environment (including aromatic (Ar) compounds) allows to estimate relative amounts of both natural and anthropogenic components and reveal sources of contamination. HCs are widely spread in lithosphere and create stable geochemical background. Variations in their composition attest to the specificity of initial organic matter, conditions of its accumulation and transformation.
The studied samples of soils and surface bottom sediments were collected during the research expedition in July, 2019 (supported by RFBR №18-54-20001 and NFR №280724). On the Norwegian coast of the Barents Sea the area of study included: salt marshes of Tana and Varanger fjords, littoral zone of rocky shores around Kiberg. In the Russian part of the Barents Sea samples were taken from the shallow water area of the Eastern coast of the Kola Bay. All samples were taken along the sublittoral – littoral – supralittoral transects appropriate for a detailed study of the organic matter (OM) spatial distribution. Study of the group composition of ArHCs in the extractable part of soil and sedimentary OM were performed using spectrofluorimetry.
The method is based on the ability of ArHCs to fluoresce under the influence of ultraviolet emitting in narrow spectral ranges determined by their molecular structure. This allows us to characterize the nature of ArHCs and determine possible sources of their input.
The spectrum characteristics of samples from intertidal zone of the Tana fjord salt marshes reflect the input of fresh unoxidized petroleum products such as diesel fuels and engine oils. The significant increase of ArHCs fluorescence intensity in surface sediments may testify to recent pollution accidents.
The spectrum traditionally associated with the estuarine-delta and lacustrine and swampy facies and characteristic for the post-sedimentation and early diagenetic stage of OM transformation was detected in samples from the salt marshes of Varanger fjord.
ArHCs of mixed origin (natural and anthropogenic) are identified in samples from the littoral zone of rocky shores of Kiberg. The spectral data of littoral sediments are typical for the polluted areas with high input of petroleum products. The specific maxima in the long wavelength region of spectrum that is characteristic for the high molecular weight aromatic compounds from the land plants is also detected in these samples.
Spectral characteristics of ArHCs of bottom sediments and soils collected from the shallow water area of the Russian part of the Barents Sea point to the presence of both low molecular weight benzene HCs (high volatile components of flammable liquids) and high molecular weight compounds (oil fuel, gas oil). The detailed study of these anthropogenic HC components seems to be very important given the fact of their detection in all littoral samples.
The further detailed study of the molecular markers and biomarkers (n-alkanes, isoprenoids, cyclanes, terpanes, PAHs) will increase our knowledge about HC sources, efficiency of their microbial and chemical degradation, allow to estimate human impacts on the environment of the region and draw up the regional “geochemical passport”.
How to cite: Kursheva, A., Morgunova, I., Petrova, V., Batova, G., Litvinenko, I., Granovitch, A., and Renaud, P.: Aromatic hydrocarbons in components of geological environment of the Norwegian and Russian parts of coastal zone of the Barents Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7519, https://doi.org/10.5194/egusphere-egu2020-7519, 2020.
Information about hydrocarbons (HCs) distribution in components of geological environment (including aromatic (Ar) compounds) allows to estimate relative amounts of both natural and anthropogenic components and reveal sources of contamination. HCs are widely spread in lithosphere and create stable geochemical background. Variations in their composition attest to the specificity of initial organic matter, conditions of its accumulation and transformation.
The studied samples of soils and surface bottom sediments were collected during the research expedition in July, 2019 (supported by RFBR №18-54-20001 and NFR №280724). On the Norwegian coast of the Barents Sea the area of study included: salt marshes of Tana and Varanger fjords, littoral zone of rocky shores around Kiberg. In the Russian part of the Barents Sea samples were taken from the shallow water area of the Eastern coast of the Kola Bay. All samples were taken along the sublittoral – littoral – supralittoral transects appropriate for a detailed study of the organic matter (OM) spatial distribution. Study of the group composition of ArHCs in the extractable part of soil and sedimentary OM were performed using spectrofluorimetry.
The method is based on the ability of ArHCs to fluoresce under the influence of ultraviolet emitting in narrow spectral ranges determined by their molecular structure. This allows us to characterize the nature of ArHCs and determine possible sources of their input.
The spectrum characteristics of samples from intertidal zone of the Tana fjord salt marshes reflect the input of fresh unoxidized petroleum products such as diesel fuels and engine oils. The significant increase of ArHCs fluorescence intensity in surface sediments may testify to recent pollution accidents.
The spectrum traditionally associated with the estuarine-delta and lacustrine and swampy facies and characteristic for the post-sedimentation and early diagenetic stage of OM transformation was detected in samples from the salt marshes of Varanger fjord.
ArHCs of mixed origin (natural and anthropogenic) are identified in samples from the littoral zone of rocky shores of Kiberg. The spectral data of littoral sediments are typical for the polluted areas with high input of petroleum products. The specific maxima in the long wavelength region of spectrum that is characteristic for the high molecular weight aromatic compounds from the land plants is also detected in these samples.
Spectral characteristics of ArHCs of bottom sediments and soils collected from the shallow water area of the Russian part of the Barents Sea point to the presence of both low molecular weight benzene HCs (high volatile components of flammable liquids) and high molecular weight compounds (oil fuel, gas oil). The detailed study of these anthropogenic HC components seems to be very important given the fact of their detection in all littoral samples.
The further detailed study of the molecular markers and biomarkers (n-alkanes, isoprenoids, cyclanes, terpanes, PAHs) will increase our knowledge about HC sources, efficiency of their microbial and chemical degradation, allow to estimate human impacts on the environment of the region and draw up the regional “geochemical passport”.
How to cite: Kursheva, A., Morgunova, I., Petrova, V., Batova, G., Litvinenko, I., Granovitch, A., and Renaud, P.: Aromatic hydrocarbons in components of geological environment of the Norwegian and Russian parts of coastal zone of the Barents Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7519, https://doi.org/10.5194/egusphere-egu2020-7519, 2020.
EGU2020-9932 | Displays | BG4.7
Proactive optical monitoring of catchment dissolved organic matter for drinking water source protectionJohn Weatherill, Elena Fernandez-Pascual, Jean O'Dwyer, Elizabeth Gilchrist, Simon Harrison, Emma Goslan, Kieran Khamis, and Connie O’Driscoll
Ireland has a far greater number of regulatory exceedances for trihalomethanes (THMs) in public water supplies than the next highest European Union member state. In Ireland, 82% of public water supplies originate from surface water catchments which require disinfection to inactivate pathogens and prevent the spread of waterborne diseases. Since the 1970s, it has been known that the use of chlorine for disinfection leads to the formation of potentially harmful disinfection byproducts (DBPs) of which some are suspected carcinogens. THMs are one prominent class of at least 700 potentially harmful disinfection byproducts (DBPs) produced after chlorination of dissolved organic matter (DOM) present in source water which is not removed prior to disinfection.
We introduce a new research project, funded by the Irish Environmental Protection Agency entitled PRODOM: PRoactive Optical monitoring of catchment Dissolved Organic Matter for drinking water source protection. The overall aim of the research is to develop an integrated catchment-level understanding of the spatiotemporal dynamics of DOM precursors and associated DBP formation risk. The project will explore the relationship between optically-active DOM precursors and laboratory formation potentials for key DBPs including emerging classes of potentially more harmful nitrogenous DBPs. Through high-resolution spatial sampling we will develop geospatial DBP formation risk maps and identify risk-driving point and diffuse precursor sources. We will evaluate the potential of state-of-the-art UV fluorescence sensor technology to act as an early warning tool for proactive management of source water at sub-catchment scale. Using high-frequency time series monitoring of fluorescent precursors, we will identify high-risk periods in the catchment hydrograph and evaluate critical precursor sources and pathways to inform a series of catchment management measures designed to reduce DBP formation risk.
How to cite: Weatherill, J., Fernandez-Pascual, E., O'Dwyer, J., Gilchrist, E., Harrison, S., Goslan, E., Khamis, K., and O’Driscoll, C.: Proactive optical monitoring of catchment dissolved organic matter for drinking water source protection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9932, https://doi.org/10.5194/egusphere-egu2020-9932, 2020.
Ireland has a far greater number of regulatory exceedances for trihalomethanes (THMs) in public water supplies than the next highest European Union member state. In Ireland, 82% of public water supplies originate from surface water catchments which require disinfection to inactivate pathogens and prevent the spread of waterborne diseases. Since the 1970s, it has been known that the use of chlorine for disinfection leads to the formation of potentially harmful disinfection byproducts (DBPs) of which some are suspected carcinogens. THMs are one prominent class of at least 700 potentially harmful disinfection byproducts (DBPs) produced after chlorination of dissolved organic matter (DOM) present in source water which is not removed prior to disinfection.
We introduce a new research project, funded by the Irish Environmental Protection Agency entitled PRODOM: PRoactive Optical monitoring of catchment Dissolved Organic Matter for drinking water source protection. The overall aim of the research is to develop an integrated catchment-level understanding of the spatiotemporal dynamics of DOM precursors and associated DBP formation risk. The project will explore the relationship between optically-active DOM precursors and laboratory formation potentials for key DBPs including emerging classes of potentially more harmful nitrogenous DBPs. Through high-resolution spatial sampling we will develop geospatial DBP formation risk maps and identify risk-driving point and diffuse precursor sources. We will evaluate the potential of state-of-the-art UV fluorescence sensor technology to act as an early warning tool for proactive management of source water at sub-catchment scale. Using high-frequency time series monitoring of fluorescent precursors, we will identify high-risk periods in the catchment hydrograph and evaluate critical precursor sources and pathways to inform a series of catchment management measures designed to reduce DBP formation risk.
How to cite: Weatherill, J., Fernandez-Pascual, E., O'Dwyer, J., Gilchrist, E., Harrison, S., Goslan, E., Khamis, K., and O’Driscoll, C.: Proactive optical monitoring of catchment dissolved organic matter for drinking water source protection, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9932, https://doi.org/10.5194/egusphere-egu2020-9932, 2020.
EGU2020-12327 | Displays | BG4.7
Regional variability in stream dissolved organic matter characteristics across forested regions of Canada, and its implications for drinking water treatabilityJulia Orlova, David Olefeldt, Fariba Amiri, Alyssa Bourgeois, Jim Buttle, Erin Cherlet, Monica Emelko, Bill Floyd, David Foster, Ryan Hutchins, Rob Jamieson, Mark Johnson, Hannah McSorley, Nan Qi, Uldis Silins, Suzanne Tank, Lauren Thompson, and Chris Williams
Forested watersheds are a major source of drinking water for more than two thirds of Canadians. However, drinking water security is increasingly pressured by the combination of higher demands resulting from population growth and industrial development and climate change-exacerbated landscape disturbances (e.g., wildfires, hurricanes). These may lead to deteriorated, more variable source water quality that can challenge treatment operations beyond their response capacities and have the potential to cause service disruptions. The character and concentration of dissolved organic matter (DOM), as well their shifts in response to seasonal and event-based changes in streamflow, make DOM a key driver of drinking water treatment infrastructure needs and operational challenges. As part of the forWater NSERC Network, which seeks to evaluate the impacts of pre-emptive forest management approaches on drinking water treatability in Canada, the objective of this study is to characterize differences in DOM concentrations and composition in headwater streams in different forested regions, including both undisturbed and disturbed catchments, and to evaluate the implications for drinking water treatability.
Our pan-Canadian study was conducted using existing long-term research sites, which span an area from 48.5° to 63° N between Canada’s east and west coasts, and represent six major forested ecozones. These ecozones exhibit significant differences in soils, vegetation, hydrological systems, and consequently surface water chemistry. At each research site, 2 to 6 headwater streams were sampled several times in 2019 and 2020 to characterize seasonal and spatial variations in water chemistry. Where relevant, both disturbed (harvested or burned) and undisturbed catchments were sampled.
The spatial and temporal variability in DOM characteristics, including the effects of disturbances, were evaluated, and the links between DOM characteristics and drinking water treatability were explored. Distinct regional differences in the concentrations of major ions, dissolved organic carbon and nutrients were observed. Variations in DOM composition, as assessed through UV-vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS), and asymmetric flow field-flow fractionation (AF4), were also detected. To characterize drinking water treatability, relative implications to coagulant demand, membrane fouling, and distribution system stability were evaluated. The true disinfection by-product formation potential for trihalomethanes and haloacetic acids after complete oxidation resulting from chlorination was also assessed. Collectively, the results of this study underscore the importance of better understanding and anticipating natural variations in stream DOM as well as the impacts of landscape disturbance to ensure the uninterrupted supply of safe drinking water.
How to cite: Orlova, J., Olefeldt, D., Amiri, F., Bourgeois, A., Buttle, J., Cherlet, E., Emelko, M., Floyd, B., Foster, D., Hutchins, R., Jamieson, R., Johnson, M., McSorley, H., Qi, N., Silins, U., Tank, S., Thompson, L., and Williams, C.: Regional variability in stream dissolved organic matter characteristics across forested regions of Canada, and its implications for drinking water treatability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12327, https://doi.org/10.5194/egusphere-egu2020-12327, 2020.
Forested watersheds are a major source of drinking water for more than two thirds of Canadians. However, drinking water security is increasingly pressured by the combination of higher demands resulting from population growth and industrial development and climate change-exacerbated landscape disturbances (e.g., wildfires, hurricanes). These may lead to deteriorated, more variable source water quality that can challenge treatment operations beyond their response capacities and have the potential to cause service disruptions. The character and concentration of dissolved organic matter (DOM), as well their shifts in response to seasonal and event-based changes in streamflow, make DOM a key driver of drinking water treatment infrastructure needs and operational challenges. As part of the forWater NSERC Network, which seeks to evaluate the impacts of pre-emptive forest management approaches on drinking water treatability in Canada, the objective of this study is to characterize differences in DOM concentrations and composition in headwater streams in different forested regions, including both undisturbed and disturbed catchments, and to evaluate the implications for drinking water treatability.
Our pan-Canadian study was conducted using existing long-term research sites, which span an area from 48.5° to 63° N between Canada’s east and west coasts, and represent six major forested ecozones. These ecozones exhibit significant differences in soils, vegetation, hydrological systems, and consequently surface water chemistry. At each research site, 2 to 6 headwater streams were sampled several times in 2019 and 2020 to characterize seasonal and spatial variations in water chemistry. Where relevant, both disturbed (harvested or burned) and undisturbed catchments were sampled.
The spatial and temporal variability in DOM characteristics, including the effects of disturbances, were evaluated, and the links between DOM characteristics and drinking water treatability were explored. Distinct regional differences in the concentrations of major ions, dissolved organic carbon and nutrients were observed. Variations in DOM composition, as assessed through UV-vis absorbance and excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS), and asymmetric flow field-flow fractionation (AF4), were also detected. To characterize drinking water treatability, relative implications to coagulant demand, membrane fouling, and distribution system stability were evaluated. The true disinfection by-product formation potential for trihalomethanes and haloacetic acids after complete oxidation resulting from chlorination was also assessed. Collectively, the results of this study underscore the importance of better understanding and anticipating natural variations in stream DOM as well as the impacts of landscape disturbance to ensure the uninterrupted supply of safe drinking water.
How to cite: Orlova, J., Olefeldt, D., Amiri, F., Bourgeois, A., Buttle, J., Cherlet, E., Emelko, M., Floyd, B., Foster, D., Hutchins, R., Jamieson, R., Johnson, M., McSorley, H., Qi, N., Silins, U., Tank, S., Thompson, L., and Williams, C.: Regional variability in stream dissolved organic matter characteristics across forested regions of Canada, and its implications for drinking water treatability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12327, https://doi.org/10.5194/egusphere-egu2020-12327, 2020.
EGU2020-13998 | Displays | BG4.7
Performance appraisal of bioremediation materials for polluted surface water treatmentMonika Simon and Himanshu Joshi
This study investigates the efficacy of microbial (bioremediation) materials by exploring the kinetics of the removal of pollutants in polluted surface water bodies representing real world conditions. The experiments were performed in three sets for three commercially available microbial materials viz. Enbiozyme Aqua-S (EAS), Bacta cult (BC) and NatureVel-WWB (NVWWB). All the experiments were carried out under controlled conditions of pH (7.0 ±0.5), dissolved oxygen (4±0.5 mg/l), Mix Liquor Suspended Solid (2500-3000 mg/l) and temperature (25 ±5 ºC). For bench scale studies, the laboratory reactors were used for the degradation experiments at variable hydraulic retention time (HRTs) ranges from 6-72 h along with control (without addition of biomaterial) reactor for each study.
The samples were collected from a nearby polluted tributary (Solani) of River Ganges. During remediation experiments, the raw and treated samples were characterized for Biochemical Oxygen Demand (BOD), Chemical oxygen demand (COD), Total Suspended Solid (TSS), Colour, Total & Fecal Coliform (TC and FC), Total nitrogen (TN) and Total phosphates. Adenosine triphosphate (ATP) quantification for the evaluation of microbial biomass was performed by using luminometer (ATP Analyzer), which involves the determination of intracellular (inactive ATP) and extracellular (active ATP) ATPs. Among the mentioned biomaterials, the Bacta cult (BC) was examined higher microbial viability as compared to those of Enbiozyme Aqua-S (EAS) and NatureVel-WWB (NVWWB). Furthermore, this biomaterial (BC) was also found to be lower percentage of Biomass Stress Index (BSI).
The maximum pollutant removal in Control after 72 h of treatment for BOD-77 %, COD-71%, TSS-71 %, Colour- 64 % ,TN-55 % and TP-15 % respectively while using BC increased with a percentage of 12% for BOD, 15% for COD, 15% for TSS, 25% for Colour, 10% for TN and 1% for TP. A remarkable degradation rate of organic pollutants was examined up to 24 h, 24 h and 48 h for BC, NVWWB and EAS, respectively. The nutrient (TP and TN) removal rate was observed to be 24 h for BC and NVWWB while 36 h for EAS. The study concludes that the Bacta Cult (BC) is efficient in removing the pollutants except TC and FC under optimum conditions. Moreover, the performance of biomaterial NVWWB was found to be fairly good, whereas, the efficiency of EAS was insignificant under the same controlled conditions. [HJ1] The Biomass Stress Index (BSI) was calculated to be < 30 % BC and NVWWB, whereas, it was > 50 % for EAS.
The present investigation will help in selective utilization of bioremediation materials for their application in real world and synthesis of robust and frugal bioremediation material. It will also lead to addition to the existing knowledge base on bioremediation will enable and promote further research in this area at various levels. Furthermore, ATP analysis (microbial viability analysis) might play an important role in field screening and monitoring of bio-remediation based efforts.
Keywords: Commercial bio-materials, bioremediation, pollutants, surface water, bio-preparation.
How to cite: Simon, M. and Joshi, H.: Performance appraisal of bioremediation materials for polluted surface water treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13998, https://doi.org/10.5194/egusphere-egu2020-13998, 2020.
This study investigates the efficacy of microbial (bioremediation) materials by exploring the kinetics of the removal of pollutants in polluted surface water bodies representing real world conditions. The experiments were performed in three sets for three commercially available microbial materials viz. Enbiozyme Aqua-S (EAS), Bacta cult (BC) and NatureVel-WWB (NVWWB). All the experiments were carried out under controlled conditions of pH (7.0 ±0.5), dissolved oxygen (4±0.5 mg/l), Mix Liquor Suspended Solid (2500-3000 mg/l) and temperature (25 ±5 ºC). For bench scale studies, the laboratory reactors were used for the degradation experiments at variable hydraulic retention time (HRTs) ranges from 6-72 h along with control (without addition of biomaterial) reactor for each study.
The samples were collected from a nearby polluted tributary (Solani) of River Ganges. During remediation experiments, the raw and treated samples were characterized for Biochemical Oxygen Demand (BOD), Chemical oxygen demand (COD), Total Suspended Solid (TSS), Colour, Total & Fecal Coliform (TC and FC), Total nitrogen (TN) and Total phosphates. Adenosine triphosphate (ATP) quantification for the evaluation of microbial biomass was performed by using luminometer (ATP Analyzer), which involves the determination of intracellular (inactive ATP) and extracellular (active ATP) ATPs. Among the mentioned biomaterials, the Bacta cult (BC) was examined higher microbial viability as compared to those of Enbiozyme Aqua-S (EAS) and NatureVel-WWB (NVWWB). Furthermore, this biomaterial (BC) was also found to be lower percentage of Biomass Stress Index (BSI).
The maximum pollutant removal in Control after 72 h of treatment for BOD-77 %, COD-71%, TSS-71 %, Colour- 64 % ,TN-55 % and TP-15 % respectively while using BC increased with a percentage of 12% for BOD, 15% for COD, 15% for TSS, 25% for Colour, 10% for TN and 1% for TP. A remarkable degradation rate of organic pollutants was examined up to 24 h, 24 h and 48 h for BC, NVWWB and EAS, respectively. The nutrient (TP and TN) removal rate was observed to be 24 h for BC and NVWWB while 36 h for EAS. The study concludes that the Bacta Cult (BC) is efficient in removing the pollutants except TC and FC under optimum conditions. Moreover, the performance of biomaterial NVWWB was found to be fairly good, whereas, the efficiency of EAS was insignificant under the same controlled conditions. [HJ1] The Biomass Stress Index (BSI) was calculated to be < 30 % BC and NVWWB, whereas, it was > 50 % for EAS.
The present investigation will help in selective utilization of bioremediation materials for their application in real world and synthesis of robust and frugal bioremediation material. It will also lead to addition to the existing knowledge base on bioremediation will enable and promote further research in this area at various levels. Furthermore, ATP analysis (microbial viability analysis) might play an important role in field screening and monitoring of bio-remediation based efforts.
Keywords: Commercial bio-materials, bioremediation, pollutants, surface water, bio-preparation.
How to cite: Simon, M. and Joshi, H.: Performance appraisal of bioremediation materials for polluted surface water treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13998, https://doi.org/10.5194/egusphere-egu2020-13998, 2020.
EGU2020-14159 | Displays | BG4.7
Causes and consequences of the variations in natural organic matter propertiesLenka Cermakova, Katerina Novotna, Jana Naceradska, and Martin Pivokonsky
Natural organic matter (NOM) is commonly contained in surface water bodies, including those that serve as sources for drinking water treatment plants (DWTPs). The composition of NOM may be very diverse, and can be further divided into humic substances (HS) and algal organic matter (AOM). Recently, increasing content of AOM is becoming a challenge for many DWTPs, owing to the global proliferation of cyanobacteria and algae. This phenomenon is most often attributed to climate changes and enhanced input of nutrients to aquatic environments.
We investigated the evolution of NOM character in a selected water reservoir (located in the Vysočina Region, Czech Republic), that serves as an irreplaceable drinking water source, for a period of 12 years (starting in the year 2006). Besides the quantitation of NOM, it was divided into fractions according to its character, i.e., VHA (very hydrophobic acids), SHA (slightly hydrophobic acids), CHA (charged hydrophilics), and NEU (neutral hydrophilics). Within the observed timescale, the relative proportion of VHA and SHA (that both belong to HS) decreased, while CHA and NEU (associated to AOM) significantly increased and comprised majority since 2016. Additionally, seasonal variations were also observed. This points out to the rising occurrence of phytoplankton in the reservoir, while its seasonal dynamic must not be neglected.
To elucidate the dependence of AOM properties on the species and the growth phase, we investigated the composition of AOM produced by green alga, diatom, and cyanobacteria. They were grown under laboratory conditions and harvested at different growth phases; extracellular and cellular AOM (EOM and COM, resp.) was investigated separately. The distinct AOM fractions were analysed in terms of peptide-protein and non-proteinaceous content, hydrophilicity/hydrophobicity, specific UV absorbance (SUVA), and molecular weights (MW). In general, both EOM and COM of all the species was mainly hydrophilic and had low SUVA values; however, the proportions of peptides-proteins and non-proteinaceous fraction and MW distribution greatly differed. For example, EOM and COM of the cyanobacteria (Microcystis aeruginosa and Merismopedia tenuissima) contained larger portions of peptides-proteins and had wider MW distributions than the green alga (Chlamydomonas geitleri) or the diatom (Fragilaria crotonensis). Changes were observed also along their growth phase.
Additionally, we studied coagulation behaviour of the distinct NOM fractions (i.e., HS versus AOM, and also AOM peptides-proteins and non-proteinaceous fraction separately), since coagulation is an essential treatment steps at most DWTPs supplied by surface waters. It has shown that the non-proteinaceous fraction (corresponding to NEU) is the most difficult to coagulate (max. removal efficiency of 25%), while the removal of AOM peptides-proteins (corresponding to CHA) reached up to approx. 80%. HS were removed with 65% efficiency. It is of note that substantial optimization of coagulation conditions (especially the dose of coagulant and coagulation pH) was a nuisance, and that the coagulation optimums differed between the NOM fractions.
Thus, our results imply that continuous characterization of NOM is essential for an effective control over the processes at DWTPs.
How to cite: Cermakova, L., Novotna, K., Naceradska, J., and Pivokonsky, M.: Causes and consequences of the variations in natural organic matter properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14159, https://doi.org/10.5194/egusphere-egu2020-14159, 2020.
Natural organic matter (NOM) is commonly contained in surface water bodies, including those that serve as sources for drinking water treatment plants (DWTPs). The composition of NOM may be very diverse, and can be further divided into humic substances (HS) and algal organic matter (AOM). Recently, increasing content of AOM is becoming a challenge for many DWTPs, owing to the global proliferation of cyanobacteria and algae. This phenomenon is most often attributed to climate changes and enhanced input of nutrients to aquatic environments.
We investigated the evolution of NOM character in a selected water reservoir (located in the Vysočina Region, Czech Republic), that serves as an irreplaceable drinking water source, for a period of 12 years (starting in the year 2006). Besides the quantitation of NOM, it was divided into fractions according to its character, i.e., VHA (very hydrophobic acids), SHA (slightly hydrophobic acids), CHA (charged hydrophilics), and NEU (neutral hydrophilics). Within the observed timescale, the relative proportion of VHA and SHA (that both belong to HS) decreased, while CHA and NEU (associated to AOM) significantly increased and comprised majority since 2016. Additionally, seasonal variations were also observed. This points out to the rising occurrence of phytoplankton in the reservoir, while its seasonal dynamic must not be neglected.
To elucidate the dependence of AOM properties on the species and the growth phase, we investigated the composition of AOM produced by green alga, diatom, and cyanobacteria. They were grown under laboratory conditions and harvested at different growth phases; extracellular and cellular AOM (EOM and COM, resp.) was investigated separately. The distinct AOM fractions were analysed in terms of peptide-protein and non-proteinaceous content, hydrophilicity/hydrophobicity, specific UV absorbance (SUVA), and molecular weights (MW). In general, both EOM and COM of all the species was mainly hydrophilic and had low SUVA values; however, the proportions of peptides-proteins and non-proteinaceous fraction and MW distribution greatly differed. For example, EOM and COM of the cyanobacteria (Microcystis aeruginosa and Merismopedia tenuissima) contained larger portions of peptides-proteins and had wider MW distributions than the green alga (Chlamydomonas geitleri) or the diatom (Fragilaria crotonensis). Changes were observed also along their growth phase.
Additionally, we studied coagulation behaviour of the distinct NOM fractions (i.e., HS versus AOM, and also AOM peptides-proteins and non-proteinaceous fraction separately), since coagulation is an essential treatment steps at most DWTPs supplied by surface waters. It has shown that the non-proteinaceous fraction (corresponding to NEU) is the most difficult to coagulate (max. removal efficiency of 25%), while the removal of AOM peptides-proteins (corresponding to CHA) reached up to approx. 80%. HS were removed with 65% efficiency. It is of note that substantial optimization of coagulation conditions (especially the dose of coagulant and coagulation pH) was a nuisance, and that the coagulation optimums differed between the NOM fractions.
Thus, our results imply that continuous characterization of NOM is essential for an effective control over the processes at DWTPs.
How to cite: Cermakova, L., Novotna, K., Naceradska, J., and Pivokonsky, M.: Causes and consequences of the variations in natural organic matter properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14159, https://doi.org/10.5194/egusphere-egu2020-14159, 2020.
EGU2020-17510 | Displays | BG4.7
Characterizing chromophoric dissolved organic matter in Guanting Reservoir Beijing using excitation-emission matrix fluorescence and parallel factor analysisYijuan Bai, Aizhong Ding, and Shurong Zhang
Chromophoric dissolved organic matter (CDOM) is an important optically active substance that might be used as an indicator of water quality. The study of CDOM characteristic and source identification in reservoirs is of great importance in decision- making for water quality protection.
Granting reservoir Beijing was selected as the case study, which was the drinking water source for Beijing, while it was ceased to supply water in 1997 because of water pollution. The water samples were collected from 37 sites in the reservoir. Three dimensional excitation-emission matrix (3DEEM) spectra combined with parallel factor analysis (PARAFAC) was applied to investigate the fluorescence characteristics and sources of chromophoric dissolved organic matter (CDOM) in Guanting Reservoir. The results showed that: (1) four kinds of chromophoric dissolved organic matter (CDOM) was identified, which were the tryptophan-like component (C1) autochthonously, the humic-like component (C2) in the ultraviolet zone, the tryptophan-like component (C3) caused by photolysis reaction and the humic-like component (C4) in the visible light zone. (2) The tryptophan-like was the dominant fraction of CDOM in Guanting Reservoir. For the four component, C1 and C3 belong to humic-like; C2 and C4 belong to protein-like. The humic-like increases with the river flowing into the reservoir. the fluorescence intensity of humic-like and protein-like both was the highest in July. (3) the humic-like C2 and C4 were significantly correlated which might indicate they originated from the same source, while the protein-like C1 and C3 didn’t show the correlation that might indicate their source is different. (4)Fluorescence index(FI), biological index (BIX) and humification index (HIX) were also used to identify the source of different components. The FI ranged from 1.8 to 1.95 indicated that CDOM principally originated from microbially derived fulvic acids. The BIX ranged from 0.9 to 1.1 indicated that CDOM was strong autochthonous component and from biological or aquatic bacterial origin. The HIX ranged 1.3 to 3.5 indicated that CDOM was weak humic characteristic and important recent autochthonous component.
How to cite: Bai, Y., Ding, A., and Zhang, S.: Characterizing chromophoric dissolved organic matter in Guanting Reservoir Beijing using excitation-emission matrix fluorescence and parallel factor analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17510, https://doi.org/10.5194/egusphere-egu2020-17510, 2020.
Chromophoric dissolved organic matter (CDOM) is an important optically active substance that might be used as an indicator of water quality. The study of CDOM characteristic and source identification in reservoirs is of great importance in decision- making for water quality protection.
Granting reservoir Beijing was selected as the case study, which was the drinking water source for Beijing, while it was ceased to supply water in 1997 because of water pollution. The water samples were collected from 37 sites in the reservoir. Three dimensional excitation-emission matrix (3DEEM) spectra combined with parallel factor analysis (PARAFAC) was applied to investigate the fluorescence characteristics and sources of chromophoric dissolved organic matter (CDOM) in Guanting Reservoir. The results showed that: (1) four kinds of chromophoric dissolved organic matter (CDOM) was identified, which were the tryptophan-like component (C1) autochthonously, the humic-like component (C2) in the ultraviolet zone, the tryptophan-like component (C3) caused by photolysis reaction and the humic-like component (C4) in the visible light zone. (2) The tryptophan-like was the dominant fraction of CDOM in Guanting Reservoir. For the four component, C1 and C3 belong to humic-like; C2 and C4 belong to protein-like. The humic-like increases with the river flowing into the reservoir. the fluorescence intensity of humic-like and protein-like both was the highest in July. (3) the humic-like C2 and C4 were significantly correlated which might indicate they originated from the same source, while the protein-like C1 and C3 didn’t show the correlation that might indicate their source is different. (4)Fluorescence index(FI), biological index (BIX) and humification index (HIX) were also used to identify the source of different components. The FI ranged from 1.8 to 1.95 indicated that CDOM principally originated from microbially derived fulvic acids. The BIX ranged from 0.9 to 1.1 indicated that CDOM was strong autochthonous component and from biological or aquatic bacterial origin. The HIX ranged 1.3 to 3.5 indicated that CDOM was weak humic characteristic and important recent autochthonous component.
How to cite: Bai, Y., Ding, A., and Zhang, S.: Characterizing chromophoric dissolved organic matter in Guanting Reservoir Beijing using excitation-emission matrix fluorescence and parallel factor analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17510, https://doi.org/10.5194/egusphere-egu2020-17510, 2020.
EGU2020-18505 | Displays | BG4.7
Modeling annual diffuse phosphorus concentrations in Danish mini-catchmentsHenrik Tornbjerg, Jørgen Windolf, Hans Thodsen, Ane Kjeldgaard, Søren E Larsen, and Brian Kronvang
Intensive monitoring data from the Danish National Monitoring programme (NOVANA) from 24 smaller catchments (mean: 14 km2) was used in a two layer cross-validation to establish a model for the annual diffuse phosphorus (P) flow-weighted concentration in Danish streams. A total of 196 monitoring years with data from automatic sampling (ISCO) of water from the 24 streams were used as a training dataset. Data in the training dataset covers the period 1994-2002.
Moreover, another dataset consisting of 108 agricultural mini-catchments with discrete water samples covering the period 1990-2017 was used as a control in the eight different georegions of Denmark. A total of four different models was established three models based on the intensive dataset and one model based on the larger dataset with discrete water sampling.
The best model established included eight explanatory parameters and explained 53 % of the variation in the annual flow-weighted total P concentrations in the training dataset. A validation of the four different models established showed that the best model has to be bias-corrected in some of the georegions. The result of the validation shows that the models generally overestimate the total P concentrations. An overestimation of around 10-20% was to be expected as intensive automatic water sampling in streams has shown that the flow-weighted concentration of total P obtained from discrete sampling (monthly or fortnightly) is normally underestimated.
The validations of the three models based on intensive dataset showed an R-square between 0.08 and 0.12. The model based on the larger data with discrete samples had an R-square (0.29).
How to cite: Tornbjerg, H., Windolf, J., Thodsen, H., Kjeldgaard, A., Larsen, S. E., and Kronvang, B.: Modeling annual diffuse phosphorus concentrations in Danish mini-catchments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18505, https://doi.org/10.5194/egusphere-egu2020-18505, 2020.
Intensive monitoring data from the Danish National Monitoring programme (NOVANA) from 24 smaller catchments (mean: 14 km2) was used in a two layer cross-validation to establish a model for the annual diffuse phosphorus (P) flow-weighted concentration in Danish streams. A total of 196 monitoring years with data from automatic sampling (ISCO) of water from the 24 streams were used as a training dataset. Data in the training dataset covers the period 1994-2002.
Moreover, another dataset consisting of 108 agricultural mini-catchments with discrete water samples covering the period 1990-2017 was used as a control in the eight different georegions of Denmark. A total of four different models was established three models based on the intensive dataset and one model based on the larger dataset with discrete water sampling.
The best model established included eight explanatory parameters and explained 53 % of the variation in the annual flow-weighted total P concentrations in the training dataset. A validation of the four different models established showed that the best model has to be bias-corrected in some of the georegions. The result of the validation shows that the models generally overestimate the total P concentrations. An overestimation of around 10-20% was to be expected as intensive automatic water sampling in streams has shown that the flow-weighted concentration of total P obtained from discrete sampling (monthly or fortnightly) is normally underestimated.
The validations of the three models based on intensive dataset showed an R-square between 0.08 and 0.12. The model based on the larger data with discrete samples had an R-square (0.29).
How to cite: Tornbjerg, H., Windolf, J., Thodsen, H., Kjeldgaard, A., Larsen, S. E., and Kronvang, B.: Modeling annual diffuse phosphorus concentrations in Danish mini-catchments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18505, https://doi.org/10.5194/egusphere-egu2020-18505, 2020.
EGU2020-22197 | Displays | BG4.7
Dynamic carbon-oxygen interactions over minute to annual time scales in an experimentally-oxygenated reservoirCayelan Carey, Alexandria Hounshell, Dexter Howard, Abigail Lewis, Ryan McClure, Nicholas Hammond, Mary Lofton, Paul Hanson, John Little, Madeline Schreiber, and Francois Birgand
Oxygen dynamics in lakes and reservoirs are changing worldwide due to human activities. Changing hypolimnetic oxygen conditions will substantially alter carbon cycling in aquatic ecosystems, as oxygen dynamics near the sediment-water interface regulate whether carbon inputs will be buried, respired as carbon dioxide, or respired as methane. At the decadal scale, warming temperatures and increased nutrient loads are increasing the prevalence and duration of anoxia. Conversely, at the daily scale, mixing due to more powerful storms may periodically increase hypolimnetic oxygen availability. It remains unclear, however, how carbon quantity and quality will respond to these changes in oxygen at different time scales. Our team used unprecedented whole-ecosystem manipulations of hypolimnetic oxygen concentrations in a eutrophic reservoir to identify how changes in oxygen at different time scales (i.e., weeks to months) alter freshwater carbon processing, burial, and greenhouse gas emissions. Against the backdrop of multiple-week shifts between oxic and anoxic conditions in the bottom waters of the experimental reservoir over multiple years, we observed that the dominant scale of variability in dissolved organic matter (DOM) concentrations was predominantly at the daily scale in the summer and monthly scale in the winter. At the monthly time scale, dissolved oxygen concentrations controlled DOM; at the daily time scale, water temperature and photooxidation controlled DOM. Modeling and field results show that intermittent week-long oxic conditions mineralized “legacy” carbon that had accumulated over years of sedimentation and changed the dominant terminal electron acceptor pathways used for mineralization on the daily scale. Building off of this work, future oxygenation experiments will examine the role of alternate electron acceptors in carbon release from sediments on the daily scale, the impact of carbon quality on carbon processing under varying oxygen conditions at the daily to week scale, and the effects of future oxygen scenarios on carbon cycling in lakes and reservoirs around the world on the annual to decadal scale.
How to cite: Carey, C., Hounshell, A., Howard, D., Lewis, A., McClure, R., Hammond, N., Lofton, M., Hanson, P., Little, J., Schreiber, M., and Birgand, F.: Dynamic carbon-oxygen interactions over minute to annual time scales in an experimentally-oxygenated reservoir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22197, https://doi.org/10.5194/egusphere-egu2020-22197, 2020.
Oxygen dynamics in lakes and reservoirs are changing worldwide due to human activities. Changing hypolimnetic oxygen conditions will substantially alter carbon cycling in aquatic ecosystems, as oxygen dynamics near the sediment-water interface regulate whether carbon inputs will be buried, respired as carbon dioxide, or respired as methane. At the decadal scale, warming temperatures and increased nutrient loads are increasing the prevalence and duration of anoxia. Conversely, at the daily scale, mixing due to more powerful storms may periodically increase hypolimnetic oxygen availability. It remains unclear, however, how carbon quantity and quality will respond to these changes in oxygen at different time scales. Our team used unprecedented whole-ecosystem manipulations of hypolimnetic oxygen concentrations in a eutrophic reservoir to identify how changes in oxygen at different time scales (i.e., weeks to months) alter freshwater carbon processing, burial, and greenhouse gas emissions. Against the backdrop of multiple-week shifts between oxic and anoxic conditions in the bottom waters of the experimental reservoir over multiple years, we observed that the dominant scale of variability in dissolved organic matter (DOM) concentrations was predominantly at the daily scale in the summer and monthly scale in the winter. At the monthly time scale, dissolved oxygen concentrations controlled DOM; at the daily time scale, water temperature and photooxidation controlled DOM. Modeling and field results show that intermittent week-long oxic conditions mineralized “legacy” carbon that had accumulated over years of sedimentation and changed the dominant terminal electron acceptor pathways used for mineralization on the daily scale. Building off of this work, future oxygenation experiments will examine the role of alternate electron acceptors in carbon release from sediments on the daily scale, the impact of carbon quality on carbon processing under varying oxygen conditions at the daily to week scale, and the effects of future oxygen scenarios on carbon cycling in lakes and reservoirs around the world on the annual to decadal scale.
How to cite: Carey, C., Hounshell, A., Howard, D., Lewis, A., McClure, R., Hammond, N., Lofton, M., Hanson, P., Little, J., Schreiber, M., and Birgand, F.: Dynamic carbon-oxygen interactions over minute to annual time scales in an experimentally-oxygenated reservoir, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22197, https://doi.org/10.5194/egusphere-egu2020-22197, 2020.
EGU2020-5941 | Displays | BG4.7
DOC trend in Arctic lakes as a response to air pollution reduction by Kola North Smelter, Russia (1980-2018): possible mechanisms of transformation of organic substancesTatyana Moiseenko and Marina Dinu
The phenomenon of increasing DOC levels in water systems over the last decades is confirmed by numerous studies (Driscoll et al., 2003; Stoddard et al., 1999; Skjelkvale et al., 2001a; Montein et al., 2007; Evans et al., 2008; Clark et al., 2013). The increasing of organic matter content in lake waters is being also observed for the totality of lakes in the Kola North, more markedly in forest and water-logged subregions. This conforms to the data reported by Skjelkvale et al. (2001a) which demonstrates the significant increase of DOC. Montein et al. (2007) explain the increased DOC levels by reduction in strong acid flow and return of water chemistry to its natural parameters of specifying organic matter concentrations in water.
Clark et al. (2013) demonstrated that natural humus substances are capable of producing strong organic acids and increase water acidity. It is known that DOC level has a direct relationship with water color. In analyzing long-term study data with regard to the group of 75 lakes (obtained during 1990-2010) DOC is increased year-over-year, but the color decreased.
More evident dependence the increasing the content of DOC on reduced color from year to year (Fig.). The following chemical processes developing in water can explain this phenomenon.
Figure. The correlation between the change of DOC (ΔDOC) and color (ΔColor) - file
The water color is predominantly determined by large molecules of humus acids which molecular weight >1000 Da. Macromolecular organic substances of humus type can be dissociated in water with formation of a free proton, as well as enter into reactions of decomposition (hydrolysis) and disproportionation with formation of low-molecular weight fragments. Its fragments also are dissociated of proton (see the diagram below). The above processes may be catalyzed by non-organic strong acids supplied from anthropogenic and natural sources. The diagram of the organic substances destruction of humus origin is given below, where Ri means non-symmetrical fragments of a natural polymer, ХiH - functional groups of organic substances of humus origin, and n - number of protons.
When strong acids get into a water environment humus acids are degraded into fractions. It could be supposed that the organic matter structure undergoes changes in natural waters, as the fraction of high-molecular weight humus acids decrease. As a consequence of interaction between humus substances and protons the humic acids precipitate to form bottom sediments, whereas fulvic acids remain in water. Fulvic acids are characterized by lower molecular weights (from 500 to 2000 Da) and exert an insignificant effect on the water color. This phenomenon is well proved in a study published by Clark et al. (2013). However, to define more exactly this phenomenon, further experimental work is required.
Financing RSF 18-17-00184
How to cite: Moiseenko, T. and Dinu, M.: DOC trend in Arctic lakes as a response to air pollution reduction by Kola North Smelter, Russia (1980-2018): possible mechanisms of transformation of organic substances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5941, https://doi.org/10.5194/egusphere-egu2020-5941, 2020.
The phenomenon of increasing DOC levels in water systems over the last decades is confirmed by numerous studies (Driscoll et al., 2003; Stoddard et al., 1999; Skjelkvale et al., 2001a; Montein et al., 2007; Evans et al., 2008; Clark et al., 2013). The increasing of organic matter content in lake waters is being also observed for the totality of lakes in the Kola North, more markedly in forest and water-logged subregions. This conforms to the data reported by Skjelkvale et al. (2001a) which demonstrates the significant increase of DOC. Montein et al. (2007) explain the increased DOC levels by reduction in strong acid flow and return of water chemistry to its natural parameters of specifying organic matter concentrations in water.
Clark et al. (2013) demonstrated that natural humus substances are capable of producing strong organic acids and increase water acidity. It is known that DOC level has a direct relationship with water color. In analyzing long-term study data with regard to the group of 75 lakes (obtained during 1990-2010) DOC is increased year-over-year, but the color decreased.
More evident dependence the increasing the content of DOC on reduced color from year to year (Fig.). The following chemical processes developing in water can explain this phenomenon.
Figure. The correlation between the change of DOC (ΔDOC) and color (ΔColor) - file
The water color is predominantly determined by large molecules of humus acids which molecular weight >1000 Da. Macromolecular organic substances of humus type can be dissociated in water with formation of a free proton, as well as enter into reactions of decomposition (hydrolysis) and disproportionation with formation of low-molecular weight fragments. Its fragments also are dissociated of proton (see the diagram below). The above processes may be catalyzed by non-organic strong acids supplied from anthropogenic and natural sources. The diagram of the organic substances destruction of humus origin is given below, where Ri means non-symmetrical fragments of a natural polymer, ХiH - functional groups of organic substances of humus origin, and n - number of protons.
When strong acids get into a water environment humus acids are degraded into fractions. It could be supposed that the organic matter structure undergoes changes in natural waters, as the fraction of high-molecular weight humus acids decrease. As a consequence of interaction between humus substances and protons the humic acids precipitate to form bottom sediments, whereas fulvic acids remain in water. Fulvic acids are characterized by lower molecular weights (from 500 to 2000 Da) and exert an insignificant effect on the water color. This phenomenon is well proved in a study published by Clark et al. (2013). However, to define more exactly this phenomenon, further experimental work is required.
Financing RSF 18-17-00184
How to cite: Moiseenko, T. and Dinu, M.: DOC trend in Arctic lakes as a response to air pollution reduction by Kola North Smelter, Russia (1980-2018): possible mechanisms of transformation of organic substances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5941, https://doi.org/10.5194/egusphere-egu2020-5941, 2020.
EGU2020-19822 | Displays | BG4.7
Use of FT ICR MS to characterize seasonal and spatial variability of dissolved organic matter in a small forested catchmentMaria Paula da Silva, Thorsten Reemtsma, Katharina Blaurock, Burkhard Beudert, and Oliver Lechtenfeld
Inland water process large amounts of dissolved organic matter (DOM), representing an important component in the global carbon cycle. Locally, DOM has an important ecological and biogeochemical role that may vary according to its quality (e.g. composition). Land use, season and hydrologic regime are some factors that possibly will influence the changes in DOM composition. State-of-the art technique to study the molecular chemical composition of DOM is Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS). The analysis of changes in DOM quality by FT ICR MS allows conclusions to be drawn about the sources and mobilization processes of the organic material. In this study we investigate the changes in DOM quality over a period of 1.5 year in a small forested catchment composed of two different zones: wetland (zone A) and steep slope areas (zone B). The catchment is located in the National Park Bayerischer Wald in Southern Germany. This offers a natural environment unaffected by direct anthropogenic influence. Therefore, only indirect anthropogenic effects and natural vegetation disturbances and possible interactions between them can affect DOM dynamics. Monthly samples were taken along the rivers (1st and 2nd order) from September 2018-November 2018 and from April 2019-November 2019 with a total of 124 samples. The samples were analyzed by FT ICR MS, total organic carbon analyzer and UV/VIS spectrometer. Our results showed that the concentration of dissolved organic carbon between the sampling points is similar, but differs over the year at normal discharge conditions. FT ICR MS analysis indicated that the main molecular composition of DOM was CHO (38-47%), with the majority of the composition consisting of highly unsaturated compounds. Conversely, samples in zone A had more aliphatic compounds and nitrogen formulas than the ones sampled in zone B during the year. UV/VIS data also indicated that DOM is more aromatic in the zone B. The results suggest that DOM coming mainly from ground water is the dominant pool of organic matter in the wetland during the year, while in the steep zone a contribution from fresh-plant derived DOM is expected. We also found predominantly low averaged molecular weight DOM in summer in the catchment, suggesting that biological activity plays an important role during this season in DOM quality. We conclude that understanding the dynamic and mobilization mechanisms of DOM in catchments with low human impact are important for the conceptual understanding of natural DOM regulation mechanisms.
How to cite: da Silva, M. P., Reemtsma, T., Blaurock, K., Beudert, B., and Lechtenfeld, O.: Use of FT ICR MS to characterize seasonal and spatial variability of dissolved organic matter in a small forested catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19822, https://doi.org/10.5194/egusphere-egu2020-19822, 2020.
Inland water process large amounts of dissolved organic matter (DOM), representing an important component in the global carbon cycle. Locally, DOM has an important ecological and biogeochemical role that may vary according to its quality (e.g. composition). Land use, season and hydrologic regime are some factors that possibly will influence the changes in DOM composition. State-of-the art technique to study the molecular chemical composition of DOM is Fourier transform ion cyclotron resonance mass spectrometry (FT ICR MS). The analysis of changes in DOM quality by FT ICR MS allows conclusions to be drawn about the sources and mobilization processes of the organic material. In this study we investigate the changes in DOM quality over a period of 1.5 year in a small forested catchment composed of two different zones: wetland (zone A) and steep slope areas (zone B). The catchment is located in the National Park Bayerischer Wald in Southern Germany. This offers a natural environment unaffected by direct anthropogenic influence. Therefore, only indirect anthropogenic effects and natural vegetation disturbances and possible interactions between them can affect DOM dynamics. Monthly samples were taken along the rivers (1st and 2nd order) from September 2018-November 2018 and from April 2019-November 2019 with a total of 124 samples. The samples were analyzed by FT ICR MS, total organic carbon analyzer and UV/VIS spectrometer. Our results showed that the concentration of dissolved organic carbon between the sampling points is similar, but differs over the year at normal discharge conditions. FT ICR MS analysis indicated that the main molecular composition of DOM was CHO (38-47%), with the majority of the composition consisting of highly unsaturated compounds. Conversely, samples in zone A had more aliphatic compounds and nitrogen formulas than the ones sampled in zone B during the year. UV/VIS data also indicated that DOM is more aromatic in the zone B. The results suggest that DOM coming mainly from ground water is the dominant pool of organic matter in the wetland during the year, while in the steep zone a contribution from fresh-plant derived DOM is expected. We also found predominantly low averaged molecular weight DOM in summer in the catchment, suggesting that biological activity plays an important role during this season in DOM quality. We conclude that understanding the dynamic and mobilization mechanisms of DOM in catchments with low human impact are important for the conceptual understanding of natural DOM regulation mechanisms.
How to cite: da Silva, M. P., Reemtsma, T., Blaurock, K., Beudert, B., and Lechtenfeld, O.: Use of FT ICR MS to characterize seasonal and spatial variability of dissolved organic matter in a small forested catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19822, https://doi.org/10.5194/egusphere-egu2020-19822, 2020.
EGU2020-9515 | Displays | BG4.7
Dynamics of annual nutrinets and bloom-forming cyanobacteria, revealed by daily observation in a hyper-eutrophic lakeMengyuan Zhu, Guangwei Zhu, Hans Paerl, Wei Zhang, and Hai Xu
Daily monitoring over a period of one year in Lake Taihu, China, included chlorophyll a (Chl-a) and nutrient measurements, determining the taxonomic composition of the phytoplankton community and various water column physicochemical parameters. Chl-a and nutrient concentrations showed strong circadian variations ‒ Chl-a rised during daylight hours, while ammonium and phosphate rised at night. Chl-a concentrations also showed strong seasonal variations, with one annual peak in spring and another from summer to autumn, dominated by Dolichospermum spp. and Microcystis spp. respectively. Temperature appeared to exert the most important effect in this species succession. A nutrient‒Chl-a balance calculation indicated that both nitrogen and phosphorus in the water column could be limiting factors for phytoplankton growth during bloom periods. Over two thirds of particulate nutrients was attributed to phytoplankton biomass during blooms. Daily (or weekly) monitoring data provided more precise description of water quality, capturing short-term peaks in phytoplankton biomass, and reduced risks of under- or overestimating trophic levels in lakes, which always happened when using monthly monitoring data.
How to cite: Zhu, M., Zhu, G., Paerl, H., Zhang, W., and Xu, H.: Dynamics of annual nutrinets and bloom-forming cyanobacteria, revealed by daily observation in a hyper-eutrophic lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9515, https://doi.org/10.5194/egusphere-egu2020-9515, 2020.
Daily monitoring over a period of one year in Lake Taihu, China, included chlorophyll a (Chl-a) and nutrient measurements, determining the taxonomic composition of the phytoplankton community and various water column physicochemical parameters. Chl-a and nutrient concentrations showed strong circadian variations ‒ Chl-a rised during daylight hours, while ammonium and phosphate rised at night. Chl-a concentrations also showed strong seasonal variations, with one annual peak in spring and another from summer to autumn, dominated by Dolichospermum spp. and Microcystis spp. respectively. Temperature appeared to exert the most important effect in this species succession. A nutrient‒Chl-a balance calculation indicated that both nitrogen and phosphorus in the water column could be limiting factors for phytoplankton growth during bloom periods. Over two thirds of particulate nutrients was attributed to phytoplankton biomass during blooms. Daily (or weekly) monitoring data provided more precise description of water quality, capturing short-term peaks in phytoplankton biomass, and reduced risks of under- or overestimating trophic levels in lakes, which always happened when using monthly monitoring data.
How to cite: Zhu, M., Zhu, G., Paerl, H., Zhang, W., and Xu, H.: Dynamics of annual nutrinets and bloom-forming cyanobacteria, revealed by daily observation in a hyper-eutrophic lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9515, https://doi.org/10.5194/egusphere-egu2020-9515, 2020.
EGU2020-18872 | Displays | BG4.7
Stability of fluorescence spectra of various water systemsOttavia Zoboli, Sandra Peer, Ernis Saracevic, Joseph Tauber, Anastassia Vybornova, Matthias Zessner, and Jörg Krampe
During the last years fluorescence spectroscopy was developed to be a fast and inexpensive way for water quality measurement in various water systems to characterize natural and human influenced water bodies regarding organic matter and contamination. Analyzing samples in a timely manner is crucial to gain valid and reproducible excitation emission matrix (EEM) data, but often difficult, specifically in transnational projects. In this project the shift of fluorescence spectra and other parameters over time is evaluated. Ten different ground-, creek- and river water, as well as wastewater treatment plant effluent samples were stored for more than 20 days. EEM data, as well as high pressure liquid chromatography (HPLC) spectra data and chemical standard parameters like pH, ORP (oxidation/reduction potential), TOC, NH4, NO3, NO2 and PO4 were measured daily and correlated. With this dataset the sample and fluorescence spectra stability were evaluated. Different mathematical and statistical methods, including Parallel Factor Analysis (PARAFAC) as well as novel statistical approaches, were applied for assessment of EEM and HPLC spectra. This further enables the direct comparison of the included analysis methods.
How to cite: Zoboli, O., Peer, S., Saracevic, E., Tauber, J., Vybornova, A., Zessner, M., and Krampe, J.: Stability of fluorescence spectra of various water systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18872, https://doi.org/10.5194/egusphere-egu2020-18872, 2020.
During the last years fluorescence spectroscopy was developed to be a fast and inexpensive way for water quality measurement in various water systems to characterize natural and human influenced water bodies regarding organic matter and contamination. Analyzing samples in a timely manner is crucial to gain valid and reproducible excitation emission matrix (EEM) data, but often difficult, specifically in transnational projects. In this project the shift of fluorescence spectra and other parameters over time is evaluated. Ten different ground-, creek- and river water, as well as wastewater treatment plant effluent samples were stored for more than 20 days. EEM data, as well as high pressure liquid chromatography (HPLC) spectra data and chemical standard parameters like pH, ORP (oxidation/reduction potential), TOC, NH4, NO3, NO2 and PO4 were measured daily and correlated. With this dataset the sample and fluorescence spectra stability were evaluated. Different mathematical and statistical methods, including Parallel Factor Analysis (PARAFAC) as well as novel statistical approaches, were applied for assessment of EEM and HPLC spectra. This further enables the direct comparison of the included analysis methods.
How to cite: Zoboli, O., Peer, S., Saracevic, E., Tauber, J., Vybornova, A., Zessner, M., and Krampe, J.: Stability of fluorescence spectra of various water systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18872, https://doi.org/10.5194/egusphere-egu2020-18872, 2020.
EGU2020-7427 | Displays | BG4.7
Specific hydrocarbon molecular markers in bottom sediments of Lake Baikal discharge zonesInna Morgunova, Alexey Krylov, Petr Semenov, Tamara Zemskaya, Oleg Khlystov, Vera Petrova, Galina Batova, Anna Kursheva, and Ivan Litvinenko
Study of the molecular composition of the dispersed organic matter (OM) in bottom sediments of Lake Baikal was conducted (supported by RSF #19-17-00226). Sediments (11 gravity cores - 28 samples) were collected during research expeditions of the R/V “G.U. Vereschagin” (LIN SB RAS, Irkutsk) in 2016-2018.
Variations in composition and ratios of aliphatic and aromatic components reflect changes of OM sources. Most n-alkane profiles show the distinguishable predominance of terrigenous components C27-C31. The highest biodegradation degree and increased content of isoprenoids is detected near the Gorevoy cliff where the active oil discharge was observed. Biogenic hopanes (ββ-hopanes and hopenes) predominate in most samples and diagenetic type of distribution is identified only in sediments with oil inclusions. Steranes are the minor components with ethylcholestanes as the main peaks attesting to the input of land plants. Increased values of perylene and phenanthrene in polycyclic aromatic HCs composition indicate the mixed biogenic-petrogenic nature of OM of the studied Lake Baikal sediments, while the oily samples contain only trace amounts of perylene.
The branched 2,7-dimethyl alkanes (m/z 127) have been identified in mudstone samples from the Vendian Marna Formation from the Sayan-adjacent Biryusa area and in Permian and Upper Carboniferous coal-bearing rocks from superdeep well SV-27 (Vilui syneclise) [1]. Their precursors most likely are the analogues of branched methylenated acids detected in lipids of modern bacteria (9,10-methylene hexadecane, 9,10-methylene octadecane, and 11,12-methylene octadecane acids). Decarboxylation of the methylenated acids branched at the second and seventh carbon atoms during diagenesis and catagenesis should have resulted in 2,7-dimethyl alkanes that were detected in all immersed sediments of the southern, central and northern parts of Lake Baikal.
Trace amounts of the other poorly studied group of compounds – monoaromatic steroids (MAS) were identified in bottom sediments near the mud volcano Kedr in the southern part of the lake. These structures can be formed during diagenetic transformations of sediments at the contacts of OM with clays (catalyzers) together with the formation of regular steranes and diasteranes (C27-C29). They have been previously detected in apocatagenetic rocks of the East Siberian sedimentary basin (ultradeep hole SV-27 from the Middle Vilyui area of the Vilyui syneclise) [2]. The absence of the main fragmental ion m/z 253 in the analyzed samples points to the migration of methyl alternate from C-17 to C-23 alkyl-chain position and agrees with distribution of the similar structures (m/z 281, 309, 366) in rocks of the hole SV-27. The detected 17-desmethyl-23-methylmonoaromatic steroids appear and exist at high temperatures and pressures and are very thermodynamically stable.
Thus, the input of the OM of catagenetic maturity degree to the bottom sediments of Lake Baikal is likely associated with the deep fluid migration and mud volcanic breccia uplift to the surface.
References
[1] Kashirtsev V.A. et al., 2009. New homologous series of biomarker molecules from Vendian deposits of the Sayan-adjacent Biryusa area. Russian Geology and Geophysics 50, 541–545.
[2] Kashirtsev V.A. et al., 2016. New monoaromatic steroids in organic matter of the apocatagenesis zone. Doklady Earth Sciences 469, 815–818.
How to cite: Morgunova, I., Krylov, A., Semenov, P., Zemskaya, T., Khlystov, O., Petrova, V., Batova, G., Kursheva, A., and Litvinenko, I.: Specific hydrocarbon molecular markers in bottom sediments of Lake Baikal discharge zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7427, https://doi.org/10.5194/egusphere-egu2020-7427, 2020.
Study of the molecular composition of the dispersed organic matter (OM) in bottom sediments of Lake Baikal was conducted (supported by RSF #19-17-00226). Sediments (11 gravity cores - 28 samples) were collected during research expeditions of the R/V “G.U. Vereschagin” (LIN SB RAS, Irkutsk) in 2016-2018.
Variations in composition and ratios of aliphatic and aromatic components reflect changes of OM sources. Most n-alkane profiles show the distinguishable predominance of terrigenous components C27-C31. The highest biodegradation degree and increased content of isoprenoids is detected near the Gorevoy cliff where the active oil discharge was observed. Biogenic hopanes (ββ-hopanes and hopenes) predominate in most samples and diagenetic type of distribution is identified only in sediments with oil inclusions. Steranes are the minor components with ethylcholestanes as the main peaks attesting to the input of land plants. Increased values of perylene and phenanthrene in polycyclic aromatic HCs composition indicate the mixed biogenic-petrogenic nature of OM of the studied Lake Baikal sediments, while the oily samples contain only trace amounts of perylene.
The branched 2,7-dimethyl alkanes (m/z 127) have been identified in mudstone samples from the Vendian Marna Formation from the Sayan-adjacent Biryusa area and in Permian and Upper Carboniferous coal-bearing rocks from superdeep well SV-27 (Vilui syneclise) [1]. Their precursors most likely are the analogues of branched methylenated acids detected in lipids of modern bacteria (9,10-methylene hexadecane, 9,10-methylene octadecane, and 11,12-methylene octadecane acids). Decarboxylation of the methylenated acids branched at the second and seventh carbon atoms during diagenesis and catagenesis should have resulted in 2,7-dimethyl alkanes that were detected in all immersed sediments of the southern, central and northern parts of Lake Baikal.
Trace amounts of the other poorly studied group of compounds – monoaromatic steroids (MAS) were identified in bottom sediments near the mud volcano Kedr in the southern part of the lake. These structures can be formed during diagenetic transformations of sediments at the contacts of OM with clays (catalyzers) together with the formation of regular steranes and diasteranes (C27-C29). They have been previously detected in apocatagenetic rocks of the East Siberian sedimentary basin (ultradeep hole SV-27 from the Middle Vilyui area of the Vilyui syneclise) [2]. The absence of the main fragmental ion m/z 253 in the analyzed samples points to the migration of methyl alternate from C-17 to C-23 alkyl-chain position and agrees with distribution of the similar structures (m/z 281, 309, 366) in rocks of the hole SV-27. The detected 17-desmethyl-23-methylmonoaromatic steroids appear and exist at high temperatures and pressures and are very thermodynamically stable.
Thus, the input of the OM of catagenetic maturity degree to the bottom sediments of Lake Baikal is likely associated with the deep fluid migration and mud volcanic breccia uplift to the surface.
References
[1] Kashirtsev V.A. et al., 2009. New homologous series of biomarker molecules from Vendian deposits of the Sayan-adjacent Biryusa area. Russian Geology and Geophysics 50, 541–545.
[2] Kashirtsev V.A. et al., 2016. New monoaromatic steroids in organic matter of the apocatagenesis zone. Doklady Earth Sciences 469, 815–818.
How to cite: Morgunova, I., Krylov, A., Semenov, P., Zemskaya, T., Khlystov, O., Petrova, V., Batova, G., Kursheva, A., and Litvinenko, I.: Specific hydrocarbon molecular markers in bottom sediments of Lake Baikal discharge zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7427, https://doi.org/10.5194/egusphere-egu2020-7427, 2020.
EGU2020-9939 | Displays | BG4.7
Tracing the sources of organic matter in the Seine Estuary (NW France) using bulk and molecular analysesArnaud Huguet, Alexandre Thibault, Christelle Anquetil, and Sylvie Derenne
Estuaries are key ecosystems from economical and ecological points of view. This is especially true for the Seine Estuary, its watershed representing 12% of the France area (78 600 km2) in which 30% of the French population, 40% of the industry and 25% of the agriculture are concentrated. Estuaries transfer material from the continent to the oceans, including organic matter (OM), for which they are highly reactive zones. Elucidating the estuarine OM dynamics remains challenging, due to (i) the high variability of environmental parameters, such as salinity, light penetration and tidal range, (ii) the intrinsic heterogeneity and molecular diversity of OM and (iii) the permanently changing nature of this material. Estuarine OM can originate from various sources (transported from rivers or coastal ocean or be produced within the estuary itself) with a different composition, and thus a different behaviour in the ecosystem.
The aim of this work was to better constrain the sources of OM in the Seine Estuary. In order to take into account the spatiotemporal variability of OM characteristics, water and sediment samples (10 cm-long cores) were collected all along the estuary, i.e. in the upstream, maximum turbidity and downstream zones, during 5 campaigns with different tidal intensities and river flows. Elemental (C, N) and isotopic composition (δ13C and δ15N) as well as lipid biomarkers were analyzed in both particulate (POM) and sediment OM. This allows comparing the bulk and molecular composition as well as sources of OM in the particulate and sediment pools.
Several lipid biomarkers (n-alkanes, fatty acids, n-alcohols, sterols/stanols, GDGTs) were investigated in this study, as they provide complementary information of the sources and degradation degree of OM. Lipids from terrigenous sources were predominant in all samples, even though the concentrations of these compounds as well as those of anthropogenic origin were shown to decrease towards the mouth of the Seine Estuary. In addition, significant differences in bulk and molecular composition were observed between the particulate and sediment pool, especially with a higher abundance of aquatic (i.e. algal/bacterial) vs. terrigenous lipids in POM than sediment OM. Last, bulk and molecular analyses both showed the strong seasonal and spatial variability (along the estuary and with depth) of OM composition in the water column and sediment, which has to be taken into account when investigating estuarine OM dynamics.
How to cite: Huguet, A., Thibault, A., Anquetil, C., and Derenne, S.: Tracing the sources of organic matter in the Seine Estuary (NW France) using bulk and molecular analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9939, https://doi.org/10.5194/egusphere-egu2020-9939, 2020.
Estuaries are key ecosystems from economical and ecological points of view. This is especially true for the Seine Estuary, its watershed representing 12% of the France area (78 600 km2) in which 30% of the French population, 40% of the industry and 25% of the agriculture are concentrated. Estuaries transfer material from the continent to the oceans, including organic matter (OM), for which they are highly reactive zones. Elucidating the estuarine OM dynamics remains challenging, due to (i) the high variability of environmental parameters, such as salinity, light penetration and tidal range, (ii) the intrinsic heterogeneity and molecular diversity of OM and (iii) the permanently changing nature of this material. Estuarine OM can originate from various sources (transported from rivers or coastal ocean or be produced within the estuary itself) with a different composition, and thus a different behaviour in the ecosystem.
The aim of this work was to better constrain the sources of OM in the Seine Estuary. In order to take into account the spatiotemporal variability of OM characteristics, water and sediment samples (10 cm-long cores) were collected all along the estuary, i.e. in the upstream, maximum turbidity and downstream zones, during 5 campaigns with different tidal intensities and river flows. Elemental (C, N) and isotopic composition (δ13C and δ15N) as well as lipid biomarkers were analyzed in both particulate (POM) and sediment OM. This allows comparing the bulk and molecular composition as well as sources of OM in the particulate and sediment pools.
Several lipid biomarkers (n-alkanes, fatty acids, n-alcohols, sterols/stanols, GDGTs) were investigated in this study, as they provide complementary information of the sources and degradation degree of OM. Lipids from terrigenous sources were predominant in all samples, even though the concentrations of these compounds as well as those of anthropogenic origin were shown to decrease towards the mouth of the Seine Estuary. In addition, significant differences in bulk and molecular composition were observed between the particulate and sediment pool, especially with a higher abundance of aquatic (i.e. algal/bacterial) vs. terrigenous lipids in POM than sediment OM. Last, bulk and molecular analyses both showed the strong seasonal and spatial variability (along the estuary and with depth) of OM composition in the water column and sediment, which has to be taken into account when investigating estuarine OM dynamics.
How to cite: Huguet, A., Thibault, A., Anquetil, C., and Derenne, S.: Tracing the sources of organic matter in the Seine Estuary (NW France) using bulk and molecular analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9939, https://doi.org/10.5194/egusphere-egu2020-9939, 2020.
EGU2020-16308 | Displays | BG4.7
Large-scale study on groundwater dissolved organic matter reveals strong heterogeneity and a complex microbial footprintAstrid Harjung, Johannes Schweichhart, Grit Rasch, and Christian Griebler
Dissolved organic matter (DOM) in fresh groundwater is generally low in concentration compared to other fresh waters. However, the overall amount of groundwater DOM is huge, as there is 100 times more fresh groundwater than fresh surface water. To date, research on groundwater DOM has merely focused on specific threats to humans such as e.g. DOM and heavy metal complexations and DOM from hydrocarbon contamination. Only few studies targeted to understand DOM as energy source of groundwater food webs and the role of groundwater DOM in the global carbon cycle. While research on these two subjects in surface waters flourish, a comprehensive, large-scale study of groundwater is still missing. Since a major fraction of Earth’s microbial biomass is found in the subsurface, mainly in aquifers, this represents a major knowledge gap. Moreover, researchers found that groundwater DOM concentrations worldwide increase alarmingly. Here, for the first time, we examine DOM properties and heterogeneity in a large-scale approach with regards to aquifer characteristics and physical-chemical as well as microbial features. We hypothesize that groundwater DOM quality shows high diversity and plays an important, yet complex role in these ecosystems, where bioavailability is influenced by intrinsic molecular properties, as well as environmental conditions.
We analyzed 1000 water samples from 100 groundwater bodies all over Austria with regards to their DOM quantity, quality and bacterial abundance (BA). From fluorescence excitation-emission-matrices (EEMs) we derived indices and components to describe DOM quality. Next, we explored this data with principal component analysis, where we used convex-hull areas to estimate the heterogeneity of DOM composition within the groundwater bodies. In parallel, the similarity of DOM quality was evaluated with self-organizing maps on EEMs to test if we captured the heterogeneity of the data set sufficiently with the previous analysis. DOM quantity and quality was then related to BA and physical-chemical parameters.
Our results show that water from fractured and karstic aquifers exhibit significantly higher terrestrial DOM origin and less degraded DOM than porous aquifers. This result can be explained by abiotic factors such as adsorption of large, aromatic compounds, as well as biological factors, specifically, larger surface areas for biofilm development in porous aquifers. The latter is supported by our observation that porous aquifers showed higher BA values. Remarkably, we found that BA was related to different DOM quality in each aquifer type: In porous aquifers BA was related to large, aromatic DOM molecules indicating that these are important for bacterial growth, while in fractured and karstic aquifers BA was related to fulvics and highly degraded humic compounds. Bacterial growth and degradation of complex DOM might be limited by low retention times in some of these aquifers. Also, we found that groundwater bodies located in river valleys display high heterogeneity in DOM quality spanning across the whole DOM compositional diversity found in this study. This finding could either be explained by surface water infiltration in some parts and younger groundwater or the fact that river valleys are main settlement areas.
How to cite: Harjung, A., Schweichhart, J., Rasch, G., and Griebler, C.: Large-scale study on groundwater dissolved organic matter reveals strong heterogeneity and a complex microbial footprint, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16308, https://doi.org/10.5194/egusphere-egu2020-16308, 2020.
Dissolved organic matter (DOM) in fresh groundwater is generally low in concentration compared to other fresh waters. However, the overall amount of groundwater DOM is huge, as there is 100 times more fresh groundwater than fresh surface water. To date, research on groundwater DOM has merely focused on specific threats to humans such as e.g. DOM and heavy metal complexations and DOM from hydrocarbon contamination. Only few studies targeted to understand DOM as energy source of groundwater food webs and the role of groundwater DOM in the global carbon cycle. While research on these two subjects in surface waters flourish, a comprehensive, large-scale study of groundwater is still missing. Since a major fraction of Earth’s microbial biomass is found in the subsurface, mainly in aquifers, this represents a major knowledge gap. Moreover, researchers found that groundwater DOM concentrations worldwide increase alarmingly. Here, for the first time, we examine DOM properties and heterogeneity in a large-scale approach with regards to aquifer characteristics and physical-chemical as well as microbial features. We hypothesize that groundwater DOM quality shows high diversity and plays an important, yet complex role in these ecosystems, where bioavailability is influenced by intrinsic molecular properties, as well as environmental conditions.
We analyzed 1000 water samples from 100 groundwater bodies all over Austria with regards to their DOM quantity, quality and bacterial abundance (BA). From fluorescence excitation-emission-matrices (EEMs) we derived indices and components to describe DOM quality. Next, we explored this data with principal component analysis, where we used convex-hull areas to estimate the heterogeneity of DOM composition within the groundwater bodies. In parallel, the similarity of DOM quality was evaluated with self-organizing maps on EEMs to test if we captured the heterogeneity of the data set sufficiently with the previous analysis. DOM quantity and quality was then related to BA and physical-chemical parameters.
Our results show that water from fractured and karstic aquifers exhibit significantly higher terrestrial DOM origin and less degraded DOM than porous aquifers. This result can be explained by abiotic factors such as adsorption of large, aromatic compounds, as well as biological factors, specifically, larger surface areas for biofilm development in porous aquifers. The latter is supported by our observation that porous aquifers showed higher BA values. Remarkably, we found that BA was related to different DOM quality in each aquifer type: In porous aquifers BA was related to large, aromatic DOM molecules indicating that these are important for bacterial growth, while in fractured and karstic aquifers BA was related to fulvics and highly degraded humic compounds. Bacterial growth and degradation of complex DOM might be limited by low retention times in some of these aquifers. Also, we found that groundwater bodies located in river valleys display high heterogeneity in DOM quality spanning across the whole DOM compositional diversity found in this study. This finding could either be explained by surface water infiltration in some parts and younger groundwater or the fact that river valleys are main settlement areas.
How to cite: Harjung, A., Schweichhart, J., Rasch, G., and Griebler, C.: Large-scale study on groundwater dissolved organic matter reveals strong heterogeneity and a complex microbial footprint, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16308, https://doi.org/10.5194/egusphere-egu2020-16308, 2020.
EGU2020-16704 | Displays | BG4.7
Dynamic boundary conditions control the spatial and temporal variations of nutrient turnover in human impacted surface watersTobias Schuetz, Anna Kurm, Till Gößges, Marion Groß, Selina Schmitz, and Henrik Krehenwinkel
The temporal dynamics of nutrient cycles and the remineralization of micropollutants in given stream or river sections are driven by a complex interplay of hydraulic, climatic and ecological processes which are difficult to quantify and to predict. Typically, we use either e.g. water levels or velocity, radiation input, oxygen availability, water and air temperatures, hyporheic exchange or the activity of auto- and heterotroph organisms alone or in combination to explain observed rates of substance cycling. To improve the predictability of occurring nutrient cycles and biomass growth we selected seven river reaches (1.5 -3.3 km) throughout the Mosel-region in western Germany which are located down stream of sewage water treatment plant effluents. Over a time span of four months we carried out about 10 longitudinal snapshot sampling campaigns at each of the river sections. We sampled for nutrients (C, N, P) and selected pharmaceutical products as well as the hydraulic and climatic and boundary conditions. Additionally, at one of the river sites we observed along the river reach weekly microbial biofilm growth rates, microbial biodiversity (DNA), macrozoobenthos biodiversity in the dominating streambed substrates as well as weekly samples of C, N, P in the sediment.
The results show clearly how the interplay between hydraulic and climatic boundary conditions controls ongoing nutrient cycles and process rates; e. g. the spatial (downstream) extent of measurable surplus C, N, and P varies clearly over time as well as between the substances (P > C > N). Restricted by hydraulic boundary conditions, biomass production and a reduced (function specific) biodiversity of microbial biofilms coincide either with high nutrient surplus or with exposition to solar radiation. Favorable ambient conditions (lower water levels and higher energy availabilty) are dominant drivers for observable removal of pharmaceutical products rather than nutrient availability. Overall, our results demonstrate the importance of the local settings (cross section, shading) in combination with season and hydraulic loadings at given river sections for occurring process rates in nutrient cycles and biomass growth.
How to cite: Schuetz, T., Kurm, A., Gößges, T., Groß, M., Schmitz, S., and Krehenwinkel, H.: Dynamic boundary conditions control the spatial and temporal variations of nutrient turnover in human impacted surface waters , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16704, https://doi.org/10.5194/egusphere-egu2020-16704, 2020.
The temporal dynamics of nutrient cycles and the remineralization of micropollutants in given stream or river sections are driven by a complex interplay of hydraulic, climatic and ecological processes which are difficult to quantify and to predict. Typically, we use either e.g. water levels or velocity, radiation input, oxygen availability, water and air temperatures, hyporheic exchange or the activity of auto- and heterotroph organisms alone or in combination to explain observed rates of substance cycling. To improve the predictability of occurring nutrient cycles and biomass growth we selected seven river reaches (1.5 -3.3 km) throughout the Mosel-region in western Germany which are located down stream of sewage water treatment plant effluents. Over a time span of four months we carried out about 10 longitudinal snapshot sampling campaigns at each of the river sections. We sampled for nutrients (C, N, P) and selected pharmaceutical products as well as the hydraulic and climatic and boundary conditions. Additionally, at one of the river sites we observed along the river reach weekly microbial biofilm growth rates, microbial biodiversity (DNA), macrozoobenthos biodiversity in the dominating streambed substrates as well as weekly samples of C, N, P in the sediment.
The results show clearly how the interplay between hydraulic and climatic boundary conditions controls ongoing nutrient cycles and process rates; e. g. the spatial (downstream) extent of measurable surplus C, N, and P varies clearly over time as well as between the substances (P > C > N). Restricted by hydraulic boundary conditions, biomass production and a reduced (function specific) biodiversity of microbial biofilms coincide either with high nutrient surplus or with exposition to solar radiation. Favorable ambient conditions (lower water levels and higher energy availabilty) are dominant drivers for observable removal of pharmaceutical products rather than nutrient availability. Overall, our results demonstrate the importance of the local settings (cross section, shading) in combination with season and hydraulic loadings at given river sections for occurring process rates in nutrient cycles and biomass growth.
How to cite: Schuetz, T., Kurm, A., Gößges, T., Groß, M., Schmitz, S., and Krehenwinkel, H.: Dynamic boundary conditions control the spatial and temporal variations of nutrient turnover in human impacted surface waters , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16704, https://doi.org/10.5194/egusphere-egu2020-16704, 2020.
BG5.2 – Methane and its fate in the Biosphere - origin, source and cycling
EGU2020-8396 | Displays | BG5.2
A record of seafloor methane seepage across the last 150 million yearsDavide Oppo, Luca De Siena, and David Kemp
Methane seepage at the seafloor is a source of carbon in the marine environment and has long been recognized as an important window into the deep geo-, hydro-, and bio-spheres. However, the processes and temporal patterns of natural methane emission over multi-million-year time scales are still poorly understood. The microbially-mediated methane oxidation leads to the precipitation of authigenic carbonate minerals within subseafloor sediments, thus providing a potentially extensive record of past methane emission. In this study, we used data on methane-derived authigenic carbonates to build a proxy time series of seafloor methane emission over the last 150 My. We quantitatively demonstrate that variations in sea level and organic carbon burial are the dominant controls on methane leakage since the Early Cretaceous. Sea level controls variations of methane seepage by imposing smooth trends with cyclicities in the order of tens of My. Organic carbon burial shows the same cyclicities and instantaneously controls the volumes of methane released thanks to the rapid generation of biogenic methane. The identified fundamental (26-27 My) cyclicity matches those observed in the carbon cycle associated with plate tectonic processes, the atmospheric CO2, the oceanic anoxic events, and mass extinction events. A higher (12 My) cyclicity relates to modulations of Milankovitch eccentricity cycles and to variations in global tectonics. These analogies demonstrate that the seafloor methane seepage across the last 150 My relates to a large spectrum of global phenomena and thus has key implications for a better understanding of methane cycling at the present day. Temporal correlation analysis supports the evidence that the modern expansion of hypoxic areas and its effect on organic carbon burial may lead to higher seawater methane concentrations over the coming centuries.
How to cite: Oppo, D., De Siena, L., and Kemp, D.: A record of seafloor methane seepage across the last 150 million years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8396, https://doi.org/10.5194/egusphere-egu2020-8396, 2020.
Methane seepage at the seafloor is a source of carbon in the marine environment and has long been recognized as an important window into the deep geo-, hydro-, and bio-spheres. However, the processes and temporal patterns of natural methane emission over multi-million-year time scales are still poorly understood. The microbially-mediated methane oxidation leads to the precipitation of authigenic carbonate minerals within subseafloor sediments, thus providing a potentially extensive record of past methane emission. In this study, we used data on methane-derived authigenic carbonates to build a proxy time series of seafloor methane emission over the last 150 My. We quantitatively demonstrate that variations in sea level and organic carbon burial are the dominant controls on methane leakage since the Early Cretaceous. Sea level controls variations of methane seepage by imposing smooth trends with cyclicities in the order of tens of My. Organic carbon burial shows the same cyclicities and instantaneously controls the volumes of methane released thanks to the rapid generation of biogenic methane. The identified fundamental (26-27 My) cyclicity matches those observed in the carbon cycle associated with plate tectonic processes, the atmospheric CO2, the oceanic anoxic events, and mass extinction events. A higher (12 My) cyclicity relates to modulations of Milankovitch eccentricity cycles and to variations in global tectonics. These analogies demonstrate that the seafloor methane seepage across the last 150 My relates to a large spectrum of global phenomena and thus has key implications for a better understanding of methane cycling at the present day. Temporal correlation analysis supports the evidence that the modern expansion of hypoxic areas and its effect on organic carbon burial may lead to higher seawater methane concentrations over the coming centuries.
How to cite: Oppo, D., De Siena, L., and Kemp, D.: A record of seafloor methane seepage across the last 150 million years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8396, https://doi.org/10.5194/egusphere-egu2020-8396, 2020.
EGU2020-20809 | Displays | BG5.2
Subglacial gas hydrates: ice sheet modulation of methaneAlun Hubbard, Sunil Vadakkepuliyambatta, Henry Patton, Pavel Serov, Mauro Pau, Monica Winsborrow, Jemma Wadham, Jurgen Mienart, and Karin Andreassen
Gas hydrates exist within a relatively narrow envelope of thermal and pressure conditions, small changes in which may lead to widespread dissociation and methane release. During past glacials, extensive ice sheets covered the continental margins of the Arctic Basin yielding ideal high pressure and low temperature conditions for the sequestration of thermogenic and biogenic methane in hydrate-bearing subglacial sediments. On ice sheet retreat at the end of the last glacial, these hydrate reservoirs experienced major perturbations in thermal and pressure conditions leading to decomposition and methane mobilization over a variety of magnitude, temporal and spatial scales. Using geophysical data to constrain state-of-the-art ice sheet/gas hydrate modelling, we investigate how past Northern Hemisphere ice sheets modulated carbon sequestration and release. Our results provide the first quantitative assessment of widespread subglacial hydrate formation and mobilization during the last glacial, yields insights into global carbon cycle dynamics and informs potential future atmospheric greenhouse composition and feedbacks associated with shrinkage of the contemporary cryosphere.
How to cite: Hubbard, A., Vadakkepuliyambatta, S., Patton, H., Serov, P., Pau, M., Winsborrow, M., Wadham, J., Mienart, J., and Andreassen, K.: Subglacial gas hydrates: ice sheet modulation of methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20809, https://doi.org/10.5194/egusphere-egu2020-20809, 2020.
Gas hydrates exist within a relatively narrow envelope of thermal and pressure conditions, small changes in which may lead to widespread dissociation and methane release. During past glacials, extensive ice sheets covered the continental margins of the Arctic Basin yielding ideal high pressure and low temperature conditions for the sequestration of thermogenic and biogenic methane in hydrate-bearing subglacial sediments. On ice sheet retreat at the end of the last glacial, these hydrate reservoirs experienced major perturbations in thermal and pressure conditions leading to decomposition and methane mobilization over a variety of magnitude, temporal and spatial scales. Using geophysical data to constrain state-of-the-art ice sheet/gas hydrate modelling, we investigate how past Northern Hemisphere ice sheets modulated carbon sequestration and release. Our results provide the first quantitative assessment of widespread subglacial hydrate formation and mobilization during the last glacial, yields insights into global carbon cycle dynamics and informs potential future atmospheric greenhouse composition and feedbacks associated with shrinkage of the contemporary cryosphere.
How to cite: Hubbard, A., Vadakkepuliyambatta, S., Patton, H., Serov, P., Pau, M., Winsborrow, M., Wadham, J., Mienart, J., and Andreassen, K.: Subglacial gas hydrates: ice sheet modulation of methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20809, https://doi.org/10.5194/egusphere-egu2020-20809, 2020.
EGU2020-4919 | Displays | BG5.2 | Highlight
Cold seep hibernation in the Arctic sediments during cold bottom water conditionsBénédicte Ferré, Pär G. Jansson, Manuel Mosser, Pavel Serov, Alexey Portnov, Carolyn Graves, Giuliana Panieri, Friederike Gründger, Christian Berndt, Moritz Lehmann, and Helge Niemann
Large amounts of methane are trapped within gas hydrate in sub-seabed sediments in the Arctic Ocean, and bottom-water warming may induce the release of methane from the seafloor. Yet, the effect of seasonal temperature variations on methane seepage activity remains unknown, as surveys in Arctic seas are mainly conducted in summer. Here, we compare the activity of cold seeps along the gas hydrate stability limit offshore Svalbard during cold (May 2016) and warm (August 2012) seasons. Hydro-acoustic surveys revealed a substantially decreased seepage activity during cold bottom-water conditions, corresponding to a 43 % reduction of total cold seeps and methane release rates compared to warmer conditions. We demonstrate that cold seeps hibernate during cold seasons, when more methane gas becomes trapped in the sub-seabed sediments. Such a greenhouse gas capacitor increases the potential for methane release during summer months. Seasonal bottom-water temperature variations are common on the Arctic continental shelves. We infer that methane-seep hibernation is a widespread phenomenon that is underappreciated in global methane budgets, leading to overestimates in current calculations.
This research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT.
How to cite: Ferré, B., Jansson, P. G., Mosser, M., Serov, P., Portnov, A., Graves, C., Panieri, G., Gründger, F., Berndt, C., Lehmann, M., and Niemann, H.: Cold seep hibernation in the Arctic sediments during cold bottom water conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4919, https://doi.org/10.5194/egusphere-egu2020-4919, 2020.
Large amounts of methane are trapped within gas hydrate in sub-seabed sediments in the Arctic Ocean, and bottom-water warming may induce the release of methane from the seafloor. Yet, the effect of seasonal temperature variations on methane seepage activity remains unknown, as surveys in Arctic seas are mainly conducted in summer. Here, we compare the activity of cold seeps along the gas hydrate stability limit offshore Svalbard during cold (May 2016) and warm (August 2012) seasons. Hydro-acoustic surveys revealed a substantially decreased seepage activity during cold bottom-water conditions, corresponding to a 43 % reduction of total cold seeps and methane release rates compared to warmer conditions. We demonstrate that cold seeps hibernate during cold seasons, when more methane gas becomes trapped in the sub-seabed sediments. Such a greenhouse gas capacitor increases the potential for methane release during summer months. Seasonal bottom-water temperature variations are common on the Arctic continental shelves. We infer that methane-seep hibernation is a widespread phenomenon that is underappreciated in global methane budgets, leading to overestimates in current calculations.
This research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT.
How to cite: Ferré, B., Jansson, P. G., Mosser, M., Serov, P., Portnov, A., Graves, C., Panieri, G., Gründger, F., Berndt, C., Lehmann, M., and Niemann, H.: Cold seep hibernation in the Arctic sediments during cold bottom water conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4919, https://doi.org/10.5194/egusphere-egu2020-4919, 2020.
EGU2020-5366 | Displays | BG5.2
Temporal water column dynamics control microbial methane oxidation above an active cold seep (Doggerbank, North Sea)Tim de Groot, Malika Menoud, Thomas Röckmann, Hossein Maazallahi, Darci Rush, Chris Mesdag, Bart Meijninger, and Helge Niemann
Methane is a potent greenhouse gas with strongly increasing atmospheric concentrations since industrialisation. In the ocean, methane is most dominantly produced in sediments and is of microbial and/or thermogenic origin. Uprising methane may escape from the ocean floor to the overlying water column where it can be oxidized by methane oxidizing bacteria. The aerobic methane oxidation (MOx) is thus an important final barrier, which can mitigate methane release from the ocean to the atmosphere where it contributes to global warming. Nevertheless, there is rather little knowledge on the temporal dynamics of the microbial methane filter capacity in the water column. To gain a better understanding of the dynamics, we conducted two 48 hours’ time-series experiments during highly stratified conditions in summer and and mixed water column conditions in autumn above an active methane seep in the North Sea (Doggerbank, 41m water depth). At Doggerbank, dissolved CH4 δ13C-values (<-65 ‰) indicate a microbial CH4 origin, and seismic data suggest a gas pocket at >50 m sediment depth. Our time series measurement showed that CH4 concentrations were highly elevated with up to 2100 nM in bottom and 350 nM in surface waters under stratified conditions. The maxima showed a ~12h periodicity, indicating that the flux of CH4 from the seep was linked to tidal dynamics with the lowest CH4 concentrations at rising tide and enhanced flux at falling tide. In contrast, during mixed water column conditions we found lower maxima of only up to 450 nM. Yet, during mixed conditions we found that surface water methane concentrations were on average XX-fold higher compared to stratified conditions, suggesting a higher methane efflux to the atmosphere during this time period. MOx activity showed a similar temporal behaviour suggesting that tidal dynamics are an important control on the efficiency of the microbial CH4 filter in the water column. Under stratified conditions MOx rates were highest in bottom waters (<5.7 nM/day), however we also found high MOx rates in near-surface waters at times of elevated seep activity during stratified (<3.2 nM/day) and mixed water column conditions (<16.2 nM/day). Our results indicate that the efficiency of the microbial filter is affected by temporal dynamics and seasonality.
How to cite: de Groot, T., Menoud, M., Röckmann, T., Maazallahi, H., Rush, D., Mesdag, C., Meijninger, B., and Niemann, H.: Temporal water column dynamics control microbial methane oxidation above an active cold seep (Doggerbank, North Sea), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5366, https://doi.org/10.5194/egusphere-egu2020-5366, 2020.
Methane is a potent greenhouse gas with strongly increasing atmospheric concentrations since industrialisation. In the ocean, methane is most dominantly produced in sediments and is of microbial and/or thermogenic origin. Uprising methane may escape from the ocean floor to the overlying water column where it can be oxidized by methane oxidizing bacteria. The aerobic methane oxidation (MOx) is thus an important final barrier, which can mitigate methane release from the ocean to the atmosphere where it contributes to global warming. Nevertheless, there is rather little knowledge on the temporal dynamics of the microbial methane filter capacity in the water column. To gain a better understanding of the dynamics, we conducted two 48 hours’ time-series experiments during highly stratified conditions in summer and and mixed water column conditions in autumn above an active methane seep in the North Sea (Doggerbank, 41m water depth). At Doggerbank, dissolved CH4 δ13C-values (<-65 ‰) indicate a microbial CH4 origin, and seismic data suggest a gas pocket at >50 m sediment depth. Our time series measurement showed that CH4 concentrations were highly elevated with up to 2100 nM in bottom and 350 nM in surface waters under stratified conditions. The maxima showed a ~12h periodicity, indicating that the flux of CH4 from the seep was linked to tidal dynamics with the lowest CH4 concentrations at rising tide and enhanced flux at falling tide. In contrast, during mixed water column conditions we found lower maxima of only up to 450 nM. Yet, during mixed conditions we found that surface water methane concentrations were on average XX-fold higher compared to stratified conditions, suggesting a higher methane efflux to the atmosphere during this time period. MOx activity showed a similar temporal behaviour suggesting that tidal dynamics are an important control on the efficiency of the microbial CH4 filter in the water column. Under stratified conditions MOx rates were highest in bottom waters (<5.7 nM/day), however we also found high MOx rates in near-surface waters at times of elevated seep activity during stratified (<3.2 nM/day) and mixed water column conditions (<16.2 nM/day). Our results indicate that the efficiency of the microbial filter is affected by temporal dynamics and seasonality.
How to cite: de Groot, T., Menoud, M., Röckmann, T., Maazallahi, H., Rush, D., Mesdag, C., Meijninger, B., and Niemann, H.: Temporal water column dynamics control microbial methane oxidation above an active cold seep (Doggerbank, North Sea), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5366, https://doi.org/10.5194/egusphere-egu2020-5366, 2020.
EGU2020-16451 | Displays | BG5.2
Measuring methane from the seafloor to the atmosphere: an integrated experiment in the Black SeaJean-Daniel Paris, Livio Ruffine, Hélène Leau, Thomas Giunta, Jean-Pierre Donval, Vivien Guyader, Dominique Birot, Mia Schumacher, Jens Greinert, Roberto Grilli, Camille Blouzon, Marc Delmotte, Manfredi Longo, Sergio Scire, Francesco Italiano, Gianluca Lazzaro, Sorin Balan, Carla Scalabrin, and Thibault Douillard
Methane is an important greenhouse gas and an energy resource. Methane in sea water can originate from microbially-mediated organic matter (OM) degradation processes at shallow depth within the sediments, or from thermal cracking of refractory OM at deeper depth. On continental margins, this methane is stored in specific sedimentological bodies or as gas hydrates, or is released at the seafloor as submarine geological seeps followed by its oxidation in the water mass. However, methane released at the seafloor may not entirely be oxidized in the water column and a fraction of it may ultimately reach the atmosphere. The factors that govern the magnitude of methane transfer through the water column to the atmosphere remain poorly known. It has been identified that the amount of methane transferred to the atmosphere is strongly dependent on sites, and the thickness of the water column plays a critical role.
The Black Sea shelf and margin are known to host a large number of strong methane seepages. It has therefore been identified as a perfect candidate to investigate the fate of methane released from the seafloor to the atmosphere. This area can also act as a proxy for investigating the fate of methane in potential scenarios of hydrate destabilization in a changing climate, which can become a societal problem in the future. In the frame of ENVRIplus H2020 project (www.envriplus.eu) we developed a joint pilot experiment to measure methane transfer from the seafloor to the atmosphere, in a pilot study involving European research infrastructures ICOS, Eurofleets, EMSO and ACTRIS. We investigated the influence of depth by mapping CH4 concentration and bubble distribution at two different sites, at 60m and 100m water depth, respectively. The pilot experiment developed joint monitoring strategy for methane detection at various levels starting from the seafloor and moving across the water column, the water/air interface and the atmosphere. An EK80 echosounder was used to identify emission areas through massive bubble plumes. The methodology applied integrates (1) sampling from the geosphere, hydrosphere and atmosphere for laboratory measurements of methane concentration by well-proven standard methods together with δ13CH4 analysis, (2) in situ measurements of methane concentration into the water column and the atmosphere, and (3) the deployment of a seafloor observatory for a short monitoring period (4-5 days) to evaluate the temporal variability of gas fluxes.
During the cruise we found several occurrences of bubble plumes extending near the surface. Our measurements indicate that dissolved methane concentration drastically decreases from the seafloor to the water surface, highlighting its degradation and dispersion along the pathway to the atmosphere. The atmospheric data suggests a consistent input of marine methane to the atmosphere at the shallower site,. Our study highlights the observational challenges both for the measurement of methane from in situ and laboratory methods, and for the estimation of sea surface fluxes.
How to cite: Paris, J.-D., Ruffine, L., Leau, H., Giunta, T., Donval, J.-P., Guyader, V., Birot, D., Schumacher, M., Greinert, J., Grilli, R., Blouzon, C., Delmotte, M., Longo, M., Scire, S., Italiano, F., Lazzaro, G., Balan, S., Scalabrin, C., and Douillard, T.: Measuring methane from the seafloor to the atmosphere: an integrated experiment in the Black Sea , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16451, https://doi.org/10.5194/egusphere-egu2020-16451, 2020.
Methane is an important greenhouse gas and an energy resource. Methane in sea water can originate from microbially-mediated organic matter (OM) degradation processes at shallow depth within the sediments, or from thermal cracking of refractory OM at deeper depth. On continental margins, this methane is stored in specific sedimentological bodies or as gas hydrates, or is released at the seafloor as submarine geological seeps followed by its oxidation in the water mass. However, methane released at the seafloor may not entirely be oxidized in the water column and a fraction of it may ultimately reach the atmosphere. The factors that govern the magnitude of methane transfer through the water column to the atmosphere remain poorly known. It has been identified that the amount of methane transferred to the atmosphere is strongly dependent on sites, and the thickness of the water column plays a critical role.
The Black Sea shelf and margin are known to host a large number of strong methane seepages. It has therefore been identified as a perfect candidate to investigate the fate of methane released from the seafloor to the atmosphere. This area can also act as a proxy for investigating the fate of methane in potential scenarios of hydrate destabilization in a changing climate, which can become a societal problem in the future. In the frame of ENVRIplus H2020 project (www.envriplus.eu) we developed a joint pilot experiment to measure methane transfer from the seafloor to the atmosphere, in a pilot study involving European research infrastructures ICOS, Eurofleets, EMSO and ACTRIS. We investigated the influence of depth by mapping CH4 concentration and bubble distribution at two different sites, at 60m and 100m water depth, respectively. The pilot experiment developed joint monitoring strategy for methane detection at various levels starting from the seafloor and moving across the water column, the water/air interface and the atmosphere. An EK80 echosounder was used to identify emission areas through massive bubble plumes. The methodology applied integrates (1) sampling from the geosphere, hydrosphere and atmosphere for laboratory measurements of methane concentration by well-proven standard methods together with δ13CH4 analysis, (2) in situ measurements of methane concentration into the water column and the atmosphere, and (3) the deployment of a seafloor observatory for a short monitoring period (4-5 days) to evaluate the temporal variability of gas fluxes.
During the cruise we found several occurrences of bubble plumes extending near the surface. Our measurements indicate that dissolved methane concentration drastically decreases from the seafloor to the water surface, highlighting its degradation and dispersion along the pathway to the atmosphere. The atmospheric data suggests a consistent input of marine methane to the atmosphere at the shallower site,. Our study highlights the observational challenges both for the measurement of methane from in situ and laboratory methods, and for the estimation of sea surface fluxes.
How to cite: Paris, J.-D., Ruffine, L., Leau, H., Giunta, T., Donval, J.-P., Guyader, V., Birot, D., Schumacher, M., Greinert, J., Grilli, R., Blouzon, C., Delmotte, M., Longo, M., Scire, S., Italiano, F., Lazzaro, G., Balan, S., Scalabrin, C., and Douillard, T.: Measuring methane from the seafloor to the atmosphere: an integrated experiment in the Black Sea , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16451, https://doi.org/10.5194/egusphere-egu2020-16451, 2020.
EGU2020-8412 | Displays | BG5.2
Revealing unknown subglacial carbon processes using high frequency gas measurements and stable isotopesJesper Riis Christiansen, Thomas Röckmann, Elena Popa, Celia Sapart, and Christian Juncher Jørgensen
Ice sheets and glaciers play an important role for the global carbon cycle through the exchange of their subglacial carbon with the proglacial aquatic environment and the atmosphere in the form of CH4 and CO2. However, the subglacial environment below ice sheets and glaciers is largely inaccessible from the surface and hence we know very little about the carbon turnover processes in these extreme habitats that lead to this carbon export.
Biological CH4 production and oxidation has been found in subglacial sediments across Canada, Antarctica, west Greenland and at the center of the Greenland Ice sheet. This points at a common glacial process for gaseous CH4 and CO2 emissions, but this knowledge is backed by very few direct field observations from two locations in Greenland and one in Iceland. The lack of field based studies is the single most-limiting factor for increasing our understanding of the magnitude and extent of subglacial carbon emission to the atmosphere and its relevance for the global carbon budget.
We present new field measurements suggesting that it is possible to quantify the carbon turnover processes in the subglacial environment using high frequency concentration measurements and stable isotope composition of CH4 and CO2 in gaseous and dissolved form sampled at a subglacial meltwater outlet.
During three field campaigns in the early, mid and late melt season in 2018 and 2019 we measured significantly elevated CH4 and CO2 concentrations in the air and water exiting a subglacial cave system. We devised a field sampling program for retrieval of discrete gas and water samples that allow identification of the original (common) source of the gaseous and dissolved CH4 and CO2 by quantifying the d13C and dH signature of the source.
Our field measurements are amongst the first to directly quantify the emission of CH4 and CO2 to the atmosphere and our isotopic investigations clearly show a biological source of CH4 and its oxidation to CO2 in the subglacial environment and point to a hydrological control on the release of both CH4 and CO2.
These types of data are instrumental to improve the understanding of subglacial carbon processes and design future field investigations to assess its climatic relevance and to narrow the uncertainty of emission estimates.
How to cite: Riis Christiansen, J., Röckmann, T., Popa, E., Sapart, C., and Juncher Jørgensen, C.: Revealing unknown subglacial carbon processes using high frequency gas measurements and stable isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8412, https://doi.org/10.5194/egusphere-egu2020-8412, 2020.
Ice sheets and glaciers play an important role for the global carbon cycle through the exchange of their subglacial carbon with the proglacial aquatic environment and the atmosphere in the form of CH4 and CO2. However, the subglacial environment below ice sheets and glaciers is largely inaccessible from the surface and hence we know very little about the carbon turnover processes in these extreme habitats that lead to this carbon export.
Biological CH4 production and oxidation has been found in subglacial sediments across Canada, Antarctica, west Greenland and at the center of the Greenland Ice sheet. This points at a common glacial process for gaseous CH4 and CO2 emissions, but this knowledge is backed by very few direct field observations from two locations in Greenland and one in Iceland. The lack of field based studies is the single most-limiting factor for increasing our understanding of the magnitude and extent of subglacial carbon emission to the atmosphere and its relevance for the global carbon budget.
We present new field measurements suggesting that it is possible to quantify the carbon turnover processes in the subglacial environment using high frequency concentration measurements and stable isotope composition of CH4 and CO2 in gaseous and dissolved form sampled at a subglacial meltwater outlet.
During three field campaigns in the early, mid and late melt season in 2018 and 2019 we measured significantly elevated CH4 and CO2 concentrations in the air and water exiting a subglacial cave system. We devised a field sampling program for retrieval of discrete gas and water samples that allow identification of the original (common) source of the gaseous and dissolved CH4 and CO2 by quantifying the d13C and dH signature of the source.
Our field measurements are amongst the first to directly quantify the emission of CH4 and CO2 to the atmosphere and our isotopic investigations clearly show a biological source of CH4 and its oxidation to CO2 in the subglacial environment and point to a hydrological control on the release of both CH4 and CO2.
These types of data are instrumental to improve the understanding of subglacial carbon processes and design future field investigations to assess its climatic relevance and to narrow the uncertainty of emission estimates.
How to cite: Riis Christiansen, J., Röckmann, T., Popa, E., Sapart, C., and Juncher Jørgensen, C.: Revealing unknown subglacial carbon processes using high frequency gas measurements and stable isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8412, https://doi.org/10.5194/egusphere-egu2020-8412, 2020.
EGU2020-17937 | Displays | BG5.2
Spatiotemporal variability of methane emissions of tundra landscapes in the Lena River Delta, SiberiaLars Kutzbach, Norman Rößger, Tim Eckhardt, Christian Knoblauch, Torsten Sachs, Christian Wille, Julia Boike, and Eva-Maria Pfeiffer
Increased methane (CH4) release from a warming Arctic is expected to be a major feedback on the global climate. However, due to the complex effects of climate change on arctic geoecosystems, projections of future CH4 emissions are highly uncertain. CH4 emissions from complex tundra landscapes will be controlled not only by direct climatic effects on production, oxidation and transport of CH4 but, importantly, also by geomorphology and hydrology changes caused by gradual or abrupt permafrost degradation. Therefore, improving our understanding of both the temporal dynamics and the spatial heterogeneity of CH4 fluxes on multiple scales is still necessary.
Here, we present pedon- and landscape-scale CH4 flux measurements at two widespread tundra landscapes (active floodplains and late-holocene river terraces) of the Lena River Delta in the Siberian Arctic (72.4° N, 126.5° E). The dominating scales of spatial variability of soil, vegetation and CH4 fluxes differ between the two landscapes of different geological development stage. The active floodplains are characterized by sandy beaches and ridges, and backswamp depressions, forming a mesorelief with height differences of several meters on horizontal scales of 10-1000 m. On the other hand, the river terraces are characterized by the formation of ice-wedge polygons, which lead to a regular microrelief with height differences of several decimeters on horizontal scales of 1 to 10 meters. CH4 fluxes were investigated on the landscape scale with the eddy covariance method (15 campaigns during 2002-2018 at the river terrace, 2 campaigns 2014-2015 at the floodplain) and on the pedon scale with chamber methods (campaigns at different sites in 2002, 2006, 2013, 2014, 2015).
Average growing season (June-September) CH4 flux for the floodplain was 166 ± 4 mmol m-2 (n=2) and for the river terrace 100 ± 25 mmol m-2 (n=15). There was pronounced spatial variability of CH4 fluxes within both tundra landscapes types. On the river terrace, growing season CH4 flux was only 20-40 mmol m-2 at elevated polygon rims and polygon high centers, respectively, and up to 300 mmol m-2 at polygon low centers. On the floodplain, CH4 flux was as low as 5 mmol m-2 at sandy ridges and above 400 mmol m-2 in backswamp depressions. Mean growing season CH4 fluxes at the river terrace were positively linearly correlated (r2 = 0.9, n=15) to growing-degree-days (base temperature of 5 °C). Our findings suggest that a warmer climate stimulates the production of CH4, which is directly reflected in increased CH4 emissions. On the other hand, warming effects on CH4 oxidation appear limited because transport processes that bypass the soil oxidation zone, i.e. plant-mediated transport and ebullition, dominate CH4 emission from wet tundra landscapes. However, since CH4 emissions strongly vary with (micro-)topographical situation within tundra landscapes, the changes of geomorphology and hydrology due to permafrost degradation will probably be the dominating driver of future CH4 emissions from arctic tundra landscapes.
How to cite: Kutzbach, L., Rößger, N., Eckhardt, T., Knoblauch, C., Sachs, T., Wille, C., Boike, J., and Pfeiffer, E.-M.: Spatiotemporal variability of methane emissions of tundra landscapes in the Lena River Delta, Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17937, https://doi.org/10.5194/egusphere-egu2020-17937, 2020.
Increased methane (CH4) release from a warming Arctic is expected to be a major feedback on the global climate. However, due to the complex effects of climate change on arctic geoecosystems, projections of future CH4 emissions are highly uncertain. CH4 emissions from complex tundra landscapes will be controlled not only by direct climatic effects on production, oxidation and transport of CH4 but, importantly, also by geomorphology and hydrology changes caused by gradual or abrupt permafrost degradation. Therefore, improving our understanding of both the temporal dynamics and the spatial heterogeneity of CH4 fluxes on multiple scales is still necessary.
Here, we present pedon- and landscape-scale CH4 flux measurements at two widespread tundra landscapes (active floodplains and late-holocene river terraces) of the Lena River Delta in the Siberian Arctic (72.4° N, 126.5° E). The dominating scales of spatial variability of soil, vegetation and CH4 fluxes differ between the two landscapes of different geological development stage. The active floodplains are characterized by sandy beaches and ridges, and backswamp depressions, forming a mesorelief with height differences of several meters on horizontal scales of 10-1000 m. On the other hand, the river terraces are characterized by the formation of ice-wedge polygons, which lead to a regular microrelief with height differences of several decimeters on horizontal scales of 1 to 10 meters. CH4 fluxes were investigated on the landscape scale with the eddy covariance method (15 campaigns during 2002-2018 at the river terrace, 2 campaigns 2014-2015 at the floodplain) and on the pedon scale with chamber methods (campaigns at different sites in 2002, 2006, 2013, 2014, 2015).
Average growing season (June-September) CH4 flux for the floodplain was 166 ± 4 mmol m-2 (n=2) and for the river terrace 100 ± 25 mmol m-2 (n=15). There was pronounced spatial variability of CH4 fluxes within both tundra landscapes types. On the river terrace, growing season CH4 flux was only 20-40 mmol m-2 at elevated polygon rims and polygon high centers, respectively, and up to 300 mmol m-2 at polygon low centers. On the floodplain, CH4 flux was as low as 5 mmol m-2 at sandy ridges and above 400 mmol m-2 in backswamp depressions. Mean growing season CH4 fluxes at the river terrace were positively linearly correlated (r2 = 0.9, n=15) to growing-degree-days (base temperature of 5 °C). Our findings suggest that a warmer climate stimulates the production of CH4, which is directly reflected in increased CH4 emissions. On the other hand, warming effects on CH4 oxidation appear limited because transport processes that bypass the soil oxidation zone, i.e. plant-mediated transport and ebullition, dominate CH4 emission from wet tundra landscapes. However, since CH4 emissions strongly vary with (micro-)topographical situation within tundra landscapes, the changes of geomorphology and hydrology due to permafrost degradation will probably be the dominating driver of future CH4 emissions from arctic tundra landscapes.
How to cite: Kutzbach, L., Rößger, N., Eckhardt, T., Knoblauch, C., Sachs, T., Wille, C., Boike, J., and Pfeiffer, E.-M.: Spatiotemporal variability of methane emissions of tundra landscapes in the Lena River Delta, Siberia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17937, https://doi.org/10.5194/egusphere-egu2020-17937, 2020.
EGU2020-563 | Displays | BG5.2
Experimental study of methane emission from lake seeps of Western Siberia permafrost zoneLiudmila Krivenok, Vladimir Kazantsev, and Yury Dvornikov
Methane is one of the most potent greenhouse gases affecting climate change. According to different estimates, natural sources contribute 35–50% to global CH4 emission. Among them, the third-biggest source is lakes emitting to the atmosphere 10–50 TgCH4 per year [Anderson et al., 2010].
We have discovered two gas seeps during the summer 2019 field campaign within the lake near the Vas’kiny Dachi research station (Central Yamal, Western Siberia). Measurement of the ebullition intensity in tenfold replicate and gas sampling were carried out using a bubble trap of the original design. The concentration of methane in seep gas was determined by a Crystal 5000.2 gas chromatograph with a flame ionization detector; each sample was diluted tenfold with air. We calculated the annual CH4 flux from seep to the atmosphere with the consideration of the intensity of seep ebullition and the methane concentration in gas equal during the year. To determine the potential source of the gas, we analyzed the isotopic composition of CH4 (δ13C and δD) by a Delta-V mass spectrometer.
The values (median ± SD) of the gas ebullition are 175 ± 26 mL/min and 127 ± 10 mL/min for the first and second seeps respectively. The methane concentration in gas is 95–100%. The intensity of CH4 emission from the first seep is 89.7 thousand L or 64 kg per year; from the second seep is 65.1 thousand L or 46.5 kg per year.
Analysis of the content of δ13C and δD isotopes in methane gives the following results.
- For the first seep: δ13C vs VPDB, ‰ = −75.73, δD vs VSMOW, ‰ = −226.68.
- For the second seep: δ13C vs VPDB, ‰ = −76.97, δD vs VSMOW, ‰ = −222.31.
According to the classification from [Whiticar, 1999], seep methane is of biogenic origin. Potentially, gas could migrate to the lake surface through sub-lake talik from the underlying geological horizon containing methane hydrates in self-preserved form as widely documented for this area [Chuvilin et al., 2000].
To summarize, lake seeps of the Western Siberia tundra zone have been studied as a source of the atmospheric methane for the first time. Considering the occurrence of methane hydrates withing permafrost in the study area, we describe a path of the CH4 release from decomposing gas hydrates into the atmosphere in the northern part of Western Siberia.
The study was partially supported by the RAS Program no. 20 and the state contract of the IAP RAS no. 075-03-2019-628.
References:
Anderson B., Bartlett K., Frolking S. et al. Methane and nitrous oxide emissions from natural sources. Washington: EPA. 2010. 194 p.
Chuvilin E.M., Yakushev V.S., Perlova E.V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia // Polarforschung. 2000. V. 68. P. 215–219.
Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology. 1999. V. 161. P. 291–314.
How to cite: Krivenok, L., Kazantsev, V., and Dvornikov, Y.: Experimental study of methane emission from lake seeps of Western Siberia permafrost zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-563, https://doi.org/10.5194/egusphere-egu2020-563, 2020.
Methane is one of the most potent greenhouse gases affecting climate change. According to different estimates, natural sources contribute 35–50% to global CH4 emission. Among them, the third-biggest source is lakes emitting to the atmosphere 10–50 TgCH4 per year [Anderson et al., 2010].
We have discovered two gas seeps during the summer 2019 field campaign within the lake near the Vas’kiny Dachi research station (Central Yamal, Western Siberia). Measurement of the ebullition intensity in tenfold replicate and gas sampling were carried out using a bubble trap of the original design. The concentration of methane in seep gas was determined by a Crystal 5000.2 gas chromatograph with a flame ionization detector; each sample was diluted tenfold with air. We calculated the annual CH4 flux from seep to the atmosphere with the consideration of the intensity of seep ebullition and the methane concentration in gas equal during the year. To determine the potential source of the gas, we analyzed the isotopic composition of CH4 (δ13C and δD) by a Delta-V mass spectrometer.
The values (median ± SD) of the gas ebullition are 175 ± 26 mL/min and 127 ± 10 mL/min for the first and second seeps respectively. The methane concentration in gas is 95–100%. The intensity of CH4 emission from the first seep is 89.7 thousand L or 64 kg per year; from the second seep is 65.1 thousand L or 46.5 kg per year.
Analysis of the content of δ13C and δD isotopes in methane gives the following results.
- For the first seep: δ13C vs VPDB, ‰ = −75.73, δD vs VSMOW, ‰ = −226.68.
- For the second seep: δ13C vs VPDB, ‰ = −76.97, δD vs VSMOW, ‰ = −222.31.
According to the classification from [Whiticar, 1999], seep methane is of biogenic origin. Potentially, gas could migrate to the lake surface through sub-lake talik from the underlying geological horizon containing methane hydrates in self-preserved form as widely documented for this area [Chuvilin et al., 2000].
To summarize, lake seeps of the Western Siberia tundra zone have been studied as a source of the atmospheric methane for the first time. Considering the occurrence of methane hydrates withing permafrost in the study area, we describe a path of the CH4 release from decomposing gas hydrates into the atmosphere in the northern part of Western Siberia.
The study was partially supported by the RAS Program no. 20 and the state contract of the IAP RAS no. 075-03-2019-628.
References:
Anderson B., Bartlett K., Frolking S. et al. Methane and nitrous oxide emissions from natural sources. Washington: EPA. 2010. 194 p.
Chuvilin E.M., Yakushev V.S., Perlova E.V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia // Polarforschung. 2000. V. 68. P. 215–219.
Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology. 1999. V. 161. P. 291–314.
How to cite: Krivenok, L., Kazantsev, V., and Dvornikov, Y.: Experimental study of methane emission from lake seeps of Western Siberia permafrost zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-563, https://doi.org/10.5194/egusphere-egu2020-563, 2020.
EGU2020-10020 | Displays | BG5.2
Methane emissions from lakes in the Alpine region: insights from two years of mobile eddy covariance flux measurementsKatharina Scholz, Federico Carotenuto, Beniamino Gioli, Franco Miglietta, Sylvie Pighini, Ruben Sommaruga, Enrico Tomelleri, Giustino Tonon, Alessandro Zaldei, and Georg Wohlfahrt
Lakes are considered an important natural source of methane (CH4). However, direct measurements of lake-atmosphere gas exchange are still sparse especially in the Alpine region. To overcome this shortcoming, we designed a mobile eddy covariance (EC) station to measure CO2, CH4, and energy fluxes at various lakes in the Alps. EC measurements were compared to flux measurements using floating chambers and related to abiotic and biotic factors like temperature, lake morphometry, dissolved components and trophic status.
During the first year, measurements were conducted at 9 lakes at different elevations ranging from 200 to 1900 m.a.s.l. to capture the spatial variability. The following year, measurements were repeated more frequently at three contrasting lakes to capture the seasonal trends of the fluxes.
The results indicate that all lakes were supersaturated with CH4. However, there was a high variability in the magnitude of CH4 emissions between lakes with generally higher emissions from warmer lakes at low elevation. In particular, the lake at the lowest elevation, Lake Caldaro, had highest dissolved CH4 concentrations and emissions and showed a clear seasonal trend with emissions peaking during the hot summer months. In contrast, the lake at the highest elevation, Lake Zoccolo, showed low CH4 concentrations and emissions with highest concentrations in fall when the water level was low.
How to cite: Scholz, K., Carotenuto, F., Gioli, B., Miglietta, F., Pighini, S., Sommaruga, R., Tomelleri, E., Tonon, G., Zaldei, A., and Wohlfahrt, G.: Methane emissions from lakes in the Alpine region: insights from two years of mobile eddy covariance flux measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10020, https://doi.org/10.5194/egusphere-egu2020-10020, 2020.
Lakes are considered an important natural source of methane (CH4). However, direct measurements of lake-atmosphere gas exchange are still sparse especially in the Alpine region. To overcome this shortcoming, we designed a mobile eddy covariance (EC) station to measure CO2, CH4, and energy fluxes at various lakes in the Alps. EC measurements were compared to flux measurements using floating chambers and related to abiotic and biotic factors like temperature, lake morphometry, dissolved components and trophic status.
During the first year, measurements were conducted at 9 lakes at different elevations ranging from 200 to 1900 m.a.s.l. to capture the spatial variability. The following year, measurements were repeated more frequently at three contrasting lakes to capture the seasonal trends of the fluxes.
The results indicate that all lakes were supersaturated with CH4. However, there was a high variability in the magnitude of CH4 emissions between lakes with generally higher emissions from warmer lakes at low elevation. In particular, the lake at the lowest elevation, Lake Caldaro, had highest dissolved CH4 concentrations and emissions and showed a clear seasonal trend with emissions peaking during the hot summer months. In contrast, the lake at the highest elevation, Lake Zoccolo, showed low CH4 concentrations and emissions with highest concentrations in fall when the water level was low.
How to cite: Scholz, K., Carotenuto, F., Gioli, B., Miglietta, F., Pighini, S., Sommaruga, R., Tomelleri, E., Tonon, G., Zaldei, A., and Wohlfahrt, G.: Methane emissions from lakes in the Alpine region: insights from two years of mobile eddy covariance flux measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10020, https://doi.org/10.5194/egusphere-egu2020-10020, 2020.
EGU2020-20633 | Displays | BG5.2
Modern methane and dissolved organic matter radiocarbon signatures suggest rapid transfer of organic carbon from a tropical forest to the underlying subterranean estuary ecosystemDavid Brankovits, John Pohlman, Mark Garnett, and Joshua Dean
Biogeochemical processing of dissolved organic matter, including methane, along sharp salinity gradients in subterranean estuaries greatly alters the composition of submarine groundwater discharge into the marine environment. Along the margins of coastal carbonate (karst) platforms, which account for ~25% of all coastlines, subterranean estuaries extend kilometers inland within porous bedrock, flooding extensive cave networks. This environment harbors a poorly understood, but globally dispersed, anchialine fauna (invertebrates with subterranean adaptations) and characteristic microbial communities. In Mexico’s Yucatan Peninsula, microbial processing of methane and dissolved organic carbon (DOC), originating from overlying tropical soils, is the critical link for shuttling organic matter to higher trophic levels of the food web within the coastal aquifer. To better understand carbon turnover during organic matter transformations in this habitat, we collected samples for stable and radiocarbon analyses targeting the biotic and abiotic components of the carbon cycle. In the freshwater, radiocarbon signatures of terrestrially originated DOC (pMC = 105.1; [DOC] = 517 µM; δ13C = ˗27.8 ‰) and methane (pMC = 101.6; [CH4] = 6460 nM; δ13C = ˗71.5 ‰) correspond with modern 14C ages, suggesting these sources of energy within the habitat are comprised of modern carbon fixed recently by photosynthesizing primary producers at the land surface. By contrast, DOC in the deeper saline groundwater is significantly lower in concentration (21 µM), and substantially older (pMC = 47.3, equates to 6010 ± 95 14C yrs). Similarly, dissolved inorganic carbon (DIC) in the freshwater is significantly younger (pMC = 86.5, equates to 1170 ± 15 14C yrs) than in the deeper saline water (pMC = 58.4, equates to 4320 ± 25 14C yrs). These findings demonstrate that important sources of nutrition for the food web are intimately linked to the overlying subaerial habitat, which suggests these ecosystems are highly vulnerable to nearby land use alterations. Furthermore, this study provides new insights into carbon turnover during the process of methane production/consumption, carbon exchange, and organic matter transformation before the emission of the dissolved constituents into coastal oceans from karst subterranean estuaries. Radiocarbon and stable isotopic analyses of the resident fauna will allow us to evaluate the ecological effects of the rapid top-down transfer mechanism for methane and DOC. Beyond better understanding the sources and fate of these carbon sources, our findings have the potential to support management and conservation efforts aimed at coastal groundwater ecosystems.
How to cite: Brankovits, D., Pohlman, J., Garnett, M., and Dean, J.: Modern methane and dissolved organic matter radiocarbon signatures suggest rapid transfer of organic carbon from a tropical forest to the underlying subterranean estuary ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20633, https://doi.org/10.5194/egusphere-egu2020-20633, 2020.
Biogeochemical processing of dissolved organic matter, including methane, along sharp salinity gradients in subterranean estuaries greatly alters the composition of submarine groundwater discharge into the marine environment. Along the margins of coastal carbonate (karst) platforms, which account for ~25% of all coastlines, subterranean estuaries extend kilometers inland within porous bedrock, flooding extensive cave networks. This environment harbors a poorly understood, but globally dispersed, anchialine fauna (invertebrates with subterranean adaptations) and characteristic microbial communities. In Mexico’s Yucatan Peninsula, microbial processing of methane and dissolved organic carbon (DOC), originating from overlying tropical soils, is the critical link for shuttling organic matter to higher trophic levels of the food web within the coastal aquifer. To better understand carbon turnover during organic matter transformations in this habitat, we collected samples for stable and radiocarbon analyses targeting the biotic and abiotic components of the carbon cycle. In the freshwater, radiocarbon signatures of terrestrially originated DOC (pMC = 105.1; [DOC] = 517 µM; δ13C = ˗27.8 ‰) and methane (pMC = 101.6; [CH4] = 6460 nM; δ13C = ˗71.5 ‰) correspond with modern 14C ages, suggesting these sources of energy within the habitat are comprised of modern carbon fixed recently by photosynthesizing primary producers at the land surface. By contrast, DOC in the deeper saline groundwater is significantly lower in concentration (21 µM), and substantially older (pMC = 47.3, equates to 6010 ± 95 14C yrs). Similarly, dissolved inorganic carbon (DIC) in the freshwater is significantly younger (pMC = 86.5, equates to 1170 ± 15 14C yrs) than in the deeper saline water (pMC = 58.4, equates to 4320 ± 25 14C yrs). These findings demonstrate that important sources of nutrition for the food web are intimately linked to the overlying subaerial habitat, which suggests these ecosystems are highly vulnerable to nearby land use alterations. Furthermore, this study provides new insights into carbon turnover during the process of methane production/consumption, carbon exchange, and organic matter transformation before the emission of the dissolved constituents into coastal oceans from karst subterranean estuaries. Radiocarbon and stable isotopic analyses of the resident fauna will allow us to evaluate the ecological effects of the rapid top-down transfer mechanism for methane and DOC. Beyond better understanding the sources and fate of these carbon sources, our findings have the potential to support management and conservation efforts aimed at coastal groundwater ecosystems.
How to cite: Brankovits, D., Pohlman, J., Garnett, M., and Dean, J.: Modern methane and dissolved organic matter radiocarbon signatures suggest rapid transfer of organic carbon from a tropical forest to the underlying subterranean estuary ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20633, https://doi.org/10.5194/egusphere-egu2020-20633, 2020.
EGU2020-10245 | Displays | BG5.2 | Highlight
The Role of Gases in an Arsenic Contaminated AquiferAlexandra Lightfoot, Matthias Brennwald, and Rolf Kipfer
Arsenic (As) contamination of groundwater remains a problem for many of the river deltaic areas in South-East Asia; where concentrations regularly exceed the 10μ/L currently recommended by the Word Health Organization. The focus of this study, is to determine noble and reactive gases in groundwaters at a location where As mobilisation is active, to constrain the sites hydrology in such a highly reducing environment. The small village of Van Phuc, Vietnam, presents an ideal opportunity for such research as is it well studied and accessible, however As dynamics here are still not well understood.
Gas concentrations in 21 wells at varying depths and locations were analysed in Van Phuc with the miniRUEDI, a portable mass spectrometer capable of measuring noble gases: He, Ar, Kr, and reactive gases: CO2, CH4, N2 and O2. Water samples were additionally taken in copper tubes for later analysis, in an effort to date the groundwater using the 3He ingrowth method. Dating such samples is particularly difficult in environments such as Van Phuc, where Methane tends to oversaturate and foster in-situ degassing of the groundwater.
First results show a progressive depletion of the atmospheric gases (Ar, Kr and N2) with increasing CH4 concentrations. He, shows the opposite behaviour such that it increases in concentration as CH4 approaches in-situ saturation within the groundwater. The conceptual picture these results indicate, is that the production of Methane bubbles reduces the hydraulic conductivity in the aquifer; allowing enough time for He to accumulate, whilst simultaneously depleting Ar, Kr and N2 in the groundwater as a result of their partitioning into the free CH4 gas phase, which is subsequently degassed.
How to cite: Lightfoot, A., Brennwald, M., and Kipfer, R.: The Role of Gases in an Arsenic Contaminated Aquifer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10245, https://doi.org/10.5194/egusphere-egu2020-10245, 2020.
Arsenic (As) contamination of groundwater remains a problem for many of the river deltaic areas in South-East Asia; where concentrations regularly exceed the 10μ/L currently recommended by the Word Health Organization. The focus of this study, is to determine noble and reactive gases in groundwaters at a location where As mobilisation is active, to constrain the sites hydrology in such a highly reducing environment. The small village of Van Phuc, Vietnam, presents an ideal opportunity for such research as is it well studied and accessible, however As dynamics here are still not well understood.
Gas concentrations in 21 wells at varying depths and locations were analysed in Van Phuc with the miniRUEDI, a portable mass spectrometer capable of measuring noble gases: He, Ar, Kr, and reactive gases: CO2, CH4, N2 and O2. Water samples were additionally taken in copper tubes for later analysis, in an effort to date the groundwater using the 3He ingrowth method. Dating such samples is particularly difficult in environments such as Van Phuc, where Methane tends to oversaturate and foster in-situ degassing of the groundwater.
First results show a progressive depletion of the atmospheric gases (Ar, Kr and N2) with increasing CH4 concentrations. He, shows the opposite behaviour such that it increases in concentration as CH4 approaches in-situ saturation within the groundwater. The conceptual picture these results indicate, is that the production of Methane bubbles reduces the hydraulic conductivity in the aquifer; allowing enough time for He to accumulate, whilst simultaneously depleting Ar, Kr and N2 in the groundwater as a result of their partitioning into the free CH4 gas phase, which is subsequently degassed.
How to cite: Lightfoot, A., Brennwald, M., and Kipfer, R.: The Role of Gases in an Arsenic Contaminated Aquifer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10245, https://doi.org/10.5194/egusphere-egu2020-10245, 2020.
For a long time, biological methane formation was considered to occur only under strictly anaerobic conditions by organisms from the domain Archaea. However, during the past 15 years evidence has been accumulating that Eukaryotes such as plants, fungi, animals and humans produce methane independent of methanogenic Archaea via pathways in oxic environments that have not yet been fully resolved (Keppler et al., 2009, Wang et al. 2013, Liu et al. 2015, Boros & Keppler 2019).
Furthermore, it was recently shown that both marine and freshwater algae (Klintzsch et al. 2019, Hartmann et al. 2020) do produce methane per se and might contribute significantly to the abundance of methane in oxygen-rich surface waters, commonly known as the “methane paradox”.
Finally, very recently it was demonstrated that Cyanobacteria - members of the third domain of life, i.e. Bacteria - that thrive in terrestrial, marine and freshwater environments are also able to directly produce methane (Bižić et al. 2020) and thus revealing that methanogenesis occurs in all three domains of life.
In this presentation, I will give a brief overview of recent observations of biological non-archaeal methane formation from organisms living in terrestrial and marine organisms. Furthermore, I will discuss potential mechanisms and environmental factors that might control formation of methane in Eukaryotes and Cyanobacteria. From these novel results, it becomes clear that it is essential to study methane formation in all three domains of life to fully understand the global biogeochemical cycle of methane.
References:
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Gunthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., Grossart, H.-P., Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6, eaax5343, 2020.
Boros, M., Keppler, F., Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. Frontiers in Physiology, 10, 2019.
Hartmann, J. F., Gunthel, M., Klintzsch, T., Kirillin, G., Grossart, H.-P., Keppler, F., Isenbeck-Schröter, M., High Spatio-Temporal Dynamics of Methane Production and Emission in Oxic Surface Water. Environ. Sci. Technol. 2020.
Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J., Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009.
Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K., Keppler, F., Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences, 16, 4129-4144, 2019.
Liu, J.; Chen, H.; Zhu, Q.; Shen, Y.; Wang, X.; Wang, M.; Peng, C., A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview. Atmospheric Environment, 115, 26-35, 2015.
Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.
How to cite: Keppler, F.: Methanogenesis 2020: An update, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4193, https://doi.org/10.5194/egusphere-egu2020-4193, 2020.
For a long time, biological methane formation was considered to occur only under strictly anaerobic conditions by organisms from the domain Archaea. However, during the past 15 years evidence has been accumulating that Eukaryotes such as plants, fungi, animals and humans produce methane independent of methanogenic Archaea via pathways in oxic environments that have not yet been fully resolved (Keppler et al., 2009, Wang et al. 2013, Liu et al. 2015, Boros & Keppler 2019).
Furthermore, it was recently shown that both marine and freshwater algae (Klintzsch et al. 2019, Hartmann et al. 2020) do produce methane per se and might contribute significantly to the abundance of methane in oxygen-rich surface waters, commonly known as the “methane paradox”.
Finally, very recently it was demonstrated that Cyanobacteria - members of the third domain of life, i.e. Bacteria - that thrive in terrestrial, marine and freshwater environments are also able to directly produce methane (Bižić et al. 2020) and thus revealing that methanogenesis occurs in all three domains of life.
In this presentation, I will give a brief overview of recent observations of biological non-archaeal methane formation from organisms living in terrestrial and marine organisms. Furthermore, I will discuss potential mechanisms and environmental factors that might control formation of methane in Eukaryotes and Cyanobacteria. From these novel results, it becomes clear that it is essential to study methane formation in all three domains of life to fully understand the global biogeochemical cycle of methane.
References:
Bižić, M., Klintzsch, T., Ionescu, D., Hindiyeh, M.Y., Gunthel, M., Muro-Pastor, A. M., Eckert, W., Urich, T., Keppler, F., Grossart, H.-P., Aquatic and terrestrial cyanobacteria produce methane. Science Advances, 6, eaax5343, 2020.
Boros, M., Keppler, F., Methane Production and Bioactivity-A Link to Oxido-Reductive Stress. Frontiers in Physiology, 10, 2019.
Hartmann, J. F., Gunthel, M., Klintzsch, T., Kirillin, G., Grossart, H.-P., Keppler, F., Isenbeck-Schröter, M., High Spatio-Temporal Dynamics of Methane Production and Emission in Oxic Surface Water. Environ. Sci. Technol. 2020.
Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J., Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009.
Klintzsch, T., Langer, G., Nehrke, G., Wieland, A., Lenhart, K., Keppler, F., Methane production by three widespread marine phytoplankton species: release rates, precursor compounds, and potential relevance for the environment. Biogeosciences, 16, 4129-4144, 2019.
Liu, J.; Chen, H.; Zhu, Q.; Shen, Y.; Wang, X.; Wang, M.; Peng, C., A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview. Atmospheric Environment, 115, 26-35, 2015.
Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.
How to cite: Keppler, F.: Methanogenesis 2020: An update, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4193, https://doi.org/10.5194/egusphere-egu2020-4193, 2020.
EGU2020-16669 | Displays | BG5.2
Changes in microbial community structure by methane fluxes at arctic cold seepsVincent Carrier, Dimitri Kalenitchenko, Friederike Gründger, and Mette M. Svenning
Cold seeps are areas of the seafloor where hydrocarbon-rich fluids, primarily composed of methane (CH4), migrate from below reservoirs through the sediments to reach the seafloor surface. This CH4 is an important energy source for biological communities at cold seeps and it is taken up by specialized archaeal and bacterial methane oxidizers in anaerobic and aerobic environments. Reaction products, such as sulphide, are thereafter cycled into the microbial food web, by other microbial functional groups, underlining the importance of microorganisms in supporting biological production at cold seeps. However, large gaps of knowledge on total microbial biodiversity at these methane seeps and their spatial distribution remain, especially at high latitudes. South of Svalbard, five geological mounds shaped by the formation of CH4 gas hydrates (gas hydrate pingos GHPs), have been described recently. While one GHP was inactive, four of them showed CH4 seeping activity with flares primarily concentrated at the summits. This suggest that the environmental conditions gradually change from the rim of the GHP toward the summit. We hypothesized that the microbial biodiversity varies along that gradient, where the summits would harbor the highest abundances of methane oxidizers. In order to test this hypothesis, we investigated the microbial community structure at two active GHPs, an inactive GHP and a reference site. Porewater chemistry and sequencing-based community analyses of Archaea, Bacteria and Eukaryotes were investigated at several depths of the sediment along a distance gradient from the summit to the rim of each GHP. We show that local environmental conditions, such as the presence of CH4, do affect the microbial community structure and composition. The anaerobic methane oxidizing ANME-1 dominates the archaeal libraries and are detected various types of sulphate-reducing bacteria, although none demonstrated a clear co-occurrence with the predominance of ANME-1. Additional common taxa observed in these CH4-rich sediments that likely benefited from the metabolites of CH4 oxidation were sulphide oxidizing Epsilonproteobactaerota, as well as organic matter degraders, such as Bathyarchaeota, Woesearchaeota or thermoplasmatales MBG-D, and heterotrophic ciliates and Cercozoa. Beyond our expectations, the distribution of the different community types were not separated in concentric zones around the GHPs and similar methane oxidizing communities could be retrieved at different location over a GHP.
How to cite: Carrier, V., Kalenitchenko, D., Gründger, F., and Svenning, M. M.: Changes in microbial community structure by methane fluxes at arctic cold seeps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16669, https://doi.org/10.5194/egusphere-egu2020-16669, 2020.
Cold seeps are areas of the seafloor where hydrocarbon-rich fluids, primarily composed of methane (CH4), migrate from below reservoirs through the sediments to reach the seafloor surface. This CH4 is an important energy source for biological communities at cold seeps and it is taken up by specialized archaeal and bacterial methane oxidizers in anaerobic and aerobic environments. Reaction products, such as sulphide, are thereafter cycled into the microbial food web, by other microbial functional groups, underlining the importance of microorganisms in supporting biological production at cold seeps. However, large gaps of knowledge on total microbial biodiversity at these methane seeps and their spatial distribution remain, especially at high latitudes. South of Svalbard, five geological mounds shaped by the formation of CH4 gas hydrates (gas hydrate pingos GHPs), have been described recently. While one GHP was inactive, four of them showed CH4 seeping activity with flares primarily concentrated at the summits. This suggest that the environmental conditions gradually change from the rim of the GHP toward the summit. We hypothesized that the microbial biodiversity varies along that gradient, where the summits would harbor the highest abundances of methane oxidizers. In order to test this hypothesis, we investigated the microbial community structure at two active GHPs, an inactive GHP and a reference site. Porewater chemistry and sequencing-based community analyses of Archaea, Bacteria and Eukaryotes were investigated at several depths of the sediment along a distance gradient from the summit to the rim of each GHP. We show that local environmental conditions, such as the presence of CH4, do affect the microbial community structure and composition. The anaerobic methane oxidizing ANME-1 dominates the archaeal libraries and are detected various types of sulphate-reducing bacteria, although none demonstrated a clear co-occurrence with the predominance of ANME-1. Additional common taxa observed in these CH4-rich sediments that likely benefited from the metabolites of CH4 oxidation were sulphide oxidizing Epsilonproteobactaerota, as well as organic matter degraders, such as Bathyarchaeota, Woesearchaeota or thermoplasmatales MBG-D, and heterotrophic ciliates and Cercozoa. Beyond our expectations, the distribution of the different community types were not separated in concentric zones around the GHPs and similar methane oxidizing communities could be retrieved at different location over a GHP.
How to cite: Carrier, V., Kalenitchenko, D., Gründger, F., and Svenning, M. M.: Changes in microbial community structure by methane fluxes at arctic cold seeps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16669, https://doi.org/10.5194/egusphere-egu2020-16669, 2020.
EGU2020-20020 | Displays | BG5.2
The evolvement of anaerobic oxidation of methane in fresh water sedimentsHanni Vigderovich, Werner Eckert, and Orit Sivan
Methane is a potent greenhouse gas that is produced naturally via microbial processes in anoxic environments (i.e. marine and lake sediments). The release of methane to the atmosphere from sediments is controlled by its aerobic and anaerobic oxidation. Anaerobic oxidation of methane (AOM) consumes up to 90% of the produced methane in marine sediments and over half of the produced methane in freshwater sediments. The most common electron acceptor in marine sediments for AOM is sulfate, however, in freshwater lake sediments, where sulfate concentrations are low, other electron acceptors can take its place (i.e. iron/manganese/nitrate). In lake Kinneret (Israel), iron-coupled AOM was evident by in-situ sedimentary profiles and in fresh sediment slurry incubations. Here we present geochemical and molecular analyses results of slurry experiments of long-term incubated lake Kinneret sediments with labeled 13C-methane, different potential electron acceptors and a few inhibitors. These experiments are part of an ongoing research to characterize the AOM processes in lake sediments, and indicate another possible type of AOM that has evolved in the long-term incubated lake sediments.
How to cite: Vigderovich, H., Eckert, W., and Sivan, O.: The evolvement of anaerobic oxidation of methane in fresh water sediments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20020, https://doi.org/10.5194/egusphere-egu2020-20020, 2020.
Methane is a potent greenhouse gas that is produced naturally via microbial processes in anoxic environments (i.e. marine and lake sediments). The release of methane to the atmosphere from sediments is controlled by its aerobic and anaerobic oxidation. Anaerobic oxidation of methane (AOM) consumes up to 90% of the produced methane in marine sediments and over half of the produced methane in freshwater sediments. The most common electron acceptor in marine sediments for AOM is sulfate, however, in freshwater lake sediments, where sulfate concentrations are low, other electron acceptors can take its place (i.e. iron/manganese/nitrate). In lake Kinneret (Israel), iron-coupled AOM was evident by in-situ sedimentary profiles and in fresh sediment slurry incubations. Here we present geochemical and molecular analyses results of slurry experiments of long-term incubated lake Kinneret sediments with labeled 13C-methane, different potential electron acceptors and a few inhibitors. These experiments are part of an ongoing research to characterize the AOM processes in lake sediments, and indicate another possible type of AOM that has evolved in the long-term incubated lake sediments.
How to cite: Vigderovich, H., Eckert, W., and Sivan, O.: The evolvement of anaerobic oxidation of methane in fresh water sediments , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20020, https://doi.org/10.5194/egusphere-egu2020-20020, 2020.
EGU2020-15046 | Displays | BG5.2
Distribution and fractionation of light hydrocarbons related to gas hydrate occurrence and biogenic production at Hikurangi Margin (IODP Site U1517), New ZealandKatja Heeschen, Stefan Schloemer, Marta Torres, Ann E Cook, Liz Screation, Aggeliki Georgiopoulou, Ingo Pecher, Sathish Mayanna, Phil Barnes, Evan Solomon, and Leah LeVay
The investigation of the gas hydrate system and hydrocarbon distribution were targets of IODP expeditions 372 and 375 on the Hikurangi Margin offshore New Zealand. Isotopic and molecular signatures clearly indicate a biogenic signature of methane at all sites drilled along a section crossing the accretionary wedge and basin sediments. The gas void and headspace samples from depth of a few meters up to 600 m below the seafloor have varying amounts of light hydrocarbons with high amounts of methane and changing ratios of C2:C3. The best example is the high-resolution profile gained from gas voids collected at Site U1517. Drilling at U1517 reached through the creeping part of the Tuaheni Landslide Complex (TLC), the base of the slide mass, and the Bottom Simulation Reflector (BSR) just above the base of the hole. Whereas gas hydrates could not be observed macroscopically, the distribution of gas hydrates was determined by logging while drilling (LWD) and pore water data revealing the occurrence of gas hydrates at roughly 105 – 160 mbsf with elevated saturations in thin coarse-grained sediments. The application of cryo-Scanning Electric Microscopy (cryo-SEM) on samples preserved in liquid nitrogen enabled the visualization of gas hydrates.
At Site U1517 the high-resolution void sampling reveals molecular and isotopic fractionation of hydrocarbons in close relation to the gas hydrate occurrences and allows for drawing conclusions on the recent history of the gas hydrate system and absence of free gas transport from below at the site. The molecular and isotopic composition further indicates ongoing propanogenesis.
How to cite: Heeschen, K., Schloemer, S., Torres, M., Cook, A. E., Screation, L., Georgiopoulou, A., Pecher, I., Mayanna, S., Barnes, P., Solomon, E., and LeVay, L.: Distribution and fractionation of light hydrocarbons related to gas hydrate occurrence and biogenic production at Hikurangi Margin (IODP Site U1517), New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15046, https://doi.org/10.5194/egusphere-egu2020-15046, 2020.
The investigation of the gas hydrate system and hydrocarbon distribution were targets of IODP expeditions 372 and 375 on the Hikurangi Margin offshore New Zealand. Isotopic and molecular signatures clearly indicate a biogenic signature of methane at all sites drilled along a section crossing the accretionary wedge and basin sediments. The gas void and headspace samples from depth of a few meters up to 600 m below the seafloor have varying amounts of light hydrocarbons with high amounts of methane and changing ratios of C2:C3. The best example is the high-resolution profile gained from gas voids collected at Site U1517. Drilling at U1517 reached through the creeping part of the Tuaheni Landslide Complex (TLC), the base of the slide mass, and the Bottom Simulation Reflector (BSR) just above the base of the hole. Whereas gas hydrates could not be observed macroscopically, the distribution of gas hydrates was determined by logging while drilling (LWD) and pore water data revealing the occurrence of gas hydrates at roughly 105 – 160 mbsf with elevated saturations in thin coarse-grained sediments. The application of cryo-Scanning Electric Microscopy (cryo-SEM) on samples preserved in liquid nitrogen enabled the visualization of gas hydrates.
At Site U1517 the high-resolution void sampling reveals molecular and isotopic fractionation of hydrocarbons in close relation to the gas hydrate occurrences and allows for drawing conclusions on the recent history of the gas hydrate system and absence of free gas transport from below at the site. The molecular and isotopic composition further indicates ongoing propanogenesis.
How to cite: Heeschen, K., Schloemer, S., Torres, M., Cook, A. E., Screation, L., Georgiopoulou, A., Pecher, I., Mayanna, S., Barnes, P., Solomon, E., and LeVay, L.: Distribution and fractionation of light hydrocarbons related to gas hydrate occurrence and biogenic production at Hikurangi Margin (IODP Site U1517), New Zealand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15046, https://doi.org/10.5194/egusphere-egu2020-15046, 2020.
EGU2020-1038 | Displays | BG5.2
A method to differentiate hydrocarbon source (oil vs methane) in authigenic carbonate rock from seepsYuedong Sun, Shanggui Gong, Niu Li, Jörn Peckmann, Meng Jin, Harry H. Roberts, Duofu Chen, and Dong Feng
Abstract
Numerous marine hydrocarbon seeps have been discovered in the past three decades, the majority of which are dominated by methane-rich fluids. However, an increasing number of modern oil seeps and a few ancient oil-seep deposits have been recognized in recent years. Oil seepage exerts significant control on the composition of the seep-dwelling fauna and may have impacted the marine carbon cycle through geological time to a greater extent than previously recognized. Yet, distinguishing oil-seep from methane-seep deposits is difficult in cases where δ13Ccarb values are higher than approximately -30‰ due to mixing of different carbon sources. Here, we present a comparative study of authigenic carbonates from oil-dominated (site GC232) and methane-dominated (site GC852) seep environments of the northern Gulf of Mexico, aiming to determine the geochemical characteristics of the two types of seep carbonates. We analyzed (1) Major and trace element compositions of carbonates, (2) total organic carbon (TOC), total nitrogen (TN) and carbon isotope (δ13CTOC) of residue after decalcification, (3) sulfur isotope signatures of chromium reducible sulfur (CRS, δ34SCRS) and residue after CRS extraction (δ34STOS ), as well as (4) sulfur contents (TOS) of residue after CRS extraction. Carbonates from the studied oil seep are dominated by aragonite and exhibit lower δ34SCRS values, suggesting carbonate precipitation close to the sediment surface. In addition, oil-seep carbonates are characterized by higher TOC and TOS contents and higher TOC/TN ratios, as well as less negative δ13CTOC values compared to methane-seep carbonates, probably reflecting a contribution of residual crude oil enclosed in oil-seep carbonates. Very low δ13CTOC values (as low as −68.7‰, VPDB) and low TOC/TN ratios of methane-seep carbonates indicate that the enclosed organic matter is derived mainly from the biomass of methanotrophic biota. This study presents new geochemical data that will allow the discrimination of oil-seep from methane-seep deposits. Although some of the geochemical patterns are likely to be affected by late diagenesis, if applied with caution, such patterns can be used to discern the two end-member types of seepage – oil seeps and methane seeps – in the geological record.
How to cite: Sun, Y., Gong, S., Li, N., Peckmann, J., Jin, M., H. Roberts, H., Chen, D., and Feng, D.: A method to differentiate hydrocarbon source (oil vs methane) in authigenic carbonate rock from seeps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1038, https://doi.org/10.5194/egusphere-egu2020-1038, 2020.
Abstract
Numerous marine hydrocarbon seeps have been discovered in the past three decades, the majority of which are dominated by methane-rich fluids. However, an increasing number of modern oil seeps and a few ancient oil-seep deposits have been recognized in recent years. Oil seepage exerts significant control on the composition of the seep-dwelling fauna and may have impacted the marine carbon cycle through geological time to a greater extent than previously recognized. Yet, distinguishing oil-seep from methane-seep deposits is difficult in cases where δ13Ccarb values are higher than approximately -30‰ due to mixing of different carbon sources. Here, we present a comparative study of authigenic carbonates from oil-dominated (site GC232) and methane-dominated (site GC852) seep environments of the northern Gulf of Mexico, aiming to determine the geochemical characteristics of the two types of seep carbonates. We analyzed (1) Major and trace element compositions of carbonates, (2) total organic carbon (TOC), total nitrogen (TN) and carbon isotope (δ13CTOC) of residue after decalcification, (3) sulfur isotope signatures of chromium reducible sulfur (CRS, δ34SCRS) and residue after CRS extraction (δ34STOS ), as well as (4) sulfur contents (TOS) of residue after CRS extraction. Carbonates from the studied oil seep are dominated by aragonite and exhibit lower δ34SCRS values, suggesting carbonate precipitation close to the sediment surface. In addition, oil-seep carbonates are characterized by higher TOC and TOS contents and higher TOC/TN ratios, as well as less negative δ13CTOC values compared to methane-seep carbonates, probably reflecting a contribution of residual crude oil enclosed in oil-seep carbonates. Very low δ13CTOC values (as low as −68.7‰, VPDB) and low TOC/TN ratios of methane-seep carbonates indicate that the enclosed organic matter is derived mainly from the biomass of methanotrophic biota. This study presents new geochemical data that will allow the discrimination of oil-seep from methane-seep deposits. Although some of the geochemical patterns are likely to be affected by late diagenesis, if applied with caution, such patterns can be used to discern the two end-member types of seepage – oil seeps and methane seeps – in the geological record.
How to cite: Sun, Y., Gong, S., Li, N., Peckmann, J., Jin, M., H. Roberts, H., Chen, D., and Feng, D.: A method to differentiate hydrocarbon source (oil vs methane) in authigenic carbonate rock from seeps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1038, https://doi.org/10.5194/egusphere-egu2020-1038, 2020.
EGU2020-21868 | Displays | BG5.2
Methane hydrate mobilization by ice stream erosion during the last glacialPavel Serov, Henry Patton, Malin Waage, Calvin Shackleton, Jurgen Mienert, Karin Andreassen, and Alun Hubbard
During the past ~2.6 Ma, some 30 glaciations have caused episodic high pressure and low temperature conditions and forced growth and decay of extensive subglacial methane hydrate accumulations globally. Research on Arctic methane release has primarily focused on warm, interglacial episodes when hydrates became unstable across territories either abandoned by former ice sheets or affected by permafrost degradation. Here we present a new mechanism – the subglacial erosion of gas hydrate-bearing sediments – that actively mobilizes methane in hydrate and dissolved form and delivers it to the ice sheet margin. We investigate this mechanism using geophysical imaging and ice sheet/gas hydrate modeling focused on a study site in Storfjordrenna, that hosted large ice stream draining the Barents Sea ice sheet. During the last glacial, we find that this ice stream overrode an extensive cluster of conduits that supplied a continuous methane flux from a deep, thermogenic source and delivered it to the subglacial environment. Our analysis reveals that 15,000 to 44,000 m3 of gas hydrates were subglacially eroded from the 17 km2 study site and transported to the shelf-edge. Given the abundance of natural gas reservoirs across the Barents Sea and marine-based glaciated petroleum provinces elsewhere, we propose that this mechanism had the potential to mobilize a substantial flux of subglacial methane throughout multiple Quaternary glacial episodes.
How to cite: Serov, P., Patton, H., Waage, M., Shackleton, C., Mienert, J., Andreassen, K., and Hubbard, A.: Methane hydrate mobilization by ice stream erosion during the last glacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21868, https://doi.org/10.5194/egusphere-egu2020-21868, 2020.
During the past ~2.6 Ma, some 30 glaciations have caused episodic high pressure and low temperature conditions and forced growth and decay of extensive subglacial methane hydrate accumulations globally. Research on Arctic methane release has primarily focused on warm, interglacial episodes when hydrates became unstable across territories either abandoned by former ice sheets or affected by permafrost degradation. Here we present a new mechanism – the subglacial erosion of gas hydrate-bearing sediments – that actively mobilizes methane in hydrate and dissolved form and delivers it to the ice sheet margin. We investigate this mechanism using geophysical imaging and ice sheet/gas hydrate modeling focused on a study site in Storfjordrenna, that hosted large ice stream draining the Barents Sea ice sheet. During the last glacial, we find that this ice stream overrode an extensive cluster of conduits that supplied a continuous methane flux from a deep, thermogenic source and delivered it to the subglacial environment. Our analysis reveals that 15,000 to 44,000 m3 of gas hydrates were subglacially eroded from the 17 km2 study site and transported to the shelf-edge. Given the abundance of natural gas reservoirs across the Barents Sea and marine-based glaciated petroleum provinces elsewhere, we propose that this mechanism had the potential to mobilize a substantial flux of subglacial methane throughout multiple Quaternary glacial episodes.
How to cite: Serov, P., Patton, H., Waage, M., Shackleton, C., Mienert, J., Andreassen, K., and Hubbard, A.: Methane hydrate mobilization by ice stream erosion during the last glacial, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21868, https://doi.org/10.5194/egusphere-egu2020-21868, 2020.
EGU2020-21949 | Displays | BG5.2
Fluid dynamics at the base of hydrate-bearing sediments at the Vestnesa Ridge inferred from 5 years of high-resolution 4D seismic surveyingMalin Waage, Stefan Bünz, Kate Waghorn, Sunny Singhorha, and Pavel Serov
The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.
Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.
How to cite: Waage, M., Bünz, S., Waghorn, K., Singhorha, S., and Serov, P.: Fluid dynamics at the base of hydrate-bearing sediments at the Vestnesa Ridge inferred from 5 years of high-resolution 4D seismic surveying, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21949, https://doi.org/10.5194/egusphere-egu2020-21949, 2020.
The transition from gas hydrate to gas-bearing sediments at the base of the hydrate stability zone (BHSZ) is commonly identified on seismic data as a bottom-simulating reflection (BSR). At this boundary, phase transitions driven by thermal effects, pressure alternations, and gas and water flux exist. Sedimentation, erosion, subsidence, uplift, variations in bottom water temperature or heat flow cause changes in marine gas hydrate stability leading to expansion or reduction of gas hydrate accumulations and associated free gas accumulations. Pressure build-up in gas accumulations trapped beneath the hydrate layer may eventually lead to fracturing of hydrate-bearing sediments that enables advection of fluids into the hydrate layer and potentially seabed seepage. Depletion of gas along zones of weakness creates hydraulic gradients in the free gas zone where gas is forced to migrate along the lower hydrate boundary towards these weakness zones. However, due to lack of “real time” data, the magnitude and timescales of processes at the gas hydrate – gas contact zone remains largely unknown. Here we show results of high resolution 4D seismic surveys at a prominent Arctic gas hydrate accumulation – Vestnesa ridge - capturing dynamics of the gas hydrate and free gas accumulations over 5 years. The 4D time-lapse seismic method has the potential to identify and monitor fluid movement in the subsurface over certain time intervals. Although conventional 4D seismic has a long history of application to monitor fluid changes in petroleum reservoirs, high-resolution seismic data (20-300 Hz) as a tool for 4D fluid monitoring of natural geological processes has been recently identified.
Our 4D data set consists of four high-resolution P-Cable 3D seismic surveys acquired between 2012 and 2017 in the eastern segment of Vestnesa Ridge. Vestnesa Ridge has an active fluid and gas hydrate system in a contourite drift setting near the Knipovich Ridge offshore W-Svalbard. Large gas flares, ~800 m tall rise from seafloor pockmarks (~700 m diameter) at the ridge axis. Beneath the pockmarks, gas chimneys pierce the hydrate stability zone, and a strong, widespread BSR occurs at depth of 160-180 m bsf. 4D seismic datasets reveal changes in subsurface fluid distribution near the BHSZ on Vestnesa Ridge. In particular, the amplitude along the BSR reflection appears to change across surveys. Disappearance of bright reflections suggest that gas-rich fluids have escaped the free gas zone and possibly migrated into the hydrate stability zone and contributed to a gas hydrate accumulation, or alternatively, migrated laterally along the BSR. Appearance of bright reflection might also indicate lateral migration, ongoing microbial or thermogenic gas supply or be related to other phase transitions. We document that faults, chimneys and lithology constrain these anomalies imposing yet another control on vertical and lateral gas migration and accumulation. These time-lapse differences suggest that (1) we can resolve fluid changes on a year-year timescale in this natural seepage system using high-resolution P-Cable data and (2) that fluids accumulate at, migrate to and migrate from the BHSZ over the same time scale.
How to cite: Waage, M., Bünz, S., Waghorn, K., Singhorha, S., and Serov, P.: Fluid dynamics at the base of hydrate-bearing sediments at the Vestnesa Ridge inferred from 5 years of high-resolution 4D seismic surveying, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21949, https://doi.org/10.5194/egusphere-egu2020-21949, 2020.
EGU2020-7945 | Displays | BG5.2 | Highlight
Long-term multibeam monitoring of natural methane seepage offshore Prins Karls Forland, SvalbardManuel Moser, Benoît Bergès, Alfred Hanssen, and Bénédicte Ferré
Natural methane seepage from the seafloor to the hydrosphere occurs worldwide in marine environments, from continental shelves to deep-sea basins. Depending on water depth, methane fluxes from the sediment to the water column and mixing rate of the seawater, methane may partially reach the atmosphere where it could contribute to the global greenhouse effect. This can be observed from hydro-acoustic systems during research surveys. However, natural gas emission is not a continuous process and may vary in intensity and frequency. It is therefore necessary to study the temporal variability of methane seeps using long-term observation methods. One sensitive, accurate and reliable way to do this is by hydro-acoustic systems mounted on ocean observatories.
Here we present new long-term hydro-acoustic monitoring data from a known highly active seepage site offshore Prins Karls Forland, Svalbard. The data were acquired by a horizontally looking M3 multibeam echosounder system that was mounted on a benthic ocean observatory from October 2016 to July 2017. Our preliminary results show the presence of several individual seeps in the vicinity (<40 m) of the observatory throughout the observation period. Their activity patterns vary from non-existent to constant phases. We present the frequency of appearance and changes of the observed seeps over time. The first results confirm that methane seepage is not a constant process and emphasize the importance of long-term monitoring of methane seeps with regard to reliable flux rates estimates for a more accurate impact assessment on the climate.
The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT.
How to cite: Moser, M., Bergès, B., Hanssen, A., and Ferré, B.: Long-term multibeam monitoring of natural methane seepage offshore Prins Karls Forland, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7945, https://doi.org/10.5194/egusphere-egu2020-7945, 2020.
Natural methane seepage from the seafloor to the hydrosphere occurs worldwide in marine environments, from continental shelves to deep-sea basins. Depending on water depth, methane fluxes from the sediment to the water column and mixing rate of the seawater, methane may partially reach the atmosphere where it could contribute to the global greenhouse effect. This can be observed from hydro-acoustic systems during research surveys. However, natural gas emission is not a continuous process and may vary in intensity and frequency. It is therefore necessary to study the temporal variability of methane seeps using long-term observation methods. One sensitive, accurate and reliable way to do this is by hydro-acoustic systems mounted on ocean observatories.
Here we present new long-term hydro-acoustic monitoring data from a known highly active seepage site offshore Prins Karls Forland, Svalbard. The data were acquired by a horizontally looking M3 multibeam echosounder system that was mounted on a benthic ocean observatory from October 2016 to July 2017. Our preliminary results show the presence of several individual seeps in the vicinity (<40 m) of the observatory throughout the observation period. Their activity patterns vary from non-existent to constant phases. We present the frequency of appearance and changes of the observed seeps over time. The first results confirm that methane seepage is not a constant process and emphasize the importance of long-term monitoring of methane seeps with regard to reliable flux rates estimates for a more accurate impact assessment on the climate.
The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT.
How to cite: Moser, M., Bergès, B., Hanssen, A., and Ferré, B.: Long-term multibeam monitoring of natural methane seepage offshore Prins Karls Forland, Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7945, https://doi.org/10.5194/egusphere-egu2020-7945, 2020.
EGU2020-4602 | Displays | BG5.2
Biogeochemical processes in continental slope sediments of the Dongsha Area, South China SeaTiantian Sun, Daidai Wu, and Ying Ye
Serving as an indicator or fluid seepage from seabed sediments, cold seeps are ubiquitous along continental margins worldwide. In this study, a 14 m long sediment core (# 973-4) from the Dongsha Area on the northern continental slope of the South China Sea, was investigated to trace the cold seep activity and sedimentary paleo-environmental changes and its consequence for sediment mineralogy, contents of major and trace elements, total organic and inorganic carbon and total TRIS (total reducible inorganic sulfur) and δ34S of sulfide minerals. In addition, planktonic foraminifera were selected for accelerator mass spectrometer carbon 14 (AMS14C) dating [1]. Furthermore, we identified the strength and effects of cold seep activity and its impact on the underlying seawater redox condition, and finally elucidated the derived force and paleoenvironment constraints of cold seep activity. C-S-Fe geochemistry, δ34S of sulfide minerals and major and trace elements suggest that anaerobic oxidation of methane (AOM) occurred at 619-900 cmbsf (centimeters below seafloor). The 34S enrichments (up to 23.6 ‰), abundant TRIS contents, high S/C ratios close to the seawater, together with high enrichments of Mo indicate temporal sulfidic methane seep events. Lithological distribution and AMS14C dating of planktonic foraminifera show that a turbidite (~35ka) is related to a foram-rich interval (440-619 cm) and increased carbonate productivity during the Last Glacial Maximum (LGM). An enrichment of Mo and U was observed accompanied by low contents of other trace and major (Al, Ti, V, Ni, Fe, Mn and Cu) in this interval. The foram-rich interval of cold seep sediments was probably linked to the phenomenon of inconsecutive sedimentary sequence due to the turbidites, which resulted in the lack of Fe, Mn and Ba. Based on the new results, it can be speculated that this area has experienced several episodes of methane seep activity and aerobic oxidation occurring alternatively in the last glacial period which may have been caused by fluctuating non-steady conditions. Further exploration of AOM should focus on the impact of rapid deposition, especially the impact of turbidites on sedimentary biogeochemical processes.
[1] Zhang Bidong, Pan Mengdi, Wu Daidai etc. Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. J. Asian Earth Sciences.
The research supported by the Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (no. ISEE2018YB03) and the special project for marine economy development of Guangdong Province (no. GDME-2018D002).
How to cite: Sun, T., Wu, D., and Ye, Y.: Biogeochemical processes in continental slope sediments of the Dongsha Area, South China Sea , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4602, https://doi.org/10.5194/egusphere-egu2020-4602, 2020.
Serving as an indicator or fluid seepage from seabed sediments, cold seeps are ubiquitous along continental margins worldwide. In this study, a 14 m long sediment core (# 973-4) from the Dongsha Area on the northern continental slope of the South China Sea, was investigated to trace the cold seep activity and sedimentary paleo-environmental changes and its consequence for sediment mineralogy, contents of major and trace elements, total organic and inorganic carbon and total TRIS (total reducible inorganic sulfur) and δ34S of sulfide minerals. In addition, planktonic foraminifera were selected for accelerator mass spectrometer carbon 14 (AMS14C) dating [1]. Furthermore, we identified the strength and effects of cold seep activity and its impact on the underlying seawater redox condition, and finally elucidated the derived force and paleoenvironment constraints of cold seep activity. C-S-Fe geochemistry, δ34S of sulfide minerals and major and trace elements suggest that anaerobic oxidation of methane (AOM) occurred at 619-900 cmbsf (centimeters below seafloor). The 34S enrichments (up to 23.6 ‰), abundant TRIS contents, high S/C ratios close to the seawater, together with high enrichments of Mo indicate temporal sulfidic methane seep events. Lithological distribution and AMS14C dating of planktonic foraminifera show that a turbidite (~35ka) is related to a foram-rich interval (440-619 cm) and increased carbonate productivity during the Last Glacial Maximum (LGM). An enrichment of Mo and U was observed accompanied by low contents of other trace and major (Al, Ti, V, Ni, Fe, Mn and Cu) in this interval. The foram-rich interval of cold seep sediments was probably linked to the phenomenon of inconsecutive sedimentary sequence due to the turbidites, which resulted in the lack of Fe, Mn and Ba. Based on the new results, it can be speculated that this area has experienced several episodes of methane seep activity and aerobic oxidation occurring alternatively in the last glacial period which may have been caused by fluctuating non-steady conditions. Further exploration of AOM should focus on the impact of rapid deposition, especially the impact of turbidites on sedimentary biogeochemical processes.
[1] Zhang Bidong, Pan Mengdi, Wu Daidai etc. Distribution and isotopic composition of foraminifera at cold-seep Site 973-4 in the Dongsha area, northeastern South China Sea. J. Asian Earth Sciences.
The research supported by the Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences (no. ISEE2018YB03) and the special project for marine economy development of Guangdong Province (no. GDME-2018D002).
How to cite: Sun, T., Wu, D., and Ye, Y.: Biogeochemical processes in continental slope sediments of the Dongsha Area, South China Sea , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4602, https://doi.org/10.5194/egusphere-egu2020-4602, 2020.
EGU2020-7898 | Displays | BG5.2 | Highlight
Biogeochemical signature of elevated methane in water column of the outer East Siberian Arctic ShelfDongHun Lee, Ji-Hoon Kim, Yung Mi Lee, Young Keun Jin, and Kyung-Hoon Shin
The East Siberian Arctic Shelf (ESAS) had high methane concentrations in the seawater of the inner shelf over the decades, which was regarded as significant methane source for global warming. The source information of elevated dissolved methane at the inner ESAS has so far been reported, however, the characterizations (i.e., formation and transport) of enriched ones in the outer ESAS remain to date still unclear. To unravel this, we have reported methane properties along south-north transects of the outer ESAS (73.7°-77.1°N and 164.3°-178.0°E, water depths; 41-370m) performed from 2016, 2018 and 2019 ARAON Expeditions. The dissolved methane concentrations in surface seawater were mostly higher than those of the atmospheric equilibrium concentration and its maximum value in the water column of the outer ESAS hotspots had ca. 204 nM. Based on principal component analysis including CTD profiles (i.e., temperature, salinity, dissolved oxygen and fluorescence) and methane concentrations, elevated methane concentrations (88 to 204 nM) were close to fluorescence concentrations (0.1 to 0.4 mg/m3). Furthermore, the isotopic signatures of dissolved methane (δ13C; -66.6 to -26.6‰ and δD; -218.8 to -34.0‰) and dissolved inorganic carbon (δ13C; -10.1 to -4.4‰) showed large isotopic variations, indicating the methane production in the study area is likely to be complicated using carbon dioxide and methyl substrates. In this regard, organic matter preserved in the submerged permafrost and/or methyl compound produced by phytoplankton might be also potential substrates for elevated methane at some locations. In the near future, mass balance model via end-member approach will be applied for determining the discriminative contributions of possible methane sources in the outer ESAS.
How to cite: Lee, D., Kim, J.-H., Lee, Y. M., Jin, Y. K., and Shin, K.-H.: Biogeochemical signature of elevated methane in water column of the outer East Siberian Arctic Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7898, https://doi.org/10.5194/egusphere-egu2020-7898, 2020.
The East Siberian Arctic Shelf (ESAS) had high methane concentrations in the seawater of the inner shelf over the decades, which was regarded as significant methane source for global warming. The source information of elevated dissolved methane at the inner ESAS has so far been reported, however, the characterizations (i.e., formation and transport) of enriched ones in the outer ESAS remain to date still unclear. To unravel this, we have reported methane properties along south-north transects of the outer ESAS (73.7°-77.1°N and 164.3°-178.0°E, water depths; 41-370m) performed from 2016, 2018 and 2019 ARAON Expeditions. The dissolved methane concentrations in surface seawater were mostly higher than those of the atmospheric equilibrium concentration and its maximum value in the water column of the outer ESAS hotspots had ca. 204 nM. Based on principal component analysis including CTD profiles (i.e., temperature, salinity, dissolved oxygen and fluorescence) and methane concentrations, elevated methane concentrations (88 to 204 nM) were close to fluorescence concentrations (0.1 to 0.4 mg/m3). Furthermore, the isotopic signatures of dissolved methane (δ13C; -66.6 to -26.6‰ and δD; -218.8 to -34.0‰) and dissolved inorganic carbon (δ13C; -10.1 to -4.4‰) showed large isotopic variations, indicating the methane production in the study area is likely to be complicated using carbon dioxide and methyl substrates. In this regard, organic matter preserved in the submerged permafrost and/or methyl compound produced by phytoplankton might be also potential substrates for elevated methane at some locations. In the near future, mass balance model via end-member approach will be applied for determining the discriminative contributions of possible methane sources in the outer ESAS.
How to cite: Lee, D., Kim, J.-H., Lee, Y. M., Jin, Y. K., and Shin, K.-H.: Biogeochemical signature of elevated methane in water column of the outer East Siberian Arctic Shelf, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7898, https://doi.org/10.5194/egusphere-egu2020-7898, 2020.
EGU2020-6792 | Displays | BG5.2
Methane emissions from abandoned offshore wells– First data from a 2019 research cruise to the Dogger Bank, German North SeaMartin Blumenberg, Stefan Schlömer, Miriam Römer, Katja Heeschen, Hendrik Müller, Udo Barckhausen, Simon Müller, and Katrin Schwalenberg
Methane is the second most important greenhouse gas and, considering a period of 100 years, has a more than 30 times higher “global warming potential” than carbon dioxide. Emissions from the production, storage, distribution and use of fossil energy resources in recent years sum up to about 15 % of global methane emissions with numbers still being under discussion and topic of numerous research programs.
Abandoned oil and gas wells are one of the sources of methane from the oil and gas sector. Recent studies found escaping methane at selected abandoned drill holes in the central North Sea. Assuming this would hold for one third of the ~11.000 wells in the region, the process would introduce significant amounts of methane at shallow water depth. Interestingly, the collected methane was of biogenic rather than thermogenic origin, potentially escaping from shallow gas pockets. Likely, this methane was mobilized by mechanical disturbance of the sediments through the drilling operation and the well section has served as a pathway thereafter. However, little is known about the number of wells affected and the relevance for the amounts of methane realeased.
During a research cruise with the German research vessel Heincke in July, 2019, we studied seafloor characteristics, water column anomalies and sediment methane geochemistry and further inspected visually nine abandoned well sites at ~40 m water depth in the German sector of the central North Sea (Dogger Bank). The cruise targeted different situations, including known seeps in the Dutch part of the Dogger Bank, well sites of different ages and an area where abandoned wells penetrate shallow gas pockets. First data demonstrate that at none of the studied sites concentrations of dissolved methane were enriched in the upper water column. For most sites, sediment and deep water methane data demonstrate concentrations in the range known as background for that area (i.e., deep water methane close to ~ 10 nM). At one site with high indications for the presence of shallow gas pockets, we observed methane abundances several times enriched compared to background. However, the enrichments also occurred 500 m away from the drill site and did not increase towards the center. Based on our data we argue for an active natural seep situation rather than a leaking well and underline that natural seeps may challenge the identification of potentially leaking wells.
How to cite: Blumenberg, M., Schlömer, S., Römer, M., Heeschen, K., Müller, H., Barckhausen, U., Müller, S., and Schwalenberg, K.: Methane emissions from abandoned offshore wells– First data from a 2019 research cruise to the Dogger Bank, German North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6792, https://doi.org/10.5194/egusphere-egu2020-6792, 2020.
Methane is the second most important greenhouse gas and, considering a period of 100 years, has a more than 30 times higher “global warming potential” than carbon dioxide. Emissions from the production, storage, distribution and use of fossil energy resources in recent years sum up to about 15 % of global methane emissions with numbers still being under discussion and topic of numerous research programs.
Abandoned oil and gas wells are one of the sources of methane from the oil and gas sector. Recent studies found escaping methane at selected abandoned drill holes in the central North Sea. Assuming this would hold for one third of the ~11.000 wells in the region, the process would introduce significant amounts of methane at shallow water depth. Interestingly, the collected methane was of biogenic rather than thermogenic origin, potentially escaping from shallow gas pockets. Likely, this methane was mobilized by mechanical disturbance of the sediments through the drilling operation and the well section has served as a pathway thereafter. However, little is known about the number of wells affected and the relevance for the amounts of methane realeased.
During a research cruise with the German research vessel Heincke in July, 2019, we studied seafloor characteristics, water column anomalies and sediment methane geochemistry and further inspected visually nine abandoned well sites at ~40 m water depth in the German sector of the central North Sea (Dogger Bank). The cruise targeted different situations, including known seeps in the Dutch part of the Dogger Bank, well sites of different ages and an area where abandoned wells penetrate shallow gas pockets. First data demonstrate that at none of the studied sites concentrations of dissolved methane were enriched in the upper water column. For most sites, sediment and deep water methane data demonstrate concentrations in the range known as background for that area (i.e., deep water methane close to ~ 10 nM). At one site with high indications for the presence of shallow gas pockets, we observed methane abundances several times enriched compared to background. However, the enrichments also occurred 500 m away from the drill site and did not increase towards the center. Based on our data we argue for an active natural seep situation rather than a leaking well and underline that natural seeps may challenge the identification of potentially leaking wells.
How to cite: Blumenberg, M., Schlömer, S., Römer, M., Heeschen, K., Müller, H., Barckhausen, U., Müller, S., and Schwalenberg, K.: Methane emissions from abandoned offshore wells– First data from a 2019 research cruise to the Dogger Bank, German North Sea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6792, https://doi.org/10.5194/egusphere-egu2020-6792, 2020.
EGU2020-8425 | Displays | BG5.2 | Highlight
Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea, leading to a response from eutrophication and heatwavesAlberto V. Borges, Colin Royer, Jon Lapeyra Martin, Mary I Scranton, Willy Champenois, and Nathalie Gypens
Dissolved CH4 concentrations in the Belgian coastal zone (BCZ) (North Sea) ranged between 1607 nmol L-1 near-shore and 4 nmol L-1 off-shore during field cruises in 2016, 2017, 2018 and 2019. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In near-shore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM rich sediments. In off-shore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the Chlorophyll-a spring peak, suggesting that in these OM poor sediments, methanogenesis depended on freshly produced OM delivery. The annual average CH4 emission was 126 mmol m-2 yr-1 in the most near-shore stations (~4 km from the coast) and 28 mmol m-2 yr-1 in the most off-shore stations (~23 km from the coast), 1,260 to 280 times higher than the open ocean average value (0.1 mmol m-2 yr-1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area. This is also supported by the response to the European heatwave of 2018 that led to record-breaking temperatures in many countries across northern and central Europe. Average seawater temperature in July was 2.5°C higher than the mean from 2004 to 2017 for same month in the BCZ. The mean dissolved CH4 concentration in surface waters in July 2018 (338 nmol L-1) was three times higher than in July 2016 (110 nmol L-1), and an extremely high dissolved CH4 concentration in surface waters (1,607 nmol L-1) was observed at one near-shore station. The high dissolved CH4 concentrations in surface waters in the BCZ in July 2018 seemed to be due to a combination of enhancement of methanogenesis and of release of CH4 from gassy sediments, both most likely related to warmer conditions. The emission of CH4 from the BCZ to the atmosphere was higher in 2018 compared to 2016 by 57% in July (599 versus 382 µmol m-2 d-1) and by 37% at annual scale (221 versus 161 µmol m-2 d-1). The European heatwave of 2018 seems to have led to a major increase of CH4 concentrations in surface waters and CH4 emissions to the atmosphere in the BCZ.
How to cite: Borges, A. V., Royer, C., Lapeyra Martin, J., Scranton, M. I., Champenois, W., and Gypens, N.: Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea, leading to a response from eutrophication and heatwaves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8425, https://doi.org/10.5194/egusphere-egu2020-8425, 2020.
Dissolved CH4 concentrations in the Belgian coastal zone (BCZ) (North Sea) ranged between 1607 nmol L-1 near-shore and 4 nmol L-1 off-shore during field cruises in 2016, 2017, 2018 and 2019. Spatial variations of CH4 were related to sediment organic matter (OM) content and gassy sediments. In near-shore stations with fine sand or muddy sediments, the CH4 seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM rich sediments. In off-shore stations with permeable sediments, the CH4 seasonal cycle showed a yearly peak following the Chlorophyll-a spring peak, suggesting that in these OM poor sediments, methanogenesis depended on freshly produced OM delivery. The annual average CH4 emission was 126 mmol m-2 yr-1 in the most near-shore stations (~4 km from the coast) and 28 mmol m-2 yr-1 in the most off-shore stations (~23 km from the coast), 1,260 to 280 times higher than the open ocean average value (0.1 mmol m-2 yr-1). The strong control of CH4 by sediment OM content and by temperature suggests that marine coastal CH4 emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH4 concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area. This is also supported by the response to the European heatwave of 2018 that led to record-breaking temperatures in many countries across northern and central Europe. Average seawater temperature in July was 2.5°C higher than the mean from 2004 to 2017 for same month in the BCZ. The mean dissolved CH4 concentration in surface waters in July 2018 (338 nmol L-1) was three times higher than in July 2016 (110 nmol L-1), and an extremely high dissolved CH4 concentration in surface waters (1,607 nmol L-1) was observed at one near-shore station. The high dissolved CH4 concentrations in surface waters in the BCZ in July 2018 seemed to be due to a combination of enhancement of methanogenesis and of release of CH4 from gassy sediments, both most likely related to warmer conditions. The emission of CH4 from the BCZ to the atmosphere was higher in 2018 compared to 2016 by 57% in July (599 versus 382 µmol m-2 d-1) and by 37% at annual scale (221 versus 161 µmol m-2 d-1). The European heatwave of 2018 seems to have led to a major increase of CH4 concentrations in surface waters and CH4 emissions to the atmosphere in the BCZ.
How to cite: Borges, A. V., Royer, C., Lapeyra Martin, J., Scranton, M. I., Champenois, W., and Gypens, N.: Productivity and temperature as drivers of seasonal and spatial variations of dissolved methane in the Southern Bight of the North Sea, leading to a response from eutrophication and heatwaves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8425, https://doi.org/10.5194/egusphere-egu2020-8425, 2020.
EGU2020-5241 | Displays | BG5.2
Methane distribution at high spatial resolution in North Sea estuariesIngeborg Bussmann, Holger Brix, Philipp Fischer, and Götz Flöser
Rivers are suspected to be a main suppliers of greenhouse gases (methane and carbon dioxide) to coastal seas, while the role of the interjacent tidal flats is still ambiguous. In this study we investigated the role of the Elbe and Weser estuaries as source of methane to the North Sea. We used high spatially resolved methane measurements from an underway degassing system and subsequent analysis with cavity ring down spectroscopy. Thus, a high-resolution representation of the methane distribution in surface waters as well as of hydrographic parameters was obtained for several cruises with two ships in 2019. For most areas, riverine methane was simply diluted by seawater, overlain by a strong tidal signal. However, on several occasions unexpectedly high methane concentrations were observed. Further detailed analysis will elucidate the role of riverine versus tidal impact on coastal North Sea methane fluxes.
How to cite: Bussmann, I., Brix, H., Fischer, P., and Flöser, G.: Methane distribution at high spatial resolution in North Sea estuaries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5241, https://doi.org/10.5194/egusphere-egu2020-5241, 2020.
Rivers are suspected to be a main suppliers of greenhouse gases (methane and carbon dioxide) to coastal seas, while the role of the interjacent tidal flats is still ambiguous. In this study we investigated the role of the Elbe and Weser estuaries as source of methane to the North Sea. We used high spatially resolved methane measurements from an underway degassing system and subsequent analysis with cavity ring down spectroscopy. Thus, a high-resolution representation of the methane distribution in surface waters as well as of hydrographic parameters was obtained for several cruises with two ships in 2019. For most areas, riverine methane was simply diluted by seawater, overlain by a strong tidal signal. However, on several occasions unexpectedly high methane concentrations were observed. Further detailed analysis will elucidate the role of riverine versus tidal impact on coastal North Sea methane fluxes.
How to cite: Bussmann, I., Brix, H., Fischer, P., and Flöser, G.: Methane distribution at high spatial resolution in North Sea estuaries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5241, https://doi.org/10.5194/egusphere-egu2020-5241, 2020.
EGU2020-9670 | Displays | BG5.2
Drivers of methane variability in Arctic pondsZoé Rehder, Anna Zaplavnova, and Lars Kutzbach
Arctic ponds are significant sources of methane, but their overall contribution to pan-Arctic methane emissions is still uncertain. Ponds come in different sizes and shapes, which are associated with different stages of permafrost degradation. Methane concentrations and fluxes show large spatiotemporal variability. To better understand this variability, as a first step towards upscaling pond methane emissions, we studied 41 ponds in the Lena River Delta, northeast Siberia. We collected water samples at different locations and depths in each pond and determined methane concentrations using gas chromatography. Additionally, we collected information on the geomorphology, vegetation cover as well as on key physical and chemical properties of the ponds and combined them with meteorological data.
The ponds are divided into three geomorphological types with distinct differences in methane concentrations: water-filled degraded polygon centers, water-filled interpolygonal troughs and larger collapsed and merged polygons. These ponds exhibit mean surface methane concentrations (with standard deviation) of 1.2 ± 1.3 μmol L-1, 4.3 ± 4.9 μmol L-1 and 0.9 ± 0.7 μmol L-1 respectively, while mean bottom methane concentrations amount to 102.6 ± 145.4 μmol L-1, 263.3 ± 275.6 μmol L-1 and 17.0 ± 34.1 μmol L-1. Using principle components and multiple linear regressions, we show that a large portion of spatial variability can be explained by the ponds’ shape and vegetation. Merged ponds have the least relative vegetation cover, and they also tend to be better mixed, both of which explains the lowest methane concentrations and the lowest variability in these ponds. Vegetation covers larger fractions in polygon centers and troughs, leading to a larger methane variability. Finally, troughs, as they are underlain by ice wedges, exhibit more pronounced stratification and the highest methane concentrations. More results will be presented at the conference.
How to cite: Rehder, Z., Zaplavnova, A., and Kutzbach, L.: Drivers of methane variability in Arctic ponds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9670, https://doi.org/10.5194/egusphere-egu2020-9670, 2020.
Arctic ponds are significant sources of methane, but their overall contribution to pan-Arctic methane emissions is still uncertain. Ponds come in different sizes and shapes, which are associated with different stages of permafrost degradation. Methane concentrations and fluxes show large spatiotemporal variability. To better understand this variability, as a first step towards upscaling pond methane emissions, we studied 41 ponds in the Lena River Delta, northeast Siberia. We collected water samples at different locations and depths in each pond and determined methane concentrations using gas chromatography. Additionally, we collected information on the geomorphology, vegetation cover as well as on key physical and chemical properties of the ponds and combined them with meteorological data.
The ponds are divided into three geomorphological types with distinct differences in methane concentrations: water-filled degraded polygon centers, water-filled interpolygonal troughs and larger collapsed and merged polygons. These ponds exhibit mean surface methane concentrations (with standard deviation) of 1.2 ± 1.3 μmol L-1, 4.3 ± 4.9 μmol L-1 and 0.9 ± 0.7 μmol L-1 respectively, while mean bottom methane concentrations amount to 102.6 ± 145.4 μmol L-1, 263.3 ± 275.6 μmol L-1 and 17.0 ± 34.1 μmol L-1. Using principle components and multiple linear regressions, we show that a large portion of spatial variability can be explained by the ponds’ shape and vegetation. Merged ponds have the least relative vegetation cover, and they also tend to be better mixed, both of which explains the lowest methane concentrations and the lowest variability in these ponds. Vegetation covers larger fractions in polygon centers and troughs, leading to a larger methane variability. Finally, troughs, as they are underlain by ice wedges, exhibit more pronounced stratification and the highest methane concentrations. More results will be presented at the conference.
How to cite: Rehder, Z., Zaplavnova, A., and Kutzbach, L.: Drivers of methane variability in Arctic ponds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9670, https://doi.org/10.5194/egusphere-egu2020-9670, 2020.
EGU2020-1509 | Displays | BG5.2
Implications of methane emissions in biogeochemical budgeting: A study from a eutrophic tropical lake of South IndiaRevathy Das, Appukuttan Pillai Krishnakumar, Krishnan AnoopKrishnan, and Vivekanandan Nandakumar
Greenhouse gases (GHGs), especially, methane (CH4) emissions from the littoral zones of the lakes play an important role in regional biogeochemical budgets. Only a few studies are available in literature highlighting the direct flux measurements of CH4 from the aquatic systems. In the present study, an attempt has been made to quantify the spatio-temporal variations of CH4 efflux and the key physical factors controlling the emission rate, from the vegetated littoral zones of lake Vellayani (5.55Km2), located in the urbanized area of Thiruvananthapuram city, Kerala, South-West India. CH4 efflux were collected from different vegetations in littoral zones, using a static chamber, during the peak growing seasons from March to October in 2016 and further analyses were carried out by using Gas Chromatograph (PE Clarus 500, PerkinElmer, Inc.). The mean efflux rate of CH4 from the emergent plant species (Phragmites australis and Typha spp.) was 114.4 mg CH4 m-2h-1; while, in the floating leaved species (Nymphaea spp. and Nelumbo Spp.), it was observed to be 32.6 mgCH4 m-2h-1. The results reveal that CH4 efflux in the zone of emergent vegetation was significantly higher than the floating-leaved zone indicating the importance of plant biomass and standing water depths for the spatial variations of CH4 efflux. However, no significant temporal variations were noticed in the physical factors during the peak growing seasons. These results indicate that the vegetated littoral zones of lake, especially the emergent plant zones were supersaturated with CH4, facilitating the production of carbon for CH4 emission, but also enable the release of CH4 by the diffusion from the intercellular gas lacunas. We conclude that the atmospheric CH4 emissions will be affected by the growth of exotic species in the lake systems and may be the reason for enhancing the climate warming in local/regional scale.
How to cite: Das, R., Krishnakumar, A. P., AnoopKrishnan, K., and Nandakumar, V.: Implications of methane emissions in biogeochemical budgeting: A study from a eutrophic tropical lake of South India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1509, https://doi.org/10.5194/egusphere-egu2020-1509, 2020.
Greenhouse gases (GHGs), especially, methane (CH4) emissions from the littoral zones of the lakes play an important role in regional biogeochemical budgets. Only a few studies are available in literature highlighting the direct flux measurements of CH4 from the aquatic systems. In the present study, an attempt has been made to quantify the spatio-temporal variations of CH4 efflux and the key physical factors controlling the emission rate, from the vegetated littoral zones of lake Vellayani (5.55Km2), located in the urbanized area of Thiruvananthapuram city, Kerala, South-West India. CH4 efflux were collected from different vegetations in littoral zones, using a static chamber, during the peak growing seasons from March to October in 2016 and further analyses were carried out by using Gas Chromatograph (PE Clarus 500, PerkinElmer, Inc.). The mean efflux rate of CH4 from the emergent plant species (Phragmites australis and Typha spp.) was 114.4 mg CH4 m-2h-1; while, in the floating leaved species (Nymphaea spp. and Nelumbo Spp.), it was observed to be 32.6 mgCH4 m-2h-1. The results reveal that CH4 efflux in the zone of emergent vegetation was significantly higher than the floating-leaved zone indicating the importance of plant biomass and standing water depths for the spatial variations of CH4 efflux. However, no significant temporal variations were noticed in the physical factors during the peak growing seasons. These results indicate that the vegetated littoral zones of lake, especially the emergent plant zones were supersaturated with CH4, facilitating the production of carbon for CH4 emission, but also enable the release of CH4 by the diffusion from the intercellular gas lacunas. We conclude that the atmospheric CH4 emissions will be affected by the growth of exotic species in the lake systems and may be the reason for enhancing the climate warming in local/regional scale.
How to cite: Das, R., Krishnakumar, A. P., AnoopKrishnan, K., and Nandakumar, V.: Implications of methane emissions in biogeochemical budgeting: A study from a eutrophic tropical lake of South India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1509, https://doi.org/10.5194/egusphere-egu2020-1509, 2020.
EGU2020-861 | Displays | BG5.2
Paddy soil fertilization, organic and inorganic alternative electron acceptors shape microbial community network and determine competitive pathways of Anaerobic Oxidation of MethaneLichao Fan
Anaerobic oxidation of methane (AOM) is a globally important CH4 sink that is offsetting potential CH4 emission into the atmosphere. The AOM depends on the availability of the alternative to oxygen electron acceptors (AEAs) which can be of inorganic (e.g. NO3-, Fe3+, SO42-), and organic (e.g. humic acids) origin. Flooded paddy soils are among the ecosystems with pronounced AOM. Due to a variety of fertilization practices, including combinations of mineral (NPK) and organic (pig manure, biochar) fertilizers, there is a range of AEAs available in paddy soil under anaerobic conditions. However, it remains unclear whether (i) AOM has a preferential pathway in paddy soil, and (ii) how do AEAs and fertilization type affect anaerobic microbial interactions. Therefore, we tested the effects of key AEAs – NO3-, Fe3+, SO42-, and humic acids – on bacterial community structure (by 16s rRNA gene sequencing) in paddy soil with ongoing AOM experiment under mineral and organic fertilization. We hypothesized that incorporation of labeled 13C-CH4 during AOM into CO2 and phospholipid fatty acid biomarkers (PLFA) along with co-occurrence bacterial network analysis will reveal the preferential AOM pathway as related to a type of fertilization.
Bacterial alpha-diversity was significantly increased after 84-day anaerobic incubation. Pig manure significantly increased the microbial biomass as compared with NPK and Biochar, but the AEAs amendment did not affect the biomass. Anaerobic incubation, fertilization treatments specific biochar and NPK, and AEAs amendments specific SO42- and humic acids were factors contributing to microbiome variation. Network analysis indicated that microbial communities involved in CH4 cycling (i.e. NC10, sulfate-reducing bacteria, Geobacter, syntrophic bacteria with methanogens and ANME-2) had non-random co-occurrence patterns and was modularized. There were 16 13C-enriched PLFA biomarkers confirming the incorporation of C-CH4 into bacteria. AOM and 13C-PLFA were significantly higher under Pig manure relative to other fertilizations. AOM was more intensive under NO3- than Fe3+ and humic acids, but was close to zero under SO42- amendment. However, the relative abundance of NC10 phylum which includes organisms performing AOM, and sulfate-reducing bacteria were higher under SO42-. The relative abundance of Geobacter was highest under biochar and NPK fertilization with SO42- and humic acids amendments. Taken together, NO3--driven AOM is the most potent AOM pathway in paddy soil, which however co-exists with the AOM pathways via reduction of NO2- by NC10 bacteria and reduction of Fe3+ and humic acids by consortia of ANME with Geobacter. Consequently, the co-occurrence network and evidence from 13C incorporation into CO2 and PLFAs indicate the multiple competitive pathways of AOM in paddy soil.
How to cite: Fan, L.: Paddy soil fertilization, organic and inorganic alternative electron acceptors shape microbial community network and determine competitive pathways of Anaerobic Oxidation of Methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-861, https://doi.org/10.5194/egusphere-egu2020-861, 2020.
Anaerobic oxidation of methane (AOM) is a globally important CH4 sink that is offsetting potential CH4 emission into the atmosphere. The AOM depends on the availability of the alternative to oxygen electron acceptors (AEAs) which can be of inorganic (e.g. NO3-, Fe3+, SO42-), and organic (e.g. humic acids) origin. Flooded paddy soils are among the ecosystems with pronounced AOM. Due to a variety of fertilization practices, including combinations of mineral (NPK) and organic (pig manure, biochar) fertilizers, there is a range of AEAs available in paddy soil under anaerobic conditions. However, it remains unclear whether (i) AOM has a preferential pathway in paddy soil, and (ii) how do AEAs and fertilization type affect anaerobic microbial interactions. Therefore, we tested the effects of key AEAs – NO3-, Fe3+, SO42-, and humic acids – on bacterial community structure (by 16s rRNA gene sequencing) in paddy soil with ongoing AOM experiment under mineral and organic fertilization. We hypothesized that incorporation of labeled 13C-CH4 during AOM into CO2 and phospholipid fatty acid biomarkers (PLFA) along with co-occurrence bacterial network analysis will reveal the preferential AOM pathway as related to a type of fertilization.
Bacterial alpha-diversity was significantly increased after 84-day anaerobic incubation. Pig manure significantly increased the microbial biomass as compared with NPK and Biochar, but the AEAs amendment did not affect the biomass. Anaerobic incubation, fertilization treatments specific biochar and NPK, and AEAs amendments specific SO42- and humic acids were factors contributing to microbiome variation. Network analysis indicated that microbial communities involved in CH4 cycling (i.e. NC10, sulfate-reducing bacteria, Geobacter, syntrophic bacteria with methanogens and ANME-2) had non-random co-occurrence patterns and was modularized. There were 16 13C-enriched PLFA biomarkers confirming the incorporation of C-CH4 into bacteria. AOM and 13C-PLFA were significantly higher under Pig manure relative to other fertilizations. AOM was more intensive under NO3- than Fe3+ and humic acids, but was close to zero under SO42- amendment. However, the relative abundance of NC10 phylum which includes organisms performing AOM, and sulfate-reducing bacteria were higher under SO42-. The relative abundance of Geobacter was highest under biochar and NPK fertilization with SO42- and humic acids amendments. Taken together, NO3--driven AOM is the most potent AOM pathway in paddy soil, which however co-exists with the AOM pathways via reduction of NO2- by NC10 bacteria and reduction of Fe3+ and humic acids by consortia of ANME with Geobacter. Consequently, the co-occurrence network and evidence from 13C incorporation into CO2 and PLFAs indicate the multiple competitive pathways of AOM in paddy soil.
How to cite: Fan, L.: Paddy soil fertilization, organic and inorganic alternative electron acceptors shape microbial community network and determine competitive pathways of Anaerobic Oxidation of Methane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-861, https://doi.org/10.5194/egusphere-egu2020-861, 2020.
EGU2020-9011 | Displays | BG5.2
Calibrating and validating a numerical model concept for microbially enhanced coal bed methane production with batch and column dataSimon Emmert, Katherine Davis, Robin Gerlach, and Holger Class
Microbially enhanced coal-bed methane (MECBM) production is an innovative idea to stimulate biogenic coal-bed methane production by providing nutrients to the native microbial community. Through additional substrate in the subsurface, a stimulation of microbes occurs, which leads to an increased methane production. Experimental studies, performed at Montana State University, provide the basis for modelling MECBM production with two-phase multi-component transport processes using the numerical simulator DuMuX [1].
We will present the calibrated and validated numerical batch model. The conceptual model comprises a food-web that includes two types of bacteria and three types of archaea representing substrate-specific members of the community with the corresponding biogeochemical reactions. These are derived from experimental studies [2]. The model is able to capture the interactions between different microbial groups, coal bioavailability, biofilm growth and decay as well as CH4 production.
The numerical batch model is extended to simulate column studies [3]. The model is being used to test hypotheses on different processes e.g. coal bioavailability and retardation or filtering effects when adding substrate. The numerical model provides a more detailed understanding of the relevant processes involved in MECBM production as well as a general understanding of biogeochemical reactions coupled with possibly changing flow and transport conditions in the subsurface. This model will be an instrumental tool in further development of a more sustainable method of harvesting methane from unmineable coal-beds.
[1] Koch, Timo, et al. "DuMuX3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling." arXiv preprint arXiv:1909.05052 (2019).
[2] Davis, Katherine J., et al. "Biogenic Coal-to-Methane Conversion Efficiency Decreases after Repeated Organic Amendment." Energy & fuels 32.3 (2018): 2916-2925.
[3] Davis, Katherine J., et al. "Biogenic coal-to-methane conversion can be enhanced with small additions of algal amendment in field-relevant upflow column reactors." Fuel 256 (2019): 115905.
How to cite: Emmert, S., Davis, K., Gerlach, R., and Class, H.: Calibrating and validating a numerical model concept for microbially enhanced coal bed methane production with batch and column data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9011, https://doi.org/10.5194/egusphere-egu2020-9011, 2020.
Microbially enhanced coal-bed methane (MECBM) production is an innovative idea to stimulate biogenic coal-bed methane production by providing nutrients to the native microbial community. Through additional substrate in the subsurface, a stimulation of microbes occurs, which leads to an increased methane production. Experimental studies, performed at Montana State University, provide the basis for modelling MECBM production with two-phase multi-component transport processes using the numerical simulator DuMuX [1].
We will present the calibrated and validated numerical batch model. The conceptual model comprises a food-web that includes two types of bacteria and three types of archaea representing substrate-specific members of the community with the corresponding biogeochemical reactions. These are derived from experimental studies [2]. The model is able to capture the interactions between different microbial groups, coal bioavailability, biofilm growth and decay as well as CH4 production.
The numerical batch model is extended to simulate column studies [3]. The model is being used to test hypotheses on different processes e.g. coal bioavailability and retardation or filtering effects when adding substrate. The numerical model provides a more detailed understanding of the relevant processes involved in MECBM production as well as a general understanding of biogeochemical reactions coupled with possibly changing flow and transport conditions in the subsurface. This model will be an instrumental tool in further development of a more sustainable method of harvesting methane from unmineable coal-beds.
[1] Koch, Timo, et al. "DuMuX3--an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling." arXiv preprint arXiv:1909.05052 (2019).
[2] Davis, Katherine J., et al. "Biogenic Coal-to-Methane Conversion Efficiency Decreases after Repeated Organic Amendment." Energy & fuels 32.3 (2018): 2916-2925.
[3] Davis, Katherine J., et al. "Biogenic coal-to-methane conversion can be enhanced with small additions of algal amendment in field-relevant upflow column reactors." Fuel 256 (2019): 115905.
How to cite: Emmert, S., Davis, K., Gerlach, R., and Class, H.: Calibrating and validating a numerical model concept for microbially enhanced coal bed methane production with batch and column data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9011, https://doi.org/10.5194/egusphere-egu2020-9011, 2020.
EGU2020-20924 | Displays | BG5.2
Effect of serpentinization on carbon speciation: an experiment with formic acidSamuel Barbier, Muriel Andreani, Eric C. Gaucher, Isabelle Daniel, Bénédicte Ménez, Vincent Grossi, Ingrid Antheaume, Emmanuelle Albalat, Clémentine Fellah, Hervé Cardon, Patrick Jame, Xavier Saupin, and Erik Bonjour
One of the principal theories about the origin of life is based on the abiotic reduction of carbon oxides to various organic molecules in hydrothermal systems. This synthesis is most favored in ultramafic environments undergoing hydrothermal alteration where the serpentinization reaction efficiently produces H2. Nevertheless, decades of hydrothermal experiments have hardly succeeded in producing abundant organic volatiles such as CH4 and short-chain hydrocarbons. On another hand, natural observations have shown the occurrence of other abiotic compounds such as organic acids in fluids and carbonaceous matter (CM) within serpentinized rocks. But organic acids as carbon source and CM as product have not been investigated so far in experiments reproducing hydrothermal peridotite alteration. Here, we explored the effect of formic acid (HCOOH) on the serpentinization reaction and possible feedback effects on carbon speciation in both fluid and solid. We performed reactions at 300°C and 250 bar using peridotite powder (<40 microns) in the presence of 0.1 M formic acid. A temperature of 300°C has been shown to be optimal for olivine serpentinization, while formic acid should partly decomposed into H2, CO, and CO2. After 4 months, H2, CO, CO2, CH4 and short-chain alkanes (mainly ethane) were measured in the fluid, and the powder was completely indurated. The solidified powder displayed a black and white layering perpendicular to fluid diffusion. Its analysis showed the advancement of the serpentinization reaction, and the incorporation of carbon compounds into the solid phase. XRD analysis indicated 70% of serpentinization. SEM-EDX observations showed peculiar texture with large and localized euhedral magnetite grains alternating with larger magnetite grains mixed with C-enriched areas of long chrysotile fibers. FT-IR measurement attested of the widespread formation of carbonaceous material in the solid. Liquid analyses are under progress. Those first results suggest that serpentine formation not only provides additional H2 to the system, but also mineral surfaces that could play a role in the precipitation of carbonaceous material and carbon speciation in natural systems. The nature and formation mechanisms of this latter remain to be addressed but this opens new paths for abiotic organic synthesis under hydrothermal conditions. In addition to their implications as an abiotic carbon source for deep hydrocarbon degraders ecosystems, it could have important implications for the total carbon cycle.
How to cite: Barbier, S., Andreani, M., Gaucher, E. C., Daniel, I., Ménez, B., Grossi, V., Antheaume, I., Albalat, E., Fellah, C., Cardon, H., Jame, P., Saupin, X., and Bonjour, E.: Effect of serpentinization on carbon speciation: an experiment with formic acid , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20924, https://doi.org/10.5194/egusphere-egu2020-20924, 2020.
One of the principal theories about the origin of life is based on the abiotic reduction of carbon oxides to various organic molecules in hydrothermal systems. This synthesis is most favored in ultramafic environments undergoing hydrothermal alteration where the serpentinization reaction efficiently produces H2. Nevertheless, decades of hydrothermal experiments have hardly succeeded in producing abundant organic volatiles such as CH4 and short-chain hydrocarbons. On another hand, natural observations have shown the occurrence of other abiotic compounds such as organic acids in fluids and carbonaceous matter (CM) within serpentinized rocks. But organic acids as carbon source and CM as product have not been investigated so far in experiments reproducing hydrothermal peridotite alteration. Here, we explored the effect of formic acid (HCOOH) on the serpentinization reaction and possible feedback effects on carbon speciation in both fluid and solid. We performed reactions at 300°C and 250 bar using peridotite powder (<40 microns) in the presence of 0.1 M formic acid. A temperature of 300°C has been shown to be optimal for olivine serpentinization, while formic acid should partly decomposed into H2, CO, and CO2. After 4 months, H2, CO, CO2, CH4 and short-chain alkanes (mainly ethane) were measured in the fluid, and the powder was completely indurated. The solidified powder displayed a black and white layering perpendicular to fluid diffusion. Its analysis showed the advancement of the serpentinization reaction, and the incorporation of carbon compounds into the solid phase. XRD analysis indicated 70% of serpentinization. SEM-EDX observations showed peculiar texture with large and localized euhedral magnetite grains alternating with larger magnetite grains mixed with C-enriched areas of long chrysotile fibers. FT-IR measurement attested of the widespread formation of carbonaceous material in the solid. Liquid analyses are under progress. Those first results suggest that serpentine formation not only provides additional H2 to the system, but also mineral surfaces that could play a role in the precipitation of carbonaceous material and carbon speciation in natural systems. The nature and formation mechanisms of this latter remain to be addressed but this opens new paths for abiotic organic synthesis under hydrothermal conditions. In addition to their implications as an abiotic carbon source for deep hydrocarbon degraders ecosystems, it could have important implications for the total carbon cycle.
How to cite: Barbier, S., Andreani, M., Gaucher, E. C., Daniel, I., Ménez, B., Grossi, V., Antheaume, I., Albalat, E., Fellah, C., Cardon, H., Jame, P., Saupin, X., and Bonjour, E.: Effect of serpentinization on carbon speciation: an experiment with formic acid , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20924, https://doi.org/10.5194/egusphere-egu2020-20924, 2020.
EGU2020-9070 | Displays | BG5.2
Low-cost methane (CH4) sensors for use in in flux chambersDavid Bastviken, Jonatan Nygren, Jonathan Schenk, Roser Parrelada Massana, and Nguyen Thanh Duc
The lack of reliable low-cost greenhouse gas flux measurement approaches limit our ability quantify regulation and verify mitigation efforts at the local level. Methane (CH4), one of the most important greenhouse gases, is particularly dependent on local measurements because levels are regulated by a complex combination of sources, sinks and environmental conditions. There are still major gaps in the global methane budget and the reasons for the irregular development over time remains unclear. Facilitation of local flux measurements in all parts of the world therefore seem important to constrain large-scale assessments. As the high cost of gas analysers is a limiting factor for flux measurements, we here present how low-cost CH4 sensors can be used outside their specified range to yield reasonably accurate chamber-based flux measurements. By using a two-step calibration approach, testing multiple alternatives on how to model interference from temperature and humidity, an R2 ≥ 0.99 was achieved over a CH4 concentration range of 2 – 700 ppm under variable temperature and relative humidity. We also demonstrate ways to reach such calibration results without complicated calibration experiments and instead using in the order of 20 in situ reference measurements at different environmental conditions. Finally we, constructed and described a make-it-yourself Arduino based logger with the tested sensors for CH4, temperature, humidity and carbon dioxide (CO2) intended for flux chamber use with a material cost of approximately 200 Euro. We hope that this can contribute to more widespread greenhouse gas flux measurements in many environments and countries.
How to cite: Bastviken, D., Nygren, J., Schenk, J., Massana, R. P., and Duc, N. T.: Low-cost methane (CH4) sensors for use in in flux chambers , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9070, https://doi.org/10.5194/egusphere-egu2020-9070, 2020.
The lack of reliable low-cost greenhouse gas flux measurement approaches limit our ability quantify regulation and verify mitigation efforts at the local level. Methane (CH4), one of the most important greenhouse gases, is particularly dependent on local measurements because levels are regulated by a complex combination of sources, sinks and environmental conditions. There are still major gaps in the global methane budget and the reasons for the irregular development over time remains unclear. Facilitation of local flux measurements in all parts of the world therefore seem important to constrain large-scale assessments. As the high cost of gas analysers is a limiting factor for flux measurements, we here present how low-cost CH4 sensors can be used outside their specified range to yield reasonably accurate chamber-based flux measurements. By using a two-step calibration approach, testing multiple alternatives on how to model interference from temperature and humidity, an R2 ≥ 0.99 was achieved over a CH4 concentration range of 2 – 700 ppm under variable temperature and relative humidity. We also demonstrate ways to reach such calibration results without complicated calibration experiments and instead using in the order of 20 in situ reference measurements at different environmental conditions. Finally we, constructed and described a make-it-yourself Arduino based logger with the tested sensors for CH4, temperature, humidity and carbon dioxide (CO2) intended for flux chamber use with a material cost of approximately 200 Euro. We hope that this can contribute to more widespread greenhouse gas flux measurements in many environments and countries.
How to cite: Bastviken, D., Nygren, J., Schenk, J., Massana, R. P., and Duc, N. T.: Low-cost methane (CH4) sensors for use in in flux chambers , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9070, https://doi.org/10.5194/egusphere-egu2020-9070, 2020.
BG5.3 – Extreme environments, mud volcanoes and hydrothermal systems on Earth and planetary analogues: biology, stratigraphy, structure, evolution and monitoring of active and fossil settings
EGU2020-3344 | Displays | BG5.3 | Highlight
The effects of climate change on the Atacama Desert as a pertinent Mars analog modelArmando Azua-Bustos and Alberto G. Fairén
Since 2003 the Atacama Desert in northern Chile is well-known as Mars analog model due to its extreme aridity, high UV radiation and highly saline soils containing highly oxidizing chemical species. Is in this frame that our team and others for the past decades have described a number of sites in the Atacama and their pertinence as Mars analog. However, since 2015 a number of climatic events never reported before have affected the Atacama, thought to be caused by climate change, with effects yet to be fully understood. Given that new instruments, techniques and rovers are, and will be tested in the Atacama before to be sent to Mars, is critical to be aware of these changes in order to properly plan new explorations and testing missions in this desert. Here we present some of the evidences of the changes brought by these environmental alterations, suggesting also the regions of the Atacama that still may be less or unaffected by them.
How to cite: Azua-Bustos, A. and G. Fairén, A.: The effects of climate change on the Atacama Desert as a pertinent Mars analog model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3344, https://doi.org/10.5194/egusphere-egu2020-3344, 2020.
Since 2003 the Atacama Desert in northern Chile is well-known as Mars analog model due to its extreme aridity, high UV radiation and highly saline soils containing highly oxidizing chemical species. Is in this frame that our team and others for the past decades have described a number of sites in the Atacama and their pertinence as Mars analog. However, since 2015 a number of climatic events never reported before have affected the Atacama, thought to be caused by climate change, with effects yet to be fully understood. Given that new instruments, techniques and rovers are, and will be tested in the Atacama before to be sent to Mars, is critical to be aware of these changes in order to properly plan new explorations and testing missions in this desert. Here we present some of the evidences of the changes brought by these environmental alterations, suggesting also the regions of the Atacama that still may be less or unaffected by them.
How to cite: Azua-Bustos, A. and G. Fairén, A.: The effects of climate change on the Atacama Desert as a pertinent Mars analog model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3344, https://doi.org/10.5194/egusphere-egu2020-3344, 2020.
EGU2020-12720 | Displays | BG5.3
A characterization of microbial diversity in the Winter Wonderland Ice Cave, Uinta Mountains, Utah, USAMiranda Seixas, Erin Eggleston, Jeffrey Munroe, and David Herron
Winter Wonderland is an ice cave in the Uinta Mountains of northern Utah, USA. The cave, which has an entrance at 3140 m a.s.l., extends 245 m into a north facing cliff of Mississippi Madison Limestone. The cave was discovered by the U.S. Forest Service in 2014. Winter Wonderland Ice Cave likely originated in the Late Mississippian to Early Pennsylvanian when joints opened up in the vadose zone. The interior of the cave is perennially below freezing with ice covering sections of the floor to a thickness of at least 2 m. Seasonally, meltwater from the epikarst enters the cave, pools on the surface of the older ice and freezes, creating a layered ice mass containing organic matter dating back several centuries. As this water freezes, cryogenic cave carbonates (CCCs) precipitate and are incorporated in the ice. In this study, ice, water, and mineral precipitates in the cave were investigated for the presence of microorganisms adapted to this extreme environment. Samples were collected to investigate the microbial communities that may be present within the Winter Wonderland ice cave, identify what they are, and investigate whether the composition of the microbial community changes spatially within the cave and between sample types. An intact block of ice (18x10x10 cm), liquid water samples (n=8), and 13 CCC samples were collected in August 2019. The ice block was removed from a vertical exposure of ice at the back of the cave using a hand saw, water was collected from a pool on the ice surface, and the CCCs were sampled from the surface of the ice in multiple sections of the cave. The water samples were analyzed for stable isotope composition to better understand water source and freezing history. Crystallographic study of oriented slides cut from the ice revealed that the ice crystallized vertically with some variation in crystal size. All samples were also investigated with fluorescence microscopy, flow cytometry, and DNA sequencing to reveal the abundance and type of microorganisms. Preliminary fluorescence microscopy and SEM imaging reveals the presence of cocci and bacilli type microorganisms within water samples and ~10um wide eukaryotic organisms within the CCCs, suggesting that the CCCs may provide much needed nutrients for the microbes or that the CCCs themselves are products of biomineralization.
How to cite: Seixas, M., Eggleston, E., Munroe, J., and Herron, D.: A characterization of microbial diversity in the Winter Wonderland Ice Cave, Uinta Mountains, Utah, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12720, https://doi.org/10.5194/egusphere-egu2020-12720, 2020.
Winter Wonderland is an ice cave in the Uinta Mountains of northern Utah, USA. The cave, which has an entrance at 3140 m a.s.l., extends 245 m into a north facing cliff of Mississippi Madison Limestone. The cave was discovered by the U.S. Forest Service in 2014. Winter Wonderland Ice Cave likely originated in the Late Mississippian to Early Pennsylvanian when joints opened up in the vadose zone. The interior of the cave is perennially below freezing with ice covering sections of the floor to a thickness of at least 2 m. Seasonally, meltwater from the epikarst enters the cave, pools on the surface of the older ice and freezes, creating a layered ice mass containing organic matter dating back several centuries. As this water freezes, cryogenic cave carbonates (CCCs) precipitate and are incorporated in the ice. In this study, ice, water, and mineral precipitates in the cave were investigated for the presence of microorganisms adapted to this extreme environment. Samples were collected to investigate the microbial communities that may be present within the Winter Wonderland ice cave, identify what they are, and investigate whether the composition of the microbial community changes spatially within the cave and between sample types. An intact block of ice (18x10x10 cm), liquid water samples (n=8), and 13 CCC samples were collected in August 2019. The ice block was removed from a vertical exposure of ice at the back of the cave using a hand saw, water was collected from a pool on the ice surface, and the CCCs were sampled from the surface of the ice in multiple sections of the cave. The water samples were analyzed for stable isotope composition to better understand water source and freezing history. Crystallographic study of oriented slides cut from the ice revealed that the ice crystallized vertically with some variation in crystal size. All samples were also investigated with fluorescence microscopy, flow cytometry, and DNA sequencing to reveal the abundance and type of microorganisms. Preliminary fluorescence microscopy and SEM imaging reveals the presence of cocci and bacilli type microorganisms within water samples and ~10um wide eukaryotic organisms within the CCCs, suggesting that the CCCs may provide much needed nutrients for the microbes or that the CCCs themselves are products of biomineralization.
How to cite: Seixas, M., Eggleston, E., Munroe, J., and Herron, D.: A characterization of microbial diversity in the Winter Wonderland Ice Cave, Uinta Mountains, Utah, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12720, https://doi.org/10.5194/egusphere-egu2020-12720, 2020.
EGU2020-12203 | Displays | BG5.3
Linking decay of microbial mats and dolomite formation in the sabkhas of QatarZach Diloreto, Maria Dittrich, Tomaso Bontognali, Hamad Al Saad Al Kuwari, and Judith A. McKenzie
The sabkhas of Qatar are excellent environments to examine the mechanisms of low-temperature dolomite precipitation. The detailed microbial and geochemical analysis of the dynamics in environmental conditions in two microbial mats over two years provide a unique opportunity to gain insights in low-temperature dolomite formation in modern time. The compositions of extracted exopolymeric substances (EPS) in two microbial mats, one within the lower intertidal zone and one within the upper intertidal zone exhibit an increase in the concentration of carboxylic functional groups during periods of elevated salinity. We interpret it as an indicator for dolomite formation since carboxylic functional groups are suggested to be the primary drivers for low-temperature dolomite as nucleation sites and inhibitors of Mg complexes. Notably, the increase in the concentration of the carboxylic group is associated with an increase in salinity in sabkha which happened periodically.
These fluctuations have been accompanied by the changes in the community from cyanobacterial dominated mat to one dominated by heterotrophs. During these periodical events, when a growing microbial mat turned into degrading microbial mat, we observed low-temperature dolomite formation. Such events occur in other modern dolomite forming environments and possibly in ancient sequences. Our work observed dynamical changes both in microbial mats, exopolymeric substances composition, geochemical gradients and accompanied low-temperature dolomite formation over several seasons. Our findings proving evidence that EPS degradation within microbial mats is a key mechanism in the formation of modern and most probable, ancient low-temperature dolomite with implications for those formed in ancient sequences.
How to cite: Diloreto, Z., Dittrich, M., Bontognali, T., Al Saad Al Kuwari, H., and A. McKenzie, J.: Linking decay of microbial mats and dolomite formation in the sabkhas of Qatar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12203, https://doi.org/10.5194/egusphere-egu2020-12203, 2020.
The sabkhas of Qatar are excellent environments to examine the mechanisms of low-temperature dolomite precipitation. The detailed microbial and geochemical analysis of the dynamics in environmental conditions in two microbial mats over two years provide a unique opportunity to gain insights in low-temperature dolomite formation in modern time. The compositions of extracted exopolymeric substances (EPS) in two microbial mats, one within the lower intertidal zone and one within the upper intertidal zone exhibit an increase in the concentration of carboxylic functional groups during periods of elevated salinity. We interpret it as an indicator for dolomite formation since carboxylic functional groups are suggested to be the primary drivers for low-temperature dolomite as nucleation sites and inhibitors of Mg complexes. Notably, the increase in the concentration of the carboxylic group is associated with an increase in salinity in sabkha which happened periodically.
These fluctuations have been accompanied by the changes in the community from cyanobacterial dominated mat to one dominated by heterotrophs. During these periodical events, when a growing microbial mat turned into degrading microbial mat, we observed low-temperature dolomite formation. Such events occur in other modern dolomite forming environments and possibly in ancient sequences. Our work observed dynamical changes both in microbial mats, exopolymeric substances composition, geochemical gradients and accompanied low-temperature dolomite formation over several seasons. Our findings proving evidence that EPS degradation within microbial mats is a key mechanism in the formation of modern and most probable, ancient low-temperature dolomite with implications for those formed in ancient sequences.
How to cite: Diloreto, Z., Dittrich, M., Bontognali, T., Al Saad Al Kuwari, H., and A. McKenzie, J.: Linking decay of microbial mats and dolomite formation in the sabkhas of Qatar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12203, https://doi.org/10.5194/egusphere-egu2020-12203, 2020.
EGU2020-1581 | Displays | BG5.3
The waterbodies of the Dallol volcano: A physico-chemical and geo-microbial surveyHugo Moors, Miroslav Honty, Carla Smolders, Ann Provoost, Mieke De Craen, and Natalie Leys
The geological extreme Dallol region, located around the Dallol volcano in the north-east of Danakil depression (Ethiopia), is considered as one of the harshest and hottest places on Earth. The geology is made up of years and years of evaporates accumulation. Volcanic activity generates ascending brines that may cross and mix with aquifers from inflowing meteoric water originating from the Ethiopian highlands on the east of the Danakil depression. When these mixtures reach the surface they can generate hydrothermal springs giving rise to waterbodies in the form of small ponds or lakes. During the Europlanet 2018 Danakil field expedition, ten of these saline waterbodies were extensively studied by in situ measurements and ex situ geo–physico-chemical and –microbiological analyses of collected samples, liquids as well as sediments.
The in situ physico-chemical measurements clearly indicated the extreme nature of all ten investigated lakes. Laboratory analyses of the collected batch samples of liquids and sediments confirmed the extreme character of the waterbodies and complements our geological survey of the region with valuable geo–chemical and –microbiological data.
Based on our analytical results, the relative small Dallol region can still be subdivided into three geological smaller areas: the outcrop zone, the volcanic base region and the distant south area. The outcrop zone is dominated by sodium, iron and potassium. Oxidation processes in the outflowing superheated ferrous and sulfidic rich brine give rise to some of the most acidic ponds on our planet. In the ponds and lakes of the volcanic base region, incredible high amounts of calcium and/or magnesium can remain in their dissolved form as the most dominant and quasi only available anion is chloride. This region is host for the most saline water body on Earth. Chemical analysis of the lakes of the distant south area show that sodium is by far the most dominant cation. It is therefore no surprise that the large Karum Lake in the south region is economically exploited for the mining of sodium chloride.
Our mineralogy analyses render results that are completely in line with the observed geochemistry of the waterbodies. Halite and sylvite are the most present minerals in the Dallol outcrop zone associated with some gypsum and in one case with anhydrite. The geology around the waterbodies of volcanic base zone are a little bit more divers. On the shores of the Gaet’ale Pond tachyhydrite, chloromagnesite, halite and sylvite is determined, while the Black Lake is surrounded by bischofite and carnalite. Logically, the mineralogy of the south area, the salt mining area, is dominated by halite and sylvite.
Apparently, the geochemistry of the outcrop zone and volcanic base region is so harsh that no extremophilic organism is able to survive in these areas. Only in the distant south area did we find indications of the presence of halophiles. Besides the bacterial genus Salinibacter, our 16S rDNA microbiological fingerprinting indicates the presence of halophilic archaea like: Halobaculum sp., Halobellus sp., Halomicroarcula sp., Halorientalis sp. with the majority of the population being Candidatus Nanosalina sp.
How to cite: Moors, H., Honty, M., Smolders, C., Provoost, A., De Craen, M., and Leys, N.: The waterbodies of the Dallol volcano: A physico-chemical and geo-microbial survey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1581, https://doi.org/10.5194/egusphere-egu2020-1581, 2020.
The geological extreme Dallol region, located around the Dallol volcano in the north-east of Danakil depression (Ethiopia), is considered as one of the harshest and hottest places on Earth. The geology is made up of years and years of evaporates accumulation. Volcanic activity generates ascending brines that may cross and mix with aquifers from inflowing meteoric water originating from the Ethiopian highlands on the east of the Danakil depression. When these mixtures reach the surface they can generate hydrothermal springs giving rise to waterbodies in the form of small ponds or lakes. During the Europlanet 2018 Danakil field expedition, ten of these saline waterbodies were extensively studied by in situ measurements and ex situ geo–physico-chemical and –microbiological analyses of collected samples, liquids as well as sediments.
The in situ physico-chemical measurements clearly indicated the extreme nature of all ten investigated lakes. Laboratory analyses of the collected batch samples of liquids and sediments confirmed the extreme character of the waterbodies and complements our geological survey of the region with valuable geo–chemical and –microbiological data.
Based on our analytical results, the relative small Dallol region can still be subdivided into three geological smaller areas: the outcrop zone, the volcanic base region and the distant south area. The outcrop zone is dominated by sodium, iron and potassium. Oxidation processes in the outflowing superheated ferrous and sulfidic rich brine give rise to some of the most acidic ponds on our planet. In the ponds and lakes of the volcanic base region, incredible high amounts of calcium and/or magnesium can remain in their dissolved form as the most dominant and quasi only available anion is chloride. This region is host for the most saline water body on Earth. Chemical analysis of the lakes of the distant south area show that sodium is by far the most dominant cation. It is therefore no surprise that the large Karum Lake in the south region is economically exploited for the mining of sodium chloride.
Our mineralogy analyses render results that are completely in line with the observed geochemistry of the waterbodies. Halite and sylvite are the most present minerals in the Dallol outcrop zone associated with some gypsum and in one case with anhydrite. The geology around the waterbodies of volcanic base zone are a little bit more divers. On the shores of the Gaet’ale Pond tachyhydrite, chloromagnesite, halite and sylvite is determined, while the Black Lake is surrounded by bischofite and carnalite. Logically, the mineralogy of the south area, the salt mining area, is dominated by halite and sylvite.
Apparently, the geochemistry of the outcrop zone and volcanic base region is so harsh that no extremophilic organism is able to survive in these areas. Only in the distant south area did we find indications of the presence of halophiles. Besides the bacterial genus Salinibacter, our 16S rDNA microbiological fingerprinting indicates the presence of halophilic archaea like: Halobaculum sp., Halobellus sp., Halomicroarcula sp., Halorientalis sp. with the majority of the population being Candidatus Nanosalina sp.
How to cite: Moors, H., Honty, M., Smolders, C., Provoost, A., De Craen, M., and Leys, N.: The waterbodies of the Dallol volcano: A physico-chemical and geo-microbial survey, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1581, https://doi.org/10.5194/egusphere-egu2020-1581, 2020.
EGU2020-15205 | Displays | BG5.3
New insights into the magmatic system southeast of El Hierro from high-resolution 2D seismic dataKai-Frederik Lenz, Felix Gross, Andreas Klügel, Rachel Barrett, Philipp Held, Katja Lindhorst, Paul Wintersteller, and Sebastian Krastel
A new high-resolution seismic dataset is used to investigate the distribution and influence of different phases of magmatic activity in the southeast of El Hierro, Canary Islands. The Canary Archipelago off NW-Africa has largely been formed over the past 20 Myr, but older volcanic edifices exist. One of those older edifices is Henry Seamount, an extinct 126 Ma volcano located 40 km southeast of El Hierro, the youngest (1.1 Ma) and westernmost of the Canary Islands. Hence, the area southeast of El Hierro is influenced by both older and younger magmatic activity. We also found evidence for comparatively young volcanic activity at Henry Seamount, probably contemporaneous to El Hierro. Therefore, a complex magmatic system is assumed to have resulted in the different phases of magmatic activity.
A detailed high-resolution 2D seismic reflection dataset was collected in an area between El Hierro and Henry Seamount during RV Meteor expedition M146 in 2018 to image the expressions of this magmatic system in the upper sub-surface. Several acoustic blanking zones were discovered and identified as the most prominent features in this seismic dataset. We classify these blanking zones into three different types. Type 1 blanking zones are related to volcanic edifices, which crop out at the seafloor and cut through all imaged sedimentary units. Type 2 blanking zones are characterised by upward bending of adjacent reflectors and are most likely caused by hydrothermal doming resulting from saucer-shaped sill intrusions. Type 3 blanking zones cut clearly through adjacent reflectors, and are probably related to fluids or gases that were mobilized by the sill intrusions. The type 1 and 2 blanking zones cluster in the central part of the working area, whereas the blanking zones of type 3 are located on the outskirts. This specific distribution and the occurrence of the varying blanking zone types are combined to make a conceptual model of this complex magmatic system. Our model takes sill intrusions, hydrothermal doming, as well as volcanic out-crops and mobilized fluids into account. Therefore, this study provides new insights into the magmatic evolution of the youngest Canary Island, which can help to achieve a better understanding of the whole system.
How to cite: Lenz, K.-F., Gross, F., Klügel, A., Barrett, R., Held, P., Lindhorst, K., Wintersteller, P., and Krastel, S.: New insights into the magmatic system southeast of El Hierro from high-resolution 2D seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15205, https://doi.org/10.5194/egusphere-egu2020-15205, 2020.
A new high-resolution seismic dataset is used to investigate the distribution and influence of different phases of magmatic activity in the southeast of El Hierro, Canary Islands. The Canary Archipelago off NW-Africa has largely been formed over the past 20 Myr, but older volcanic edifices exist. One of those older edifices is Henry Seamount, an extinct 126 Ma volcano located 40 km southeast of El Hierro, the youngest (1.1 Ma) and westernmost of the Canary Islands. Hence, the area southeast of El Hierro is influenced by both older and younger magmatic activity. We also found evidence for comparatively young volcanic activity at Henry Seamount, probably contemporaneous to El Hierro. Therefore, a complex magmatic system is assumed to have resulted in the different phases of magmatic activity.
A detailed high-resolution 2D seismic reflection dataset was collected in an area between El Hierro and Henry Seamount during RV Meteor expedition M146 in 2018 to image the expressions of this magmatic system in the upper sub-surface. Several acoustic blanking zones were discovered and identified as the most prominent features in this seismic dataset. We classify these blanking zones into three different types. Type 1 blanking zones are related to volcanic edifices, which crop out at the seafloor and cut through all imaged sedimentary units. Type 2 blanking zones are characterised by upward bending of adjacent reflectors and are most likely caused by hydrothermal doming resulting from saucer-shaped sill intrusions. Type 3 blanking zones cut clearly through adjacent reflectors, and are probably related to fluids or gases that were mobilized by the sill intrusions. The type 1 and 2 blanking zones cluster in the central part of the working area, whereas the blanking zones of type 3 are located on the outskirts. This specific distribution and the occurrence of the varying blanking zone types are combined to make a conceptual model of this complex magmatic system. Our model takes sill intrusions, hydrothermal doming, as well as volcanic out-crops and mobilized fluids into account. Therefore, this study provides new insights into the magmatic evolution of the youngest Canary Island, which can help to achieve a better understanding of the whole system.
How to cite: Lenz, K.-F., Gross, F., Klügel, A., Barrett, R., Held, P., Lindhorst, K., Wintersteller, P., and Krastel, S.: New insights into the magmatic system southeast of El Hierro from high-resolution 2D seismic data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15205, https://doi.org/10.5194/egusphere-egu2020-15205, 2020.
EGU2020-3673 | Displays | BG5.3 | Highlight
Earthquake triggering of mud volcanoes and fluid seepage systems in fold-and-thrust belts and subduction zonesMarco Bonini and Daniele Maestrelli
Various types of fluid expulsion features occur often at fold-and-thrust belts and subduction zones. The seepage features originate from the discharge and extrusion to the topographic surface of fluids, gases and possibly solid material, which are sourced from in-depth reservoirs. Earthquakes can occasionally trigger the eruption or increased activity of mud volcanoes and other seepage systems. The role of static and dynamic stress changes in the triggering will vary depending on the position of the seepage features with respect to the earthquake source fault. When the seepage system is controlled by faults that rupture and generate earthquakes, the role of static stress changes is likely to be influential. Subduction zones have the highest seismic potential on Earth, so large subduction earthquakes can stress massively the fault-controlled feeder systems of seepage features located above subduction thrusts. The potential role of coseismic static stress loading on fluid expulsion systems has been evaluated for accretionary and erosional subduction margins. The most significant effects occur in the epicentral area where subduction earthquakes can produce coseismic normal stress changes exceeding 20-40 bar, although these are generally restricted to relatively small regions. The magnitude of such stress changes may exceed the tensile strength of many rock anisotropies and increase crustal permeability by dilating fault-controlled conduits channeling fluids upwards. Also in fold-and-thrust belts seepage features may be associated with seismogenic faults. For instance, rupture of the Chihshang Fault (Taiwan) in 2003 produced the Mw6.8 Chengkung earthquake, which unclamped by 3 bar the feeder system of the nearby mud volcanoes that erupted shortly after the earthquake. A similar setting is also inferred for the seismogenic Pede-Apennine thrust system in northern Italy, which is also structurally controlling a number of mud volcanoes located on its hangingwall.
Seepage features can be often trigged off by dynamic stress changes created by earthquake faults located in the intermediate- to far-field. Peak dynamic stresses related to historical and recent earthquakes that produced a response of seepage systems in the Northern Apennines fold-and-thrust belt (Italy) are calculated through PGV (measured or evaluated through GMPEs). We document response of seepage systems to some historical and recent earthquakes. Some methane vents and springs showed paroxysmal activity that was influenced by peak dynamic stress of 0.3-0.4 bar, while mud volcanoes apparently showed lower sensitivity, being influenced by dynamic stresses with amplitude ranging between 0.5 and 3.5 bar. Recently, 17 mud volcanoes erupted shortly after the main seismic events of the 2016 Central Italy seismic sequence (Mwmax6.5), showing a clear correlation with peak dynamic stresses of the order of 2-4 bar (static stress changes are instead negligible or negative).
These results collectively suggest that seepage features may respond in different ways to dynamic and static stresses depending on earthquake magnitude and epicentral distances, and that they may show different sensitivity to stress changes. Dynamic stresses are likely to exert the dominant control on the triggering, even though static stress changes can also significantly influence seepage features in the near-field.
How to cite: Bonini, M. and Maestrelli, D.: Earthquake triggering of mud volcanoes and fluid seepage systems in fold-and-thrust belts and subduction zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3673, https://doi.org/10.5194/egusphere-egu2020-3673, 2020.
Various types of fluid expulsion features occur often at fold-and-thrust belts and subduction zones. The seepage features originate from the discharge and extrusion to the topographic surface of fluids, gases and possibly solid material, which are sourced from in-depth reservoirs. Earthquakes can occasionally trigger the eruption or increased activity of mud volcanoes and other seepage systems. The role of static and dynamic stress changes in the triggering will vary depending on the position of the seepage features with respect to the earthquake source fault. When the seepage system is controlled by faults that rupture and generate earthquakes, the role of static stress changes is likely to be influential. Subduction zones have the highest seismic potential on Earth, so large subduction earthquakes can stress massively the fault-controlled feeder systems of seepage features located above subduction thrusts. The potential role of coseismic static stress loading on fluid expulsion systems has been evaluated for accretionary and erosional subduction margins. The most significant effects occur in the epicentral area where subduction earthquakes can produce coseismic normal stress changes exceeding 20-40 bar, although these are generally restricted to relatively small regions. The magnitude of such stress changes may exceed the tensile strength of many rock anisotropies and increase crustal permeability by dilating fault-controlled conduits channeling fluids upwards. Also in fold-and-thrust belts seepage features may be associated with seismogenic faults. For instance, rupture of the Chihshang Fault (Taiwan) in 2003 produced the Mw6.8 Chengkung earthquake, which unclamped by 3 bar the feeder system of the nearby mud volcanoes that erupted shortly after the earthquake. A similar setting is also inferred for the seismogenic Pede-Apennine thrust system in northern Italy, which is also structurally controlling a number of mud volcanoes located on its hangingwall.
Seepage features can be often trigged off by dynamic stress changes created by earthquake faults located in the intermediate- to far-field. Peak dynamic stresses related to historical and recent earthquakes that produced a response of seepage systems in the Northern Apennines fold-and-thrust belt (Italy) are calculated through PGV (measured or evaluated through GMPEs). We document response of seepage systems to some historical and recent earthquakes. Some methane vents and springs showed paroxysmal activity that was influenced by peak dynamic stress of 0.3-0.4 bar, while mud volcanoes apparently showed lower sensitivity, being influenced by dynamic stresses with amplitude ranging between 0.5 and 3.5 bar. Recently, 17 mud volcanoes erupted shortly after the main seismic events of the 2016 Central Italy seismic sequence (Mwmax6.5), showing a clear correlation with peak dynamic stresses of the order of 2-4 bar (static stress changes are instead negligible or negative).
These results collectively suggest that seepage features may respond in different ways to dynamic and static stresses depending on earthquake magnitude and epicentral distances, and that they may show different sensitivity to stress changes. Dynamic stresses are likely to exert the dominant control on the triggering, even though static stress changes can also significantly influence seepage features in the near-field.
How to cite: Bonini, M. and Maestrelli, D.: Earthquake triggering of mud volcanoes and fluid seepage systems in fold-and-thrust belts and subduction zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3673, https://doi.org/10.5194/egusphere-egu2020-3673, 2020.
EGU2020-1271 | Displays | BG5.3
Peculiarities of mud volcanism in Lake BaikalGrigorii Akhmanov, Adriano Mazzini, Oleg Khlystov, Alina Kudaeva, and Olesia Vidishcheva
Baikal is the largest and oldest freshwater lake on Earth. This syn-rift thick sedimentary basin hosts a large variety of present-day geological sedimentary processes, among which focused fluid seepage, mud volcanism and gas hydrate accumulation, that manifests a relationship with hydrocarbon systems in the basin. Offshore mud volcanism is well known to be one of the geological phenomena that is often associated with the presence of gas hydrates all around the World. The almost ubiquitous coupling of these processes may be a key to understand distinctive “Baikalian” mud eruption process and the resulting mud volcanic deposits. So far twenty-two mud volcanoes (MVs) have been identified in different areas of the lake, and the identification of new structures, the formation processes, and their roots depth represent challenging topics for researchers. During the last five years numerous gas hydrate-bearing features with positive circular morphology have been identified at the bottom of the lake and these represent ideal candidates to be considered as mud volcanoes.
Most mud volcanoes worldwide are characterized by the presence of mud breccia. This melange of erupted sediments consist of clayey-silty-sandy matrix mixed with clasts of different sizes and lithologies representing mainly well-lithified fragments of the different formations pierced and brecciated through the MV feeder channel. Most of the offshore MVs share these characteristics, and this criteria has been used as an unambiguous evidence to classify new MV structures. A similar approach is hardly applicable for some of the investigated structures of Lake Baikal. Seismic images reveal that the conduits of these MV candidate structures are typically shallow rooted (<0.5 km blf). The lake is a deep sedimentary basin that has been characterized by high sedimentation rates since almost 25 Ma resulting in thick deposits that are unlithified in its top part. Therefore, the recovered sediment cores are barren by the typical presence of mud breccia lithified clasts which are characteristic for “classic” mud volcanic breccia.
Here we report a set of multidisciplinary studies (including petrography, geochemistry and tomography) conducted on mud breccia cores collected from several MVs of the Baikal. Sediment core observations revealed the presence of semi-lithified clayey clast seemingly broadly distributed in the structureless sediments. Petrography studies of the individual clast reveal that they differ in mineralogical composition, and their poor lithification indicates that they originate from shallow sediments. The otherwise invisible internal structure of the cored sediments has been studied with CT-scan. Results confirm that the recovered cores contain numerous semi-lithified clasts displaying different X-ray absorption and thus mineralogical content. The absence of sedimentary structures and a completely chaotic matrix indicates a vigorous mechanism (i.e. typically ongoing in mud volcano conduits) able to amalgam different lithologies. Geochemical analyses of the sediments pore gas show the presence of prevalently microbial methane further supporting microbial reactions that commonly occur at relatively shallow depths. Results are integrated in the regional geological context and combined with geophysical data to explain the mechanisms of eruption and the peculiar sedimentary texture that differs from the traditional MVs worldwide.
How to cite: Akhmanov, G., Mazzini, A., Khlystov, O., Kudaeva, A., and Vidishcheva, O.: Peculiarities of mud volcanism in Lake Baikal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1271, https://doi.org/10.5194/egusphere-egu2020-1271, 2020.
Baikal is the largest and oldest freshwater lake on Earth. This syn-rift thick sedimentary basin hosts a large variety of present-day geological sedimentary processes, among which focused fluid seepage, mud volcanism and gas hydrate accumulation, that manifests a relationship with hydrocarbon systems in the basin. Offshore mud volcanism is well known to be one of the geological phenomena that is often associated with the presence of gas hydrates all around the World. The almost ubiquitous coupling of these processes may be a key to understand distinctive “Baikalian” mud eruption process and the resulting mud volcanic deposits. So far twenty-two mud volcanoes (MVs) have been identified in different areas of the lake, and the identification of new structures, the formation processes, and their roots depth represent challenging topics for researchers. During the last five years numerous gas hydrate-bearing features with positive circular morphology have been identified at the bottom of the lake and these represent ideal candidates to be considered as mud volcanoes.
Most mud volcanoes worldwide are characterized by the presence of mud breccia. This melange of erupted sediments consist of clayey-silty-sandy matrix mixed with clasts of different sizes and lithologies representing mainly well-lithified fragments of the different formations pierced and brecciated through the MV feeder channel. Most of the offshore MVs share these characteristics, and this criteria has been used as an unambiguous evidence to classify new MV structures. A similar approach is hardly applicable for some of the investigated structures of Lake Baikal. Seismic images reveal that the conduits of these MV candidate structures are typically shallow rooted (<0.5 km blf). The lake is a deep sedimentary basin that has been characterized by high sedimentation rates since almost 25 Ma resulting in thick deposits that are unlithified in its top part. Therefore, the recovered sediment cores are barren by the typical presence of mud breccia lithified clasts which are characteristic for “classic” mud volcanic breccia.
Here we report a set of multidisciplinary studies (including petrography, geochemistry and tomography) conducted on mud breccia cores collected from several MVs of the Baikal. Sediment core observations revealed the presence of semi-lithified clayey clast seemingly broadly distributed in the structureless sediments. Petrography studies of the individual clast reveal that they differ in mineralogical composition, and their poor lithification indicates that they originate from shallow sediments. The otherwise invisible internal structure of the cored sediments has been studied with CT-scan. Results confirm that the recovered cores contain numerous semi-lithified clasts displaying different X-ray absorption and thus mineralogical content. The absence of sedimentary structures and a completely chaotic matrix indicates a vigorous mechanism (i.e. typically ongoing in mud volcano conduits) able to amalgam different lithologies. Geochemical analyses of the sediments pore gas show the presence of prevalently microbial methane further supporting microbial reactions that commonly occur at relatively shallow depths. Results are integrated in the regional geological context and combined with geophysical data to explain the mechanisms of eruption and the peculiar sedimentary texture that differs from the traditional MVs worldwide.
How to cite: Akhmanov, G., Mazzini, A., Khlystov, O., Kudaeva, A., and Vidishcheva, O.: Peculiarities of mud volcanism in Lake Baikal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1271, https://doi.org/10.5194/egusphere-egu2020-1271, 2020.
EGU2020-16565 | Displays | BG5.3
Different pockmark systems and their potential importance for the hydrological and biogeochemical balance of a peri-alpine lakeAdeline N.Y. Cojean, Maciej Bartosiewicz, Jeremy Zimmermann, Moritz F. Lehmann, Katrina Kremer, and Stefanie B. Wirth
Pockmarks are crater-like depressions on the floor of oceans and lakes formed by the upward transport of fluids through the unconsolidated sediment column. The fluid flow through marine pockmarks is considered to enhance hydrological and biogeochemical exchanges between the sediments and the water body. While a similar relevance can be expected in lakes, the importance of lacustrine pockmarks in this regard is virtually unexplored.
Lake Thun (48.3 km2 surface area), Switzerland, is an excellent system to study lacustrine pockmarks as it exhibits several sites with different geological and biogeochemical settings. One of the pockmark sites is characterized by evident methane (CH4) ebullition and high CH4 concentrations from ~2.4 to 8.9 mM within the sediments beneath. A large pockmark with a diameter of 110 m is located adjacent to the rock wall of a karst system and might thus be associated with groundwater discharge into the lake. Finally, spikes in electrical conductivity detected during a survey with a remotely operated vehicle (ROV) at a third pockmark site suggest a hydrogeological connection with the groundwater system in the underlying Triassic bedrock.
This third pockmark site we are studying more closely. We observed that the sediments inside the pockmark were clearly more liquified as compared to those at a reference site (outside the pockmark), providing further evidence for groundwater discharge that might presently be active. The porewater chemistry was similar at the two sites, except for the total dissolved Fe concentration which was about 2 to 5-fold lower inside the pockmark than at a reference site. Further chemical analysis of porewaters and the water column above the pockmark as well as a molecular investigation (e.g. 16S rRNA) of the sediments will be performed at two different seasons of the year (in fall and spring during the snowmelt season). All together, these results should help us to better assess the influence of groundwater discharge via this pockmark site on the hydrological balance and on the biogeochemistry of the lake, as well as to expand our limited knowledge on the mechanism of lacustrine pockmarks in general.
How to cite: Cojean, A. N. Y., Bartosiewicz, M., Zimmermann, J., Lehmann, M. F., Kremer, K., and Wirth, S. B.: Different pockmark systems and their potential importance for the hydrological and biogeochemical balance of a peri-alpine lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16565, https://doi.org/10.5194/egusphere-egu2020-16565, 2020.
Pockmarks are crater-like depressions on the floor of oceans and lakes formed by the upward transport of fluids through the unconsolidated sediment column. The fluid flow through marine pockmarks is considered to enhance hydrological and biogeochemical exchanges between the sediments and the water body. While a similar relevance can be expected in lakes, the importance of lacustrine pockmarks in this regard is virtually unexplored.
Lake Thun (48.3 km2 surface area), Switzerland, is an excellent system to study lacustrine pockmarks as it exhibits several sites with different geological and biogeochemical settings. One of the pockmark sites is characterized by evident methane (CH4) ebullition and high CH4 concentrations from ~2.4 to 8.9 mM within the sediments beneath. A large pockmark with a diameter of 110 m is located adjacent to the rock wall of a karst system and might thus be associated with groundwater discharge into the lake. Finally, spikes in electrical conductivity detected during a survey with a remotely operated vehicle (ROV) at a third pockmark site suggest a hydrogeological connection with the groundwater system in the underlying Triassic bedrock.
This third pockmark site we are studying more closely. We observed that the sediments inside the pockmark were clearly more liquified as compared to those at a reference site (outside the pockmark), providing further evidence for groundwater discharge that might presently be active. The porewater chemistry was similar at the two sites, except for the total dissolved Fe concentration which was about 2 to 5-fold lower inside the pockmark than at a reference site. Further chemical analysis of porewaters and the water column above the pockmark as well as a molecular investigation (e.g. 16S rRNA) of the sediments will be performed at two different seasons of the year (in fall and spring during the snowmelt season). All together, these results should help us to better assess the influence of groundwater discharge via this pockmark site on the hydrological balance and on the biogeochemistry of the lake, as well as to expand our limited knowledge on the mechanism of lacustrine pockmarks in general.
How to cite: Cojean, A. N. Y., Bartosiewicz, M., Zimmermann, J., Lehmann, M. F., Kremer, K., and Wirth, S. B.: Different pockmark systems and their potential importance for the hydrological and biogeochemical balance of a peri-alpine lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16565, https://doi.org/10.5194/egusphere-egu2020-16565, 2020.
EGU2020-4840 | Displays | BG5.3
Internal Structure of Venere Mud Volcano in the Crotone Forearc Basin, Calabrian Arc, Italy, from Multibeam Bathymetry, Wide-Angle and Multichannel Seismic DataMichael Riedel, Anne Krabbenhoeft, Cord Papenberg, Joerg Bialas, Gerhard Bohrmann, and Silvia Ceramicola
Mud volcanoes (MVs) have been found in various geological settings on passive and active margins but are mostly known from collision zones on Earth. Mud volcanoes are well known to occur on land (e.g. in Azerbaijan), where at least 1000 MVs have been counted. The amount of submarine MVs is believed to be much larger and recent improvements in seafloor mapping led to the discovery of many MVs in all oceans. To contribute to the knowledge of submarine MVs, in particular the internal structure across Venere MV, we conducted a multi-geophysical imaging approach using high resolution multibeam bathymetry, (constraining seafloor expressions), multichannel, and wide-angle seismic data (constraining the internal structure and P-wave velocity distribution). Venere MV is located at the southern rim of the Crotone forearc basin of the Calabrian arc, offshore southern Italy, in a water depth of ~1500 m. The dimension of Venere MV from its bathymetric expression is ~10 km in the EW- and ~7 km in the NS-direction. Two circular cones of ~100 m elevation and ~1.5 km diameter are located in the center of Venere MV. The upper 200 m below the seafloor (bsf) consist of layers with seismic P-wave velocities gradually increasing from 1.53 to 1.7 km/s (sub-) parallel to the seafloor. A prominent reflection ~200 m bsf and a sudden increase of seismic P-wave velocities from 1.7 to 1.8 km/s mark a change with depth in the internal structure, where reflections dip, and seismic P-wave velocities laterally decrease towards the center of Venere MV. The MCS as well as seismic P-wave velocity structure indicate two separate feeder conduits of the two center cones of Venere MV. However, we do not map the roots of the MV, which are at depths beyond our data resolution. Reduced reflectivity occurs ~4 km across the center of the MV 200 m bsf and downwards. We mapped the chaotic reflections of the acoustic basement in depths varying from 500 m to 800 m bsf. Reduced reflectivity of the acoustic basement occurs beneath the center of the MV as well. Mapping of the fault system leads to the subseafloor dimension of Venere MV that exceeds its seafloor dimension by the factor of two.
How to cite: Riedel, M., Krabbenhoeft, A., Papenberg, C., Bialas, J., Bohrmann, G., and Ceramicola, S.: Internal Structure of Venere Mud Volcano in the Crotone Forearc Basin, Calabrian Arc, Italy, from Multibeam Bathymetry, Wide-Angle and Multichannel Seismic Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4840, https://doi.org/10.5194/egusphere-egu2020-4840, 2020.
Mud volcanoes (MVs) have been found in various geological settings on passive and active margins but are mostly known from collision zones on Earth. Mud volcanoes are well known to occur on land (e.g. in Azerbaijan), where at least 1000 MVs have been counted. The amount of submarine MVs is believed to be much larger and recent improvements in seafloor mapping led to the discovery of many MVs in all oceans. To contribute to the knowledge of submarine MVs, in particular the internal structure across Venere MV, we conducted a multi-geophysical imaging approach using high resolution multibeam bathymetry, (constraining seafloor expressions), multichannel, and wide-angle seismic data (constraining the internal structure and P-wave velocity distribution). Venere MV is located at the southern rim of the Crotone forearc basin of the Calabrian arc, offshore southern Italy, in a water depth of ~1500 m. The dimension of Venere MV from its bathymetric expression is ~10 km in the EW- and ~7 km in the NS-direction. Two circular cones of ~100 m elevation and ~1.5 km diameter are located in the center of Venere MV. The upper 200 m below the seafloor (bsf) consist of layers with seismic P-wave velocities gradually increasing from 1.53 to 1.7 km/s (sub-) parallel to the seafloor. A prominent reflection ~200 m bsf and a sudden increase of seismic P-wave velocities from 1.7 to 1.8 km/s mark a change with depth in the internal structure, where reflections dip, and seismic P-wave velocities laterally decrease towards the center of Venere MV. The MCS as well as seismic P-wave velocity structure indicate two separate feeder conduits of the two center cones of Venere MV. However, we do not map the roots of the MV, which are at depths beyond our data resolution. Reduced reflectivity occurs ~4 km across the center of the MV 200 m bsf and downwards. We mapped the chaotic reflections of the acoustic basement in depths varying from 500 m to 800 m bsf. Reduced reflectivity of the acoustic basement occurs beneath the center of the MV as well. Mapping of the fault system leads to the subseafloor dimension of Venere MV that exceeds its seafloor dimension by the factor of two.
How to cite: Riedel, M., Krabbenhoeft, A., Papenberg, C., Bialas, J., Bohrmann, G., and Ceramicola, S.: Internal Structure of Venere Mud Volcano in the Crotone Forearc Basin, Calabrian Arc, Italy, from Multibeam Bathymetry, Wide-Angle and Multichannel Seismic Data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4840, https://doi.org/10.5194/egusphere-egu2020-4840, 2020.
EGU2020-3664 | Displays | BG5.3
Tectonic structures vs genesis and activity of mud volcanoes: examples from Emilia and Marche (Northern Apennines, Italy)Marco Bonini, Daniele Maestrelli, and Federico Sani
Mud volcanism is known to be strictly linked to anticlines, since these structures have the ability to trap hydrocarbons and other fluids into reservoirs placed at their core, where large overpressures may be generated. Despite mud volcanoes have been widely studied, a central and still debated theme is (i) how fluids are able to migrate upward bypassing the overburden and erupt at surface, and (ii) which role near-structures (i.e. structure directly linked to the mud volcano system, or located not far from it) and far-structures (i.e. faults located far away from the mud volcano system) may play in this process. In an effort to address these questions, we investigated the role of both types of structures in the genesis and evolution of mud volcanoes. In particular, we show six mud volcano case studies from the Emilia-Romagna and Marche pede-Apennine margin, in Italy. We integrated fieldwork data and interpretation of available seismic reflection profiles whit aerial photo analysis. Our results support the intimate link of the investigated mud volcano systems with anticline structures on top of which they are typically emplaced. We then discuss two distinct settings for fluid migration and mud volcano formation, particularly: (i) mud volcanoes emplaced on outcropping anticlines, and (ii) mud volcanoes located on top of buried structures, discerning when fluids are likely to exploit anticline-related fracture sets, or secondary structures and porosity. Finally, we speculate on how far-structures may still play a crucial role, via seismic triggering, in the occurrence of historical eruptions of some of the investigated mud volcano systems.
How to cite: Bonini, M., Maestrelli, D., and Sani, F.: Tectonic structures vs genesis and activity of mud volcanoes: examples from Emilia and Marche (Northern Apennines, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3664, https://doi.org/10.5194/egusphere-egu2020-3664, 2020.
Mud volcanism is known to be strictly linked to anticlines, since these structures have the ability to trap hydrocarbons and other fluids into reservoirs placed at their core, where large overpressures may be generated. Despite mud volcanoes have been widely studied, a central and still debated theme is (i) how fluids are able to migrate upward bypassing the overburden and erupt at surface, and (ii) which role near-structures (i.e. structure directly linked to the mud volcano system, or located not far from it) and far-structures (i.e. faults located far away from the mud volcano system) may play in this process. In an effort to address these questions, we investigated the role of both types of structures in the genesis and evolution of mud volcanoes. In particular, we show six mud volcano case studies from the Emilia-Romagna and Marche pede-Apennine margin, in Italy. We integrated fieldwork data and interpretation of available seismic reflection profiles whit aerial photo analysis. Our results support the intimate link of the investigated mud volcano systems with anticline structures on top of which they are typically emplaced. We then discuss two distinct settings for fluid migration and mud volcano formation, particularly: (i) mud volcanoes emplaced on outcropping anticlines, and (ii) mud volcanoes located on top of buried structures, discerning when fluids are likely to exploit anticline-related fracture sets, or secondary structures and porosity. Finally, we speculate on how far-structures may still play a crucial role, via seismic triggering, in the occurrence of historical eruptions of some of the investigated mud volcano systems.
How to cite: Bonini, M., Maestrelli, D., and Sani, F.: Tectonic structures vs genesis and activity of mud volcanoes: examples from Emilia and Marche (Northern Apennines, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3664, https://doi.org/10.5194/egusphere-egu2020-3664, 2020.
EGU2020-1336 | Displays | BG5.3
A shallow mud volcano in the sedimentary basin off the Island of ElbaAlessandra Sciarra, Anna Saroni, Fausto Grassa, Roberta Ivaldi, Maurizio Demarte, Christian Lott, Miriam Weber, Andi Eich, Ettore Cimenti, Francesco Mazzarini, and Massimo Coltorti
The Island of Elba, located in the westernmost portion of the northern Cenozoic Apennine belt, is formed by metamorphic and non-metamorphic units derived from oceanic (i.e. Ligurian Domain) and continental (i.e. the Tuscan Domain) domains stacked toward NE during the Miocene.
Offshore, west of the Island of Elba, magnetic and gravimetric data suggest the occurrence of N-S trending ridges that, for the very high magnetic susceptibility, have been interpreted as serpentinites, associated with other ophiolitic rocks. Moving towards south in Tuscan domain, along N-S fault, there is clear evidence of off-shore gas seepage (mainly CH4), which can be related to recent extensional activity.
In this contest, a cold methane seep was discovered in the sedimentary basin off Elba Island, characterized by typical mud volcanoes conditions. Generally, mud volcanoes are the shallow expression of subsurface processes characterized by movements of large masses of sediments and ï¬uids. A marine mud volcanoes is a window into different depth levels of the submerged geosphere where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs caused by tectonic activity. Indeed, vertical migration of geogas, especially CH4 from the reservoir strata to the sea floor occurs along focused, permeable migration pathways, often created by faults and fractures.
The sampled gas chemistry is typical of mud volcanoes, with methane as the prevalent gas component (>95 vol%) and minor gases that include carbon dioxide, nitrogen and trace amounts of helium. The combined stable C and H isotope composition of CH4 (δ13C and δ2H) highlights a thermogenic origin of ï¬uids discharged from mud volcano, contrary to likely abiotic origin gas found in the Pomonte seep and linked to serpentinized ultramaï¬c rock systems.
The samples collected on this mud volcano are extremely depleted in 3He and their 3He/4He ratios are typical for a geological setting in which radiogenic crustal helium is strongly predominant. On the contrary, the Pomonte ophiolitic gas seeps show a mantle-derived 3He-rich component estimated in the range between 10 and 15%.
Petrological data highlight the presence of siltites and marly mudstones characterized by different origin than those found on neighboring islets (shallow marine organogenic limestones); therefore, the possibility that the fragments of rock blocks, found in the mud volcano area, derive form erosional processes of the islet is discarded. The conical shapes highlighted by the multibeam echosounder are very similar to the typical backscatter signature of other mud volcanoes, thus confirming the possibilities of classify this site as mud volcano. Indeed, already during the scuba diving survey that allowed sampling gas and sediment, it was clearly observed and documented as a mud volcano.
How to cite: Sciarra, A., Saroni, A., Grassa, F., Ivaldi, R., Demarte, M., Lott, C., Weber, M., Eich, A., Cimenti, E., Mazzarini, F., and Coltorti, M.: A shallow mud volcano in the sedimentary basin off the Island of Elba, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1336, https://doi.org/10.5194/egusphere-egu2020-1336, 2020.
The Island of Elba, located in the westernmost portion of the northern Cenozoic Apennine belt, is formed by metamorphic and non-metamorphic units derived from oceanic (i.e. Ligurian Domain) and continental (i.e. the Tuscan Domain) domains stacked toward NE during the Miocene.
Offshore, west of the Island of Elba, magnetic and gravimetric data suggest the occurrence of N-S trending ridges that, for the very high magnetic susceptibility, have been interpreted as serpentinites, associated with other ophiolitic rocks. Moving towards south in Tuscan domain, along N-S fault, there is clear evidence of off-shore gas seepage (mainly CH4), which can be related to recent extensional activity.
In this contest, a cold methane seep was discovered in the sedimentary basin off Elba Island, characterized by typical mud volcanoes conditions. Generally, mud volcanoes are the shallow expression of subsurface processes characterized by movements of large masses of sediments and ï¬uids. A marine mud volcanoes is a window into different depth levels of the submerged geosphere where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs caused by tectonic activity. Indeed, vertical migration of geogas, especially CH4 from the reservoir strata to the sea floor occurs along focused, permeable migration pathways, often created by faults and fractures.
The sampled gas chemistry is typical of mud volcanoes, with methane as the prevalent gas component (>95 vol%) and minor gases that include carbon dioxide, nitrogen and trace amounts of helium. The combined stable C and H isotope composition of CH4 (δ13C and δ2H) highlights a thermogenic origin of ï¬uids discharged from mud volcano, contrary to likely abiotic origin gas found in the Pomonte seep and linked to serpentinized ultramaï¬c rock systems.
The samples collected on this mud volcano are extremely depleted in 3He and their 3He/4He ratios are typical for a geological setting in which radiogenic crustal helium is strongly predominant. On the contrary, the Pomonte ophiolitic gas seeps show a mantle-derived 3He-rich component estimated in the range between 10 and 15%.
Petrological data highlight the presence of siltites and marly mudstones characterized by different origin than those found on neighboring islets (shallow marine organogenic limestones); therefore, the possibility that the fragments of rock blocks, found in the mud volcano area, derive form erosional processes of the islet is discarded. The conical shapes highlighted by the multibeam echosounder are very similar to the typical backscatter signature of other mud volcanoes, thus confirming the possibilities of classify this site as mud volcano. Indeed, already during the scuba diving survey that allowed sampling gas and sediment, it was clearly observed and documented as a mud volcano.
How to cite: Sciarra, A., Saroni, A., Grassa, F., Ivaldi, R., Demarte, M., Lott, C., Weber, M., Eich, A., Cimenti, E., Mazzarini, F., and Coltorti, M.: A shallow mud volcano in the sedimentary basin off the Island of Elba, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1336, https://doi.org/10.5194/egusphere-egu2020-1336, 2020.
EGU2020-1315 | Displays | BG5.3
Explosive mud volcano eruptions and rafting of mud breccia blocksAdriano Mazzini, Grigorii Akhmanov, Manga Michael, Alessandra Sciarra, Ayten Khasayeva, and Ibrahim Guliyev
Azerbaijan hosts the highest concentration of mud volcanoes (MVs) on Earth with structures that may reach several kilometres in diameter and the height up to 600 m. Many of these structures alternate between periods of dormancy with vigorous eruptions. The frequency of the eruptive activity varies between MVs, and is typically related to the time required to build sufficient overpressure able to drive the extrusion of fluids and mud breccia at the surface.
Lokbatan is possibly the most active MV on Earth exhibiting powerful eruptions occurring every 3-5 years. These phenomena manifest with spectacular gas flares that reach several tens of meters in height and the bursting of thousands of m3 of mud breccia resulting in spectacular mud flows that extend for more than 1.5 kilometres. Unlike other active MVs, Lokbatan does not show any visual evidence of diffuse degassing (e.g. active pools of gryphons) in the crater zone. Gas flux measurements completed with closed-chamber technique sensitive to ppmv, reveal extremely low values throughout the structure around the crater with average CH4=0.13 g/m2day and CO2=4.53 g/m2day. We suggest that after eruptive events, the mud breccia is able to seal the structure preventing the gas release and therefore promoting the overpressure build-up in the subsurface. This self-sealing mechanism allows a fast recharge of the MV resulting in more frequent and powerful eruptions. These spectacular phenomena are able to release in short time intervals massive amounts of gas, erupted mud breccia and energy due to the sudden overpressure release. Our field observations reveal the presence of large (up to ~50,000 m3) stratified blocks that were originally part of a large crater cone. These blocks were rafted > 1 km from the vent on top of mud breccia flows. We use a lubrication theory model to show that it is reasonable to transport blocks this large and this far provided the underlying mud flow was thick enough. The presence of large rafted blocks is not a unique phenomena observed at Lokbatan MV and is documented also at other large-scale structures.
How to cite: Mazzini, A., Akhmanov, G., Michael, M., Sciarra, A., Khasayeva, A., and Guliyev, I.: Explosive mud volcano eruptions and rafting of mud breccia blocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1315, https://doi.org/10.5194/egusphere-egu2020-1315, 2020.
Azerbaijan hosts the highest concentration of mud volcanoes (MVs) on Earth with structures that may reach several kilometres in diameter and the height up to 600 m. Many of these structures alternate between periods of dormancy with vigorous eruptions. The frequency of the eruptive activity varies between MVs, and is typically related to the time required to build sufficient overpressure able to drive the extrusion of fluids and mud breccia at the surface.
Lokbatan is possibly the most active MV on Earth exhibiting powerful eruptions occurring every 3-5 years. These phenomena manifest with spectacular gas flares that reach several tens of meters in height and the bursting of thousands of m3 of mud breccia resulting in spectacular mud flows that extend for more than 1.5 kilometres. Unlike other active MVs, Lokbatan does not show any visual evidence of diffuse degassing (e.g. active pools of gryphons) in the crater zone. Gas flux measurements completed with closed-chamber technique sensitive to ppmv, reveal extremely low values throughout the structure around the crater with average CH4=0.13 g/m2day and CO2=4.53 g/m2day. We suggest that after eruptive events, the mud breccia is able to seal the structure preventing the gas release and therefore promoting the overpressure build-up in the subsurface. This self-sealing mechanism allows a fast recharge of the MV resulting in more frequent and powerful eruptions. These spectacular phenomena are able to release in short time intervals massive amounts of gas, erupted mud breccia and energy due to the sudden overpressure release. Our field observations reveal the presence of large (up to ~50,000 m3) stratified blocks that were originally part of a large crater cone. These blocks were rafted > 1 km from the vent on top of mud breccia flows. We use a lubrication theory model to show that it is reasonable to transport blocks this large and this far provided the underlying mud flow was thick enough. The presence of large rafted blocks is not a unique phenomena observed at Lokbatan MV and is documented also at other large-scale structures.
How to cite: Mazzini, A., Akhmanov, G., Michael, M., Sciarra, A., Khasayeva, A., and Guliyev, I.: Explosive mud volcano eruptions and rafting of mud breccia blocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1315, https://doi.org/10.5194/egusphere-egu2020-1315, 2020.
EGU2020-5213 | Displays | BG5.3
Palynology of Holocene Lake Baikal sedimentsAlienor Labes, Adriano Mazzini, Grigorii G. Akhmanov, and Wolfram M. Kürschner
The Class@Baikal 2019 expedition led by UNESCO-Moscow State University Educational-Scientific Center for Marine Geology and Geophysics (the Department of Geology, Moscow State University Lomonosov) sailed several transects between the southern and central part of the Lake Baikal, Russia. Seismic profiles were made to map the lake bottom sediments and structures as well as several short piston cores were drilled. The drilling sites were located a) following a nearshore to offshore transect to study the sedimentary processes and b) in areas where mud volcanoes were located in the geophysical data. Intriguingly, the sediments retrieved from the cores contained a high amount of plant debris, such as wood and conifer needles. The present palynological study has been started with the goal to better understand the sedimentological processes resulting in these distinct horizons of plant fossil rich sediments. Another goal is to obtain a stratigraphic age for the mud clasts and the surrounding matrix sediments of the presumed mud volcano structures. The first sediment samples appear to be rich in pollen and spores which allows to establish a palynostratigraphic framework for the studied cores.
How to cite: Labes, A., Mazzini, A., Akhmanov, G. G., and Kürschner, W. M.: Palynology of Holocene Lake Baikal sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5213, https://doi.org/10.5194/egusphere-egu2020-5213, 2020.
The Class@Baikal 2019 expedition led by UNESCO-Moscow State University Educational-Scientific Center for Marine Geology and Geophysics (the Department of Geology, Moscow State University Lomonosov) sailed several transects between the southern and central part of the Lake Baikal, Russia. Seismic profiles were made to map the lake bottom sediments and structures as well as several short piston cores were drilled. The drilling sites were located a) following a nearshore to offshore transect to study the sedimentary processes and b) in areas where mud volcanoes were located in the geophysical data. Intriguingly, the sediments retrieved from the cores contained a high amount of plant debris, such as wood and conifer needles. The present palynological study has been started with the goal to better understand the sedimentological processes resulting in these distinct horizons of plant fossil rich sediments. Another goal is to obtain a stratigraphic age for the mud clasts and the surrounding matrix sediments of the presumed mud volcano structures. The first sediment samples appear to be rich in pollen and spores which allows to establish a palynostratigraphic framework for the studied cores.
How to cite: Labes, A., Mazzini, A., Akhmanov, G. G., and Kürschner, W. M.: Palynology of Holocene Lake Baikal sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5213, https://doi.org/10.5194/egusphere-egu2020-5213, 2020.
EGU2020-20934 | Displays | BG5.3
Integrated analysis of geophysical and geochemical data from cold fluid seepage system along the Gydratny Fault (Lake Baikal)Olesya Vidischeva, Marina Solovyeva, Evgeniya Egoshina, Yana Vasilevskaya, Elena Poludetkina, Grigorii Akhmanov, Oleg Khlystov, and Adriano Mazzini
Lake Baikal is a part of large intracontinental rift zone. Baikal sedimentary infill is more than 7 km thick and was developed under predominantly extensional tectonics. Large number of faults of different geometry is imaged by several seismic surveys carried out in the region. The fault systems serve as fluid discharge pathways from deep sources to surface. A number of active seepage structures were mapped and studied during the Class@Baikal expeditions along the major fault system of the Central Baikal basin, which extends in SW-NE direction over 40 km and was named recently as the Gydratny Fault. Irregular distribution of these seeps, differences in their morphology and activity rate imply a variable permeability of the fault and different characteristics of migration pathways along its segments.
High-resolution seismic sections were acquired across the Gydratny Fault during the Class@Baikal cruises. The survey was followed by extensive bottom sediments and gases sampling. Hydrocarbon gases and isotopic characteristics as well as sediment pore water composition were analysed. Methane was detected in sediments along the whole fault extend in concentrations of more than 100 ml/l, exceeding background values (<15 ml/l), suggesting that the fault plane acts as regional fluid migration path. The highest methane content (>275 ml/l) and the presence of its homologues were observed at several local sites situated along the fault and associated with mud volcanoes and gas hydrate bearing seeps. The carbon isotopic composition varies from -72 to -57‰ VPDB for methane and from -21 to -31 ‰ VPDB for ethane, suggesting that these are thermogenic gases that migrate from deep layers of sedimentary infill of the basin.
Seismic data show well-established segmented nature of the Gydratny Fault system, which is believed to be a reason for observed variations of fluid discharge rates. Integrated analysis of the collected geophysical and geochemical data allowed evaluating contributions of different structural elements of the Gydratny Fault to fluid migration pattern in the area. NE segment of the fault system is a well expressed normal fault propagating to the lake bottom which is associated with higher methane concentrations (150-200 ml/l), elevated methane homologues content of up to 40 ml/l and heavier carbon isotopic composition in gas samples. The SW segments is either faintly expressed in the bottom relief or does not reach the surface at all. The methane concentrations in sediment samples collected from the segment are 100-150 ml/l and its carbon isotopic composition is normally lighter. We suggest that deeper parts of the SW fault segment are still highly conductive and concentrated hydrocarbon fluids migrate from the source upwards but some near-surface dispersal of migrated fluids occurs at places where the fault does not reach the lake bottom. The Gydratny master fault is accompanied by numerous subsidiary faults developed within hanging wall while footwall is less faulted. The associated faults are believed to enhance the main fluid migration system and this interpretation is supported by observations of normally higher methane concentrations in bottom sediments of the hanging block.
This study was funded by RFBR Grant № 18-35-00363.
How to cite: Vidischeva, O., Solovyeva, M., Egoshina, E., Vasilevskaya, Y., Poludetkina, E., Akhmanov, G., Khlystov, O., and Mazzini, A.: Integrated analysis of geophysical and geochemical data from cold fluid seepage system along the Gydratny Fault (Lake Baikal), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20934, https://doi.org/10.5194/egusphere-egu2020-20934, 2020.
Lake Baikal is a part of large intracontinental rift zone. Baikal sedimentary infill is more than 7 km thick and was developed under predominantly extensional tectonics. Large number of faults of different geometry is imaged by several seismic surveys carried out in the region. The fault systems serve as fluid discharge pathways from deep sources to surface. A number of active seepage structures were mapped and studied during the Class@Baikal expeditions along the major fault system of the Central Baikal basin, which extends in SW-NE direction over 40 km and was named recently as the Gydratny Fault. Irregular distribution of these seeps, differences in their morphology and activity rate imply a variable permeability of the fault and different characteristics of migration pathways along its segments.
High-resolution seismic sections were acquired across the Gydratny Fault during the Class@Baikal cruises. The survey was followed by extensive bottom sediments and gases sampling. Hydrocarbon gases and isotopic characteristics as well as sediment pore water composition were analysed. Methane was detected in sediments along the whole fault extend in concentrations of more than 100 ml/l, exceeding background values (<15 ml/l), suggesting that the fault plane acts as regional fluid migration path. The highest methane content (>275 ml/l) and the presence of its homologues were observed at several local sites situated along the fault and associated with mud volcanoes and gas hydrate bearing seeps. The carbon isotopic composition varies from -72 to -57‰ VPDB for methane and from -21 to -31 ‰ VPDB for ethane, suggesting that these are thermogenic gases that migrate from deep layers of sedimentary infill of the basin.
Seismic data show well-established segmented nature of the Gydratny Fault system, which is believed to be a reason for observed variations of fluid discharge rates. Integrated analysis of the collected geophysical and geochemical data allowed evaluating contributions of different structural elements of the Gydratny Fault to fluid migration pattern in the area. NE segment of the fault system is a well expressed normal fault propagating to the lake bottom which is associated with higher methane concentrations (150-200 ml/l), elevated methane homologues content of up to 40 ml/l and heavier carbon isotopic composition in gas samples. The SW segments is either faintly expressed in the bottom relief or does not reach the surface at all. The methane concentrations in sediment samples collected from the segment are 100-150 ml/l and its carbon isotopic composition is normally lighter. We suggest that deeper parts of the SW fault segment are still highly conductive and concentrated hydrocarbon fluids migrate from the source upwards but some near-surface dispersal of migrated fluids occurs at places where the fault does not reach the lake bottom. The Gydratny master fault is accompanied by numerous subsidiary faults developed within hanging wall while footwall is less faulted. The associated faults are believed to enhance the main fluid migration system and this interpretation is supported by observations of normally higher methane concentrations in bottom sediments of the hanging block.
This study was funded by RFBR Grant № 18-35-00363.
How to cite: Vidischeva, O., Solovyeva, M., Egoshina, E., Vasilevskaya, Y., Poludetkina, E., Akhmanov, G., Khlystov, O., and Mazzini, A.: Integrated analysis of geophysical and geochemical data from cold fluid seepage system along the Gydratny Fault (Lake Baikal), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20934, https://doi.org/10.5194/egusphere-egu2020-20934, 2020.
EGU2020-1741 | Displays | BG5.3
Geochemistry of oil-and-gas seepage in Lake Baikal: towards understanding fluid migration systemEvgeniya Egoshina, Michail Delengov, Olesya Vidishcheva, Elena Bakay, Natalya Fadeeva, Grigorii Akhmanov, Adriano Mazzini, and Oleg Khlystov
Baikal is a Cenozoic syn-rift sedimentary basin with many surficial manifestations of distinct hydrocarbon system. Focused gas seeps, gas-hydrate accumulations, and various mud volcanoes are abundant all over the lake bottom and were recently studied in order to characterize an upward fluid migration from deeper strata. Highly concentrated oil seeps which can provide detailed information on basin fluid migration pathway configurations are mostly developed at the east coast and rift flank of Lake Baikal.
Herewith, we report results of detailed geochemical studies (gases, organic matter, bitumen, pore waters, and sediments) completed on samples collected from an area of active oil and gas seepage, asphalt/tar edifices and subbottom gas-hydrates occurrences located 18 km offshore the Gorevoy Utes cape (the eastern coast of the lake) at the depth of 850-950 m.
As a part of the Class@Baikal-2018 expedition, two high-resolution seismic profiles (total length of about 10 km) crossing the fluid discharge zone in transverse directions were acquired to locate 22 bottom sampling stations and to retrieve samples. Four more seismic lines and 12 sampling cores were collected during the follow up Class@Baikal-2019 cruise.
The highest concentrations of all gases and a fresh crude oil in sediments are characteristic for a spot of only about 500 m in diametre, marking a probable centre of the most intense deep fluid migration to the surface. The elemental composition characteristic of sampled oil was determined as follow: C=83.84%, H=10.67%, N=0.37%, and S<0.08% by wt. And its molecular compounds are 15% asphaltenes, 20% resins, 35% aromatic hydrocarbons, and 30% saturates.
High concentration of methane was also detected in samples at the distance from this central spot all around the studied field. According to isotopic analyses, this indicates lateral redistribution of thermogenic methane ongoing together with enhanced bacterial methane generation in surrounding sediments. δ13С of methane from the peripheries varies from -70.98 ‰ to -88.46 ‰, whereas the δ13С of methane from the central spot is heavier (up to -41.00 ‰). The high content of methane homologues (ethane and propane) and carbon dioxide is characteristic and indicative for all samples taken from the central spot. A few samples collected outside of the central zone demonstrated the high thermogenic methane concentration, carbon dioxide content and presence of some methane homologues as well. Most likely this points out at existence of locally permeable segments aside of main conduit, probably some fractures accompanying the central pathway. Interestingly, no fresh oil was found in those samples.
Rock-Eval pyrolysis, isotopic analyses and biomarker studies revealed that the source rocks for both hydrocarbon gases and oil are terrigeneous and contain predominant humic organic matter components (kerogen type III). These strata belong to different maturation stages, ranging from low-mature to peak-mature, which is well explained by the complex structure of the rift sedimentary infill and documented presence of local thermal anomalies in the region.
Results of geochemical studies are incorporated into an integrated model of source-to-surface fluid migration to explain the observed peculiarities of the Gorevoy Utes seepage area.
How to cite: Egoshina, E., Delengov, M., Vidishcheva, O., Bakay, E., Fadeeva, N., Akhmanov, G., Mazzini, A., and Khlystov, O.: Geochemistry of oil-and-gas seepage in Lake Baikal: towards understanding fluid migration system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1741, https://doi.org/10.5194/egusphere-egu2020-1741, 2020.
Baikal is a Cenozoic syn-rift sedimentary basin with many surficial manifestations of distinct hydrocarbon system. Focused gas seeps, gas-hydrate accumulations, and various mud volcanoes are abundant all over the lake bottom and were recently studied in order to characterize an upward fluid migration from deeper strata. Highly concentrated oil seeps which can provide detailed information on basin fluid migration pathway configurations are mostly developed at the east coast and rift flank of Lake Baikal.
Herewith, we report results of detailed geochemical studies (gases, organic matter, bitumen, pore waters, and sediments) completed on samples collected from an area of active oil and gas seepage, asphalt/tar edifices and subbottom gas-hydrates occurrences located 18 km offshore the Gorevoy Utes cape (the eastern coast of the lake) at the depth of 850-950 m.
As a part of the Class@Baikal-2018 expedition, two high-resolution seismic profiles (total length of about 10 km) crossing the fluid discharge zone in transverse directions were acquired to locate 22 bottom sampling stations and to retrieve samples. Four more seismic lines and 12 sampling cores were collected during the follow up Class@Baikal-2019 cruise.
The highest concentrations of all gases and a fresh crude oil in sediments are characteristic for a spot of only about 500 m in diametre, marking a probable centre of the most intense deep fluid migration to the surface. The elemental composition characteristic of sampled oil was determined as follow: C=83.84%, H=10.67%, N=0.37%, and S<0.08% by wt. And its molecular compounds are 15% asphaltenes, 20% resins, 35% aromatic hydrocarbons, and 30% saturates.
High concentration of methane was also detected in samples at the distance from this central spot all around the studied field. According to isotopic analyses, this indicates lateral redistribution of thermogenic methane ongoing together with enhanced bacterial methane generation in surrounding sediments. δ13С of methane from the peripheries varies from -70.98 ‰ to -88.46 ‰, whereas the δ13С of methane from the central spot is heavier (up to -41.00 ‰). The high content of methane homologues (ethane and propane) and carbon dioxide is characteristic and indicative for all samples taken from the central spot. A few samples collected outside of the central zone demonstrated the high thermogenic methane concentration, carbon dioxide content and presence of some methane homologues as well. Most likely this points out at existence of locally permeable segments aside of main conduit, probably some fractures accompanying the central pathway. Interestingly, no fresh oil was found in those samples.
Rock-Eval pyrolysis, isotopic analyses and biomarker studies revealed that the source rocks for both hydrocarbon gases and oil are terrigeneous and contain predominant humic organic matter components (kerogen type III). These strata belong to different maturation stages, ranging from low-mature to peak-mature, which is well explained by the complex structure of the rift sedimentary infill and documented presence of local thermal anomalies in the region.
Results of geochemical studies are incorporated into an integrated model of source-to-surface fluid migration to explain the observed peculiarities of the Gorevoy Utes seepage area.
How to cite: Egoshina, E., Delengov, M., Vidishcheva, O., Bakay, E., Fadeeva, N., Akhmanov, G., Mazzini, A., and Khlystov, O.: Geochemistry of oil-and-gas seepage in Lake Baikal: towards understanding fluid migration system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1741, https://doi.org/10.5194/egusphere-egu2020-1741, 2020.
EGU2020-4413 | Displays | BG5.3
Concentrations and behavior of rare earth elements in mud volcanic watersAlexey Sobisevich, Valery Ershov, Evgeniy Elovskiy, Elnur Baloglanov, and Irina Puzich
REEs concentrations in mud volcanic waters were normalized to RPSC (Russian Platform of Shale Composite). On the Yuzhno-Sakhalinsky mud volcano (Sakhalin Island, Russia), along with the sampling for analysis of REEs concentrations, hydrogeochemical monitoring was also conducted.
How to cite: Sobisevich, A., Ershov, V., Elovskiy, E., Baloglanov, E., and Puzich, I.: Concentrations and behavior of rare earth elements in mud volcanic waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4413, https://doi.org/10.5194/egusphere-egu2020-4413, 2020.
REEs concentrations in mud volcanic waters were normalized to RPSC (Russian Platform of Shale Composite). On the Yuzhno-Sakhalinsky mud volcano (Sakhalin Island, Russia), along with the sampling for analysis of REEs concentrations, hydrogeochemical monitoring was also conducted.
How to cite: Sobisevich, A., Ershov, V., Elovskiy, E., Baloglanov, E., and Puzich, I.: Concentrations and behavior of rare earth elements in mud volcanic waters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4413, https://doi.org/10.5194/egusphere-egu2020-4413, 2020.
EGU2020-3307 | Displays | BG5.3
Borate accumulations related to onshore mud volcanism: Case study from the Kerch Peninsula, the Caucasus collision zoneEllina Sokol, Svetlana Kokh, Olga Kozmenko, and Vasili Lavrushin
Mud volcanism (MV) is an efficient dewatering mechanism common to collisional settings which provides transport of major and trace elements from deep sedimentary reservoirs to the surface. Boron is the chief geochemical fingerprinting tracer of MV activity. Numerous MVs of the Kerch Peninsula emit water and mud with extreme boron enrichment. Boron content correlates with the burial depth of the source Oligo-Miocene mudrocks yielding the highest boron contents in illite-dominated mud (up to 1500 ppm B) in the Bulganak MV, which represent the deepest endmember (up to 3.5 km) in the Kerch Peninsula. Smectite-dominated mud from shallow depths (1-1.5 km) at small MVs are poorer in both illite and boron (up to 250 ppm). B-enrichment of the parent shale and diagenetically-driven smectite illitization and dewatering are considered as the main prerequisites for boron enrichment in MVs.
MV waters are mainly related to diagenetically altered basinal water diluted by 18O- and B-enriched dehydration water released during smectite illitization. The range of boron contents in the Kerch MV waters is as large as 14 to 1640 ppm (470 ppm on average), and the BMV/BSW ratios are from 3.0 to 354. Waters of small MVs show lower B enrichment (14-73 ppm; BMV/BSW = 3.0-15.8). The majority of Cl-HCO3/Na and HCO3-Cl/Na highly evolved saline MV waters sampled in large MVs are also enriched in 18O (δ18O = +9.8 to +14.5 ‰ VSMOW) and D (δD = -30 to -4 ‰ VSMOW) isotopes being also rich in boron (average 650 ppm). Waters of small MVs are poorer in 18О (δ18O = +3.6 to + 6.1 ‰) and B (average 130 ppm). The fluid generation temperatures inferred to be ТMg/Li = 34 to 117°С. In the hot season, MV waters reach a salinity of 40-70 g/L TDS and precipitate halite, Na and Na-Ca borates. At the Bulganak MV field, there is a unique accumulation of MV-related borates, which contain predominant tincalconite and ulexite, minor borax and traces of probertite. The broad occurrence of ulexite in the Kerch MVs is due to the B (460– 630 ppm) and Ca (>30 ppm) ranges of NaCl-dominated brines, which are known to be optimal for ulexite crystallization in modern playas and salars. MV-related borate deposits can form at the following essential conditions: venting of B-rich MV waters; environment akin to playa lake; long dry and hot seasons; evaporation and ensuing increased boron concentration in shallow close MV pools; pH of MV water between 8.5 and 9.5; low permeability of clayey mud cover. The study was supported by the Russian Science Foundation, grant 17-17-01056.
How to cite: Sokol, E., Kokh, S., Kozmenko, O., and Lavrushin, V.: Borate accumulations related to onshore mud volcanism: Case study from the Kerch Peninsula, the Caucasus collision zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3307, https://doi.org/10.5194/egusphere-egu2020-3307, 2020.
Mud volcanism (MV) is an efficient dewatering mechanism common to collisional settings which provides transport of major and trace elements from deep sedimentary reservoirs to the surface. Boron is the chief geochemical fingerprinting tracer of MV activity. Numerous MVs of the Kerch Peninsula emit water and mud with extreme boron enrichment. Boron content correlates with the burial depth of the source Oligo-Miocene mudrocks yielding the highest boron contents in illite-dominated mud (up to 1500 ppm B) in the Bulganak MV, which represent the deepest endmember (up to 3.5 km) in the Kerch Peninsula. Smectite-dominated mud from shallow depths (1-1.5 km) at small MVs are poorer in both illite and boron (up to 250 ppm). B-enrichment of the parent shale and diagenetically-driven smectite illitization and dewatering are considered as the main prerequisites for boron enrichment in MVs.
MV waters are mainly related to diagenetically altered basinal water diluted by 18O- and B-enriched dehydration water released during smectite illitization. The range of boron contents in the Kerch MV waters is as large as 14 to 1640 ppm (470 ppm on average), and the BMV/BSW ratios are from 3.0 to 354. Waters of small MVs show lower B enrichment (14-73 ppm; BMV/BSW = 3.0-15.8). The majority of Cl-HCO3/Na and HCO3-Cl/Na highly evolved saline MV waters sampled in large MVs are also enriched in 18O (δ18O = +9.8 to +14.5 ‰ VSMOW) and D (δD = -30 to -4 ‰ VSMOW) isotopes being also rich in boron (average 650 ppm). Waters of small MVs are poorer in 18О (δ18O = +3.6 to + 6.1 ‰) and B (average 130 ppm). The fluid generation temperatures inferred to be ТMg/Li = 34 to 117°С. In the hot season, MV waters reach a salinity of 40-70 g/L TDS and precipitate halite, Na and Na-Ca borates. At the Bulganak MV field, there is a unique accumulation of MV-related borates, which contain predominant tincalconite and ulexite, minor borax and traces of probertite. The broad occurrence of ulexite in the Kerch MVs is due to the B (460– 630 ppm) and Ca (>30 ppm) ranges of NaCl-dominated brines, which are known to be optimal for ulexite crystallization in modern playas and salars. MV-related borate deposits can form at the following essential conditions: venting of B-rich MV waters; environment akin to playa lake; long dry and hot seasons; evaporation and ensuing increased boron concentration in shallow close MV pools; pH of MV water between 8.5 and 9.5; low permeability of clayey mud cover. The study was supported by the Russian Science Foundation, grant 17-17-01056.
How to cite: Sokol, E., Kokh, S., Kozmenko, O., and Lavrushin, V.: Borate accumulations related to onshore mud volcanism: Case study from the Kerch Peninsula, the Caucasus collision zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3307, https://doi.org/10.5194/egusphere-egu2020-3307, 2020.
EGU2020-3003 | Displays | BG5.3
Detecting microbial pigments from gypsum using Raman spectroscopy: from field prospection to laboratory studiesJan Jehlicka, Kateřina Němečková, and Adam Culka
Terrestrial detection of biomarkers in various mineral matrices using Raman spectrometers including field deploying of miniature instrumentation in Mars-analogue sites can be seen as a training for next Martian missions. In fact, both the European Space Agency (Exomars) and North American Space Agency (Mars 2020) robotic rovers will include Raman spectrometers. Feasibility of detecting biomarkers of extremophilic cyanobacteria and algae (pigments, osmotic solutes and lipids) using Raman microspectrometry was reviewed previously. Here the idea is to show - firstly how portable Raman instrumentation permits to detect carotenoids fast and onsite under field conditions. Secondly, laboratory microspectrometric investigations allow to obtain more detailed information about spatial distribution of pigments originating from microorganisms.
Macrocrystalline gypsum layers and aggregates are well-known from Tertiary series in Sicily and Eastern Poland. In Southern Sicily gypsum sediments accumulated during Messinian crisis (Late Miocene) are outcroping and were investigated near Scala dei Turchi, Torre Salsa and Siculiana Marina. Polish Tertiary (Badenian, Middle Miocene) examples of gypsum colonisations of decimetre long outcropping crystals were studied near Chotel Czerwony, Skorocice and Chwalowice. Miniature portable Raman spectrometers equipped with green lasers allowing recording of resonance Raman signals of carotenoids are evaluated here. Possibilities of collecting spectra of carotenoids under non-resonant conditions using a portable sequentially shifted Raman spectrometer (785 and 853nm lasers) are shown as well. Observed shifts of positions of Raman features of carotenoids between gypsum samples (and sites) are discussed and critically evaluated. In addition, acquired data are compared to data obtained through laboratory Raman microspectrometric investigations. Selected zones of microbial colonisations of few types of gypsum are described from the point of view of the presence of algae and cyanobacteria. Pigments are detected through conventional Raman microspectrometric measurements. Carotenoids were documented in major part of samples (common Raman bands at around 1525, 1157, and 1004 cm−1). Additionally, Raman spectra of other pigments were recorded in several zones using near infrared excitation (785 nm): chlorophyll (1151, 1327, 1287, 1184, 917, and 745 cm−1), scytonemin (1593, 1152, 1438, and 1173 cm−1) and phycobiliproteins (1633, 1584, 1371, 1236, 813, and 667 cm−1).
Portable instrumentation permits detection of carotenoids in gypsum fast and onsite under field conditions. Raman microspectrometric investigations of colonisations allow to gather detailed information about pigment distribution in micrometric zones of gypsum samples.
How to cite: Jehlicka, J., Němečková, K., and Culka, A.: Detecting microbial pigments from gypsum using Raman spectroscopy: from field prospection to laboratory studies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3003, https://doi.org/10.5194/egusphere-egu2020-3003, 2020.
Terrestrial detection of biomarkers in various mineral matrices using Raman spectrometers including field deploying of miniature instrumentation in Mars-analogue sites can be seen as a training for next Martian missions. In fact, both the European Space Agency (Exomars) and North American Space Agency (Mars 2020) robotic rovers will include Raman spectrometers. Feasibility of detecting biomarkers of extremophilic cyanobacteria and algae (pigments, osmotic solutes and lipids) using Raman microspectrometry was reviewed previously. Here the idea is to show - firstly how portable Raman instrumentation permits to detect carotenoids fast and onsite under field conditions. Secondly, laboratory microspectrometric investigations allow to obtain more detailed information about spatial distribution of pigments originating from microorganisms.
Macrocrystalline gypsum layers and aggregates are well-known from Tertiary series in Sicily and Eastern Poland. In Southern Sicily gypsum sediments accumulated during Messinian crisis (Late Miocene) are outcroping and were investigated near Scala dei Turchi, Torre Salsa and Siculiana Marina. Polish Tertiary (Badenian, Middle Miocene) examples of gypsum colonisations of decimetre long outcropping crystals were studied near Chotel Czerwony, Skorocice and Chwalowice. Miniature portable Raman spectrometers equipped with green lasers allowing recording of resonance Raman signals of carotenoids are evaluated here. Possibilities of collecting spectra of carotenoids under non-resonant conditions using a portable sequentially shifted Raman spectrometer (785 and 853nm lasers) are shown as well. Observed shifts of positions of Raman features of carotenoids between gypsum samples (and sites) are discussed and critically evaluated. In addition, acquired data are compared to data obtained through laboratory Raman microspectrometric investigations. Selected zones of microbial colonisations of few types of gypsum are described from the point of view of the presence of algae and cyanobacteria. Pigments are detected through conventional Raman microspectrometric measurements. Carotenoids were documented in major part of samples (common Raman bands at around 1525, 1157, and 1004 cm−1). Additionally, Raman spectra of other pigments were recorded in several zones using near infrared excitation (785 nm): chlorophyll (1151, 1327, 1287, 1184, 917, and 745 cm−1), scytonemin (1593, 1152, 1438, and 1173 cm−1) and phycobiliproteins (1633, 1584, 1371, 1236, 813, and 667 cm−1).
Portable instrumentation permits detection of carotenoids in gypsum fast and onsite under field conditions. Raman microspectrometric investigations of colonisations allow to gather detailed information about pigment distribution in micrometric zones of gypsum samples.
How to cite: Jehlicka, J., Němečková, K., and Culka, A.: Detecting microbial pigments from gypsum using Raman spectroscopy: from field prospection to laboratory studies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3003, https://doi.org/10.5194/egusphere-egu2020-3003, 2020.
EGU2020-12335 | Displays | BG5.3
The characteristics of microbial communities along the littoral gradient of a proglacial lake in Qinghai-Tibet PlateauMeiqing Lu, Xin Luo, Jiu Jimmy Jiao, Hailong li, Xingxing Kuang, Rong Mao, Xiaoyan Shi, and Yuqing Feng
EGU2020-667 | Displays | BG5.3
The ferruginous, sulfate-rich hypolimnion of a post-mining lake as an analogue to disentangle redox cycling in Paleoproterozoic coastal zonesDaniel Petráš, Christophe Thomazo, and Stefan Lalonde
The shallow marine depositional and early diagenetic conditions in the predominantly anoxic oceans that followed the Great Oxygenation Event (GOE) remain to be fully understood. In post-GOE coastlines, ferruginous seawater was locally admixed with oxidised freshwater carrying products from the enhanced weathering of sulfides on land, to form coastal aquifers likely exhibiting sulfate concentrations significantly higher than those generally estimated for Proterozoic open oceans; e.g., < 400 μM1. Also, there is mounting petrographic evidence for pseudomorphs after gypsum (or anhydrite) in Paleoproterozoic shallow marine facies, indicating that the penecontemporaneous oxidised sulfur levels in peritidal to intertidal settings were high enough to allow for the formation of primary sulfate minerals. The study of such ancient coastal depositional/early diagenetic conditions throughout modern systems is not straightforward since most of the purposed analogues to Precambrian ferruginous oceans lack environmentally relevant sulfate levels. A combination of spectroscopic and physicochemical measurements of the bottom waters of a meromictic, post-mining lake featuring a dysoxic hypolimnion and an anoxic monimolimnion reveals relatively high concentrations of sulfate ([SO42-]= 19 ± 2 mM) and dissolved iron ([Fe(II)]= 127 ± 17 μM), with redox gradients marked by changes in Fe and N speciation2. The oligotrophic artificial lake—known as Lake Medard (Czech Republic)—also features a depth-dependent co-variation in the abundance of volatile fatty acids, pH and alkalinity, together with a lack of dissolved sulfide, which can only be detected (at near quantification limits) in the 60 m depth sediment-water interface (SWI). Within the hypolimnion, changes in the relative abundance of bacterioplankton taxa point to prokaryotes (mostly Proteobacteria) being important for the co-recycling of dissolved C, N, and Fe stocks, but exerting limited sulfate reduction. In the clayey anoxic sediments there is no accumulation of authigenic sulfides but gypsum, and early diagenetic siderite acts as a significant Fe(II) sink. Preservation of P-bearing FeOOH polymorphs were also observed by using a combination of high-resolution synchrotron-based in situ XRF and XRD analyses. In the sediment pile accessory amounts of pyrite (≤ 0.5 wt. %) can be detected as depth increase, suggesting that a high turnover rate of reduced sulfur occurs towards the SWI. Such effect could be tied to sulfur disproportionation. The meromictic, oligotrophic, ferruginous and sulfate-rich study site exhibits chemical conditions that, via extrapolation, could provide insight int the microbial and abiotic pathways that controlled the coupled iron and sulfur geochemistry of shallow marine Paleoproterozoic coastal zones. A study of dissolved sulfate-bound oxygen and sulfur, and iron isotope ratios of the bottom water column is currently underway to constrain iron- vs. sulfate-reducing activity and ongoing re-oxidation processes.
1Fakhraee, M., Hancisse, O., Canfield, D.E. et al. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).
2Petrash, D.A., Jan, J., Sirová, D., et al. Iron and nitrogen cycling, bacterioplankton community composition and mineral transformations involving phosphorus stabilisation in the ferruginous hypolimnion of a post-mining lake. Environ. Sci. Process. Impacts 20, 1414–1426 (2018).
How to cite: Petráš, D., Thomazo, C., and Lalonde, S.: The ferruginous, sulfate-rich hypolimnion of a post-mining lake as an analogue to disentangle redox cycling in Paleoproterozoic coastal zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-667, https://doi.org/10.5194/egusphere-egu2020-667, 2020.
The shallow marine depositional and early diagenetic conditions in the predominantly anoxic oceans that followed the Great Oxygenation Event (GOE) remain to be fully understood. In post-GOE coastlines, ferruginous seawater was locally admixed with oxidised freshwater carrying products from the enhanced weathering of sulfides on land, to form coastal aquifers likely exhibiting sulfate concentrations significantly higher than those generally estimated for Proterozoic open oceans; e.g., < 400 μM1. Also, there is mounting petrographic evidence for pseudomorphs after gypsum (or anhydrite) in Paleoproterozoic shallow marine facies, indicating that the penecontemporaneous oxidised sulfur levels in peritidal to intertidal settings were high enough to allow for the formation of primary sulfate minerals. The study of such ancient coastal depositional/early diagenetic conditions throughout modern systems is not straightforward since most of the purposed analogues to Precambrian ferruginous oceans lack environmentally relevant sulfate levels. A combination of spectroscopic and physicochemical measurements of the bottom waters of a meromictic, post-mining lake featuring a dysoxic hypolimnion and an anoxic monimolimnion reveals relatively high concentrations of sulfate ([SO42-]= 19 ± 2 mM) and dissolved iron ([Fe(II)]= 127 ± 17 μM), with redox gradients marked by changes in Fe and N speciation2. The oligotrophic artificial lake—known as Lake Medard (Czech Republic)—also features a depth-dependent co-variation in the abundance of volatile fatty acids, pH and alkalinity, together with a lack of dissolved sulfide, which can only be detected (at near quantification limits) in the 60 m depth sediment-water interface (SWI). Within the hypolimnion, changes in the relative abundance of bacterioplankton taxa point to prokaryotes (mostly Proteobacteria) being important for the co-recycling of dissolved C, N, and Fe stocks, but exerting limited sulfate reduction. In the clayey anoxic sediments there is no accumulation of authigenic sulfides but gypsum, and early diagenetic siderite acts as a significant Fe(II) sink. Preservation of P-bearing FeOOH polymorphs were also observed by using a combination of high-resolution synchrotron-based in situ XRF and XRD analyses. In the sediment pile accessory amounts of pyrite (≤ 0.5 wt. %) can be detected as depth increase, suggesting that a high turnover rate of reduced sulfur occurs towards the SWI. Such effect could be tied to sulfur disproportionation. The meromictic, oligotrophic, ferruginous and sulfate-rich study site exhibits chemical conditions that, via extrapolation, could provide insight int the microbial and abiotic pathways that controlled the coupled iron and sulfur geochemistry of shallow marine Paleoproterozoic coastal zones. A study of dissolved sulfate-bound oxygen and sulfur, and iron isotope ratios of the bottom water column is currently underway to constrain iron- vs. sulfate-reducing activity and ongoing re-oxidation processes.
1Fakhraee, M., Hancisse, O., Canfield, D.E. et al. Proterozoic seawater sulfate scarcity and the evolution of ocean–atmosphere chemistry. Nat. Geosci. 12, 375–380 (2019).
2Petrash, D.A., Jan, J., Sirová, D., et al. Iron and nitrogen cycling, bacterioplankton community composition and mineral transformations involving phosphorus stabilisation in the ferruginous hypolimnion of a post-mining lake. Environ. Sci. Process. Impacts 20, 1414–1426 (2018).
How to cite: Petráš, D., Thomazo, C., and Lalonde, S.: The ferruginous, sulfate-rich hypolimnion of a post-mining lake as an analogue to disentangle redox cycling in Paleoproterozoic coastal zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-667, https://doi.org/10.5194/egusphere-egu2020-667, 2020.
EGU2020-20279 | Displays | BG5.3
Detection of sulphuric life in Mars analogue material using a miniature LIMS systemAndreas Riedo, Valentine Grimaudo, Joost W. Aerts, Alena Cedeño López, Marek Tulej, Pascale Ehrenfreund, and Peter Wurz
In situ identification of life signatures on Solar System bodies other than Earth is extremely challenging and demands for sophisticated and sensitive instrumentation for their detection. Life signatures can be grouped into six different categories, ranging from biomolecules (e.g., lipids and amino acids), to microstructures (such as microfossils) [1]. Sulphur fractionated element isotopes belong to another important category and are of high interest to current astrobiology. In this contribution, we report on a novel measurement protocol, which is dedicated to measure accurately fractionated sulphur isotopes in different Mars analogue materials with an accuracy at the 34δ level using our miniature and sensitive Laser Ablation Ionisation Mass Spectrometer (LIMS) that was designed for space exploration missions.
The applied LIMS instrument in this study consists of a miniature reflectron-type time-of-flight mass analyser (160 mm x Ø 60 mm) and a femtosecond laser system (λ = 775 nm, τ ~190 fs) used as ablation and ionization source [2-3]. By means of irradiance studies performed on the Mars analogues, optimal measurement conditions could be elaborated, which allowed to measure sulphur fractionation with an accuracy at the 34δ level.
All measurements presented here were conducted on five very different Mars analogues that were collected at different extreme field sites on Earth, including Rio Tinto in Spain and Movile and Sulphur caves in Romania. The analogues differ strongly in their total sulphur weight abundance, which range from ~5 to ~95 %, and in their fractionation degree of sulphur (34δ from about +8 to -7). In comparison to the state-of-the-art sulphur isotope measurements the LIMS measurements showed an accuracy of ~1.5 34δ. The measurement protocol is simple and sufficiently accurate for in situ application. It will provide valuable information of e.g., geochemical processes occurred on Solar System body surfaces, and will enable the identification of sulphuric-based life in case the fractionation is above fractionation induced by geochemical processes.
References
1) E. Hays, H.V. Graham, D.J. Des Marais, E.M. Hausrath, B. Horgan, T.M. McCollom, M. Niki Parenteau, S.L. Potter-McIntyre, A.J. Williams and K.L. Lynch, "Biosignature Preservation and Detection in Mars Analog Environments", Astrobiol., 17, 2017, 363 – 400.
2) Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 28, 2013, 1256 – 1269.
3) Tulej, A. Neubeck, M. Ivarsson, A. Riedo, M.B. Neuland, S. Meyer and P. Wurz, "Chemical composition of micrometer-sized filaments in an aragonite host by a miniature laser ablation/ionization mass spectrometer", Astrobiol., 15, 2015, 669 - 682.
How to cite: Riedo, A., Grimaudo, V., Aerts, J. W., Cedeño López, A., Tulej, M., Ehrenfreund, P., and Wurz, P.: Detection of sulphuric life in Mars analogue material using a miniature LIMS system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20279, https://doi.org/10.5194/egusphere-egu2020-20279, 2020.
In situ identification of life signatures on Solar System bodies other than Earth is extremely challenging and demands for sophisticated and sensitive instrumentation for their detection. Life signatures can be grouped into six different categories, ranging from biomolecules (e.g., lipids and amino acids), to microstructures (such as microfossils) [1]. Sulphur fractionated element isotopes belong to another important category and are of high interest to current astrobiology. In this contribution, we report on a novel measurement protocol, which is dedicated to measure accurately fractionated sulphur isotopes in different Mars analogue materials with an accuracy at the 34δ level using our miniature and sensitive Laser Ablation Ionisation Mass Spectrometer (LIMS) that was designed for space exploration missions.
The applied LIMS instrument in this study consists of a miniature reflectron-type time-of-flight mass analyser (160 mm x Ø 60 mm) and a femtosecond laser system (λ = 775 nm, τ ~190 fs) used as ablation and ionization source [2-3]. By means of irradiance studies performed on the Mars analogues, optimal measurement conditions could be elaborated, which allowed to measure sulphur fractionation with an accuracy at the 34δ level.
All measurements presented here were conducted on five very different Mars analogues that were collected at different extreme field sites on Earth, including Rio Tinto in Spain and Movile and Sulphur caves in Romania. The analogues differ strongly in their total sulphur weight abundance, which range from ~5 to ~95 %, and in their fractionation degree of sulphur (34δ from about +8 to -7). In comparison to the state-of-the-art sulphur isotope measurements the LIMS measurements showed an accuracy of ~1.5 34δ. The measurement protocol is simple and sufficiently accurate for in situ application. It will provide valuable information of e.g., geochemical processes occurred on Solar System body surfaces, and will enable the identification of sulphuric-based life in case the fractionation is above fractionation induced by geochemical processes.
References
1) E. Hays, H.V. Graham, D.J. Des Marais, E.M. Hausrath, B. Horgan, T.M. McCollom, M. Niki Parenteau, S.L. Potter-McIntyre, A.J. Williams and K.L. Lynch, "Biosignature Preservation and Detection in Mars Analog Environments", Astrobiol., 17, 2017, 363 – 400.
2) Riedo, M. Neuland, S. Meyer, M. Tulej and P. Wurz, "Coupling of LMS with a fs-laser ablation ion source: elemental and isotope composition measurements", J. Anal. At. Spectrom., 28, 2013, 1256 – 1269.
3) Tulej, A. Neubeck, M. Ivarsson, A. Riedo, M.B. Neuland, S. Meyer and P. Wurz, "Chemical composition of micrometer-sized filaments in an aragonite host by a miniature laser ablation/ionization mass spectrometer", Astrobiol., 15, 2015, 669 - 682.
How to cite: Riedo, A., Grimaudo, V., Aerts, J. W., Cedeño López, A., Tulej, M., Ehrenfreund, P., and Wurz, P.: Detection of sulphuric life in Mars analogue material using a miniature LIMS system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20279, https://doi.org/10.5194/egusphere-egu2020-20279, 2020.