SEV – Side events

LRS1 – 15th C.F. Gauss Lecture

Volcanoes are among the most rapidly growing geological structures on Earth. Consequently, their edifices suffer structural instability that may result in lateral flank collapses, such as the 1980 Mt St Helens event or the 2018 collapse of Anak Krakatau (Indonesia). The seafloor displays the geological remnants of collapses of nearly all ocean island volcanoes, including Hawaii and the Canary Islands. Such collapses and their associated tsunamis are among the largest and most disastrous natural processes on Earth, because of the enormous energy involved. Numerous coastal and ocean island volcanoes worldwide show signs of flank instability, documented by ground deformation measurements. However, it is difficult to evaluate their hazard potential mainly due to a lack of understanding of the causes of collapse. For coastal and ocean island volcanoes, most research and the vast majority of monitoring activities are biased towards the often comparatively small part of the volcano above sea level, while the largest part of the volcanic edifice is typically submerged in water. Using the example of Mount Etna (Italy) as well as several other case studies, I demonstrate that shoreline crossing analyses of volcano-tectonic structures and edifice deformation are necessary for understanding the mechanisms that control the volcano’s structural stability. I further argue that the earliest and most important precursory signals for imminent edifice collapse may occur below sea level. Data acquisition and monitoring in the deep sea is technologically and logistically challenging, but possible. It significantly extends onshore data sets with the potential to revolutionise our current understanding and hazard monitoring.

How to cite: Urlaub, M.: Flank instability of coastal and ocean island volcanoes: Why it is not enough to look at the tip of the iceberg, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18399, https://doi.org/10.5194/egusphere-egu2020-18399, 2020.

LRS2 – Bullerwell Lecture by Rebecca Bell

EGU2020-18869 | Orals | LRS2

Bringing slow slip processes into focus

Rebecca Bell

The discovery of slow slip events (SSEs) at subduction margins in the last two decades has changed our understanding of how stress is released at subduction zones. Fault slip is now viewed as a continuum of different slip modes between regular earthquakes and aseismic creep, and an appreciation of seismic hazard can only be realised by understanding the full spectrum of slip. SSEs may have the potential to trigger destructive earthquakes and tsunami on faults nearby, but whether this is possible and why SSEs occur at all are two of the most important questions in earthquake seismology today. Laboratory and numerical models suggest that slow slip can be spontaneously generated under conditions of very low effective stresses, facilitated by high pore fluid pressure, but it has also been suggested that variations in frictional behaviour, potentially caused by very heterogeneous fault zone lithology, may be required to promote slow slip.

Testing these hypotheses is difficult as it requires resolving rock properties at a high resolution many km below the seabed sometimes in km’s of water, where drilling is technically challenging and expensive. Traditional geophysical methods like travel-time tomography cannot provide fine-scale enough velocity models to probe the rock properties in fault zones specifically. In the last decade, however, computational power has improved to the point where 3D full-waveform inversion (FWI) methods make it possible to use the full wavefield rather than just travel times to produce seismic velocity models with a resolution an order of magnitude better than conventional models. Although the hydrocarbon industry have demonstrated many successful examples of 3D FWI the method requires extremely high density arrays of instruments, very different to the 2D transect data collection style which is still commonly employed at subduction zones.

 The north Hikurangi subduction zone, New Zealand is special, as it hosts the world’s most well characterised shallow SSEs (<2 km to 15 km below the seabed).  This makes it an ideal location to collect 3D data optimally for FWI to resolve rock properties in the slow slip zone. In 2017-2018 an unprecedentedly large 3D experiment including 3D multi-channel seismic reflection, 99 ocean bottom seismometers and 194 onshore seismometers was conducted along the north Hikurangi margin in an 100 km x 15 km area, with an average 2 km instrument spacing. In addition, IODP Expeditions 372 and 375 collected logging-while drilling and core data, and deployed two bore-hole observatories to target slow slip in the same area. In this presentation I will introduce you to this world class 3D dataset and preliminary results, which will enable high resolution 3D models of physical properties to be made to bring slow slip processes into focus.  

How to cite: Bell, R.: Bringing slow slip processes into focus, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18869, https://doi.org/10.5194/egusphere-egu2020-18869, 2020.

CC BY 4.0