Content:

SSS – Soil System Sciences

SSS2.4 – Gully, rill and piping erosion: recent advancements and novel approaches

EGU2020-10940 | Displays | SSS2.4

Ephemeral Gully Erosion Advancements within the AnnAGNPS Watershed Simulation Model

Ronald Bingner, Robert Wells, and Henrique Momm

Concentrated runoff increases erosion and moves fine sediment and associated agrichemicals from upland areas to stream channels. Ephemeral gully erosion on croplands in the U.S. may contribute more of the sediment delivered to the edge of the field then from sheet and rill erosion. Typically, conservation practices developed for sheet and rill erosion are also expected to treat ephemeral gully erosion, but science and technology are needed to account for the separate benefits and effects of practices on each of the various sediment sources.

Watershed modeling technology has been widely developed to aid in evaluating conservation practices implemented as part of a management plan, but typically lacks the capability to identify how a source, such as sheet and rill erosion, ephemeral gully erosion, or channel erosion, is specifically controlled by a practice or integrated practices. The U.S. Department of Agriculture’s Annualized Agricultural Non-Point Source pollutant loading model, AnnAGNPS, has been developed to determine the effects of conservation management plans on erosion and provide sediment tracking from all sources within the watershed, including sheet and rill, ephemeral gully, and channel erosion. 

This study describes the ephemeral gully erosion capabilities within the AnnAGNPS model and discusses research needs to further improve these components for integrated conservation management planning.  Conservation management planning by agencies within the U.S. and by international organizations requires a systematic approach when determining the extent of ephemeral gully erosion impacts on a field, watershed, or national basis, and/or to predict recurring or new locations of ephemeral gullies prior to their development.  This technology provides the capability to separate the impact of ephemeral gullies on erosion from other sources and then evaluate the impact of targeted practices to control erosion at the source and subsequent downstream resources.

How to cite: Bingner, R., Wells, R., and Momm, H.: Ephemeral Gully Erosion Advancements within the AnnAGNPS Watershed Simulation Model , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10940, https://doi.org/10.5194/egusphere-egu2020-10940, 2020.

EGU2020-1701 | Displays | SSS2.4

Small permanent gullies: modelling and application to a semiarid region

Pedro Henrique Lima Alencar, José Carlos de Araújo, and Adunias dos Santos Teixeira

Gullies are key drivers of land degradation, are important sources of sediment and increase sediment and pollutant connectivity in the catchment. They also play an important role in desertification areas, changing the water-table height and in farmlands, reducing productive areas. In this study, we attempted to model small permanent gullies, common in the Brazilian Semiarid Region, where the shallow soils limit the size of gullies cross-sections to a depth of no more than one meter. To model this process, we coupled the models of Foster and Lane (1983) and Sidorchuk (1999), in order to consider the effect of permanent gullies not considered in the first. Both models need as input the discharge peak and its duration, however, these data are frequently not available. We tested four different rain intensities (average, 60-minute, 30-minute and 15-minute), finding that the most intense 30 minutes represent the best the effects of the storms over gully erosion. The coupling of the two models is defined by a threshold that indicates when the equations for sidewall erosion proposed by Sidorchuk should be applied. To validate the model, we measured three gullies in the Brazilian Semiarid Region. The gullies were initiated in 1958 after the construction of a country road and have drainage area below 1 ha. The model yielded a Nash-Sutcliffe coefficient of 0.85.

How to cite: Lima Alencar, P. H., de Araújo, J. C., and dos Santos Teixeira, A.: Small permanent gullies: modelling and application to a semiarid region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1701, https://doi.org/10.5194/egusphere-egu2020-1701, 2020.

EGU2020-11469 | Displays | SSS2.4

Evaluation of CCHE2D hydrodynamic and sediment transport model to simulate erosional sources in row crop agriculture in Midwest US

Robert Wells, Yafei Jia, Henrique Momm, Carlos Castillo, Dalmo Vieira, Ronald Bingner, Sean Bennett, and Martin Locke

Soil erosion due to rainfall and overland flow can be detrimental to agricultural management and long-term agricultural sustainability. Although numerous conservation measures and planning strategies have greatly reduced the amount of sediment moving within the landscape, there are still unresolved questions concerning initiation of particle motion, susceptibility to erosion, total soil loss, sediment transport and general measurement theory. Within agricultural fields, ephemeral erosion is particularly harmful because these sources can accelerate sediment transport, often yield more sediment than interrill sources and are more challenging to mitigate. In this study, terrain data were collected by aerial photogrammetry using an unmanned aerial system (UAS) following planting and approximately one month later, while climate variables during the period were collected using NexRad radar. Imagery was captured within seven agricultural fields (six in Iowa and one in Minnesota), ranging in size from 0.6 to 3.6 hectare (1.6 to 8.8 acre). Considering the small scale in topographic variation between two surveys, extreme efforts were applied to image processing and geospatial registration. Advanced models for camera calibration utilizing Micmac open-source photogrammetry software package were used to account for complex distortion patterns in the raw image data set. The undistorted images were then processed using Agisoft Photoscan for camera alignment, model georeferencing and dense point cloud generation (millions to billions of points per survey), from which digital elevation models (DEMs; 10 to 57 million cells) were produced. A physically-based finite element hydrodynamic and sediment transport model (CCHE2D, developed at the National Center for Computational Hydroscience and Engineering) was applied to simulate hydrological (runoff), sediment detachment (raindrop splash, sheet flow, and concentrated flow erosion) and sediment transport/deposition landscape evolution processes. Simulated geomorphological and sediment budget results over time were compared to field observations for model input parameter adjustment and consequently quantification of estimates. Integration of high-resolution spatial and temporal topographic measurements with physically-based numerical models support the development and validation of dynamic landscape evolution models needed for accurate prediction and quantification of gully initiation, evolution and impact on total soil loss and effective conservation management planning.

How to cite: Wells, R., Jia, Y., Momm, H., Castillo, C., Vieira, D., Bingner, R., Bennett, S., and Locke, M.: Evaluation of CCHE2D hydrodynamic and sediment transport model to simulate erosional sources in row crop agriculture in Midwest US, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11469, https://doi.org/10.5194/egusphere-egu2020-11469, 2020.

EGU2020-4380 | Displays | SSS2.4

Simulation of Loess Gully Evolution Based on Geographic Cellular Automata

Lanhua Luo and Fayuan Li

Gully development is an important topic in the evolution of modern geomorphology. The study of the development process of gullies is key to explain the genesis, mechanism and spatial differentiation of loess geomorphology. Geographic cellular automata (Geo-CA) can simulate complex geographical phenomena by expanding and elements of Cellular automata (CA). This study explores the mechanism of the development process of loess gullies while taking into account the dynamic factors of head-cut erosion. Based on geographic cellular automata (Geo-CA), the transition rules for gully evolution are designed, including the rules of gully head region, the rules of water infiltration, flow direction rule, flow rules, and sediment transport rules. Based on the small simulated Loess watershed under artificial rainfall, the simulation model of loess gully evolution is constructed and implemented. In order to evaluate the accuracy of the simulation results, the negative terrain, Hypsometric Integral (HI) and a gully head confusion matrix of the simulated results and the measured data are compared. The evaluation produces encouraging results in terms of numeric accuracy and spatial distribution, in agreement with the evolution of the loess gully. In addition, the simulation model of loess gully evolution this study proposed is applied to the evolution of a natural watershed, the Madigou watershed located in Jingbian County, Yulin City, Shaanxi Province. The comparison between the simulated results of the model and the measured data is used to verify the validity of the model. All the results show that the evolution model of loess gully based on Geo-CA is satisfactory in simulating the process of loess gully evolution, which provides a new research method and ideas for in-depth study of the process of gully evolution. 

How to cite: Luo, L. and Li, F.: Simulation of Loess Gully Evolution Based on Geographic Cellular Automata, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4380, https://doi.org/10.5194/egusphere-egu2020-4380, 2020.

EGU2020-8661 | Displays | SSS2.4

Process-oriented gully density modelling at the continental scale of Africa: first insights

Sofie De Geeter, Matthias Vanmaercke, Gert Verstraeten, and Jean Poesen

Gully erosion is an important land degradation process, threatening soil and water resources worldwide. However, contrary to sheet and rill erosion, our ability to simulate and predict gully erosion remains limited, especially at the continental scale. Nevertheless, such models are essential for the development of suitable land management strategies, but also to better quantify the role of gully erosion in continental sediment budgets. We aim to bridge this gap by developing a first spatially explicit and process-oriented model that simulates average gully erosion rates at the continental scale of Africa.

We are currently developing a spatially explicit model that (i) allows to simulate the spatial patterns of gully density at high resolution (30-90 m); (ii) is based on the physical principles that control the gully erosion process; (iii) uses GIS and data sources that are available at the continental scale. Our model structure is based on the threshold-dependent character of the gully-initiation process where a proxy of flow shear stress is weighted against a proxy of local shear resistance at the pixel scale. To calibrate and validate this model, we make use of an extensive database of 44 000 gully heads mapped over 1680 sites that are randomly distributed across Africa. The exact location of all gully heads was manually mapped by trained experts, using high resolution optical imagery available in Google Earth. This allows to extract very detailed information at the level of the gully head, such as the local slope and the area draining to the gully head. Based on these variables, we simulate indices for peak runoff (based on the Curve Number method), the shear stress of the concentrated runoff and the critical shear stress of the soil. The combination of these indices reflects the process leading to gully initiation and therefore provides an accurate indication of the susceptibility of that location to gully initiation.

Preliminary results indicate that it is feasible to model gully head locations and densities using this process-oriented approach. However, important trade-offs exist between an accurate description of the (threshold-dependent) gully initiation process and the uncertainties on the GIS data used to describe this process. One important issue is the resolution of the digital elevation model (DEM) used to extract local slopes (S) and to delineate contributing areas (A).  Comparing S- and A-values obtained from 30m SRTM-data with those obtained from higher resolution DEMs (5-12m) showed that SRTM data allows to obtain reasonable proxies of S and A but that uncertainties can be significant and correction factors are needed to avoid biases.

Overall, our results indicate that modelling gully densities using a process-oriented and spatially explicit approach has (conceptual and pragmatic) advantages as compared to a purely empirical ‘black-box’ modelling approach and offers opportunities to better quantify this important land degradation process at the global scale.

How to cite: De Geeter, S., Vanmaercke, M., Verstraeten, G., and Poesen, J.: Process-oriented gully density modelling at the continental scale of Africa: first insights, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8661, https://doi.org/10.5194/egusphere-egu2020-8661, 2020.

EGU2020-147 | Displays | SSS2.4

Spatial variation of gully density and morphology and their controlling factors at a regional scale: a case study for the Chinese Loess Plateau

Yixian Chen, Juying Jiao, Matthias Vanmaercke, Xiqin Yan, and Jianjun Li

Gully erosion is a major cause of land degradation in many regions worldwide. Recent research shows that the challenges posed by gully erosion are likely to further increase as a result of climate change and increasing land use pressure. Nonetheless, our understanding of this process remains limited in many ways. While numerous studies have focused on the occurrence and morphology of gullies at local (catchment) scale, relatively little research has explored their spatial variations at regional to continental scales. As a result, the factors controlling the density, size and morphology of gullies at such scales remain poorly understood. This is especially the case for the role of climate/weather conditions. Here we aim to advance our understanding on this topic by studying gully densities and gully morphology in the Chinese Loess Plateau (CLP), a region severely affected by gully erosion. 
We selected five representative catchments in the CLP that are relatively similar in size (7-30 km²), topographic context, soil characteristics and land use but represent a large gradient in rainfall conditions. We mapped 2511 gullies in these catchments, using Pleiades-1B (panchromatic resolution at 0.5 m) and WorldView-3 images (panchromatic resolution at 0.31 m). For each of the gullies, we calculated a range of morphological parameters including the gully length, width, surface area, length-width ratio and shape index. Next, we explored to what extent differences in gully density and morphology are correlated to contrasts in rainfall and other environmental factors.
Overall, the gullies showed large variations in gully length (2.1-308 m, average 38.1 m), width (1.3-87 m, average 11.5 m) and density (0-4.8 km/km², average 2.3 km/km²). Gully densities showed a negative correlation with rainfall amounts. This is likely partly attributable to feedbacks between rainfall amounts and vegetation cover. However, also contrasts in rainfall intensity and regime likely play an important role. Also variations in gully width appear strongly correlated with rainfall patterns (with more humid catchments resulting in overall wider gullies). Surprisingly, gully lengths (a first indicator of gully headcut retreat) showed no clear correlation with rainfall patterns. Overall, our results indicate that contrasts in rainfall regime are crucial to understand gully erosion dynamics at regional to continental scales. This is true for their initiation but also for their subsequent expansion (and especially gully widening). These findings have important implications for the development of models aiming to predict gully erosion at regional to continental scales.

How to cite: Chen, Y., Jiao, J., Vanmaercke, M., Yan, X., and Li, J.: Spatial variation of gully density and morphology and their controlling factors at a regional scale: a case study for the Chinese Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-147, https://doi.org/10.5194/egusphere-egu2020-147, 2020.

Soil erosion constitutes a major problem in the European loess belt. From England to Eastern Europe, loess-derived soils are particularly susceptible to water and tillage erosion. This is certainly the case for the Aa River Basin (Nord-Pas-de-Calais, northern France), where a relatively thin Pleistocene loess cover is present on top of a substrate of clay-with-flints and Cretaceous chalk. This research aimed at quantifying the amount of soil eroded since its initiation. Making a gross balance of the soil erosion and sedimentation processes intends to study the evolution of the soil surface and the effects of different types of erosion over longer periods of time, and quantify erosion rates in agricultural areas.

The extent and amount of eroded soil was mapped in the Lauwerdal, a 63 ha large catchment in the headwaters of the Aa River Basin (Northern France). Based on four soil profiles, described and sampled along a topographic transect, and 256 augerings spaced along a grid, the original soil surface level was reconstructed. The current topographic surface was analysed based on a Digital Terrain Model obtained from UAV aerial photographs. The organic matter present in the filling of a former erosion channel, observed in one of the soil profiles, was dated by 14C as an indication of the onset of the erosion and sedimentation process.

Water and tillage erosion are the main processes characterizing the study area: eroded soils (Nudiargic Luvisols) dominate the upper reaches of the study area with colluvium at the footslopes (Colluvic Regosols). The sediment budget reveals that the bulk of the sediments are discharged from the headwater catchment as the quantity of eroded soil (0.87 × 106 tonnes) is more than a ten-fold higher than the deposition (0.068 × 106 tonnes). The 14C dating indicates that the erosion channels started filling up between the Early Iron Age and the Roman period, ca. 1200 years BP. The historical erosion rates are estimated at 491.4 t/km2 per year, and deposition rates at 91.8 t/km2 per year.

Our findings illustrate how the amount of soil eroded over a long time span can be estimated from soil morphologic features in combination with a detailed Digital Terrain Model. Indeed, human induced soil erosion dates back at least to Early Iron Age, when forest clearing for agricultural expanded. Surely, the mechanization and upscaling of agriculture in the 20th century will have exacerbated this process. The results also show that sediments are evacuated from headwater catchments and, consequently, must accumulate in the lower alluvial plains. Our findings corroborate research findings from the silt-loess belt of central Belgium where it was shown that soil erosion started in the same period and also led to the formation of wide alluvial valleys.

How to cite: Krekelbergh, N., Frankl, A., and Dondeyne, S.: Understanding soil profiles and sediment redistribution over long time scales in an agrarian setting: the case of Lauwerdal (Northern France), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14026, https://doi.org/10.5194/egusphere-egu2020-14026, 2020.

Ephemeral gullies (EG) are linear erosion features located in swales where runoff concentrates during or immediately after rainfall events. EG are temporary because they are easily filled by conventional machinery and cause important soil losses in cultivated areas. Casalí et al. (1999) distinguished three types of EG: “classical”, formed by concentrated runoff flows within the same field where runoff started; “drainage”, created by concentrated flows draining areas upstream from the field; “discontinuity”, found in places where management practices create a sudden change in slope. There is still a great lack of knowledge about the true extent and importance of this EG. In this sense, the information obtained from aerial photographs can be of great value. The main objective of this work is to evaluate the possibility of making an exhaustive characterization of the space-time evolution of ephemeral gullies in a relatively large area from color aerial photographs. The effect of precipitation on the EG will be also analyzed.

The 570 ha study area is almost completely cultivated with winter cereals and located in the Pitillas district (Navarre). Climate is Continental Mediterranean (on average 550  mm yr-1). Soil (upper horizons) are loam–silty loam in texture.

EG within cultivated fields were located, classified and digitized using GIS interfaces over seven colour orthophotos (1:5000 with 0.5mx0.5m resolution) taken between 2003 and 2014. Gully length was determined after locating EG down and upstream ends. EG drainage areas and slopes were determined using a 2 m resolution DEM.

To determine EG volumes, an empirical power model for the study area defining the relationship between EG lengths and volumes was first obtained from previous field measurement, and then used for the EG lengths from this study. The corresponding erosion rates were also calculated.

57 small watersheds affected by EGs were identified, being 39 of them classified as drainage EGs, and the remaining 18 EGs as classic. 70% of the small watersheds were affected by EG only once. In remaining watersheds EG reappeared from twice to seven times. Therefore, it seems that the repeatability is not as high as thought.

The average erosion rate in classical EG is about 1.1 Kg m-2 year-1. Previous assessments using accurate direct methods reported an average value of 0.8 Kg m-2 year-1 for very similar watersheds in the same area. Although it is not a conclusive proof, this findings indicate that both methods provide similar results.

A very high correlation (r2= 0.84) has been found between the length of the gullies formed in the study area and the total annual precipitation. It would follow that EG erosion would also be controlled by the overall amount of rainfall also in Mediterranean climates, and not only by high intensity-low frequency events.

References

  1. Casalí, J. J. López, J. V. Giráldez, 1999. Ephemeral gully erosion in Southern Navarra (Spain). CATENA 36: 65-84.

How to cite: Chahor, Y., Casalí, J., and Giménez, R.: Analysis and assessment of ephemeral gully erosion in wide areas of Navarre (Spain) from routinely obtained ortophotographs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10866, https://doi.org/10.5194/egusphere-egu2020-10866, 2020.

EGU2020-19925 | Displays | SSS2.4

Using GIS techniques for automatic mapping of gullies in the Moldavian Plateau, Romania

Ionut - Costel Codru and Lilian Niacsu

Gully erosion represents one of the major environmental problems within the agricultural hilly areas of Moldavian Plateau, Romania. Deforestations, made in the last two centuries, and unsustainable agricultural techniques made the Moldavian Plateau a very susceptible area especially to soil erosion, gullying and landsliding. Beside the human influence that accelerated the process, gully erosion is a natural hazard that occurred from heavy rain falls and water concentrations in catchment areas. The most important natural induced factors that influenced gully head retreat in the Moldavian Plateau are the landform features, favorable lithology, land cover changes under improper human impact on the background of specific climacteric conditions such as heavy rain falls, snow melt and or freeze-thaw phenomenon. The Moldavian Plateau is the area that has one of the biggest densities of gullies in Europe, and, because of its large population of gullies and lack of materials, techniques and time no comprehensive inventory was made. Due to the appearance of high resolution LIDAR images and the evolution of GIS software in recent years, a lot of researchers, from all around the world, tried to identify gullies and quantify them using these modern techniques. For this research, morphometric features (e.g. profile curvature and a 360⁰ hillshading grid with eight points of lightening distributed at a distance of 45 azimuth degrees) derived from LIDAR were used for a more facile mapping of gullies. These morphometric features were classified using different classification method. To evaluate the quality of the results, a shapefile with gully contours had been created by digitizing the banks of the gully. The results of the manually digitized shapefile were confronted with the results of the automatic morphometric features obtained in this research. The combination of hillshading grids that were used in this research covered a very big part of the surfaces occupied by gullies, excepting the gullies affected by landslides that were hardly recognized. Also, the derived profile curvature identified the banks of the gully in a very accurate way.

How to cite: Codru, I.-C. and Niacsu, L.: Using GIS techniques for automatic mapping of gullies in the Moldavian Plateau, Romania, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19925, https://doi.org/10.5194/egusphere-egu2020-19925, 2020.

EGU2020-168 | Displays | SSS2.4

The gullies of southeast Nigeria: an ecogeomorphic investigation

Ikenna Osumgborogwu, John Wainwright, and Laura Turnbull-Lloyd

Gully erosion was unknown in the Orlu area of Southeast Nigeria before the Nigerian civil war (from 1967 to 1970) but has now become endemic and continues to present day.  Human activities are central to this acceleration of erosion due to their intervention with ecogeomorphic processes. This paper aims to improve understanding of ecogeomorphic drivers of gully erosion using case studies from the Orlu area of southeast Nigeria, and to achieve this aim, focus-group meetings and analyses of remotely sensed data were adopted. High-resolution (0.61 – 5 m) satellite imagery for 2009 and 2018 were acquired from different platforms and used for gully mapping and monitoring while ASTAR DEM was used to estimate topological parameters. Upslope contributing areas were produced for two gullies; A and U, while gully evolutions between 2009 and 2018 were related to changes in contributing areas during same time span. Ecogeomorphic and climatic drivers such as vegetation-cover change, slope angle, elevation, rainfall, and nearness to roads and rivers were studied and their associations with gullying established. Vegetation cover was classified into three: non-vegetated, open vegetation and trees while daily surface runoff between 2009 and 2018 was estimated for these vegetation classes using the Curve Number approach. Results from focus-group meetings show that both gullies started in 1969 during the civil war as a result of increase in population density arising from the influx of refugees as well as other military activities. Gully growth was sustained after the civil war was a result of land use changes. Average gully headcut retreat rate between 2009 and 2018 was 64 m yr-1 and 12.2 m yr-1 for gully A and U respectively, while a positive correlation was recorded between change in vegetation cover in contributing areas and increase in gullied area with Pearson’s correlation of 0.6 and r2 of 0.4. The runoff model predicted runoff for only the non-vegetated areas with runoff coefficients ranging from 11.5 % to 22 %. Slope angle, profile and plan curvature had positive associations with gullies while elevation, nearness to rivers and nearness to roads recorded negative correlations with gullies. In conclusion, while geomorphic drivers such as slope angle are preparatory factors, human activities including civil wars and land-use changes are forcing factors of gully erosion. This study has implications for gully remediation especially as regards land use management of upslope contributing areas.

Keywords: Gully erosion, Ecogeomorphology, upslope contributing area, south east Nigeria

How to cite: Osumgborogwu, I., Wainwright, J., and Turnbull-Lloyd, L.: The gullies of southeast Nigeria: an ecogeomorphic investigation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-168, https://doi.org/10.5194/egusphere-egu2020-168, 2020.

EGU2020-10791 | Displays | SSS2.4

Assessing the impacts of urban gullying in the Democratic Republic of Congo

Guy Ilombe Mawe, Eric Lutete Landu, Fils Makanzu Imwangana, Charles Nzolang, Robert Wazi Nandefo, Jean Poesen, Charles Bielders, Olivier Dewitte, and Matthias Vanmaercke

Urban gullies cause major infrastructural damages and often claim casualties in many tropical cities of the Global South. Nonetheless, our understanding of this hazard is currently limited to some case studies while the overall impacts remain poorly quantified. Here, we aim to bridge this gap by making a first quantification of the number of persons and buildings affected by urban gullies at the scale of the Democratic Republic of Congo (DRC). We used Google Earth imagery to identify and map urban gullies for cities in the DRC and evaluate their expansion rate and the resulting damages where possible. In total, more than one thousand urban gullies were mapped across 22 affected cities. Over 80% of these gullies were active and, by analyzing their expansion, we identified 1463 houses and 386 roads destroyed. Nonetheless, the actual impacts are likely much larger since the limited amount of imagery available does not allow to quantify all impacts.

We therefore also made an estimate of the total number of persons directly affected by urban gullies (i.e. displaced due to the destruction of their house). For this, we calculated the areal fraction of urban gullies in affected cities (which ranged from 0.12% to 4.66%) and combined these fractions with the urban population density. From this, we estimate that a total of 212 000 people have been affected. The problem is especially acute in the cities of Kinshasa, Mbujimayi, Tshikapa, Kananga, Kabinda, and Kikwit. Given that these gullies are linked to recent urban growth and typically less than 30 years old, we estimate that at least 7000 people/year lose their house as a result of urban gullies in DRC. This is likely an underestimation since (i) not all urban gullies are detectable; (ii) urban gullies may disappear and reappear over time; and (iii) many of these gullies are likely more recent than 30 years. Furthermore, this assessment does not take into account numerous other indirect impacts of urban gullies (e.g. impacts on traffic and sanitation, increased flood risks, real estate value loss and intangible impacts like fear or stress). 

Overall, this research shows that urban gullying is a serious problem in DRC, but likely also in many other tropical countries. More research is needed to better understand this processes and, ultimately, to prevent and mitigate its impacts. The results and the database of this study provide an important first step in this direction.

How to cite: Ilombe Mawe, G., Lutete Landu, E., Makanzu Imwangana, F., Nzolang, C., Wazi Nandefo, R., Poesen, J., Bielders, C., Dewitte, O., and Vanmaercke, M.: Assessing the impacts of urban gullying in the Democratic Republic of Congo , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10791, https://doi.org/10.5194/egusphere-egu2020-10791, 2020.

EGU2020-10706 | Displays | SSS2.4

Analysis of ephemeral gully erosion in small agricultural watersheds in Iowa (USA)

Eduardo Luquin, Richard M. Cruse, Karl R. Gesch, Matthew J. Helmers, Henrique G. Momm, Robert R. Wells, Miguel A. Campo, and Javier Casalí

Ephemeral gullies (EG) are linear erosion features located in swales where surface and/or subsurface runoff concentrate during or immediately after rainfall events. As its name states, EGs are temporary because they are easily filled by conventional machinery, but when filled they reform if the area is not appropriately managed. Downstream water quality issues and decreased soil productivity are the main environmental impacts. EGs are frequently identified as (the most) relevant sediment sources in agricultural areas but their dimensions and particular contribution to the total erosion under different temporal, spatial, climate and land use condition is still unknown. Therefore, the objective of this study is to obtain ephemeral gully erosion rates and estimate the main morphological characteristics of the ephemeral gullies (width, length and depth) and their evolution both in relation to time and position on the landscape.

The studied EGs, B6 with a 0.94 ha watershed and I3 with a 0.95 ha watershed formed in two fields located in the Walnut Creek watershed, Iowa (US). The field-sized watersheds are less than 1.5 Km apart and have similar topography and soils. The cropping system consists of a two-year corn-soybean rotation managed by one farmer using no-till and other standard management practices. EG were measured using close range photogrammetry techniques. In order to achieve a suitable characterization of the EG evolution over time and space, EGs were divided in three sections (bottom, middle and top) of equal length. Photographs were taken at least once in 2013, 2014 and 2018 (a total of five in I3 and three in B6). Cross section profiles along the EG perpendicular to the flow path direction were selected and their width, area and depth were determined from a graphical representation of the cross sections. EG volumes were estimated by the sum of interpolating sequential cross-section areas and multiplying by the distance between them.

Average EG erosion rates during 2013-2014 were 3.19 Mg ha-1 year-1 for B6 and 3.63 Mg ha-1 year-1 for I3. Values in agreement with rates estimated by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) of 0.49 to 5.18 Mg ha-1 year-1 across the USA and other simulated values of 4.00 ± 1.76 Mg ha-1 year-1 for no till systems in the state of Iowa. The current study shows evidences that EG in no till systems may not stabilize after their formation. EG dimensions (depth, width and length, thus volume) varied over time and space during the continuously monitored period. In general, volumes tend to increase in the middle position while depths decrease in the bottom position. When the EG was filled, it reformed again in approximately the same location showing similar dimensions to that which existed prior to filling.

How to cite: Luquin, E., Cruse, R. M., Gesch, K. R., Helmers, M. J., Momm, H. G., Wells, R. R., Campo, M. A., and Casalí, J.: Analysis of ephemeral gully erosion in small agricultural watersheds in Iowa (USA), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10706, https://doi.org/10.5194/egusphere-egu2020-10706, 2020.

EGU2020-4034 | Displays | SSS2.4

Channel widening quantification under laboratory conditions

Chao Qin, Fenli Zheng, and Robert Wells

Channel widening constitutes about 80% of total soil loss, especially in the presence of a plow pan which manifests a less or nonerodible soil layer. Channel bank erosion quantification is prerequisite to couple effectively the bank sediment supply system with fluvial sediment transport fluxes. The objectives of this study were to: 1) describe and evaluate methods for monitoring and data post-analysis of channel widening and 2) investigate how inflow rate, slope gradient and initial channel width affect channel widening processes in the presence of a non-erodible layer. Technology was developed to capture 5-cm spaced cross-sections along a soil flume at 3-s time intervals. Two off-the-shelf digital cameras were positioned 3-m above the soil bed and controlled by a program to trigger simultaneously and download images to the computer. Methods utilizing color differences in images and elevation differences in DEMs were applied to detect discontinuities between channel walls and the soil bed. Channel widths were calculated by differentiating the coordinates of these surface discontinuities. A volumetric method was used to calculate flow velocity with measurements of flow depths obtained from ultrasonic depth sensors. Sediment concentration was determined by manual sampling.

The results showed that different channel width calculation methods exhibited comparable outcomes and achieved satisfactory accuracy. Sediment discharge showed a significant positive linear correlation with channel widening rate, while exhibiting a 5 to 25-s time lag compared to the peak of channel widening rate. Total sediment discharge calculated by photogrammetry was 3.1% lower than that calculated by manual sampling. Flow velocity decreased with time and showed a significant negative power correlation with channel width. Sediment delivery and channel width increased with the increase of inflow rate, bed slope and the decrease of initial channel width. Exponential equations were used to predict the channel width time series. Toe scour, crack development, sidewall failure and block detachment and transport, in sequence, were the four main processes of channel widening. Basal scour arc length, tension crack length and width decreased with initial channel width and increased with time, flow discharge and bed slope. Basal scour arcs were divided into three patterns according to different shapes in comparison to the failure arcs. Sediment delivery equations based on the disaggregation of concentrated flow entrainment and mass failure were also fitted. Advantages of the described methodology include automated high spatial and temporal monitoring resolution, semi-automated data post-processing, and the potential to be generalized to large scale river/reservoir bank failure monitoring. This study provides new insight on improving channel widening measurements and prediction technology.

How to cite: Qin, C., Zheng, F., and Wells, R.: Channel widening quantification under laboratory conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4034, https://doi.org/10.5194/egusphere-egu2020-4034, 2020.

EGU2020-2199 | Displays | SSS2.4

Evaluation of the magnetite as a magnetic tracer of eroded sediment from ephemeral gullies: conditioning factors of magnetic susceptibility

Elena Zubieta, Juan Larrasoaña, Rafael Giménez, Alaitz Aldaz, and Javier Casalí

In gully erosion, the soil detached by the action of the erosive flow can be transported over long distances along the drainage network of the watershed. In this long way, the eroded material can be redistributed and/or deposited on the soil surface, and then eventually buried by eroded material from subsequent erosion events. Likewise, the variability of the soil (i.e., in texture and moisture content) over which this material moves can be considerable. The presence of the eroded material could be detected through magnetic tracers attached/mixed with the eroded soil. In this experiment, the degree to which the magnetic signal of the magnetite is conditioned by (i) the burying tracer depth, (ii) the texture and moisture content of the soil covering the tracer and (iii) the tracer concentration was evaluated.

The study was carried out in the lab in different containers (0.5 x 0.5 x 0.3 m3). Each container was filled with a given soil. In the filling process, a 0.5-cm layer of a soil-magnetite mixture of a certain concentration was interspersed in the soil profile at a certain depth. Overall, 3 different soil:tracer concentrations (1000:1, 200:1, 100:1), 4 tracer burying depths (0 cm, 3 cm, 5 cm and 10 cm from soil surface), and  2 contrasting soils (silty clay and sandy clay loam) were used. In each case, the magnetic susceptibility was measured with a magnetometer (MS3 by Bartington Instruments). Experiments were repeated with different soil moisture contents (from field capacity to dry soil).

If the tracer is located under the soil surface a minimum soil:tracer concentration of 200:1 is required for its correct  detection from the surface using a magnetometer. The intensity of the magnetic signal decreases dramatically with the vertical distance  of the tracer from the soil  surface (burying depth). The maximum detection depth of the tracer magnetic signal is strongly dependent on the natural magnetic susceptibility of the soil which hides the own tracer signal. Variation in soil moisture content does not significantly affect the magnetic signal. For extensive field studies the soil-tracer volume to be handled would be very high. Therefore, it is necessary to explore new tracer application techniques.

How to cite: Zubieta, E., Larrasoaña, J., Giménez, R., Aldaz, A., and Casalí, J.: Evaluation of the magnetite as a magnetic tracer of eroded sediment from ephemeral gullies: conditioning factors of magnetic susceptibility, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2199, https://doi.org/10.5194/egusphere-egu2020-2199, 2020.

EGU2020-13446 | Displays | SSS2.4

Particle and aggregates size distribution of soil transported due to surface runoff and rill erosion

Romana Kubínová, Petr Kavka, Martin Neumann, and Tomáš Laburda

In this contribution the grain size distributions of the soil sediment obtained from soil erosion experiments were analysed. All the tests were done on arable topsoil’s, separately the size distribution of the soil aggregates and individual soil particles were evaluated. Soil erosion was initiated under the controlled conditions in the laboratories. The rainfall was artificially generated with use of a nozzle type rainfall simulator. The sediment transported due to the surface runoff and rill erosion was collected from the discharge of the inclined soil erosion plots (slopes 20 – 34°, slope length 4 m).

The soil sediment was collected in four sampling times. The first and the second were collected in fifteen and thirty minutes from the beginning of the simulation, then followed fifteen minutes long pause without raining and then the simulation continued and soil samples were collected again in fifteen and thirty minutes from the beginning of the rain. After ten days long pause whole process were repeated at the same experimental plot contains rills from previous simulation. Experimental plots were vertically divided into two parts. On one part was an eel and on the second part were different types of rolled erosion control products (RECPs) – Enkamat 7010, Biomac-C, coir fibres K700 and K400, jute, Macmat 8.1 with soil, mulch, hay and nonwoven. The influence of RECPs to the grain size distribution was investigated.

Laser diffraction has been selected as a method to determine grain size distribution and device Mastersizer 3000 was used. By the comparison of the grain size distribution, of more than five hundreds samples, the different response to the soil erosion mechanism and the influence of external factors (experimental plot slope, sampling time from the surface runoff and presence of RECPs) on the grain size distribution and soil aggregates content in eroded sediment were investigated. It has been found that both the particle size and aggregates size distribution of the eroded sediment changes considerably in time.

This research is funded by the TH02030428 - „Design of technical measures for slopes stabilization and soil erosion prevention”.

How to cite: Kubínová, R., Kavka, P., Neumann, M., and Laburda, T.: Particle and aggregates size distribution of soil transported due to surface runoff and rill erosion , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13446, https://doi.org/10.5194/egusphere-egu2020-13446, 2020.

EGU2020-22509 | Displays | SSS2.4

Grass species selection to control for concentrated flow erosion in grassed waterways.

Corina Lees, Robert Simmons, and Jane Rickson

Grassed waterways reduce water runoff, prevent scouring and encourage sediment deposition from erosion prone land. The aim of this study was to assess the efficacy of conventional and novel grass species (as monocultures and mixtures) to control erosion, at an early establishment stage (6 weeks), within grassed waterways. The experimental treatments included bare soil (B), a conventional mix of Lolium perenne and Festuca rubra (C), Festulolium cv prior (F1), Festulolium cv prior and Festulolium bx511 (F1+F2), and all grass species combined (F1+F2+C). F1 is adapted to flooded conditions, whilst F2 is adapted to drought conditions. With climate change in the UK likely to result in drier summers and wetter winters these Festulolium species will be adapted to future climatic conditions. However, little is known about their efficacy within grassed waterways. The grasses were established in 1.2 x 1 x 0.5m macrocosms in a sandy clay loam soil during June-Aug, 2019. A sub sample of each experimental treatment was taken (0.3 x 0.1 x 0.1m) from the macrocosms within a stainless steel box. Tests were replicated in quadruplicate.
The following above ground trait (Stem area density) and the following below ground traits (Total root length of fine roots <0.25mm, root diameter and root surface area) were determined for each experimental replicate. Prior to testing, the grass was cut to circa 3.0 cm height to represent a mowed grass sward before being placed into a fully instrumented hydraulic flume. The hydraulic flume simulated a concentrated flow event and treatment performance was assessed in terms of turbidity, sediment concentration, soil loss and flow velocity.
The effects of roots+shoots and of roots only on performance indicators were determined to quantify the relative contribution of above ground vs below ground traits in controlling erosion. One set of replicates was tested only with roots whilst another set of replicates was tested with roots+shoots and then with roots only. This was done to isolate the effect of below ground and above ground traits.
All replicates were subjected to a concentrated flow event with increasing incremental flow velocities from 0.2-0.6l s-1 for bare soil, 0.2-0.8l s-1 for roots+shoots treatments and 0.2-1.4l s-1 for roots only treatments. Each flow rate velocity was run for 60 seconds. For each flow rate, duplicate water samples were taken downslope of the treatment and water depth was measured, upstream of the treatment, in the centre of the treatment and downstream of the treatment.  The water samples were used to determine sediment concentrations. The water depth measurements were used to determine runoff velocity. Furthermore, a turbidity meter continuously measured turbidity during the concentrated flow event. Soil detachment and transport rates were significantly reduced for all experimental treatments as compared to the bare soil (p<0.05). Final treatment efficacy will be assessed based on a ranking of the key performance indicators. The knowledge gained from this research can be used and applied to other grassed soil erosion mitigation features such as in field and riparian buffer strips, swales as well as grassed waterways.

 

How to cite: Lees, C., Simmons, R., and Rickson, J.: Grass species selection to control for concentrated flow erosion in grassed waterways., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22509, https://doi.org/10.5194/egusphere-egu2020-22509, 2020.

EGU2020-1497 | Displays | SSS2.4

Internal Erosion of Soil Pipes: Still More Questions Than Answers

Glenn Wilson, Anita Bernatek-Jakiel, John L. Nieber, and Garey A. Fox

Internal erosion of soil pipes can be a very important process in gully erosion as well as other mass failure events such as sinkholes, landslides and levee/dam breaching. Flow through preferential flow paths such as macropores can be rapid enough to exceed the soil critical shear stress and cause detachment of particles from the walls of the flow path, i.e. internal erosion. Development of a soil pipe from enlargement of a macropore results in more rapid flow and thus greater internal erosion, particularly mass failure of aggregates from pipe walls and roofs. If the sediment transport capacity of the pipe is exceeded, the pipe will plug causing back-pressure to build up within the soil pipe, which can foster hillslope instability. However, limited research has been conducted on particle and aggregate detachment within soil pipes as well as transport of sediment through soil pipes. The objective of this paper is to present observations of little known and poorly described processes involved in pipeflow and the resulting internal erosion of soil pipes. Many of the processes involved in internal erosion of soil pipes are assumed based upon processes observed in surface and stream erosion studies but are so poorly quantified for soil pipes that they are yet to be transferable. For example, the role of solution chemistry on sediment detachment from pipe walls has been quantified to a limited extent but little has been done on the effects of seepage forces on particle detachment in pipes and even less done on sediment transport capacity of soil pipes. Recent advances have included: development of suspended sediment and bedload rating curves for soil pipeflows but the results are crude and warrant further study. Quantification of the interactive effects of surface flow in channels with flow through soil pipes below channels on headcut migration and gully widening is in its infancy. Other processes, such as air-entrapment in creating or temporarily plugging pipes, have been suggested as important but lack quantification. These processes and others combine to result in internal erosion of soil pipes but they must be better understood and quantified in order to develop the next generation of soil erosion models and landscape morphology prediction technologies.

How to cite: Wilson, G., Bernatek-Jakiel, A., Nieber, J. L., and Fox, G. A.: Internal Erosion of Soil Pipes: Still More Questions Than Answers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1497, https://doi.org/10.5194/egusphere-egu2020-1497, 2020.

EGU2020-665 | Displays | SSS2.4

New insights on controls of piping distribution in degraded blanket bog

Taco Regensburg, Joseph Holden, Pippa Chapman, Michael Pilkington, and Martin Evans

As part of the EU-funded MoorLIFE2020 project, which examines strategies to restore degraded blanket bog in the Peak District of northern England, we investigated natural soil pipes. These pipes are a cause of concern to peatland restoration practitioners who are unsure whether to block them to reduce erosion and flood risk when conducting restoration work. Soil pipes often occur in complex networks with varying channel sizes, undulating through the soil profile. Their prevalence is often linked to controls such as topographic location, slope, aspect, vegetation cover, climate, and properties of the surrounding soil. Such relationships are poorly understood for degraded blanket bog. A before-after-control treatment study was designed to examine the effects of pipe blocking on fluvial carbon removal and streamflow in Upper North Grain (UNG), a small headwater catchment located between 490 m and 541 m above sea level. The catchment has a blanket peat cover up to four meters thick at places, with a branching network of deep gullies that incise into the bedrock. This experimental design was envisaged to address the following hypotheses: (i) the severity of degradation of UNG is a dominant control on pipe density; (ii) blocking of pipe outlets impairs pipe-to-stream connectivity. Our results point towards a rejection of both hypotheses. An initial field survey used to locate and characterize pipe outlets, resulted in 353 individual outlet recordings with a density of 13.79 per km of surveyed gully bank. Southeast, south, southwest and west-facing gully banks accounted for more than 75% of identified pipe outlets. The experimental design compares water and aquatic carbon fluxes in two streams - in one catchment the active pipe outlets (n=25) were blocked by closing off the void behind the pipe outlet with peat and stones, wooden screens or plastic pilling, while in the other catchment the pipes were left open. Areas on the gully bank around original outlets were photographed every two weeks. This analysis showed that within the first month after blocking, all treated pipes had formed bypass routes around the block and initiated new pipe outlets. New outlets were found both above and below the original pipe outlet at distances up to 1 meter from the original pipe outlet regardless of bank aspect, suggesting the networks behind a pipe outlet to be a porous system that connects in both vertical and horizontal directions when issuing onto gully banks. Further results will be presented from the ongoing monitoring showing effects of pipe blocking on streamflow storm responses and the export of particulate and dissolved organic carbon from pipes and streams.

How to cite: Regensburg, T., Holden, J., Chapman, P., Pilkington, M., and Evans, M.: New insights on controls of piping distribution in degraded blanket bog, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-665, https://doi.org/10.5194/egusphere-egu2020-665, 2020.

EGU2020-2017 | Displays | SSS2.4

ERT and GPR Characterization from Soil Pipe System in Brazilian Tropical Soil

Felipe Jesus, Wellington Silva, Jorge Porsani, and Marcelo Stangari

A Soil Pipe System (SPS) were identified in Candói region, located in the Paraná state, southern Brazil. This region is constituted of intensive agriculture and cattle raising. SPS correspond to a structure associated to an erosive processes stage in downhill slope that tend to increase over time. The growth of the SPS results in instability to the terrain and the possibility of collapse, in this case the collapse can be accelerated by external factors, such as the overload of agricultural machinery and animals that circulate around the site, may leading to the machinery loss, animal’s death or even risk to worker safety. Frequently, the SPS are identified by surface methods that don’t provide parameters such as shape, distribution and depth. In this research, Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) were used to obtain a 3D characterization of the SPS identified in a farm in Candói region to estimate the soil cover over the structure, the subsurface channels distribution and identify potential collapse risk portions. Seven ERT profiles using dipole-dipole array and twenty-one GPR profiles of 200 MHz antenna were acquired, covering an area of 900 m². The results were combined in a block diagram, which enabled: i) identify the subsurface channels distribution and direction, ii) estimate the average soil cover thickness, with 1.5 m over the whole structure. The possible connection between subsurface secondary and primary channels has also been suggested in results interpretation through of identification of a channel parallel to acquisition profiles direction. It was verified that in structure portions closer to the river next to the slope, the SPS ceiling has larger dimensions than the walls, suggesting areas with increased vertical tension, which was classified as potential collapse risk areas.

How to cite: Jesus, F., Silva, W., Porsani, J., and Stangari, M.: ERT and GPR Characterization from Soil Pipe System in Brazilian Tropical Soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2017, https://doi.org/10.5194/egusphere-egu2020-2017, 2020.

EGU2020-7410 | Displays | SSS2.4

Time dependent backward piping erosion 2D modeling with laminar flow transport equations

Juan Pablo Aguilar-Lopez, Manuel Wewer, Thom Bogaard, and Matthijs Kok

Backward piping erosion (BEP) is a highly complex erosive process which occurs on granular soils when large head differences are exerted. This process represents a significant threat to dams and levees stability and therefore a large part of the design and reliability assessment of these water retaining structures is devoted to this single process. Several authors have achieved great accuracy in predicting the critical head difference that triggers the process but not so much has been studied regarding the time of occurrence and the duration of the erosive process.  In the present study we propose a 2D finite element model for which not only the critical head difference can be predicted but also the development of the erosive process in time. This was achieved by coupling the 2D Darcy partial differential equation with Exner’s 1D sediment transport mass conservation equation. Different laminar sediment transport rate empirical models were tested and used as inputs in the coupled model. To test the performance of the proposed model, the IJkdijk real scale experiment for piping erosion was simulated. The results show that the model is capable of predicting not only the critical head and its progression in time but also specific events of the process such as the instants of start of the erosion and the  complete seepage length development . An important conclusion of the study is that from several transport empirical formulas tested, the model from Yalin which is widely recognized by the sediment transport community performs the best.

How to cite: Aguilar-Lopez, J. P., Wewer, M., Bogaard, T., and Kok, M.: Time dependent backward piping erosion 2D modeling with laminar flow transport equations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7410, https://doi.org/10.5194/egusphere-egu2020-7410, 2020.

EGU2020-7465 | Displays | SSS2.4

Backward piping erosion detection in levees by fiber optic acoustic sensing

Juan Pablo Aguilar-López, Andres Garcia-Ruiz, Thom Bogaard, and Miguel Gonzalez-Herraez

Backward piping erosion (BEP) is considered the most dangerous failure mode for levees due to its unpredictable nature. This erosive process happens most of the time underneath the impermeable layers on which levees are commonly founded. This makes it very difficult to detect as conventional geophysical methods are either too expensive or too imprecise for real time monitoring of longitudinal soil made structures such as Dams or levees. Fiber optic based distributed acoustic sensing (DAS) is an innovative technology which allows to retrieve information from an acoustic propagating medium in a spatially dense manner by using a fiber optic cable. The present study aimed to explore the potential of DAS for early detection of BEP  under levees based on the frictional emissions of the sand grains during the erosive process. The tests were performed in the lab under controlled ambient noise conditions. The technology was tested by embedding fiber optic based microphones underneath and outside a laboratory scaled aquifer set up capable of recreating BEP. The results show that indeed the process emits certain characteristic frequencies which may be located between 1200 to 1600 Hz and and that they can easily be captured by the fiber optic cables.

How to cite: Aguilar-López, J. P., Garcia-Ruiz, A., Bogaard, T., and Gonzalez-Herraez, M.: Backward piping erosion detection in levees by fiber optic acoustic sensing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7465, https://doi.org/10.5194/egusphere-egu2020-7465, 2020.

Piping is an erosion process in which cracks and macropores extend into channels with a diameter of cm or more. This process is important for the formation of highly permeable porosity, failure of the levees, formation of gullies and intense erosion of agricultural soil. In this research we studied the evolution of conduits in Střeleč locked sand (SLS). This material composes mainly of quartz and resembles friable sandstone. Study was done in Střeleč quarry (Czech Republic), where depression in the regional water table (decrease of water table by ~20 m) due to the water pumping causes fast flow (up to 40 cm/s) through fractures in the SLS body. Large conduit systems developed along fracture zones that divide the SLS body into subvertical blocks with a width of cm to tens of cm in each fracture zone. Erosion starts at water table and blocks bordered by fractures are eroded by the fast water flow, especially the parts that are in stress shadows due to inefficient loading from the surrounding sandstone mass. Blocks whose base is eroded tend to collapse, which leads to the creation of free space above the water table and also possibly destabilization of the sides. Empty space propagates upward mostly meters but sometimes tens of meters toward ground surface. Experiments showed that the SLS is prone to erosion when it is under low gravity induced stress. In addition to observation of the existing conduits, the experiments focused on the evolution of transversal section of conduits in SLS were performed. Experimental erosion was done on fracture systems exposed in quarry by the flow of water from the hose. Sequence of photos of fracture zones evolving into conduit during experiments was taken and the evolution of the transverse section of conduits was observed. By this method the blocks were eroded to a depth of several decimeters. Based on field experiments and time-laps photos two erosion mechanisms are responsible for conduits evolution. While the less thick blocks are eroded mainly by rapid water flow, thicker blocks are eroded by tension failures (gravity driven wasting). The tension failure dominates, forming about 65 % of total erosion.

Many thanks to the management of Střeleč Quarry for enabling of the field documentation and experiments. The research was supported by Charles University Grant Agency (GAUK #1292119).

How to cite: Vojtisek, J., Bruthans, J., and Slavik, M.: Combination of stress-controlled erosion and tensile failures during development of piping conduits in locked sand, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10628, https://doi.org/10.5194/egusphere-egu2020-10628, 2020.

EGU2020-20163 | Displays | SSS2.4

Spatial distribution and geophysical characterization of natural pipes in Ultisols

Miguel Cooper, Renata Cristina Bovi, Cesar Augusto Moreira, Raquel Stucchi Boschi, Lucas Moreira Furlan, and Fernanda Teles Gomes Rosa

Piping is a type of subsurface erosion caused by subsurface water and is considered one of the most difficult erosive processes to study. The nature of this erosion process makes it very difficult to study and quantify.  The aim of this study was to characterize the surface and subsurface distribution of the pipes and to understand the network architecture of pipe systems in tropical forested areas.The study area is situated at the Experimental Station of Tupi, state of São Paulo, Brazil. We conducted a Digital Elevation Model allied to a superficial pipe mapping, and 2D and 3D geophysical surveys. The subsurface erosion identified by surface mapping and geophysical surveys appeared at two depths: one more superficial, in the upper part of the study area, and one at greater depth, in the lower part of the study area. The higher topographical positions presented the pipes at less developed stages (closed depressions and simple sinkholes), while the lower topographical positions showed the most advanced features (multiple sinkholes and blind gullies). The method of electroresistivity showed zones where low resistivity values correspond to water saturation (~ 70 omh m) and high values (> 4040 ohm m) that define the pipe; this method was efficient in detecting the presence of collapsed and non-collapsed pipes. We concluded that the use of different methods (superficial and subsuperficial) was essential for the characterization of pipe systems. The integrated analysis of the results obtained from the superficial and 2D subsurface mapping allowed us to infer the spatial continuity of the pipes. The 3D geophysical survey was efficient in mapping soil pipe and the connectivity in situ. The 3D modeling of the pipes revealed the connection and connectivity of the pipe network’s complexity and morphology.

How to cite: Cooper, M., Bovi, R. C., Moreira, C. A., Stucchi Boschi, R., Moreira Furlan, L., and Teles Gomes Rosa, F.: Spatial distribution and geophysical characterization of natural pipes in Ultisols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20163, https://doi.org/10.5194/egusphere-egu2020-20163, 2020.

EGU2020-1875 | Displays | SSS2.4

The Role of Soil Pipes and Pipeflow in Headcut Migration Processes

Ximeng Xu, Glenn V. Wilson, Fenli Zheng, and Qiuhong Tang

Headcut formation and migration is sometimes mistaken as the result of overland flow without realizing that the headcut was formed by or significantly influenced by flow through soil pipes into the headcut. To determine the effects of a soil pipe and flow through a soil pipe on headcut migration, laboratory experiments were conducted under free-drainage conditions and conditions of a shallow water table. Soil beds with a 3-cm deep initial headcut were formed in a flume with a 1.5-cm diameter soil pipe 15 cm below the bed surface. Overland flow and flow into the soil pipe was applied at a constant rate of 68 L/min and 1 L/min, respectively, at the upper end of the flume. The headcut migration rate and sediment concentrations in both surface (channel) and subsurface (soil pipe) flows were measured with time. The typical response without a soil pipe was the formation of a headcut that extended in depth until an equilibrium scour hole was established at which time the headcut migrated upslope. The presence of a soil pipe below the channel, and particularly the phenomena of flow through a soil pipe and into the headcut, whether by seepage from a shallow water table or upslope inflow, significantly impacted the headcut migration. Pipeflow caused erosion inside of the soil pipe at the same time that runoff was causing a scour hole to deepen and migrate. When the headcut extended to the depth of the soil pipe, surface runoff entering the scour hole interacted with flow from the soil pipe also entering the scour hole. This interaction dramatically altered the headcut processes, greatly accelerated the headcut migration rates and sediment concentrations. Conditions in which a perched water table provided seepage into the soil pipe in addition to pipeflow increased the sediment concentration by 42% and the headcut migration rate by 47% compared with pipeflow under free-drainage conditions. The time that overland flow converged with subsurface flow was advanced under seepage conditions by 2.3 and 5.0 minutes compared with free-drainage condition. This study confirmed that pipeflow dramatically accelerates headcut migration especially under conditions of shallow perched water tables and highlights the importance of understanding these processes in headcut migration processes.

How to cite: Xu, X., Wilson, G. V., Zheng, F., and Tang, Q.: The Role of Soil Pipes and Pipeflow in Headcut Migration Processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1875, https://doi.org/10.5194/egusphere-egu2020-1875, 2020.

SSS2.5 – Soil erosion and driving factors of soil carbon distribution: a worldwide threat

EGU2020-11546 | Displays | SSS2.5 | Highlight

Soil erosion leads to significant mobilisation of terrestrial organic and inorganic carbon

Laura Turnbull and John Wainwright

Soil carbon content is greatly affected by soil degradation – in particular erosional processes – which cannot be ignored in the context of the global C cycle. Soil degradation, driven largely by wind and water erosion, affects up to 66% of Earth’s terrestrial surface. Understanding how soil degradation affects soil organic carbon (SOC) and soil inorganic carbon (SIC) stocks is an essential component of understanding global C cycling and global C budgets, and is essential for improved C management and climate-change mitigation policies.

In this study, we quantify the distribution of SOC and SIC, and estimate their combined effects on carbon mobilisation via water and wind-driven erosion. We estimate spatially variable water-driven erosion rates for different land-use systems and degradation severities using values obtained from a meta-analysis of soil erosion rates, and undertake stochastic simulations to account for possible uncertainty in our estimates. For wind-driven soil erosion rates we use modelled dust emission rates from AeroCom Phase III model experiments for the 2010 control year, for 14 different models. We use the Harmonized World Soil Database v1.2 to calculate SOC and SIC stocks, the GLASOD map of soil degradation to estimate soil degradation severities and the Land Use Systems of the World database to estimate water-driven erosion rates associated with different land-use systems.  

We find that 651 Pg SOC and 306 Pg SIC (in the top 1-m of soil) is located in degrading soils. We estimate global water-driven soil erosion to be 216.4 Pg yr-1, which results in the mobilisation of ~2.9536 Pg OC yr-1. Accounting for the enrichment of organic carbon in eroded sediment increases these estimates up to 12.2 Pg SOC yr-1. A minimum estimate of SIC mobilisation by water erosion is ~0.5592 Pg IC yr-1. Dust emission model ensemble results indicate that ~19.8 Pg soil is eroded for the 2010 AeroCom reference year, with ~11.1 Pg deposited via dry deposition and ~7.2  Pg deposited via wet deposition. The total amount of SOC and SIC mobilised by water-driven erosion is greater than wind-driven erosion, and the spatial patterns of SIC and SOC mobilisation by wind and water vary considerably. Across all land-use types, water-driven carbon mobilisation is higher than wind. Water-driven SOC mobilisation is highest in cropland (~ 2.6602 Pg OC yr-1) where high erosion rates coincide with average SOC content of 68.4 tonnes ha-1. SIC mobilisation follows the same pattern in relation to land use, with highest water-driven mobilisation in cropland (~0.4660 Pg IC yr-1) and highest wind-driven mobilisation in bare areas (0.05 Pg IC yr-1). Overall, wind-driven erosion mobilises more IC than OC.

Future land-use change has great potential to affect global soil carbon stocks further, especially with increases in the severity of soil degradation as human pressures on agricultural systems increase.

How to cite: Turnbull, L. and Wainwright, J.: Soil erosion leads to significant mobilisation of terrestrial organic and inorganic carbon , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11546, https://doi.org/10.5194/egusphere-egu2020-11546, 2020.

Soil erosion and deposition patterns can affect the fate of soil organic carbon (SOC) in agroecosystems. Topographic constraints affect soil redistribution processes and create spatial structure in SOC density. We combined isoscape (isotopic landscape) analyses for δ13C and cesium-137 (137Cs) inventory via digital terrain analysis quantifying SOC dynamics and soil redistribution patterns to gain insight on their responses to topographic constraints in an Iowa cropland field under soybean/maize (C3/C4) production. Additionally, historic bare soil orthophotos were used to determine soil carbon distribution before the 1960s (prior to global 137CS fallout). Topography‐based models were developed to estimate 137Cs inventory, SOC density, and δ13C distributions using stepwise principal component regression. Findings showed that spatial patterns of SOC were similar to soil erosion/deposition patterns with high SOC density in depositional areas and low SOC density in eroded areas. Soil redistribution, SOC density, and δ13C signature of SOC were all highly correlated with topographic metrics indicating that topographic constraints determined the spatial variability in erosion and SOC dynamics. The δ13C isoscape indicated that C3‐derived SOC density was strongly controlled by topographic metrics whereas C4‐derived SOC density showed much weaker expression of spatial pattern and poor correlation to topographic metrics. The resulting topography‐based models captured more than 60% of the variability in total SOC density and C3‐derived SOC density but could not reliably predict C4‐derived SOC density. This study demonstrated the utility of exploring relationships between δ13C and 137Cs isoscapes to gain insight on fate of SOC within eroding agricultural landscapes.

How to cite: McCarty, G. and Li, X.: Soil Organic Carbon Distribution and Isotope Composition Response to Erosion in Cropland under Soybean/Maize Production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5833, https://doi.org/10.5194/egusphere-egu2020-5833, 2020.

EGU2020-11147 | Displays | SSS2.5

Visual assessments and model estimations of soil erosion and relations to soil organic carbon

Hakan Djuma, Adriana Bruggeman, and Marinos Eliades

Visual soil erosion assessment methods and erosion models are widely applied around the globe. The objective of this research is to assess the relation between soil organic carbon (SOC) concentrations (sampled) and two different soil erosion estimates (visual assessment and model). For the visual assessment, the method of the World Overview of Conservation Approaches and Technologies (WOCAT) was used, which is based on expert field observations per land cover unit. For the model assessment, the Pan-European Soil Erosion Risk Assessment (PESERA) model was used to simulate hill slope soil loss based on land cover, soil texture, meteorological data and slope profile. The research was conducted in Peristerona watershed in Cyprus (surface area: 106.4 km2, elevation: 300 to 1,540 m above sea level, average annual precipitation: 270 mm downstream and 750 mm upstream). The WOCAT questionnaires were completed by a trained specialist during site visits for 79 mapping units in 15 different land cover types. These results were compared with SOC concentrations from 29 points in the same watershed (0-25 cm depth, grid-based sampling, variety of land covers). For erosion modelling comparison, SOC concentrations from 11 paired sites of productive and abandoned terraced vineyards (0-10 cm depth, random sampling) were compared to the PESERA estimates of the same sites. A transect was drawn from the slope top to the SOC sampling point and erosion was estimated for the slope section where sampling was performed. Both the visual assessment and the modelling method showed that SOC concentrations were lower for areas with higher soil erosion. The mean SOC concentration was 1.7% (n=19) for areas ranked as “light erosion” in the WOCAT assessment and was 0.8% (n=10) for areas ranked as “moderate erosion”. Similarly, the abandoned sites that showed higher PESERA estimated erosion than the productive sites (more than 10 times higher erosion rate (n=2)) had lower SOC concentrations than their productive counterpart (half the SOC concentrations). The SOC concentrations almost doubled for abandoned sites compared to the productive sites when PESERA estimated erosion went from 10 times more to 5 times more (n=6) for the abandoned sites. Results from both methods indicate that soil erosion rates and top soil SOC concentrations are related and need to be considered in erosion models. 

How to cite: Djuma, H., Bruggeman, A., and Eliades, M.: Visual assessments and model estimations of soil erosion and relations to soil organic carbon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11147, https://doi.org/10.5194/egusphere-egu2020-11147, 2020.

EGU2020-3947 | Displays | SSS2.5

Soil erosion and sediment transport in South Africa: an overview

John Boardman and Ian Foster

We have few direct measurements of erosion in the country and those that we have are for relatively small areas (badlands) or for experimental plots. We therefore have to rely on sediment yields from rivers and reservoirs, mapping based on remote sensing (gullies) and some modelling. All methods have their disadvantages. With sediment yields the problem of scale is acute and estimates range from <5 to > 11,000 t km-2 yr-1. The great range of estimates partly reflects rainfall/runoff variability but it also strongly reflects the intensity of land use and connectivity or dis-connectivity within catchments.  Elements in the landscape such as gullies (dongas) were initiated under conditions in the past of intense land-use (overstocking) and perhaps climatic pressure. Many gullies are inactive at the present day but have been shown to improve landscape connectivity. However, overgrazed land continues to contribute large quantities of sediment to freshwater systems and to the infilling of reservoirs. The protection of inadequate water resources, threatened by erosion, is a currently urgent problem. More information is needed about the origin of sediments using techniques such as fingerprinting.

How to cite: Boardman, J. and Foster, I.: Soil erosion and sediment transport in South Africa: an overview, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3947, https://doi.org/10.5194/egusphere-egu2020-3947, 2020.

EGU2020-8802 | Displays | SSS2.5

South Africa’s agricultural dust sources and events from the MSG SEVIRI record

Frank Eckardt, Johanna Von Holdt, Nickolaus Kuhn, Anthony Palmer, and Jonathan Murray

Our aim was to determine South Africa’s major dust sources using the MSG (Meteosat Second Generation) SEVIRI (Spinning Enhanced Visible and Infra-red Imager) image record from 2006-2016. A total of 334497 images were examined, which revealed 178 discrete dust plumes on 75 dust-producing days. These originated largely from the Free State to the north of Bloemfontein. Landsat derived National Geospatial data suggests that emission areas consist mostly of grass and low shrublands as well as commercial rainfed agriculture.

The dust emission season from June to January overlaps with the dry season and coincides with the maize harvest period. 2015 and 2016 saw almost half of all event days in the 11-year record, which is matched by a severe drought index (SPEI Standardised Precipitation-Evapotranspiration Index) and strong winds (ERA5). This period is also accompanied by a below average NDVI (Normalized Difference Vegetation Index) response for cropland areas, while DAFF (Department: Agriculture, Forestry and Fisheries) crop data reports a notable decline in Free State maize cover from 1.2 to 0.6 million hectares and a pronounced increase in fallow land from 140 thousand to 790 thousand hectares over the same time span.

Dust events adhere to distinct diurnal patterns, are almost entirely midday occurrences and are accompanied by hourly average windspeeds of up to 11 m s-1. HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) suggests that aerosols would largely head towards the Indian Ocean with the passing of cold fronts. South Africa’s major dust sources in the SEVIRI record appear to be mostly anthropogenic in nature and a function of both land cover and land management practices associated with rainfed agriculture on soils rich in silt and sand. The soil textures in the Free State, especially those associated with arenosols extend into the wider drier interior, including the Kalahari, where future climate scenarios have predicted increases in dust emissions from both soils and dunes. Notwithstanding other land-use practices, we would argue that the 2015-2016 dust season in South Africa provides an insight into potential future regional scenarios, given increases in drought, associated bare cover and an increase in windiness.

How to cite: Eckardt, F., Von Holdt, J., Kuhn, N., Palmer, A., and Murray, J.: South Africa’s agricultural dust sources and events from the MSG SEVIRI record, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8802, https://doi.org/10.5194/egusphere-egu2020-8802, 2020.

EGU2020-3913 | Displays | SSS2.5

Determining Sub-Catchment Contributions to the Suspended Sediment load of the Tsitsa River, Eastern Cape, South Africa

Laura Bannatyne, Ian Foster, Ian Meiklejohn, and Bennie van der Waal

In South Africa, as in many developing countries, the suspended sediment (SS) data required to support catchment scale hillslope restoration and rehabilitation programmes are typically scarce or absent, leading to a reliance on modelled SS loads and yields that are generally not validated by measured SS data. An exception is the Tsitsa River catchment in the Eastern Cape Province, where modelled SS yields were high (21 – 50 t/ha/yr), leading to the establishment of a Citizen Technician-based monitoring programme (2015 – 2019) that has provided flood-focused, sub-catchment scale SS data at sub-daily timestep for 11 sites throughout the 4000 km2 catchment.

A confluence-based SS fingerprinting and tracing exercise was undertaken in the catchment (2018). Analysis of the distinctive physicochemical properties of resuspended fine sediment sampled above and below major confluences allowed the percentage of SS contributed by each tributary to be apportioned, and compared with findings from both the SS monitoring campaign and from existing models.

How to cite: Bannatyne, L., Foster, I., Meiklejohn, I., and van der Waal, B.: Determining Sub-Catchment Contributions to the Suspended Sediment load of the Tsitsa River, Eastern Cape, South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3913, https://doi.org/10.5194/egusphere-egu2020-3913, 2020.

EGU2020-1186 | Displays | SSS2.5

Gully Initiation on the Quartzite Ridges of Ibadan, South West, Nigeria

Olutoyin Fashae, Rotimi Obateru, and Adeyemi Olusola

Gullies are morphological evidences that reflect the impact of environmental changes on landscape. In an attempt to emphasize the importance of topography on gully initiation and development in an area of uniform geology, this study examined the morphological characteristics of hillslope and the role of topographic mechanism in gully initiation on a quartzite terrain of Ibadan, South western Nigeria. Four prominent quartzite ridges exist in Ibadan namely Mokola, Mapo, Eleyele and Ojoo, each of which except the latter is characterized with significant gully systems. Field measurement was carried out to determine the gully morphological characteristics such as length, width, depth, area and depth of gully head, width/depth ratio, gully sinuosity and gully shape while Digital Elevation model (DEM) was used to examine the slope-area relationship. The slope-drainage area threshold was established for each of the gully systems.  

The average gully density of the study area is 2.48km/km2 and the gully frequency is 9.72 gullies/km2. Although an investigation into the variation of the gully morphology and initiation show that human activities and vegetation are contributary factors to their development. However, topographic characteristics exhibit a dominant role in the gullying process. The ridges were observed to trend in NNW-SSE direction with slope angles ranging between 5o and 30o. The inverse relationship derived between the topography and gully dimension (r = 0.462), suggested that gully initiation processes are dominant on gently sloping ridges due to extensive surface area on a deeply weathered regolith that enhances fluvial processes of material detachment on the one hand and anthropogenic conditions on the other hand. Thus, further geomorphological assessment of landform units in Ibadan is necessary with a view of identifying potential geomorphic risk prone areas, an essential component of risk management for dense urban areas of the tropics.

How to cite: Fashae, O., Obateru, R., and Olusola, A.: Gully Initiation on the Quartzite Ridges of Ibadan, South West, Nigeria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1186, https://doi.org/10.5194/egusphere-egu2020-1186, 2020.

EGU2020-3065 | Displays | SSS2.5 | Highlight

Accumulation of soil carbon and nutrients along a 127-yr soil chronosequence in the Hailuogou Glacier retreat area

Shouqin Sun, Genxu Wang, and Xinbao Zhang

Climate change is resulting in accelerated retreat of glaciers worldwide, leaving behind bare soil and succeeding vegetation at ecological sites that share similar attributes but represent different ages across chronosequences of primary succession. These glacial succession chronosequences provide a space for time exchange opportunity to investigate the development of soil and vegetation from the very beginning. In this study we investigated how soil carbon (C), nitrogen (N) and phosphorus (P) nutrients were accumulated along a 127-yr primary successional chronosequence on Hailuogou glacier, China, where the soil samples were collected at 1-cm depth interval from 9 sectioned profiles with ages ranged from 27 yr to 127 yr on the glacial retreated area. Soil organic C (SOC) and TN showed an increasing trend along the chronosequence. The organic C and N accumulation was minimal after 27 yr of succession; with succession the soil had slightly C and N accumulation at the surface 0-1 cm depth after 45 to 53 years, and had obvious accumulation at the 0-2 cm depth after 59-72 years; the SOC and N accumulation extended to the 0-5 cm depth after 87 yr and to the 0-10 cm depth after 102 yrs. In contrast soil total P exhibited a depleting trend along the succession. Results indicated that the C and N accumulation along a glacier retreat chronosequence is not linear, but a slow increase in accumulating rates in the first 72 years, followed by a sharp increase between 72 to 87 years and then slow down with succession proceeded.

How to cite: Sun, S., Wang, G., and Zhang, X.: Accumulation of soil carbon and nutrients along a 127-yr soil chronosequence in the Hailuogou Glacier retreat area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3065, https://doi.org/10.5194/egusphere-egu2020-3065, 2020.

Land use change can significant impact on carbon dynamics by directly changing the carbon stock on soil and biomass and by controlling the magnitude of soil erosion which indirectly influences the erosion-induced carbon sink or sources. Whether land use change causes a net carbon sink or source to the atmosphere, an integrated analysis that considers both the direct effects of land use changes on vertical fluxes as well as its effects on the erosion-induced carbon sink is therefore necessary.

The Chinese Loess Plateau (CLP) is an ideal case for an integrated assessment of the influence of land use change on OC dynamic, given that CLP has experienced significant land use change during last two decades and is the most eroded regions in the world which potentially target the relative higher magnitude of erosion-induced carbon sink. Therefore, the objectives of this study are to carry out an integrated analysis of the influence of land use change and soil erosion on regional carbon dynamics during 1990-2010.

Our results indicated that CLP experienced two inverse tendencies of land use change and carbon dynamics between 1990 and 2010. During 1990 to 2000, a net decrease of vegetation cover land (grass and woodland) has happened on the CLP which induced a carbon loss by 4.85 Tg C yr-1 on soil and biomass, which was mainly due to the cutting of native forest and the conversion of grassland to arable land. While, based on the assumes that 50% of the mobilised carbon is finally buried and that full replacement takes place at the erosion sites, the erosion-induced sink would compensate about 55% of the carbon loss due to land use change. Thus, between 1990 and 2000 the CLP was a net carbon source to atmosphere. Due to the implementation of the Grain for Green Project, permanent vegetation cover land has gradually increased between 2000 and 2010. The net rise of vegetation cover land resulted in an annual carbon sink of soil and biomass by 1.67 Tg C yr-1. Meanwhile, soil conservation measures (terrace) and land use change constrained the strength of erosion-induced carbon sink. The total amount of carbon mobilised declined to ca. 5.00 Tg C yr-1 and the erosion-induced carbon sink was ca. 2.50 Tg C yr-1 (based on the same assumes of carbon replacement rate and carbon burial efficiency). Therefore, CLP was a carbon sinks during 2000-2010. Again, changes in land-atmosphere carbon fluxes due to land use change were far more important than changes due to erosion reduction.

There are large uncertainties in our estimations, especially because the extent of land use change due to the Grain for Green Project remains uncertain. Meanwhile, the magnitude of the erosion-induced carbon sink is also uncertain, and estimates need to be further refined and constrained by more accurate data and the use of more explicit models. Nevertheless, our current understanding allows us to clearly identify the direction of change in carbon fluxes brought about by the combined effects of land use change and erosion reduction.

How to cite: Zhao, J.: Coupling of land use change, soil erosion and carbon dynamic on the Chinese Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6349, https://doi.org/10.5194/egusphere-egu2020-6349, 2020.

EGU2020-494 | Displays | SSS2.5 | Highlight

Are human activities main drivers of soil organic carbon losses in mountain rainfed agroecosystems?

Ivan Lizaga, Leticia Gaspar, Laura Quijano, Maria Concepción Ramos, and Ana Navas

One of the principal soil degradation problems affecting European agroecosystems is the loss of topsoil by water erosion. In dry climates, soil erosion is led by two main factors, human activities such as agriculture and extreme episodic rainfalls. However, agriculture plays a crucial role in leaving the soils unprotected during part of the year. Thus, extreme rainfall can easily remove the topsoil with the subsequent removal of nutrients in surface soil layers and the reduction of soil quality.

To assess the effects of extreme storms in rainfed agriculture catchments on soil organic carbon removal, surface soil samples from different land uses were collected in a medium-sized catchment at the foot of Santo Domingo range. The study area was mostly cultivated at the beginning of the 19th century but changed to rangeland and afforestation forest in the last 50 years. The remaining cropland area is mostly rainfed agriculture that leaves soils unprotected in periods when erosive storms occur (autumn convective rainfalls). The main land uses are croplands, pine afforestation, scrubland and Mediterranean forest. To track the export of soil organic carbon associated to mobilised sediment occurring under storm events, channel bed sediment samples were collected along the principal streams of the drainage network during regular flow, after a regular storm event, and after an extreme storm event. The contents of soil organic carbon (SOC), SOC fractions and grain size were analysed and compared for the three sampling campaigns.  The results show a gradual decrease of the fine fraction from regular flood samples to samples collected after the extreme event. However, the SOC showed a sharp decrease in the post-extreme event samples, with higher decreases in the active carbon fraction (ACF) than in the stable carbon fraction (SCF).

Our findings highlight the substantial in situ hazards of extreme rainfall events removing soil organic carbon from topsoils and exporting fine sediment and nutrients out of the catchment with important indirect impacts on water resources both quantity and quality.

How to cite: Lizaga, I., Gaspar, L., Quijano, L., Ramos, M. C., and Navas, A.: Are human activities main drivers of soil organic carbon losses in mountain rainfed agroecosystems?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-494, https://doi.org/10.5194/egusphere-egu2020-494, 2020.

EGU2020-18475 | Displays | SSS2.5

Soil organic carbon and soil total nitrogen stocks, soil quality and vegetation composition during natural revegetation processes in a Mediterranean mid-mountain area

Estela Nadal Romero, Pedro Sánchez Navarrete, Makki Khorchani, Luis Miguel Medrano-Moreno, and Teodoro Lasanta

Mediterranean mid-mountain areas have been subject to significant human pressure through deforestation, cultivation of steep slopes, fires and overgrazing. However, during the 20th century, the mountainous areas of the northern rim of the Mediterranean region were affected by abandonment of cultivated fields and natural revegetation processes. Natural revegetation occurred in most of the lands where human activity (farming on steep slopes, grazing) declined in intensity or was abandoned, resulting in the expansion of shrubs, bushes and forests. What are the consequences of such processes on soil quality, soil organic carbon (SOC) and soil total nitrogen (TN) stocks and vegetation composition? What are the differences between the different land uses and land covers (LULCs)? The general aim of this study is to study the effects of natural revegetation processes after land abandonment on soil quality, SOC and soil TN stocks and vegetation composition in the Leza Valley (Iberian System, Spain). We hypothesized that natural revegetation processes improves soil quality and higher SOC and TN stocks. For this purpose, we analyzed 60 soil samples, from 5 LULCs and four depths (0-10, 10-20, 20-30, 30-40 cm): pasture, shrubs characterized by the presence of Cistus laurifolius, bushed characterized by the presence of Juniperus communis, Young forest (Quercus faginea), and old forest or dehesa. In addition, plant species inventories were carried out in each LULC.

The results related to physico-chemical soil properties indicated: (i) significant differences in soil quality between the first stages of natural revegetation (pasture and shrubs) and young forest (limited to the first 20 cm between shrub and young forest); (ii)  significant differences in SOC stocks between the first stage of natural revegetation (pasture) and young and old forests; (iii) significant differences in soil TN stocks between pasture and shrubs and young and old forests; and (iv) significant differences between the shrub families. Final results obtained through a Principal Component Analysis with all the variables differentiate forests from shrubs, bushes and pastures confirming our first hypothesis. We can conclude that natural revegetation is an effective strategy to improve soil quality and increase SOC and soil TN stocks.

How to cite: Nadal Romero, E., Sánchez Navarrete, P., Khorchani, M., Medrano-Moreno, L. M., and Lasanta, T.: Soil organic carbon and soil total nitrogen stocks, soil quality and vegetation composition during natural revegetation processes in a Mediterranean mid-mountain area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18475, https://doi.org/10.5194/egusphere-egu2020-18475, 2020.

Erosion is the most widespread process that cause land degradation. It produces changes in soil properties and contribute to the depletion of organic matter content as well as to the loss of nutrients. The changes have an additional effect on the infiltration and on water retention capacity, which all together influence crop productivity. Water erosion occurs due to natural forces rainfall. But in areas with Mediterranean climate, most of erosion losses occur in a reduced number of events of high intensity. In this research, the effect of high intensity rainfalls on soil carbon mobilization was analysed in a vineyard, which is maintained with scarce soil cover most of the year. The research was carried out under simulated rainfall in a commercial vineyard located in Raimat, Costers del Segre Denomination of Origin, Lleida, NE Spain). The soil type in the analysed plot is classified as Haploxeralf fluventic located in a gentle slope (about 5%). Soil samples from 0-2 cm were collected in two locations in the field, before the rainfall simulation for texture characterization and chemical analysis. Plots 1m length*0.5 m width were delimited in the field at each location and subjected to simulated rainfall using a rainfall simulator consisted, which had a dropper system placed 2.5 m above the ground. The rainfall intensity was fixed for the experiment in 60 mm/h. The simulations were done in triplicate. Runoff was collected every 10 minutes during 1h and the sediment transported by runoff was separated and weighted after dried. Total organic carbon (TOC) was analysed in the soil before and after the simulation. In addition, in the original soil and in the sediments recorded in each simulation, the particulate organic carbon (POC) and the mineral-associated organic carbon (MOC) (Cambardella and Elliott, 1992), as well as the water extractable organic carbon (WEOC) (Gigliotti et al., 2002) were analysed. The soils had 50.2 and 49.5% of silt, 25.5 and 23.2% of clay and 24.3 and 27.3% of sand, respectively. Runoff started between 4.5 and 7 min after the beginning of the simulations, and runoff rates were of about 50% after the first 20 minutes of rainfall. Sediment concentration in runoff ranged between 13 and 18 gL-1 in the three simulations. The TOC in the original soils were 14.09±0.67 gkg-1 and 13.56±0.8 gkg-1, respectively, while after the simulation the TOC was near 10% lower. In the sediments, TOC were 12.29±1.13 gkg-1 and 12.84±1.19 gkg-1, respectively in both soils. The POC and the MOC represented 24.7% and 75.3% of TOC in the original soil, and no significant changes were observed in the sediment transported by runoff (values ranging between 25.90 to 28.47 % for POC and between 71.5 and 74.1% for MOC). However, the WEOC fractions were higher in the sediment (7.7 and 7.5%) than in the original soil (5.26%).

References

Cambardella CA, Elliott ET. 1992. Soil Sci. Soc. Am. J. 56,777-783.

Gigliotti G, Kaiser K, Guggenberger G, Haumaier L. 2002. Biology and Fertility of Soils, 36,321-329.

How to cite: Ramos, M. C.: Particulate, mineral fraction and water extractable organic carbon in the soil and in the sediments transported by runoff, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3108, https://doi.org/10.5194/egusphere-egu2020-3108, 2020.

EGU2020-10221 | Displays | SSS2.5

Temporal variability in soil organic carbon in response to erosion in mountain agricultural landscapes

Jessica Vasil’chuk, Leticia Gaspar, Ivan Lizaga, and Ana Navas

Soil erosion leads to the loss of fertile topsoil, resulting in one of the principal soil degradation problems in agricultural landscapes worldwide. Soil redistribution processes affect the spatial and temporal variability of soil properties and nutrients, as soil organic carbon (SOC) which is linked to soil quality and soil functions. In the context of climate change mitigation as well as soil fertility and food security, there has been considerable interest in monitoring soil and carbon loss, especially in erosion-affected agricultural landscapes.

In this study, we attempt to evaluate the temporal variation of SOC and carbon fractions in a Mediterranean mountain agroecosystem. To this purpose, repeating soil sampling and carbon measurements within the same sites was undertaken in 2003 and in 2016. The sampling sites were located in agricultural areas where erosion or deposition preferably occurs based on soil redistribution rates obtained by using 137Cs measurements. The content of soil organic carbon (SOC) and the active and stable SOC fractions, (ACF and SCF, respectively) contents were measured by the dry combustion method using LECO RC-612 equipment.

Although statistically significant differences between the two surveys were not found, the mean content of SOC, ACF and SCF were slightly lower in the survey taken in 2016 than the one in 2013. Repeated topsoil sampling (0-5 cm) after 13 years reveals SOC and ACF losses for almost all the agricultural soils selected in this research. It’s important to highlight that the biggest differences between the two surveys are identified in the sites located in areas with steep slopes, while small variations occurred in the sites located in gentle slopes where deposition processes predominate. However, even if SCF losses were detected, especially in the erosive sites located in steep slopes, the content of SCF slightly increases for the second survey in sites located in depositional areas. To date, there have been few attempts to monitor soil carbon in Mediterranean soils, and this study represents a preliminary investigation that may be suitable for tracking absolute changes in SOC and carbon fractions in agricultural landscapes.

How to cite: Vasil’chuk, J., Gaspar, L., Lizaga, I., and Navas, A.: Temporal variability in soil organic carbon in response to erosion in mountain agricultural landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10221, https://doi.org/10.5194/egusphere-egu2020-10221, 2020.

EGU2020-17676 | Displays | SSS2.5

Lateral transport of SOC induced by water erosion in a Spanish agroecosystem

Leticia Gaspar, Lionel Mabit, Ivan Lizaga, and Ana Navas

The main route for the lateral movement of soil organic carbon (SOC) is water erosion. Awareness of the distribution and magnitude of land carbon mobilization is important both for improving models of the carbon cycle and for management practices aimed to preserve carbon stocks and enhance carbon sinks. There is a need to consider the global significance of soil erosion from soil organic carbon cycling schemes and for this reason, the movement of SOC during erosion processes should be elucidated.

Our study aims to estimate the SOC redistribution induced by water erosion during a 40 years period in an agroforestry mountain ecosystem located in northern Spain. To this purpose, topographically driven transects were selected with mixed land uses to i) assess what factors modify the runoff patterns with impact on soil and carbon redistribution and ii) evaluate the mobilization of topsoil organic carbon along the transects.

The lateral movement of SOC shows similar spatial patterns with that of soil erosion. To identify whether erosional or depositional processes have been predominant in the sampling sites we used 137Cs inventories and the characterization of terrain attributes of the study with a detailed analysis of the main runoff pathways. Results indicate that SOC losses were related to an increase in water flow accumulation, while the highest SOC gains were recorded at concave positions. Soil erosion processes and the content of SOC in soils are the two main factors controlling carbon budgets. The topographical and geomorphological characteristics of the transects, the spatial distribution of land uses and the presence of landscape linear elements such as terraces or paths, affect runoff and determine the sediment connectivity and carbon dynamics along the slopes.

The interactions between topography and land use produce significant positive or negative effects on SOC accumulation, particularly in areas with complex topography, as the results obtained in our study sustain. Even though the effect of topography and land use/land cover and their interactions on the horizontal distributions of carbon remains largely unknown, our approach contributes to better understand the pattern of gains and losses of soil organic and inorganic carbon induced by water erosion.

How to cite: Gaspar, L., Mabit, L., Lizaga, I., and Navas, A.: Lateral transport of SOC induced by water erosion in a Spanish agroecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17676, https://doi.org/10.5194/egusphere-egu2020-17676, 2020.

EGU2020-5593 | Displays | SSS2.5

Linking soil C pools and N in radiotraced soils of Grey lake area (Torres del Paine, Chilean Patagonia)

Alejandra Castillo, Leticia Gaspar, Ivan Lizaga, Gerd Dercon, and Ana Navas

The Grey Glacier, located in the Torres del Paine region, belongs to the Patagonian ice sheet that suffered several glacial fluctuations during the Quaternary resulting in spectacular glacial landscapes. Similar as in other world mountains, glaciers in the Andean Patagonia are declining and the Grey Glacier has experienced during the last 80 years a clear retreat. Important ice mass collapses occurred in 1996 and recently in 2017 and 2019. In the proglacial environment of Grey Lake, the most characteristic glacial landforms are the Last Glacial Maximum moraine belts while landforms of the Little Ice Age reveal the advance of ice in modern times in the lake surroundings. At present the most active formations are composed of glacial deposits exposed after the recent retreat of Grey glacier. In this rapidly changing environment new soils are developing becoming a relevant framework to assess the trends in the pedogenesis dynamic and the variations of nutrient pools.

During a 15 days field campaign in the frame of the IAEA INT5153 project main proglacial landforms were identified and soil sampling was undertaken to assess if there were differences in the soil status and the nutrients pools in function of the geomorphic characteristics. Previous research in the area (Navas et al., 2019) revealed the usefulness of combining 137Cs with soil organic carbon (SOC) for deriving information on soils generated on recently exposed glacial deposits linked to soil redistribution patterns. Our study aims to evaluate what is the status of the SOC pool in soils formed in the Grey Lake area in relation to 137Cs proxies of soil stability. Analyses of 137Cs (Bqkg-1), and of contents of SOC and its fractions, and nitrogen (N) were done for characterizing the soils of the study landforms. We found that the most recent glacial deposits that are highly unstable in this paraglacial environment had the lowest contents of SOC and N along with negligible activities of 137Cs. In parallel with the highest 137Cs activity found in more developed soils on forest slopes, high SOC and N contents though less than in swamps indicated higher soil stability in forest slopes than in recently exposed glacial deposits. In the C pool, the stable fraction was most abundant in soils on forest slopes and on vegetated moraines in accordance with more abundant vegetation cover on relatively more developed soils. Though all landforms had much higher proportion of the active fraction, specially swamps, the contribution of the active fraction to SOC was also much higher in swamps, followed by forest and vegetated moraines. However, in comparison with the rest of glacial deposits and forest slopes, swamps presented the lowest contribution of the stable fraction to SOC evidencing their fragility to degradation processes that would rapidly eliminate the more labile fraction disrupting the natural cycle of C towards more stable fractions. Our results show that combination of 137Cs derived information with data from nutrients pools can be an important aid for interpreting changes in paraglacial landscapes where soils are forming on recently exposed glacial deposits.

How to cite: Castillo, A., Gaspar, L., Lizaga, I., Dercon, G., and Navas, A.: Linking soil C pools and N in radiotraced soils of Grey lake area (Torres del Paine, Chilean Patagonia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5593, https://doi.org/10.5194/egusphere-egu2020-5593, 2020.

EGU2020-9621 | Displays | SSS2.5 | Highlight

Distribution of nutrient pools in recently formed soils of Andean high wetlands (Huayna-Potosí, Bolivia)

Michele Nuñez-Quiroga, Edson Ramírez, Gerd Dercon, and Ana Navas

The Andean glaciers are experiencing since 1980 an accelerated decline associated with an increase in air temperature across the region. Encompassing the shrinking of mountain glaciers new soils are formed as deglaciation facilitates biogeochemical processes and the subsequent development of vegetation. Under extreme environmental conditions high-altitude soils are constrained by climate, substrate and geomorphological characteristics of recently deglaciated surfaces that control soil features in high mountains. At the foot of Huayna-Potosí, the glacier retreat is gradually exposing mineral substrate, which is being colonised by soil biota and plants. The subsequent accumulation of organic matter is progressing rapidly especially in wetlands developed in the proglacial area thus accelerating the processes of soil formation. The characterization of soil organic carbon (SOC) pools is necessary to understand SOC dynamics in soils and a relative measure of C stability in soils.

In this study we attempt to evaluate the distribution of SOC, C fractions and nitrogen in glacial deposits and high altitude wetlands to relate it with that of 137Cs as indicator of soil stability. To this purpose topsoil sampling of moraines, colluvium and peat soil in wetlands was undertaken during a two weeks expedition to Huayna-Potosí Glacier area in the frame of IAEA INT5153 project in May 2017 and contents of SOC and its fractions (i.e. active and stable carbon fractions), nitrogen and 137Cs activity (Bq kg-1) were determined.

The high wetlands both at favourable flat topographic positions and slopes have high organic rich soils showing large carbon sink capacity. More abundant depleted values of 137Cs in moraines and colluvium indicate greater impact of soil erosion processes in comparison to wetlands, whereas a higher 137Cs content is related to higher carbon contents and more abundant vegetation that would preserve soil from erosion. The size of the nutrient pool such as carbon and nitrogen is much higher in wetlands than in glacial deposits. In the carbon pool, the active fraction is more abundant than the stable fraction but in wetlands the ratio active/stable is much higher (mean: 31) than in glacial deposits (mean: 5). The contribution of the active fraction to SOC is also higher in wetlands (c.a. 1), while the opposite was found for the stable fraction contribution to SOC with almost a ratio of 0 in wetlands compared to 0.24 in glacial deposits. Paralleling the evolution of vegetation the enrichment in soil nutrients affects carbon (C) dynamics in the new soils that all are in the early forming stages with low C stability. Despite wetlands soils having the largest SOC content, the imbalance in the proportions of the C fractions with almost negligible stable C evidence the risk of interrupting the C cycle by loosing the more labile fraction. Therefore, focus should be directed to preserve the fragile new forming soils but specially wetlands because their key role in regulating the hydrological system and maintaining high altitude ecosystems.

How to cite: Nuñez-Quiroga, M., Ramírez, E., Dercon, G., and Navas, A.: Distribution of nutrient pools in recently formed soils of Andean high wetlands (Huayna-Potosí, Bolivia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9621, https://doi.org/10.5194/egusphere-egu2020-9621, 2020.

EGU2020-10027 | Displays | SSS2.5

Erosion and sediment enrichment ratio in volcanic soils

Ludmila La Manna, César Mario Rostagno, Manuela Tarabini, Federico Gomez, and Ana Navas

Patagonian Andean region is widespread affected by soil degradation and erosion processes. The subhumid sector, which corresponds to the transition (ecotone) between the Andean forests and the Patagonian steppe, has suffered the highest human pressure and overgrazing, accelerating the soil erosion processes.

Near Esquel town (Subhumid sector of Chubut province, Argentina), where soils are mainly developed from volcanic ashes, erosion studies based on fallout radionuclides (Caesium-137) and simulated rainfalls were performed. Studies based on Caesium-137 showed that soil losses in the last 50 years were higher than 30 m3 ha-1 year-1 under different land uses.

Rainfall simulation experiments, carried out under the same conditions (Rain fall intensity: 100 mm h-1 for 30 minutes; Drop diameter: 2.5 mm; Drop velocity: 5.3 m s-1) showed that erosion rates are highly affected by land use. Potential erosion rates in degraded rangelands varied between 143 and 750 g m-2, depending on soil characteristics (such as texture and presence of non-crystalline materials), soil cover and slope. In mature exotic conifer afforestations, with soil completely covered by litter, soil erosion was negligible, varying between 0 and 10 g m-2. Erosion rates increased both in young afforestations with open canopies (8 a 44 g m-2), and in mature afforestations where fresh litter and duff layers were removed (35 a 200 g m-2).

In the different studied systems, soil losses involved not the detachment of individual particles, but of soil micro aggregates rich in organic matter. Sediments enrichment ratio was always higher than 1, varying between 1.2 and 1.8. These results show that the sediments were enriched with organic matter, as compared to the contributing soils, indicating its selective removal. The erosion studies performed evidence the high erodibility of volcanic soils when their cover is lost, and the close link between erosion and carbon losses in these systems.

How to cite: La Manna, L., Mario Rostagno, C., Tarabini, M., Gomez, F., and Navas, A.: Erosion and sediment enrichment ratio in volcanic soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10027, https://doi.org/10.5194/egusphere-egu2020-10027, 2020.

EGU2020-18155 | Displays | SSS2.5

Simulating heavy rainfall events for parameterizing a first application of the physically based soil erosion model EROSION3D in South Africa

Andreas Kaiser, Michael Geißler, Jay Le Roux, Marike Stander, George van Zijl, and Jussi Baade

Soil erosion is a frequently tackled field of research and plays a major role in land degradation. Representing a discontinuous process soil loss is strongly determined by single events, which leads to high demands on modelling approaches.

Here we present a first application of the physically-based soil erosion model EROSION3D in a South African setting within the framework of the project SALDi (South African Land Degradation Monitor). Parameterization of the model requires intensive field work in accordance to land use and management patterns, soil types and topography. The experimental determination of physical and hydrological processes for selected sites allows for an improvement of the modelling results. Thus, rainfall and runoff simulation campaigns were carried out on various sites with a 3 x 1 m² mobile rainfall simulator. Additionally, UAV and TLS surveying, soil sampling, laboratory analysis and digital soil mapping complemented the approach. The created datasets are firstly handled in EROSION2D to calibrate soil erosivity and hydraulic conductivity and then introduced to EROSION3D for including land use, precipitation, elevation, multi-layered soil properties, organic carbon content and additional model input parameters.

The modelling procedure was applied within the boundaries of a research catchment close to Ladybrand in the Free State for first test runs. Furthermore, the same approach showed distinct differences on a conventionally tilled field vs. a conservational approach. An upscaling to larger catchments will then be carried out in basins with protected soils within Kruger National Park to directly compare them to results from intensively cultivated agricultural sites adjacent to the park boundaries.

How to cite: Kaiser, A., Geißler, M., Le Roux, J., Stander, M., van Zijl, G., and Baade, J.: Simulating heavy rainfall events for parameterizing a first application of the physically based soil erosion model EROSION3D in South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18155, https://doi.org/10.5194/egusphere-egu2020-18155, 2020.

EGU2020-1208 | Displays | SSS2.5

Pragmatic, fast and easy to use Model for Predicting Susceptibility to Concentrated Flow Erosion in a GIS in data-sparse regions

Liberty Lazarus Orapine Mgbanyi, Matthew Johnson, and Colin Thorne

Less Economically Developed Countries (LEDCs) are at particular risk of gullying due to climate change, land-use change, poor agricultural practices and widespread farming intensification, but in these areas, the data required to apply most predictive models are usually unavailable. Therefore, an urgent need for a practical and rapid predictive tool for assessing gullying potential in data-sparse regions, to inform planning, agricultural practices and environmental management decision-making is required. Given the difficulty in applying existing empirical models to developing areas, where input data is sparse, but the risk of gullying is high, alternative methods need to be developed to identify areas susceptible to gullying. Here it is hypothesised that detailed data is required to apply existing models of soil loss from agricultural areas because they focus on predicting the quantities of sediment lost after agriculture has commenced. The data requirements for successful model application could be less if the focus were instead on identifying areas that are susceptible to gullying.  The decision to avoiding soil loss by either protecting them from agricultural development or at least applying soil conservation measures from the outset, without attempting to predict the extents or the specific metre-scale locations of individual gully channels will come much handy. The Compound Topography Index (CTI) meets the criteria for that candidate predictive model for concentrated flow erosion in the data-sparse regions. The CTI, however, required quality and high-resolution data(<5m LiDAR DEMs) available in data-rich regions to perform, but with weak quality and low-resolution data(30m DEM) found in the data-sparse regions, fuzzy logic data applied to this data before using it as input into the CTI model to at least on identifying areas that are susceptible to gullying. The accuracy of the model was moderately improved when used with high-resolution data, and consistent in prediction for coarse resolution DEMs. A key finding is that the fuzzy CTI reveals that much of the landscape has the potential to suffer gullying – i.e. there is sufficient planform and profile curvature to concentrate and accelerate overland flow. Soil degradation and loss of soil structure, or removal of natural vegetation and, especially forests, could exacerbate the condition rapidly lead to widespread gullying based on the occurrence of concentrated overland flow driven by the topography, while the incorporation of soil structural stability index in the fuzzy CTI slightly improved it performance as per modelling concentrated flow erosion. The calculation of CTI is easy, repeatable, require less comprehensive, sophisticated data collection and not over extended periods and could widely be an applicable predictor of gullying, for use in sparse data regions.

How to cite: Mgbanyi, L. L. O., Johnson, M., and Thorne, C.: Pragmatic, fast and easy to use Model for Predicting Susceptibility to Concentrated Flow Erosion in a GIS in data-sparse regions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1208, https://doi.org/10.5194/egusphere-egu2020-1208, 2020.

EGU2020-2228 | Displays | SSS2.5

Quantitative assessment of gully erosion dynamics using a GIS implementation of Sidorchuks' DYNGUL model in Southern KwaZulu-Natal, South Africa

adel omran, Dietrich Schroeder, Christian Sommer, Volker Hochschild, Aleksey Sidorchuk, and Michael Maerker

Soil erosion is considered as one of the main threats affecting both rural and urban areas in many different parts all over the world. Therefore, increasing attention has been attributed to soil erosion in the last decades. This can also be documented by an increasing number of studies targeting soil erosion assessment using qualitative and quantitative models. However, gully erosion phenomena have been widely neglected in erosion modelling due to the nature and complexity of the related processes and hence, it is also more difficult to simulate, predict and to visualize its effects. Sidorchuk (1999) established a Fortran based dynamic erosion model called DYNGUL to describe the first quick stage of gully development, coinciding with the main changes in gully morphology; like changes in volume, area and elevation of the longitudinal profile. The DYNGUL model is based on the solution of the equations of mass conservation and gully bed deformation. The model of straight slope stability was used to predict gully side wall inclination and of the finite morphology of the gully. The objective of this contribution is to establish a GIS tool for a quantitative gully erosion assessment and to predict gully evolution over time. The tool will help: i) to cope with or mitigate gully erosion processes and ii) to plan measures to stabilize the landscape affected by gully erosion. Therefore, we developed a Python-based tool that can be applied in a GIS environment. The model was tested its performance and the sensitivity of physical parameters with data from a gully in the Drakensberg Mountains, KwaZulu-Natal, South Africa. The results of the gully erosion model showed that their sensitivity to lithological and hydrological factors is rather high.

How to cite: omran, A., Schroeder, D., Sommer, C., Hochschild, V., Sidorchuk, A., and Maerker, M.: Quantitative assessment of gully erosion dynamics using a GIS implementation of Sidorchuks' DYNGUL model in Southern KwaZulu-Natal, South Africa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2228, https://doi.org/10.5194/egusphere-egu2020-2228, 2020.

EGU2020-11249 | Displays | SSS2.5

Soil Degradation in Argan Woodlands, South Morocco

Mario Kirchhoff, Lars Engelmann, Lutz Leroy Zimmermann, Irene Marzolff, Manuel Seeger, Ali Aït Hssaine, and Johannes B. Ries

The argan tree (Argania spinosa) populations, endemic to South Morocco, have been highly degraded. Although the argan tree is the source of the valuable argan oil and is protected by law, overbrowsing and -grazing as well as the intensification and expansion of agricultural land lead to tree and soil degradation. Young stands cannot establish themselves; undergrowth is scarce due to the semiarid/arid climate and thus, goats, sheep and dromedaries continually browse the trees. Canopy-covered areas decrease and are degraded while areas without vegetation cover between the argan trees increase.

On 30 test sites, 60 soil samples of tree and intertree areas were studied on their soil physical and chemical properties. 36 rainfall simulations and 60 single-ring infiltration measurements were conducted to measure potential differences between tree/intertree areas in their runoff/erosion and infiltration properties. Significant differences using a t-test were found for the studied parameters saturated hydraulic conductivity, pH, electric conductivity, percolation stability, total C-content, total N-content, K-content, Na-content and Mg-content. Surface runoff and soil erosion were not statistically significant, but showed similar trends due to the higher complexity of runoff formation. The soil covered by argan trees generally showed less signs of degradation than intertree areas. With ever-expanding intertree areas due to the lack of rejuvenation of argan trees a further degradation of the soil can be assumed.

How to cite: Kirchhoff, M., Engelmann, L., Zimmermann, L. L., Marzolff, I., Seeger, M., Aït Hssaine, A., and Ries, J. B.: Soil Degradation in Argan Woodlands, South Morocco, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11249, https://doi.org/10.5194/egusphere-egu2020-11249, 2020.

EGU2020-831 | Displays | SSS2.5

Gully Erosion: A Threat to Livable Cities in Developing Countries

Adeyemi Olusola and Samuel Yakubu

The United Nations Centre for Human Settlement in 2007 estimated that out of about 6 billion people in the world, 3 billion (50%) live in urban cities. A projection of about 61% of the total world population will be living in urban cities by 2030. As these cities grow, certain aspects of the urban space are significantly affected due to this unavoidable growth especially in developing countries. Aspects such as demographic, environmental and economic are severely altered. This study employs a ‘mixed approach’ to explaining how gully erosion, is a threat to liveable settlements/cities in the 21st century. The first part of the study is a meta-research on gully erosion and how it affects human settlements in Nigeria, then a field study on gullies within Osogbo Metropolis, southwestern Nigeria, its morphology and distribution. The morphology (width and depth) of each of the identified gully was determined using standard instruments. Structures around the gullies were also identified spatially using a handheld GPS (Global Positioning System). Gully clusters were analysed using Moran I index. The identified gullies within Osogbo Metropolis at its deepest section are about 10metres, while the widest of the gullies is 2.5metres. On the average the measured gullies are about 0.7meteres wide and 1.7meteres deep. All the measured gullies are still undergoing downcutting and almost all of them are affecting one structure or the other within their catchment area. Given a z-score of -0.40 and -1.15 Moran I index I, the pattern does not appear to be significantly different than random. Hence, the occurrence of these gullies cannot be said to be associated with natural factors like lithology or soil properties. Out of the twelve major gullies identified, nine (9) were as a result of poor engineering, largely due to the on-going urban renewal process. Osogbo and elsewhere in Nigeria suffer from the havocs of gully erosion. Urban sprawl coupled with urban renewal processses in many parts Nigeira (particularly in the Third World) leads to the rapid development of large gully channels (urban gullies) endangering the bearing function of soils and causing damage to infrastructure and private property. The implication of the result is that, as good as the renewal process being carried out mostly in southwestern cities is a good one especially to achieve livable cities in the 21st century, there is the need for such planning to ensure that most engineering works adhere to best practices. The government at all levels in Nigeria and stakeholders in environmental management should ensure proper planning and make it a duty to create cities that are livable and healthy.

How to cite: Olusola, A. and Yakubu, S.: Gully Erosion: A Threat to Livable Cities in Developing Countries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-831, https://doi.org/10.5194/egusphere-egu2020-831, 2020.

EGU2020-10739 | Displays | SSS2.5

Understanding the effectiveness of measures aiming to stabilize urban mega gullies in Kinshasa

Eric Lutete Landu, Guy Ilombe Mawe, Charles Bielders, Fils Makanzu Imwangana, Olivier Dewitte, Jean Poesen, and Matthias Vanmaercke

Kinshasa, the capital of the D.R. Congo, is strongly affected by urban mega gullies. There are currently hundreds of such gullies, having a total length of >100 km. Many of these gullies (typically tens of meters wide and deep) continue to expand, causing major damage to houses and other infrastructure and often claiming human casualties. To mitigate these impacts numerous efforts are being implemented. The type and scale of these measures varies widely: from large structural measures like retention ponds to local initiatives of stabilizing gully heads with waste material. Nonetheless, earlier work indicates that an estimated 50% of the existing urban gullies continue to expand, despite the implementation of such measures. As such, we currently have very limited insight into the effectiveness of these measures and the overall best strategies to prevent and mitigate urban gullies. One reason for this is that gully erosion is typically very episodic with long periods of stability, followed by sudden expansion events. As a result, understanding the dynamics of gully expansion in urban environments requires observations over sufficiently long time periods. However, most current initiatives to stabilize urban gullies happen on a rather isolated basis and are rarely evaluated afterwards.

This work aims to improve our understanding of this issue by constructing a large inventory of measures implemented to stabilize urban gullies in Kinshasa and statistically confronting these measures with observed vegetation recovery and long-term gully expansion rates (derived from high-resolution imagery over a period of >10 years). Our preliminary results (based on a dataset of > 140 urban gullies) shows that the most commonly applied measures are revegetation and reinforcement of gully heads with sandbags or household waste material (implemented in around 50% of the cases). Also retention ponds and water storage tanks are frequently implemented (around 30% of the cases). Surprisingly, our results indicate that urban gullies with higher expansion rates tend to have more measures implemented in their upstream catchment. While this seems counterintuitive, it may point to the fact that more actively retreating gullies create a larger sense of urgency and therefore instigates a higher number of (often ineffective) initiatives. More research is needed to confirm this. Furthermore, the stability of gullies seems to be strongly linked to vegetation cover in the gully. Nonetheless, it is not always clear if vegetation is the cause or the result of this stability. Overall, this study provides one of the first large scale assessments of the effectiveness of gully control measures in urban tropical environments. With this study, we hope to contribute to a better prevention and mitigation of this problem that affects many cities of the tropical Global South.

How to cite: Lutete Landu, E., Ilombe Mawe, G., Bielders, C., Makanzu Imwangana, F., Dewitte, O., Poesen, J., and Vanmaercke, M.: Understanding the effectiveness of measures aiming to stabilize urban mega gullies in Kinshasa, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10739, https://doi.org/10.5194/egusphere-egu2020-10739, 2020.

EGU2020-14073 | Displays | SSS2.5

Soil erosion on Mauritius

Paul Sumner

EGU2020-9864 | Displays | SSS2.5

A Study of Sediment Yield in the Deji Reservoir Watershed Using Risk Analysis

Wen Wei Chang and Chao Yuan Lin

Deji Reservoir Watershed was used as a sample site to understand the sediment yield using risk analysis. The historic typhoon and/or torrential storm events were collected to estimate the excessive runoff for each event. The distribution of SCS-CN is obtained by combining the maps of land use and soil texture, and the excess rainfall (Pe) and the maximum water storage (S) for each event were then calculated according to SCS-CN. Regression analysis shows that there is a good relationship between estimated runoff (x) and measured runoff (y); y=0.9561x+3*106, R2= 0.9414. Topographic wetness index (TWI) and sediment delivery ratio (SDR) were derived from DEM. The risk model developed to assess the sediment yield is calculated from the multiplication of hazard (Pe), vulnerability (TWI), and exposure (SDR). The total siltation amount of Deji Reservoir from 2009 to 2017 was taken as the measured value, and the estimated amount of sediment yield was calculated from the aforementioned formula  to obtain the potential index of sediment yield. The results show that there is also a good relationship between estimated sediment yield (x') and measured sediment yield (y') annually; y'=10-11x'2-0.0223x'+9*106 , R2= 0.74.

Keywords: Risk Analysis, Curve Number, Sediment Delivery Ratio

How to cite: Chang, W. W. and Lin, C. Y.: A Study of Sediment Yield in the Deji Reservoir Watershed Using Risk Analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9864, https://doi.org/10.5194/egusphere-egu2020-9864, 2020.

SSS2.7 – Advancements in modeling and remote sensing assessments in soil and water degradation processes

EGU2020-22200 | Displays | SSS2.7

Visualizing resource dependencies of the urban system at multiple scales: a hydrological case study

Héctor Angarita, Vishal Mehta, and Efraín Dominguez

Freshwater is one key component of the resource dependency of urban areas, linking concentrated population centers to geophysical and ecosystem processes operating at regional and global scales. Resources like water, food, biofuels, fibers or energy that sustain cities directly depend on the productive or assimilative capacities of the hydrological system, operating at multiple nested scales (from catchment to river basins) —areas orders of magnitude greater than the extent of the built-up urban areas.

Although the freshwater systems–urban population relationship has a broad regional and sectorial scope, the quantification of the extent of regional and global impacts of cities’ resource demands, and more importantly, their integration into decision-support frameworks continues to be overlooked in water-management and urban planning practice. A key limitation of understanding the scope of impacts of urban systems is the characterization of the distributed and non-linear nature of the regional relationship of water and cities, wherein a given region can simultaneously supply resources to—or be affected by—multiple urban areas (and vice-versa), and the heterogeneity of physical and biotic processes of freshwater systems.

Here we introduce a novel approach to assess and visualize the interactions between urban resource demands and the freshwater system. We propose a set of indicators that make use of freshwater drainage structure to incorporate the cumulative effects and concurrent resource dependency of urban areas across multiple nested scales. The cumulative character of the proposed indexes aims to replace the fixed control boundary (i.e. basin, sub-basin, etc -the current practice in water resources appraisals), with the (topological) integral of the process across the multiple nested scales present in a river basin. This approach allows: (i) visualizing how factors like patterns of size, spatial distribution and interconnection of urban resource demands or the nested and hierarchical character of freshwater systems, influence the cumulative pressure exerted or a urban system on the freshwater system, (ii) mapping the spatial patterns of resource import and export across different scales and regions of a freshwater system, and (iii) quantifying the scales of the process required to sustain the resource supply of the multiple cities sharing the same provisioning freshwater system. The presented advances can inform regional urban planning to determine options to avoid, minimize or offset regional impacts of urban populations. An example of this proposed approach is presented for the Magdalena River Basin (Colombia).

How to cite: Angarita, H., Mehta, V., and Dominguez, E.: Visualizing resource dependencies of the urban system at multiple scales: a hydrological case study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22200, https://doi.org/10.5194/egusphere-egu2020-22200, 2020.

EGU2020-12287 | Displays | SSS2.7

Modelling the responses of extreme events hydrometeorological events in the landslides and floods of the Combeima river basin.

Laura Viviana Garzon Useche, German Ricardo Santos Granados, and Gerald Augusto Corzo Perez

The village of Juntas has a periodic sequence of hydrometeorological extreme events. The region present a tropical vegetation with a highly dynamic weather. Currently modelling of hydrological events have been limited to the use of conventional rainfall runoff models, that fail to represent accurately the moment when landslides start to occur, as well as to not be able to provide a clear spatial sensitivity of the relationship between landslide event and precipitation. This research presents a contribution in the linking of various modelling concepts to understand more the influence of the spatial variability of rain in the generation of the events. The data avaialable was daily precipitation during 15 years from de satelital imagine and the discharge of geotechnical characterizations, hydraulic analysis, ecological structures, cartography, vulnerability, flood and torrential risk maps.

The analysis is done by combining the information available in remote sensing rasters and the overall temporal relation of events is mapped with a spatiotemporal analysis of the extremes. The current methodology is expected to contribute to the understanding of the sensitivity of landslides due to the spatiotemporal variation of rain in the region.

How to cite: Garzon Useche, L. V., Santos Granados, G. R., and Corzo Perez, G. A.: Modelling the responses of extreme events hydrometeorological events in the landslides and floods of the Combeima river basin., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12287, https://doi.org/10.5194/egusphere-egu2020-12287, 2020.

Spatio temporal visualization of soil critical sources areas to assess the dynamics of source pollution in agricultural management practices

always changes aim at the reduction of nutrient pollution. Critical identification of areas that are the sources of pollution is crucial for identifying which practices provide the most substantial contamination. The dynamics of agricultural practices are complex and the precise determination of pollution concentration requires a comprehensive model. In this research, we present the results of analysing via a new visualisation technique were the critical source areas using a spatiotemporal methodology that allows for a georeferenced identification of changes. The proposed method in this research used a radial diagram to evaluate the changes in regions of pollution and makes a radial diagram formulation of intensities, location and frequency. For this location and intensity identification, a clustering process, using the Non-contiguous drought areas method and the Contrigous drought area method. This clustering groups by first mapping in one dimension the threshold that defines a change in the state of the CSA, and then groups if by its neighbours and soil characteristics. To obtain a spatially distributed data, a SWAT model was set up for two types of crops, mainly potato and tomato tree, aside, we added also Kikuyu grass as it is one of the most important in the region. The simulation period for our experiment was in an area of 103434 Ha, using daily data from 1995 to 2015.  Two steps calibration was done, first with streamflow and second with an analysis of monthly nutrients. Results show a definite change in location, which will imply that a significant error could be present if the spatiotemporal relation is not analysed. The current work is part of a PhD thesis and the partial results presented here contribute to a broader formulation of the optimisation of agricultural practices to reduce the impact of the Critical Source Areas in nutrients pollution. 

 

How to cite: Uribe, N. and Corzo P, G. A.: Spatio temporal visualization of soil critical sources areas to assess the dynamics of source pollution in agricultural management practices, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22024, https://doi.org/10.5194/egusphere-egu2020-22024, 2020.

EGU2020-8212 | Displays | SSS2.7

Large-scale Groundwater Simulation using Artificial Neural Networks in the Danube River Basin

Illias Landros, Ioannis Trichakis, Emmanouil Varouchakis, and George P. Karatzas

In recent years, Artificial Neural Networks (ANNs) have proven their merit in being able to simulate the changes in groundwater levels, using as inputs other parameters of the water budget, e.g. precipitation, temperature, etc.. In this study, ANNs have been used to simulate hydraulic head in a large number of wells throughout the Danube River Basin, taking as inputs, precipitation, temperature, and evapotranspiration data in the region. Different ANN architectures have been examined, to minimize the simulation error of the testing data-set. Among the different training algorithms, Levenberg-Marquardt and Bayesian Regularization are used to train the ANNs, while the different activation functions of the neurons that were deployed include tangent sigmoid, logarithmic sigmoid and linear. The initial application comprised of data from 128 wells between 1 January 2000 and 31 October 2014. The best performance was achieved by the algorithm Bayesian Regularization with a error of the order  based on all observation wells. A second application, compared the results of the first one, with the results of an ANN used to simulate a single well. The pros and cons of the two approaches, and the synergies of using both of them is further discussed in order to distinguish the differences, and guide researchers in the field for further applications.

How to cite: Landros, I., Trichakis, I., Varouchakis, E., and Karatzas, G. P.: Large-scale Groundwater Simulation using Artificial Neural Networks in the Danube River Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8212, https://doi.org/10.5194/egusphere-egu2020-8212, 2020.

Soil erosion in agricultural landscapes reduces crop yields and influences the global carbon cycle. However, the magnitude of historical topsoil loss remains poorly quantified at large, regional spatial scales, hindering predictions of economic losses to farmers and quantification of the role soil erosion plays in the carbon cycle. We focus on one of the world’s most productive agricultural regions, the Corn Belt of the Midwestern United States and use a novel spectral remote sensing method to map areas of complete topsoil loss in agricultural fields. Using high-resolution satellite images and the association between topsoil loss and topographic curvature, we use high resolution LiDAR topographic data to scale-up soil loss predictions to 3.7x105 km2 of the Corn Belt. Our results indicate 34±12% of the region has completely lost topsoil as a result of agriculturally-accelerated erosion. Soil loss is most prevalent on convex slopes, and hilltops throughout the region are often completely denuded of topsoil indicating that tillage is a major driver of erosion, yet tillage erosion is not simulated in models used to assess soil loss trends in the U.S. We estimate that soil regenerative farming practices could restore 16±4.4 Pg of carbon to the exposed subsoil in the region. Soil regeneration would offset at least $2.5±0.3 billion in annual economic losses to farmers while generating a carbon sink equivalent to 8±3 years of U.S. CO2 emissions, or ~14% of the global soil carbon lost since the advent of agriculture.  

How to cite: Larsen, I., Thaler, E., and Yu, Q.: A remote sensing approach for evaluating regional-scale topsoil loss in the Midwestern United States, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4340, https://doi.org/10.5194/egusphere-egu2020-4340, 2020.

EGU2020-22225 | Displays | SSS2.7

Identifying the impact of human activities on soil erosion- the case of Jiangxi Province, China

Yanqing Lang, Xiaohuan Yang, and Hongyan Cai

Soil erosion is the results of the combined effects of natural factors and human activities. Since modern times, human activities are the main causes of soil erosion and plays a key role in the process of soil erosion, both promoting and inhibiting. Therefore, identifying the impact of human activities on soil erosion is of great significance to control and transform the impact of human activities reasonably and effectively. In this study, Jiangxi province is taken as the study area, the main patterns of human activities affecting soil erosion are sorted out and the spatial distribution of human activities is identified, and the impact of human activities on soil erosion is assessed. This study aims to reveal the temporal and spatial distribution of different human activities affecting soil erosion and explore the relationships between different human activities and soil erosion, and to provide data support, scientific reference and policy suggestions for soil erosion control and land resources management in Jiangxi province.

How to cite: Lang, Y., Yang, X., and Cai, H.: Identifying the impact of human activities on soil erosion- the case of Jiangxi Province, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22225, https://doi.org/10.5194/egusphere-egu2020-22225, 2020.

EGU2020-17972 | Displays | SSS2.7

Forecasting landslides using a spatiotemporal analysis of remote sensing data

Carlos Alfredo Mesa Zuluaga, German Ricardo Santos Granados, and Gerald Augusto Corzo Perez

Forecasting landslides is highly dependent in the weather conditions and the land-soil characteristics and its state. The uncertainty present in the evaluation of precipitation and its continuous variation is always a challenge for having accurate forecast, of primary importance for risks reduction. Currently, the landslides generate an impact on the imbalance of ecosystems and their occurrence is increasing which leads to an increase in the vulnerability of man on earth. The complexity of the landslide systems requires detailed analysis of the highly dynamic information of the rain and in turn the form as the hydrology response. Being able to combine hydrological models forced by satellite information systems and put them with a soil cohesion analysis system could help improve monitoring and in a particular case forecast landslide events.

The Combeima river located at the village of Juntas with canyon type land relief currently, faces a vital challenge in the face of winter times where precipitation threaten urban zones. Current researchers have explored risk factors, however, results still are quite far from optimal.

This study develops a methodology to identify the water volume that can cause landslides over the canyon type land relief, and use it as a trigger for forecasting. Remote sensing data at the present time and projected from past data will be used to simulate forecasting situations (hidcasting). A coupled Mike SHE models and data from Google earth platform are used to analyze a period of twenty years. Local information from events and its analysis in the satellite images are used to validate the events. Finally, the results of past conditions that led to the generation of floods are used to identify the state of the soil and the volumes. A calibration and validation of a neural network model is done feeding the volumes and states. The results of the model allow us to specifically characterize the saturation limits of the soil and the maximum rainfall intensities that a soil may contain before collapsing. With this information a high performance and a design of a system to forecast in real time was proposed. This work is part of an ongoing research and partial results will be presented.

How to cite: Mesa Zuluaga, C. A., Santos Granados, G. R., and Corzo Perez, G. A.: Forecasting landslides using a spatiotemporal analysis of remote sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17972, https://doi.org/10.5194/egusphere-egu2020-17972, 2020.

EGU2020-21326 | Displays | SSS2.7

Estimating badland denudation with pin measurements and high resolution Digital Elevation Models derived from UAV image analysis

Brigitte Kuhn, Nikolaus Kuhn, John Boardman, and Vincent Schneider

The denudation of soil or soft rock surfaces by non-concentrated flow is mostly estimated by relating the sediment discharge observed at the outlet of a plot or natural micro-catchment to their respective surface areas. This approach generates an average denudation rate, but ignores spatial patterns of erosion and deposition. A well established approach to capture such spatial differences are pins, which deliver a highly precise point measurement of surface elevation change. Advances in the development of Unmanned Aerial Vehicles (UAVs) and imagine processing in the past decades offer an additional tool for mapping erosion and deposition at millimetre scale for continuous surfaces. In this study, pin and UAV-derived erosion data for a badland area in the Karoo rangelands, South Africa, are compared. The results show that typical annual erosion rates in the study area are lower than the differences between two DEMs generated a year apart. This illustrates that in situations where erosion rates are low, pins still offer the faster and more reliable results. For their extrapolation, on the other hand, UAV-derived DEMs provide suitable topographic data.

How to cite: Kuhn, B., Kuhn, N., Boardman, J., and Schneider, V.: Estimating badland denudation with pin measurements and high resolution Digital Elevation Models derived from UAV image analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21326, https://doi.org/10.5194/egusphere-egu2020-21326, 2020.

The Universal Soil Loss Equation (USLE) is a standard model to assess soil erosion by water. The model equation quantifies long-term average annual soil loss as a product of the rainfall erosivity R, soil erodibility K, slope length and slope steepness LS, the soil cover C and support measures P. Several methods exist to derive each of the model inputs from readily available data. The estimated values of a model input, however, can strongly differ depending on the method that was applied. The multiplication of the input factors with the USLE eventually results in large uncertainties for the soil loss estimates. A comparison of the estimated soil loss to observation data can potentially reduce the uncertainties. Yet, for large scale soil loss estimations, in-field observations are rare and their comparability to long-term soil estimates is limited. This work puts a focus on uncertainty and sensitivity analysis in large scale soil loss estimation employing the USLE with different realizations of the USLE input factors.

In a systematic analysis we developed different representations of the USLE inputs for the study domain of Kenya and Uganda with a spatial resolution of 90 m. All combinations of the generated USLE inputs resulted in 756 USLE model setups. We assessed the resulting distributions in soil loss, both spatially distributed and on district level for Kenya and Uganda. In a sensitivity analysis we analyzed the contributions of the USLE model inputs to the ranges in soil loss and analyzed their spatial patterns. We compared the calculated USLE ensemble soil estimates to available in-field data and other study results and addressed possibilities and limitations of the USLE model evaluation.

The USLE model ensemble resulted in wide ranges of estimated soil loss, exceeding the mean soil loss by over an order of magnitude particularly in hilly topographies. The study implies that a soil loss assessment with the USLE is highly uncertain and strongly depends on the realizations of the model input factors. The employed sensitivity analysis enabled us to identify spatial patterns in the importance of the USLE input factors. The C and K factors showed large scale patterns of importance in the densely vegetated part of Uganda and the dry north of Kenya, respectively. The LS factor estimates were mostly relevant in small scale heterogeneous patterns. Major challenges for the evaluation of the estimated soil losses with in-field data were due to spatial and temporal limitations of the observation data, but also due to measured soil losses describing processes that are different to the ones that are represented by the USLE.

Reference: Schürz, C., Mehdi, B., Kiesel, J., Schulz, K., and Herrnegger, M.: A systematic assessment of uncertainties in large scale soil loss estimation from different representations of USLE input factors – A case study for Kenya and Uganda, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-602, in review, 2019. 

How to cite: Schürz, C., Mehdi, B., Kiesel, J., Schulz, K., and Herrnegger, M.: A systematic assessment of uncertainties in large scale soil loss estimation from different representations of USLE input factors – A case study for Kenya and Uganda, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13787, https://doi.org/10.5194/egusphere-egu2020-13787, 2020.

EGU2020-17539 | Displays | SSS2.7

Photogrammetricaly measured sheet and rill erosion on steep slopes

Tomas Laburda, Petr Kavka, Romana Kubínová, Martin Neumann, Ondřej Marek, and Adam Tejkl

Soil erosion is a long-term problem that causes the degradation of the earth's surface depending on geomorphological and climatic conditions. Adverse combinations of these conditions can create situations where not only sheet erosion occurs, but also rill processes begin to occur due to the concentration of surface runoff. Erosion processes become undesirable and dangerous when they occur on construction sites. The presented project is basically focused on the effectiveness of protective geotextiles against soil erosion, but processes related to sheer and rill erosion were also investigated. The research was carried out on experimental plots of 4x1 meters, which were placed in the outdoor laboratory in Jirkov. These three plots were set at slopes from 22° to 34° and artificial rain was simulated on them using a rainfall simulator. A second experimental area of ​​the same size was available at the laboratory rainfall simulator at the CTU in Prague, where a modern facility was created for the purpose of soil erosion testing on steep slopes. This device can create slopes up to 40°.

The photogrammetric method „Structure from Motion“ was used for monitoring soil surface before and after each simulation. Orthophotos and digital elevation models were compared with each other to get digital elevation models of difference. Calculation of the ratio between sheet and rill erosion was done by manually creating rill polygons and by calculating the volume changes above the polygons of these rills and over the whole surface. According to preliminary results on these 4 m long slopes, the rill volume represented approximately 30 % compared to the overall volume change.

Shifts of stabilizing natural geotextiles by surface runoff and eroded material were also monitored using photogrammetric methods. Deformations and displacements were measured from differences in the detailed images before and after the simulation. Transversal veins and their shift along the slope were evaluated.

This research is funded by the TA CR  - TH02030428.

How to cite: Laburda, T., Kavka, P., Kubínová, R., Neumann, M., Marek, O., and Tejkl, A.: Photogrammetricaly measured sheet and rill erosion on steep slopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17539, https://doi.org/10.5194/egusphere-egu2020-17539, 2020.

EGU2020-10023 | Displays | SSS2.7

Spatiotemporal assessment of ephemeral gully characteristics using low altitude aerial imagery: an approach for quantifying

Henrique Momm, Robert Wells, Carlos Castillo, and Ronald Bingner

In agricultural fields, ephemeral gullies are defined as erosional channels formed primarily by overland flow from rainfall events. These channels are characterized by small dimensions, approximately 0.5 to 25 cm in depth, which allows their removal during regular farming operations. This dynamic characteristic coupled with their small size often can conceal soil losses by ephemeral gullies and poses challenges to efforts devised for soil loss quantification and mitigation. In this study, novel surveying and data processing techniques were employed to capture the small scale in topographic variation between two surveys and to assure that changes were due to erosional processes rather than survey miss-alignment. An agricultural field located in Iowa, U.S.A. with an area of approximately 54,500 m2 was surveyed twice: right after the field was planted with corn and approximately one month later, following several rainfall events. A static benchmark point was established at the edge of the field and tied to public geodesic locations. A set of removable ground control points were spread throughout the field and surveyed in relation to the benchmark point. Low altitude aerial images were collected using a quadcopter UAS. Ground control points were used to aid in geospatial registration and to assess final survey accuracy. Standard off-the-shelf commercial software packages were unable compensate for less distortion and a new procedure using Micmac open-source photogrammetry software package was used to account for complex distortion patterns in the raw image data set. The undistorted images were then processed using Agisoft Photoscan for camera alignment, model georeferencing, and dense point cloud generation. Each point cloud representing a time period contained over 1 billion of points (file size > 100GB) and was processed using custom algorithms for filtering outliers and rasterization into a 2.5 cm raster grid (DEM). Analysis of differences between the two high spatial resolution DEMs revealed changes in the landscape due to natural (erosion/deposition) and anthropogenic (farming activities) factors. Specifically, for ephemeral gully analysis, morphological features in the form of headcut position and size, channel incision, sinuosity, lateral expansion, and depositional patterns were easily identified. Findings of this study shed light on potential pitfalls inherent to the utilization of off-the-shelf commercial software packages for such fine scale multi-temporal analysis, describe the need for standardization of procedures that assure accurate erosional response amongst different studies, and support the generation of accurate datasets critical in advancing our understanding of ephemeral gully processes needed for improved model development and validation.

How to cite: Momm, H., Wells, R., Castillo, C., and Bingner, R.: Spatiotemporal assessment of ephemeral gully characteristics using low altitude aerial imagery: an approach for quantifying, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10023, https://doi.org/10.5194/egusphere-egu2020-10023, 2020.

EGU2020-12788 | Displays | SSS2.7

Impact on wheat production of anthropic soil erosion by recent gully filling at the Campiña landscape in Southern Spain

Carlos Castillo, Rafael Pérez, and Miguel Vallejo Orti

            Gully erosion is one of the main drivers of environmental degradation on intensively managed agricultural fields in Southern Spain. Ephemeral and permanent gullies develop after intense rainfall events, which leads to significant loss of arable land. In the study area, productivity is also affected atn gully surroundings since gully filling (by using the top soil scraped from the vicinity of the gully) is a common practice among local farmers.

            The aim of this communication is to analyze the impact of gully filling practices on wheat production during two growing years (2017 and 2019) in a medium-sized catchment (94 ha) at the Galapagares watershed. The study area is close to the city of Córdoba (Spain) and belongs to the Campiña landscape (rolling landscape on vertic soils). The catchment under study is divided in five subcatchments, two of them not affected by gully filling in the last eight years while in the other three, the soil was scraped and displaced into the gully within the study period (last two years).

            Firstly, a series of topographic and spatial factors (insolation, topographic index, slope, aspect, drainage area, distance to the gully) and a soil-related variable calculated prior to the growing season (soil color from the Sentinel-2 visible band) were selected as posible explanatory factors for remote sensing-based Vegetation Indexes (VI) derived from Sentinel-2 (the Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index - EVI). Both indexes were considered potential proxies for crop yield for 2017 and 2019 campaigns. Furthermore, the differences in VI were compared between potentially affected areas by soil scraping close to gullies and non-affected areas. At last, a field survey on crop production (kg of wheat grain per ha, 15 % moisture) was carried out during the harvest period to determine the relation between vegetation indexes and crop yield.

            Results show that the most relevant explanatory factors for NDVI and EVI variance were solar irradiation, topographic index, aspect (positively correlated), soil colour (inverse correlation) and distance to the gully (positive correlation), in this order of importance. A general linear model explained 40% of NDVI and 55% of the EVI variances Nevertheless, when gully adjacent (<30m to the gully) and non adjacent (>30m) areas were analyzed separately, significant diferences were detected. Non-adjacent areas presented higher VI values and homogeinity pixelwise. Moreover, the distance to the gully became the second most significant explanatory factor for VI in adjacent areas (with higher VI values for more distant locations), whereas it remained non significant for non-adjacent pixels. In addition, those subcatchments impacted by recent gully filling showed larger variability in VI values before and after the operations as compared to non-affected subcatchments.

How to cite: Castillo, C., Pérez, R., and Vallejo Orti, M.: Impact on wheat production of anthropic soil erosion by recent gully filling at the Campiña landscape in Southern Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12788, https://doi.org/10.5194/egusphere-egu2020-12788, 2020.

EGU2020-8325 | Displays | SSS2.7

Soil Cohesion Development under Different Pore and Size Characteristics

Cagla Temiz, Fikret Ari, Selen Deviren Saygin, Sefika Arslan, Mehmet Altay Unal, and Gunay Erpul

Soil cohesion (Co) is one of the most important physical soil characteristics and it is closely related to the basic soil properties and physical distribution forces (e.g. particle size distribution, pore sizes, shear strength) and so it is mostly determined by experimentally approaches with the help of other soil properties in general terms. Instead of using these assumptions, the fluidized bed approach provides an opportunity for direct measurement of intrinsic soil cohesion. In this study, soil cohesion development for different soil types was investigated with the fluid-bed method by which pressure drop in soil mass measures under increasing water pressures until the cohesion between particles disappears. For this purpose, 20 different soils varying with a wide range of relevant soil physical properties were sampled; such that clay, silt and sand contents varied between 2% and 56%, 1% and 50%, and 1% and 97%, respectively while porosity values were between 0.38 and 0.92. By those textural diversities of the soils, obtained cohesion values changed between 5203 N m-3 and 212276 N m-3. Given results from regression analysis, a significant relationship was found between cohesion values of the soils and their porosity and silt fractions (R2: 86.6).These findings confirm that the method has a high potential to reflect differential conditions and show that soil cohesion could be modeled by such basic and easily obtainable parameters as particle size distribution and porosity, as well. 

Key words; Mechanical soil cohesion, particle size distribution, fluidized bed approach, porosity

How to cite: Temiz, C., Ari, F., Deviren Saygin, S., Arslan, S., Unal, M. A., and Erpul, G.: Soil Cohesion Development under Different Pore and Size Characteristics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8325, https://doi.org/10.5194/egusphere-egu2020-8325, 2020.

EGU2020-3619 | Displays | SSS2.7

Estimation of the Rates of Particle Aggregation and Disaggregation in the Mesopelagic Zone of the Eastern North Pacific

Vinicius Amaral, Olivier Marchal, Phoebe Lam, Jong-Mi Lee, Ken Buesseler, and Montserrat Roca Marti

The processes of particle aggregation and disaggregation are of paramount importance for ocean biogeochemical cycles. Particle aggregation leads to a transfer of particulate material and of their chemical constituents into large size fractions that can settle rapidly through the water column, thereby contributing to the ocean biological pump. In contrast, particle disaggregation redistributes material into smaller size classes and places limits on the size of the largest aggregates. In spite of their preeminent importance for ocean biogeochemistry, rates of particle (dis)aggregation in the ocean cannot be measured directly and are notoriously difficult to constrain. Indeed, current estimates obtained in a variety of oceanographic environments range over several orders of magnitude and suffer from appreciable uncertainties.

The goal of the Export Processes in the Ocean from Remote Sensing (EXPORTS) program is to develop a predictive understanding of the export and fate of global ocean net primary production for present and future climates. As part of this program, an extensive oceanographic campaign took place in summer 2018 in the Gulf of Alaska, during which various measuring and sampling platforms including a large-volume filtration (LVF) system have been deployed at different depths in the euphotic and mesopelagic zones at stations centered around a drifting Lagrangian float. Here we present the status of our ongoing effort to estimate the rates of particle (dis)aggregation in the mesopelagic zone of EXPORTS stations based on concomitant measurements of the concentration of particulate organic carbon (POC), lithogenic elements (Al and Ti), and thorium-234 (a naturally-occurring particle-reactive radionuclide), in different size fractions sampled from LVF and bottles. The rates of particle (dis)aggregation, as well as remineralization and sinking, are estimated from the quantitative combination of this diverse dataset with a simplified model of the cycling of POC, Al, Ti, and Th-234 in the upper water column using a least-squares procedure that accounts for both data and model errors. Rate estimates and their errors obtained at different stations and at different depths in the upper 500 m are presented and discussed in the context of independent measurements bearing on the mesopelagic ecosystem of the eastern North Pacific.

How to cite: Amaral, V., Marchal, O., Lam, P., Lee, J.-M., Buesseler, K., and Roca Marti, M.: Estimation of the Rates of Particle Aggregation and Disaggregation in the Mesopelagic Zone of the Eastern North Pacific, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3619, https://doi.org/10.5194/egusphere-egu2020-3619, 2020.

EGU2020-13427 | Displays | SSS2.7

Evaluation of olive grove management on various soils at the micro-catchment scale with the AnnAGNPS model to quantify their impacts on organic carbon

Encarnación Taguas, Ronald L. Bingner, Henrique Momm, Robert R. Wells, and Martin Locke

Soil organic carbon (SOC) stock changes are crucial to identify the risk of desertification in fragile areas such as the Mediterranean Basin and to fulfill environmental protection global conventions. In Spain, 48% of the world’s olive oil is produced with 2.6 Mha dedicated to the crop and there is clear concern over the carbon balance in the context of climate change and the resulting loss of productivity. In this work, 108 scenarios were prepared with the model AnnAGNPS in a small catchment of extensive olive groves by considering the impact of soil type and management using 6 different soil types (with textures sandy, S; sandy loam, Slo; loam, L; clay loam, Clo; silty loam clay, SiLoC; clay, C), 3 different managements (no till, NT; conventional tillage, CT, and cover crop, SC), 3 types of fertilization (two organic with different rates, F2 and F3,  and another inorganic F1) and 2 contrasting reach organic carbon half-life time (0.1 day-730 days). The consistency of the simulated values of annual OC attached to the sediments and of variations of ground SOC (h=200 mm) were evaluated and compared in the context of the region of Andalusia.

There were significant differences of annual values of the sediment OC for the scenarios of soil and management with a range variation between 0.0 kg.ha-1 and 368.9 kg.ha-1. In addition, S and SC showed the lowest variability intervals while Clo and NT had the highest sediment OC and variation ranges. For the SOC pools, the effects of soil and fertilization types were more evident than of the management. The combination C-SC-F3 presented the maximum increase of SOC (0.150 mg OC.g-1soil.y-1) while the combination Slo-NT-F1 presented the minimum (0.080 mg OC.g-1soil.y-1). Despite specific calibrations needed to quantify OC balances, the consistency of the hydrological and erosive parameterization based on the abundance of experimental studies supports the use of AnnAGNPS for simulating the OC loss in agricultural catchments.

How to cite: Taguas, E., Bingner, R. L., Momm, H., Wells, R. R., and Locke, M.: Evaluation of olive grove management on various soils at the micro-catchment scale with the AnnAGNPS model to quantify their impacts on organic carbon , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13427, https://doi.org/10.5194/egusphere-egu2020-13427, 2020.

SSS2.8 – Soil Erosion and Conservation

EGU2020-18653 | Displays | SSS2.8

Cycles of gully incision and infill in agricultural landscapes of Central European Russia: natural and anthropogenic factors

Yulia Kuznetsova, Vladimir Belyaev, Sergey Kharchenko, and Anna Semochkina

Gullies are traditionally considered as one of the most active landforms in agricultural areas. In many places gully erosion leads to massive loss of fertile soil, decline of areas available for cultivation and a number of other land use complications. In addition, gullies in many cases act as the most effective runoff and sediment routing pathways, promoting better connectivity and increasing sediment delivery from cultivated hillslopes into fluvial network. Hence, gully network development may also cause significant detrimental off-site effects, including small river degradation, reservoir siltation, particle-bound pollutants concentration, etc. On the other hand, this process is often not progressive and unidirectional, but rather includes cycles of incision and head retreat alternating with infill periods. Understanding this dynamics and knowing its control factors may help to predict the future process trends for different climate and land use change scenarios, save fragile soil and water resources and design sustainable agricultural activity in changing environment.

We analyzed five different small river basins in Central European Russia to investigate the cycles of gully growth and infill. The main approach was to acquire gully network structure from topographic maps or by manual visual interpretation of satellite images. A set of topographic maps was used to map the spatial structure of gullies over the case study areas for several time intervals from mid XIX century to the end of XX century. In addition, recent satellite images were used to investigate the up-to-date (2018-2019) gully network structure and distinguish its possible latest changes related to climate or land use changes.

It is common to consider agriculture as the main factor of gully erosion activation in this area. We found that land use changes over the last 150 years lead not only to erosion rates shifts, but to incision and infill cycles. Besides, morphometric parameters of individual gullies, spatial patterns of gully network and gully density within different catchments strongly depend on local topography. Particularly important controls are topographic ranges, long profile and planform shapes of catchment slopes. Recent studies also showed that planform structure of upper parts of gully network (especially small tributary gullies of larger gully systems), as well as smooth slope depressions and periodically formed ephemeral gullies on cultivated hillslopes are in many cases strongly related to relic cryogenic features (RCF) of the Late Pleistocene cold stages. Evidence of partly infilled gullies incised into the RCFs such as ice or ice-ground wedge pseudomorphs are widely observed both on satellite and airborne images and in natural (undercut gully or small valley banks) or anthropogenic (quarries) exposures.

Interaction of climatic impact, intrinsic gully headcut retreat threshold and recent land use changes determine modern gully network conditions. The main presently observed tendency is stabilization or gradual infill of most of the small- and medium-sized gullies by sediments transported by sheet wash, rill and ephemeral gully erosion from arable fields. At the same time, small discontinuous bottom gullies are developed in larger gully systems.

This study is supported by the Russian Foundation for Basic Research (Project No. 18-05-01118a).

How to cite: Kuznetsova, Y., Belyaev, V., Kharchenko, S., and Semochkina, A.: Cycles of gully incision and infill in agricultural landscapes of Central European Russia: natural and anthropogenic factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18653, https://doi.org/10.5194/egusphere-egu2020-18653, 2020.

EGU2020-12909 | Displays | SSS2.8 | Highlight

Development of Web GIS based Surface Soil Erosion Prediction System

Dongjun Lee, Jae E Yang, Kyoung Jae Lim, Jonggun Kim, and Won Seok Jang

This study is to develop the Web GIS-based surface soil erosion prediction system that informs soil information such as daily potential soil erosion, soil quality, and best management practices (BMPs). The system involves three functions that are: 1) to predict daily potential soil erosion in the study areas (e.g., Jaun-Cheon, Bukhan-Gang, Namhan-Gang, and Gyoungan-Cheon); 2) to provide the current levels of soil qualities at field scale; 3) to recommend BMPs which can improve soil qualities. This study developed a module based on MUSLE and assessed the availability of the module comparing with the measured data at sample fields (3%, 9% slope). After verification of the module, the Web GIS-based system was developed using a user-friendly interface. The users can obtain the visualized soil erosion information through the interface and compare the amount of soil erosion using the single field or multi-fields analysis tool developed in this study. Moreover, the users can find the current level of soil qualities at fields they selected and gain various applicable BMPs information. The system enables to inform non-experts to soil information without using a complex model and equation. Therefore, the system can play a significant role in recognizing the importance of soil resources and enacting laws relative to soil conservation.

How to cite: Lee, D., Yang, J. E., Lim, K. J., Kim, J., and Jang, W. S.: Development of Web GIS based Surface Soil Erosion Prediction System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12909, https://doi.org/10.5194/egusphere-egu2020-12909, 2020.

EGU2020-21695 | Displays | SSS2.8

Soil erosion in Austria – National calculations using regional data delivering local results for the ÖPUL programme

Elmar Schmaltz, Georg Dersch, Christine Weinberger, Carmen Krammer, and Peter Strauss

Empirical models, such as the Revised Universal Soil Loss Equation (RUSLE) are in use since the 1950s to estimate the mean annual soil loss for single agricultural fields or spatially-distributed for larger areas (municipalities, regions or states). A particular focus on the computation of the RUSLE lies in the calculation of the respective factors on which the equation is built on and represent the erosivity of rainfall events, the erodibility of soils, the topography and land management. However, the RUSLE is highly susceptible to large errors in the prediction of the erosion rates of single agricultural parcels, due to the high variability of these factors in large areas (e.g. on national scale).

In this study, we present a parcel-sharp erosion map for the entire territory of Austria. We discuss frequent error sources of the factor computations and their consequences for the representativeness of erosion maps at nation-scale. Based on our results we discuss furthermore regional erosion hotspots and evaluate nationally funded management practices for soil erosion reduction as they are defined in the Austrian programme for an environmentally responsible agriculture (ÖPUL).

Since our approach depicts a novelty for Austria, we further describe opportunities for analysis of our results and highlight potential sources of errors, as well as regional and legal discrepancies of the distribution of national funds for soil conservation.

How to cite: Schmaltz, E., Dersch, G., Weinberger, C., Krammer, C., and Strauss, P.: Soil erosion in Austria – National calculations using regional data delivering local results for the ÖPUL programme, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21695, https://doi.org/10.5194/egusphere-egu2020-21695, 2020.

Climate models project increased extreme precipitation for the coming decades, which may lead to higher soil erosion in many locations worldwide. The impact of climate change on soil erosion is most often assessed by applying a soil erosion model forced by bias-corrected climate model output. A literature review among more than 100 papers showed that many studies use different soil erosion models, bias-correction methods and climate model ensembles. In this study, we assessed how these differences affect the outcome of climate change impact assessments on soil erosion. The study was performed in two contrasting Mediterranean catchments (SE Spain), where climate change is projected to lead to a decrease in annual precipitation sum and an increase in extreme precipitation, based on the RCP8.5 emission scenario. First, we assessed the impact of soil erosion model selection using the three most widely used model concepts, i.e. a model forced by precipitation (RUSLE), a model forced by runoff (MUSLE), and a model forced by precipitation and runoff (MMF). Depending on the model, soil erosion in the study area is projected to decrease (RUSLE) or increase (MUSLE and MMF). The differences between the model projections are inherently a result of their model conceptualization, such as a decrease of soil loss due to decreased annual precipitation sum (RUSLE) and an increase of soil loss due to increased extreme precipitation and, consequently, increased runoff (MUSLE). An intermediate result is obtained with MMF, where a projected decrease in detachment by raindrop impact is counteracted by a projected increase in detachment by runoff. Second, we evaluated the implications of three bias‐correction methods, i.e. delta change, quantile mapping and scaled distribution mapping. Scaled distribution mapping best reproduces the raw climate change signal, in particular for extreme precipitation. Depending on the bias‐correction method, soil erosion is projected to decrease (delta change) or increase (quantile mapping and scaled distribution mapping). Finally, we assessed the effect of climate model ensembles on soil erosion projections. We showed that individual climate models may project opposite changes with respect to the ensemble average, hence, climate model ensembles are essential in soil erosion impact assessments to account for climate model uncertainty. We conclude that in climate change impact assessments it is important to select a soil erosion model that is forced by both precipitation and runoff, which under climate change may have a contrasting effect on soil erosion. Furthermore, the impact of climate change on soil erosion can only accurately be assessed with a bias‐correction method that best reproduces the projected climate change signal, in combination with a representative ensemble of climate models.

How to cite: de Vente, J. and Eekhout, J.: The implications of soil erosion model conceptualization, bias-correction methods and climate model ensembles on soil erosion projections under climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8158, https://doi.org/10.5194/egusphere-egu2020-8158, 2020.

EGU2020-1432 | Displays | SSS2.8

Erosion assessment in the desertification site of Gilbues, Brazil

José Carlos de Araújo, Antonio Álisson Simplício, Francisco Jairo Pereira, and Carlos Alexandre Gomes Costa

The Gilbués Desertification Site (GDS) is an 8,000-km² area located in the Northeast of Brazil. It comprises large continuous areas with deep (up to 30 m), wide (up to 50 m), and long (up to 6 km) gullies, as well as severe inter-rill erosion. Inside the GDS there is an experimental site, in which almost 100 check dams were constructed a decade ago to assess their feasibility as a soil-restoration initiative. For two years (2018 and 2019) we have monitored a 15-ha watershed that contains 52 check dams so as to estimate the main erosion-related parameters as well as to assess the effectiveness of the check dams. The monitoring program consisted of (i) a climate station; (ii) four hillslopes with pins every m², measured monthly to quantify gross erosion; (iii) five flights with an accurate unmanned aerial vehicle (UAV) to identify the siltation of the check dams and to parameterize the rainfall-runoff behavior; (iv) 92 soil samples in the hillslopes and inside the check dams; and (v) four infiltration experiments. The results show that (i) the gross erosion is 8 mm.yr-1, or 10² Mg.ha-1.yr-1, a value ten times higher than the region average; (ii) based on the silting of the check dams, the sediment yield averaged 85 Mg.ha-1.yr-1, 20 times higher than the regional mean value, which is partially explained by the small size of the watersheds (10²-10³ m²); (iii) the Wischmeier vegetation C factor is 0.9, showing high degree of vegetative-cover degradation; and (iv) the sediment delivery ratio was 0.8, which could be satisfactorily represented by the Maner equation. These results show that, although the GDS corresponds to only 10% of the Boa Esperança (5,000 hm³) hydroelectric power plant basin, it may cause 60% of the reservoir silting. The GDS soil has also shown specific properties: 71% of the soil mass has a diameter of ~ 0.1 mm; there is a high rate of open macro-pores when the soil is dry (they close shortly after a moderate rainfall event ~ 40 mm); and it is prone to form gravel-like particles that silt in the reservoir delta (despite its fine diameter). Last, we observed that the check dams – as they were built – are not a sustainable solution: after a decade, nearly 10% are spilling due to the high siltation rates, causing dam-wall erosion and instability; and three dams have presented piping, with discharges (0.2 – 0.7 L.s-1) one thousand times higher than the expected percolation flow through the dams.

How to cite: de Araújo, J. C., Simplício, A. Á., Pereira, F. J., and Gomes Costa, C. A.: Erosion assessment in the desertification site of Gilbues, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1432, https://doi.org/10.5194/egusphere-egu2020-1432, 2020.

EGU2020-9571 | Displays | SSS2.8

Variance based sensitivity analysis of the RUSLE model in the E.U. parameter space

Enrico Balugani, Andrea Rava, and Diego Marazza

Soil degradation through erosion is a major issue on a global scale, especially as the pressure on soils increases with increasing population, changing diets, and increase in land use changes. Measurements are plot specific and expensive, so most of the erosion assessment are done through modelling. The most used model for estimating soil water erosion worldwide is the Revised Universal Soil Loss Equation (RUSLE), which is an “ensemble” model with semi-empirical factors that can be determined using different equations, depending on scale of interest, geographical location, data availability. The –joint Research Centre (JRC) uses RUSLE to estimate water erosion potential in EU using spatial datasets collected by the European Soil Data Centre (ESDAC), as explained in a series of published articles. Model sensitivity analyses are a powerful tool for analysts and policy makers, especially for empirical and semi-empirical models like RUSLE, to assess model robustness, factor prioritization, and variance cutting. A sensitivity analysis was conducted on RUSLE by Estrada-Carmona et al. (2017) on a global (dishomogenous) parameter space using a Random Forest approach to calculate the relative relevance index. However, sensitivity analyses are dependent on the extent of the parameter space analysed and, especially for non-linear non-additive models like RUSLE, variance based methods are usually preferred.

Therefore, we performed a global sensitivity analysis of the RUSLE model as used by the JRC, using variance based methods and over the parameter space of the EU. The objective were to: (a) check the robustness of RUSLE in the EU parameter space, (b) define the most relevant factors on which to concentrate the attention (policy assessment) and (c) assess the interaction between these factors.

We analysed the spatial data provided by ESDAC to define the probability distribution of the model factors (the parameter space). We then sampled the parameter space with a low-discrepancy method and run the model on the whole dataset. We used the model output to: (a) plot the behaviour of the model to changes in single factors with scatterplots, (b) calculate the variance sensitivity index first order, (c) calculate the total sensitivity order, (d) analyse the relevant interactions between factors, first looking at the sensitivity indices, then using visual methods to show the model behaviour.

The results show that the C factor has the greater influence on the erosion estimates, followed by R and Kst, accounting for ~0.35, ~0.21 and ~0.0.04 of the erosion estimates variance, respectively. This is especially interesting, since it is possible to act on C and, hence, control erosion processes. The dependence on R, however, is troubling, since its average value will probably increase in time due to climate change. Kst can be affected only partially by increasing soil organic matter or soil stoniness. The analysis of the total effects show that C, R and Kst are all interacting between them. The P factor seems hardly relevant at this scale, hence it could be simply fixed, something already done in some studies, e.g. Gianinetto et al. 2019.

How to cite: Balugani, E., Rava, A., and Marazza, D.: Variance based sensitivity analysis of the RUSLE model in the E.U. parameter space, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9571, https://doi.org/10.5194/egusphere-egu2020-9571, 2020.

EGU2020-17768 | Displays | SSS2.8

Erosion effects on soil carbon and nutrient distribution: a meta-analysis

Maire Holz and Jürgen Augustin

Soil erosion has for a long time been considered as a process causing soil organic matter (SOM) loss, however, recent studies pointed out that erosion may increase soil carbon sequestration because only 10-30% of eroded topsoil material is transported into water bodies while the remaining 70-90% are transported in depositional settings. Soil erosion leads to variation in topsoil thickness and soil characteristics and leads to two different main types of erosion states develop along hillslope: the eroding and the depositional landform position. Disruption of aggregates and the transport of soil during erosion, likely leads to SOM loss in the eroding slope. In contrast, after deposition, the eroded material can be protected if it is incorporated into soil aggregates or sorbed to mineral surfaces, leading to an increase in SOM in the depositional landform position.

So far, there has been no study evaluating literature results on the effect of erosion on carbon and nutrient distribution in soils. We therefore reviewed the literature for the influence of erosion on carbon/nutrient contents and stocks in erosion affected landscapes. While 32 studies reported results on the enrichment of eroding sediments in carbon (C), nitrogen (N) and phosphorus (P), 39 studies reported results on carbon/nutrient contents and stocks in erosion affected landscapes.

The average C enrichment ratio (sediment C/soil C) was 1.56 while N enrichment ratio was 1.54 and P-enrichment ratio was 1.77. This indicates that the fine soil fractions, that carbon and nutrients are mostly associated to, were preferentially moved during soil erosion. High element contents in the original soils, resulted in relatively low enrichment ratios which may allow the conclusion that in low C- and nutrient soils, a relatively high portion of the elements are stored in the fine soil fraction. C and N enrichment ratios showed a significant positive relation (R2=0.61), pointing to the strong ecological link of both elements.

Carbon and nutrient contents were comparable for all landscape positons (upslope, backslope, footslope, depositional). This indicates that carbon and nutrients, lost during an erosion event, are replenished relatively fast in the eroded slopes. In contrast, erosion induced C, N and P stocks increased from the upper towards the depositional soil site, resulting in a 1.6, a 1.4 and 2.2 time increase in C, N and P stocks for the depositional site, compared to the upslope position.

In conclusion, this meta-analysis indicates that carbon and nutrients are preferentially moved during soil erosion which might lead to loss in soil fertility and crop productivity after erosion events. However, similar C and nutrient contents along hillslopes indicate that elements are replenished relatively fast in eroded soils after the occurrence of an erosion event. Increased soil stocks toward the depositional site can therefore be explained by increased soil depths in lower hillslope positions. Changes in soil depth, rather than changes in C and nutrient contents are therefore more likely to explain soil fertility losses in eroding slopes compared to depositional sites.

 

How to cite: Holz, M. and Augustin, J.: Erosion effects on soil carbon and nutrient distribution: a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17768, https://doi.org/10.5194/egusphere-egu2020-17768, 2020.

EGU2020-5103 | Displays | SSS2.8

Splash erosion experiments with silt loam and loamy sand soil under simulated rainfall produced by two types of rainfall simulators

Nives Zambon, Lisbeth Lolk Johannsen, Peter Strauss, Tomáš Dostál, David Zumr, Thomas A. Cochrane, and Andreas Klik

Soil erosion by water is globally the main soil degradation process which leaves serious consequences on agricultural land and water aquifers. Splash erosion is the initial stage of soil erosion by water, resulting from the destructive force of rain drops acting on soil surface aggregates. Splash erosion studies conducted in laboratories use rainfall simulators. They produce artificial rainfall which can vary according to type of the rainfall simulator. In this study the aim was to quantify the differences in splash erosion rates affected by rainfall produced by two different rainfall simulators on two silt loam and one loamy sand soil. Splash erosion was measured using modified Morgan splash cups and the rainfall simulators were equipped with four VeeJet or one FullJet nozzle. The soil samples placed under simulated rainfall were exposed to intensity range from 28 to 54 mm h-1 and from 35 to 81 mm h-1, depending on the rainfall simulator. Rainfall characteristics such as drop size and velocity distribution were measured with an optical laser disdrometer Weather Sensor OTT Parsivel Version 1 (Parsivel) by OTT Messtechnik. Rainfall simulator with VeeJet nozzles produced smaller drops but higher drop velocity which resulted in higher kinetic energy per mm of rainfall compared to rainfall simulator with FullJet nozzles. For the same intensity rate measured kinetic energy under the rainfall simulator with VeeJet nozzles was 45% higher than rainfall kinetic energy from rainfall simulator with FullJet nozzles. Accordingly, the average splash erosion rate was 45 and 59% higher under the rainfall simulator with VeeJet nozzles for one silt loam and loamy sand soil, respectively. Splash erosion was found to be a linear or power function of the rainfall kinetic energy, depending on rainfall simulator. The obtained results highlight the sensitivity of the splash erosion process to rainfall characteristics produced by different rainfall simulators. The heterogeneity of rainfall characteristics between different types of rainfall simulators makes a direct comparison of results obtained from similar erosion studies difficult. Further experiments including comparison between more rainfall simulators could define influencing rainfall parameters on splash erosion under controlled laboratory conditions.

How to cite: Zambon, N., Lolk Johannsen, L., Strauss, P., Dostál, T., Zumr, D., A. Cochrane, T., and Klik, A.: Splash erosion experiments with silt loam and loamy sand soil under simulated rainfall produced by two types of rainfall simulators , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5103, https://doi.org/10.5194/egusphere-egu2020-5103, 2020.

EGU2020-3689 | Displays | SSS2.8 | Highlight

SOiLUTION SYSTEM: innovative solutions for soil erosion risk mitigation and better management of vineyards in hills and mountain landscapes

Paolo Tarolli, Eugenio Straffelini, Chiara Maria Mattiello, and Aldo Lorenzoni

Cultivating in high-steep slope hilly and mountainous landscapes, requires a great effort in terms of economic and human resources, especially if the territory is particularly complex from a geomorphological point of view and historically affected by landslides such as the Italian peninsula. This fragility is also combined with two other factors. The first is linked to agricultural mechanization, which causes soil compaction and a consequent alteration of its draining capacity. The second is related to climate change, responsible for an increase of extreme rainfall events characterized by intense, shorter and localized precipitations. The combination of these elements makes agricultural terraced landscapes at risk and prestigious vineyards, particularly important for historical, cultural, landscaping and economic reasons, increasingly sensitive to soil erosion processes.

In response to these problems, the project SOiLUTION SYSTEM is proposed (www.soilutionsystem.com),  aiming to identify an integrated system of environmentally and economically sustainable interventions able to reduce the risk of erosion and improve soil management in the terraced area of Soave (Veneto region), one of the two Italian GIAHS-FAO site. Indeed, in such terraced areas, the hydrogeological risk is high due to the steep-slope where heroic vineyards are cultivated. The project is also focused on multidisciplinary, capable of combining expertise from the academic world, farmers and other stakeholders, in order to promote a sustainable production approach to ensure greater soil resilience, as well as to protect biodiversity.

In the first phase, several terraced study areas historically threatened by erosion have been selected. Within them were organized topographic surveys using a low-cost commercial drone in combination with an RTK-GPS for the 3D reconstruction of the terrain using the Structure-From-Motion photogrammetric technique. The point cloud obtained was subsequently processed, filtered and interpolated in order to create high-resolution digital terrain models (DTM) with cells of resolution less than 50cm. Based on the obtained data, some geomorphological indicators were calculated to identify areas potentially susceptible to erosion. In order then to understand the processes that take place at a larger scale than the single areas detected by drone, geomorphological analyses were also performed on a 1m DTM elaborated from airborne LIDAR data, granted by the Italian Ministry for Environment, Land and Sea (MATTM).

The goals of the project are 1) to provide innovative survey techniques using low-cost commercial drone to better understand erosion processes in vineyards; 2) to install innovative tools for the monitoring of surface runoff in the field; 3) to test new mechanization prototypes with low impact on the soil and able to work on steep slopes; 4) to provide an innovative technique for the consolidation of dry stone walls; 5) to introduce the “conservative agriculture” for improving soil management; 6) to analyze the role of native herbaceous species as grass cover in erosion reduction; 7) to evaluate the efficiency of the proposed management model in considering biodiversity conservation purposes.

How to cite: Tarolli, P., Straffelini, E., Mattiello, C. M., and Lorenzoni, A.: SOiLUTION SYSTEM: innovative solutions for soil erosion risk mitigation and better management of vineyards in hills and mountain landscapes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3689, https://doi.org/10.5194/egusphere-egu2020-3689, 2020.

EGU2020-1471 | Displays | SSS2.8

Gully erosion susceptibility modelling for avoided degradation planning

Jay Le Roux and Bennie Van der Waal

Gully erosion can reach alarming dimensions and contribute significantly to soil loss and sediment yield in a catchment.  Since restoration resources are usually limited, strategic information on sensitive and erosion susceptible areas are needed to avoid future degradation.  Although the mapping of areas susceptible to gully formation is not a new concept, this study has potential in the Mzimvubu River Catchment, the only large river network in South Africa without a large reservoir.  The Tsitsa tributary’s catchment, where two large reservoirs are planned, consists of large areas of highly erodible soils with widespread gully erosion evident.  It is important to prevent further gully erosion in the catchment due to the presence of duplex and dispersive soils. Therefore, this study modelled areas that are susceptible to gully development in the Tsitsa River Catchment, as well as estimated the sediment yield potential from the susceptible areas if gully development occurs.  This was achieved by mapping gully-free areas in a GIS that have the same DEM-derived topographical variables, soil associations and land cover than gullied areas, followed by scenario analysis of the potential sediment yield.  More than 30 000 ha (7%) of the catchment is intrinsically susceptible to further gully development, consisting of drainage paths with a large contributing area and erodible duplex soils.  If not protected, these susceptible areas could contribute an additional 300 million m3 of sediment to the river network, reducing the volumes of both reservoirs by more than 50%. 

How to cite: Le Roux, J. and Van der Waal, B.: Gully erosion susceptibility modelling for avoided degradation planning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1471, https://doi.org/10.5194/egusphere-egu2020-1471, 2020.

EGU2020-9285 | Displays | SSS2.8 | Highlight

A first data-driven gully head density map of the world

Matthias Vanmaercke, Yixian Chen, Sofie De Geeter, Jean Poesen, and Benjamin Campforts

Gully erosion has been recognized as a main driver of soil erosion and land degradation. While numerous studies have focussed on understanding gully erosion at local scales, we have very little insights into the patterns and controlling factors of gully erosion at a global scale. Overall, this process remains notoriously difficult to simulate and predict. A main reason for this is that the complex and threshold-dependent nature of gully formation leads to very high data requirements when aiming to simulate this process over larger areas.

Here we help bridging this gap by presenting the first data-driven analysis of gully head densities at a global scale.  We developed a grid-based scoring method that allows to quickly assess the range of gully head densities in a given area based on Google Earth imagery. Using this approach, we constructed a global database of mapped gully head densities for currently >7400 sites worldwide. Based on this dataset and globally available data layers on relevant environmental factors (topography, soil characteristics, land use) we explored which factors are dominant in explaining global patterns of gully head densities and propose a first global gully head density map.

Our results indicate that there are ca. 1.7 to 2 billion gully heads worldwide. This estimate might underestimate the actual numbers of gully heads since ephemeral gullies (in cropland) and gullies under forest remain difficult to map. Our database and analyses further reveal clear regional patterns in the presence of gullies. Around 27% of the terrestrial surface (excluding Antarctica and Greenland) has a density of > 1 gully head/km², while an estimated 14% has a density of > 10 gully heads/km² and 4% has even a density of > 100 gully heads/km². Major hotspots (with > 50 gully heads/km²) include the Chinese loess plateau, but also Iran, large parts of the Sahara Desert, the Andes and Madagascar. In addition, gully erosion also frequently occurs (with typical densities of 1-50 gully heads/km²) in the Mid-West USA, the African Rift, SE-Brazil, India, New-Zealand and Australia.

These regional patterns are mainly explained by topography and climate in interaction with vegetation cover. Overall, the highest gully densities occur in regions with some topography and a (semi-)arid climate. Nonetheless, it is important to point out that not all gully heads are still actively retreating. Building on earlier insights into the magnitude and controlling factors of gully head retreat rates, we explore what our current results imply for assessing actual gully erosion rates at a global scale.

How to cite: Vanmaercke, M., Chen, Y., De Geeter, S., Poesen, J., and Campforts, B.: A first data-driven gully head density map of the world, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9285, https://doi.org/10.5194/egusphere-egu2020-9285, 2020.

EGU2020-3536 | Displays | SSS2.8 | Highlight

Desertification and Development: some broader contexts

Mike Kirkby

The dominant direct physical processes responsible for desertification are water erosion, wind erosion and salinization.  Other threats that degrade the soil  include loss of biodiversity, loss of soil organic matter, fire, changing water resources, soil compaction, soil sealing and contamination. Soil management inevitably combines  human and physical effects.  Climate, which is the most important driver of the physical systems, is now being rapidly modified by human action, and at a scale which is much coarser than any local remedial action. 

  

In a model of near-subsistence systems, productivity is limited by climate and available labour, with some options for additional inputs through improved seed, fertilizer or tillage equipment. Optimum solutions in a particular environment depend on both climate and access to markets.  Agricultural surpluses, if any, allow investment in infrastructure – some of it directly  supporting agriculture through irrigation and market systems, some less directly useful through, for example, warfare or pyramid building.

 

Today some traditional drivers of desertification may no longer be relevant, as land, particularly in the global South, is grabbed for intensive irrigated farming, and populations move into mega-cities. The dominant drivers may become soil sealing around cities and transfers of urban and irrigation water.  In semi-arid areas this will lead to competition for the best land – for urban expansion and agricultural land with irrigation potential.  Desertification then becomes an issue increasingly focussed on abandoned marginal land, maintaining biodiversity, managing regional water resources and controlling erosion in the face of global climate change.

How to cite: Kirkby, M.: Desertification and Development: some broader contexts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3536, https://doi.org/10.5194/egusphere-egu2020-3536, 2020.

EGU2020-12814 | Displays | SSS2.8

The joint application of digital modeling and field soil survey data for improvement of the accuracy in soil erosion mapping

Andrey Zhidkin, Mikhail Komissarov, and Evgeny Zazdravnykh

We used the data from field surveys with more than 2500 soil sampling points at 4 research sites in various regions of Russia. The study sites are located in the European part of Russia in the most contrasting physical-geographical and socio-historical conditions of soil erosion: in the Moscow, Kursk, Belgorod regions and in the Republic of Bashkortostan. The digital modeling was carried out with using of the WATEM / SEDEM model based on digital elevation models of detailed scale (1:10 000) on a total area more than 2000 km2. An analysis of the sediment balance in small catchments showed, that the digital modeling of soil erosion (in case of a certain quality level of input parameters) at an acceptable level reflects on the average long-term erosion rates in the valley-beam relief. The authors developed an original method in soil erosion mapping. It consists in revealing statistical relationships between the calculated erosion rates by WATEM / SEDEM model and the actual data of soils humus horizons thicknesses. Based on these dependencies, the probability of participation of soils with varying degrees on erosion in each pixel is calculated.

The specific in formation of soil erosion at the Moscow region is largely due to the complex stage history of agricultural land development. For this key site, a detailed study of historical maps was carried out (with digitization in the GIS of the sites boundaries with a different land use history) for 8 periods, starting from 1797 to the present. Also, the history of crop rotation was studied in detail. Based on the analysis of maps and digital modeling of erosion-accumulation processes in this territory, a very high dynamics of arable land and soil erosion over the past few centuries was revealed, which significantly influenced on the formation of soil cover. At research sites in the Belgorod and Kursk regions, the features in formation of erosion-accumulative soil cover structures are due to the large area of agricultural land development. The comparison of soil cover erosion maps produced in accordance to the traditional method and the author’s approach is revealed a high convergence of results and the perspective of digital modeling using. The indisputable advantage of the digital method is the ability to formalize the procedure for assessing soil erosion, minimizing the contribution of subjective factors. Detailed studies in the Republic of Bashkortostan revealed the features in the formation of soil erosion  due to the developed denudation processes and karst microrelief. A detailed mapping of the soil cover and topographic mapping of the relief in key areas was carried out. It was revealed, that the using of a digital elevation model with very high accuracy (scale 1: 1000 and higher) allows to qualitatively simulate and estimate the rates of erosion and accumulation even in conditions of pronounced karst microrelief.

Acknowledgement
This research was supported by the Russian Foundation for Basic Research (RFBR) within the scientific project No. 18–35–20011.

 

How to cite: Zhidkin, A., Komissarov, M., and Zazdravnykh, E.: The joint application of digital modeling and field soil survey data for improvement of the accuracy in soil erosion mapping, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12814, https://doi.org/10.5194/egusphere-egu2020-12814, 2020.

EGU2020-7985 | Displays | SSS2.8

Fluidized-bed: As an alternative method for rill erodibility modeling

Selen Deviren Saygin, Fikret Ari, Cagla Temiz, Sefika Arslan, Mehmet Altay Unal, and Gunay Erpul

Rill erodibility (Kr), which is a measure of the resistance of soil particles against disintegration in a rill under concentrated flow conditions, is a significant characteristic for rill initiation in a field.  The Process-based WEPP (Water Erosion Prediction Project) originally models Kr by linear excess shear stress (τ), and it is mostly obtained from mini-flume experiments at laboratory conditions. Alternatively, a critical value of flow stress (τcr) that points to fragmentation in rills can be modeled by a fluidized bed approach that quantifies the conditions in terms of cohesion (Co) and flow velocity (Vf) by considering the soil as a cohesive material. In there, the water as a fluid applies pressure on solid particle proportional to flow rate of the fluid (v). But, performed related studies on it were mostly tested for the limited soil types. The objectives of this study were to test these relationships and model the rill characteristic for the heavy textures of different soil types and investigate the role of basic soil properties on rill initiation. Experimental results showed that the stronger regression coefficient (R2=0.78) was found between Kr and flow velocity (Vf) monitored at the fluidization stage than that between Co & τcr at the studied soil conditions. However, correlations between constant and dynamic soil properties and the measured Kr, τcr, Co and Vf values were also quite remarkable (p<0.01) for next-generation modeling studies in terms of rill dynamics. It is believed that the fluidized-bed approach has a great potential to model Kr and encouragingly it is worth to be tested with wider data-sets under different soil-moisture conditions.

Keywords: Rill erodibility, Soil Cohesion, Fluidized bed approach, WEPP

How to cite: Deviren Saygin, S., Ari, F., Temiz, C., Arslan, S., Unal, M. A., and Erpul, G.: Fluidized-bed: As an alternative method for rill erodibility modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7985, https://doi.org/10.5194/egusphere-egu2020-7985, 2020.

Over the last two decades, geospatial technologies such as Geographic Information System and spatial interpolation methods have facilitated the development of increasingly accurate spatially explicit assessments of soil erosion. Despite these advances, current modelling approaches in Europe rest on (i) an insufficient definition of the proportion of arable land that is exploited for crop production, (ii) a neglect of the intra‐annual variability of soil cover conditions in arable land, and (iii) offer little understanding of the spatio-temporal trends of soil erosion. Here, we represent the recent developments of two methods tested to overcome current limitations and move towards the implementation of new modelling approaches in Europe.

The Object-oriented Soil Erosion Modelling and Monitoring v2.0 (O-SEMM) (Land degradation & development, 29, 1270-1281, 2018) combines highly accurate agricultural parcel information systems (LPIS) with crop statistics, Landsat 8 and Sentinel 2 satellite data and high temporal resolution rainfall data to assess soil erosion events at parcel level.

The Daily Erosion Project (DEP) (Earth Surface Processes and Landforms, 43, 1105-1117, 2018), developed by the Iowa State University, estimates soil erosion and water runoff occurring on hill slopes using the WEPP erosion prediction model.

References

Borrelli, P., Meusburger, K., Ballabio, C., Panagos, P., & Alewell, C. (2018). Object‐oriented soil erosion modelling: A possible paradigm shift from potential to actual risk assessments in agricultural environments. Land degradation & development, 29(4), 1270-1281.

Gelder, B., Sklenar, T., James, D., Herzmann, D., Cruse, R., Gesch, K., & Laflen, J. (2018). The Daily Erosion Project–daily estimates of water runoff, soil detachment, and erosion. Earth Surface Processes and Landforms, 43(5), 1105-1117.

How to cite: Borrelli, P., Cruse, R., Gelder, B., and Panagos, P.: Object‐oriented Soil Erosion Modelling and Daily Erosion Project: Laying the foundation for a new generation of soil erosion assessments in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13575, https://doi.org/10.5194/egusphere-egu2020-13575, 2020.

Soil erosion by water is a serious problem in the coastal region of Syria. Annually, a hundred tons of soil are eroded from different ecosystems in the study area. Recently, The USDA-WEPP (Water Erosion Prediction Project erosion model) was widely used to estimate soil loss by water erosion. Unfortunately, detailed studies about the WEPP-model performance in the eastern Mediterranean in general and Syria, in particular, are still lacking. Within this context, this research undertook an assessment of the WEPP-model performance in the coastal region of Syria.

The study area is characterized by complex topography (slope ranges between 2% and 45%), heavy precipitation within short time intervals, and mixed land cover. On other hand, the most exposed ecosystems to soil erosion are agricultural (AG), burned forest (BF) and forest (FO). For this reason, experimental plots with 3 replicants in 9 different representative locations for each ecosystem were set up (81 experimental plots in total) to measure soil erosion by water. In the next step, the WEPP input files were prepared and run for each location. Finally, the WEPP performance was tested by using four statistical indexes: Pearson's correlation coefficient (r), the Nash-Sutcliffe coefficient (NSE), the percent bias (PBIAS), and RSR (the ratio of root mean square error (RMSE) to the standard deviation of the measured data).

The results showed that observed soil erosion ranges between 32 ton/h/year and 165 ton/h/year in the AG, while it ranges from 3 ton/h/year to 8 ton/h/year in the FO. Similarly, WEPP results range between 32 ton/h/year and 152 ton/h/year in the AG, while they range from 1.4 ton/h/year to 15 ton/h/year in the FO. The model performance showed a good agreement between measured and estimated values for AG systems (R =0.96, NSE=0.84; RSR=0.39; PBAIS=13.05), and a less satisfactory one for both forest and burned forest.

How to cite: Mohammed, S.: Sediment Yield Modeling in The Coastal Region of Syria Using the WEPP-Model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-97, https://doi.org/10.5194/egusphere-egu2020-97, 2020.

EGU2020-217 | Displays | SSS2.8

Adopting soil properties of compacted tramlines into soil erosion modelling: A field-scale approach

Philipp Saggau, Michael Kuhwald, and Rainer Duttmann

Soil erosion by water is recognized as the most threatening land degradation process worldwide, reducing natural soil fertility and productivity especially on arable land. Despite advances in soil erosion modelling, one major process, which is rarely investigated, is the effect of soil compaction from field management induced wheel tracks. However, tramlines noticeably contribute to the amount of soil eroded inside a field. To quantify these effects we incorporate high-resolution spatial tramline data into modelling. For simulation, we used the process-based soil erosion model EROSION3D, which has been applied on different fields for a single rainfall event. Model results were compared against measured soil loss. Our investigation showed that i) grid-based models like E3D are able to integrate tramlines, ii) the share of measured erosion between tramline and cultivated areas fits well with measurements for resolution ≤ 1 m, iii) tramline erosion showed a high dependency to the slope angle and iv) soil loss and runoff are generated quicker within tramlines during the erosion event. The results indicate that the integration of tramlines in soil erosion modelling improves the spatial prediction accuracy, and therefore, can be important for soil conservation planning.

How to cite: Saggau, P., Kuhwald, M., and Duttmann, R.: Adopting soil properties of compacted tramlines into soil erosion modelling: A field-scale approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-217, https://doi.org/10.5194/egusphere-egu2020-217, 2020.

EGU2020-793 | Displays | SSS2.8

Mechanical Properties of Native Tree Species for Soil Bioengineering in Northeastern Mexico

Rebeca Zavala, Israel Cantú, Laura Sánchez, Humberto González, Eduardo Estrada, and Tetsuya Kubota

In recent years, the effect of soil bioengineering has played a very important role on slope stability. However, our area of study is constantly under the influence of small-scale earthquakes and extreme events of heavy rainfall which cause potentially unstable conditions on the slopes. The mechanical properties of the root systems tensile strength (Ts) and modulus of elasticity (Eroot) of four native species were analyzed for a potential use as soil bioengineering elements. We investigated if tensile strength (N/mm2) and modulus of elasticity of roots (N/mm2) was different between studied species: Cercis canadensis, Celtis laevigata, Quercus rysophylla and Ligustrum lucidum. The species considered were selected based on their native characteristics and widespread existence on the slopes. Regarding tree forest species, the tests were conducted with the Universal Testing Machine Shimadzu type SLFL-100KN. The relationships among root diameter, tensile strength (Ts), and modulus of elasticity (Eroot) was negative and could be fitted with a power regression equation, showing highly significant   values p<0.01.Celtis laevigata showed the maximum value of tensile strength (Ts) 28.11 N/mm2 while the minimum value of tensile strength was observed in Ligustrum lucidum 5.27 N/mm2. For the variable modulus of elasticity (Eroot) Celtis laevigata  showed the maximum value of 90.01N/mm2 while the minimum value of modulus of elasticity was observed in Ligustrum lucidum 29.16 N/mm2.Results of mechanical proprieties are showed the following ascending order: Ligustrum lucidum < Quercus rysophylla < Cercis canadensis < Celtis laevigata. Likewise, Celtis laevigata showed the highest tensile strength and modulus of elasticity of all investigated species.

 

Key words: root, tensile strength, modulus or elasticity.

 

 

How to cite: Zavala, R., Cantú, I., Sánchez, L., González, H., Estrada, E., and Kubota, T.: Mechanical Properties of Native Tree Species for Soil Bioengineering in Northeastern Mexico, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-793, https://doi.org/10.5194/egusphere-egu2020-793, 2020.

EGU2020-863 | Displays | SSS2.8

Evaluation of changes in soil erosion rates in Andalucia between 1990 and 2018

Filippo Milazzo, Tom Vanwalleghem, Pilar Fernández, Rebollo, and Jesus Fernández-Habas

Land use and land management changes impact significantly on soil erosion rates. The Mediterranean, and in particular Southern Spain, has been affected by important shifts in the last decades. This area is currently identified as a hotspot for soil erosion by water. In the effort to achieve the SDG Target 15, we aim to show the effect of land management change, assessing soil erosion rate based on historical data. We analyzed the evolution of land use from historical aerial photographs between 1990 and 2018. We then calculated soil erosion with RUSLE. For this, we first determined the distribution frequency of cover-management factors for each land use class, comparing current land use maps with the European Soil Erosion Map (Panagos et al., 2015). Past C factors where then assigned using a Monte Carlo approach, based on the obtained frequency distributions. 

How to cite: Milazzo, F., Vanwalleghem, T., Fernández, Rebollo, P., and Fernández-Habas, J.: Evaluation of changes in soil erosion rates in Andalucia between 1990 and 2018, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-863, https://doi.org/10.5194/egusphere-egu2020-863, 2020.

Digital modeling of soil erosion has been actively developed in recent decades, including for solving practical problems of agriculture. This paper presents a new approach to mapping the degree of erosion of the soil cover based on a detailed retrospective analysis of the history of land use over the last 300 years.

The study site is located in the Moscow region, characterized by a stage history of plowing. The analysis of the boundaries of arable land was carried out using the digitization of maps for 1797, 1860, 1871, 1931, 1954, 1985, 2000 and 2018 years.

Erosion processes were simulated using the WATEM / SEDEM. LS factor was calculated based on a digital elevation model based on the digitized detail topographic map. Soil erodibility factor was calculated according to the formula [1] based on our own analytical data on soil properties (K=0.065–0.090 kg*h*MJ-1mm-1). The rain erosivity factor was taken from the [2]. The crop erosivity factor was taken from regional data, taking into account a detailed analysis of the history of crop rotation.

Soil erosion was calculated for each of 8 periods. Estimated rates were multiplied by the duration of the periods. The soil loss volumes were summarized using the raster calculator. The authors have database of soil surveys at 1567 points. The obtained estimated long-term volumes of soil loss were correlated with the data of a field survey of soils. Based on the obtained dependencies between the calculated soil loss volumes and the field survey data, a map of the erosion soil cover structures was constructed.

In the territory, the volume of soil loss varied from 0.02 tons to 1170 tons. The average volume of soil loss over 300 years was about 63.33 tons. It was revealed that the volume of soil loss is determined not only by the area of ​​arable land, but also by the location and topography of the plowed plots and the composition of crop rotation. The most intense erosion was observed in the first decades after the abolition of serfdom law (after 1860).

Despite the long period of land use, the soil cover of the study area is not very eroded, primarily due to the low erosion potential of the relief. However, the territory is divided into sections, to a different degree, transformed by soil erosion due to plowing of different duration and the composition of crop rotation.

This work was supported by the Russian Foundation for Basic Research (project for young scientists no. 18-35-20011)

[1] Renard K., Foster G., Weesies G., McCool D., Yoder D. (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA Agriculture Handbook â„–703, 384 p.

[2] Panagos P, Borrelli P, Meusburger K, et al. Global rainfall erosivity assessment based on high-temporal resolution rainfall records. Sci Rep. 2017;7(1):4175.

How to cite: Fomicheva, D. and Zhidkin, A.: Digital modeling of erosion soil cover patterns development over the last 300 years (Moscow region, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-969, https://doi.org/10.5194/egusphere-egu2020-969, 2020.

The magnitude of soil erosion and sediment reduction efficiency of check dams under extreme rainstorms are long-standing concerns. This paper aims to use check dams to deduce the amount of soil erosion under extreme rainstorms in watersheds and to identify the difference of sediment intercepting efficiency of different types of check dams. Based on the sediment deposition of 12 check dams with 100% sediment intercepting efficiency and sub-catchment clustering by taking 12 check dams-controlled catchments as standard separately, the amount of soil erosion caused by an extreme rainstorm event on July 26th, 2017 (named “7·26” extreme rainstorm) was deduced in the Chabagou watershed in the hill and gully region of the Loess Plateau. The differences of sediment intercepting efficiency among check dams in the watershed were analysed according to the field observation 17 check dams. The results showed that the average erosion intensity under the ‘7·26’ extreme rainstorm was approximately 2.03×104 t·km-2, which was 5 times that in the second erosive rainfall in 2017 (4.15×103 t·km-2) and 11-384 times that in 2018 (0.53×102 t·km-2 - 1.81×103 t·km-2). Under the ‘7·26’ extreme rainstorm, the amount of soil erosion in the Chabagou watershed above Caoping hydrological station was 4.20×106 tons. The sediment intercepting efficiencies check dams with drainage canals (including the destroyed check dams) and with drainage culverts was 6.48% and 39.49%, respectively. The total actual sediment amount trapped by the check dam was 1.11×106 tons, accounting for 26.36% of the total soil erosion amount. In contrast, 3.09×106 tons of sediment was inputted to the downstream channel, and the sediment deposition in the channel was 2.23×106 tons, accounting for 53.15% of the total amount of soil erosion. The amount of sediment transport at the hydrological station was 8.60×105 tons. The sediment delivery ratio (SDR) under the “7·26” extreme rainstorm was 0.21. The results indicated that the amount of soil erosion was huge, and the sediment intercepting efficiency of check dams was greatly reduced under extreme rainstorms. It is necessary to strengthen the management and construction technology standards of check dams to improve the sediment intercepting efficiency and flood safety in the watershed.

How to cite: bai, L.: Soil erosion and sediment interception by check dam in watershed under extreme rainstorm on the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1227, https://doi.org/10.5194/egusphere-egu2020-1227, 2020.

Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semi-arid area in China. Field plots (5 m × 2 m) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy-Weisbach friction factor by 188–202% and expressed by Manning’s friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semi-arid environments.

How to cite: Li, C. and Pan, C.: Overland runoff erosion dynamics on steep slopes with forages under field simulated rainfall and inflow, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1694, https://doi.org/10.5194/egusphere-egu2020-1694, 2020.

EGU2020-3369 | Displays | SSS2.8

Evaluation of the water storage capacity of soil management practices in basin scale

Zhenyu Lv, Tianling Qin, Hanjiang Nie, and Jianwei Wang

Abstract: Soil management practices, such as Terrace (TE), Contour Ridge (CR), Conservation Tillage (CT), Green Manure (GM) and Straw Mulching (SM), have been widely applied all over the word, due to their positive effects on enhancing Water Storage Capacity (WSC for short) of soil and improving the effectiveness of local precipitation.  However, there are few studies focus on the assessment of WSC of soil management practices in basin scale. In this study, a series of empirical equations for evaluating the WSC of different types of soil management practices were established, based on the fundamental assumption of SCS-CN model, and the geometric parameters of TE and CR. Taking the Sihe River Basin as an example, the current construction area of soil management practices and the potential of the design scenarios were input into the equations, to calculate the existing and potential WSC of various soil management practices. The results show that the construction area of soil management practices in the basin was 679.73 km2 in 2015, and the WSC reached 61.85 Million m3. Thereinto, the WSC of the SM was the largest, which was 19.83 Million m3; that of the GM was the smallest, which was 2.08 Million m3. The total potential construction area of soil management practices in each design scenario was 1797.13 km2. Scenario I gave priority to the TE and the CR construction, the WSC of soil management practices in the basin was 174.84 Million m3, which was 182.68% higher than that of in 2015. The WSC of soil management practices in Scenario II who gave priority to the SM, CT and CR construction, was 171.84 Million m3, which was 177.84% higher than that of in 2015. This research further compared the water storage efficiency of various soil management practices and discussed the uncertainty of the equations. The results could provide some references for integrated soil water management.

How to cite: Lv, Z., Qin, T., Nie, H., and Wang, J.: Evaluation of the water storage capacity of soil management practices in basin scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3369, https://doi.org/10.5194/egusphere-egu2020-3369, 2020.

The development of karst landforms in southwest China has resulted in surface and underground dual hydrogeological structure. The characteristics of the mechanism of soil erosion and its environmental effects are different from those in non-karst regions. This study aims to monitor sediment load and identify the main sediment source in a typical karst plateau agroforestry catchment, to estimate the relative contribution rates of surface and underground river sediment sources. The results show that the annual sediment transport modulus in catchment is very low (5.1 Mg km-2 a-1) in this carbonate agroforestry catchment compare to deforestation 20 years ago (20 Mg km-2 a-1). Sediment Fluxes in the underground river and surface river account for 19.7% and 80.3% respectively. Soil leakage is an important way but not a main way of soil erosion in typical karst watershed. There is no obvious soil erosion on the hillsides (less than 1 Mg km-2 a-1), but the sediment sources results shows sediment sources of surface and underground river are different in 2017 and 2018, In 2017, it indicate that carbonate surface soil contributes 16.2% and 11.9% of the total suspended sediment to the surface and underground river respectively, and the clastic rock pieces are the primary source of both surface and underground river sediments, 79.5% and 60.8% respectively. Subsurface soil contributes a smaller fraction to the total sediment load, 4.3% to surface rivers and 27.3% to underground rivers. The 137Cs values for some suspended sediments in 2018 were outside the range all of the soil source samples, it attributed to re-mobilization of old sediment stored in karst underground conduits during the deforestation, and these “old sediments” could generate to the surface again when with the rainfall erosivity above 49 J·mm·m-2·h-1.

How to cite: Peng, T., Cheng, Q., and Cao, L.: Monitoring of suspended sediment load and Sediment Sources in a Karst Plateau Catchment of Southwest China., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6497, https://doi.org/10.5194/egusphere-egu2020-6497, 2020.

EGU2020-6578 | Displays | SSS2.8

Monitoring and Estimating Soil Loss in Agricultural Areas - Case Studies in Chania, Crete, Greece

Anthi Eirini Vozinaki, Dimitris Alexakis, and Ioannis Tsanis

Olive and vine orchards in the island of Crete suffer from extreme soil erosion due to intense rainfall, farm slope and/or the intensification of tilling processes. This research aims to assess the impacts of agricultural practices, land use, and vegetation cover on the quantity of erosion processes in three study areas located in Western Crete. These areas provide the case studies of soil loss (erosion/deposition) monitoring analysis and assessment process. Advanced research treatments of Soil Improving Cropping Systems (SICS) are implemented and tested in three different crop types: (1) Crop cover treatment (i.e. seed with vetch) applied in vineyards (Vitis vinifera) in Alikampos; (2) Tilled treatment applied in Olive orchards (Olea europaea cv. Koroneiki) in Astrikas; and (3) Crop switch treatment from Orange trees to Avocados applied in Koufos. It is notable that an avocado farm, besides providing financial benefits, can also maintain a superior overall soil quality. Soil erosion has not been measured yet for avocados, however, avocado plantations are proposed as a sustainable alternative. Soil loss is estimated for the aforementioned case studies, by comparing the results from treatments applied in SICS areas, with the Control areas, where no treatment has taken place. Three different methodologies are used in order to identify soil loss amount: (a) Sediment traps (all sites); (b) Cross sections measurement (Alikampos and Astrikas) and (c) Soil deposition reference sticks (Alikampos and Koufos). Preliminary results show that soil loss values (tn/ha), are absolute values of erosion/deposition, and range from 2.33 to 16.41 tn/ha for vineyards with no vetch (Control), from 1.64 to 13.46 tn/ha for vineyards with vetch (SICS), from 2.21 to 15.66 tn/ha for no tilled olive orchards (Control), from 0.43 to 5.8 tn/ha for tilled olive orchards (SICS), from 2.63 to 10.05 tn/ha for orange orchards (Control), and from 2.24 to 8.95 tn/ha for avocado orchards (SICS). In addition, the ongoing research has already yielded the following yearly average soil loss rates (tn/ha/yr): vineyards – Control 6.883 tn/ha/yr versus vineyards – SICS 6.587 tn/ha/yr; olive orchards -  Control 7.019 tn/ha/yr versus olive orchards – SICS 3.215 tn/ha/yr; and orange orchards – Control 6.406 tn/ha/yr versus avocados – SICS 5.386 tn/ha/yr. The above field results are also in general agreement with the yearly average soil erosion rates in the island of Crete, modeled by several researchers. All study sites show mitigation of soil loss and improvement of soil quality from the application of SICS treatments. Therefore, it is recommended to raise farmers’ awareness about their effectiveness in order to confront the consequences of soil degradation.

Keywords: Soil Loss; Sediment Traps; Soil Improving Cropping Systems; Crete

The research leading to these results is funded by H2020 program under grant agreement n° 633814 (SOILCARE).

How to cite: Vozinaki, A. E., Alexakis, D., and Tsanis, I.: Monitoring and Estimating Soil Loss in Agricultural Areas - Case Studies in Chania, Crete, Greece, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6578, https://doi.org/10.5194/egusphere-egu2020-6578, 2020.

EGU2020-8078 | Displays | SSS2.8

Studying soil erosion rates through landscape fragmentation. A case study in Crete, Greece.

Dimitrios D. Alexakis, Christos Polykretis, and Manolis G. Grillakis

The regular patterns of soil erosion tend to change at different scales of observation, affecting the mechanism of soil erosion and its evolution characteristics. Fragmentation and land loss are two critical, interrelated processes that influence the entire landscape. In this study, we examine how the relationship between landscape fragmentation and soil loss is diversified in different scales and contexts. Thus, different Earth Observation (EO) products, in terms of spatial analysis, such as Landsat 8, Sentinel 2 and Planetscope imageries are utilized to search the influence of scale effect in fragmentation rate. Land use / Land Cover (LULC) maps were developed in different scales through the use of sophisticated classification algorithms. Following, FRAGSTATS software was employed to calculate spatial metrics in order to capture important aspects of landscape patterns such as edge density, largest patch index, number of patches, contagion etc. In this context we calculated fractal dimensions and Moran’s I spatial autocorellation statistics and used them to represent the degree of landscape fragmentation. Soil loss data, estimated in different scales were incorporated in the overall study as derived from RUSLE (Revised Universal Soil Loss Estimation) soil loss estimation model. Ordinary least square (OLS) and Geographical Weighted Regression (GWR) methodologies were applied in order to correlate both spatially and quantitavely soil loss rates with landscape fragmentation The results denoted the fact that areas of larger patches with least fragmentation suffer less from soil loss phenomena. The overall approach can be used as a road map in order to extract crucial conclusions about landscape’s diachronic evolution and how this is affected both from natural and anthropogenic interventions.

How to cite: Alexakis, D. D., Polykretis, C., and Grillakis, M. G.: Studying soil erosion rates through landscape fragmentation. A case study in Crete, Greece., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8078, https://doi.org/10.5194/egusphere-egu2020-8078, 2020.

EGU2020-15394 | Displays | SSS2.8

The use of high-speed camera technique for observation of soil splash phenomena

Michał Beczek, Magdalena Ryżak, Rafał Mazur, Agata Sochan, Cezary Polakowski, and Andrzej Bieganowski

Soil, i.e. the natural outer layer of the lithosphere and an important component of many ecosystems, may be subjected to various degradation processes dependent on different factors. One of the forms of degradation is water erosion, where the first stage is the splash phenomenon. This process is caused by water drops hitting the soil surface during rainfall, which results in detachment and ejection of splashed material and transport thereof over different distances. The aim of this study was to present the application of the high-speed camera technique for investigations of surface phenomena (effects) influenced by the impact of a single water-drop onto the soil surface.

The measurements were conducted on types of soil differentiated in terms of texture and variants of initial moisture content, which helped to observe different aspects of the soil splash phenomenon. Water drops with a diameter of 4.2 mm fell on soil samples with various kinetic energy values depending on the height of the drop fall (up to 7m). Phantom Miro M310 high-speed cameras were used to observe the effects of the drop impact. The devices registered images with a speed of 3260 fps (frames per second) at the highest available resolution (1280x800 pixels). The following phenomena were observed: I) ejection of splashed particles (including solid soil particles, water droplets, solid particles within the water sheath); II) crown formation – when the drop impacting onto wet soil surface forces the liquid layer to rise up and form a crown (important for the mode and amount of transferred material); III) micro-crater formation – the deformation of the surface and formation of a shallow pool after the drop impact.          

 

This work was partly financed from the National Science Centre, Poland; project no. 2018/31/N/ST10/01757.

 

References:

  1. Beczek M., Ryżak M., Sochan A., Mazur R., Bieganowski A.: The mass ratio of splashed particles during raindrop splash phenomenon on soil surface. GEODERMA 347, 40-48, 2019
  2. Beczek M., Ryżak M., Lamorski K., Sochan A., Mazur R., Bieganowski A.: Application of X-ray computed microtomography to soil craters formed by raindrop splash. Geomorphology 303, 357-361, 2018
  3. Beczek M., Ryżak M., Sochan A., Mazur R., Polakowski C., Bieganowski A.: The differences in crown formation during the splash on the thin water layers formed on the saturated soil surface and model surface. PLoS ONE 12, 2017

How to cite: Beczek, M., Ryżak, M., Mazur, R., Sochan, A., Polakowski, C., and Bieganowski, A.: The use of high-speed camera technique for observation of soil splash phenomena, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15394, https://doi.org/10.5194/egusphere-egu2020-15394, 2020.

 Desertification is one of the main environmental problems in arid and semi-arid areas. In Otindag sandy land, the activation of fixed sand dunes caused by climate change and human activities is the main reason of the development of desertification, and the activation of fixed sand dunes is first manifested by the formation and evolution of blowouts. In recent years, with the increase of high-resolution image data, it has become possible to make use of dynamic monitoring of terrain and landscape changes in small areas, so as to accurately analyze the interaction between terrains and influencing factors on smaller landscape scales, especially dune-interdune scale. We use the high-resolution satellite image data in 2010, 2013, 2016 and 2019 with the ground survey data as the data source, as well as the ArcGIS software to adopt the visual interpretation method. According to the different developmental positions, the shapes of the blowouts can be divided into saucer, bowl, groove, dustpan and irregular shaped. In the study area, the ways of changes in blowout are mainly based on expansion and amalgamation between 2010 and 2019. The area of blowout increased by 6.47hm2 from 2010 to 2013. During 2013-2016, the area increased by 4.89hm2, following by the next three years, it continued growing by 3.04hm2. With little disturbance of human activity, the growth of blowouts in this area is largely affected by the change of climate factors. As the dynamic factor of blowouts, the reduction in sand drift potential, only decreases the development rate and slows down the process. The shapes of the blowout themselves also work as the main influencing factor.

How to cite: Hu, R., Hasi, E., and Yin, J.: Dynamic changes of blowout in the fixed dune on the southeastern fringe of Otindag sandy land in recent decade, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21021, https://doi.org/10.5194/egusphere-egu2020-21021, 2020.

Wind erosion is one of the main factors of soil degradation and air pollution in arid and semiarid regions. In recent years, dust storms have become ever more important sources of air pollution in large areas of Iran. Dust storms previously were confined to the summer season and to western Iran. Nowadays, dust storms occur during eight months of the year and extend to the central regions and the entire south of Iran. This is causing increasing problems for the residents of the affected areas, threatening their health and impairing social, economic and agricultural activities. Ahvaz, the capital of Khuzestan Province, is the city that is most seriously affected by these problems in Iran.

Wind erosion is a multifaceted phenomenon influenced by a variety of factors. One of these factors that has changed considerably in recent time in Iran is land use/cover and land management. To investigate the impact of these changes on wind erosion potential in southwestern Iran we applied an empirical model of the Iran Research Institute of Forest and Rangeland (IRIFR) to remote sensing data extracted from Landsat ETM+ and Landsat 8 imagery of 2010 and 2019. Relationships between changes in wind erosion and land use/cover were determined by cross-tabulation, combining the original spectral bands with synthetic bands and using Maximum Likelihood classification.

The results indicate major changes in wind erosion potential over the last decade in the study area. Interestingly, while areas with a low, medium, and high sediment yield potential decreased, areas with a very high sediment yield potential have increased. Increasing soil erosion potential was primarily related to the conversion of rangeland to agricultural cropland Moreover, the results indicate an increase in desertification in the study area which is also a clear evidence of increasing in soil erosion.

How to cite: Nikseresht, F. and Rainer, S.: Influence of changing land use/cover and land management on wind erosion potential in southwestern Iran, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22440, https://doi.org/10.5194/egusphere-egu2020-22440, 2020.

EGU2020-9661 | Displays | SSS2.8

Linking regional modelling with field measurements to evaluate effectiveness of living windbreaks as measures against wind erosion

Thomas Weninger, Nathan King, Karl Gartner, Barbara Kitzler, Simon Scheper, Peter Strauss, and Kerstin Michel

The degrading impact of wind on agricultural soils has been observed throughout centuries in the Pannonian region of central Europe. Nevertheless, soil loss was not yet quantified and the extent or relevance of the problem are unknown for this agriculturally important region. Especially dry soil surface is highly prone to erosion and as drought periods are expected to become more frequent and severe with changing climate, the risk of wind erosion will increase accordingly. Living windbreaks and similar agro-forestry systems are supposed to be highly effective measures against wind erosion. In an extensive research project, multiple approaches are integrated to obtain a broad view onto the relevance of soil degradation by wind on plot scale and its regional distribution.

More in detail, case studies are conducted where the soil loss by wind erosion is measured in sediment traps. Data about driving and stabilizing factors like wind speed, soil moisture, vegetation density etc. are measured in high spatial and temporal resolution. The measurements started in December 2019. Besides, wind erosion risk is modelled and mapped on regional scale applying state-of-the-art model procedures. The measurement results are used in an attempt to down-scale the model application and thus create a link to ground-truth data. Information about spatial and temporal variability of the driving factors is used for implementation of stochastic calculation procedures in a sensitivity study which determines the most relevant factors for wind erosion mitigation.

The used modelling approach also includes the effects of wind shelters what enables a partly evaluation of the existing network of such elements in the Pannonian region. There, the Authority of Land Reform has been supporting and documenting the installation of wind shelters for more than 60 years. Incorporating this data base, quantitative and qualitative statements will be developed about the state of the shelter belts and their relevance concerning erosion rates. Additionally, the potential and actual value of living windbreaks will be determined with special regards to physiological and ecological characteristics, stability under future climate conditions and further ecosystem services in agricultural landscapes.

How to cite: Weninger, T., King, N., Gartner, K., Kitzler, B., Scheper, S., Strauss, P., and Michel, K.: Linking regional modelling with field measurements to evaluate effectiveness of living windbreaks as measures against wind erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9661, https://doi.org/10.5194/egusphere-egu2020-9661, 2020.

SSS2.9 – Soil and water conservation techniques to monitor, evaluate and mitigate the impacts of soil erosion from hillslopes to watershed scale

Linking landscape patterns to specific ecological processes has been and will continue to be a key topic in landscape ecology. However, the traditional landscape pattern analysis by landscape metrics inspired by patch-matrix model (PMM) may be difficult to reach such a requirement, and thus landscape pattern analysis to denote the significance of ecological process is strongly hindered. To find conceptual and methodological innovations integrating ecological processes with landscape patterns is important. In this paper, we proposed a conceptual model, i.e., the source-pathway-sink model (SPSM) by defining the role of each landscape unit to a specific process before conducting landscape pattern analysis. The traditional landscape matrices derived from the patch-matrix model is visual- or geometrical-oriented but lack of linkage to ecological significance. The source-pathway-sink model is process-oriented, dynamic, and scale dependent. This model as a complementary to the patch-corridor-matrix model can provide a simple and dynamic perspective on landscape pattern analysis. Based on the SPSM model, a landscape index was developed in term of the process of soil erosion, and further testified by using on-site measurements. It was found the new landscape index based on SPSM is useful in evaluating the risk of soil erosion from landscape pattern at watershed. Finally, a case study was conducted in the loess hilly areas to define the risk area of soil erosion that will be useful for sustainable land use management and optimization in future.

How to cite: Chen, L.: To link landscape pattern with soil erosion risk at watershed scale based on SPSM model in the loess hilly area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4995, https://doi.org/10.5194/egusphere-egu2020-4995, 2020.

EGU2020-1236 | Displays | SSS2.9

Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau

Shuilong Yuan, Guoce Xu, Peng Shi, and Kexin Lu

As an important soil and water conservation engineering measure, check dams have been constructed on a large scale in the Loess Plateau of China. However, their effects on runoff and sediment processes in the basin are still unclear. In this study, the hydrodynamic processes of the Wangmaogou watershed located in the Loess Plateau were simulated, and the influence of check dams on the flood and erosion dynamic processes in this watershed were also evaluated. The results showed that the check dams obviously reduced the flood peak and flood volume and mitigated the flood process. After the dam system was completed, the flood peak and flood volume were reduced by 65.34% and 58.67%, respectively. The erosion dynamic distribution of the main channel in the small watershed was changed to different extents by the different dam type combinations, and the erosion dynamic parameters of the channel decreased most after the dam system was completed, when the velocity and runoff shear stress of the outlet section were reduced by 10.69% and 31.08%, respectively. Additionally, the benefits of sediment reduction were most obvious after the check dam system was completed, with the sediment discharge in the watershed being reduced by 83.92%. The results of this study would provide specific implications for construction and management of check dams in the Loess plateau.

How to cite: Yuan, S., Xu, G., Shi, P., and Lu, K.: Influence of Check Dams on Flood and Erosion Dynamic Processes of a Small Watershed in the Loss Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1236, https://doi.org/10.5194/egusphere-egu2020-1236, 2020.

EGU2020-1361 | Displays | SSS2.9

Understorey vegetation drives surface runoff and soil loss in teak plantation-based system of Northern Laos

Layheang Song, Laurie Boithias, Oloth Sengtaheuanghoung, Chantha Oeurng, Christian Valentin, Phabvilay Sounyafong, Anneke de Rouw, Bounsamai Soulileuth, Norbert Silvera, Alain Pierret, and Olivier Ribolzi

Humid tropical mountainous area experiences serious soil erosion due to rapid changes in landuse, sometimes implying erosion prone management practices. In this study, we hypothesized that keeping understorey in teak tree plantation would protect soil and avoid soil erosion. We assessed the effects of 4 management practices in teak tree plantation area on water and soil losses using 6 replicated 1-m2 microplots in four plantations situated in Northern Laos during the wet season of 2017. The landuses in the four plantations were teak without understorey (TNU), teak with low density of understorey (TLU), teak with high density of understorey (THU), and teak with broom grass, Thysanolaena latifolia (TBG). During the wet season of 2017, we monitored surface runoff and soil loss for 22 rainfall events. We also measured some of the teak tree and understorey characteristics (i.e. height and percentage of cover) and the percentage areas of soil surface features (i.e. litter, free aggregates, crusting, etc.). Relationships among these variables was estimated through multiple statistics and regression analyses. We found that runoff coefficient and soil loss were the smallest for THU and TBG: runoff coefficient was 23% for both treatments, and soil losses were 465 and 381 g m-2, respectively. Runoff coefficient and soil loss for TLU were 35% and 1115 g m-2, respectively. We observed the highest runoff coefficient and soil loss under TNU (60%, 5455 g m-2) associated to the highest crusting rate (82%). High runoff coefficient and soil loss under TNU was explained by the kinetic energy of rain drops falling from the broad leaves of the tall teak trees down to bare soil, devoid of plant residues, thus leading to severe soil surface crusting and detachment. Overall, promoting understorey such as broom grass in teak tree plantations would (1) limit surface runoff and improve soil infiltrability, thus increase the soil water stock available for both root absorption and groundwater recharge, and (2) mitigate soil loss and favour soil fertility conservation.

How to cite: Song, L., Boithias, L., Sengtaheuanghoung, O., Oeurng, C., Valentin, C., Sounyafong, P., de Rouw, A., Soulileuth, B., Silvera, N., Pierret, A., and Ribolzi, O.: Understorey vegetation drives surface runoff and soil loss in teak plantation-based system of Northern Laos, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1361, https://doi.org/10.5194/egusphere-egu2020-1361, 2020.

Gravity erosion is one of the most remarkable natural hazards in mountainous regions, especially on the Loess Plateau of China. Nevertheless, the measurement of failure mass is very difficult because gravity erosion usually occurs randomly and it combines with hydraulic erosion. Here we present a novel testing technique that could quantitatively measure time-variable gravity erosion on the steep loess slopes. A structured light 3D surface measuring apparatus, the Topography Meter, was designed and manufactured in our laboratory. Dynamic variation of the steep slope relief was monitored under rainfall simulation and the slope deforming process was recorded by a computer video technology. With the help of laser marking, plane figures were vectorially transformed into 3D graphs, thus the shape of target surface was accurately computed. By comparing the slope geometries in the moments before and after the erosion incident on the snapshot images at a particular time, we could obtain the volume of gravity erosion and many other erosion data, including the volume of slide mass, the amount of soil loss eroded by overland flow, etc. A series of calibration tests were conducted and the results showed that the accuracy of this technique was high and sufficient for exploring the mechanism of slope erosion. More than 120 rainfall simulation events were subsequently tested with the apparatus, further confirming its feasibility and reliability.

How to cite: Xu, X., Xu, F. X., Guo, W., and Zhao, C.: The Topography Meter: a measurement system applicable for gravity-erosion experiments using a novel 3D surface measuring technique, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1690, https://doi.org/10.5194/egusphere-egu2020-1690, 2020.

EGU2020-2066 | Displays | SSS2.9

Distribution of soil organic carbon impacted by land-use change and check dam on the Loess Plateau of China

Peng Shi, Yan Zhang, Kexin Lu, Zhaohong Feng, and Yang Yu

Vegetation restoration, terrace and check dam construction are the major measures for soil and water conservation on the Loess Plateau. These effective measures of stabilizing soils have significant impacts on soil organic carbon (SOC) distribution. To understand the impact of land-use changes combined with check dam construction on SOC distribution, 1060 soil samples were collected across a watershed on the Loess Plateau. Forestland, shrubland and terrace had significant higher SOC concentrations in the 0-20 cm soil layer than that of sloping cropland.    Land use change affects the process of runoff and sediment transportation, which has an impact on the migration and transformation of soil carbon. The soil erosion of sloping farmland is the most serious, and the maximum annual erosion rate is as high as 10853.56 t·km-2. Carbon sedimented in the dam land was mainly from sloping cropland, and this source percentage was 65%. The application of hydrological controls to hillslopes and along river channels should be considered when assessing carbon sequestration within the soil erosion subsystem. 

How to cite: Shi, P., Zhang, Y., Lu, K., Feng, Z., and Yu, Y.: Distribution of soil organic carbon impacted by land-use change and check dam on the Loess Plateau of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2066, https://doi.org/10.5194/egusphere-egu2020-2066, 2020.

EGU2020-2851 | Displays | SSS2.9

Planning method and application case of debris-flow check dams in water and soil conservation

Jiangang Chen, Huayong Chen, and Xiaoqing Chen

Check dams are transverse structures build across gullies and they are very important engineering measure in soil restoration hazard mitigation. After three successive earthquakes in China, a considerable number of solid material was deposited in gullies. With the extreme rainfall, a numerous of flood and debris flow events were trigged, some of them caused serious secondary disasters. In the past 12 years after the Wenchuan earthquake, based on the debris-flow prevention method by controlling debris-flow magnitude and avoiding blocking river, a series of check dams were constructed to regulate the water and soil erosion. The operation status of check dams needs to be investigated and summarize the engineering practice experience. Based on the results of field investigation, the shape and size characteristics of the dam opening were analyzed, and then established a classification system of the opening clogging types. Moreover, in August 20, 2019, Flash floods and mudslides occurred in Wenchuan County, causing more than 30 people dead, buried the G213 highway, and damaged a bridge. These disasters bring new thinking for future hazard mitigation. Geotechnical measures can quickly reduce the disaster risk of flash flood and debris flow, and now it has formed a set of perfect design standards. However, the disaster mitigation effect of the vegetation measures are not fully studied. Thus, the integrated disaster mitigation effect of the above two methods will be investigated in the future work.

How to cite: Chen, J., Chen, H., and Chen, X.: Planning method and application case of debris-flow check dams in water and soil conservation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2851, https://doi.org/10.5194/egusphere-egu2020-2851, 2020.

EGU2020-4738 | Displays | SSS2.9

Alternative approach for works controlling stony debris flows

Carlo Gregoretti, Matteo Barbini, Martino Bernard, and Mauro Boreggio

Many sites of the Dolomites are threatened by channelized debris flows: solid-liquid surges initiated by the entrainment of large quantities of sediments into the abundant runoff at the head of channel incised on fans, can dramatically increase their volume along the downstream routing. This is the case of the Rovina di Cancia site where solid-liquid surges forming in the upper part of the basin can increase their volume up and over 50000 m3, seriously impacting the downstream village of Borca di Cadore. The debris-flow channel ends just upstream the village that in the past was hit by four debris flows (three in the recent years) that caused victims and destructions. Control works built until now are not sufficient to protect the village from high magnitude debris flows and a definitive solution calls to be planned. Present works are a flat deposition area, 300 m downstream the initiation area, an open dam under construction downstream it, and  two retention basins at the end of the channel. Between the open dam and the upstream retention basin, there are the rest of eight check-dams made of gabions, built in the 60s and progressively damaged or destroyed by the debris flows occurred after their construction. This series of check-dams limited the entrainment of solid material and the occurrence of localized scours. The initial plan is the substitution of the check-dams with concrete structures and the widening of the dowsntream retention basin through the raising of high elevation embankment downstream it and the following demolition of the actual dyke. Finally, a channel crossing the village and national route on the valley bottom will deliver the fluid phase from the widened basin to the Boite river. All these control works have a very high cost for construction and maintenance and severely impact the village with the presence of a non-negligible residual risk. These drawbacks call for an alternative solution that is searched looking at to the morphology. Downstream of the open dam and on its right side, there is a deep impluvium that ends on a large grass sloping area. The novel solution requires the construction of a channel through the right high bank that deviates the debris flow into the impluvium. The impluvium, widened through the excavation of the surrounding slopes, is closed at the outlet by  an open dam. Downstream the open dam, a channel will lead to a retention basin, where most of storage volume is obtained from the excavation of the grass sloping area, limiting the elevation of the dykes At the end of this basin an open dam will deliver the debris-flow fluid part to a channel passing under the national route and joining the Boite river. Such a solution composed of a deviatory channel, two retention basins (the deep impluvium and that excavated on the sloping grass area) and the channels between and downstream them, has quite a lower costs of construction and maintenance, eliminating the impact on the village because occupying uninhabited areas without interrupting the main roads.

How to cite: Gregoretti, C., Barbini, M., Bernard, M., and Boreggio, M.: Alternative approach for works controlling stony debris flows, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4738, https://doi.org/10.5194/egusphere-egu2020-4738, 2020.

Soil erosion, a widely-occurring phenomenon in the terrestrial environment, affects land productivity and infrastructure security negatively both on-site and off-site. Therefore, soil erosion control services (SECS) are one of the most fundamental ecosystem services for human well-being. Although previous SECS assessments elaborate the benefits from preventing on-site soil erosion and soil loss comprehensively, the off-site benefits remain vague. They are usually estimated only through multiplying the capacity of on-site soil erosion prevention by a land-use-based, and spatially consistent, allocation coefficient. The corresponding overestimation, item omission, and inability to represent the spatial heterogeneity of SECS may lead to great uncertainties. In addition, the SECS decay with travel distance is not well represented, because of a neglect of the cascading nature of SECS formation and its delivery. Here, to address these deficiencies, a cascade framework for SECS assessment is developed that incorporates the concept of sedimentological connectivity over the landscape. This approach quantifies both the on-site soil erosion prevention and mitigation of sediment delivery over the landscape, based on an understanding of the cascading nature of soil erosion and sediment delivery, by referring to the framework of WATEM/SEDEM that potentially reveals the sedimentological connectivity over landscape. A monetized valuation of SECS delivered to local communities was derived by employing a land-use based replacement cost technique, which takes cultivated land units as a SECS receiver and conveyer. The approach was applied in a loess catchment located in the middle Yellow River basin, China as a case study. For this watershed, with an area of 54.2 km2, the gross soil erosion reduction was up to 156.93 × 104 t; the reduction of sediment input was 11.28 × 104 t; and the reduction in gross sediment export is up to 181.34 × 104 t. The monetized value delivered to utilized land units was 910.13 × 104 CNY. The approach described provides a tool that specifically addresses the SECSs directly useful to humans, contributes to quantifying the soil erosion control services provided by the landscape, and improves the reliability of evaluating SECS.

How to cite: Liu, Y., Zhao, L., and Yu, X.: A sedimentological connectivity approach for assessing on-site and off-site soil erosion control services, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13203, https://doi.org/10.5194/egusphere-egu2020-13203, 2020.

EGU2020-17159 | Displays | SSS2.9

Testing the Slake mobile app at the local scale to explore the spatial variability of soil structural stability

Sebastien Salvador-Blanes, Clément Girault, Thomas Rochereau, Arthur Gaillot, Frédéric Darboux, Blandine Lemercier, Didier Michot, and Nicolas Saby

The Slake mobile app measures the aggregate stability by rapid immersion in water. It is a particularly interesting tool to allow a cost-efficient determination of soil structural stability. The Slake app has proven its efficiency at large scale (New South Wales state, Australia). Its application at a more local level (e.g. small watersheds) could be of particular interest to farmers and local stakeholders to identify areas of sensitivity to soil slaking, in order to implement mitigation strategies in the most appropriate areas to prevent from soil erosion. The aim of this study was to test the Slake app at the plot and the watershed scales to test its applicability and robustness. The studied watershed is the 25 km² Louroux catchment, located in central France. This catchment is typical of intensively cultivated lowland catchments. Despite a very low slope (<0.4%), erosion processes have been shown as significant, either through soil surface erosion or tile drainage exports. Slaking values have been measured in the laboratory on undisturbed soil surface aggregates collected at 52 locations within the catchment, using a balanced sampling. The same methodology has been applied within a 5 ha plot on 52 sampling points. The aggregate stability was measured with the app simultaneously on three aggregates. This measurement was repeated 3 times for each sampling location. Therefore, 9 slaking indices can be extracted for each soil sampling location, allowing for a computation of the index variability at each sampling location. Besides, 13 samples for the plot and the catchment have been selected to measure soil structural stability by a normalized method (Mean Weight Diameter of soil aggregates after wet sieving, ISO 10930). Preliminary results show a variable heterogeneity of the slaking index measured at a single location. The origin of this heterogeneity (measurement errors, sample variability…) is discussed. The correlation with the normalized method is explored and the spatial structure of the slaking index over the two studied scales is presented.

How to cite: Salvador-Blanes, S., Girault, C., Rochereau, T., Gaillot, A., Darboux, F., Lemercier, B., Michot, D., and Saby, N.: Testing the Slake mobile app at the local scale to explore the spatial variability of soil structural stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17159, https://doi.org/10.5194/egusphere-egu2020-17159, 2020.

EGU2020-7441 | Displays | SSS2.9

Soil water flow behavior of abandoned farmland restored with different vegetation communities in the Loess Plateau of China
not presented

Rui Wang, Zhengchao Zhou, Ning Wang, Zhijing Xue, and Liguo Cao

Natural vegetation succession in abandoned farmlands simulate the changes in near surface soil characcteristics over the Loess Plateau of China, and hence likely induce temporal variation in the distribution and the movement of soil water in soil layers. In order to assess the effect of the natural vegetation succession on soil water flow behavior, four vegetation communities at different stages of sucession (Artemisia scoparia, Artemisia sacrorum, Bothriochloa ischaemum, Periploca sepium Bunge) in Fangta watershed of Yan River were selected and dye tracer experiments were performed. Both the soil physicochemical properties (e.g., soil bulk density, the particle size, water stable aggregate (>0.25 mm) content, and soil organic matter) and the root systems (e.g., root mean diameter, root mass density, root surface area, and root volume density) tended to increase along with vegetation sucessional development. Results of the dye tracer experiment and the image analysis indicated that the preferential flow was the dominant type in the four field sites. Compared to the site in early stage of sucession, the preferential flow proportion (FFP), preferential infiltration volume (PIV), and the contribution of the preferential infiltration to the total infiltration (Con) in the late stage enhanced by 6.65-7.34 times, 2.73-4.08 times, and 2.52-3.75 times, respectively. Correlation analysis suggested that the plant roots and their morphometric features played more important role on the preferential flow in comparison with the soil physicochemical properties. The abundant lateral root and the steeper slope may have caused the presence of lateral flow. Along with increasing degree of preferential flow, the spatial variability of the soil water through the vertical soil profiles increase during the process of restoration and succession of vegetation communities. Our study demonstrated the improvement of the preferential flow in the abandoned farmland during natural vegetation restoration helped soil water storage in the deep soil layer.

 

How to cite: Wang, R., Zhou, Z., Wang, N., Xue, Z., and Cao, L.: Soil water flow behavior of abandoned farmland restored with different vegetation communities in the Loess Plateau of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7441, https://doi.org/10.5194/egusphere-egu2020-7441, 2020.

The stability of soil aggregates is an indicator of restoration of soil in degraded ecosystems. A multitude of factors such as properties of plant roots and soil have been suggested to contribute to aggregate stability, but little information is available on the relative importance of these factors in temperate grass zones. We examined how root and soil properties modified aggregate stability along a gradient of secondary succession grassland on the Loess Plateau in China. We selected three cropland abandoned for 3, 10, and 16-year and measured the distribution of aggregates, mean weight diameter (MWD), bulk and aggregate-associated soil organic carbon (SOC) and glomalin-related soil protein (GRSP) contents, root biomass density, root length density, and specific root length (SRL). Compared with 3-year site, the amount of large macroaggregates (>2 mm) and aggregate stability (indicated by MWD) at 16-year site increased by 25.6% and 8.5%. The higher MWD contributed the most to the accumulation of SOC in large and small macroaggregates and to the accumulation of GRSPs in microaggregates (<0.25 mm). SRL was significantly positively correlated with MWD. Redundancy analysis (RDA) showed that soil and plant variables together explained 89.1% of the aggregate distribution variation. Partial RDA further revealed that soil variables solely explained 6.4% of the variation, plant root variables explained 47.9% of the variation, and interaction of soil and plant variables accounted for 34.8% of the variation. Our study indicated that increased soil aggregate stability during plant secondary succession depended on both plant roots and aggregate-associated SOC and GRSPs, and plant root exerted a stronger influence on soil aggregate stability than soil. Allowing secondary succession may be a promising strategy for restoring degraded ecosystems on the plateau.

How to cite: xiao, L. and Li, P.: Plant root exerted a stronger positive effect on aggregate stability than soil during plant secondary succession on the Loess Plateau, China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1388, https://doi.org/10.5194/egusphere-egu2020-1388, 2020.

The characteristics of soil erosion under extreme rainstorm conditions can reflect the effect of ecological restoration measures and the rationality of land use patterns in the region. 12 dam-controlled catchments was selected after an extreme rainstorm event occurred in the northern Shaanxi Province on 25-26 July 2017 (called “7.26” rainstorm). Soil erosion intensity in the 12 catchments was obtained by digging up the sedimentation profiles and measuring the sedimentation areas. Using digital orthophoto map and digital terrain model by Unmanned Aerial Vehicle to obtain land-use types and their areas, slope gradients and the distance along the flow path to the edge of the downslope and dam-land. Stepwise regression method was used to analyze the main factors affecting catchment erosion intensity. The results showed that the average sedimentation thickness in the 12 damlands ranged from 0.16 m to 1.67 m and the intensity of soil erosion of the 12 catchments varied from 10295 t km-2 to 49227 t km-2. Soil erosion caused by this rainstorm was 10-50 times of the allowable amount of soil erosion in the Loess Plateau region (1000 t km-2.a) issued by Ministry of Water Resource of the People’s Republic of China (MWR). Stepwise regression analysis shows that, the closer the shape of a catchment to the circle is, the larger the area of slope-cropland in inter-gully land is or the closer the distance between slope-cropland and the dam-land is, the larger the erosion modulus in the catchment would be. What’s more, the presence of cement road up the valleys shoulder line reduced the modulus of soil erosion. Theses findings indicated that the existing ecological conditions in the dam-controlled catchments are not able to resist extreme rainstorm erosion effectively. Optimizing the distribution of land use types in catchments should be the focus of soil erosion control.

How to cite: Wang, N. and Jiao, J.: The magnitude of soil erosion of small catchments with different land use patterns under an extreme rainstorm on the Northern Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-737, https://doi.org/10.5194/egusphere-egu2020-737, 2020.

EGU2020-1232 | Displays | SSS2.9

Quantitative assessment of check dam system impacts on catchment hydrological response - a case in the Loess Plateau, China

Tian Wang, Zhanbin Li, Jingming Hou, Shengdong Cheng, Lie Xiao, and Kexin Lu

The purpose of this study is to investigate the impact of check dams on catchment hydrological response in a small catchment on the Chinese Loess Plateau by applying a GAST (GPU Accelerated Surface-water and Transport model) numerical model at 2 m resolution DEM. The results showed that check dams significantly increase the so-called runoff lag times (lag to generation, lag to peak and lag to end of runoff) at the channel outlet compared to catchments without check dams. Furthermore, the peak runoff discharge at the catchment outlet without check dams decreased by 93.0% compared to with check dams. The total outlet discharge, surface water stored, and infiltration were respectively 20.1%, 74.9% and 5.0% of the total precipitation in the check dam catchment, while 75.4%, 22.6% and 2.0% in the system without check dams. Installation of check dams also altered the spatial water distribution of maximum discharge, moving the occurrences of maximum discharge further upstream and, thus, increasing safety downstream. Channel connectivity was found to have a direct relationship with peak discharge and with discharge volume at the basin mouth. In conclusion, implementing check dams significantly and effectively mitigated flood processes and increased runoff infiltration upstream.

How to cite: Wang, T., Li, Z., Hou, J., Cheng, S., Xiao, L., and Lu, K.: Quantitative assessment of check dam system impacts on catchment hydrological response - a case in the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1232, https://doi.org/10.5194/egusphere-egu2020-1232, 2020.

Water is the most essential resource for the ecological and biological survival of organisms as well as being an important strategic socio-economic factor. Stable isotopes of δD and δ18O in water are important indicators of hydrological and ecological process. In this study, temporal and spatial variations in δD and δ18O and transformations between three water bodies (precipitation, stream water, and groundwater) under ecological construction were studied in two contrasting watersheds of the Wuding River, China. In order to understanding the spatial and temporal variation of stable isotopes and water transmission times (WTT) under ecological construction, a total of 1028 water samples were collected from the 30 sites, and 79 precipitation samples were collected at the weather station. The results show that variation range of three water bodies occurred in the order
precipitation>stream water>groundwater, the local meteoric water line was above the level of the last two, and the isotopic composition of stream water and groundwater in controlling watershed is more enriched than that in natural watershed. WTT from precipitation to stream water in Jiuyuangou were 1.53 times those of Peijiamao. Similarly, WTT from precipitation to groundwater was about 7.6 times than that form precipitation to stream water. Supply ratios exhibited obvious seasonal variation. Precipitation and groundwater recharged stream water mostly in the dry season, while precipitation and stream water recharged groundwater during the wet season. Overall, this study shows that ecological construction measures extend WTTs and enhance water evaporation and fractionation. The results of this research are significant as they enhance our understanding of water transformation on the Loess Plateau under ecological construction.

How to cite: Zhao, B. and Li, Z.: Effects of ecological construction on the transformation of different water types on Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1234, https://doi.org/10.5194/egusphere-egu2020-1234, 2020.

Check dam is widely used in the soil erosion control in the gully on the Loess Plateau of China. Check dam has significant effects in sedimentation, erosion control, land formation, water storage, and vegetation restoration. This result shows that the main dams and medium-sized dams on the Loess Plateau had deposited 5.12 million tons of sediment by the end of 2011, reducing sediment transportation to the Yellow River. The check dam system decreases the probability of gravity erosion. Check dams increases cropland in the gully-hilly area of the Loess Plateau, thus increases grain production. The check dam project is a carbon pool. On the Loess Plateau, 123 million tons of soil carbon is storaged in the check dam, accounting for 17.08% of the carbon sequestration in afforestation projects in China from 1994 to 1998. Check dam construction increases regional vegetational coverage, and the NDVI in the Dali River watershed increased by 28.4% after the dam project. The results provide a scientific basis for the assessment of the eco-environmental benefit of check dam on the Loess Plateau of China.

How to cite: Li, P., Yu, K., and Xiao, L.: Check dam is an effective engineering for soil and water conservation, carbon sequastration on the Loess Plateau of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2262, https://doi.org/10.5194/egusphere-egu2020-2262, 2020.

China has implemented an ambitious ecological project Grain for Green Project (GGP) on the Loess Plateau (LP) at the end of last century. The GGP was to increase vegetation coverage, reduce soil and water erosion and store Carbon by converting croplands on steep slopes barren hills and wasteland to forests. Assessing the ecological effects of GGP correctly could improve vegetation restoration activities worldwide. In this study, two major ecological indicators (vegetation restoration and soil & water conservation) were used to evaluate the ecological benefits of GGP from 1982 to 2017. Our results show that the vegetation growth for most pixels of LP region have significantly increased at 21 century, annual growth rates of fraction of absorbed photosynthetically active Radiation (FPAR) in spring, summer, autumn and active growing season are 1.39, 4.49, 2.14 and 1.47, respectively. For leaf area index (LAI), these growth rates are 6.01, 20.06, 8.11 and 6.90, respectively. And for normalized difference vegetation index (NDVI), growth rates are 6.30, 25.46, 7.99 and 20.43, respectively. While the soil and water condition has differently changed, annual growth rates of soil moisture (SM) are 4.46, 2.79 and 2.30 for summer, active growing season and whole year, respectively. The coordinated responses of vegetation and soil & water condition suggest that the interaction between organisms (vegetation, animal and human) and environment (soil, water and so on) in the process of vegetation restoration should be further recognized to evaluate the benefits of ecological engineering more comprehensively.

How to cite: Gao, H. and Liu, S.: The trade-off between vegetation restoration and soil & water conservation in Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13809, https://doi.org/10.5194/egusphere-egu2020-13809, 2020.

EGU2020-4779 | Displays | SSS2.9

Adaptation of the MMF (Morgan-Morgan-Finney) model to Mediterranean forests subject to wildfire and post-fire rehabilitation measures

Demetrio Antonio Zema, Joao Pedro Nunes, and Manuel Esteban Lucas-Borja

The hydrological effects of wildfire are very difficult to predict in Mediterranean forests, due their intrinsic semi-arid climate and soil characteristics. The Morgan-Morgan-Finney (MMF) model has shown generally accuracy and reliability in predicting surface runoff and soil erosion in several environmental contexts. In spite of its ease use and limited input requirements, few applications exist in Mediterranean forests with or without post-fire rehabilitation measures; therefore, its applicability to those conditions may be questionable without purposed verifications.

To fill this gap, the MMF model has been verified at the seasonal and plot scales in areas affected by a wildfire of a Mediterranean forest, with and without post-fire straw mulch treatment. The application of MMF with input parameters set up according to the original guidelines of the model’s developers led to poor performance in every soil condition. Subsequently, the model has been adapted to burned soils and Mediterranean climate characteristics, introducing changes in input data for both the hydrological and erosive components (seasonal values of evapotranspiration, reduction of the soil hydrological depth, including soil water repellency effects in burned soils, and modelling erosive precipitation only). By these adaptations, MMF was able to predict seasonal runoff volumes and soil loss with good reliability in all the experimented conditions.  

This modelling experiment has shown the capacity of the MMF model to simulate the seasonal hydrological response of the burned and mulched soils of Mediterranean forests. Therefore, the potential applicability of the model is promising as a management tool for predicting and controlling the erosion risk in semi-arid forest ecosystems threatened by wildfire as well as to evaluate the efficiency of post-fire treatments.

How to cite: Zema, D. A., Nunes, J. P., and Lucas-Borja, M. E.: Adaptation of the MMF (Morgan-Morgan-Finney) model to Mediterranean forests subject to wildfire and post-fire rehabilitation measures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4779, https://doi.org/10.5194/egusphere-egu2020-4779, 2020.

EGU2020-1745 | Displays | SSS2.9

Characteristics of blown sand activities in sandy land on the eastern shore of the Qinghai Lake

Dengshan Zhang, Haijiao Wang, and Lihui Tian

Wind regime, sand drift potential and sand transport amount are important indicators to evaluate regional blown sand activities. This paper took Ketu sandy land on the eastern shore of Qinghai Lake as study area. The sand transport amount data were collected monthly in 2013-2014 and 2016-2017 with 16-azimuth sand collector, and data of local wind velocity and direction were used to compare and analyze the typical blown sand activities. The results were as follows: (1) In 2013-2014, the mean wind velocity in the study area was 2.79m/s and the frequency of sand-driving wind was 6.76%. While they were 2.63m/s and 6.13% in 2016-2017, respectively. (2) The directions of the sand-driving wind in two years were similar, clearly from WSW-WNW and ESE-SSE. The frequency of western wind increased whereas the frequency of southeastern wind decreased. (3) The seasonal variation of sand drift potential in two years were similar with the largest in spring and the smallest in summer. According to the annual variation trend of sand drift potential, the study area was belonging to low wind energy environment. (4) There is a significant difference in sand transport amount between the two years. The amount in 2016-2017 was 77.18kg less than that in 2013-2014, while the distribution of sand transport amount was similar. The increase of vegetation coverage in this area is the main reason for the decrease of sand transport amount.

How to cite: Zhang, D., Wang, H., and Tian, L.: Characteristics of blown sand activities in sandy land on the eastern shore of the Qinghai Lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1745, https://doi.org/10.5194/egusphere-egu2020-1745, 2020.

EGU2020-2481 | Displays | SSS2.9

Effects of vegetation restoration on soil organic carbon redistribution along the Loess slope

Xiaoxia Zhang, Xiang Li, Yipeng Liang, and Tonggang Zha

Soil organic carbon (SOC) redistribution along the Loess slope under the effect of soil erosion plays an important role in understanding mechanism of SOC spatial distribution and turnover, hence to its effects on global carbon cycle. Vegetation restoration has been taken as an effective method to alleviate soil erosion on the Loess Plateau, while little research focused on the impact of vegetation restoration on the redistribution processes, especially the spatial distribution and stability of SOC. Here, we quantified the SOC stock and pool distribution on the loess slopes along geomorphic gradients under naturally regenerating forests (NF) and artificial black locust plantation (BP), using corn field as a control (CK).The results were as follows:  (1) vegetation restoration, especially NF, effectively slowed down the migration of SOC resulting from soil erosion and reduced the heterogeneity of SOC distribution. The ratios of topsoil SOC in the sedimentary area to the stable area were 109%, 143%, and 210% under the NF, BP, and CK, respectively. And (2) Vegetation restoration reduced the loss of labile organic carbon by alleviating the loss of dissolved organic carbon (DOC) and easily oxidized organic carbon (EOC) during migration. Both DOC/SOC and EOC/SOC ratios under NF and BP presented far less differences between the sedimentary and erosion zones than CK.A schematic diagram of SOC cycle patterns and redistribution along the loess slope under vegetation restoration based on our findings and discussions. The results suggested that vegetation restoration in the Loess slope, NF in particular, was an effective means for alleviating the redistribution and spatial heterogeneity of SOC and reducing soil erosion. Information from this study is useful for understanding the carbon cycles in restored ecosystems and evaluating the ecosystem services of natural and managed forests in soil erosion control and carbon sequestration.

How to cite: Zhang, X., Li, X., Liang, Y., and Zha, T.: Effects of vegetation restoration on soil organic carbon redistribution along the Loess slope, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2481, https://doi.org/10.5194/egusphere-egu2020-2481, 2020.

EGU2020-3080 | Displays | SSS2.9

Change in water discharge and sediment load on the Loess Plateau, China

Haiyan Zheng and Chiyuan Miao

Over the past 50 years, a series of soil and water conservation measures have been implemented on the Loess Plateau, including biological, engineering, and agricultural measures. As a result, water discharge and sediment load on the plateau have undergone significant changes. In this study, we compared the water discharge and sediment load at more than 100 hydrological stations across the Loess Plateau during the period 2008–2016 (P2) with the water discharge and sediment load during the period 1971–1987 (P1), and detected the main sources of sediment in each of the two periods. We then performed an attribution analysis to quantify the influence of different factors on the changes in sediment load. We found the following results: (1) Water discharge was reduced by 22% in P2 compared with P1, whereas the sediment load was reduced by 74%. (2) Sediment resources are mainly concentrated between Toudaoguai and Tongguan stations: this region contributed more than 88% of the total sediment load at the terminal station (Huayuankou station) in both P1 and P2. (3) When considering only the changes in sediment concentration on the Loess Plateau, we conclude that the contribution of human activities was greater than 72%. This study provides a detailed description of the temporal and spatial variations in water and sediment across the Loess Plateau, providing a reliable reference for the future development of ecological soil and water conservation measures on the Loess Plateau.

How to cite: Zheng, H. and Miao, C.: Change in water discharge and sediment load on the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3080, https://doi.org/10.5194/egusphere-egu2020-3080, 2020.

Soil moisture is the foundation of ecosystem sustainability in arid and semi-arid regions, and the spatial–temporal details of soil moisture dynamics of afforested areas can benefit for land use management in watershortage regions such as the Loess Plateau of China. In this study, spatial–temporal variations in soil moisture under Robinia pseudoacacia plantations on the Loess Plateau were analyzed. A total of 147 observations of soil moisture content (SMC) data to a depth of 500 cm soil profile were collected in 23 counties via field transect surveys and analyses of published literature. The results suggested that (1) the depth-averaged SMC was generally lower under forest sites than under cropland, both in the shallow layers and in the deep profiles. This finding implied that, compared with the native vegetation, the introduced R. pseudoacacia plantations caused intense reductions in soil moisture. (2) SMC was positively correlated with climatic factors (mean annual precipitation (MAP), mean annual temperature (MAT), and the Palmer drought severity index (PDSI)), indicating that the SMC under R. pseudoacacia plantations was highly consistent with the hydrothermal conditions at the regional scale. (3) The decreasing amplitude of SMC was linearly related to the increasing number of restoration years, especially in the areas below the 500–550 mm precipitation threshold. This finding showed that the restoration ageing sequence was an influential factor that affected the regional SMC variation in R. pseudoacacia plantations on the Loess Plateau. Our results suggest that afforestation activities should be avoided if the local total precipitation is insufficient for replenishing the soil moisture and that local tree species with a lower demand for water resources should be considered a top priority for further afforestation of the Loess Plateau.

How to cite: Liang, H. and Li, Z.: Soil moisture decline following the plantation of Robinia pseudoacacia forests: Evidence from the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4096, https://doi.org/10.5194/egusphere-egu2020-4096, 2020.

Soil moisture is a key factor affecting vegetation growth and survival in arid and semi-arid regions. Knowledge of deep soil moisture dynamics is very important for guiding vegetation restoration and for improving land management practices on the water-limited Loess Plateau. Temporal changes and vertical variations in deep soil moisture (at soil depths of 0–600 cm) combined with soil moisture availability were monitored in situ under Caragana korshinskii shrubs of different ages (named CK-10a, CK-20a and CK-35a) in the Loess hilly region during the growing season of 2013. The soil moisture content (SMC) under C. korshinskii shrubs of different ages was highly consistent with the seasonal precipitation variations and generally decreased as follows: CK-10a > CK-20a > abandoned land > CK-35a. The SMC varied greatly over time during the growing season (P < 0.01), decreasing from April to May and then slowly increasing with some fluctuation from June to October. The SMC drastically decreased with depth from 0–300 cm and then gradually increased with some fluctuation from 300–600 cm. A critical turning point and transition zone connecting the shallow and deep soil moisture occurred at 200–300 cm. Therefore, the soil profile was divided into active, secondary active and relatively steady soil layers in terms of soil moisture. The SMC fluctuated at depths of 0–100 cm and 300–400 cm and was relatively stable in the deeper soil layers. The amount of available soil moisture gradually decreased as the forest stand age increased, especially at CK-35a, where most of the soil moisture was unavailable for plant use. In addition, our study indicates that a large-scale restoration strategy with pure shrubland or woodland may not be suitable for soil moisture recovery in arid environments.

How to cite: Li, Z. and Liang, H.: Soil moisture dynamics under Caragana korshinskii shrubs of different ages in Wuzhai County on the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4107, https://doi.org/10.5194/egusphere-egu2020-4107, 2020.

EGU2020-1247 | Displays | SSS2.9

Effects of dynamic factors of erosion on soil nitrogen and phosphorus loss under freeze-thaw conditions

yuting cheng, peng li, Guoce Xu, and yixin zhang

Soil erosion is one of the primary environmental problems in China, and it can lead to serious water, soil, and nutrient losses. However, the mechanism of action of the dynamic factors of erosion on nitrogen (N) and phosphorus (P) loss remains unclear. In this study, a series of laboratory experiments were carried out to characterize the N and P loss and its influencing factors under freeze–thaw conditions. Two slope treatments (i.e. LS: loess and FTS: freeze–thaw soil) and five soil water content (SWC) (i.e. 10%, 15%, 20%, 25% and 30%) were considered. The results showed that the total runoff was higher under 30% SWC and lower under 20% SWC for the LS and FTS treatments. The freeze–thaw action caused higher sediment loss under low water content (10% and 15%). The runoff-associated total nitrogen (RTN), runoff-associated total phosphorus (RTP), and sediment-associated total phosphorus (STP) loss rate showed a larger fluctuation for FTS than for LS. The freeze–thaw action not only caused the instability of the nitrogen and phosphorus loss behavior but also caused increased diversity among individual samples. The soil erodibility, runoff energy, and runoff power were important dynamic factors associated with erosion, and the freeze–thaw action has a very large impact on these factors. For the LS treatments, the SWC could explain 60% of the variation in RTN loss and 63% of the variation in RTP; the runoff and infiltration both explained 90% of the variation in STN loss and the runoff time explained 97% of the variation in STP. For the FTS treatments, the runoff time explained 63% of the variation in STN and 53% of the variation in STP. The results enable us to understand further the relationship between dynamic factors of rainfall erosion and nitrogen and phosphorus loss under freeze–thaw conditions.

How to cite: cheng, Y., li, P., Xu, G., and zhang, Y.: Effects of dynamic factors of erosion on soil nitrogen and phosphorus loss under freeze-thaw conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1247, https://doi.org/10.5194/egusphere-egu2020-1247, 2020.

Soil conservation and water retention are important metrics for designating key ecological functional areas. However, research on the quantitative identification of dominant environmental factors in different ecological functional areas remains relatively inadequate, which is unfavorable for zone-based management of key ecological functional areas. This paper presents a case study of Beijing’s key ecological functional areas. In order to objectively reflect the ecological characteristics of key ecological functional areas in Beijing which is mainly dominated by mountainous areas, the application of remote sensing data about high resolution is important for the improvement of model calculation and spatial heterogeneity. Based on multi-source remote sensing data, meteorological and soil observations, soil erosion and water yield were calculated using the Revised Universal Soil Loss Equation (RUSLE) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Combining the influencing factors, including slope, precipitation, land use type, vegetation coverage, geomorphological type and elevation, a quantitative attribution analysis was performed on soil erosion and water yield in Beijing’s key ecological functional areas using the geographical detector. The power of each influencing factor and their interaction factors in explaining the spatial distribution of soil erosion or water yield varied significantly among different key ecological function areas. Vegetation coverage was the dominant factor affecting soil erosion in Beijing’s key ecological function areas, explaining greater than 30% of its spatial heterogeneity. Land use type can explain the spatial heterogeneity of water yield more than 60%. In addition, the combination of vegetation coverage and slope was found to significantly enhance the spatial distribution of soil erosion (>55% in various key ecological functional areas). The superposition of land use type and slope explained greater than 70% of the spatial distribution for water yield in key ecological functional areas. The geographical detector results indicated that the high soil erosion risk areas and high water yield areas varied significantly among different ecological functional areas. Thus, in efforts to enhance key ecological functional areas protection, focus should be placed on the spatial heterogeneity of soil erosion and water yield in different ecological functional areas.

How to cite: Gao, J. and Jiang, Y.: Identification of Dominant Factors Affecting Soil Erosion and Water Yield within Key Ecological Functional Areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6839, https://doi.org/10.5194/egusphere-egu2020-6839, 2020.

As the population has grown and human activities have intensified (predominantly agriculture) in the Three Gorges Reservoir area (TGRA) since the 1980s, the substantial areas of arable land on the steep slopes are the main living and farming space for people. Chinese government implemented the Conversion of Cropland to Forest Program from 2001, because of increasing erosion hazard by excessive cultivation and over-felling. To investigate the efficiency of a range of widely recommended program for soil conservation, long-term monitoring in the Heigou watershed was initiated from 2009. Surface runoff, sediment and nutrient transport were measured at watershed. Monitoring has been done to collect sufficient baseline data about soil erosion rate, runoff rate and quantity of soil nutrients (the sum of nutrients in sediment and runoff) in the watershed. The results showed that the soil erosion modulus varied from 138.26 to 355.28 t·km-2·a-1 among between 2016 and 2019, while average soil erosion modulus was 265.8 t·km-2·a-1, lower than the allowable soil loss in this area. The average runoff coefficient, average loss load of total nitrogen and total phosphorus were 53.9%, 11.24 t·km-2·a-1 and 0.19 t·km-2·a-1. Runoff contributed more than 90% of nitrogen loss, and sediment contributed 82.7% of total phosphorus loss. The soil erosion modulus decreased significantly from 2054.06 t·km-2·a-1 to 265.8 t·km-2·a-1 by returning farmland to forest, which was a severe erosion before. Loss load of soil nutrient diversion was high, and TN was excessive for surface water. The ratio of nitrogen to phosphorus would encourage algae growth and eutrophication in TGRA.

How to cite: Huang, Z., Ma, L., Wang, T., and Zeng, L.: Benefit evaluation and annual change of soil and water conservation after converting farmland to forest in Lanlingxi watershed, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7984, https://doi.org/10.5194/egusphere-egu2020-7984, 2020.

EGU2020-12124 | Displays | SSS2.9

Characteristics of Soil nutrient loss under different rainfall pattern in slope plots

Tian Wang, Zhilin Huang, Liang Ma, and Lixiong Zeng

Rainfall intensity and duration directly affect the process of soil nutrient loss. In this paper, long-term, low-intensity rainfall (LL) (58.4mm rainfall, 605min duration) and short-term, high-intensity rainfall (SH) (59.2mm rainfall, 287min duration) were selected to study the pathway for soil nitrogen and phosphorus loss and load differentiation under different rainfall modes by using a slope experiment plot. The results indicated that: (1) The difference between the runoff duration of LL (3410min) and that of SH (410min) was obvious, and the runoff rate was 14.44% and 28.55%, respectively; (2) There were different nutrient concentration distributions. On one hand, the concentration of TN in the surface flow was lower than that in the interflow. The average TN concentration in the surface flow of LL and SH was 13.7 and 16.94 mg·L-1, respectively. The average TN concentration in the interflow of LL and SH was 59.25 and 50.89 mg·L-1, respectively. On the other hand, the concentration of TP in the surface flow was higher than that in the interflow. The concentration of TP ranged from 0.42 to 1.44 mg·L-1 in the surface flow, and from 0.21 to 0.91 mg·L-1 in the interflow; (3) The interflow is the main pathway of nitrogen loss, while the surface flow is the main pathway of phosphorus loss. The respective TN load of LL and SH runoff was 4.04 and 8.49 kg·hm-2, of which the contribution rate of the interflow was 88.49% and 85.54%, respectively. Additionally, the respective TP load of LL and SH runoff was 0.11 and 0.33 kg·hm-2, of which the contribution rate of the surface flow was 65.79% and 70.67%, respectively; (4) The amount of rainfall was almost the same but its intensity was different. High intensity rainfall would cause greater soil nutrient loss. The amount of total nitrogen and phosphorus loss in a sloppy land due to SH rainfall was 2-3 times higher than that due to LL rainfall.

How to cite: Wang, T., Huang, Z., Ma, L., and Zeng, L.: Characteristics of Soil nutrient loss under different rainfall pattern in slope plots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12124, https://doi.org/10.5194/egusphere-egu2020-12124, 2020.

Introducing and establishing sand-binding vegetation, as one of important approaches for combating desertification, has already applied in the ecological restoration and recovery in Mu Us sandy land for more than 60 years. Study on the dynamics of vegetation coverage in Mu Us Sandy Land and its influencing factors is thus a crucial requirement for guiding and establishing sand-binding vegetation. Based on MOD13A2 NDVI time-series data from 2000 to 2015,annual average temperature, annual precipitation, annual growth season precipitation, the land-use/land-cover (LULC) data, and topographic data, explored its dynamics during 2000–2015 and detected their influencing factors by the geo-detector method. The results showed that: (1) the vegetation coverage decrease from east to west in the Mu Us sandy land; (2) from 2000 to 2015,the vegetation coverage in the Mu Us sandy land has been increasing generally, the growth rate was 0.006 /a; (3) the number of pixels with significant increase in vegetation coverage accounted for 33.24% of the study area, meanwhile there was obvious spatial difference, the areas with significant or extremely significant increase of vegetation coverage were mainly distribute in eastern parts; (4) the main influencing factors of vegetation coverage change were annual precipitation, annual growth season precipitation, annual average temperature and LULC. Results indicate that, the influence of climate factors on Mu Us sandy land vegetation coverage was higher than LULC. It is necessary to put forward a suitable vegetation restoration plan under the projected climate change.

How to cite: Gao, Y.: Vegetation Coverage change and its influencing factors in the Mu Us Sandy Land from 2000 to 2015, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8545, https://doi.org/10.5194/egusphere-egu2020-8545, 2020.

It is well known that soils are vulnerable to water erosion in the hilly and ravine region of the Loess Plateau. The soil and water losses induced by water erosion have both the on-site and off-site impacts in this region, which causes the on-site decline of soil fertility and reductions of crop yields on sloping farmlands, and drains the generated overland runoff and transports the eroded soils/sediments to the off-site valleys or rivers to threaten the safety of the river systems. Constructing the check dam in the valley has the long history and is regarded as one of the powerful measures to control the soil and water losses in a watershed in this region. On the one hand, the check dam plays the vital roles in trapping the large amounts of sediment generated from the sloping lands and buffering the drainage of runoff yielded form the slopes. On the other hand, the silted sediments or eroded soils by the check dam can develop the relatively flat lands in the valleys. The check dam-trapped lands can be utilized to grow the crops and become the farmlands in a watershed. The investigation indicates that the contents of soil organic matter, nutrients and soil moisture of he check dam-trapped farmlands are higher than those of the sloping farmlands or the terraces. According to the analysis on the survey data on the crop yield evolutions in the watershed in this region, the crop yields of check dam-trapped farmlands have been significantly higher than those of the sloping farmlands and terraces in the scenario of the similar fertilizer input and crop cultivars due to the optimum soil moisture condition in the check dam-trapped farmlands. However, the check dam-trapped farmlands face some challenges under the climate change. Some of the check dam-trapped farmlands or the grown crops in these kinds of lands are susceptible to the damage arose from extreme rainstorms because of the outdated measures of soil and water conservation for these kinds of farmlands. In some watersheds, the check dam-trapped farmlands are prone to salinization due to the outdated management. Therefore,the protective measures and techniques of harnessing salinization for the check dam-trapped farmlands should be updated over time in order to keep the check dam-trapped farmlands safe and maintain the higher crop yields in those farmlands in the hilly and ravine region of the Loess Plateau.

How to cite: Dang, W., Wang, B., and Dang, T.: Check Dam-Trapped Farmlands on the Hilly and Ravine Region of the Loess Plateau: Soil Fertility, Crop Yields and Faced Challenges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21134, https://doi.org/10.5194/egusphere-egu2020-21134, 2020.

EGU2020-9921 | Displays | SSS2.9

Check dams effects on plant and soil interface immediately after wildfire

Bruno Timóteo Rodrigues, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, and Yang Yu

Installation of check dams is one of the approaches for erosion mitigation on watersheds all around the world, among others soil and vegetation restoration tools. National, regional and local governments have spent in the past, and still currently spend, important funds for basin scale erosion-control schemes (maintenance and new implementations) using numerous check dams. The functions of these structures are diverse and vary depending on the geomorphic context where the structures are built. However, with the number of check-dams increasing to control floods, regulate sediment transport, reduce upstream reach slopes, and stabilize torrent beds, some projects experience disappointing results and project objectives are not achieved due to many different circumstances. Causes of failure include poor construction quality, inadequate check dam location and lack of adequate design criteria. These failures lead to reduced confidence in using check-dams as restoration tools. Moreover, construction of dense networks of check-dams, or alternatively of a few large open structures, implies major economic investments, but a comprehensive evaluation of their long-term effectiveness is still lacking. This work aims to analyse the effect of check dam over soil and plant interface inmediatelly after wildfires. The proposed work pretends to share scientific  evidence of this effect using a study case located in the Mediterranean basin.

How to cite: Timóteo Rodrigues, B., Esteban Lucas-Borja, M., Antonio Zema, D., and Yu, Y.: Check dams effects on plant and soil interface immediately after wildfire, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9921, https://doi.org/10.5194/egusphere-egu2020-9921, 2020.

The present study is an attempt to describe the gross anatomy and histology of the alimentary canal of the economically important Nile fish, Hydrocyon lineatus, which is exclusively a carnivorous fish. The genus Hydrocyan is a member of the family Characidae. The family Characidae is a very generalized group confined to the fresh waters of Africa and South America. The species number about 500, of which only one-fifth are African. Of the twenty African genera only eight are represented in the Nile system. Living specimens of Hydrocyon lineatus were used during this work to study some aspects of the anatomy and histology of the alimentary canal. The general organization and structure of the different layers was found to confirm to the case found in general chordate organization. Nonetheless, it was thought pertinent to conclude that similarity in structure of the caeca to that of the intestine would justify replacement of the old nomenclature from pyloric caeca to intestinal caeca. Again, the presence of an intestinal mucosal fold could possibly be a characteristic diagnostic feature of the group in as much as it could be pleisiomorphic characteristic only occurring in lower groups of chordates.

How to cite: Ahmed, F.: Some Aspects on the Anatomy and Histology of the Alimentary Canal of Hydrocyon lineatus, White Nile, Sudan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11053, https://doi.org/10.5194/egusphere-egu2020-11053, 2020.

EGU2020-10009 | Displays | SSS2.9

Are site characteristics and channel hydro-morphology related with check dam functioning? A case study in México

Manuel Esteban Lucas-Borja, Bruno Gianmarco Carrà, Demetrio Antonio Zema, and Yang Yu

This study presents a comprehensive evaluation of the influence of channel geometry, check dam size, and stream hydrology, as well as site or check dam characteristics including sediment retention capacity and structural conditions of more than 200 check dams recently installed in a large river of Mexico. Analysis was completed using a combination of statistical multivariate techniques (ANOVA and PCA). ANOVA has shown that (i) only check dam material and vegetation cover of the contributing sub-watershed significantly influence check dam conditions and sediment retention capacity, respectively, and (ii) soil type? texture? may play an important role in these check dam characteristics. Conversely, other variables, such as land use and longitudinal slopes of the drained sub-watersheds as well as check dam location have   less influence on check dam sediment storage. PCA has provided two derivative variables related to channel dimensions and vegetation cover , thus demonstrating the influence of these watershed? features on sediment retention behind check dams.

How to cite: Esteban Lucas-Borja, M., Gianmarco Carrà, B., Antonio Zema, D., and Yu, Y.: Are site characteristics and channel hydro-morphology related with check dam functioning? A case study in México, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10009, https://doi.org/10.5194/egusphere-egu2020-10009, 2020.

SSS3.4 – Pedogenic processes of soils and palaeosols across scales - influence of various factors, including imprints of human activities

EGU2020-8786 | Displays | SSS3.4

Mapping and Classification of upland soils formed from sand stone and micaceous schist in Koko/Besse Area in North western Nigeria.

Olufunmilayo Ande, Kayode Are, Olateju Adeyolanu, Adebayo Oke, Oluremi Ojo, Olubunmi Denton, Gabriel Oluwatosin, Omodele Taiwo, Adelabu Lucas, and James Adediran

The study was set up to characterize upland soils of Koko/Besse Local Government Area  in North western Nigeria for sustainable intensification of cropped land. Soil units were identified using flexible grid method. Based on the geology, morphology and  physical  properties the soil units were identified provisional  Soil map was produced in a GIS environment using combination of DEM and field boundary parameters. The major pedogenic processes included ferruginisation, lessivage,  and mineralization. All these processes combined to form ferrallitic soils with  low organic matter content. The soil units on sand stone were generally low in  Cation Exchange Capacity (CEC) (0.88-3.82cmol/kg) while the soils formed from metamorphic rock had low to high CEC (2.92-12.44) The Phosphorus distribution was generally low (0.71–6.96 mg/kg) while Nitrogen content was less than or equal to 0.07%in all the units Soil organic carbon ranged from 0.21-0.95%.  The major pedogenetic processes included, cummilization and  gleization at the lower slopes while ferrolyses and lessivage and ferruginisation with formation of iron stone rubbles and plinthite was dominant at upper slope position of the soils formed from sand stone. While mineralization, salinisation and lessivage were dominant processes with basement complex. The soil units were classified using USDA classification system. The soils on sand stone include  Plinthustults, Kandiustults, Dystrochrept. Natrustalf and Kandiustalf dominated areas underlain by micaceous ferromagnessiun rock. Based on the characterization, sustainable land use will involve use of fortified organic fertilizers, green manure, leguminous cover crops and erosion control measures such as vetiver grass strips

How to cite: Ande, O., Are, K., Adeyolanu, O., Oke, A., Ojo, O., Denton, O., Oluwatosin, G., Taiwo, O., Lucas, A., and Adediran, J.: Mapping and Classification of upland soils formed from sand stone and micaceous schist in Koko/Besse Area in North western Nigeria., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8786, https://doi.org/10.5194/egusphere-egu2020-8786, 2020.

EGU2020-370 | Displays | SSS3.4

Genesis and Evolution of Black Soil in the Eastern Mediterranean

Hussam Hag Mohamed Husein, Wahib Sahwan, Bernhard Lucke, and Rupert Bäumler

Abstract

Knowledge about the genesis and evolution of black soils in the Eastern Mediterranean is vital for sustainable land management as well as for revealing the current and past climate conditions that were decisive for their evolution and development. Hence, it is important to study this type of soil as it only occurs very rarely in the semi-arid region. Answers on the conditions of formation and type of paleoclimate that prevailed during its development can be found in the surrounding environment. In this study, the black soils that currently occur in the Eastern Mediterranean were analyzed in different bioclimatic zones and were found to genetically belong to two soil types: 1-Calcareous black soil (ProperRendzina-Typic Rendolls), 2-Hydromorphic black soil (Haploxerolls). The impact of the relief was obvious on both thickness of the solum and the mollic horizon. Proper Rendzina (Typic Rendolls) occurs on toe slopes and feet slopes, Para-Rendzina (Lithic Rendolls) on shoulders and Chernozems on a flat plain. Regarding the Rendzina, the color reflects the origin of the prevailing parent material from which they are derived: Proper Rendzina forms on limestone, chalk, sandstone, conglomerates, and claystone; Reddish Rendzina on Dolomite and hard limestone, and Grayish Rendzina on Serpentine. It was also found that the Hydromorphic black soils (Haploxerolls, Calcic Chernozems) only occur on calcic marl and lacustrine deposits under saturation conditions and bad drainage in the depressions that formed by the Dead Sea faults. The soil has a thick dark mollic horizon with a high content of organic matter.

Keywords: semi-arid, black soil, Rendzina, Chernozems, eastern Mediterranean.

 

How to cite: Hag Mohamed Husein, H., Sahwan, W., Lucke, B., and Bäumler, R.: Genesis and Evolution of Black Soil in the Eastern Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-370, https://doi.org/10.5194/egusphere-egu2020-370, 2020.

Soil formation is controlled by climate, vegetation, organisms, topography, parent material and time. There are various hypotheses on the relative importance of these individual soil-forming factors. The quantitative influence of each soil-forming factor on the expression and rates of soil-forming processes, and in particular the influence of the different factors in combination, have not yet been sufficiently analyzed. The aim of this study was to quantify the influence of the soil-forming factors on the rates of podzolization. For this purpose, we compiled published data from 46 soil chronosequence studies in a database. These studies contained altogether 231 soil profiles of known age, on which we tested existing hypotheses on the influence of different soil-forming factors. The formation of an E horizon and its increase in thickness over time is one of the characteristic features of Podzol formation. As it is one of the few features that was described in all 46 studies, we used it as an indicator of progressive podzolization. Through statistical analysis, we investigated how E horizon thickness is affected by latitude, longitude, mean annual precipitation, mean annual temperature, range between minimum and maximum monthly temperature, annual number of days with frost, vegetation class (pioneer, deciduous and coniferous), sand content, clay content, and soil age.

Since E horizon thickness exhibited a zero-inflated (semi-)continuous distribution, we opted for a zero-altered gamma (ZAG) model, consisting of a Bernoulli and a Gamma part. The Bernoulli part shows, how the probability of the presence of an E horizon changes with soil age and environmental conditions. The Gamma part of the ZAG model allows for capturing the effects of the covariates on E horizon thickness. Our results indicate that vegetation is the most important factor for both (1) the soil age at which podzolization starts (used indicator: first occurrence of an E horizon), and (2) the rates of podzolization thereafter (used measure: increase of E horizon thickness with soil age). Climatic factors such as mean annual precipitation and range of temperature play subordinate roles. They are important for the soil age at which podzolization starts but less important for the rates of podzolization. We did not identify a significant influence of sand content, neither on the start nor the rates of podzolization. Thus, this statistical assessment of global data provides new insights into the relative importance of the individual soil-forming factors on the onset and temporal course of podzolization.

How to cite: Zwanzig, L., Zwanzig, M., and Sauer, D.: Outcomes of a quantitative analysis of 46 soil chronosequence studies: Vegetation plays the key role for rates of podzolization in most environments., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3154, https://doi.org/10.5194/egusphere-egu2020-3154, 2020.

EGU2020-20494 | Displays | SSS3.4

Aeolian inputs as parent materials for Podzols and terra-rossa soils in a dolomitic landscape in the Italian Alps (Salmezza, BG, Italy)

Michele D'Amico, Enrico Casati, Marco Barcella, and Franco Previtali

On an unglaciated karst landscape in the Lombard Pre-Alps (Salmezza, Bergamo, Italy), an extremely high pedodiversity occurs across a few hectares on Norian dolostone. The rock is locally enriched in well crystallized sand-grained quartz. The climate of the area is suboceanic, with >1500 mm of annual rainfall, and an average temperature around 6-8°C. Rendzic Leptosols and Phaeozems are developed on the steepest slopes, Podzols, Cambisols and Luvisols on flatter areas, while Rhodic Luvisols/Alisols (Terra-Rossa soils) are found in doline cracks and crevices. The sand-grained quartz content of the parent rock seems to be the main soil differentiating factor: where it is abundant (ca. 10-20% in volume), it is responsible for the genesis of Podzols.

We sampled and analyzed 9 soil profiles from the Salmezza area, thus characterizing all pedogenic processes active in the area. In particular, we analyzed standard soil chemical properties (pH, organic carbon, base status and Cation Exchange Capacity, dithionite and oxalate-extractable Fe and Al); we performed a total elemental analysis on most samples and on substrate samples, in order to calculate mass balance and element loss and enrichment; we observed thin sections and performed XRD analysis in powder samples and on the clay fraction of most pedogenic horizons as well.

The parent material is a rather pure dolostone, composed of dolomite, locally enriched in quartz. No other minerals have been observed. Very little amounts of Fe, Al and other elements are thus included in the parent rock (almost completely composed of Ca, Mg and Si), often very close to the analytical detection limit. Ca and Mg were almost completely lost during most soil forming processes in this temperate humid climate, while the enrichment in Si, Fe, Al varies broadly amidst the different soils, thanks to different pedogenic processes. Fe and Al, in particular, were up to 120 times more concentrated in Bt and Bhs horizons than in the parent rock. The ratios between stable elements in rocks and soils verifies important inputs of aeolian materials. The values are, however, different also amidst different soils, so an univocal origin of aeolian materials cannot be hypothesized. The mineralogy of the clay fraction is also strongly modified by pedogenesis, so that each soil type is characterized by a different mineralogical assemblage, making it difficult to detect signatures of specific aeolian origins as well.

How to cite: D'Amico, M., Casati, E., Barcella, M., and Previtali, F.: Aeolian inputs as parent materials for Podzols and terra-rossa soils in a dolomitic landscape in the Italian Alps (Salmezza, BG, Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20494, https://doi.org/10.5194/egusphere-egu2020-20494, 2020.

EGU2020-501 | Displays | SSS3.4

Influence of environmental parameters on bacterial lipids in soils from the French Alps: implications for paleo-reconstructions

Pierre Véquaud, Sylvie Derenne, Sylvie Collin, Christelle Anquetil, Jérôme Poulenard, Pierre Sabatier, and Arnaud Huguet

Microorganisms can modify the composition of their lipid membrane in response to variations in environmental parameters. This is the case for bacterial lipids such as glycerol dialkyl tetraethers (GDGT) and 3-hydroxy fatty acids (3-OH FAs), both used for temperature and pH reconstructions in terrestrial paleoenvironmental studies. However, a major concern with these proxies is that their structure may be influenced by other environmental parameters than temperature or pH. The present study aimed at identifying and quantifying the influence of environmental parameters such as soil moisture, vegetation types and soil types on bacterial GDGTs and 3-OH FAs. These lipids were analyzed in 49 soil samples collected between 200 m and 3,000 m altitude in the French Alps. The soils cover a wide range of temperature (0 °C to 15 °C) and pH (3 to 8) and are representative of the diversity of soils and vegetation encountered along the investigated altitudinal transects. Using this new well-documented and unique dataset, the GDGT-pH correlation was confirmed, but the one between 3-OH FAs and pH was lower than in previous studies. For the temperature, correlations were lower than in previous studies for the GDGTs and absent for the 3-OH FAs. These observations could be explained thanks to different statistical analyses. Redundancy analysis (RDA) showed that pH is the main driver of the variability of 3-OH FAs and GDGTs, explaining 20.5 % and 56 % of the distribution of these bacterial lipids, respectively, followed by the altitude (8 % influence on the distribution of 3-OH FAs, and 11 % on GDGTs) and granulometry (5 % impact on 3-OH FAs and 7.5 % on GDGTs). Taken together, these results highlight the major influence of the vegetation cover and soil types on the distribution of bacterial lipids. Indeed, we quantified and explained for the first time the impact of the different environmental factors (temperature, vegetation, soil type…) on the distribution of bacterial lipids. This novel comprehension of the impacts of environmental parameters will allow to refine the use of proxies based on these compounds. These results pave the way for new types of applications of GDGTs and 3-OH FAs as environmental proxies in paleosoils, peat or lacustrine sediments.

How to cite: Véquaud, P., Derenne, S., Collin, S., Anquetil, C., Poulenard, J., Sabatier, P., and Huguet, A.: Influence of environmental parameters on bacterial lipids in soils from the French Alps: implications for paleo-reconstructions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-501, https://doi.org/10.5194/egusphere-egu2020-501, 2020.

EGU2020-15848 | Displays | SSS3.4

Complex soil mass redistribution along a catena using meteoric and in-situ 10Be as tracers

Francesca Calitri, Markus Egli, Michael Sommer, Dmitry Tikhomirov, and Marcus Christl

In hilly and mountainous landscapes, the bedrock is actively converted to a continuous soil mantle. The bedrock-soil interface lowers spatially at the soil production rate, and the soil acts as a layer removing sediment produced locally and transported from upslope. Forested soils of a hummocky ground moraine landscape in Northern Germany exhibit strongly varying soil thicknesses with very shallow soils on crest positions and buried soils at the footslope. We explored the explanatory power of both 10Be forms (in situ and meteoric) for forest soils on a hillslope to shed light into the complex mass redistribution. Our main research questions were: how do meteoric and in-situ 10Be compare to each other? What do they really indicate in terms of soil processes (erosion, sedimentation, reworking)? By using both types of 10Be, the dynamics of soils and related mass transports should be better traceable. Both 10Be forms were measured along three profiles at different slope positions: Hydro1 (summit), Hydro3 (shoulder), Hydro4 (backslope). Furthermore, a buried horizon was found in the profile Hydro4 at 160 cm depth and 14C-dated. The distribution pattern of meteoric 10Be of Hydro4 shows an inverse exponential depth profile, and an almost uniform content of in-situ 10Be along the profile. Meteoric 10Be indicates on the one hand that a new soil was put on top of an older, now buried soil. On the other hand, meteoric 10Be is involved in pedogenetic processes and clearly exhibits clay eluviation in the topsoil and clay illuviation in the subsoil. The uniform content of the in situ 10Be shows soil mixing that must have occurred during erosion and sedimentation. The14C dated buried soil horizon indicates a deposition of eroded soil material about 7 ka BP. Consequently, an increase in the in-situ 10Be content towards the surface should be expect which however was not the case. The reason for this is so far unknown. Radiocarbon dating and 10Be data demonstrate that strong events of soil mass redistribution in Melzower Forest are mainly a result of ancient natural events. Further measurements of fallout radionuclides (239+240Pu) showed no erosion for the last few decades in the same catchment.

How to cite: Calitri, F., Egli, M., Sommer, M., Tikhomirov, D., and Christl, M.: Complex soil mass redistribution along a catena using meteoric and in-situ 10Be as tracers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15848, https://doi.org/10.5194/egusphere-egu2020-15848, 2020.

EGU2020-7116 | Displays | SSS3.4

Ending the Cinderella Status of Terraces and Lynchets in Europe

Daniel Fallu, Tony Brown, Kevin Walsh, Sara Cucchiaro, Paolo Tarolli, Pengzhi Zhao, Kristof van Oost, Lisa Snape, Andreas Lang, Rosa-Maria Albert, Inger Alsos, and Clive Waddington

Terraces and lynchets are not only ubiquitous worldwide and within Europe but can provide increasingly important Ecosystem Services (ESs), which may be able to mitigate aspects of climate change. They are also probably a major cause of non-linearity between climate and erosion rates in agricultural systems as noted from alluvial and colluvial studies. In this paper we review the theoretical background of terraces and lynchets, present a modified classification, and show how new techniques are transforming the study of these widespread and often ancient anthropogenic landforms. Indeed the problems of dating terraces and also the time-consuming nature and costly surveys has held back the archaeological study of terraces until now. The applicable suite of techniques available now includes the creation of Digital Terrain Models (DTMs) from Structure from Motion (SfM) photogrammetry, Airborne and Terrestrial Laser Scanning (ALS-TLS); the use of OSL and pOSL, pXRF, FTIR, phytoliths, calcium oxalates from plants and potentially sedaDNA. Examples will be drawn from a recently started ERC project (TerrACE; ERC-2017-ADG: 787790, 2018-2023; https://www.terrace.no/) which is working at over 10 sites in Europe ranging from Norway to Greece.

This paper explains the development of a new holistic approach to terrace archaeology driven by a modern conceptualisation of human-landscape relationships, and facilitated by new scientific developments. We explain the rationale for our choice of case study areas, for example, the range of bio-climatic zones. In addition, this multi-regional approach allows us to address contingent regional and local historical/socioeconomic processes; from demographic fluctuations to the development of specific forms of agricultural techniques. Examples of DTM creation, field analyses and selected results will be given from Martleburg in Belgium and sites in Italy. We will then move on to explain how this combination of a comprehensive suite of modern field and laboratory methods and an interpretive strategy informed by the environmental humanities will yield exciting and groundbreaking results.

How to cite: Fallu, D., Brown, T., Walsh, K., Cucchiaro, S., Tarolli, P., Zhao, P., van Oost, K., Snape, L., Lang, A., Albert, R.-M., Alsos, I., and Waddington, C.: Ending the Cinderella Status of Terraces and Lynchets in Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7116, https://doi.org/10.5194/egusphere-egu2020-7116, 2020.

EGU2020-12908 | Displays | SSS3.4

Palaeoenvironmental insights into Pliocene palaeosols of Tuscany (Italy).

Anna Andreetta, Marco Benvenuti, and Stefano Carnicelli

Pliocene has a key role in assessing future climate impact and specifically, the mid-Piacenzian is considered the most recent period in Earth’s history in which temperatures reached values similar to those predicted for the end of the 21st century, about 2°–3°C warmer globally on average than today. Palaeopedology offers a great potential for elucidating high resolution, deep time palaeoclimate records. Thus, we aimed to investigate palaeosols as suitable archives for reconstructing surface processes, paleo-ecosystem structures and local- to global-scale paleoclimate patterns in the Pliocene.

A favourable opportunity to study soils developed in the Early and in the Late Pliocene was provided on two alluvial sediments in Tuscany (Central Italy). Piacenzian palaeosol-stratigraphic sequences were compared with previously known Zanclean stratigraphic records. A multi-proxy approach, combining stratigraphic and paleopedological evidence, was adopted to produce more robust palaeoenvironmental insights. Field observations were related with quantitative techniques based on geochemical and isotopic analysis, to evaluate pedogenic processes, past-climate and palaeovegetation.

Pedological evidence of two contrasting environments were present at the two sequences. Strong redoximorphic features such as low-grade plinthite were observed in the Zanclean-age soil, suggesting that these soils evolved in humid palaeoclimate in a time span of a few thousand years. On the other hand, the Piacenzian-age soils of central Tuscany represented rhythmic and short intervals of pedogenesis, connected with sea level highstands. The best developed palaeosols show very well-expressed Calcic horizon. Pedogenic carbonates are typically associated with well-drained soil profiles in sub-humid, semi-arid and arid climates characterized by relatively low rainfall and high evapotranspiration. This suggest that Mediterranean-type rainfall patterns may have prevailed in the warmest intervals of Late Pliocene. The studied Piacenzian soils with carbonates were weak- to moderated-developed based on the characteristics of carbonate accumulation that are II and III stage moving from the ancient to the recent ones, suggesting a range of development from 103 to 104 years.

The estimates of the mean annual precipitation (MAP), based on weathering indices (CIA-K) and geochemical climofunctions, further allowed us to solidly inferred that substantial differences in climate conditions leaded to the divergent pedogenesis pathways, even considering the large difference in time as a factor (about one order of magnitude) between the two outcrops.

How to cite: Andreetta, A., Benvenuti, M., and Carnicelli, S.: Palaeoenvironmental insights into Pliocene palaeosols of Tuscany (Italy)., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12908, https://doi.org/10.5194/egusphere-egu2020-12908, 2020.

EGU2020-18674 | Displays | SSS3.4

When appearances lie: micropedology of palaeosol markers in a Pleistocene sedimentary record from central Po Plain

Guido Stefano Mariani, Giovanni Muttoni, Gianluca Norini, Fulvia S. Aghib, Roberto De Franco, Andrea Piccin, and Andrea Zerboni

Environmental and time-scale reconstructions of deep sedimentary sequences are based on a wide variety of markers to highlight and characterise environmental variations within a homogeneous sedimentary setting. Moreover, in the lack of reliable age constrain, it is often the only way to highlight timelines and correlations between sequences collected in different places. Within this set of potential markers, palaeosols developed on terrestrial sedimentary beds during biostasy conditions stand out. These evidences are often useful for both their visibility within a core and their strong environmental implications. In continental basins characterized by glacial contributions, they also represent potential time information linked to the fluctuation of glacial and interglacial periods. However, the interpretation of sedimentary markers in cores using visual identification to the naked eye can possibly lead to the wrong conclusions: this method for palaeosol identification is not straightforward and prone to the production of false positives. We conducted detailed micromorphological investigations on a series of markers in a core from the central-northern portion of the Po Plain foreland basin, proximal to the Southern Italian Alps which fed the basin during the Pleistocene.

Seventeen sedimentary anomalies were identified during the visual description on the basis of colours and textures as potential palaeosols and were sampled to be studied in thin section. The study allowed to recognise evidences of soil-forming processes, which could characterise the past pedogenesis as well as their environment. From micromorphological analysis, only 4 samples showed visible signs of pedogenesis or post depositional weathering caused by proximity to the surface. Observed elements range from pedoplasmation to pedogenetic features related to redoximorphic processes and clay illuviation, thus allowing to interpreted them as truncated palaeosols. Conversely, 6 samples showed forms of transport of soil material, either sedimentary or in solution, but did not represent soils formed in situ; these can be interpreted as pedorelicts. Of the remaining samples, 5 were calcrete potentially related to groundwaters, and 2 represented accumulations of Fe/Mn oxides in wetland conditions (“bog iron”). These results suggest a reconsideration of the role of palaeosols as stratigraphic markers in the study of subsurface sedimentary sequences. Precise identification and microstructure characterization are necessary to avoid possible misinterpretations and correlations among cores.

How to cite: Mariani, G. S., Muttoni, G., Norini, G., Aghib, F. S., De Franco, R., Piccin, A., and Zerboni, A.: When appearances lie: micropedology of palaeosol markers in a Pleistocene sedimentary record from central Po Plain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18674, https://doi.org/10.5194/egusphere-egu2020-18674, 2020.

EGU2020-16957 | Displays | SSS3.4

Luminescence age constraints on the Pleistocene-Holocene transition recorded in loess sequences

Daniela Constantin, Stefana-Madalina Sacaciu, Viorica Tecsa, Anca Avram, Robert Begy, Szabolcs Kelemen, Daniel Veres, Cristian Panaiotu, Liping Zhou, Joseph Mason, Slobodan Marković, Ulrich Hambach, Natalia Gerasimenko, and Alida Timar-Gabor

Here we investigate the timing of the last glacial loess - Holocene soil transition recorded in loess-paleosol sequences across the Chinese Loess Plateau, the SE European loess belt and the Central Great Plains, Nebraska, USA by applying comparative luminescence dating techniques on quartz and feldspars. Equivalent dose measurements were carried out using the single-aliquot regenerative-dose (SAR) protocol on silt (4–11 μm) and sand-sized (63–90 μm and coarser fraction when available) quartz. Feldspar infrared stimulated luminescence (IRSL) emitted by 4–11 μm polymineral grains was measured using the post IR-IRSL290 technique.

The paleoenvironmental transition from the last glacial loess to the current interglacial soil was characterized using magnetic susceptibility and its frequency dependence. Based on the OSL ages and the threshold of the magnetic signal enhancement the onset of soil formation started around Termination 1 (~17 ka in the North Atlantic) as observed in radiocarbon-dated regional benthic δ18O stacks (Stern and Lisiecki, 2014) but before the stratigraphic Pleistocene/Holocene transition dated at 11.7 ka in ice core records (Svensson et al., 2008).

No major hiatuses in ages are identified in the investigated sites. A change in the sedimentation rate is generally observed at the Pleistocene-Holocene transition and no significant sedimentation change during the Holocene. Sedimentation rates of around 6 cm/ka are determined for the Holocene soil in most of the sites investigated.

The magnetic susceptibility indicates a gradual increase in pedogenesis after Termination 1 (∼17 ka in the North Atlantic). Based on this, we infer that the upbuilding soil formation prevailed over topdown soil formation during the Pleistocene-Holocene transition in the investigated sites (Roberts, 2008).

 

References

Roberts, H.M., 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37, 483-507.

Svensson, A., Andersen, K.K., Bigler, M., Clausen, H.B., Dahl-Jensen, D., Davies, S.M., Johnsen, S.J., Muscheler, R., Parrenin, F., Rasmussen, S.O., Röthlisberger, R., Seierstad, I., Steffensen, J.P., Vinther, B.M., 2008.A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4, 47-57.

Stern, J.V., Lisiecki, L.E., 2014. Termination 1 timing in radiocarbon-dated regional benthic δ18O stacks. Paleoceanography 29, 1127-1142.

 

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme ERC-2015-STG (grant agreement No [678106]).

How to cite: Constantin, D., Sacaciu, S.-M., Tecsa, V., Avram, A., Begy, R., Kelemen, S., Veres, D., Panaiotu, C., Zhou, L., Mason, J., Marković, S., Hambach, U., Gerasimenko, N., and Timar-Gabor, A.: Luminescence age constraints on the Pleistocene-Holocene transition recorded in loess sequences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16957, https://doi.org/10.5194/egusphere-egu2020-16957, 2020.

EGU2020-11167 | Displays | SSS3.4

A New Continuous Terrestrial Archive of Environmental Change during the Last Interglacial/Glacial Cycle – The Loess-Palaeosol-Sequences of the Schwalbenberg (Middle Rhine Valley, Germany)

Peter Fischer, Olaf Jöris, Andreas Vött, Kathryn Fitzsimmons, Mathias Vinnepand, Ulrich Hambach, Charlotte Prud'homme, Philipp Schulte, Frank Lehmkuhl, Christian Zeeden, and Wolfgang Schirmer

Over the last interglacial/glacial cycle climate variability and forcing in the northern hemisphere is best documented in high resolution from marine and ice core records. The response of land surface processes to climate over this period, however, remains poorly defined. Understanding landscape response to climate change is nevertheless of critical importance not only because as humans we live on and interact with the land, but also in order to identify potential feedbacks and forcings between land and atmosphere which cannot be ascertained from marine and ice core records. In this context, Loess-Palaeosol-Sequences (LPS) are outstanding terrestrial archives allowing detailed reconstruction of palaeoclimate and palaeo­environ­mental changes. However, regarding their complexity, LPS represent polygenetic and multiphase archives over different spatial and temporal scales. Consequently, a solid understanding of geomorphological and pedogenic processes involved in LPS formation, and the interplay with changes in ecological conditions, must be considered before LPS can be correlated with other archives.

Against this background, extensive fieldwork has been carried out at the Schwalbenberg site near Remagen (Middle Rhine valley, Germany) combining geophysical exploration with Direct Push borehole geophysical measurements and sediment coring. We will present a first comprehensive data set for the Schwalbenberg key area based on a transect from up- to downslope. The integration of grain size, organic carbon and weathering indices from long sediment cores (up to 30 m) and profile sections contribute to a better understanding of processes involved in the Schwalbenberg LPS formation. These data combined with age constraints based on radiocarbon and luminescence dating lead to a first robust chronostratigraphic model of the Last Interglacial/Glacial Cycle suggesting the Schwalbenberg LPS to be a terrestrial archive of palaeoclimate variations in phase with northern hemispheric ice and marine records.

How to cite: Fischer, P., Jöris, O., Vött, A., Fitzsimmons, K., Vinnepand, M., Hambach, U., Prud'homme, C., Schulte, P., Lehmkuhl, F., Zeeden, C., and Schirmer, W.: A New Continuous Terrestrial Archive of Environmental Change during the Last Interglacial/Glacial Cycle – The Loess-Palaeosol-Sequences of the Schwalbenberg (Middle Rhine Valley, Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11167, https://doi.org/10.5194/egusphere-egu2020-11167, 2020.

EGU2020-19814 | Displays | SSS3.4

Soil record of the Holocene paleofires at the north of European Russia

Nikita Mergelov, Dmitry Petrov, Andrey Dolgikh, and Elya Zazovskaya

Soils and sediments serve as complementary sources of detailed information on paleofires in various ecosystems. Despite the abundance of charcoal material entrapped in soils they remain relatively less studied pyrogenic archives in comparison to the sedimentary paleofire records (e.g. lacustrine and peat deposits), and that is especially the case for the most territory of Russia. We report here on the numerous soil archives of the Holocene forest fires at the Kola Peninsula (66.347°N, 37.948°E) and the north of Arkhangelsk region (64.747°N, 43.387°E) in Russia. Series of buried Podzols (up to ten successive profiles) separated by the distinct charcoal layers were revealed in specific geomorphological traps like the thermokarst depressions inherited from the early stages of moraine sediments formation (Kola Peninsula), as well as in active and paleokarst sinkholes in carbonate and sulfate rocks (Arkhangelsk region). The maximum temporal depth of archives was estimated as 10261±40 cal yr BP for the key site in Arkhangelsk region, with up to 12 major pyrogenic events recorded at the local scale. Soil formation at the inter-pyrogenic stages maintained a uniform direction for at least 10 thousand years and profiles of Podzols were regularly replicated at all the key sites. We employ here a combination of soil morphological hierarchical analysis, study of geomorphological processes leading to the burial of pyrogenic carbon, 14C dating of charcoal and TOC derived from the soil organic matter, carbon and nitrogen isotope ratio mass spectrometry and anthracomass concentrations analysis to extract a set of paleoenvironmental information from these soil archives. The study of complementary pyrogenic archives in the three-component system of the karst landscape (including bottom and slopes of the funnels, as well as the flat elevated areas between them) helped to mitigate overestimation or underestimation of the anthracomass concentration and allowed to acquire a detailed dataset on paleopyrogenic events at the local scale. This study is supported by the Russian Foundation for Basic Research, Project No. 19-29-05238.

How to cite: Mergelov, N., Petrov, D., Dolgikh, A., and Zazovskaya, E.: Soil record of the Holocene paleofires at the north of European Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19814, https://doi.org/10.5194/egusphere-egu2020-19814, 2020.

EGU2020-270 | Displays | SSS3.4

Soils in archaeological structures of the southern Levant: archives of Holocene dust dynamics

Bernhard Lucke, Amir Sandler, Kim André Vanselow, Hendrik Bruins, Nizar Abu-Jaber, and Rupert Bäumler

Ruins and archaeological structures in the southern Levant are often covered by initial soils that developed on debris. The fine grain size fractions of these soils may stem from aeolian sediments, and the ruins could serve as effective dust traps. The physical parameters and chemical composition of archaeological soils in hilltop ruins, cleanout spoils of cisterns, and ancient runoff-collecting terraces were determined in the Petra region in southern Jordan and the northern Negev in Israel. Different types of ruins could not be distinguished with regard to substrate composition. This indicates a predominance of aeolian processes for primary sedimentation, while fluvial processes only re-distribute aeolian material. In the Petra region, a significant local contribution from associated weathered rocks could be observed. Compared to modern settled dust, archaeological soils in southern Jordan are enriched with various major and trace elements associated with clays and oxide coatings of fine silt particles. In-situ weathering seems minimal, but preferential fixation of silt and clay by surface crusts (similar to desert pavements), and a role of moisture in sedimentation processes lead to increased sedimentation of calcareous silt. Contribution of rocks is negligible in the Negev due to greater rock hardness and abundant biological crusts sealing surfaces. Archaeological soils in the Negev and current settled dust consist of complex mixtures of local and remote sources, including significant portions of recycled material from paleosols. Archaeological soils in the southern Levant are archives of Holocene dust sources and aeolian sedimentation processes, with accretion rates exceeding those of Pleistocene hilltop loess in the Negev. Comparison with Pleistocene paleosols suggests that dust sources did not change significantly, but disappearance of snow could have reduced dust accumulation during the Holocene.

How to cite: Lucke, B., Sandler, A., Vanselow, K. A., Bruins, H., Abu-Jaber, N., and Bäumler, R.: Soils in archaeological structures of the southern Levant: archives of Holocene dust dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-270, https://doi.org/10.5194/egusphere-egu2020-270, 2020.

EGU2020-17507 | Displays | SSS3.4

Soils and landscapes as legacies of the sugar industry land use

Raisa Gracheva, Igor Zamotaev, Yulia Konoplyanikova, Natalia Telnova, and Elena Belonovskaya

The sugar industry has been widespread in the world for centuries, accumulating huge amounts of production waste. The development of modern technologies for sugar beet processing has led to the abandonment of dumps and sumps; not all of them were remediated later. In Russia, the industrial production of sugar from sugar beets was established in the early 19th century. For the first time, soils and landscapes formed on abandoned sites of sugar production waste in the Chernozem zone of Russia were studied. The distribution and chronological sequence of abandoned sites were identified using space images and field observation. Sugar production wastes discharged into sumps and landfills contained mainly carbonic lime (СаСО3), caustic lime Ca(OH)2 and organic material, and an admixture of nitrogen, phosphorus potassium and sulfur (about 1-3%). It was revealed that in about 50 years, alkaline soil- geochemical landscapes were formed, which are unusual in the study area. Series of ponds temporarily filled with rainwater – former waste sumps – are covered with dense reed beds (Phragmítes austrális); there, strongly alkaline (pH ≥9), rich in organic matter and bioturbated soils with a thickness of up to 50-60 cm are formed. They can be attributed to Garbic Technosols (Carbonic), but their classification position in WRB needs to be clarified. Reed has spread widely in the surrounding water bodies and rivers; newly formed landscapes enrich waters with nutrients, contributing to their eutrophication. Soil mantle is also complicated by Technosols of industrial sites of sugar factories, soils in the remediated and no-remediated landfills, and soils irrigated with sugar mills' wastewater. All these soils are repositories of large volumes of organic carbon. The study of newly formed soils and landscapes, overgrowing of dumps and sumps is extremely important both for nature conservation and for understanding the seasonal patterns of carbon dioxide emissions from accumulations of organic substances. Integrated soil-geochemical and geobotanical studies of areas affected by the sugar industry can be pioneers, among other things, to expand the horizons of soil and geobotanical classification.

The work was financially supported by the Russian Foundation for Basic Research, project № 19-29-05025-mk.

How to cite: Gracheva, R., Zamotaev, I., Konoplyanikova, Y., Telnova, N., and Belonovskaya, E.: Soils and landscapes as legacies of the sugar industry land use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17507, https://doi.org/10.5194/egusphere-egu2020-17507, 2020.

EGU2020-2622 | Displays | SSS3.4

Harmonisation of a large-scale historical database with the principles of the World Reference Base for Soil Resources

Tereza Zádorová, Jan Skála, Vít Penížek, Daniel Žížala, and Aleš Vaněk

The possibility of an adequate use of data and maps from historical soil surveys depends, to a large measure, on their harmonisation. Legacy data originating from a large-scale national mapping campaign, “Systematic soil survey of agricultural soils in Czechoslovakia (SSS, 1961–1971)”, were harmonised and converted according to the World Reference Base 2014 (WRB). Applying three different methods of taxonomic distance computation and quantitative analysis and reclassification of the selected soil properties, the conversion of so-called Basic soil representatives (BSR) – mapping soil units providing information about soil (type, subtype, variety) and lithology (parent material, texture, soil depth, skeleton content) – to their counterparts in the WRB has been effectuated. The results proved the good potential of the used methods for soil data harmonisation. The values of taxonomic distance correspond to the different concepts and settings of the soil classes in the harmonized soil classifications. Classes with specific and narrowly defined diagnostics, often with one or few strong and distinctive features, show close distances with their counterparts, and, often, have only one relevant counterpart. On the contrary, soils with variable soil properties were approximating several related units. The additional information on the soil skeleton content, texture, depth and parent material showed the potential in the specification of some units, though the harmonisation of the soil texture turned out to be problematic due to the different categorisation of soil particles. The resulting soil classes have been presented for each polygon (so-called soil district) as i) one to one conversion, when each BSR is converted to one, most probable, WRB soil class (Reference soil group, RSG) and ii) soil association corresponding to the three closest RSGs. The validation of the results in the study region showed an average overall accuracy for a one-to-one (59.4 %) conversion and a very good accuracy (83.8 %) for the polygons presented as soil associations. The conversion accuracy differed significantly in the individual soil units, and ranged from 92 % in Fluvizems to 0 % in Technosols and Histosols. The extreme cases of a complete mis-classification can be attributed to inconsistencies originating in the historical database and maps. The study showed the potential of modern quantitative methods in the legacy data harmonisation and also the necessity of a critical approach to historical databases and maps.

Supported by the Ministry of Agriculture of the Czech Republic, Project No. QK1820389.

How to cite: Zádorová, T., Skála, J., Penížek, V., Žížala, D., and Vaněk, A.: Harmonisation of a large-scale historical database with the principles of the World Reference Base for Soil Resources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2622, https://doi.org/10.5194/egusphere-egu2020-2622, 2020.

EGU2020-4178 | Displays | SSS3.4

Soils and relief relationships in subalpine grasslands in the Central Pyrenees (NE, Spain)

David Badía-Villas, Lucía Buendía-García, Luis Alberto Longares-Aladrén, José Luis Peña-Monné, and Clara Martí-Dalmau

On two accumulation levels, separated by an unevenness up to 2 m, two contrasted plant communities can be differentiated in subalpine stage of the Pyrenees: the dense tussock-forming grass Nardus stricta, at the upper level (L1), and the open chalk grasslands at the lower level (L2). In order to confirm the soil-relief-grasslands relationships, we analyzed and compared soil pedogenesis and properties in both accumulation levels. In addition, we classify the soils following WRB and ST systems and we discuss the finesse of both taxonomies in these high mountain environments. The work has been carried out at 1900 masl, in the Ordesa and Monte Perdido National Park (PNOMP), in the summer grasslands site of La Estiva (Fanlo, Central Pyrenees, NE Spain). Five soil pits were studied in every accumulation level (L1 and L2) for a side-by-side comparison.

            The study of soils in the two levels of accumulation reveals a series of differences in their genesis, properties and soil classification. The accumulation of organic matter and lixiviation are the dominant edafogenetic processes in L1, to which we must add the rejuvenation by gully erosion in L2. Soils at L1 and L2 shared many physical properties as a fine granulometry, with a homogeneous particle-size distribution with depth. In both levels, the soils lack carbonates, even though limestones are the parental material. The soils in L1 have a greater thickness and, thus, a higher water holding capacity than in L2. In relation to chemical properties, soils in L1 have a significantly lower pH, a lower base saturation, and lower available calcium content than in L2, reflecting a more intense leaching process, consistent with a longer period of slope stability. Over L1 with Nardus mat-grasslands, the main soil is classified as Orthoeutric Cambisols (Clayic, Humic), and the soil over L2, with chalk-grasslands, as Hypereutric Leptosols (Loamic, Ochric). Soil taxonomy System (USDA), giving more weight to the temperature regime, classify both soils as Haplocryept, at the level of great group, separating them at the subgroup level as Typic Haplocryept (L1) and Lithic Haplocryept (L2), according to the depth at which limestone appears (lithic contact). Definitely, the microtopograhy and geomorphologic context, is linked to the pedodiversity, which goes hand in hand with plant diversity in this subalpine environment.

How to cite: Badía-Villas, D., Buendía-García, L., Longares-Aladrén, L. A., Peña-Monné, J. L., and Martí-Dalmau, C.: Soils and relief relationships in subalpine grasslands in the Central Pyrenees (NE, Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4178, https://doi.org/10.5194/egusphere-egu2020-4178, 2020.

EGU2020-5661 | Displays | SSS3.4

The presence of silty mantles in Northcentral Appalachian, USA soils and their relevance to pedology

Patrick Drohan, Thomas Raab, and Florian Hirsch

Across the northcentral Appalachians, USA, high silt content soils are found as silty mantles or deep, high silt content pedons. The origin of such soils can be attributed to additions of wind-blown dust deposits (WBD) or local parent materials (i.e. shales or siltstone lithology). Previous research on silt soils originating specifically from WBD attributed to late marine isotope stage (MIS) 2 loess has often been isolated to drainageways receiving outwash from deglaciation. We hypothesize that thin (<25-50 cm) silty mantles, and some deep silt soils occurring farther from outwash systems, are also indicative of post MIS 2 WBD and their extent is widespread. To test this hypothesis, we evaluated over 900 pedons from an ~119,280 km2 area of the northcentral Appalachians, USA to: (i) develop a particle size signature indicative of soils largely derived from WBD versus local parent materials, (ii) determine the potential depth of WBD additions to soils, and (iii) document the spatial extent of WBD versus deep, high-silt content soils across part of the region. Results suggest that silty mantles are prevalent across the study area and have a particle size signature indicative of loess and the mean depth of WBD additions to soils is ~50 cm.  Below 50 cm, local lithology or pedogenesis more influences particle size trends.  Pedon results were applied in a spatial modeling effort using the USA Soil Survey Geographic Database (SSURGO) to document the extent of silty mantles (over non-silt sourced parent materials) and deep, high silt content soils.  Model results indicate silty mantles are common on stable landscape positions or positions that accumulate sediments (depressions or valleys). Aspect dependent deposition appears tied to sources of WBD deposits, and deposits correspond strongly to regional studies of WBD deposits derived from loess. Last, proximity to topography, which can act as a trap for WBD, appears to be a key variable explaining silty mantle and deep, high-silt content soil occurrence. 

How to cite: Drohan, P., Raab, T., and Hirsch, F.: The presence of silty mantles in Northcentral Appalachian, USA soils and their relevance to pedology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5661, https://doi.org/10.5194/egusphere-egu2020-5661, 2020.

EGU2020-21440 | Displays | SSS3.4

Development of Podzols in relation to Jenny's soil formation factors

Tiina Törmänen, Antti-Jussi Lindroos, Hannu Ilvesniemi, and Mike Starr

Podzols are considered to be the most common upland forest soil type in Finland. However, there have only been a few studies that have examined the degree of podsolization in Finnish soils. More detailed information about this dominating process in our soils can be utilized in other kinds of environmental research such as the impacts of climate change, carbon and nutrient cycling, and the degradation of soil and water systems.

We studied how the intensity of podsolization is related to Jenny’s classic five soil formation factors: climate, parent material, topography, biotic and time. The degree of podzolization of 86 soil profiles distributed over the whole of Finland was described using four podzolization indices: E-horizon thickness, B-horizon rubification, profile Al+Fe oxide eluviation-illuviation, and their sum (Podzolization Development Index, PDI). The soil profiles, selected out of over 600 soil profiles in a national database, met the World Reference Base for Soil Resources (WRB) criteria for them to be classified as Podzols. The relationship between the podzolization indices and a number of site and soil variables (continuous and categorical) describing Jenny’s soil formation factors were then evaluated. While podzolization intensity was found to be related to soil profile age, elevation, longitude, forest site type, aspect, Sphagnum moss cover and B-horizon texture, the individual relationships were weak. However, looking at the combined effect of all the variables using Partial Least Squares regression analysis, which is unaffected by multicollinearity among the predictor variables, nearly 70% of the measured PDI index could be explained.

How to cite: Törmänen, T., Lindroos, A.-J., Ilvesniemi, H., and Starr, M.: Development of Podzols in relation to Jenny's soil formation factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21440, https://doi.org/10.5194/egusphere-egu2020-21440, 2020.

EGU2020-21125 | Displays | SSS3.4

Recovery of forest patches in central Mongolia after fire: Which role does soil hydrology play?

Florian Schneider, Michael Klinge, Jannik Brodthuhn, and Daniela Sauer

The distribution of forest patches in the foreststeppe of central Mongolia reflects the interplay of several environmental factors that together control the vegetation pattern of the landscape. Since the mean annual precipitation of this semiarid area rarely exceeds 300 mm, the existence of forest strongly depends on the hydrological properties of the system. Only north-facing slopes provide suitable conditions for the growth of larch trees (Larix sibirica Ledeb.) due to their reduced evapotranspiration. Plains and south-facing slopes are covered by open steppe.However, after disturbance of the forest patches by fire, the regrowth of larch trees does not proceed equally in all areas. During fieldworkat the northern edge of the Khangai Mountains, we identified areas that seemed to havesimilar site conditions but neverthelessshowed different regrowth of larch trees after fire, ranging from intensive regrowth to no regrowth at all.Thisobservation stimulated us to carry out a comprehensive study of soils, vegetation and landscape development in field campaigns in 2017 and 2018, followed by laboratory analyses of soil samples.Through this work, we aimed at identifying the role of soil hydrology for forest succession in this sensitive ecotone.

We described and sampled 57 soil profiles, including sites (i) under forest, (ii) under steppe, (iii) on sites with succession after forest fire, (iv) on sites without succession after forest fire. In the field, we carried out measurements of water conductivity (by use of a compact constant head permeameter). In the laboratory, we analyzed particle size distribution and carried outkfand pF measurements.

These analyses showed that the dominant grain size of the soils was sand, whereby soils with forest regrowth had slightly loamier texture than those without regrowth. We concluded that already slightly loamier texture may be important for water storage during dry periods and thus for forest regrowth.Soils with forest regrowth had higher hydraulic conductivity in the first 25 cm and lower conductivity below.Soils without forest regrowth showeda reverse depth pattern of hydraulic conductivity. We concluded that quick drainage through the upper horizons supports forest regrowth, as it reduces competition for water with grass roots in the upper part of the soil.Soils with forest regrowth hadgreater plant-available water capacity than those without regrowth. We conclude that under the given climatic conditions, storage of plant-available water is a key factor for regrowth / no regrowth of forest after disturbance.

How to cite: Schneider, F., Klinge, M., Brodthuhn, J., and Sauer, D.: Recovery of forest patches in central Mongolia after fire: Which role does soil hydrology play?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21125, https://doi.org/10.5194/egusphere-egu2020-21125, 2020.

EGU2020-13174 | Displays | SSS3.4

Archives of Holocene geomorphological development in the Khangai Mountains, Mongolia

Daniela Sauer, Michael Klinge, Manfred Frechen, and Yan Li

The aim of this work was to obtain a deeper understanding of the factors triggering geomorphological processes in the semi-arid mountain forest-steppe of the Khangai Mountains in central northern Mongolia. We hypothesized that the pattern of geomorphological processes in this region is strongly influenced by (i) the spatial distribution of aeolian sediments and (ii) forest fires. We further assumed that the spatial and functional relationships between these two geomorphological factors lead to various types of sediment-soil archives of landscape evolution in different relief positions. These different types of archives should have recorded different pieces of information, which might be combined into a reconstruction of the landscape evolution in this area. We intended to use these different archives to reconstruct the Holocene landscape evolution, and in particular, to identify the roles of aeolian sediment distribution and forest fires on the geomorphological processes that took place over the Holocene.

The area is dominated by steppe vegetation. Only the north-facing slopes of the mountains, where reduced evapotranspiration leads to somewhat increased soil moisture, have forest. The bedrock on the slopes is overlain by Pleistocene periglacial slope deposits (PPSD), consisting of rock debris, which is mixed with fine sand in its upper part. These PPSD are widely covered by an aeolian sand sheet, which is usually more than one meter thick. IRSL ages indicate that the main deposition of these sediments took place 13-11 ka ago. Sediments at the toe slopes and on the valley bottom consist of layered, dark and lighter-colored, silty and sandy material with cryoturbation features. They apparently originate from soil material that has accumulated at the toe slopes and in the valleys by colluvial, fluvial and aeolian processes.

On the slopes under forest, charcoal commonly occurs in the upper 20 cm of the soils and provides calibrated 14C ages of up to 2 ka. Calibrated 14C ages of charcoal and soil organic carbon of the sediments at the toe slopes are generally older (up to 4.4 ka). This difference suggests that the charcoal produced by earlier forest fires, together with the sediment in which it is embedded, has been washed from the upper and mid slopes down to the toe slopes and valleys. Charcoal of later fires is at least partially still in the place of its origin, on the slopes.

Based on a set of 25 14C and 24 IRSL ages, we distinguish three main periods, i.e., (1) a period of extensive aeolian transport and deposition during the late glacial period, 16-11 ka ago, (2) a period of geomorphological stability from early until mid-Holocene, and (3) a period of enhanced aeolian, colluvial, and alluvial processes since 4.5 ka. The abundance of charcoal, indicating frequent forest fires during the late Holocene, points to a severe change of environmental conditions and geomorphological dynamics. It is not yet clear whether this change is due to more arid climate or human activities. Therefore, our further research will focus on distinguishing natural and human influence on the landscape evolution in Mongolia since the mid-Holocene.

How to cite: Sauer, D., Klinge, M., Frechen, M., and Li, Y.: Archives of Holocene geomorphological development in the Khangai Mountains, Mongolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13174, https://doi.org/10.5194/egusphere-egu2020-13174, 2020.

EGU2020-7457 | Displays | SSS3.4

Unraveling the origin of the loess of the lower ebro river basin

Jose Manuel Plata, Carles Balasch, Rafael Rodriguez, Rosa Maria Poch, and Jaume Boixadera

Loess deposits related to the lower course of the Ebro river occupy about 2,000 km2, between the border of the Ebro depression and the Móra d’Ebre basin. They are the largest loess area in the Iberian Peninsula. The detailed study of these deposits has been intensified since the first decade of this century and now the first cartography of their spatial distribution is available. In parallel, the mineral composition, texture and physicochemical properties have been studied and the soils developed on them have been described and analyzed (mainly Calcic Haploxerept, Typic Xerorthent, Typic Calcixeroll). The most modern units have been dated with optically stimulated luminescence (OSL) and would have been deposited between 17 and 34 ky in relation to the Last Glacial Maximum and the oldest (few outcrops) would exceed 115 ky.

They form very discontinuous covers with average thicknesses of about 3-4 m, preferably located on the sheltered slopes of the prevailing W-NW winds and subsequently accumulated in the valley bottoms of the network of rivers and tributaries of the Ebro River. Their generally coarse grain size, with the predominance of very fine sand (50-100 µm) followed by the coarse sand fraction (20-50 µm), classifies them as sandy loess, and this feature has been interpreted as an effect of the proximity of the source areas of the particles, which according to the literature would be less than one hundred km.

Their mineral composition reflects a clear dominance of quartz and calcite (plus dolomite) in similar proportions and feldspar, mica and opaques as secondary minerals. In many of the outcrops, gypsum (up to 20%, average: 3.1%) appears as a companion mineral, which is redistributed in the profiles, preferably in the lower half, as gypsum infillings and crystal intergrowths, up to 1 cm size). It also gives a different response regarding magnetic susceptibility.

The direction of the prevailing winds, the arrangement of the outcrops, the coarse texture and the mineral composition are key indications of the proximal origin of the aeolian materials. Among the candidate areas are the alluvial plains of the Ebro river, which at that time would suffer the deflation of the extensive T-2 terrace (about 8-10 km wide and 20-30 m above the current talweg) and the interfluvial areas with Tertiary outcrops containing gypsum. Heavy minerals could serve as tracers of the origin of river sediments and gypsum (non-existent in river sediments) could be used as a marker of sedimentary materials with Oligocene and Miocene gypsum of the Ebro Depression, which is absent in the Móra d'Ebre basin.

Gypsum loess appears frequently and preferentially on the outcrops of the Ebro Depression. However, in the Móra d’Ebre basin they are seldom, which would indicate the isolation and independence between the two units of accumulation of loess by the Catalan Precoastal Range that would act as a first order orographic barrier against clouds with aeolian dust from the Ebro Depression.

How to cite: Plata, J. M., Balasch, C., Rodriguez, R., Poch, R. M., and Boixadera, J.: Unraveling the origin of the loess of the lower ebro river basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7457, https://doi.org/10.5194/egusphere-egu2020-7457, 2020.

EGU2020-7170 | Displays | SSS3.4

Investigation of spectral properties of different Quaternary paleosols and parent materials

József Szeberényi, Gabriella Barta, Ágnes Novothny, Diána Csonka, István Viczián, Erzsébet Horváth, and Tamás Végh

Diffuse Reflectance Spectroscopy (DRS) is a rapid method for analysing sediments and paleosols, which is a relatively new approach in Quaternary research. This method take into account the clay mineral content, the amount of Fe-bearing minerals and the grain size composition of samples at the same time.

Continuing our earlier research (Szeberényi et al. 2019), this paper reveals the relationship between the DRS curves of paleosols and their parent material. The basis of recent research was the most variable curve sections (between 400-1460 nm wavelength range) of entire measurement range (between 240-2000 nm). The goal of the actual study was to quantify the significant differences between original reflectance curves of paleosols and their parent materials in the case of different quaternary sediment successsions.

Different Quaternary sediment samples were chosen for characterization and comparison their reflectance curves, hereby detection and quantify the most important spectral properties of different paleosols and parent materials. Samples of different sediment types and paleosol variants were investigated from a loess-paleosol sequence at Malá nad Hronom (Slovakia) and a fluvial-aeolian sediment complex at Pilismarót (Hungary).

Five investigated curve sections were separated as the best indicators of reflectance properties of DRS curves. To compaire of spectral properties of samples was used the length of investigated curve sections. It could be explain by ΔR% value, which was shown the difference of reflectance intensity between end points of investigated curve sections.

This investigation showed the quantifiable differences between the units of pleistocene sediment successions, based on the reflectance properties. The influence of pedogenic processes were good detectable. Significant discrepancies were observed between reflectance curves of well-developed paleosols and parent material samples in the VIS-NIR range. Only in the visible range were observed differences between the weak developed paleosol layers and their parent materials. It could be separated from each other the fine sand, the sandy silt and the loess materials based on the intensity of entire reflectance curves.

 

How to cite: Szeberényi, J., Barta, G., Novothny, Á., Csonka, D., Viczián, I., Horváth, E., and Végh, T.: Investigation of spectral properties of different Quaternary paleosols and parent materials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7170, https://doi.org/10.5194/egusphere-egu2020-7170, 2020.

Granulometric composition and magnetic susceptibility are important indicators of the genesis of paleosols, loesses and other newest sediments. Along with other characteristics, they make it possible to reconstruct evolution, surrounding landscapes and climatic changes in the past. The stratotypic section "Alexandrovsky quarry" (natural monument in Kursk, 51°35′31″N, 36°3′21″E) reveals the most complete structure of the Late Pleistocene for the periglacial zone of the East European Plain. Soil-sediment stratum with a thickness of more than 10 m represents the filling of a small buried valley. The formation of the stratum took place practically without interruptions during the last 130 thousand years. It includes two interglacial paleosols: Holocene (Marine Isotope Stage 1) and Ryshkovo (MIS 5е); four interstadial paleosols: Kukuevka (MIS 5с), Streletsa (MIS 5а), Alexandrovka (MIS 3.1), Bryansk (MIS 3.2), and also loess, pedo-sediment and other deposits that have periodically experienced exposuring to cryogenesis [Sycheva, 2012]. The particle size distribution and the magnitude of the magnetic susceptibility reflect the complex history of the stratum formation and reveal detailed climate changes in the Late Pleistocene. The particle size distribution was determined with fractionation method by Kaczynski and by instrumental laser-diffractometry method on a "Malvern Mastersizer 3000" particle size analyzer. The magnetic susceptibility was determined by a SatisGeo KM-7m field capameter with triplicate measurements for every 6 cm.
A change in the granulometric composition from Ryshkovo (MIS 5e) medium loamy deposits to heavy loamy soils and loess belonging to MIS 3.1 was established. The largest value of the clay fraction (<0.001 mm) is characteristic of the MIS 3 paleosols. Significant values of this fraction are also characteristic of the humus horizons of paleosols and Bt horizon Ryshkovo paleosol (MIS 5e). The lowest clay content is observed in loess, especially in their upper parts and in the eluvial horizon of the Rushkovo paleosol (MIS 5е). The data gained by instrumental method of particle size determination is different from such as data gained by the Kaczynski method for the upper heavy loam stratum (MIS 3-1). The predominant fraction is fine dust, in contrast to the lower sediments MIS 5-4, where the coarse silt fraction prevails. Whereas according to data gained by Kaczynski method, the coarse silt fraction prevails in the entire studied thickness of the loess-soil sequence.
Magnetic susceptibility (MS) depends on the content of superparamagnetic mineral in each of the samples and represents levels of pedogenesis in loess deposits. The highest MS values are characteristic of the humus horizon of the interglacial Ryshkovo paleosol (MIS 5e). Followed by Ah horizon of the Streletsa paleosol (MIS 5a) and underlying loess. Smaller values are characteristic of the Kukuevka (MIS 5c) paleosol. But they are more eroded and represented by transitional AB horizons. Loess is characterized by the lowest values of magnetic susceptibility.
The study was funded by RFBR according to the research project № 19-29-05024.

How to cite: Zakharov, A., Sycheva, S., and Panin, P.: Granulometric composition and magnetic susceptibility of the Late Pleistocene loess-soil sequence of the stratotype section (Alexandrovsky quarry, Kursk, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11396, https://doi.org/10.5194/egusphere-egu2020-11396, 2020.

A catena of the Holocene soils and interstadial Bryansk paleosol has been studied within a small closed depression in the Kazatskaya Steppe on the Central Russian Upland. This depression is located on the territory of the Central Chernozem Biospheric Reserve named after V.V. Alekhin, Kursk oblast, Russia and presumably originated from suffosion processes. The main objective of the work is to find out how the Bryansk paleosol (final phase of MIS 3) changes under the influence of not only the cryogenesis of the Valdai glaciation maximum (MIS 2), but also Holocene soil formation (MIS 1) under different conditions of the modern microrelief within the studied catena. We studied the macro- and micromorphological characteristics, certain physical and chemical properties of the Bryansk paleosol on one hand and those of the superimposed Holocene soil on another, taking into consideration various conditions of the present-day microrelief. The studied catena is a typical component of the landscape and soil cover structure for watersheds of the Central Russian Upland. On the micro-elevation rising 80 cm above the micro-depression bottom, theHaplic Chernozems are developed, on the slope – the Luvic Chernozems, and at the bottom – theStagnic Chernozems. The change of the "normal" profile of paleosol of warm interstadial in final phase of MIS 3 started already in the last stages of its formation. The Bryansk soil is heavily deformed by cryogenic processes during the Valday glaciation maximum (the Vladimir cryogenic horizon, MIS 2). The secondary diagenesis of the Bryansk paleosol is related to the Holocene soil-forming processes. The Holocene soils are superimposed on the Middle Valday Bryansk paleosol, transforming it in different ways in different sectors of catena. On micro-elevation the Holocene diagenesis is minimal and consists in fragmentation by mesofauna, additional penetration of carbonates in the upper horizon of the paleosol. The micromorphological analysis showed that the fragmentation of soil mass by mezofauna is very significant, humus is abundant in the form of brown spots (organo-mineral complexes), and calcite is completely immersed into the clay fine material. The largest in size but rare grains of sparite have an unusual shape and probably biogenic origin. At the bottom of the micro-depression the Bryansk paleosol is the most transformed, and the entire profile of the Bryansk soil turned into illuvial horizon of the Holocene meadow-chernozem soil. At the micro-level of observation the clay fine material of the Bryansk soil is strongly consolidated (close c/f related distribution), has signs of anisotropy: circular, grano- and crosstriated b-fabric, the mineral grains are almost invisible and have the dimension of fine dust, very thin Fe- clay coatings in the pores, Fe spots are scattered over the fine clay material, and very characteristic of the presence of many black and sometimes transparent with a black border cube-shaped minerals (whewellite, weddellite?) which fill plant residues in the pores. This work was supported by the Russian Foundation for Basic Research; project N 19-29-05024 mk.

How to cite: Sycheva, S. and Khokhlova, O.: The diagenesis of the Bryansk paleosol (MIS 3) in a suffusion micro-depression at the center of the Russian Upland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1897, https://doi.org/10.5194/egusphere-egu2020-1897, 2020.

The loess-paleosols sections (LPS) situated on flat interfluves integrally reflect the zonal characteristics of paleolandscapes and climate change of large-scale rank such as interglacial-glaciation, megainterstadial-stadial. However, they do not reflect small-scale climatic fluctuations and the local diversity of paleoecological conditions. Geochemical combinations of soils and sediments along the slopes of the paleo-relief, i.e., paleo-catenas, make it possible to supplement the missing links of the paleogeographic history and to detail the paleogeographic events.

In support of this idea, we show the results of study of paleo-catenas of the Ryshkovo pedo-litho-complex formed in the Mikulino interglacial (MIS 5e) and presented in the Alexandrov quarry near the city of Kursk, the Central Russian Upland. The Ryshkovo paleocatenas are analyzed along the slopes of the northern and southern expositions in the paleo-balka’s upper course. The variability of the Ryshkovo paleosols fits into the framework of one genetic soil type. Its closest analogue is sod-podzolic soil of mixed forests (Luvic Retisols). The main differences between the soils developed in the paleo-catenas are related to the degree of detail of the evolutionary development record due to various combinations of soil forming and denudation-sedimentation processes. Paleo-catena 1 along the slope facing to south is distinguished by the simplicity of soil profiles. Paleo-catena 2 of the northern exposition slope is more diverse in the completeness of the structure of paleosol profiles. It is complicated by micro-catena along a buried coastal ravine. Based on the study of the Ryshkovo paleo-catenas, the following stages of soil development in the Mikulino interglacial (130-117 ka BP) are reconstructed: 1) the lower meadow soil (the first soil stage) is read throughout the paleo-catena 2, i.e., in the bottom and on the paleo-balka slope; 2) the formation of bottom and coastal ravines, their subsequent filling with material of a humus horizon, carried away from the slopes during the climatic cooling within the interglacial (the first morpholithogenic stage); 3) the formation of the of sod-podzolic soil profile (the second soil stage) is recorded in the fillings of the coastal ravine; 4) subsequent erosion and accumulation of humus material in the bottom of the balka and ravine (the second morpholithogenic stage); 5) sod-podzolic soil (the third soil stage) is detected throughout the catena; 6) stressful restructuring of the paleoecological situation before burial is recorded in traces of a strong fire and a post-fire storm erosion at the end of the interglacial period when the climate became cooler (the third morpholithogenic stage). Thus, in the catena along the northern exposition slope and especially in the bottoms of the ravine and the main channel of the balka, the detailed change in the stages of development of local landscapes is reflected: three soil-forming stages separated by two erosion stages, and the most intense final (third) erosion stage. A complex combination of soil and relief-forming processes is reflected in the physicochemical properties of the Ryshkovo pedo-litho-complex, especially in its upper humus-accumulative and eluvial parts. This work was supported by the Russian Foundation for Basic Research; project N 19-29-05024 mk.

How to cite: Pushkina, P. and Sycheva, S.: Paleo-catenas of the Ryshkovsky pedo-litho-complex (130-117 KA BP) of the Central Russian Upland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7240, https://doi.org/10.5194/egusphere-egu2020-7240, 2020.

EGU2020-3070 | Displays | SSS3.4

A Field-, GIS- and FTIR based approach to assess the distribution and development of soils affected by historical charcoal production in western Connecticut, USA

Alexander Bonhage, Florian Hirsch, Thomas Raab, Anna Schneider, Alexandra Raab, and William Ouimet

The effects of historical charcoal production on forest soil properties are increasingly well studied on sites in Europe and the northern USA. The most obvious effect of this past forest use practice is the addition of large quantities of charcoal into the soil at sites of former charcoal production. These so called relict charcoal hearth (RCH) sites are mapped in expansive numbers due to the rising availability of high-resolution LiDAR data. However, studies determining the impact of RCHs on more than a field plot scale are rare, so far. To transform results from specific RCH sites to a landscape scale, we sampled and measured 52 RCH sites on a 0.7 km² area in the Litchfield Hills in western Connecticut, USA.

In this study we combine field based measurements of RCH site stratigraphy and geometry, GIS-based spatial analysis of site locations, laboratory determination of soil organic and pyrogenic carbon and FTIR-based analysis of soil carbon. We aim at assessing the soil distribution and soil development in an RCH affected landscape, i.e. the distribution of three typical soils commonly found in these landscapes: natural forest soils, technogenic soils of RCH platforms and soils buried below technogenic soils. Furthermore, we determine the distribution of organic and pyrogenic carbon in these soils and specifically the variation of carbon contents within the technogenic RCH soil stratigraphy.

Preliminary results suggest that RCH site occurrence does not depend on relief position, i.e. RCH site abundance is not correlated with slopes, plateau or flatland positions. However, RCHs with multiple layers of technogenic substrates are more abundant on slope positions. RCH soils have a significantly increased content in total carbon compared  to unaffected forest soils. Multi-layered RCHs have a heterogeneous vertical distribution of pyrogenic carbon and a possibly modern enrichment of organic matter in the surface soil. Wet chemical digestion of RCH soil samples coupled with FTIR analysis shows an increased presence of aromatic compounds and therefore pyrogenic carbon. However, the majority  of carbon in RCH soils seems to be of non-pyrogenic origin. As of now it is unclear, whether  the content of pyrogenic carbon is underestimated by analytical uncertainties or if pedogenic processes are responsible for an enrichment of labile- and semi-labile organic carbon in the charcoal-rich RCH soil.

How to cite: Bonhage, A., Hirsch, F., Raab, T., Schneider, A., Raab, A., and Ouimet, W.: A Field-, GIS- and FTIR based approach to assess the distribution and development of soils affected by historical charcoal production in western Connecticut, USA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3070, https://doi.org/10.5194/egusphere-egu2020-3070, 2020.

EGU2020-5744 | Displays | SSS3.4

Relic charcoal hearth geomorphology and hydrology across the northcentral Appalachians, USA

Samuel Bayuzick, Patrick Drohan, Thomas Raab, and Florian Hirsch

Throughout the northeastern United States and Europe, relic charcoal hearths (RCHs) are more regularly being discovered in proximity to furnaces used for iron or quick-lime production; charcoal was used as a primary fuel source in the furnaces.  RCHs have been found across parts of Europe and Connecticut, USA in different hillslope positions, on vary degrees of slope and aspect, all of which can be a factor affecting the shape of the RCH.  Their usage for charcoal production varied with time period furnaces were in operation with some hearths being used once and older ones (such as in Europe) being used multiple times. RCHs across the northcentral Appalachians, USA have been minimally investigated, thus determining where they occur on the landscape, their shape, and their morphologic positions will be useful in discerning their effect on surface hydrology and soil development. Our study focuses on developing a repeatable process for: finding RCHs, classifying the different shapes or styles of the hearths in relation to their geomorphic positions and quantifying how RCHs may alter surface hydrology.  

We used a combination of processed LiDAR to create hillshades of varying light angles and altitude, and slope gradient maps derived from the same LiDAR, to visually digitize > 6,100 hearths. A subset of the mapped hearths was ground-truthed for accuracy of the methodology. For our study, three areas in the mid-Appalachian region of Pennsylvania were chosen for study in order to reflect different historical time periods of construction and environments. A goal of our study is to determine the age of hearths. We hypothesize that using a calculated 3D distance to nearby furnaces, hearths closer to furnaces will be the oldest and have a higher likelihood of being used multiple times resulting in multiple layers of charcoal-enriched substrate. An initial analysis of RCHs indicates a relationship between slope gradient and hearth shape. Hearths constructed on flatter slope gradients are seemingly more circular in shape and have more equal axes whereas steep slopes have a more oval shape being elongated in one axis and shortened on the other.  Likewise, there may be a relationship between hillslope position and the shape of the RCHs such as more circular hearths are on or near flatter hillslope positions (such as on summits or shoulders) whereas oval shaped hearths are on steeper hillslope positions (like backslopes). We also modeled the effect of RCHs on hydrology.  Based on a combination of topographic wetness index data and geomorphology, hearths are not acting as sinks for surface flow but instead often cause water to flow around them leading to slightly drier conditions within RCHs. Future work will address site-specific monitoring of hearth temperature and moisture, and hearth carbon decomposition dynamics in relation to temp and moisture conditions.

How to cite: Bayuzick, S., Drohan, P., Raab, T., and Hirsch, F.: Relic charcoal hearth geomorphology and hydrology across the northcentral Appalachians, USA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5744, https://doi.org/10.5194/egusphere-egu2020-5744, 2020.

EGU2020-2339 | Displays | SSS3.4

The temperature and moisture regime of charcoal-enriched land use legacy soils

Anna Schneider, Florian Hirsch, Alexander Bonhage, Alexandra Raab, and Thomas Raab

The stratigraphy and properties of soils can be significantly altered by past land use, even in areas that have been continuously used for forestry. Soils on relict charcoal hearths (RCHs) are a widespread example of such a pedological legacy of past forest use. RCH soils occur in many forest areas and receive increasing attention as model sites to study long-term effects of soil amendment with biochars, however, their physical properties have hardly been studied. The objective of our study was to characterize the soil temperature and moisture regime of RCH soils through comparison to reference forest soils on sandy substrates in woodlands in Brandenburg, Germany. We combined laboratory analyses of bulk density, pore size distribution, thermal conductivity and saturated hydraulic conductivity with sensor-based monitoring of soil temperature, moisture contents and matric potentials. 

The results of laboratory analysis reveal high soil organic matter (SOM) contents, a low bulk density and high porosity of the RCH substrates. Associated with this RCH specific soil structure, RCHs exhibit clearly lower thermal conductivity. However, the higher total porosity of RCH substrates does not necessarily imply higher water retention and plant-available water contents in the RCH soils than in the topsoil horizons of undisturbed forest soils.  The monitoring results reveal distinct differences between the temperature regimes of the RCH and reference profiles, with the RCH soil exhibiting higher daily and seasonal temperature variations within the topmost horizon, but lower variations in deeper parts of the profiles. Soil moisture monitoring shows higher water contents in RCH soils under relatively wet conditions and lower water contents under dry conditions, and increased spatial variation in soil moisture in RCH soils. Overall, the results show increased spatial and temporal variability of soil temperature and moisture on RCHs, which implies an increased variability in ecological site conditions in historic charcoal production areas.

 

How to cite: Schneider, A., Hirsch, F., Bonhage, A., Raab, A., and Raab, T.: The temperature and moisture regime of charcoal-enriched land use legacy soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2339, https://doi.org/10.5194/egusphere-egu2020-2339, 2020.

EGU2020-10808 | Displays | SSS3.4

Agrarian landforms in Czechia and their future value

Jitka Elznicová, Johana Vardarman, Jan Pacina, Iva Machova, Jiri Stojdl, Jiri Riezner, and Tomas Matys Grygar

Mountane and submontane hilly landscapes, mainly around the borders of the former Czech Kingdom were used for farming just rarely.  During the High Middle Ages these remote regions were colonized by mostly German speaking settlers invited by Bohemian King. Their villages were established and agricultural plots were divided into parallelly or fan-like ordered parcels, partially separated by agrarian walls. Parts of the historic settlements were continually used for agriculture for many centuries, sometimes with no problems with soil erosion. The traces of these landscape structures were best preserved around villages, which were not too suitable for farming and thus were not included into process of agriculture collectivization in the second half of the 20th Century. The historical landscape structures has thus preserved mainly in areas of high altitudes, steep slopes, low settlement density. Those areas with the traces, bearers of landscape memory, has been continually swallowed by forest and shrubs regrowth as noticeable in aerial images.

We mapped the preserved historical structures in the region of the Czechia based on the linear non-forest woody vegetation in current orthophotos and by use of topographic map and DTM based on LiDAR mapping. This examination showed a surprisingly large spatial extent of the historical landscape pattern, well framed bywoody vegetation. For our study, we used also old maps, archival aerial photographs and digital terrain models created from newly acquired airborne LiDAR imaging. We performed imaging of the wall structures by geophysical means (electromagnetic imaging EMI using a DEMP instrument). We focused particularly on terraced fields and agrarian walls.

The stone walls situated more-or-less perpendicular the slope gradient resulted in nearly terrace-like surface topography. Even in areas with a mean original slope higher than 10° the final slope of the fields decreased to a few degrees. Most agrarian walls were constructed from stones; their bases are usually a bit deeper than current terrain level at the wall foot according to the EMI images. Some walls are higher and wider than 1 m and their upper edge is buried by topsoil washed from upper parts of the fields. The topsoils on the fields have comparable grain size distribution in upslope, middle and downslope parts, showing the minimal net transfer of fine particles by erosion. No traces of deep erosion or soil degradation were observed, which could be attributed to the skeletal character of soils in well-preserved historical terrace fields.

We examined also local plant cover, which showed preservation of meadow species even after re-forestation of the former historical settlements and considerable differences in vegetation species composition of the agrarian wall and in surrounding agricultural parcels. Aconsiderable part of the still preserved historical agrarian, may play a positive future role in biodiversity of montane areas by presence of contrasting biotopes, e.g. including tree species more resistant to the global change than widespread spruce monocultures.

How to cite: Elznicová, J., Vardarman, J., Pacina, J., Machova, I., Stojdl, J., Riezner, J., and Matys Grygar, T.: Agrarian landforms in Czechia and their future value, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10808, https://doi.org/10.5194/egusphere-egu2020-10808, 2020.

EGU2020-20363 | Displays | SSS3.4

Effects of land use history on heavy metals concentration in agricultural soils

Giulio Genova, Georg Niedrist, Stefano Della Chiesa, Erich Tasser, Luigimaria Borruso, Stefano Cesco, and Tanja Mimmo

Intensive agricultural management can have significant impacts on soil properties. Such effects and their degree are often related to the history of land use and to the agronomic practices. When legacy soil data are missing, historical land use maps can help to describe how crop management might have changed the concentration of certain elements in soils. In this study, we prove how permanent crop management (vineyards and apple orchards) influenced heavy metal concentration in agricultural soils in South Tyrol, Italy. We selected areas where land-use change was unidirectional going from forests, grasslands and arable lands to apple orchards or vineyards. We hypothesize that the heavy metal accumulation in the soil starts when a parcel is converted to intensive permanent crops. This hypothesis allows us to see if there are any significant differences between parcels with a longer or shorter intensive agriculture history. We used approx. 6000 soil samples analyzed between 2006 and 2016 and coupled them with historical land use maps dating from the 1850s until today. Soils that have been cultivated as apple orchards or vineyards since the 1850s are characterized by higher concentrations of Cu. The oldest vineyards have much higher soil Cu concentrations than apple orchards of the same age with a median content of 342 mg kg–1 and 212 mg kg–1 of Cu respectively. Similar patterns, but with smaller extent can be described also for Zn concentration. Comparing the age of vineyards with today’s concentration we estimate an accumulation rate of 2.4 mg kg–1 year–1 of Cu. We conclude that historical land use maps are extremely helpful in understanding today’s soil characteristics especially with not degradable pollutants such as heavy metals. High concentrations of Cu in vineyards reveal the widespread and abundant use of this metal in viticulture for plant defense programs through time. The accumulation trend proves that further research and monitoring is needed to understand spatial and temporal pattern of Cu and Zn pollution in intensively managed permanent crops and to estimate their impact on taxonomical and functional fungal and bacterial diversity. These aspects are of pivotal role in determining the soil fertility levels of our cultivated soils.

How to cite: Genova, G., Niedrist, G., Della Chiesa, S., Tasser, E., Borruso, L., Cesco, S., and Mimmo, T.: Effects of land use history on heavy metals concentration in agricultural soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20363, https://doi.org/10.5194/egusphere-egu2020-20363, 2020.

SSS4.2 – Soil biological capacity, greenhouse gases’ emission and carbon stocks of SUITMA and croplands: assessment and best-management practices

EGU2020-11475 | Displays | SSS4.2

Diffusive limitation to photosynthesis and plant-microbe N competition dominate the urban lawn response to secondary salinization

Dario Liberati, Ramilla Brykova, Maria Cristina Moscatelli, Stefano Moscatello, Emanuele Pallozzi, and Olga Gavrichkova

Release of de-icing agents is the main cause of increasing soil salinization in urban and rural areas.  Grasses are the dominant vegetation in urban lawns and are exposed to different rates of soil salinization depending on the distance to the paved salt-affected surfaces. The capacity of these ecosystems to maintain C sequestration and nutrient cycling functioning depends on the sensitivity to salinization of the main players: primary producers and their interaction with microbial community.

In this mesocosm study we aimed to evaluating the impact of soil secondary salinization rates on the functioning of Lolium perenne. Salinization treatments were applied for two months in spring, irrigating the mesocosms with the commonly used de-icing agent NaCl at two concentration, 30 mM (low salinity treatment) and 90 mM (moderate salinity treatment). The leaf physiological  responses of Lolium were assessed monitoring photosynthetic rates (A), stomatal conductance (gs)  mesophyll conductance (gm), carboxylation capacity (Vcmax). Quantitative limitation analysis (QLA) was applied to calculate the relative contribution of diffusive and biochemical limitation to photosynthesis under salinization. Productivity was estimated by regular mowing of plants to 4cm height. Finally, plants were harvested and analyzed on leaf mass per area (LMA), leaf N content and 15N isotope composition. Rhizosphere soil was sampled and analyzed on the activity of enzymes involved in the cycling of C, N, S and P. 

Salinity increased LMA and leaf N, reducing  Lolium aboveground productivity. Photosynthetic rates were almost halved under both salinity treatments. QLA shows that photosynthesis was mainly limited by gm, limitation accounting for 68% and 54% of the total limitation in 30mM and 90mM, respectively. gs reduction significantly limited photosynthesis only in 90 mM (32% of total limitation), while biochemical limitations (due to a reduction in Vcmax) remained below 20% of the total limitation in both treatments.

Mesophyll conductance to CO2 depends on leaf anatomical and biochemical traits and is usually negatively related to LMA. The increased LMA observed under salinity treatments suggests that changes in the leaf structure (like increased cell wall thickness) could be responsible for most of the A (and consequently productivity) reduction.  On the other hand, the increased leaf N content is in agreement with the lack of significant reduction in Vcmax. Accumulation of N compounds in leaves in response to salinization was accompanied by a decline in soil extracellular enzymes involved in N and other cycles. Over-competing of the microbial pool in access to nutrients by vegetation could be suggested in conditions of salinization. Because the belowground biomass was not affected, decline in C losses with salinization could be hypothesize which should balance the shortage in C inputs.     

In conclusion, salinization mainly limited A through gm limitation, probably associated  to the increased LMA. At the same time, altering the capacity of the microbial pool to compete for N,  it increased leaf N, possibly reducing  the impact of biochemical limitation on A and avoiding a further A and productivity decline.

Experiment was financially supported by the Russian Science Foundation, project No.17-77-20046.

How to cite: Liberati, D., Brykova, R., Moscatelli, M. C., Moscatello, S., Pallozzi, E., and Gavrichkova, O.: Diffusive limitation to photosynthesis and plant-microbe N competition dominate the urban lawn response to secondary salinization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11475, https://doi.org/10.5194/egusphere-egu2020-11475, 2020.

Understanding the interactions among different soil microbial species and how they responded to disturbances are essential to ecological restoration and resilience in the damaged mining areas. This information, however, remains unclear and poorly understood. In this study, we investigated the bacterial distribution in disturbed mining areas across three provinces of China, and constructed molecular ecological networks to reveal the interactions among soil bacterial communities. Furthermore, we examined the relationship between the microbial network topology and environmental factors to show if there is a correlation between the resilience of bacterial community and external pressure. Bacterial community composition differed dramatically among the different disturbed mining areas, and bacterial diversity decreased as microbial networks became more complex. Additionally, based on the network topology, we distinguished key microbial populations among the different mining areas, such as Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi. Moreover, the network structure was significantly correlated with soil properties (e.g., pH value, electrical conductivity value, and available phosphorus value), which suggested that microbial network interactions might change the soil resilience, then affect soil ecosystem functions. Overall, our findings provided insight into the ways in which microorganisms responded to mining activities and change the resilience by regulating their interactions in different ecosystems.

How to cite: Ma, J. and Chen, F.: Molecular ecological network complexity drives stand resilience of soil bacteria to mining disturbances among typical damaged ecosystems in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6286, https://doi.org/10.5194/egusphere-egu2020-6286, 2020.

EGU2020-9869 | Displays | SSS4.2 | Highlight

Are Collembola flying onto green roofs?

Sophie Joimel, Laure Vieublé-Gonod, Baptiste Grard, and Claire Chenu

Are Collembola flying onto green roofs?  

With a worldwide urban population projected to reach 5 billion by 2030 (Véron, 2007), the roles and benefits of urban green spaces cannot be denied, like climate regulation by trees or water flow regulation (Gómez-Baggethun and Barton, 2013). If green spaces are among the new societal expectations of urban people, they also play a crucial role in preserving biodiversity in urban areas. Among them, green roofs are a great opportunity to create green space in cities as they represent 32% of cities’ horizontal surfaces (Frazer, 2005). Their installation is also perceived as a possible way to preserve biodiversity in cities. However, the effectiveness of green roofs in supporting biodiversity, especially soil biodiversity, has rarely been studied.

Thanks to different research programmes (TROL, SEMOIRS and T4P), we investigated the taxonomic and functional collembolan biodiversity in both extensive and productive green roofs as well as in ground-level urban microfarms in order to (i) evaluate the effectiveness of green roofs in supporting soil biodiversity, (ii) identify the mechanisms of colonisation by soil organisms and (iii) separate the effect of landscape and soil conditions on collembolan communities assemblages.

Surprisingly, green roofs are supporting high levels of soil biodiversity. Despite various soil characteristics (organic matter and water avaibility), no difference was found between extensive roofs and rooftop gardens concerning the taxonomical structures of collembolan communities (e.g. species richness, abundances). In contrast, there are differences concerning both taxonomic and functional compositions. Two ways of colonisation are suggested: a passive wind dispersal − the “flying” collembolans − and a settlement through compost inputs. We conclude that stakeholders should take into account the spatial connections of green roofs with other green spaces in order to support urban soil biodiversity.

How to cite: Joimel, S., Vieublé-Gonod, L., Grard, B., and Chenu, C.: Are Collembola flying onto green roofs?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9869, https://doi.org/10.5194/egusphere-egu2020-9869, 2020.

EGU2020-2062 | Displays | SSS4.2

Urban Soils Mycobiota of the Subarctic (Apatity, Murmansk region, Russia)

Maria Korneykova, Dmitriy Nikitin, Andrey Dolgikh, and Anastasia Soshina

The soils mycobiota of Apatity was first characterized. Significant differences in quantitative and qualitative parameters of urban soils fungal complexes of the Subarctic zone in comparison with zonal soils were revealed. It was shown that the biomass of fungi in the soil of the residential area of Umbric Leptic Entic Podzol (Arenic, Neocambic) is 0.18 – 0.20 mg/g, in the background forest soil Folic Leptic Albic Podzol (Arenic) – 0.31 mg/g. The smallest values (0.04 – 0.08 mg / g) are typical for areas with no vegetation and a densely compacted surface (playground - Leptic Entic Podzol (Arenic, Neocambic, Technic), unpaved pedestrian walkway – Umbric Leptic Entic Podzol (Arenic, Neocambic).

In the soils of recreational and forest areas, fungi were mainly in the form of mycelium (66-70% of the total biomass), while in the soils of residential and agricultural areas in the form of spores. Spores are mainly represented by small forms up to 3 microns. The amount of large spores is insignificant, but they were mainly detected in the soil of the residential area.

The number of copies of ITS rRNA genes of fungi in soils of different functional zones varies from 4.0×109 to 1.14×1010 copies/g of soil, with the highest values in the natural Podzol of the forest zone and Podzol of the unpaved pedestrian walkway.

The number of micromycetes CFU in the upper soil horizon ranges from 1×103 to 9×104 CFU/g of soil, reaching maximum values in the soil of the Umbric Leptic Entic Podzol recreation zone (Arenic, Neocambic, Technic). The features of cultivated forms of micromycetes distribution on the soil profile in different functional zones were revealed: in the Podzol of the residential area, the maximum accumulation of fungi was noted in the lower horizons, while in the soil of the recreational, agricultural and forest areas, their maximum number was noted in the top horizon. However, the first two differed from the background one in the absence of a second maximum accumulation of micromycetes in the illuvial Bs horizon.

In general, urban soils were characterized by a low species diversity of micromycetes complexes and a specific structure significantly different from the background soils. The genus Penicillium is characterized by maximum species diversity. Trichocladium griseum and Penicillium dierckxii dominate in the communities of microscopic fungi in the soil of the residential zone, P. melinii in the soil of the recreational areas and in the playground, in the soil of agricultural area Plaggic Entic Podzol (Arenic) - micromycetes of the genus Fusarium, and in the background forest soil - P. decumbens.

How to cite: Korneykova, M., Nikitin, D., Dolgikh, A., and Soshina, A.: Urban Soils Mycobiota of the Subarctic (Apatity, Murmansk region, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2062, https://doi.org/10.5194/egusphere-egu2020-2062, 2020.

EGU2020-3333 | Displays | SSS4.2

Long-term impacts of inter-cropping and reduced tillage on ecosystem services in dryland agriculture

María Martínez-Mena, Elvira Díaz-Pereira, Noelia García-Franco, Carolina Boix-Fayos, and Maria Almagro

We assess the long-term environmental impacts and delivery of several ecosystem services of crop diversification (inter-crop with legumes/cereal) in two rainfed almond (Prunus dulcis Mill.) orchards under semiarid Mediterranean conditions. In addition, the effect of the intensity of tillage practices (conventional tillage vs. reduced tillage) in the almond monocultures was also tested. The study was carried out in two farms located in the province of Murcia (South East Spain) and the experimental design consisted of nine plots (49 m long and 7 m wide) in a randomized-block design, with three replicates for each treatment: inter-crop, (IRT), monoculture under conventional tillage (MCT), and monoculture under reduced tillage (MRT). Each plot comprised five almond trees: the three central trees were used for soil measurements and the other two trees constituted guard rows (a buffer zone to avoid edge effects). The conventional tillage consists in a chisel plowing to 15 cm depth using a cultivator between three and five times a year while the reduced tillage treatments (MRT and IRT) implies ploughing only twice a year (autumn and spring), to control weeds. The tillage affects the whole plot area, including the area around the trunk base. In the monoculture, weeds are the only vegetation present between the rows. The inter-crop consists of a mix (3:1) of common vetch (Vicia sativa L.) and common oat (Avena sativa L.), sown annually during early autumn at 150 kg seeds ha-1 and mowed in May. After manually mowing, it is incorporated into the soil using a cultivator.

During ten years (2009-2018) the effects of crop diversification and reduced tillage on a range of soil quality indicators (including soil physical, chemical and biological properties) were monitored allowing the evaluation of different support, regulating and provisioning ecosystem services (e.g. carbon sequestration, water availability, crop yield).

An improvement in soil quality with the inter-crop management (IRT) was detected after three years from its implementation, after which it was maintained or slightly increased for ten years. When comparing the inter-cropping system with the monoculture one, an improvement in soil quality indicators for regulating and supporting ecosystem services was observed at the plow layer (e.g., soil bulk density decrease, as well as increases in soil water retention capacity, plant water availability, infiltration capacity, fertility, microbial activity, and OC stabilized in aggregates). During the first seven years of inter-cropping implementation, an average reduction of about 30% in the crop yield (provisioning ecosystem service) in the inter-crop treatment respect to the monoculture was observed. However, those differences decreased, or even were reversed after eight years, suggesting that the observed positive effect on crop production with inter-crops does not occur at the same time than the improvement on soil quality but several years after that. All together, these results highlight the potential of inter-cropping in woody crops as a good option to be adopted by farmers and for climate change mitigation and adaptation.

How to cite: Martínez-Mena, M., Díaz-Pereira, E., García-Franco, N., Boix-Fayos, C., and Almagro, M.: Long-term impacts of inter-cropping and reduced tillage on ecosystem services in dryland agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3333, https://doi.org/10.5194/egusphere-egu2020-3333, 2020.

EGU2020-20118 | Displays | SSS4.2

Changes in soil carbon stocks and distribution under perennial and annual bioenergy crops

Fabien Ferchaud, Bruno Mary, Thidarat Rupngam, and Claire Chenu

Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, their effect on soil carbon sequestration is of primary importance. There is a wide range of candidate crops including perennial C4 crops or annual crops but their impact on soil organic carbon (SOC) stocks remain very uncertain as shown by the wild variability in published experimental results.

In this study, we measured the changes in SOC stocks under perennial (miscanthus and switchgrass), semi-perennial (fescue and alfalfa) and annual (triticale and sorghum or maize) bioenergy crops managed with two N fertilisation rates. The experiment called “Biomass & Environment” is located in northern France on a deep loamy soil (Haplic Luvisol) and was set up in 2006. The soil was sampled at the start of the experiment, in 2011-2012 and again in 2018 (0-60 cm, 5 layers). SOC stocks were calculated at equivalent soil mass and δ13C was systematically measured and used to calculate changes in new and old SOC stocks. In 2018, the SOC distribution in different soil particle-size fractions was also characterized for some treatments.

After 12 years, there was a large increase in SOC concentration (+7.6 g kg-1 on average) under perennial crops in the surface layer (≈ 0-5 cm) but a slight decrease in deeper layers. Changes in δ13C also showed that more than half of the new SOC accumulated in the surface layer. In addition, the additional SOC storage in the first layer was found in coarse organic fractions (50-200 and 200-2000 μm) but also in the more stabilised 0-50 μm fraction. SOC concentration under semi-perennial crops increased in the two first layers (≈ 0-20 cm), from 10.2 g kg-1 in 2006 to 11.6 g kg-1 in 2018 on average and slightly decreased below. Under annual crops, a decrease in SOC concentration was observed in all layers and particularly in the third layer (≈ 20-33 cm). There was no significant effect of the N fertilisation. Over the old ploughed layer (≈ 0-33 cm), SOC stocks increased between 2006 and 2018 under perennial and semi-perennial bioenergy crops (by 3 and 2 t C ha-1 on average respectively) and decreased by 7 t C ha-1 on average under annual crops.

This study show that different bioenergy crops can have contrasted impacts on SOC stocks but also on SOC distribution in the soil profile.

How to cite: Ferchaud, F., Mary, B., Rupngam, T., and Chenu, C.: Changes in soil carbon stocks and distribution under perennial and annual bioenergy crops, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20118, https://doi.org/10.5194/egusphere-egu2020-20118, 2020.

EGU2020-11058 | Displays | SSS4.2

Intercropping fava bean with broccoli can improve soil properties while maintaining crop production under Mediterranean conditions

Mariano Marcos-Pérez, Virginia Sánchez-Navarro, and Raúl Zornoza

Including legumes in intercropping systems may be regarded as a sustainable way to improve soil quality, fertility and land productivity, mostly due to facilitation processes and high rhizospheric activity which can mobilize soil nutrients for plants. Improvements in production and soil quality depend on inherent soil properties, climatic conditions, adopted management practices and fertilization, among others. The aim of this study was to assess the effect of the association between broccoli (Brassica oleracea var italica) and fava bean (Vicia fava) grown under different intercropping patterns on crop production, soil organic carbon (SOC), total nitrogen (Nt), soil aggregate stability (SAS) and soil fertility, compared to a broccoli monocrop. We defined a randomised block field experiment with three replications assessing the effect of monocropping, row 1:1 intercropping, row 2:1 intercropping and mix intercropping, with 30% reduction in fertilization in intercropped systems compared to monocrop. Soil sampling took place at harvest in February 2019. Results showed that the broccoli-fava bean intercropping significantly increased the general land production, with similar broccoli yield of 20000 kg ha-1 in all treatments, plus 8000 kg ha-1 coming from fava bean. Crop diversification and fava bean cultivation even in monocrop significantly increased SOC and Nt compared to broccoli monocrop. SOC and Nt were 1.06% and 0.09%, respectively, for broccoli monocrop, while they had average values of 1.29% and 0.12%, respectively for the intercropped systems. SAS was also significantly affected by crop diversification, with increases in the proportion of the macroaggregates (size >2 mm) with intercropping. Broccoli monocrop showed an average proportion of these macroaggregates of 9.19%, while they increased up to 17.51% in intercropped systems. CEC was not significantly affected by intercropping SAS showing almost same percentage of aggregates independently of the treatment. Available P significantly increased in intercropped systems, likely due to increased microbial activity with the simultaneous growth of the two crop species. However, no significant effect of intercropping was observed with any other nutrient (Ca, Mg, K, Mn, Cu, Fe, Zn and B), suggesting that microbial communities activated by the crop association are highly related to P mobilization but not so intensively involved in other nutrients. Thus, intercropping systems like broccoli-fava bean association can be regarded as a viable alternative for sustainable crop production while increasing soil fertility despite reducing the addition of external fertilization. However, more crop cycles are needed to confirm this trend.

How to cite: Marcos-Pérez, M., Sánchez-Navarro, V., and Zornoza, R.: Intercropping fava bean with broccoli can improve soil properties while maintaining crop production under Mediterranean conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11058, https://doi.org/10.5194/egusphere-egu2020-11058, 2020.

EGU2020-116 | Displays | SSS4.2

Management Practices Influenced Corn Grain Yield and Soil Chemical Properties

Maysoon Mikha and Alan Schlegel

Land sustainability could be influenced by management decisions, soil nutrients content, and soil erosion potential. This study evaluates the management that consist on two sources of nitrogen (cattle beef manure, M; and synthetic fertilizer, F) and two levels of residue removal (0% and 80%) on corn yield and soil chemical properties in a no-tillage irrigated field. The study was initiated in 2011 in Tribune, Kansas where the nitrogen treatments and residue removal were organized in randomized strip design with four replications. After Seven years of annual M addition, corn yield and soil chemical properties significantly increased compared with synthetic fertilizer. Annual residue removal at 80% level greatly reduced soil chemical properties measured especially STN, SOC, and soil P availability for subsequent crops. Residue removal at 80% show a potential to decrease soil EC compared with 0% removal, but the EC reduction was not significant. The data generated from this study shows that soil nutrients content was reduced with removing the residue even in irrigated and well fertilized field unless organic amendment was accompanied the residue removal practice.

How to cite: Mikha, M. and Schlegel, A.: Management Practices Influenced Corn Grain Yield and Soil Chemical Properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-116, https://doi.org/10.5194/egusphere-egu2020-116, 2020.

EGU2020-663 | Displays | SSS4.2

Soil organic carbon stability of urban soils and of floodplain soils under different hydrothermal conditions

Inna Brianskaia, Vyacheslav Vasenev, and Ramilla Brykova

Пожалуйста, вставьте свой абстрактный HTHigh anthropogenic impact and the rate of urbanization result in a decrease of urban soils’ capacity to perform ecosystem services. Carbon sequestration is an important soil-based ecosystem service, which can be assessed through quantity and quality soil carbon stocks. The stability of soil organic matter (SOM) is characterized by the resistance of its constituent components to biological, chemical and physical destruction. In the study, SOME stability in peat-sand mixture used for urban soils’ construction; floodplain soil was analyzed in response to temperature-moisture conditions. The decomposition rate of various soils was assessed. Decomposition was assessed through studying microbial production of CO2. In the research the CO2 emissions were studied under following temperatures and moisture conditions: temperature – 7°C, 22°C, 30°C and 40°C and moisture – 0.2 WHC, 0.4 WHC, 0.6 WHC, 0.8 WHC, 1 WHC. Moisture affects the amount and activity of microbial biomass, controls the availability of oxygen to microorganisms, causes periods of water microbial stress and also can destabilize organic matter, resulting in increased availability of carbon to soil microorganisms. Different patterns of moisture and temperature impacts on the soil organic carbon (SOC) decomposition rates were observed. It was concluded that, depending on the qualitative composition of carbon, the impact of hydrothermal conditions on the emission of carbon dioxide changed.ML здесь.

How to cite: Brianskaia, I., Vasenev, V., and Brykova, R.: Soil organic carbon stability of urban soils and of floodplain soils under different hydrothermal conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-663, https://doi.org/10.5194/egusphere-egu2020-663, 2020.

EGU2020-1064 | Displays | SSS4.2

Soil microbial biomass, community level physiological profiles relate to tree species and its state in urban environment

Alexandra Seleznyova, Alexey Yaroslavtcev, Olga Gavrichkova, Alexey Ryazanov, Julia Kovaleva, Nadezhda Ananyeva, and Riccardo Valentini

Urban trees and soil microbial communities are the key ecosystem components to provide the supporting, provisioning and regulating services that define citizen’s well-being. Understanding the relationships between physiological states, age, species of trees and microbial functional properties are needed for a management of urban areas and landscapes' engineering. The research focuses on finding linkages between a wide range of trees’ properties monitored by smart TreeTalker technology and soil functional microbial indexes in Moscow megapolis.

The study was carried out on the RUDN University campus area (Moscow, Russia), where six tree species were selected (Pinus sylvestris, Populus tremula, Acer platanoides, Tilia cordata, Picea abies, Betula pendula). TreeTalker device was installed on the preselected five trees of each species for monitoring the sap flux, vertical stability (according to digital accelerometer), spectrums of canopy reflectance, trunk and canopy air temperature and humidity. Monitoring started in May 2019. The composite soil samples (0-10) were taken under each tree at the 0.5 m distance from its stand by augering in October 2019. In the samples, the microbial biomass carbon (MBC, SIR-method), basal respiration (BR), community level physiological profile (CLPP, MicroResp) and Shannon microbial diversity index (H’) based on CLPP were determined.

Soil MBC content was significantly depended on tree species, increasing from A.platanoides to T.cordata (from 538 to 1445 µg C g-1). The microbial diversity index was lowest in soil under A.platanoides (H’=2.1) and the highest for B.pendula (H’=2.4). The soil CLPP for A.platanoides was mainly shifted to microbial response on carboxylic acids with the low reaction on amino and phenolic acids compared to other trees species (e.g. B.pendula). Soil qCO2 (BR/MBC ratio) was positively related to trees’ age (r=0.8). Response to carboxylic acids (especially oxalic) had the highest correlation with physiological properties of the trees: trunk moisture, photochemical reflectance index and vertical stability (r > -0.5).

Current research was financially supported by Russian Science Foundation [No 19-77-30012].

How to cite: Seleznyova, A., Yaroslavtcev, A., Gavrichkova, O., Ryazanov, A., Kovaleva, J., Ananyeva, N., and Valentini, R.: Soil microbial biomass, community level physiological profiles relate to tree species and its state in urban environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1064, https://doi.org/10.5194/egusphere-egu2020-1064, 2020.

EGU2020-1499 | Displays | SSS4.2

Do diverse mixtures of cover crop residues alter the soil microbial community and increase soil function?

Xin Shu, Yiran Zou, Liz Shaw, Lindsay Todman, Mark Tibbett, and Tom Sizmur

Cover crops are a contemporary tool to sustainably manage agricultural soils by boosting fertility, suppressing weeds and disease, and benefiting cash crop yields, thus securing future food supply. Due to the different chemical composition of crop residues from different plant families, we hypothesised that a mixture of cover crop residues may have a greater potential to improve soil health than the sum of the parts. Our experiment focused on the impact of four cover crops (clover, sunflower, radish and buckwheat) and their quaternary mixture on soil respiration and the soil microbial community in an 84-day microcosm experiment. On average adding cover crop residues significantly (P < 0.001) increased soil respiration from 29 to 343 µg C g-1 h-1 and microbial biomass from 18 to 60 µg C g-1, compared to the unamended control during 84 days’ incubation. Cover crop addition resulted in a significant (P < 0.001) alteration of the soil microbial community structure compared to that of the control. The quaternary mixture of cover crop residues significantly (P = 0.011) increased soil respiration rate by 23.79 µg C g-1 h-1 during the period 30 to 84 days after residue incorporation, compared to the average of the four individual residues. However, no significant difference in the size of the microbial biomass was found between the mixture and the average of the four individuals, indicating the mixture may invest resources which transit dormant microbial species into a metabolically active state and thus boost microbial respiration. Analysis of similarity of microbial community composition (ANOSIM) demonstrated the mixture significantly (P = 0.001) shifted microbial community structure away from buckwheat (R = 0.847), clover (R = 0.688), radish (R = 0.285) and sunflower (R = 0.785), respectively. This implies cover crop residues provide a niche specialization and differentiation on a selection of microbial communities that favour certain plant compounds. While applying cover crop residues has positive impacts on soil function, we found that applying a mixture of cover crop residues may provide greater potential to select for microorganisms or activate dormant microbial species which result in higher soil function. The outcome of this study will help seed suppliers to design, and farmers to select, novel cover crop mixtures which enhance soil function synergistically, leading to a greater potential to sustainably improve soil health.

How to cite: Shu, X., Zou, Y., Shaw, L., Todman, L., Tibbett, M., and Sizmur, T.: Do diverse mixtures of cover crop residues alter the soil microbial community and increase soil function?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1499, https://doi.org/10.5194/egusphere-egu2020-1499, 2020.

EGU2020-3155 | Displays | SSS4.2 | Highlight

Development of plant-available water in soil-like substrate derived from urban wastes and processed by earthworm Dendrobaena veneta

Moreen Willaredt, Susanne Ulrich, Thomas Nehls, and Loes van Scheik

Topsoil and peat are often taken from intact rural ecosystems to supply the urban demand for fertile soils and soil-like substrates. One way of reducing this exploitation is to recycle suitable urban wastes to produce Technosols and technogenic soil-like sub­strates. In this study we investigate the role earthworms can play in improving the hydraulic properties of such a soil-like substrate.

In a four-month microcosm experiment, the influence of the earthworm species D.veneta on the hy­draulic properties of brick-compost mixture was examined. Of the ten boxes filled with ca. 11 dm³ of ground bricks (0.7 cm³ cm-3) and green waste compost (0.3 cm³ cm-3), five contained earthworms (W-boxes) and the re­maining five were used as controls (C-boxes). The substrate was periodically irrigated and the weight of the boxes and of the drained water was monitored. At the same time, images were taken from the front of the boxes to quantify the activity of the earthworms by image analysis. Before and after the experiment, water retention curves were determined from disturbed samples of the substrate using the simplified evaporation method.

After six weeks, differences between the C- and the W-boxes were evident. Micrographs showed brick-compost aggregates only for the substrates processed by earthworms. The earthworm activity leads to reduced evaporation and an increased water content in the respec­tive microcosms. The effect persists even after disturbing the substrate. The propor­tion of plant-available soil water is about 0.02 cm³ cm-3 higher for the substrate processed by earthworms (0.250 ±0.009 cm³ cm-3) compared to the control (0.230 ±0.008 cm³ cm-3).

This study shows that earthworms are capable of ingesting and processing crushed bricks together with compost. The earthworms produced aggregates which persisted after disturbance and had a positive influence on the water retention capacity of such a soil-like substrate constructed from waste.

How to cite: Willaredt, M., Ulrich, S., Nehls, T., and van Scheik, L.: Development of plant-available water in soil-like substrate derived from urban wastes and processed by earthworm Dendrobaena veneta, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3155, https://doi.org/10.5194/egusphere-egu2020-3155, 2020.

EGU2020-3832 | Displays | SSS4.2

The effect of urban heat island and other mesoclimatic anomalies on soil C stocks and fluxes in Moscow megapolis

Viacheslav Vasenev, Andrey Dolgikh, Olga Romzaykina, Inna Brianskaia, Mikhail Varentsov, Pavel Konstantinov, and Riccardo Valentini

Urbanization is a global tendency, which social-economic and environmental role will increase coming decades. Urbanization has a multiple effect on climate, vegetation and soils and these effects are interrelated. Specific features urban meteorological regimes including but not limited to urban heat island alters biogeochemical processes in urban vegetation and soils. Natural vegetation in cities is to a large extent substituted by introduced species. Urban soils are dominated by artificial constructions, engineered from substrates rich in organic carbon. A complex effect of the mesoclimatic anomalies in cities alter biogeochemical processes in urban soil-plat-air systems with a crucial effect on carbon balance.

This study aims to study relationships between carbon stocks and greenhouse gases’ emissions from urban soils and climatic conditions in Moscow megapolis, considering its spatial heterogeneity and history. Moscow is among the largest cities in the world, Rapid urbanization of recent decades has evoked complex and ambiguous effects on soil C stocks and emissions. Soil sealing resulted from building and road construction directly reduces C stock in topsoils and indirectly effects soil respiration by salinization, pollution and over-compaction. On the other hand, establishment of new green zones brings an additional input of C through adding C-rich materials for engineering urban soils and stimulating production of root biomass by fertilization, irrigation and other practices maintaining urban green infrastructure. The research included several steps. At first, an intensive soil survey was organized in Moscow on summer 2019. Sampling scheme covered all the megapolis area and considered different functional and historical zones. Mixed topsoil (0-20 cm) samples were collected in total 240 locations. Total, organic and inorganic C was measured at the collected samples and C stocks were estimated. Second, microbial respiration in contrast soil moistures (4-5 points on water saturation curve) and temperatures (10, 20, 30 and 40ºC) were measured in standard lab conditions by gas chromatography. The multiple regression equations relating C stocks and microbial respiration to soil temperature, moisture and adjustment soil properties were developed. Finally, a regional climate model COSMO-CLM was adapted to the case of Moscow megapolis to estimate dynamics of soil temperature and moisture regimes. The investigated relationships were used to generate maps of C stocks and microbial respiration of urban soils in Moscow as affected by mesoclimatic anomalies.

Acknowledgements The experimental research was performed with the support of Russian Science Foundation project № 19-77-30012. The modelling part was carried out with the support of Russian Science Foundation project № 18-35-20052.

How to cite: Vasenev, V., Dolgikh, A., Romzaykina, O., Brianskaia, I., Varentsov, M., Konstantinov, P., and Valentini, R.: The effect of urban heat island and other mesoclimatic anomalies on soil C stocks and fluxes in Moscow megapolis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3832, https://doi.org/10.5194/egusphere-egu2020-3832, 2020.

EGU2020-5105 | Displays | SSS4.2

Water-soluble organic matter and enzymatic activity of urban soils of Rostov aglomeration

Gorbov Sergey, Skripnikov Pavel, and Bezuglova Olga

Soil water-soluble organic matter (WSOM) is the most dynamic and least stable component of humus. It takes a direct part both in leading soil processes and in the formation of effective soil fertility. Its components are involved in the creation of a water-resistant structure, also exhibit physiological activity, and be of service as energy material by microorganisms. The total content of organic matter in the soils of the Rostov agglomeration varies widely: from 1.5 to 7.0%. Long-term studies of soils of the Rostov agglomeration forest-park zones showed that the organic carbon content in these soils increases under tree vegetation. This is due to changes in microclimate conditions and the associated longer period of vegetation of herbaceous vegetation. The WSOM content was obtained by summing the results of cold and hot extraction in natural soils. Its gradually decreases with depth repeating the profile dynamics of the organic carbon content in general. The surface horizons of native chernozems in a forest park and in a virgin land have the highest content of WSOM. It can be concluded that the WSOM pool is directly proportional to the stock of incoming plant residues. The maximum of extracellular enzymes activity was obtained in upper most biogenic soil horizons in the natural city soils. The highest activity was record for the enzyme, which is responsible for the nitrogen cycle (arginine-aminopeptidase (Agr)) and for the phosphorus cycle (acid phosphatase (Pho)). The enzymes activity decreases down the soil profile. 

For anthropogenically transformed soils, the WSOM profile distribution indicates a peculiar two-member structure of soil profile. The transformed upper urbiс horizons was demonstrate the absence of any patterns in its distribution. In the buried horizons of Technosols, were have the same profile trends and the same absolute values of the organic carbon content such us presented in native chernozems. Despite the high humus content in natural soils (5–7%), most of it is strongly associated with calcium ions. As a result, WSOM has values not exceeding 0.14% of the soil as a whole, or 4% in terms of organic carbon. For the urban horizons of anthropogenically transformed soils, WSOM values are not exceeding 0.04% of the soil, or about 2% in terms of organic carbon. The inversions of enzyme activity are often observed in anthropogenically transformed soils. The enzymatic activity is higher in buried humus-accumulative horizons of urbostratozems than in overlying horizons of the urbic. 

How to cite: Sergey, G., Pavel, S., and Olga, B.: Water-soluble organic matter and enzymatic activity of urban soils of Rostov aglomeration , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5105, https://doi.org/10.5194/egusphere-egu2020-5105, 2020.

EGU2020-5973 | Displays | SSS4.2

Crop residues amendments quality and effect on greenhouse gas emissions and aggregate stability

Gheorghe Stegarescu, Jordi Escuer, Karin Kauer, and Endla Reintam

The organic residues amendments have been widely studied for their essential role of enriching the soil with organic matter. Although the pathways of the fresh organic matter additions are very complex, so is the effect. Thus, the quality of the crop residues incorporated into the soil is a valuable attribute when deciding to switch to conservation agriculture. The different C/N ratio and biochemical composition of the crop residues will affect in various ways soil CO2, N2O and CH4 emissions and soil structural stability. The study explores the effect of different crop residues incorporated in the soil on greenhouse gas emissions and aggregate stability. The incubation experiment consisted of five treatments: control (just soil), sand (as reference), soil mixed with wheat straw, soil mixed with green fresh rye residues and soil mixed with green fresh oilseed rape residues. The residues were applied into the soil at a rate of 6 g C kg-1 of soil. The pots of all the treatments were placed for incubation for 105 days at approximately 23 oC and covered with dark plastic bags. The wetting procedure was done five times at 0-11-26-46-75 days to bring the soil to field capacity for water. The sampling for the gas emissions and aggregate stability was done before wetting and after wetting. The gas emissions were sampled using the chamber method and analysed in a Gas Chromatographer. The water-stable aggregates were analysed using the wet sieving method. The plant material was chemically analysed for total carbon and nitrogen and the biochemical composition on Fourier Transform Infrared Spectroscopy. The results revealed that the cumulative CO2 emissions in oilseed rape were 8% higher than in rye treatment. Also, it was 76% higher than in wheat straw treatment and 95 % higher than in control treatment. The highest cumulative N2O emissions were registered in rye treatment 18.79 (±0.48) mg m-2 h-1. Oilseed rape treatment had 19% lower cumulative emissions compared to rye and 98 % higher compared to control and wheat straw treatments. Both rye and oilseed rape had a low C/N ratio 12 and 10, respectively whereas wheat straw had 98 C/N ratio. From a biochemical point of view, the wheat straw was richer in stable compounds such as lignin, cellulose and hemicellulose followed by rye and oilseed rape which had a higher content of labile compounds such as sugars and easily decomposable proteins. In general mean aggregate stability increased significantly only in the wheat straw treatment being 34.69% ±1.35. 

In conclusion, this study showed that crop residues with low C/N ratio have a negative effect on greenhouse emissions. But do not have a long term effect on the increase of aggregate stability. On the contrary, the wheat straw has a positive impact on greenhouse gases, and it increased aggregate stability. 

How to cite: Stegarescu, G., Escuer, J., Kauer, K., and Reintam, E.: Crop residues amendments quality and effect on greenhouse gas emissions and aggregate stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5973, https://doi.org/10.5194/egusphere-egu2020-5973, 2020.

EGU2020-7564 | Displays | SSS4.2

Effects of mechanical weed control in organic soybean cultivation on weed biomass and diversity in Luxembourg

David Richard, Laura Leimbrock, Gilles Rock, René Diederich, Guy Reiland, and Stéphanie Zimmer

With a high protein content (± 40 %) and an optimal amino acid composition, soybean (Glycine max (L.) Merr.), a member of the family Leguminosae, is one of the most important feed protein sources in animal nutrition. By signing the European Soy Declaration in 2017, Luxembourg aims to promote the regional cultivation of protein crops, e.g. soybean. Organic soybean cultivation in Luxembourg is still in its initial stage, with knowledge gaps mainly in mechanical weed control. The aim of the project “Sustainable and resource-efficient protein production using various mechanical weed control methods in grain legume cultivation, using soybean as an example” (LeguTec) is to investigate the efficiency of the selected mechanical systems under consideration of, inter alia, weed biomass.

In 2018 and 2019, field trials took place on two organic farms in Luxembourg (in Manternach and Hostert). Five mechanical methods were tested in soybean cultivation (variety Merlin), including A) harrow, B) interrow cultivator with duck-foot shares, C) interrow cultivator with duck-foot shares and finger-weeder, D) a combination of treatments A and C, and E) mixed cropping of soybean and camelina in combination with harrow. A positive control F) weeded by hand and a negative control G) not weeded are also implemented. Field trials were set as one-factorial-exact-trial with four replicates. Weeds were counted and identified and biomass cut before and after each weed control run as well as at flowering. Weed diversity was estimated by means of the Shannon index.  Data were analysed using ANOVA (p<0.05) and appropriated pairwise comparison Tuckey tests.

In 2018, significant less weed biomass is observed in Hostert for D in comparison to A and E, and for B, C and D in comparison to A and E, in 2019. Biomass in Manternach in 2019 is significantly lower in treatment D. Globally, weed biomass at flowering tends to be lower in the hoeing treatments (B, C and D) than in the harrowing treatments. High weed pressure from the beginning on in all treatments in Hostert has limited the efficiency of weeding but with a tendency in favour of the interrow cultivator.  At the Manternach site, weed pressure was low in 2018, allowing good regulation resulting in low diversity in all treatments. Values of the Shannon index tend to be negatively affected by mechanical weeding across all field trials. In 2019, significant lower Shannon index is observed in Hostert for treatments C and D, as well as for treatment C in Manternach. Hoeing generally tends to lower the most weed diversity in addition to weed biomass. Low abundant species were more likely to disappear, while 1 to 4 species became over-dominant in each treatment.

The increased interest in regional soybean cultivation in Luxembourg due to the LeguTec project shows the need of further research on soybean cultivation to reach the long-term goal of overcoming cultivation barriers and promoting a sustainable, resource-efficient protein production in Luxembourg.

How to cite: Richard, D., Leimbrock, L., Rock, G., Diederich, R., Reiland, G., and Zimmer, S.: Effects of mechanical weed control in organic soybean cultivation on weed biomass and diversity in Luxembourg, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7564, https://doi.org/10.5194/egusphere-egu2020-7564, 2020.

EGU2020-10594 | Displays | SSS4.2

Mycobiota in urban soils of Russian North

Inna Vaseneva, Elena Kuznetsova, and Fluza Khabibullina

Microbilogical properties of urban soils were studied in Syktyvkar town (Komi Republic), in the taiga zone of Russia. Within the settlement, two different types of functional zones were compared: transport (roadside areas with limited influence of traffic and highway area) and recreation areas (parks). The soils of parks are man-changed urban soils, whereas the soils of roadside areas were mainly man-made or considerably disturbed. The investigated soils were formed on the cultural layer or buried soils and sediments of various genesis. The soil profiles included a humus-accumulative horizon in the top part, followed by an anthropogenically transformed part, underlain by a slightly modified parent rock.

The highest number of species was determined in the soils of recreational areas, including 33 species of microscopic fungi. Soils of the transport area contained 22 species. The higher number of species is associated with the development of specific for urban zone fungal complex and partial preservation of natural zonal species of fungi, mainly representatives of Penicilliumgenus. Non-typical for the taiga zone species from Aspergillus and Fusariumgenera were frequently noted. Highway areas with intensive traffic were characterized by the dominance of dark-colored melanin-containing fungi, which are conditional pathogens for humans, and increasing presence of sterile mycelium – indicator of soil disturbance. Stenotopic species which are typical for undisturbed zonal conditions were rarely isolated.

Acknowledgements The experimental research was partly supported by Russian Science Foundation project № 19-77-30012.

How to cite: Vaseneva, I., Kuznetsova, E., and Khabibullina, F.: Mycobiota in urban soils of Russian North, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10594, https://doi.org/10.5194/egusphere-egu2020-10594, 2020.

EGU2020-13415 | Displays | SSS4.2

A comparison between vegetable intercropping systems and monocultures in greenhouse gas emissions under organic management

Virginia Sánchez-Navarro, Mariano Marcos-Pérez, and Raúl Zornoza

Legume crops have been proposed as a way of reducing greenhouse gas (GHG) emissions because both, their rhizosphere behaviour and their ability to fix atmospheric N reducing the need of external N fertilizer. Moreover, the establishment of organic agriculture has been proposed as a sustainable strategy to enhance the delivery of ecosystem services, including mitigation of climate change by decreases in GHG emissions and increases in soil C sequestration. The aim of this study was to assess the effect of the association between cowpea (Vigna unguiculata L.) and melon (Cucumis melo L.) growing in different intercropping patterns on soil CO2 and N2O emissions compared to cowpea and melon monocultures under organic management as a possible strategy for climate change mitigation. Soil CO2 and N2O emissions were weekly measured in melon and cowpea rows using the dynamic chamber method during one cropping cycle in 2019. Results indicated that melon growing as monoculture was related to increases in O cumulative emissions (0.431 g m-2) compared to the average of the rest of treatments (0.036 g m-2). Cowpea growing as monoculture was related to decreases in CO2 cumulative emissions (390 g m-2) compared with the other treatments (512 g m-2 average). However, N2O and CO2 emission patterns did not directly follow soil moisture patterns in the experimental period, with no significant correlations. Finally there were no significant differences among intercropping treatments with regard to NO2 and CO2 emissions. Further measurements are needed to monitor the evolution of GHG emissions under these cropping systems and confirm the trend observed.

How to cite: Sánchez-Navarro, V., Marcos-Pérez, M., and Zornoza, R.: A comparison between vegetable intercropping systems and monocultures in greenhouse gas emissions under organic management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13415, https://doi.org/10.5194/egusphere-egu2020-13415, 2020.

EGU2020-13890 | Displays | SSS4.2

Soil Carbon Dioxide Emission in Extreme Environment of the Center of Moscow Megapolis

Andrey Dolgikh, Dmitriy Petrov, Inna Brianskaia, Soryia Demina, Ksenia Mahinya, Olga Romzaikina, and Aleksandr Dobrianskii

Moscow is the largest megapolis in Europe. The area of sealed areas in the center of Moscow is more than 50% (without hydrological objects). Anti-icing mixtures, car traffic, aerosols, dust, trampling - all this leads to the maximum stress of ecosystems in an urban environment Soil emission is the largest component of Gross Respiration in terrestrial ecosystems, including cities. Field measurements of emission allow estimating and comparing the state of both the underground tier and the entire ecosystem in different functional zones of a city with different types of vegetation. Soil emission is the easiest to measure, as compared to other fluxes of С-exchange. In 2019, field measurements of carbon dioxide emissions were carried out at 15 key sites (15 times, 1 per 2 weeks), which showed that in the historic center, not only the temperature at different depths of the soil, soil moisture, carbon content, particle size distribution, but also the diversity of factors combined into a group of "land use", namely: human tillage, irrigation, lawn mowing, garbage removal, sprinkling peat-compost mixture, trampling, bringing anti-icing reagents, etc., have a contrasting effect on carbon dioxide emissions from urban soils. In some cases, the emission is below the conditional background values (urban forest), in other cases, it is higher up to several times, which allows a new assessment of soils of unsealed (open) areas of the center of a megapolis as an important component of the (micro-) regional C-cycle. The data obtained allow comparing the current state of the upper part of the underground tier of urban ecosystems under the maximum anthropogenic load in the territory of a modern large city, where the share of open surfaces is minimal. The territories, where the ground layer is represented by cultivated lawn, are characterized by the maximum values of soil carbon dioxide emission.

The study was supported by the Russian Research Foundation #19-77-30012 (field measurements in the periphery of Moscow) and the Russian Foundation for Basic Research #18-35-20052 (field measurements in the historic center of Moscow).

How to cite: Dolgikh, A., Petrov, D., Brianskaia, I., Demina, S., Mahinya, K., Romzaikina, O., and Dobrianskii, A.: Soil Carbon Dioxide Emission in Extreme Environment of the Center of Moscow Megapolis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13890, https://doi.org/10.5194/egusphere-egu2020-13890, 2020.

EGU2020-17496 | Displays | SSS4.2

From natural land to irrigated crops: impact of land use change and crop diversification on interrill erosion

Efraín Carrillo López, Carolina Boix-Fayos, Niek Verschaeren, Jesús Lucas Parra, Elvira Díaz Pereira, Noelia García-Franco, María Almagro, Pedro Pérez Cutillas, and María Martínez-Mena

Soil erosion is one of the most important processes of soil degradation, especially vulnerable are many agricultural systems of SE Spain which are being transformed from a rainfed to irrigated agriculture. Crop diversification has been raised as a possible management measure with multiple benefits to combat soil degradation. Interrill soil erosion rates and processes were assessed in three land uses in SE Spain next to each other, with the same basic characteristics (climate, lithology and soils)  representing a gradient of land use change: natural shrubland, rainfed almond crop (Prunus dulcis) on terraces and levelled citrus crops (Citrus reticulata) with street-ridge morphology. The experimental design included two diversifications in the rainfed almond: intercropping Capparis spinosa and Thymus hyemalis, respectively, while in the citrus irrigated area a rotation with Hordeum vulgare and Vicia sativa (from February to July) or Vicia faba (from October to January) were intercropped in the streets.

In the rainfed and natural area interill erosion was measured using erosion pins with a 2 or 3 x 3 x 3 scheme (2 or 3 plots of 1 m2 with 9 pins at two diversifications and control, at three different agricultural terraces). In the natural area two pin plots were set up. At the irrigated area the experimental design was a 2 x 2 x 2 scheme (2 plots (ridge; street) x 2 replicates x 2 (bare, vegetated). Pins were measured after each rain event or each month during 14 months, identifying detachment (positive values) and sedimentation (negative values) within the erosion process.

The preliminary results indicate significant higher erosion rates in the irrigated areas than in the traditional rainfed terraces (83.6±147.4 t ha-1 versus 9.59±170.34 t ha-1, respectively). Shrubland natural areas show significant higher deposition rates (-74.97±43.08 t ha-1) than recent diversified plots with Capparis and Thymus (-52.56±227.06 and -28.29±85.94 t ha-1, respectively). Neither differences within diversification type (Capparis versus Thymus) nor between control and diversifications in the rainfed almond area have been yet detected. In the Citrus irrigated area erosion rates under Hordeum vulgare and Vicia sativa were significantly higher than under Vicia faba (129.58±94.43 and 25.61±87.79 t ha-1, respectively).

So far, those preliminary results indicate that natural shrubland and traditional rainfed crop systems facilitate sedimentation rates and are effective systems for soil conservation. However, the conversion from rainfed to irrigated crops mean a significant increase of erosion rates due to a system that does not facilitate retention of detached soils. Within this temporal framework, crop diversifications, both in rainfed and irrigated systems, have not yet significantly reduced erosion rates. A longer experimentation period is necessary to determine the effect of crop diversifications on soil erosion.

How to cite: Carrillo López, E., Boix-Fayos, C., Verschaeren, N., Lucas Parra, J., Díaz Pereira, E., García-Franco, N., Almagro, M., Pérez Cutillas, P., and Martínez-Mena, M.: From natural land to irrigated crops: impact of land use change and crop diversification on interrill erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17496, https://doi.org/10.5194/egusphere-egu2020-17496, 2020.

EGU2020-17745 | Displays | SSS4.2

Environmental impact of crop diversification in steep vineyards

Thomas Iserloh, Felix Dittrich, Cord-Heinrich Treseler, Katharina Frey-Treseler, Roman Hüppi, Johann Six, Sören Thiele-Bruhn, and Manuel Seeger

The intensification of European agriculture leads to soil degradation, reduction of biodiversity and an increased economic risk for the farmers. An approach towards solving this problem is crop diversification and the optimized use of resources. Increasing agricultural efficiency/resilience through diversification and the associated falling environmental costs could contribute to the growth of the European agricultural sector by adapting the entire value chain.

The EU-funded project DIVERFARMING (Horizon 2020 no 728003) aims to develop and deploy innovative farming and agribusiness models based on crop diversification. Germany is involved with a broad-based study in organic steep slope viticulture in Wawern (Saar Valley).

A fundamental issue of steep slope viticulture is related to vegetation management below the vines. In order to overcome problems of soil erosion and soil organic matter depletion, an increasing number of winemakers is establishing cover crops such as grasses and legumes in driving lanes. On the contrary, the area underneath the vines is typically kept free of vegetation to avoid fungal diseases and competition on water. As cover crops do not benefit to the value chain and may compete with vines on water or have other adverse effects on vine performance, an alternative strategy for vegetation management underneath vines in steep slope viticulture is required.

Therefore, intercropping vines with perennial herbs like Thyme and Oregano growing underneath is a promising cropping practice to address the abovementioned issues. Both herbs are economically valuable and originate from dry and warm environments, which are typical for most viticultural areas. Furthermore, their relatively low need for water and flat-growing habitus is assumed to be suitable to cover the soil underneath the vines in order to protect against erosion and suppress weeds without having adverse effects on vine growth and -health. They can be marketed directly or indirectly as a concentrate for cosmetics, perfumes, nutritional supplements and food.

During the 5-year project, we will investigate impacts on and interactions between crops, soil ecological and physicochemical properties as well as erosion and emission of greenhouse gases to evaluate ecological benefits of crop diversification. Selected results obtained within the first two years of investigation will be presented.

How to cite: Iserloh, T., Dittrich, F., Treseler, C.-H., Frey-Treseler, K., Hüppi, R., Six, J., Thiele-Bruhn, S., and Seeger, M.: Environmental impact of crop diversification in steep vineyards, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17745, https://doi.org/10.5194/egusphere-egu2020-17745, 2020.

EGU2020-19676 | Displays | SSS4.2

Soils of abandoned industrial wastes disposal sites: properties, processes, functioning

Igor Zamotaev, Natalia Telnova, Alexander Alexandrovskiy, Raisa Gracheva, Andrey Dolgikh, Dmitry Karelin, Yulia Konoplyanikova, Pavel Mikheev, Alexander Dobrianskiy, and Eleonora Belova

Soils formed at once abandoned and recultivated industrial waste dumping sites are key research objects both as models of soil-forming processes in underdeveloped soils and indicators of persistent or potential environmental hazards of dumps themselves. Our studies of technogenic surface-like soil formations (TSF) and soils were conducted on a closed landfill and two abandoned filtration fields from sugar factories  in Kursk region, central part of European Russia.

Key properties of TSF and soils were defined with the assessments of their ecological, microbiological state and gas-geochemical condition. Set of methods (mesomorphological and micromorphological analysis, soil chemical and physico-chemical analysis, comparatively geographical method) was used for the detection of current elementary soil processes. Seasonal dynamics of carbon dioxide, methane and nitrous oxide emissions from soils to the atmosphere was also under consideration. Main used methodology is a research of sustainable properties of soil solid-phase (“soil memory”) together with soil functioning.

Long-term time series of high-detailed remote sensing data (from archive aerial photos of 1950s to actual satellite images and UAV optical photogrammetry) provided the possibility for the retrospective remote monitoring of the all abandoned dumps in study and reconstruction of their life cycles and land cover patterns.

As a result for the three industrial waste dumping sites of different types and the varying age of abandonment and recultivation history there were elaborated schemes of chrono-functional zoning. Each chrono-functional zone is characterized by the specific set of TSF and soils. Among them, it was described technogenic surface-like soil formations of closed landfill, calcareous technosols with several thick organic layers at the bottom of abandoned field filtration cells, calcic anthrosols of field filtration cells spontaneously used for agriculture after the abandonment of sugar factories.

The study is financially supported by RFBR project № 19–29–05025–mk.

How to cite: Zamotaev, I., Telnova, N., Alexandrovskiy, A., Gracheva, R., Dolgikh, A., Karelin, D., Konoplyanikova, Y., Mikheev, P., Dobrianskiy, A., and Belova, E.: Soils of abandoned industrial wastes disposal sites: properties, processes, functioning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19676, https://doi.org/10.5194/egusphere-egu2020-19676, 2020.

EGU2020-20635 | Displays | SSS4.2

Effects of management on soil organic carbon and structural stability in olive grove toposequences in Mediterranean areas.

Manuel González-Rosado, Jesús Aguilera Huertas, Beatriz Lozano-García, and Luis Parras-Alcántara

Carbon sequestration in agricultural soils has been defined as a positive strategy to mitigate the climate change effects. To implement this strategy, it is necessary to reduce the soil physical disturbances that encourage its degradation. It is therefore essential to analyze the consequences that conventional tillage practices have on agrosystems as a first step towards developing sustainable management practices that are in line with strategies to combat climate change. In order to evaluate the conventional tillage impact in olive groves, a toposequence was carried out where three profiles of 50 cm depth each were opened in three topographical positions: summit, backslope and toeslope. The physical and chemical soil properties were analyzed, including soil organic carbon (SOC) and mean weight diameter (MWD) of the aggregates, which showed a plot scale low SOC levels and low MWD being subject to erosive processes which negatively impacts on its SOC storage capacity.

How to cite: González-Rosado, M., Aguilera Huertas, J., Lozano-García, B., and Parras-Alcántara, L.: Effects of management on soil organic carbon and structural stability in olive grove toposequences in Mediterranean areas., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20635, https://doi.org/10.5194/egusphere-egu2020-20635, 2020.

EGU2020-20661 | Displays | SSS4.2

History and geography of land productivity to assess the challenges for food security

Marta Tuninetti, Luca Ridolfi, and Francesco Laio

Increasing population and changing diets toward larger proportion of meat products have driven agricultural production increase over the past decades and will probably push it in the upcoming years. The analysis of the agricultural production increase is at the centre of the international debate since the 1800-century Malthusian prediction of exponentially growing population outstripping linearly increasing production.

In this study, we show how agriculture has changed over the past decades through the concept of a newly developed land productivity (LP) indicator, which measures the amount of calories, proteins, and fats produced per hectare of land and merges the variegate macronutrients spectrum of a 140-crops production basket. Land productivity indicator adds to the more widespread (crop specific) yield indicator the nutrient content of each product.

We find that the global LP has increased by 2.6-2.9% per year over 1961-2016 for calorie and protein, and 3.7% for fat. This confirms an important boost of the global productive regime whose growing rate has been able to overcome that of population. Humans can rely on larger amounts of calories (+1640 kcal/cap/day), proteins (+69 g/cap/day), and fats (+55 g/cap/day) supply. In this global picture, different macro-regions exhibit relevant heterogeneities. In particular, we found that Eastern Asian and Latin American countries could escape the Malthusian trap around the Nineties through both LP increase and ad hoc variation in the composition of their basket of products. However, this transition seems far to happen in Sub-Saharan Africa and South Asia, where the daily productive regime has remained stable since the Sixties, despite the variation of the basket composition.

How to cite: Tuninetti, M., Ridolfi, L., and Laio, F.: History and geography of land productivity to assess the challenges for food security, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20661, https://doi.org/10.5194/egusphere-egu2020-20661, 2020.

In conditions of on-going urbanization, urban parks play a key role in the sustainable development of urban space. New Moscow, the territory attached to Moscow in 2012, is currently the largest area in Russia experiencing rapid and intensive urban development. New Moscow is a unique area in which over the past five years, starting in 2012, rapid urbanization has been observed, including the formation of new recreational areas in the former forest, fallow and arable territories. There are currently more than 70 parks with a different land use history on this territory. Most of them have been created or reconstructed in the last 7 years. The aim of our study is to study the state of soils and green spaces of the recreational zones of New Moscow and the impact of anthropogenic factors on them, taking into account the different history of land use. For analysis, we selected 4 parks. Two parks are formed on the site of the former arable territory, and two parks in the forest zone. At the same time, one park from a couple was closer to the old borders of Moscow, and the second at a distance of more than 15 km. In the selected territories, we conduct physical, chemical and microbiological analysis of soils, as well as assess the state of green spaces. In each of the parks, 9 or 10 points were selected in various functional areas (territories near sports and playgrounds, in the walking area, barbecue area, etc.). The selection was carried out to a depth of 50-100 cm. The top layer (0-10 cm) was selected for analysis of the carbon content in the microbial biomass (Cmic), basal respiration (BR) and CO2 production. To carry out the pH, C / N analysis, as well as the content of heavy metals in the soil, the samples were taken horizontally to a depth of 100 cm. The second stage of the study was to assess the state of woody vegetation within a radius of 20 meters from each point selected for soil analysis. Thus, we plan to obtain a comprehensive analysis of the physical, chemical and microbiological condition of the soils of the recreational zones and green spaces with a different land use history and to identify the influence of the anthropogenic factor on them.

How to cite: Mahinya, K., Demina, S., Vasenev, V., and Brianskaia, I.: Analysis of the impact of urbanization on the microbiological, chemical and morphological properties of the soil in the recreational areas of the New Moscow with a different land-use history, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21658, https://doi.org/10.5194/egusphere-egu2020-21658, 2020.

EGU2020-21474 | Displays | SSS4.2

Biogeochemical characterization of soils affected by more than 100 years of lead mining activity.

José María Esbrí, Sara Gallego, JuanAntonio Campos, Fabrice Martin-Laurent, Jesus Peco, and Pablo Higueras

Mining has an adverse effect on soil quality as it is a source of heavy metal environmental pollution with direct consequences on its ecosystem services, especially those related to microbial activity. The magnitude and diversity of the impact produced by pollution is linked to the complexity and diversity of mining processes that share the same mining area. The soil will be modified, not only in the physicochemical characteristics but also physical alterations of varied typology will occur. All these changes and alterations related to mining activity are accompanied by changes in the composition, diversity and activity of soil microorganisms..
A study was carried out on a mine site showing variable degrees of contaminations with metals, to estimate the impact of mining works on the geochemistry of soils, and the activity and diversity of soil microorganisms.  The aim is to characterize the level of disturbance on the “soil health” due to the presence of different metals, related physicochemical factors, and typology of the wastes affecting the soil. Besides, the process of bacterial colonization of the wastes has been also subject of interest to our work.
The selected study area was originally a lead-silver mine. Later, a mineral treatment plant was established in the area in order to recover Zn from the primary gangue dumps. In addition spills of olive mill residues were later deposited in the area. Four composite samples from the five distinct sites differing in their characteristics were selected: tailings, dumps, olive mill residues, contaminated soil and reference soil. A range of various analyses was done on these samples including pH, electrical conductivity, organic matter, multi-elemental contents, enzymatic activity and bacterial biodiversity (16S rRNA amplicon sequencing).
Selected sampling sites have contrasted physicochemical characteristics: acidic pH was observed in dumps (3.8 in average) and neutral in tailings and soils (~6); highest conductivity was recorded in dumps (2282 microS cm-1 in average) and lowest in soils (62 microS cm-1 in average); the highest organic matter value was measured in soils amended with olive mill residues (60% in average). Heavy metals were detected in higher concentrations in dumps and olive mill residues than in tailings or soils. It is noteworthy in dump samples the maximum concentrations of metals reach 6.8% with significant amounts of Zn, Cu, Sb, Hg, Ni, Co and Mn. Highest enzymatic activities were measured in contaminated and non-contaminated soils, while lowest values were obtained in dumps and tailings soils, in accordance with the concentration of metal measured in the matrix. Next generation sequencing analysis of 16S rRNA amplicon lead to the discrimination on the different sites sampled according to bacterial composition and diversity. Most abundant bacterial phyla were Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, Bacteriodetes, TM7, Firmicutes, Cyanobacteria and Verrucomicrobia.
As a conclusion, we have found evidences of the intense affection of the metal pollution to the microbiological biodiversity, particularly that related with the presence of high Pb concentrations.

How to cite: Esbrí, J. M., Gallego, S., Campos, J., Martin-Laurent, F., Peco, J., and Higueras, P.: Biogeochemical characterization of soils affected by more than 100 years of lead mining activity., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21474, https://doi.org/10.5194/egusphere-egu2020-21474, 2020.

SSS4.3 – Plant-Microorganism-Soil interactions in the rhizosphere: from chemical, biological, and physical perspectives to an interlinked understanding of processes

EGU2020-4634 | Displays | SSS4.3 | Highlight

Multimodal Imaging of Plant-Soil Interaction for Better and More Predictive Modelling of Rhizosphere Processes

Tiina Roose, Siul Ruiz, Dan McKay Fletcher, Katy Williams, Chiara Petroselli, Callum Scotson, and Arjen van Veelen

We rely on soil to support the crops on which we depend. Less obviously we also rely on soil for a host of 'free services' from which we benefit. For example, soil buffers the hydrological system greatly reducing the risk of flooding after heavy rain; soil contains very large quantities of carbon, which would otherwise be released into the atmosphere where it would contribute to climate change. Given its importance it is not surprising that soil, especially its interaction with plant roots, has been a focus of many researchers. However the complex and opaque nature of soil has always made it a difficult medium to study.

In this talk I will show how we can build a state of the art image based model of the physical and chemical properties of soil and soil-root interactions, i.e., a quantitative, model of the rhizosphere based on fundamental scientific laws.
This will be realised by a combination of innovative, data rich fusion of structural and chemical imaging methods, integration of experimental efforts to both support and challenge modelling capabilities at the scale of underpinning bio-physical processes, and application of mathematically sound homogenisation/scale-up techniques to translate knowledge from rhizosphere to field scale. The specific science questions I will address with these

techniques are: (1) how does the soil around the root, the rhizosphere, function and influence the soil ecosystems at multiple scales, (2) what is the role of root- soil interface micro morphology on plant nutrient uptake, (3) what is the effect of plant exuded mucilage on the soil morphology, mechanics and resulting field and ecosystem scale soil function and (4) how to translate this knowledge from the single root scale to root system, field and ecosystem scale in order to predict how the climate change, different soil management strategies and plant breeding will influence the soil fertility.

How to cite: Roose, T., Ruiz, S., McKay Fletcher, D., Williams, K., Petroselli, C., Scotson, C., and van Veelen, A.: Multimodal Imaging of Plant-Soil Interaction for Better and More Predictive Modelling of Rhizosphere Processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4634, https://doi.org/10.5194/egusphere-egu2020-4634, 2020.

EGU2020-7925 | Displays | SSS4.3

A micro-macroscale approach coupling processes that shape rhizosphere diffusivity and permeability

Alice Lieu, Alexander Prechtel, Nadja Ray, and Raphael Schulz

A novel, comprehensive modeling approach extending (Ray et al., 2017, Rupp et al., 2018, Rupp et al., 2019) is used to study the interplay between biogeochemical processes in the rhizosphere. Understanding these local interactions is crucial for the habitat as they influence processes in the root-soil system such as the water and nutrient uptake by the roots. The mechanistic model explicitly represents the pore structure and allows for dynamic structural organization of the rhizosphere at the single root scale.

At this microscale, the movement of interacting entities - nutrients, bacteria and possibly charged chemicals - in the fluid is described by means of the diffusion and Nernst-Planck equations with a Henry transmission condition at the liquid/gas interfaces. A biomass phase can develop from agglomerations of bacteria and stabilising sticky agents may grow or decay at the solid surfaces. To take into account specific properties of the rhizosphere, root cells and an explicit phase of exudated mucilage as well as root hairs are included. In addition to solving the continuous partial differential equations, a discrete cellular automaton method (Tang and Valocchi 2013, Ray et al. 2017, Rupp et al., 2019) is used, enabling structural changes in the solid and mucilage phases at each time step. The partial differential equations are discretised with a local discontinuous Galerkin method which is able to handle discontinuities induced by the evolving geometry.

The microscale model is not amenable to large scale computations because of its high complexity. Upscaling techniques enable the incorporation of information from the rhizosphere scale to the macroscale. We apply these techniques to dynamically evolving microstructures taking the spatiotemporal evolution of the rhizosphere into account. Although the setting is periodic, the underlying geometries can be arbitrarily complex. The resulting hydraulic properties (e.g. diffusion coefficient, permeability) are an important input for existing root-water uptake models, involving e.g., the effect of mucilage.

In this study, we use two- and three-dimensional CT scans of maize root, and show how mucilage concentration as well as its distribution in the pore space result in changes of macroscopic soil hydraulic properties. The access of nutrients in small pores for the root is assessed in simulation studies and its effect on effective diffusivity is evaluated.

N. Ray, A. Rupp and A. Prechtel (2017): Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media. Advances in Water Resources 107, 393-404.

A. Rupp and K. Totsche and A. Prechtel and N. Ray (2018): Discrete-continuum multiphase model for structure formation in soils including electrostatic effects. Frontiers in Environmental Science, 6, 96.

A. Rupp, T. Guhra, A. Meier, A. Prechtel, T. Ritschel, N. Ray, K.U. Totsche (2019): Application of a cellular automaton method to model the structure formation in soils under saturated conditions: A mechanistic approach. Frontiers in Environmental Science 7, 170.

Y. Tang and A.J. Valocchi (2013): An improved cellular automaton method to model multispecies biofilms. Water Research 47 (15), 5729-5742.

How to cite: Lieu, A., Prechtel, A., Ray, N., and Schulz, R.: A micro-macroscale approach coupling processes that shape rhizosphere diffusivity and permeability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7925, https://doi.org/10.5194/egusphere-egu2020-7925, 2020.

EGU2020-8612 | Displays | SSS4.3

Root system architecture with and without root hairs: Consequences for nutrient and water uptake efficiency and related spatio-temporal patterns

Eva Lippold, Maxime Phalempin, Steffen Schlüter, Robert Mikutta, and Doris Vetterlein

Root hairs substantially contribute to the acquisition of nutrients and potentially also to water uptake. Hence, they might have a strong impact on plant growth under nutrient- or water-limited conditions. As little information presently exists about differences in matter uptake to plants either with or without root hairs, we hypothesize that the absence of root hairs will be compensated by an increase in root growth to overcome the hair-less handicap. Within the DFG-funded Priority Program 2089, we compare two different genotypes (i.e. Zea mays “Wild Type” and its corresponding hair-less mutant “rth3”) grown in two different substrates (loam and sand) in column experiments. X-ray computed tomography (X-ray CT) was used to investigate the spatial-temporal change of root architecture during growth. Additionally, total root length was measured after destructive sampling at harvest with WinRhizo. Contrary to our expectation, the reduced root surface area available for water and nutrient uptake in case of the hair-less cultivar was not compensated by more intensive root growth. The substrate had a higher impact on root growth than the presence or absence of root-hairs. For shoot growth (shoot biomass), both factors (genotype, substrate) had a significant impact. As a consequence, nutrient uptake efficiency (uptake per unit root length) was clearly increased by the presence of root-hairs, irrespective of the substrate. Water uptake efficiency did not show any difference between genotypes under the well-watered conditions studied. In general, water uptake per unit root length was higher in sand compared to loam. Differences in nutrient uptake efficiency should be reflected in the extent of nutrient depletion gradients around roots. To address such biochemical gradients we develop a new subsampling scheme based on extraction of undisturbed subsamples. Subsamples will be imaged with micro X-ray fluorescence (μXRF) for elemental mapping. The 2D µXRF image will be registered into the 3D X-ray CT image to relate the extent of gradients to the age of the respective root segment.

 

This project was carried out in the framework of the priority programme 2089 “Rhizosphere spatiotemporal organisation - a key to rhizosphere functions” funded by DFG (project number 403640293).

How to cite: Lippold, E., Phalempin, M., Schlüter, S., Mikutta, R., and Vetterlein, D.: Root system architecture with and without root hairs: Consequences for nutrient and water uptake efficiency and related spatio-temporal patterns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8612, https://doi.org/10.5194/egusphere-egu2020-8612, 2020.

EGU2020-14310 | Displays | SSS4.3

The effect of root exudates on soil nitrogen availability - an evaluation using microdialysis

Scott Buckley, Richard Brackin, Torgny Näsholm, Susanne Schmidt, and Sandra Jämtgård

Plant root exudates are believed to increase root capture of nutrients (including nitrogen) by encouraging development of a rhizosphere root community, and providing them with an energy source to facilitate degradation of litter and soil organic matter. However, observing the consequences of root exudation on nutrient cycling and microbial activity is challenging with current methods, given the small scales involved. We investigated the effect of root exudation on nitrogen (N) availability by simulating root exudation with microdialysis. This novel technique enables continuous release of synthetic solutions of root exudates via diffusion in situ in soil by using a root-sized permeable membrane. Importantly, it also allows for simultaneously monitoring the effects on inorganic N fluxes. To emulate growth of a root tip through a specific soil region, sucrose was released for seven days before substituting sucrose with water for a further 7 days. We investigated boreal forest soils with and without litter amendments (ground pea shoots) to attain different C/N ratios and we used two rates of exudation by retrodialysing with either 0.5 or 5 mM sucrose solution. We observed that pea litter promoted significant N immobilisation, along with greater rates of sucrose release from microdialysis probes - peaking at 90.7 ± 8 µg sucrose m-2 s-1 using the 5 mM sucrose solution after three days. This suggests that greater root exudation may be driven by microbial demand for both C and N, with no short-term nutritional benefit for plant roots, even after exudation has ceased within a specific soil region. Glucose and fructose fluxes (breakdown products of sucrose) were also greatest in the litter treatment, indicating enzyme activity was promoted by the availability of both sucrose and litter. CO2 respiration measurements indicated significant differences between litter and control soils, but there was no detectable effect of sucrose exudation, suggesting that the small amounts of C supplied and the limited area influenced by the diffusion of sucrose had little impact on overall microcosm respiration. We conclude that short-term C exudation presented no immediate benefit for plant nutrition in our experiment. Future studies can benefit from using microdialysis to investigate the influence of more complex root exudate solutions, as well as the mechanistic roles of transpiration-induced mass flow on plant N availability in the rhizosphere.

How to cite: Buckley, S., Brackin, R., Näsholm, T., Schmidt, S., and Jämtgård, S.: The effect of root exudates on soil nitrogen availability - an evaluation using microdialysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14310, https://doi.org/10.5194/egusphere-egu2020-14310, 2020.

EGU2020-12304 | Displays | SSS4.3

Deciphering taxonomic carbon exchange between plants and microorganisms using proteomics coupled with 13C tracers and spatially resolved protein extraction

James Moran, Vivian Lin, Ying Zhu, Nikola Tolic, Samuel Purvine, Joshua Rosnow, and Mary Lipton

Clear elucidation of plant-microbe interactions within the rhizosphere and how these relationships change over time can be confounded by the large microbial biodiversity, shifting microenvironmental conditions, and extensive spatial constraints within these complex systems. Proteomics analysis of root or soil samples, when linked with metagenomic interpretation, can provide key insights to both the taxonomy and functional capability of microbial populations within a sample. Yet, existing proteomic approaches may not always be able to provide the needed temporal and spatial resolution to capture fine-scale and short-term interactions between plants and microorganisms. To remedy this limitation, we are developing a suite of methodological adaptations intended to leverage proteomic analysis to help identify key interactions between rhizosphere microorganisms and their host plant.

First, we are employing 13C tracers coupled with automated data analysis to identify specific organisms consuming both simulated and natural root exudates. We are specifically exploring microcosms constructed from natural soil (Kellogg Biological Station, Hickory Corners, Michigan, USA) and planted with switchgrass as a platform for developing the techniques. Multiple previous studies have linked key interactions between both free-living and epiphytic microbial members with improved performance of a switchgrass host under nutrient-depleted, natural field conditions. Providing evaluation of the amount and taxonomic recipient of switchgrass-supplied carbon under varying conditions may help link key taxonomic groups with improved plant performance and biomass production.

Second, we are leveraging a membrane extraction technique coupled with specialized sample digestion, purification, and analysis to enable non-destructive, spatially-resolved protein extraction from the root-soil interface within our constructed microcosms. Through its non-destructive nature, this approach permits timeseries analysis for tracking specific taxa and, in some cases, functions associated with rhizosphere processes both before and after a system perturbation as well as variations over plant growth phases during a growing season. The high sensitivity of this system enables spatial analysis at the one to two mm scale where samples can be manually selected based on proximity to specific root structure, metabolic hotspots in the system, or other parameter of choice. Spatial analysis can be leveraged to track taxonomic distribution within the rhizospheres associated with roots at different growth stages or levels of maturity.

How to cite: Moran, J., Lin, V., Zhu, Y., Tolic, N., Purvine, S., Rosnow, J., and Lipton, M.: Deciphering taxonomic carbon exchange between plants and microorganisms using proteomics coupled with 13C tracers and spatially resolved protein extraction, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12304, https://doi.org/10.5194/egusphere-egu2020-12304, 2020.

EGU2020-6171 | Displays | SSS4.3

Rhizosphere legacy: amelioration of MicroBioPhysical properties of compacted soil

Bahar S. Razavi, Nicole Rudolph-Mohr, and Christoph Tebbe

Soil compaction is a multi-disciplinary problem in which soil, plant, and air operations play an important role and may have dramatic environmental consequences throughout the world. In compacted soils, the increase in bulk density, and the accompanying decrease in porosity hinders the exchange of oxygen, carbon dioxide and other gases, thereby causing hypoxic stress in plant roots. Hypoxic stress can effects root physiological functions, reduce soil enzyme activity, hence reducing soil fertility. For the first time we applied a unique combination of two imaging techniques, zymography and optodes sensors with molecular microbial community analysis to illuminate the rhizosphere self-regulation for amelioration of microbiophysical properties of compacted soil. To this end maize in compacted and uncompacted soil under control condition for 2 weeks was planted.

Soil oxygen map and β-glucosidase activity in compacted maize treatment overlaid with the extracted root system demonstrated more than 65% positive correlation between hotspots of enzymatic activity and localities with high oxygen concentration –which were mostly in association with root. Similarly, extend of rhizosphere for oxygen concentration and enzyme activity across the root of compacted soil was 1mm broader than the uncompacted.

Based on root morphology analysis, compacted maize reduced roots diameter and increased the distribution. Which resulted in 30% higher ratio of rhizosheath mass in compacted than uncompacted soil. Rhizosheath formation changed porosity and aggregation around the root, thus, improved oxygen exchange. Accordingly, bacterial abundance and alpha diversity in hotspots of compacted soils were higher than the one of uncompacted. Thus, microorganisms localized in hotspots (rhizosheath) respond to better aeration, new carbon inputs compared to those inhabiting in the bulk soil. This confirms the distinguished role of rhizosphere-self organization for enzymatic mobilization of nutrients, and point out on the importance of aeration for rhizospheric microbial functionality (such as, enzyme expression for nutrients mining).

How to cite: Razavi, B. S., Rudolph-Mohr, N., and Tebbe, C.: Rhizosphere legacy: amelioration of MicroBioPhysical properties of compacted soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6171, https://doi.org/10.5194/egusphere-egu2020-6171, 2020.

EGU2020-22488 | Displays | SSS4.3

Studying deep rooting and its value for crops

Kristian Thorup-Kristensen

Water and nutrients are distributed throughout the soil volume, and their ability to move towards the plant roots is highly restricted, in most cases to a few mm or less. This mean, that unlike the aboveground resources of light and CO2 moving to the plants, roots need to grow towards the resources. Thus, for efficient resource uptake, roots need to be well distributed in the soil, both locally within the root zone and to grow deep to increase the overall volume of soil exploited. In crop production, deep rooting has been shown to be highly important for water and nitrogen use, and deep rooting is expected to contribute specifically to soil C sequestration.

Research into deep rooting and its functions is strongly restricted by the difficulties of studying roots hidden deeply in the soil. It is very laborious to access them, and even more difficult to set up experiments giving frequent and non-destructive measurements of the relevant parameters.  

In previous experiments, we have studied deep rooting of crops and cover crops and its effect on deep nitrogen uptake. By measuring roots and soil nitrogen to 2.5 m depth, we found that deep rooting was a main factor in nitrogen uptake and the reduction of nitrogen leaching loss. This showed how deep rooted species can be used to develop nitrogen efficient cropping systems. Further, it was shown that inclusion of deeper soil layers in the studies were critical for the conclusions to be drawn. Increasing the depth of study from e.g. 1 m to 2.5 m did not just moderate the conclusions and quantitative estimates, in several studies it basically changed conclusions that could be drawn.

Since 2015, we have built three new research platforms dedicated to detailed study of deep root growth and function. We have built a rhizobox facility consisting of 24 rhizoboxes each 4 m deep. The rhizoboxes are equipped with soil water sensors, and give access to observe the roots, take soil and root samples and inject tracers along the whole soil profile. In the field, we have built a platform, aimed at giving similar research possibilities, using long minirhizotrons, soil water sensors and metal access tubes for inserting ingrowth cores, all together giving valuable opportunities, though we cannot achieve the same easy access to the root zone as in the rhizoboxes. Finally, we have built a deep root phenotyping facility, using minirhizotrons to allow screening of 600 plant lines for root growth down to 3 meters depth, and allowing us to measure root activity of the lines by deep placement of isotope tracers.

These new facilities, and the research opportunities they give will be discussed, together with some of the first research results on deep roots we have obtained there.

How to cite: Thorup-Kristensen, K.: Studying deep rooting and its value for crops, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22488, https://doi.org/10.5194/egusphere-egu2020-22488, 2020.

EGU2020-5061 | Displays | SSS4.3

Spatio-temporal dynamics of root system architecture of maize in a field trial during a growing season

Doris Vetterlein, Susanne Schreiter, Eva Lippold, Maxime Phalempin, Sebastian Blaser, and Steffen Schlüter

A better understanding of how roots explore soil is crucial for plant breeding, yield increase and sustainable agriculture. This requires detailed knowledge about the temporal dynamics of root system architecture under field conditions, which is hard to achieve as sampling of roots with unconstrained growth (no root windows) is very laborious. 
Here we present the results of a major undertaking to sample maize roots in a field experiments at four growth stages in various depths (0-20, 20-40, 40-60 cm) with two different methods: a) destructive sampling with a root corer and root washing vs. b) undisturbed sampling combined with root detection in X-ray CT images. The first method results in root length data with a higher number of technical replicates per depth and plot, whereas the second provides more details of small-scale rooting patterns and plant-soil interactions in intact soil for a smaller number of samples.
The aim of the study was to explore differences in spatio-temporal root growth patterns between two different maize genotypes (wild type vs. root hairless mutant) growing in two different homogenized substrates (sand vs. loam). For disturbed sampling we found that for both genotypes root growth was more vigorous in sand during the entire growing season. This was remarkable since shoot biomass was larger on the loam plot. As drought developed during the growing season, root length density profiles reversed in loam, but not on sandy substrate. For intact cores we find the same trends so that they can now be analyzed towards inter-root distances at shorter scales.
In loam the absence of root hairs and the associated reduction of available surface for water and nutrient uptake resulted in a 50% reduction in shoot biomass, whereas root length profiles did not differ in the root corer data. In sand differences in shoot biomass between genotypes were comparable, but here root length densities were lower for the root hairless mutant in the root corer data. Unexpectedly there was no compensation of lacking root hairs by enhanced root growth. The root length data in intact samples showed higher variation due to smaller sampled volumes which disguised possible trends between genotypes.
In summary, the different hydraulic properties of the substrates had a strong effect on root growth and root distribution with depth, whereas the genotype governed shoot biomass supposedly through differences in nutrient and/or water uptake efficiency mediated by the presence or absence of root hairs. As the next steps, these observations will be underpinned by transpiration and soil moisture monitoring data as well as plant nutrient uptake data.

How to cite: Vetterlein, D., Schreiter, S., Lippold, E., Phalempin, M., Blaser, S., and Schlüter, S.: Spatio-temporal dynamics of root system architecture of maize in a field trial during a growing season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5061, https://doi.org/10.5194/egusphere-egu2020-5061, 2020.

EGU2020-5225 | Displays | SSS4.3

An improved method for the segmentation of roots from X-Ray computed tomography 3D images: Rootine v.2

Maxime Phalempin, Eva Lippold, Doris Vetterlein, and Steffen Schlueter

X-ray computed tomography (CT) is acknowledged as a powerful tool for the study of root system architecture (RSA) of plants grown in soil. The study of the root system properties is however only possible after performing root segmentation, i.e. the binarization of all root voxels. Root segmentation is often regarded as a tedious and difficult task as its success depends on several factors such as the image resolution, the signal to noise during image acquisition and the gray value contrast between the roots and all other surrounding features. Here, we present an improved method for the segmentation of roots from X-Ray computed tomography 3D images. The algorithm Rootine (Gao et al. 2019) does not detect roots by their gray values but by their characteristic tubular shape. This algorithm was further developed in order to improve the root recovery rate and to reduce the number of parameters involved during the segmentation process. This was achieved by adding two key steps: (1) an absolute difference transform and (2) an automatic calculation of the parameters used during the Gaussian smoothing. The first step allows for targeting specific features based on a gray value criteria contained within a user-defined gray value range in order to better distinguish roots from pores whereas the second step allows for targeting root segments of specific diameters. On the benchmark dataset of Gao et al. 2019, the newly called “Rootine v.2” was able to recover 34 % more roots as compared to its preceding version. Moreover, the number of parameters was reduced from 10 down to 5 which allows for a faster calibration and an overall better usability of the algorithm. The presented method also allows for a more reliable estimation of root diameter derived from X-Ray CT images. This work was carried out in the framework of the priority programme 2089 “Rhizosphere spatiotemporal organization - a key to rhizosphere functions” funded by DFG (project number 403640293).

How to cite: Phalempin, M., Lippold, E., Vetterlein, D., and Schlueter, S.: An improved method for the segmentation of roots from X-Ray computed tomography 3D images: Rootine v.2, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5225, https://doi.org/10.5194/egusphere-egu2020-5225, 2020.

EGU2020-9707 | Displays | SSS4.3

Spatial sampling approach to unravel the impact of soil texture and root genotype on maize root gene expression profiles

Minh Ganther, Marie-Lara Bouffaud, Lucie Gebauer, François Buscot, Doris Vetterlein, Anna Heintz-Buschart, and Mika Tarkka

The complex interactions between plant roots and soil microbes enable a range of beneficial functions such as nutrient acquisition, defense against pathogens and production of plant growth hormones. The role of soil type and plant genotype in shaping rhizosphere communities has been explored in the past, but often without spatial context. The spatial resolution of rhizosphere processes enables us to observe pattern formation in the rhizosphere and investigate how spatial soil organization is shaped through soil–plant–microbiome interactions.

We applied spatial sampling in a standardized soil column experiment with two maize genotypes (wildtype vs. roothairless3) and two different soil textures (loam vs. sand) in order to investigate how in particular functions of the maize roots relating to nutrient/water uptake, immunity/defense, stress and exudation are affected. RNA sequencing and differential gene expression analysis were used to dissect impact of soil texture, root genotype and sampling depth. Our results indicate that variance in gene expression is predominantly explained by soil texture as well as sampling depth, whereas genotype appears to play a less pronounced role at the analyzed depths. Gene Ontology enrichment analysis of differentially expressed genes between soil textures revealed several functional categories and pathways relating to phytohormone-mediated signaling, cell growth, secondary metabolism, and water homeostasis. Community analysis of rhizosphere derived ACC deaminase active (acdS gene including) plant beneficial bacteria, which suppress the phytohormone ethylene production, suggests that soil texture and column depth are the major factors that affect acdS community composition.

From the comprehensive gene expression analyses we aim to identify maize marker genes from the relevant core functional groups. These marker genes will be potentially useful for future experiments; such as field plot experiments for investigation of later-emerging plant properties.

This research was conducted within the research program “Rhizosphere Spatiotemporal Organisation – a Key to Rhizosphere Functions” of the German Science Foundation (TA 290/5-1).

How to cite: Ganther, M., Bouffaud, M.-L., Gebauer, L., Buscot, F., Vetterlein, D., Heintz-Buschart, A., and Tarkka, M.: Spatial sampling approach to unravel the impact of soil texture and root genotype on maize root gene expression profiles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9707, https://doi.org/10.5194/egusphere-egu2020-9707, 2020.

EGU2020-10412 | Displays | SSS4.3

Implications of root exudates on the formation of rhizosheaths

Riffat Rahim, Adrian Haupenthal, and Eva Kroener

Root exudates stimulate microbial activity and functions as a binding and adhesive agent that increases aggregate stability in the rhizosphere. The exudates produced from plant roots and microorganisms in the rhizosphere play a significant role in the formation of rhizosheath. Rhizosheaths comprises the soil that adheres to the roots with the help of root hair and mucilage even when it is removed from the surrounding soil. Low surface tension and great viscosity stabilize soil aggregates in surrounding root and develop rhizosheath formation. To our knowledge, no investigations are made on the influence of root exudates in soil rhizosheath formation, although it is well documented the formation and stabilization of rhizosheath of maize plants under various soil water contents but the influence of root exudates on the rhizosheath formation associated with other rheological properties is still missing. Such knowledge will greatly enhance the understanding of how rhizosheath is formed under different root and seed exudates and the effect of their physiochemical properties on the adhesion properties of mucilage will be studied in this project.

The aim of this study is to provide the first combined quantitative data on how root and seed exudates of different plants affect rhizosheath formation. We hypothesized that mucilage will contribute to the formation of rhizosheaths.  For this, we will use the mucilage of chia seeds which acts as a modelled plant root mucilage and mix it with soil in five different concentrations. After preparing the soil with mucilage, artificial roots (flax cords) will be incorporated in this soil and after drying and wetting cycles roots will be removed and the mucilage adhesion, simulation and rheological properties will be investigated under various soil water contents, soil texture, soil type, and soil compaction.

Key words:

                   Rhizosheath, mucilage, drying and wetting cycles and soil structure

 

How to cite: Rahim, R., Haupenthal, A., and Kroener, E.: Implications of root exudates on the formation of rhizosheaths, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10412, https://doi.org/10.5194/egusphere-egu2020-10412, 2020.

EGU2020-6428 | Displays | SSS4.3

Rhizosphere effect of woody plants: A meta-analysis

Dayong Gan, Jiguang Feng, and Biao Zhu

Interactions among plants, soil and microbiota play an important role in maintaining the function of terrestrial ecosystems, which often occur in rhizosphere. The rhizosphere effect is defined as the difference in soil properties and biogeochemical processes between rhizosphere and root-free bulk soil. Despite its importance in controlling soil biogeochemical cycling, quantitative assessments of the rhizosphere effects of woody plants are still rare. In this study, we synthesized the rhizosphere effects of woody plants on soil physicochemical properties, microbial biomass and community structure, enzyme activities, and carbon (C) and nitrogen (N) mineralization rates. We also explored the controls of rhizosphere effects by functional traits (eg. leaf life form, mycorrhizal type), environmental and experimental variables (eg. soil sampling method).

Our results showed that the rhizosphere effects on most soil physicochemical variables were positive (except pH). For example, the rhizosphere stimulated C mineralization rate by 56.7%, gross N mineralization rate by 57.9%, and net N mineralization by 60.9% on average compared to the root-free bulk soil. Moreover, for enzyme activities and C mineralization rate, the rhizosphere effects were generally higher in shrubs than in trees. For C mineralization rate, the rhizosphere effects of evergreen species were stronger than those of deciduous species. However, the rhizosphere effects did not vary significantly between species associated two mycorrhizal types (arbuscular mycorrhizal, AM vs. ectomycorrhizal ECM), with few exceptions for NO3-, NH4+, bacteria and fungi biomass. Overall, this meta-analysis comprehensively assessed the rhizosphere effects of woody plants (187 species and 29 variables) on global scale and strengthened our understanding of the effect of living roots on soil C and nutrient cycling in the rhizosphere.

How to cite: Gan, D., Feng, J., and Zhu, B.: Rhizosphere effect of woody plants: A meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6428, https://doi.org/10.5194/egusphere-egu2020-6428, 2020.

EGU2020-8363 | Displays | SSS4.3

Land use effect on microbial growth and respiration under future climate

Vusal Guliyev, Melissa Pfeiffer, Maria Udovenko, Christina Fasching, Thomas Reitz, and Evgenia Blagodatskaya

Fresh input of organic material in soil is continuously transformed and processed by growing microorganisms using this organic input as a substrate. Therefore, the quality and quantity of soil organic C stock is strongly dependent on the intensity of mineralization processes through microbial respiration and growth. We aimed to prove the sensitivity of microbial respiration and growth parameters to indicate an interactive effect of land use and climate warming. For this we used Global Change Experimental Facility in Bad Lauchstädt, UFZ, Halle, Germany. This long-term experiment is designed in 5 land use strategies (Organic Farming, Conventional Farming, Intensive Meadow, Extensive Meadow, and Extensive Pasture) and 2 climate scenarios (ambient and future). We determined basal respiration by CO2 emission, microbial growth parameters by substrate-induced growth respiration (SIGR), and the quality of soil organic matter by Fourier-transformed infrared spectroscopy (FTIR). The effect of biotic (vegetation type) and abiotic (temperature and moisture) factors on microbial attributes and on chemical composition of soil organic matter will be compared.

How to cite: Guliyev, V., Pfeiffer, M., Udovenko, M., Fasching, C., Reitz, T., and Blagodatskaya, E.: Land use effect on microbial growth and respiration under future climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8363, https://doi.org/10.5194/egusphere-egu2020-8363, 2020.

EGU2020-8403 | Displays | SSS4.3

Interactive effect of vegetation and climate warming on total microbial and fungal biomass in soil

Maria Udovenko, Vusal Guliyev, and Evgenia Blagodatskaya

Soil microbiota ensuring sustainable functioning of terrestrial ecosystems is strongly dependent on climatic conditions and vegetation type. Even within the same climatic zone, active land use alters the size, structure and functioning of the microbial community. We hypothesized that land use effect on soil microbial biomass will be more pronounced under impact of global warming. We also tested whether the biomass of specific microbial group (e.g., fungi) is more sensitive to environmental changes than total microbial biomass.

We proved these hypotheses in the experiments based on Global Change Experimental Facility platform, located at the field research station of the Helmholtz-Centre for Environmental Research in Bad Lauchstädt near Halle, Saxon-Anhalt, Germany. Experimental setup included 50 plots, located in 10 blocks (5 plots per block). Five blocks are under ambient climate and the rest 5 blocks are subjected to a realistic climate change treatment (under conditions predicted by several models of climate change in Central Germany for 2050–2080 period). Five land use types were established in every block: conventional farming; organic farming; intensively used meadow, extensively used meadow and extensively used pasture. We determined soil microbial biomass and its fungal component by chloroform fumigation-extraction method and by ergosterol content, respectively. We found that fungal biomass was more sensitive to intensive land use for crop production than to climate change. The possible mechanisms of such a sensitivity will be discussed.

How to cite: Udovenko, M., Guliyev, V., and Blagodatskaya, E.: Interactive effect of vegetation and climate warming on total microbial and fungal biomass in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8403, https://doi.org/10.5194/egusphere-egu2020-8403, 2020.

The H2020 project Excalibur will be presented. It has the ambition of making the road to a biodiversity-driven change in the soil management of crops through the acknowledgement of the important role of soil biodiversity conservation and exploitation. The project applies integrated approach of research, development and field implementation to achieve its goals. Excalibur will deploy the knowledge gained by new molecular techniques, such as genomic sequences characteristics to specific groups of microorganisms and functions, in the creation of tools, indicators and evaluation systems. Co- innovation is fostered by collaboration of researchers with farmers and manufacturers, with a mutual exchange of information and feedback. Project’s results will bring new insights and practical solutions to stakeholders, validated by process analysis. For this purpose Excalibur plans to: 1) focus on multiscale plant-soil-microbes interactions be to exploit the potential of multifunctional bio-inocula and bio-effectors; 2) optimize the formulation and the application methods of these products based on native soil biodiversity dynamics; 3) develop a strategy to improve the exploitation of soil biodiversity interactions with bio-effectors and bio-inocula by assessing their impacts on crops and biodiversity under contrasting agricultural management practices (conventional, organic) and biotic/abiotic stress conditions; 4) to build a multi-criteria model to assess soil biodiversity status of cropping systems for a more efficient use of bio-effectors and bio-inocula; 5) develop technical tools to monitor the persistence and dispersion of bio-inocula under field conditions for eco-toxicological and agronomical purposes; 6) evaluate the effects of the new strategy on economy, environment quality and ecosystem functions; 7) disseminate results to all stakeholders with a dynamic and comprehensive methodology and encourage the adoption of best practices derived from the new strategy at local, regional and global level.

How to cite: Mocali, S., Canfora, L., Pinzari, F., and Malusà, E.: The EXCALIBUR project: novel microbial-based bioproducts improving soil biodiversity and the effectiveness of biocontrol and biofertilization practices in horticulture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11850, https://doi.org/10.5194/egusphere-egu2020-11850, 2020.

Forests plants affect the biological and chemical properties of the soil through the root exudation, input of leaf and root litter. This study investigates the relationships between the species composition of plant communities, microbial properties and content of elements of the upper soil horizon in boreal forest ecosystems (using NMS analysis).

It is hypothesized that 1) microbial biomass and chemical properties relates to the species diversity of plants, 2) microbial biomass and chemical properties relates to certain plant communities, 3) microbial biomass and chemical properties linked to altitude gradient, 4) types of communities differ due to the composition of the grass cover.

Plots were chosen in the foothills of the Ural Mountains, Russia, in Pechoro-Ilych Nature Reserve, 62-63°N, 58-59°E, to small altitude gradient 250-400 m above sea level. Plant, litter and soil were taken from five spruce - fir forests (Picea obovate together with Abies sibirica) with siberian pine and birch (hereinafter “spruce forest”). The peculiarity of the territory is that in a small area five different grassy communities were formed.  They represented by both species-rich tall grasses forests and poor species, moss and large fern forests.

Types of forests: boreal-tall grass (3 plots), small grass – green moss (3 plots), bilberry-green moss (3 plots), shrub - haircap moss (4 plots) and large fern (3 plots). The plots (10×10 m) were selected for plant biodiversity describing. Topsoil samples (0-5 cm) were taken from sub-plots in July 2018 (n=48). In the collected samples, microbial biomass carbon (MBC), basal respiration (BR), pH and content of elements (S, P, Ca, Mg, K, Si, Ti, Mn) were measured.

We distinguished a group of communities with high microbial biomass (small grass-green moss and boreal-tall grass spruce forests) and a group with low microbial biomass (shrub-long moss, bilberry-green moss, large fern spruce forests). The high biological activity of the soil is weak confined to plant communities.

No strong relationship between MBC, BR, plant species richness and altitude was found.

Microbial biomass is strongly related to species of boreal-tall grasses (Aconitum septentrionale Koelle, Crepispaludosa (L.) Moench, Rubussaxatilis L., Thalictrum minus L., Valerianaofficinalis L., Filipendulaulmaria (L.) common species, Geranium spp. Species L.) albiflorumLedeb., Paris quadrifolia L.). These types of grass indicate an increase in soil pH, increase the content of Ca, Mg and S in the soil, and a decrease the content of Si and Ti. Opposite, the content of Si and Ti increased in the moss communities. K increased in the soil of large fern and boreal-tall grass communities. Thus, the content of microbial biomass, S, Ca, Mg, pH increased together in the direction of boreal tall grass community. The research was financial supported by grant RFBR mol_a No. 18-34-00987.

How to cite: Kvitkina, A.: Plant biodiversity linked with microbial biomass and chemical soil properties in boreal forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10420, https://doi.org/10.5194/egusphere-egu2020-10420, 2020.

Until the early nineteenth century, the Belgian landscape was characterized mainly by the presence of heathland, a typical cultural landscape with important ecosystem services. Since then, urbanisation has led to the conversion of large stretches of heathland to be converted to forest, arable land or cities. Increased concentrations of exhaust gasses result in elevated concentrations of nitrogen (N) in the atmosphere. Through rainfall this N enters the soil and is fixed via precipitation reactions, which in turn leads to higher N soil concentrations. Because Calluna vulgaris (common heather; the dominant plant species in heathlands) thrives on soil containing low nutrient concentrations,  it is now being outcompeted by plant species more suited to these altered nutrient levels. As a result, the heathland is slowly evolving into grassland and, consequently, its ecosystem services and soil nutrient cycling are changing.

Here, we present the preliminary results of our investigation into the influence of grass encroachment on nutrient cycling in heathlands. For this research question, we set up a gradient of 14 plots of increasing grass cover from 0 to 100%. The woody structures of heather contain high concentrations of lignin, consequently the 100% heather plots have a more recalcitrant organic input. It is therefore hypothesized that the nutrient turnover in these plots are lower than in the 100% grass plots since grass has lower lignin concentrations and thus higher litter quality. We set up a series of measurements on pooled and homogenized soil samples of these 14 plots. We measured N mineralization and nitrification, 2 enzymes and relevant soil parameters. Interestingly, there were no significant results found for the N mineralization and nitrification. The measurement of the enzymes chitinase and phosphatase showed a significant correlation, indicating the impact of vegetation on the enzymatic activity, and therefore on the soil nutrient cycle.

How to cite: Arnauts, N.: Influence of grass invasion on soil parameters in a Belgian heathland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8330, https://doi.org/10.5194/egusphere-egu2020-8330, 2020.

EGU2020-21598 | Displays | SSS4.3

On-line nano-solid phase extraction Fourier-transform ion cyclotron resonance mass spectrometry workflow to analyse soil solution organic matter gradients in the rhizosphere

Martin Lohse, Sebastian Blaser, Doris Vetterlein, Steffen Schlüter, Eva Oburger, Thorsten Reemtsma, and Oliver Lechtenfeld

Plant-microbe interplay in the rhizosphere generates multi-faceted chemical gradients. The soil solution is a crucial component of the rhizosphere, where chemical gradients of organic molecules first develop upon growth of roots, introduction of plant-derived carbon and microbial turnover. Studying these gradients requires high resolution both in time and space as well as high chemical specificity to resolve the multitude of compounds. Existing methods to probe the rhizosphere soil solution were mostly limited to bulk chemical parameters, inorganic ions or targeted analysis of organic molecules. However, to decipher organic carbon turnover in the rhizosphere the characterization of the complex pool of soil solution organic matter is needed.

Here we present a novel method that combines time-resolved collection of soil solution samples via micro-suction cups in the rhizosphere with ultrahigh chemical resolution provided by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to unravel developing pattern of soil solution organic matter.

Zea mays plants were grown in soil columns for three weeks and soil solution samples of undisturbed root-soil system were collected once a week. Growth of the root system and hence position of sampling locations in relation to the distance from the root, were followed by X-ray computed tomography (X-ray CT).

The online sample preparation was optimised to extract and desalt the organic matter from a few microliters of soil solution. The downscaling to a nano-liquid chromatography system for the on-line extraction allowed the analysis of only minute amounts of organic carbon within the samples (down to 10 ng). Given the high background concentration of soil-derived organic carbon, the high mass resolution and sensitivity of FT-ICR-MS enabled to distinguish root derived molecules from soil organic matter based on their exact masses. Molecular formulas of the root derived molecules could be calculated showing distinct chemical characteristics as compared to the bulk soil solution. X-ray CT analyses enabled relating the results from the chemical analysis to distance from the root and root age. With increasing influence of the roots higher molecular masses and an increasing degree of oxygenation of the molecules could be observed.

Our method is thus capable to show the changing small scale pattern of soil solution organic matter during the early rhizosphere development, closing the knowledge gap between root exudates, soil chemistry and microbial processes.

How to cite: Lohse, M., Blaser, S., Vetterlein, D., Schlüter, S., Oburger, E., Reemtsma, T., and Lechtenfeld, O.: On-line nano-solid phase extraction Fourier-transform ion cyclotron resonance mass spectrometry workflow to analyse soil solution organic matter gradients in the rhizosphere , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21598, https://doi.org/10.5194/egusphere-egu2020-21598, 2020.

EGU2020-10640 | Displays | SSS4.3

Succession between living and dead roots drives the fate of soil carbon pools

Pedro Paulo de C. Teixeira, Ana Paula M. Teixeira, Luís Fernando J. Almeida, Luís Carlos Colocho Hurtarte, Ivan F. de Souza, Danilo H. S. da Silva, Carsten W. Mueller, Alix Vidal, and Ivo R. da Silva

There is growing evidence that belowground plant carbon (C) inputs displays a major role for soil organic matter (SOM) dynamics. During the root life-cycle, there is a sequential shift from C inputs from living to dead roots, which might affect the conversion of these specific compound classes to SOM. However, this successional effect has yet not been investigated. In this study, we aimed to evaluate (i) the short-term impacts of living root-derived C on SOM formation and composition and (ii) how the succession between living and dead roots impacts their respective fate in soil. For this purpose, we set up a two-step experiment that simulated the shift between living and dead roots C inputs. In the first step, Eucalyptus spp. plants were cultivated in pots under controlled conditions for 66 days. In order to isolate the living root-derived C, we inserted in each pot 4 cylinders (0.5 cm high, 4.75 cm diameter) capped with a nylon membrane (pore size 5 μm) and filled with soil (clayey Rhodic Ferrasol) at the start of the experiment. Half of the pots were periodically pulse-labeled with 13C-CO2 (10 pulses of 10 h, 0.46 g of 13C plant-1), while the remaining ones were used as controls (unlabeled treatments). After 66 days, all pots were harvested, and one cylinder per pot was used to depict the living root effects on SOM pools. Those cylinders were separated in layers according to the distance from the roots (0-4, 4-8, 8-15 and 15-25 mm) and analyzed for organic carbon, nitrogen, as well as δ13C. We quantified and characterized the microbial communities using phospholipid fatty acid (PLFA), and extracted the pedogenic oxides (iron and aluminum) to highlight potential alterations in organo-mineral complexes and short-range order phases. Using density/size fractionation, we further gained elemental and isotopic information of specific SOM pools, i.e. particulate, occluded and mineral-associated organic matter. The remaining cylinders were incubated for 84 days in two treatments, with and without dead roots. Heterotrophic respiration rates were measured periodically together with the 13C enrichment of the CO2 produced. Carbon derived from living roots was mainly recovered in the first millimeters from the root source, as occluded or mineral-associated SOM. Close to the roots, we detected a shift in the microbial communities and a decrease of organo-mineral complexes and short-range order phases. Carbon derived from living roots was rapidly mineralized and the δ13C from the respired CO2 returned to natural abundance ranges after 84 days of incubation. The presence of dead roots did not affect the mineralization C derived from living roots. Our work highlights the importance of C inputs from living roots for the formation of SOM. However, the compounds deposited by living roots exhibit also a transient nature which challenges the assumption that living root-derived C is necessarely a precursor of stable SOM formation.

How to cite: de C. Teixeira, P. P., Teixeira, A. P. M., Almeida, L. F. J., Colocho Hurtarte, L. C., Souza, I. F. D., Silva, D. H. S. D., Mueller, C. W., Vidal, A., and Silva, I. R. D.: Succession between living and dead roots drives the fate of soil carbon pools, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10640, https://doi.org/10.5194/egusphere-egu2020-10640, 2020.

EGU2020-20202 | Displays | SSS4.3

Effect of tree native species assemblages on C, N & P contents of burned soils

Natalia Aguilera, Felipe Aburto, Francisco Salazar, Marcela Bustamante, Manuel Acevedo, Marta Gonzalez, Ulrike Schwerdtner, and Yvonne Oelmann

Keywords: Assemblage, Interaction, nutrients

Forest fires can cause a temporary nutrient deficiency or imbalance in the soil. Post fire forest restauration could be enhance by simulating process of vegetation succession taking advantage of beneficial interaction between species (e.g. facilitation and complementarity), which could help coping with nutrient imbalances. To determine the type of interactions and their effects on soil nutrients affected by fires and on the acquisition of nutrients by plants, a meso-cosmos experiment was established under controlled conditions, using surface soils affected by the Cayumanque megafire (Región del Biobio). Seven assemblages of three species with different nutrient acquisition strategies were established: Nothofagus obliqua (mycorrhizae), Lomatia dentata (proteiform roots) and Sophora cassioides (nodules). In a complete factorial design of two blocks (with and without complementary fertilization). The main interactions resulted in competition between N. obliqua from S. cassioides and L. dentata, while S. cassioides was not be significantly affected by the presence of L. dentate, suggesting complementarity. Fertilization did not interact with assemblages or reduce competition, but increased plant growth in all assemblages. Available soil nitrogen (NO3-) increased significantly in the presence of S. cassioides (6.88±3.10) and decreased in the presence of L. dentata (2.67±0.84). Finally, N. obliqua increased its nitrogen acquisition by 44% in the presence of L. dentata and decreased by 5% in the presence of S. cassioides. Although no significant differences were observed in POlsen, the fraction of inorganic phosphorus was significantly lower in the presence of proteacea (122.24±20.99). In addition, enzyme analysis showed no significant differences for microbial biomass and LAP activity. However, the combination of N.O. and L.D. showed significantly high phosphatase activity (16.36±5.57).

Finally, further isotopic and enzymes work is in process to study nutrient pools in plants and soil either of L. hirsuta and N. obliqua individuals growing alone or in combination. Because native Nothofagus spec. forests have been affected by forestry fires and replaced by plantations of exotic tree species throughout Chile, knowledge on interactions among native species affecting tree nutrition is lacking. Therefore, the results of our research support the use of plant assemblages as a potentially effective restoration strategy in post-fire soils with low nutrient content.

Acknowledgement: Special thanks to National forestry institute, BayCEER and Yvonne Oelmann’s laboratory for contribute to this research and make it possible at an international scale.   

 

How to cite: Aguilera, N., Aburto, F., Salazar, F., Bustamante, M., Acevedo, M., Gonzalez, M., Schwerdtner, U., and Oelmann, Y.: Effect of tree native species assemblages on C, N & P contents of burned soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20202, https://doi.org/10.5194/egusphere-egu2020-20202, 2020.

EGU2020-5784 | Displays | SSS4.3

Towards soil micro-zymography: comparison of staining and impregnation strategies

Negar Ghaderi, Andrey Guber, Hannes Schmidt, and Evgenia Blagodatskaya

Enzymes are produced by microorganisms either intracellularly in cell’s cytoplasm and periplasm or extracellularly either as attached to outer surface of cell membranes or released to the soil microhabitats. The distribution of microhabitats in soil is highly heterogeneous with high abundance of microorganisms in the small volume of soil hotspots, e.g., in the rhizosphere - the most important plant-soil interface with very dynamic interactions between roots and microorganisms. Soil zymography is one of the most realistic methods developed to visualize enzyme activity in undisturbed soil at the mesoscale (mm-cm) level using substrate-saturated membranes. However, visualization of enzymatic processes at the micro-scale level remains a challenge. We tested several impregnation strategies of soil sample (e.g., by agarose gel, silicon spray and super transparent silicon mixture) for their suitability for micro-zymography, i.e., for visualization of enzyme activity in undisturbed soil particles at the microscopic level combining fluorogenic substrates with epifluorescence microscopy. The pros- and cons- of various combinations of impregnation and staining of micro-sized soil samples will be discussed.

Keywords: enzyme activity, zymography, fluorogenic substrates

How to cite: Ghaderi, N., Guber, A., Schmidt, H., and Blagodatskaya, E.: Towards soil micro-zymography: comparison of staining and impregnation strategies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5784, https://doi.org/10.5194/egusphere-egu2020-5784, 2020.

SSS4.4 – Diving into the soil microhabitat - Impacts of the soil physical structure on soil biota and vice-versa

EGU2020-18396 | Displays | SSS4.4

Microbes meet Structure - Soil Ecology in Microengineered Soil Chips

Edith Hammer, Micaela Paola Mafla Endara, Carlos G. C. Arellano, Kristin Aleklett, Milda Pucetaite, and Pelle Ohlsson

Many soil processes are governed by microbes, and biological and physical processes influence each other. We recently developed microfluidic model systems that simulate the spatial microstructure of soil microbial habitats in a transparent material, which we call Soil Chips. They allow us to study the impact of soil physical microstructures on microbes, and vice versa, the influence of microbes on soil physical properties: such as Microbial behavior and interactions in response to a spatially refined habitat, or wettability and water retention, soil aggregate formation and changes in the pore space.

We inoculated our chips with fluorescent lab cultures or natural whole soil inocula. Through the chips we observed via microscopy processes in real-time and at the scale of the microbial cells.

We could study fungi, bacteria, protists and nematodes as well as the distribution of soil minerals and soil solution in the chips. We subjected the adjacent soil to drying-rewetting processes, which was visible in water movements inside the chip. We studied the development of preferential water flow paths, and water retention in smaller pores and as a consequence of microbial exudates. Also the microbes themselves influenced the formation of microhabitats, where fungal hyphae both blocked connections and pushed through existing borders, and single-celled protozoa opened passages through existing aggregates. We found that the presence of fungal hyphae in a pore space system increased both the presence of bacteria and the likelihood of water in the pores, and thus allowing us to study fungal highways in a more realistic soil setting.

The chips act like a window into the soil, through which we can eaves-drop on a world that otherwise is largely hidden to us: Jostling protists, tsunami-like drying-rewetting events, and fungi with character. Beyond the scientific potential, the chips can also bring soils closer to people and hopefully increase engagement in soil health conservation.

How to cite: Hammer, E., Mafla Endara, M. P., Arellano, C. G. C., Aleklett, K., Pucetaite, M., and Ohlsson, P.: Microbes meet Structure - Soil Ecology in Microengineered Soil Chips, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18396, https://doi.org/10.5194/egusphere-egu2020-18396, 2020.

EGU2020-9512 | Displays | SSS4.4

Manufactured Soil Aggregates for Studying Microhabitats

Harry Harvey, Ricky Wildman, Sacha Mooney, and Simon Avery

Environmental perturbation, anthropogenic or otherwise, can have a profound effect on soil microbiota and essential biogeochemical processes. The general resistance and adaptation of yeasts and other fungi to stressors has been well studied in vitro however, the influence of key physical variables, such as how soil structure regulates fungal response to perturbation, is poorly understood. In this study, we developed an approach to manufacture soil macroaggregates that are characteristically similar to their natural counterpart (determined by X-ray CT) and with defined microbial composition. This new tool allowed us to examine the influence of soil aggregation on fungal stress response by manufacturing aggregates with yeast cells either within, or on, the aggregate surface. Environmental stressors including heavy metals, anoxia, and heat stress were applied to these aggregates to capture an array of environmental stressors and assay differences in survival between exo-and-endo aggregate cells. Results generated with this new tool indicate that the location of yeast cells in soil macroaggregates can impact on their survival, in a stressor- and time-dependent manner.

How to cite: Harvey, H., Wildman, R., Mooney, S., and Avery, S.: Manufactured Soil Aggregates for Studying Microhabitats, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9512, https://doi.org/10.5194/egusphere-egu2020-9512, 2020.

Soil structure is the organisation of soil particles in aggregates with increasing hierarchical levels, from nano- to macro-architectures. Several processes and the functioning of the entire soil ecosystem fundamentally depends on soil structure. Soil is also a very heterogeneous and complex matrix to study because of several components with different nature (mineral, organic and biological), physics and chemistry comprise it. Its study often involves techniques that profoundly alter its natural composition or destroy its original 3D arrangement, including the pore distribution and organisation, which is crucial in preserving a suitable habitat for soil ecology and functioning.

Microbial life has been discovered in the last decades to exist in biofilms, 3D spatial organisations of microbial communities adhering to solid surfaces. In these well-organised assemblages of one or more different microbial species, extracellular polymeric substances (EPS) play remarkable functions for microorganisms in biofilms and facilitate aggregation of soil particles.

As a model system, a self-standing polymer biodegradable nanostructured scaffolds (NS) composed of a mixture of nano- to microfibres and microbeads mimicking the fibrous materials and particles comprising the main morphological types of soil (organic matter and mineral particles) and the relative spatial architecture at the micro- and nanoscale were created by electrospinning. Electrospinning is a nanotechnology producing 2D and 3D nano- and microfibrous scaffolds under an electric field. The resulting NS were characterised by considerable porosity and extensive surface area. A PGPR species was employed as a model microbial type to test the capacity of similar NS of supporting the biofilm development. Incubation was performed under stirring to stimulate only stable interactions between microorganisms and the various morphological types of the NS, and also to assess the stability of the NS mimicking the soil aggregates. To shed some light into the nexus between microorganisms and soil structure and the reciprocal influence, combination of imaging techniques such as optical, SEM and TEM microscopy were used to observe “in situ” associations of microbes with mineral and organic materials at nano- and microscale and the consequent effects on porosity usually destroyed under investigations.

The typical phases of conditioning film release, initial and stable adhesion mediated by appendages and EPS release, micro- and macrocolony formation until a mature biofilm development were observed. Morphological modifications of bacteria and the involvement of other components in the mentioned stages were also detected. The bacteria growth rate, the overall respiratory activity and its spatial distribution throughout the NS were recorded.

Hence, the tools here proposed can have high potentials in reproducing the spatial and temporal dynamics of microbial hotspots of activity typically present in the rhizosphere, the sphere of soil surrounding roots, which is of central importance for the entire soil ecosystem functioning. 

Similar 3D NS can also provide the opportunity of zooming in microbial lifestyle observing microbes at work, from the dynamics of interactions with organic matter and particle surfaces to their spatial distribution and colony formation, then linking biological processes to specific physical and chemical features of soil at different scales (from nm to mm).

How to cite: De Cesare, F., Di Mattia, E., and Macagnano, A.: Developing 3D polymer nanostructured fabric as a soil-like model for studying interactions between microorganisms and soil structure - The case of bacterial biofilm development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19304, https://doi.org/10.5194/egusphere-egu2020-19304, 2020.

EGU2020-7588 | Displays | SSS4.4

Pore connectivity across scales and resolutions

Maik Lucas, Doris Vetterlein, Hans-Jörg Vogel, and Steffen Schlüter

An important parameter to quantify pore structure and link it to soil functions is connectivity. When quantifying connectivity with X-ray microtomography (X-ray-µCT), one of the major drawbacks is that high resolution can only be achieved in small samples. In these samples, the small pores can be described, but the connectivity of larger pores cannot be quantified reasonably.

Here we explore changes in pore connectivity with changing sample size covering a range of analyzed pore diameters of more than three orders of magnitude. Soil columns with a diameter of 10 cm were taken in two different depths (0 - 20 cm and 40 - 60 cm) at different sites of an agricultural chronosequence ranging in age from 0 to 24 years. X-ray CT was used for scanning the original columns as well as undisturbed subsamples of 3 and 0.7 cm diameter. This enabled us to detect characteristic traces in certain connectivity metrics on the chronosequence, caused by different pore types and thus different processes. In detail, we determined the connection probability of two random points within the pore system, i.e. the Γ-indicator and the Euler number, χ as a function of minimum pore diameter.

Our results revealed that scale artifacts in the connectivity functions overlap with characteristic signatures of certain pore types. For the very first time a new method for a joint-Γ-curve was developed that merges information from three samples sizes, as the Γ-indicator gives highly biased information in small samples. In contrast, χ does not require such a scale fusion and is helpful to define characteristic size ranges for pore types. Overall, findings suggest a joint evaluation of both connectivity metrics to identify the contribution of different pore types to the total pore connectivity with Γ and to disentangle different pore types with χ.

For the samples of the chronosequence such an evaluation revealed that biopores mainly connect pores of diameters between 0.1 and 0.5 mm. However, this was not necessarily coupled with increasing porosity. Tillage, conversely, lead to an increase in porosity due to a shift of pores of diameter >0.05 mm towards pores of diameter >0.20 mm and therefore increased connectivity of pores >0.20 mm.

The current study is part of the DFG-Project Soil Structure (AOBJ: 628683). 

How to cite: Lucas, M., Vetterlein, D., Vogel, H.-J., and Schlüter, S.: Pore connectivity across scales and resolutions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7588, https://doi.org/10.5194/egusphere-egu2020-7588, 2020.

EGU2020-18948 | Displays | SSS4.4

Potential of combined neutron and X-ray imaging to quantify local carbon contents in soil

Genoveva Burca, Stephen Hillier, Pawala Ariyathilaka, Jumpei Fukumasu, Anke Herrmann, Mats Larsbo, Oxana Magdysyuk, and John Koestel

Soil organic carbon (SOC) is of key importance for soil functioning. It strongly impacts soil fertility, greenhouse gas emissions, nutrient retention, and contaminant degradation. The soil pore network determines how oxygen, water and nutrients are transported and exchanged in soil, and the architecture of the soil is therefore equally fundamental to soil functions. For a thorough understanding of the microbial habitat, the soil pore network architecture needs to be evaluated alongside with the spatial distribution of SOC, but the challenge ahead is the 3-D visualization of organic carbon at the micro-scale. At present, such visualizations are undertaken using staining agents, but their non-specific binding to other features in the soil aggravates evaluation of organic carbon at the micro-scale.

In the present study, we investigated the potential and limitations of using joint white-beam neutron and X-ray imaging for mapping the 3-dimensional organic carbon distribution in soil. This approach is viable because neutron and X-ray beams have complementary attenuation properties. Soil minerals consist to a large part of silicon and aluminium, elements which are relatively translucent to neutrons but attenuate X-rays. In contrast, attenuation of neutrons is strong for hydrogen, which is abundant in SOC, while hydrogen barely attenuates X-rays. When considering dried soil samples, the complementary attenuation for neutrons and X-rays may be used to quantify the fractions of air, SOC and minerals for any imaged voxel in a bi-modal 3-dimensional image, i.e. a combined neutron and X-ray image.

We collected neutron data at the IMAT beamline at the ISIS facility and X-ray data at the I12 beamline at the Diamond Light source, both located within the Rutherford Appleton Laboratory, Harwell, UK. The neutron image clearly showed variations in neutron attenuation within soil aggregates at approximately constant X-ray attenuations. This indicates a constant bulk density with varying organic matter and/or mineralogy. For samples with identical mineral composition, neutron attenuation data of sieved and repacked soil samples exhibited a large coefficient of determination (R2) in a regression between volumetric SOC content and neutron attenuation (0.9). Even larger R2 (0.93) were obtained when the volumetric clay content was also included into the regression. However, when comparing soil samples with different mineralogy, R2 dropped to 0.24 and 0.37, depending whether the clay content was considered or not. To improve the method, it is necessary to include specifics of the soil mineralogy. Here, analysing the time-of-flight neutron attenuation data collected at the IMAT beamline will provide further insights. In summary, our approach yielded promising results. We anticipate that quantitative 3-D imaging of organic carbon contents in soil will be possible in the near future.

How to cite: Burca, G., Hillier, S., Ariyathilaka, P., Fukumasu, J., Herrmann, A., Larsbo, M., Magdysyuk, O., and Koestel, J.: Potential of combined neutron and X-ray imaging to quantify local carbon contents in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18948, https://doi.org/10.5194/egusphere-egu2020-18948, 2020.

EGU2020-12324 | Displays | SSS4.4

X-ray computed microtomography to predict CO2 emissions in casts of 6 earthworm species (Lumbricidae)

Guillaume Le Mer, Nicolas Bottinelli, Marie-France Dignac, Arnaud Mazurier, Laurent Caner, and Cornelia Rumpel

Plant residues are the main precursors of soil organic matter (SOM) and soil macrofauna is an important driver of ecological processes involved in the sequestration of carbon (C) in soils. In particular, earthworms are one of the largest contributors to soil matter formation in most terrestrial ecosystems. In the short term, they may increase the rate of OM turnover by mineralization, fragmentation and stimulation of microbial activity. On the other hand they may reduce OM degradability by forming stable aggregates and organo-mineral complexes protecting C from mineralization for longer time scales. Earthworms are classified in three main ecological groups depending on their behaviors and on their morpho-functional traits. However, their intra- or inter- ecological group effect on C stabilization needs to be investigated.

In this study, we explored the impact of earthworm diversity (composed of several species belonging to different ecological groups) on the physicochemical properties of casts, related to CO2 emissions. We hypothesized that C mineralization in casts would be related to the ecological category.

We studied casts of 6 species (2 anecic species: Lumbricus terrestris & Aporectodea nocturna, 2 endogeic species: Allolobophora icterica & Aporrectodea caliginosa and 2 epigeic species: Lumbricus castaneus & Eisenia fetida) produced in a silty subsoil with addition of plant litter. Casts were incubated for 140 days under similar laboratory conditions. We measured CO2 mineralization, pH, elemental composition and physical cast organization by X-ray microtomography (resolution of 9.49 µm voxel) at 7, 42, and 140 days.

Our results showed lower CO2 mineralization in aggregates produced without earthworms than all earthworm casts. In the beginning of the incubation casts showed similar CO2 emissions and specific physicochemical properties as OC content and pH. After 140 days, CO2 emissions were earthworm species specific with Aporectodea nocturna showing highest CO2 emissions, and Aporrectodea caliginosa the lowest values. Microtomographic analyses showed that this is due to an increase of cast porosity with increasing cast age coupled with a concurrent decrease particulate organic matter (POM) structures. Our first results seemed to suggest that earthworms belonging to the same ecological category influence similarly C mineralization through their impact on the cast organization.

How to cite: Le Mer, G., Bottinelli, N., Dignac, M.-F., Mazurier, A., Caner, L., and Rumpel, C.: X-ray computed microtomography to predict CO2 emissions in casts of 6 earthworm species (Lumbricidae), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12324, https://doi.org/10.5194/egusphere-egu2020-12324, 2020.

EGU2020-20330 | Displays | SSS4.4

Soil texture determines the microbial processing from litter to POM and MAOM in the detritussphere

Kristina Witzgall, Alix Vidal, David Schubert, Carmen Höschen, Steffen Schweizer, Franz Bruegger, Valerie Pouteau, Hirte Juliane, Claire Chenu, and Mueller Carsten W

Soil texture and microorganisms are key drivers controlling the fate of organic matter (OM) originating from decaying plant litter, and thus the stabilization of soil organic matter (SOM). However, the understanding of the mutual interactions between microbial litter decay and soil structure formation controlled by different soil textures remains incomplete. We monitored the fate of litter-derived OM (using 13C isotopic enrichment) from decaying litter (shredded maize leaves) to microorganisms and SOM in two differently textured soils (sand and loam). The two soils were incubated with litter mixed in the top layer in microcosms for 95 days during which regular CO2 and 13CO2 measurements were conducted. After the incubation, each microcosm was divided in three to separate a top, center and bottom layer. Using a physical soil fractionation scheme, we assessed the fate of litter-derived OM to free and occluded particulate OM (POM), as well as mineral associated OM (MAOM). All SOM fractions were analysed with respect to their mass distribution, C, N, and 13C contents, and for their chemical composition using compound-specific 13C-CPMAS NMR spectroscopy. The effects of contrasting textures on the total microbial community structure were studied using phospholipid fatty acids (PLFA) and the incorporation of litter-derived C into individual PLFAs was assessed via 13C-PLFA. Lastly, scanning electron microscopy and nano scale secondary ion mass spectroscopy (NanoSIMS) analysis of free POM of both textures enabled qualitative insights directly at the biogeochemical interface of the microbial hot spot of decaying plant litter.

We were able to clearly demonstrate higher contents of litter-derived OM still residing as free POM in the loamy textured soil after the 95 day-incubation, while higher contents were found in occluded and MAOM in the sandy textured soil. This indicated that the overall litter decomposition was refrained in the finer-textured soil, whereas microbial alteration and allocation of litter-derived compounds was promoted in the coarser textured soil. This was further corroborated by higher respiration and higher amounts of respired litter-derived CO2-C in the sandy soil. The PLFA analysis showed a coherent pattern between the textures, with similar community structures in all treatments and significant increases in microbial abundance in the top layers induced by litter addition. This increase was found most pronounced in fungal biomarkers, which was in line with the 13C-PLFA measurements revealing over 90% of fungal biomarkers to be of litter-origin (compared to 30-40% in the other microbial groups). The labelled PLFA profiles also confirmed the importance of fungi as a vector for litter-derived OM into deeper layers of the soil columns, with significantly higher litter-derived fungal markers also in center and bottom layers. The NanoSIMS measurements verified the high 13C enrichment in fungal hyphae and further revealed clay minerals embedded in enriched microbial-derived extracellular polymeric substances and intertwined with hyphae directly on top of the POM. Based on this comprehensive data, we highlight that regardless of the texture, plant litter in association with microbial-derived products represent a hot spot for soil structure formation by harbouring a core for aggregation and MAOM formation.

How to cite: Witzgall, K., Vidal, A., Schubert, D., Höschen, C., Schweizer, S., Bruegger, F., Pouteau, V., Juliane, H., Chenu, C., and Carsten W, M.: Soil texture determines the microbial processing from litter to POM and MAOM in the detritussphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20330, https://doi.org/10.5194/egusphere-egu2020-20330, 2020.

EGU2020-13565 | Displays | SSS4.4

The role of prokaryotes and their extracellular polymeric substances on soil aggregation in carbonate containing semiarid grasslands

Jeroen Zethof, Antje Bettermann, Cordula Vogel, Doreen Babin, Erik Cammeraat, Albert Solé-Benet, Roberto Lázaro, Lourdes Luna, Joseph Nesme, Susanne Woche, Søren Sørensen, Kornelia Smalla, and Karsten Kalbitz

Individual plant species form so-called resource islands in the barren semiarid landscape, whereby many soil properties are enhanced including soil structure. Within the soil structure, mostly studied as soil aggregates, microaggregates (<250µm) form fundamental components, reducing potential erosion of finer particles and subsequent loss of nutrients. Extracellular polymeric substances (EPS) are considered an important glue determining aggregation in addition to inorganic binding agents such as carbonates and clay minerals. However, the role of the soil prokaryotic community in EPS formation and consequently for microaggregation in natural environments has not been clarified yet. EPS should be particularly important under semiarid conditions as they form a protection mechanism of the prokaryotes against desiccation. Therefore, we examined the influence of the prokaryotic community on soil EPS content and subsequently on soil aggregation in semiarid grasslands, with respect to the parent material of soil formation, common plant species and the distance to the plant.

During two sampling campaigns in spring 2017 and 2018, soil samples were taken over a distance gradient from two major semiarid grassland plant species in Southern Spain, the legume shrub Anthyllis cytisoides and the grass tussock Macrochloa tenacissima, to the surrounding bare soil. While topsoil was sampled in five distances to the plant during the first sampling campaign, the second one focused stronger on the root influence, hence rhizoplane and rhizosphere were sampled. Additionally, two sites with different parent materials were chosen to scale the effect of EPS on soil aggregation in the presence of inorganic binding agents (here carbonates). Total community DNA and EPS were extracted, followed by quantification of EPS-saccharides and bacterial abundance, as well as examination of the prokaryotic community composition by Illumina amplicon sequencing of the 16S rRNA genes. Further, the particle size distribution of (micro)aggregates in water was determined, with and without ultrasound treatment, as a measure of soil aggregate size distribution and stability.

Based on the first sampling campaign, we found that the overall prokaryotic community composition differed between the two sites, but not between plant species. Interdependencies between the community composition and EPS content were revealed, whereby soil organic matter (SOM) seems to be a regulating factor as increasing SOM contents resulted in more EPS-saccharides. Soil microaggregation in the topsoil was enhanced by the plant canopy, especially at the edge of Macrochloa tussocks. Contrary to the expectation that increasing inorganic C contents would diminish the importance of EPS, the parent material richest in inorganic C results in a significant effect of EPS-saccharides on microaggregation.

First results of the second sampling campaign indicate that even in the rhizoplane and rhizosphere, parent material had a dominating influence on the prokaryotic community composition. As EPS-saccharide contents and soil aggregation followed a similar decreasing trend with distance to the roots and canopy cover, interdependencies are expected.

From the outcomes until now, we can conclude that the availability of decomposable OM influences the prokaryotic community composition and thereby triggers EPS production, whereas large contents of polyvalent cations from carbonates promote the stabilizing effect of EPS on microaggregates.

How to cite: Zethof, J., Bettermann, A., Vogel, C., Babin, D., Cammeraat, E., Solé-Benet, A., Lázaro, R., Luna, L., Nesme, J., Woche, S., Sørensen, S., Smalla, K., and Kalbitz, K.: The role of prokaryotes and their extracellular polymeric substances on soil aggregation in carbonate containing semiarid grasslands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13565, https://doi.org/10.5194/egusphere-egu2020-13565, 2020.

EGU2020-10286 | Displays | SSS4.4

Effects of carbon to nitrogen ratios on amounts and composition of Bacillus subtilis biofilms

Natalia Cortes Osorio, Robert Endrika, Karsten Kalbitz, and Cordula Vogel

In natural environments, bacteria can be found as multicellular communities exhibiting a high degree of structure, denominated biofilms. Biofilms are composed of microbial cells, often of multiple species, embedded within a matrix of extracellular polymeric substances (EPS). The exact composition, physical and chemical properties, and amounts of these components varies depending on their growth conditions. However, it remains unclear how nutrient availability drives the allocation into cell growth or EPS production, especially under conditions found in soils. Here we aimed to evaluate the effect of various C/N ratios on Bacillus subtilis biofilm growth (spatial expansion and structure) and their EPS composition. We hypothesized that the largest biofilm development and highest EPS production by Bacillus subtilis would be caused by a nutrient imbalance reflected in C/N ratios, especially high C availability. Biofilms were grown on membranes on MSgg agar plates with C/N ratios of 1:1, 10:1, 25:1 and 100:1. Several methods from macroscopic observations over EPS extraction and determination up to various microscopic visualisation techniques were used. The radial expansion of the biofilm was measured, followed by EPS extraction to quantify EPS-proteins and EPS-polysaccharides. Hydrated biofilm samples were studied regarding their biofilm structures by scanning electron microscopy (SEM) within the environmental mode at approximately 97% humidity. Fixed, dehydrated and embedded samples were used to evaluate the biofilm height and internal structure with SEM in high vacuum mode. Low C/N ratio (1:1) resulted in the smallest biofilms in terms of radial expansion and biofilm height, with densely packed layers of cells and low amounts of EPS. Our first results revealed that the highest biofilm productions were observed at C/N ratio of 10:1 and 25:1. The microscopic approaches indicated that biofilms growing at C/N ratios of 100:1 produced the highest amount of EPS. Furthermore, changes in the microscopical features of the biofilms were detected with different structures along the biofilm regions affected by the nutrient conditions. These results suggest that the C/N ratio has a large impact on the biofilm development and structure, with different allocations into microbial cells and EPS. Overall, the results obtained until now allowed us to accept the initial hypothesis, indicating that higher C/N ratios induce a higher EPS production. This suggests that environments containing a high ratio between carbon and the limiting nutrient, often nitrogen, may favour polysaccharide production, probably because energy from the carbon excess is used for polysaccharide biosynthesis.

How to cite: Cortes Osorio, N., Endrika, R., Kalbitz, K., and Vogel, C.: Effects of carbon to nitrogen ratios on amounts and composition of Bacillus subtilis biofilms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10286, https://doi.org/10.5194/egusphere-egu2020-10286, 2020.

EGU2020-11651 | Displays | SSS4.4

Rhizobacteria Mediated Changes in Soil Physical and Hydrological Properties

Yan Jin, Saiqi Zeng, Fatema Kaniz, Wenjuan Zheng, Jacob LaManna, and Harsh Bais

Large communities of microbes are associated with plant roots in the rhizosphere, which is a critical interface supporting the exchange of water and nutrients between plants and their associated soil environment. The diverse communities of rhizobacteria mediate plant-soil feedback through a multitude of interactions including those that contribute to plant abiotic stresses. For example, enhancement of plant drought stress tolerance by plant growth promoting rhizobacteria (PGPR) has been increasingly documented in the literature, however, investigations to date have been largely focused on PGPR-root/plant interactions and related plant responses to PGPR activities that induce drought tolerance. Comparatively, much less is known about PGPR’s role in mediating physiochemical and hydrological changes in the rhizospheric soil that may also impact plant drought stress tolerance. Using UD1022, aka Bacillus subtilis FB17, as a model bacterium, we demonstrated via soil water characteristic measurements that UD1022-treated soil samples retained more water, had lower hydraulic conductivity than its controls. In addition, we investigated the effects of UD1022 on soil water evaporation via combined neutron radiography, neutron tomography, and X-ray tomography imaging techniques. Neutron radiography images confirmed greater water retention in UD1022-treated soil samples than their controls due to reduced water evaporation. Combined neutron and X-ray tomography 3D images revealed that water distribution in UD1022-treated soil samples was heterogeneous, i.e., there were more disconnected water pockets compared with the controls where water was distributed more uniformly. Our study provides pore-scale mechanistic explanation for increased water retention and reduced evaporation rate from UD1022-treated soil samples, which is mainly attributed to the production of extracellular polymeric substances (EPS) by UD1022 due to EPS’ hygroscopic and chemical properties (viscosity and surface tension). However, our latest experiments showed similar effects by a UD1022 mutant with eps-producing genes removed, suggesting that the beneficial impacts of rhizobacteria may not be limited to their ability to EPS production alone. These findings have practical implications in, for example, “rhizosphere engineering” to improve/restore soil structure, support sustainable agricultural production, and mitigate climate change.

How to cite: Jin, Y., Zeng, S., Kaniz, F., Zheng, W., LaManna, J., and Bais, H.: Rhizobacteria Mediated Changes in Soil Physical and Hydrological Properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11651, https://doi.org/10.5194/egusphere-egu2020-11651, 2020.

EGU2020-15917 | Displays | SSS4.4

Inoculation of bacteria for the amelioration of sandy soil under drought

Violeta Carmen Angulo Fernández, Mariet Hefting, and George Kowalchuk

Soil degradation represents a pressing worldwide problem that is being accelerated by processes of erosion, depletion of soil organic matter, soil compaction, acidification, salinization, and drought. Soil microorganisms can influence soil aggregation via a range of mechanisms such as the production of exopolysaccharides and other extracellular matrix polymers such those involved in biofilm formation. In this study, we south to use bacteria harboring specific traits to enhance soil aggregation. To this end, 120 bacterial strains were isolated from an experiment field under drought conditions and tested for their ability to grow under drought, salinity tolerance, rapid growth, biofilm, and exopolysacharides production. Based upon this trait assessment, 24 strains were further tested at two moisture levels for their ability to impact soil structure after 8 weeks of incubation at 25ºC. The mean weight diameter (MWD) of water-stable aggregates and carbohydrates were determined for treated soils. Three strains were shown to impact soil aggregate properties at the higher moisture content: one affiliated with Bacillus niacini, one affiliated with Paenarthrobacter nitroguajacolicus and one of unclear classification. The first of these strains also affected soil structure at the lower moisture level. This B. niacini strain also increased the carbohydrate content of the soil, as did two other strains, related to B. wiedmannii and B. aryabhattai, respectively. However, no positive correlation was observed between the MWD and the production of carbohydrates in soil. Our results suggest that soil inoculation with specific microbial strains can improve soil structure.

How to cite: Angulo Fernández, V. C., Hefting, M., and Kowalchuk, G.: Inoculation of bacteria for the amelioration of sandy soil under drought, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15917, https://doi.org/10.5194/egusphere-egu2020-15917, 2020.

EGU2020-4126 | Displays | SSS4.4

Interplay between water adsorption and viscosity determines the spatial configuration of EPS during soil drying

Andrea Carminati, Pascal Benard, Judith Schepers, Margherita Crosta, and Mohsen Zarebanadkouki

Bacteria alter the physical properties of soil hotspots by secreting extracellular polymeric substances EPS. Despite the biogeochemical importance of these alterations is well accepted, the physical mechanisms by which EPS shapes the properties of the soil solution and its interactions with the soil matrix are not well understood.

Here we show that upon drying in porous media EPS forms one-dimensional filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, primarily shaped by surface tension, EPS remains connected upon drying thanks to its high extensional viscosity. The integrity of one-dimensional structures is explained by the interplay of viscosity and surface tension forces (characterized by the Ohnesorge number), while the formation of two-dimensional structures requires consideration of the interaction of EPS with the solid surfaces and external drivers, such as the drying rate. During drying, the viscosity of EPS increases and, at a critical point, when the friction between polymers and solid surfaces overcomes the water adsorption of the polymers, the concentration of the polymer solution at the liquid-gas interface increases asymptotically and the polymers can no longer follow the retreating gas-water interface. At this critical point the polymers do not move any longer and are deposited as two-dimensional surfaces, such as hollow cylinders or interconnected surfaces. EPS viscosity, specific soil surface and drying rates are the key parameters determining the transition from one- to two-dimensional structures.

The high viscosity of EPS maintains the connectivity of the liquid phase during drying in soil hotspots, such as bacterial colonies, the rhizosphere and biological soil crusts.

How to cite: Carminati, A., Benard, P., Schepers, J., Crosta, M., and Zarebanadkouki, M.: Interplay between water adsorption and viscosity determines the spatial configuration of EPS during soil drying, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4126, https://doi.org/10.5194/egusphere-egu2020-4126, 2020.

Structural stability in agricultural soils is said to be maintained through production of ‘biological binding agents’, including temporary binding agents (fungi, roots), transient binding agents (EPS), and persistent binding agents (of less certain origin). We sampled soils from a long-term field trial, comprising previous grassland, arable and fallow land-uses in factorial combination with current land-uses of the same type: previous 3 land-uses  x current 3 land-uses = 9 treatments (Redmile-Gordon et al., 2020). Total soil organic carbon (SOC), EPS (including protein, and polysaccharide fractions; Redmile-Gordon et al., 2014), and mean weight diameter (MWD) of water stable aggregates (Le Bissonnais, 1996) were quantified.

Both EPS and MWD were correlated, and were both strongly influenced by current land-use (implemented 2.5 years before sampling), but not by previous land-use (implemented > 50 years ago, terminated 2.5 years before sampling). While exopolysaccharides were significantly correlated to the soil’s structural stability (p = 0.027), proteinaceous EPS were more closely related to the associated gains in soil aggregate stability (p = 0.002).

In contrast to EPS and soil stability, total soil organic carbon (SOC) was strongly influenced by previous land-use. Importantly, this indicates that any capacity for relatively stable organic matter to contribute to the soil’s structural stability is overwhelmed by temporary/transient effects owed to current land-use. This is cause for optimism, as it seems the physical quality of soils might be improved by short-term application of managements that favour EPS production. This approach would represent a qualitative step beyond that of building total SOC, which can be difficult for land-managers to achieve. This study is the first to simultaneously assess the effects of land-use on proteinaceous and polysaccharide content of EPS, and link this to the structural stability of soils. Further understanding surrounding the ecology of EPS production, and disentangling the contributions of temporary (largely physical) vs. transient (biochemical) binding agents is hoped to contribute to the development of more efficient land-management strategies.

 

References:

Le Bissonnais, Y., 1996. Aggregate stability and assessment of soil crustability and erodibility.
1. Theory and methodology. Eur. J. Soil Sci. 47, 425–437.

Redmile-Gordon, M., Brookes, P.C., Evershed, R.P., Goulding, K.W.T., Hirsch, P.R., 2014. Measuring the soil-microbial interface: extraction of extracellular polymeric substances (EPS) from soil biofilms. Soil Biol. Biochem. 72, 163–171.

Redmile-Gordon, M., Gregory, A.S., White, R.P., Watts, C.W. 2020. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma, 363. https://doi.org/10.1016/j.geoderma.2019.114143

How to cite: Redmile-Gordon, M.: Soil Structural Stability and Extracellular Polymeric Substances (EPS): transient binding agents affected by land-use., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5742, https://doi.org/10.5194/egusphere-egu2020-5742, 2020.

SSS4.8 – Life in soil hotspots: Microbial activity, carbon and nutrient cycling and functions

EGU2020-4089 | Displays | SSS4.8

High viscosity of polymer solutions supports life in soil hotspots

Andrea Carminati, Pascal Benard, Mohsen Zarebanadkouki, and Mutez A Ahmed

Plant roots and bacteria alter the soil properties by releasing a polymeric blend of substances (e.g. mucilage and extracellular polymeric substances EPS). Despite extensive knowledge of their ecological importance, the physical mechanisms by which these polymers alter the spatial configuration of the liquid phase and the related hydraulic and biogeochemical properties remain unclear.

Here we show that upon drying in porous media polymer solutions form one-dimensional filaments and two-dimensional interconnected structures spanning across multiple pores. Unlike water, primarily shaped by surface tension, these structures remain connected upon drying thanks to their high viscosity. The integrity of one-dimensional structures is explained by the high viscosity and low surface tension of the polymer solutions (elegantly characterized by the Ohnesorge number). The formation of two-dimensional structures requires consideration of the interaction of the polymer solution with the solid surfaces and external drivers, such as the drying rate.

The implications of these physical processes for life in soils are manifold. After their deposition they enhance water retention by acting as a new solid matrix delaying the air entry, they maintain the connectivity of the liquid phase, thus enhancing the unsaturated hydraulic conductivity, diffusion and enzyme activity. Upon rewetting, the formation of extensive two-dimensional structures corresponds to a sudden increase in soil water repellency, which reduces the rewetting kinetics and maintains gas diffusion preventing sudden water saturation. In summary, these structures buffer fluctuations in soil water contents, protecting roots and soil microorganisms against severe drying and sudden rewetting in soil hotspots.

How to cite: Carminati, A., Benard, P., Zarebanadkouki, M., and Ahmed, M. A.: High viscosity of polymer solutions supports life in soil hotspots, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4089, https://doi.org/10.5194/egusphere-egu2020-4089, 2020.

EGU2020-19045 | Displays | SSS4.8

Zooming in: a single-cell perspective on nitrogen fixation in the rhizosphere of rice

Hannes Schmidt, Stefan Gorka, David Seki, Arno Schintlmeister, and Dagmar Woebken

Our current understanding of microbial hotspots such as the rhizosphere mainly stems from observations through measurements at the macroscopic scale, integrating a multitude of microbial cells and taxa into a few measured variables. Consequently, we still lack an understanding of the individual participants that actively contribute to processes. Identifying microorganisms and relating their activity to these processes within the soil-plant interface on a microscopic scale represent a missing link in understanding nutrient flux in agriculturally important ecosystems such as rice cultivation.

I will present a novel workflow for single-cell isotope imaging in the rhizosphere that combines fluorescence in situ hybridization, gold-targeted secondary electron microscopy, and nano-scale secondary ion mass spectrometry. Based on correlative microscopy and hotspot detection, this approach now allows to (i) identify single bacteria on root surfaces that actively incorporate stable isotopes, (ii) quantify their contribution to processes of interest within a given population, and (iii) potentially trace nutrient fluxes among plants and bacteria on a microscale.

Illuminating plant-microorganism interactions on a microscale provides the potential to evaluate the actual impact of bio-inoculants applied as fertilizers and to engineer plant-microorganism associations which may be essential to increase the production of major staple crops for a growing world population.

How to cite: Schmidt, H., Gorka, S., Seki, D., Schintlmeister, A., and Woebken, D.: Zooming in: a single-cell perspective on nitrogen fixation in the rhizosphere of rice, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19045, https://doi.org/10.5194/egusphere-egu2020-19045, 2020.

EGU2020-20074 | Displays | SSS4.8

Imaging biogeochemical gradients in the rhizosphere

Nicole Rudolph-Mohr, Sarah Bereswill, Christian Tötzke, Nikolay Kardjilov, and Sascha E. Oswald

Dynamic processes occurring at the soil-root interface crucially influence soil physical, chemical, and biological properties at local scale around the roots that are technically challenging to capture in situ. Combining 2D optodes and 3D neutron laminography, we developed a new imaging approach capable of simultaneously quantifying H2O-, O2-, and pH-distribution around living plant roots while additionally capturing the root system architecture in 3D. The interrelated patterns of root growth and distribution in soil, root respiration, root exudation, and root water uptake can be studied non-destructively at high temporal and spatial resolution.

Neutron computed laminography (NCL), a tomographic approach specially adapted to samples with large lateral extension (here 15 x 15 x 1.5 cm) was applied to visualize the root architecture and soil water content three-dimensionally. Optodes, sensitive to pH and O2 changes, were attached at the inner-sides of thin boron-less glass-containers where one maize plant was grown in each container. Knowledge about the distance of the roots from the container walls and thus from the optodes, support the interpretation of the optical images.

Neutron laminography made it possible to visualize and quantify the 3D root system architecture in association with the observed H2O, pH and oxygen patterns. The older part of the root system with higher root length density was associated with fast decrease of water content and rapid change in oxygen concentration. Lateral roots acidified their rhizosphere by a quarter of a pH unit and crown root even induced acidification of up to one pH unit compared to bulk soil. The benefit of neutron laminography is that we can extract the root structure in 3D, identify root age and root types and relate this to spatiotemporal changes in water content distribution, oxygen concentration and pH values.

How to cite: Rudolph-Mohr, N., Bereswill, S., Tötzke, C., Kardjilov, N., and Oswald, S. E.: Imaging biogeochemical gradients in the rhizosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20074, https://doi.org/10.5194/egusphere-egu2020-20074, 2020.

EGU2020-8648 | Displays | SSS4.8

Image-based model quantification of pore-scale nitrogen diffusion and potential microbial ‘dead zones’ induced by fertilization application

Siul Ruiz, Daniel McKay Fletcher, Andrea Boghi, Katherine Williams, Simon Duncan, Callum Scotson, Chiara Petroselli, Tiago Dias, Dave Chadwick, David Jones, and Tiina Roose

Soil microbial communities contribute many ecosystem services including soil structure maintenance, crop synergy, and carbon sequestration. However, it is not fully understood how the health of microbial communities is effected by fertilization at the pore scale. This study investigates the nature of nitrogen (N) transport and reactions at the soil pore scale in order to better understand the influence of soil structure and moisture content on microbial community health. Using X-ray Computed Tomography (XRCT) scans, we reconstructed a microscale description of a dry soil-pore geometry as a computational mesh. Solving two-phase water/air models produced pore-scale water distributions at 15, 30 and 70% water-filled pore volume. The model considers ammonium (NH4+), nitrate (NO3-) and dissolved organic N (DON), and includes N immobilization, ammonification and nitrification processes, as well as diffusion in soil-solution. We simulated the dissolution of a fertilizer pellet and a pore scale N cycle at the three different water saturation conditions. To aid interpretation of the model results, microbial activity at a range of N concentrations was quantified experimentally using labelled C to infer microbial activity based on CO2 respiration measurements in bulk soil. The pore-scale model showed that the diffusion and concentration of N in water films is critically dependent upon soil moisture and N species. We predicted that the maximum NH4+ and NO3- concentrations in soil solution around the pellet under low water saturation conditions (15%) are in the order of 1x103 and 1x104 mol m-3 respectively (1-10 M), and under higher water saturation conditions (70%) where on the order of 2x102 and 1x103 mol m-3, respectively (0.1-1 M). Supporting experimental evidence regarding microbial respiration suggests that these concentrations at the pore-scale would be sufficient to reduce microbial activity in the zone immediately around the fertilizer pellet (ranging from 0.9 to 3.8 mm depending on soil moisture status), causing a major loss of soil biological activity by up to 90%. This model demonstrates the importance of pore-scale processes in regulating N movement in soil with special capability to predict the effects of fertilizers on rhizosphere-scale processes and the root microbiome.

How to cite: Ruiz, S., McKay Fletcher, D., Boghi, A., Williams, K., Duncan, S., Scotson, C., Petroselli, C., Dias, T., Chadwick, D., Jones, D., and Roose, T.: Image-based model quantification of pore-scale nitrogen diffusion and potential microbial ‘dead zones’ induced by fertilization application , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8648, https://doi.org/10.5194/egusphere-egu2020-8648, 2020.

EGU2020-5352 | Displays | SSS4.8

Limiting factors for soil microbial growth in climate change simulation treatments in the Subarctic

Mingyue Yuan, Meng Na, Lettice Hicks, and Johannes Rousk

Soil microorganisms play a crucial role in the regulation of nutrient cycling, and are thought to be either limited by low nutrient availability, or by labile carbon supplied by nutrient limited plant productivity. It remains unknown how climate change will affect the rate-limiting resources for decomposer microorganisms in the Arctic, rendering feedbacks to climate change highly uncertain. In this study, we focused on the responses of soil microbial community processes to simulated climate change in a subarctic tundra system in Abisko, Sweden, using litter additions to represent arctic greening and inorganic N fertilizer additions to represent a faster nutrient cycling due to arctic warming. We hypothesized that 1) the plant community would shift and plant productivity would increase in response to N fertilization, 2) microbial process rates would be stimulated by both plant litter and fertilizer additions, and 3) the growth limiting factors for decomposer microorganisms would shift toward nutrient limitation in response to higher plant material input, and towards C-limitation in response to N-fertilizer additions.

 

We assessed the responses of the plant community composition (vegetation surveys) and productivity (NDVI), microbial processes (bacterial growth, fungal growth, C and N mineralization) along with an assessment of the limiting factors for fungal and bacterial growth. The growth-limiting factors were determined by full factorial additions of nutrients (C, N, P), with measurement of microbial growth and respiration following brief incubations in the laboratory. We found that plant productivity was ca. 15% higher in the N fertilized plots. However, field-treatments had limited effects on bacterial growth, fungal growth and the fungal-to-bacterial growth ratio in soils. Field-treatments also had no significant effect on the rate of soil C mineralization, but did affect rates of gross N mineralization. Gross N mineralization was twice as high in N fertilized plots compared to the control. In control soils, bacterial growth increased 4-fold in response to C, indicating that bacterial growth was C limited. Bacterial growth remained C limited in soils from all field-treatments. However, in the N fertilized soils, the C limitation was 1.8-times greater than the control, while in soils with litter input, the C limitation was 0.83-times the control, suggesting that the N fertilized soils were moving towards stronger C-limitation and the litter addition soils were becoming less C-limited. The limiting factor for fungal growth was difficult to resolve. We presumed that the competition of fungi with bacteria decreased our resolution to detect the limiting factor. Therefore, factorial nutrient addition were combined with low amount of bacterial specific inhibitors.

How to cite: Yuan, M., Na, M., Hicks, L., and Rousk, J.: Limiting factors for soil microbial growth in climate change simulation treatments in the Subarctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5352, https://doi.org/10.5194/egusphere-egu2020-5352, 2020.

EGU2020-21605 | Displays | SSS4.8

Revealing how nitrogen fertilisation regulates the fluxes of COS and CO2 between soil communities and the atmosphere using a functional metagenomic and metatranscriptomic approach

Evert van Schaik, Samuel Mondy, Melanie Lelievre, Marine Martin, Solene Perrin, Laura Meredith, Aurore Kaisermann, Samuel Jones, Olivier Rue, Valentin Loux, and Lisa Wingate

Recent interest in the seasonal and spatial variability of atmospheric COS has intensified as its use as an atmospheric tracer of biosphere productivity in the carbon cycle has recently been demonstrated. The key link between the COS and CO2 cycles in the biosphere is a family of enzymes called the carbonic anhydrases (CA) that catalyse both the hydration of CO2 and the hydrolysis of COS in both plants and soil microbes. Recently studies have demonstrated that the variability in soil COS and CO2 fluxes are modified significantly by fertilisation with inorganic N, indicating a strong coupling between soil carbon (C), nitrogen (N) and sulphur (S) cycling (Kaisermann et al., 2018). However, it is currently not clear whether the observed changes in COS and CO2 gas exchange were principally driven by important shifts in the microbial community size, structure or function or some combination of the three.

To elucidate the underlying mechanism(s) we used a functional metagenomic and metatranscriptomic approach coupled with climate controlled gas exchange measurements on soils. A set of 6 soils collected from boreal and temperate sites were sieved and re-packed in microcosms and incubated in the lab for 2 weeks at 23oC and 30% water holding capacity in the dark. For each site half the microcosms were fertilised with 5 mg N in the form of NH4NO3 at the start of the incubation period. At the end of the incubation period soil COS, CO2 fluxes were measured, and soil samples transported at -80oC to the Genosol platform for DNA and RNA extraction.  For each soil microcosm we quantified the abundance of bacterial, fungal and algal genes in each community using 16S, 18S and 23S amplicon sequencing. After assembling and cross-mapping the metagenomes and metatranscriptomes we used a HMM model (Meredith et al. 2018) to estimate and comparatively assess the abundance of CA genes between the different sites and treatments.

Our results indicate that the N treatment caused a relative increase in the abundance of fungi in N treated soils compared to those in the control. Generally, we also found that the total number of CAs in soils shifted when treated with N compared to the controls and that the β-D CA sub-family were the most prevalent CAs in all of the soils. In our presentation we will demonstrate how both the community structure and the abundance of CAs were modified upon N fertilisation and provide vital clues on the most likely mechanism(s) controlling COS and CO2 fluxes in soil communities and the significance of these results for interpreting atmospheric signals.

Kaisermann, Aurore, Sam P. Jones, Steven Wohl, Jérôme Ogée, and Lisa Wingate. 2018 Nitrogen Fertilization Reduces the Capacity of Soils to take up Atmospheric Carbonyl Sulphide. Soil Systems 2 (4), 62 doi.org/10.3390/soilsystems2040062

Meredith, Laura K, Jérôme Ogée, Kristin Boye, Esther Singer, Lisa Wingate, Christian von Sperber, Aditi Sengupta, et al. 2018. “Soil Exchange Rates of COS and CO18O Differ with the Diversity of Microbial Communities and Their Carbonic Anhydrase Enzymes.” ISME Journal, 2018. https://doi.org/10.1038/s41396-018-0270-2.

How to cite: van Schaik, E., Mondy, S., Lelievre, M., Martin, M., Perrin, S., Meredith, L., Kaisermann, A., Jones, S., Rue, O., Loux, V., and Wingate, L.: Revealing how nitrogen fertilisation regulates the fluxes of COS and CO2 between soil communities and the atmosphere using a functional metagenomic and metatranscriptomic approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21605, https://doi.org/10.5194/egusphere-egu2020-21605, 2020.

The projected global warming risks due to high emissions of greenhouse gases, mainly from anthropogenic activities, increases the need for an agricultural practice with high carbon sink capacity and low water requirements without compromising on environment and productivity. On one hand, it’s well accepted that soil moisture directly affects microbial activity, whereas on the other hand, drought stress was recently postulated to increase root exudates, which in turn will accelerate soil organic matter mineralization “priming effects”. Thus, the objective of this study was to investigate the interplay between soil moisture (well-watered and drought stressed) and maize (Zea mays L.) root exudates on soil CO2 efflux. The experiment consisted of three treatments, which are well-watered, drought stressed maize plus a control (without plants) lysimeters (1 m3), Soil CO2 efflux, soil temperature and moisture content were measured weekly during the growing season (April to September) and monthly in the fallow period. Under well-watered conditions, the annual average of CO2 efflux was 0.12 g CO2-C m-2 hr-1, which was 24.5 and 20% significantly higher than under drought stressed and the control, respectively. Moreover, well-watered treatment had significantly greater primed carbon than drought stressed maize. Soil temperature in deeper soil layers (25, 50 and 75 cm) correlated positively (with the CO2 efflux, while soil moisture correlated negatively at the 5 cm and 25 cm. Overall, these results suggested that the root exudates decreased under drought conditions, which decreasing soil respiration. Drought tolerance varieties could be an option to decrease soil respiration and maintain productivity.

How to cite: Abdalla, K., Ahmed, M., and Pausch, J.: Does rhizosphere priming effect explain the greater soil respiration in well-watered and drought stressed maize? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18874, https://doi.org/10.5194/egusphere-egu2020-18874, 2020.

EGU2020-17859 | Displays | SSS4.8

Management of hotspots for sustainable crop production: hotter, deeper, or simply more?

Michaela Dippold, Sara Halicki, Mutez Ahmed, Hongcui Dai, Jie Zhou, Natalyia Bilyera, Xuechen Zhang, Sandra Spielvogel, Duyen Hoang, and Callum Banfield

Hotspots in agricultural soils, which include rhizosphere, detritusphere and drilosphere, are characterized by strongly different dynamics than those of natural ecosystems. This involves hotspot properties such as element cycling intensity, microbial activation, lifetime or spatial extension. Evidence from studies around the globe suggests that key hotspot characteristics intensify or increase under strongly limiting cropping conditions e.g. low-input agriculture: i) nutrient mining is more intensive around roots in infertile soils, ii) root exudates decompose more slowly under water limitation, and iii) the rhizo-hyphosphere forms a more spatially extended hyphal network under P deficiency. These examples suggest that smart management of hotspots might be a sustainable strategy to overcome soil limitations, not only for crop production on marginal soils but also as a strategy to save resources for future agriculture.

Here, we will present a set of studies applying management strategies, which actively modify hotspot intensity, lifetime or spatial extension with the aim to manipulate biogeochemical cycles of the respective agroecosystem. Most traditional, tillage enlarges the topsoil detritusphere or moves it to lower soil depths. Rather novel but increasingly studied approaches seek to modify rhizosphere properties: applying genotypes with i) specific root traits such as an optimized root morphology (e.g. modified root hairs or deeper fine root system) or ii) modified root exudate compositions and resulting rhizosphere microbiomes. Such approaches need to be applied site- and agroecosystem-specifically to optimize resource utilization. Moreover, as agroecosystems are under long-term controls, hotspot management strategies are not limited to one growing season but can stretch over years of cultivation. The generation of specific biopores – the root channels - created by e.g. tap-rooted or deep-rooting cover crops is a management practise inducing a rhizosphere-detritusphere-rhizosphere transition over time. ‘Re-activated’ hotspots feature unique biogeochemical conditions for young roots as well as microbial communities. Such ‘highways to subsoil’ foster rhizosphere establishment in subsoils, where i) hotspots remain moist and thus active under drought and ii) where gradients from hotspots to bulk soils are for magnitudes higher compared to topsoils. All these aspects present a unique, however largely unexploited potential for future agriculture, yet.

By a novel set of methodological approaches and their combinations, comprising multi-isotope applications, in-situ imaging techniques, biomarkers and microbial activity measures with high spatial resolution, we will provide new insights into the potential of hotspot management in agroecosystems. We will discuss implications for crop production under resource limitation up to the potential for a sustainable development of future agricultural production systems especially in the face of projected climate change.

How to cite: Dippold, M., Halicki, S., Ahmed, M., Dai, H., Zhou, J., Bilyera, N., Zhang, X., Spielvogel, S., Hoang, D., and Banfield, C.: Management of hotspots for sustainable crop production: hotter, deeper, or simply more?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17859, https://doi.org/10.5194/egusphere-egu2020-17859, 2020.

EGU2020-93 | Displays | SSS4.8 | Highlight

Global maps of current and future nitrogen mineralization

Julia Maschler, Daniel S. Maynard, Devin Routh, Johan van den Hoogen, Zhaolei Li, Shuli Niu, and Thomas W. Crowther

Soil nitrogen is a prominent determinant of plant growth, with nitrogen (N) availability being a key driver of terrestrial carbon sequestration. The local availability of soil N is thus crucial to our understanding of broad-scale trends in soil fertility, productivity, and carbon dynamics. Here, we provide global, high-resolution maps of current and future (2050) potential net nitrogen mineralization (N-min), revealing global patterns in soil N availability. Highest mineralization rates are found in warm and moist tropical regions, leading to a strong latitudinal gradient in N-min. We observed a positive correlation of N-min rates with human population density and net primary productivity. Projected climate conditions for 2050 suggest that N availability will further decrease in areas of low N availability and increase in areas of high N availability, thereby intensifying current global trends. These results shed light on the core processes governing productivity at a global scale, providing an opportunity to improve the accuracy of plant biomass and climate models.

How to cite: Maschler, J., Maynard, D. S., Routh, D., van den Hoogen, J., Li, Z., Niu, S., and Crowther, T. W.: Global maps of current and future nitrogen mineralization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-93, https://doi.org/10.5194/egusphere-egu2020-93, 2020.

The biogeochemical interfaces are hotspots for organic matter (OM) transformation. However, direct and continuouxiacis tracing of OM transformations and N and P degradation processes are lacking due to the heterogeneous and opaque nature of soil microenvironment. To investigate these processes, a new soil microarray technology (SoilChips) was developed and used. Homogeneous 2-mm-diameter SoilChips were constructed by depositing a dispersed paddy soils with high and low soil organic carbon (SOC) content. A horizon suspension on a patterned glass. Dissolved organic matter from the original soil was added on the SoilChips to mimic biogeochemical processes on interfaces. The chemical composition of biogeochemical interfaces were evaluated via X-ray photoelectron spectroscopy (XPS) and the two-dimensional distribution of enzyme activities in SoilChips were evaluated by zymography. Over 30 days, soil with high SOC content increases microbial nutrition (N and P) requirements than soil with low SOC evidenced by higher hotspots of β-1,4-N-acetaminophen glucosidase, and acid phosphomonoesterases and higher 16S rRNA gene copies. The degree of humification in dissolved organic matter (DOM) was higher and the bioavailability of DOM was poorer in soil with high SOC than soil with low SOC. The poorest bioavailability of DOM was detected at the end of incubation in soil with high SOC. Molecular modeling of OM composition showed that low SOC mainly facilitated the microbial production of glucans but high SOC mainly facilitated the microbial production of proteins. We demonstrated that SOC content or DOM availability for microorganisms modifies the specific OM molecular processing and N and P degradation processes, thereby providing a direct insight into biogeochemical transformation of OM at micro-scale.

How to cite: Wei, L.: Organic matter content controls the N and P degradation process on biogeochemical interfaces: A micro-ecosystem scale study based on SoilChips-XPS-Zymography integrated technique in paddy soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2963, https://doi.org/10.5194/egusphere-egu2020-2963, 2020.

Earthworm catalyzes soil organic matter (SOM) decomposition through their burrowing activity, gut processing of carbon (C) inputs and microorganism stimulation. Specific enzyme is characterized for the decomposition, which is denoted in enzyme activity, substrate turnover and turnover rate of the decomposition. To demonstrate the interaction between earthworms and microbial activities, 14C-labelled plant litter was placed on a soil surface of a mesocosm (10 x 2 x 50 cm) prior to placing earthworms into soil, control soil was set up in mesocosms without earthworms. After 1 month of earthworm presence, soil materials coated on the biopore walls were excavated for another soil incubation to define C turnover by trapping respired CO2 in NaOH 1M. While another subsample was used to define activity of cellobiohydrolase (a cellulolytic enzyme) and its turnover rate. The hypotheses were that i) C turnover by incubation is associated with enzymatic turnover rate but ii) these two turnover rates are depth dependent.

Consequently, activity of cellobiohydrolase was higher in earthworm biopores than control soil regardless of soil depth. The difference in enzyme kinetics between biopores and control soil showed a shift of enzyme system toward higher substrate affinity in the topsoil but lower in the subsoil. This finding can be explained by the distinction in microbial community between topsoil and subsoil in both earthworm biopore and control soil. Substrate turnover time calculated based on saturated substrate concentration and maximum reaction rate velocity. The turnover
rate of substrate decomposition was faster in biopores than bulk soil. The substrate turnover time is depth dependent. We concluded that earthworm biopores are microbial hotspots with demonstrated interactions between microbial functions and microscale features. The decrease of enzyme activities with depth, accompanied by the decrease of catalytic efficiency, implies the microbial production of more efficient enzymes in the top- than in the subsoil. Bioturbation induced by earthworms leads to localization of microorganisms and litter within biopores and plays a crucial role for organic matter processing, its microbial utilization, and turnover. This has direct consequences for C and nutrient cycling.

How to cite: Hoang Thi Thu, D.: Carbon turnover and Turnover rate of enzyme cellobiohydrolase in earthworm biopores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6080, https://doi.org/10.5194/egusphere-egu2020-6080, 2020.

EGU2020-10838 | Displays | SSS4.8

Contrasting responses of soil fungal communities and soil respiration to the above‐ and below‐ground plant C inputs in a subtropical forest

Lingling Shi, Wenting Feng, Xin Jing, Huadong Zang, Peter Edward Mortimer, and Xiaoming Zhou

The roles of soil fungal diversity and community composition in regulating soil respiration when above‐ and below‐ground plant carbon (C) inputs are excluded remain unclear. In the present study, we aimed to examine: (i) how does the exclusion of above‐ and below‐ground plant C inputs affect soil respiration and soil fungi singly and in combination? and (ii) are changes in soil fungal diversity aligned with changes in soil respiration? A field experiment with manipulation of plant C inputs was established in a subtropical forest in southwest China in 2004 with litter removal and tree stem‐girdling to exclude inputs of the above‐ and below‐ground plant C, respectively. In 2009, we measured the rates of soil respiration with an infrared gas analyser and soil fungal community structure using Illumina sequencing. We found that the rates of soil respiration were reduced significantly by litter removal and girdling, by similar magnitudes. However, they were not decreased further by the combination of these two treatments compared to either treatment alone. In contrast, litter removal increased the diversity of soil fungal communities, whereas girdling decreased the abundance of symbiotrophic fungi but increased the abundance of saptrotrophic and pathotrophic fungi. These changes in soil fungal community might initiate CO2 emission from soil C decomposition, offsetting further decline in soil respiration when plant C inputs are excluded. These results revealed that the exclusion of the above‐ and below‐ground plant C inputs led to contrasting soil fungal communities but similar soil function. Our findings suggest that both above‐ and below‐ground plant C are important in regulating soil respiration in subtropical forests, by limiting substrates for soil fungal growth and altering the diversity and composition of soil fungal community.

How to cite: Shi, L., Feng, W., Jing, X., Zang, H., Mortimer, P. E., and Zhou, X.: Contrasting responses of soil fungal communities and soil respiration to the above‐ and below‐ground plant C inputs in a subtropical forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10838, https://doi.org/10.5194/egusphere-egu2020-10838, 2020.

EGU2020-16574 | Displays | SSS4.8

Re-colonization of sterile soil samples during long term field exposure

Michael Herre, Bernd Marschner, and Sven Marhan

The distribution of soil organic matter and microbial biomass in subsoils is much more heterogeneous than in the topsoil due to a more localized input of fresh substrate and nutrients from rhizodeposition and preferential flow paths forming hotspots of microbial activity. However, the remaining bulk soil also contains substantial amounts of labile substrates that are readily mineralized during lab incubation experiments. We therefore hypothesized that one reason for this is that potential consumers are spatially separated from these substrates due to the low microbial densities in subsoils. Consequently, hotspots are not only formed through high substrate inputs but also through a higher abundance and diversity of microorganisms compared to the bulk soil due to inputs of cells and spores with the soil solution or through hyphal growth. However, little is known about the colonization potential or dynamics of microorganisms in the subsoil.

In November 2018, we started a field experiment to investigate the re-colonization potential of microorganisms by exposing 24-well microplates containing sterilized soil samples in the field at two different depths (topsoil: 10 cm, subsoil 60 cm) at a beech forest site in northern Germany. After 6 and 12 months, samples from each well and from the intact soil compartments above each well were analyzed for enzyme activities (hydrolytic enzymes using MUF and AMC substrates), microbial activity parameters (soil respiration and SIR using the MicroResp®) and the microbial community structure (quantitative PCR).

We expect (1) different temporal dynamics of re-colonization between top- and subsoil samples; (2) that the recolonization potential is related to the microbial activity in the soil compartments above the exposed samples and (3) that the heterogeneous re-colonization is maintained throughout the field exposure and thus indicates the relevance of preferential flow paths for microbial transport especially in subsoils.

First results of the SIR assays after 6 months of field exposure show that in the topsoil microbial activity has been re-established in all of the wells, but is still below the mean activity in the undisturbed soil above the sterilized samples. In all subsoil samples, the re-established microbial activity was much lower and even below detection limit in some of the wells. In both depths, the SIR assays show a very patchy distribution of wells with higher microbial activities indicating that the influx of organisms is limited to small areas from the soil above the exposed containers.

How to cite: Herre, M., Marschner, B., and Marhan, S.: Re-colonization of sterile soil samples during long term field exposure , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16574, https://doi.org/10.5194/egusphere-egu2020-16574, 2020.

  With the increasing of nitrogen(N) deposition and changing of precipitation patterns worldwide, large amounts of N are loaded in terrestrial ecosystem, resulting in soil nutrient imbalance and soil nitrous oxide(N2O) flux change. Nitrification and denitrification in soil are two major sources of N2O emission mediated by microorganisms. However, It is still unclear how the soil N2O flux and the abundance of nitrifiers and denitrifiers might change under the addition of N and water(W) in temperate semi-arid steppe. In this study, we established a one-year-long field experiment investigating how soil N2O flux, the abundance of nitrifiers and denitrifiers, and environmental properties, including soil pH, soil moisture, soil dissolved organic carbon content(DOC) and soil available N content responsed when N(NH4NO3 was applied at a rate of 4 g N·m-2·yr-1, which is equivalent to one time the annual nitrogen deposition) and/or W(water was applied at a rate of 112.5 mm·yr-1, which is equivalent to 30% of the annual rainfall) were added to temperate semi-arid steppe in northern China with the natural condition without any treatment as control. Quantitative PCR was used to analyze the abundance of ammonia oxidizers(ammonia-oxidizing bacteria and archaea amoA) and denitrifiers(nirS/nirK and nosZ). Our experimental results demonstrated that soil N2O emission decreased when W was added and W and N were added in temperate semi-arid steppe in northern China. The abundance of nirS and nosZ genes increased when W and N were added. Compared with AOA/AOBamoA and nirK genes, the abundance of nirS and nosZ genes is more sensitive to the addition of N and W. Soil N2O flux was negatively correlated with the abundance of nirS-denitrifier. The nirS gene abundance, soil pH and DOC were the main controls on soil N2O flux and totally explained 78.2% of the variation of soil N2O flux. The results of this study provide a theoretical basis for N cycle mechanism mediated by microorganisms and have practical significance for the prediction of N2O flux change in temperate semi-arid steppe under the background of global change.

How to cite: Jiaqi, Z. and Yinghui, L.: Environmental properties and microbial abundance explain soil nitrous oxide flux variation synergistically under the addition of nitrogen and water in temperate semi-arid steppe , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6270, https://doi.org/10.5194/egusphere-egu2020-6270, 2020.

EGU2020-4140 | Displays | SSS4.8

Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production

Xuechen Zhang, Yakov Kuzyakov, Huadong Zang, Michaela A. Dippold, Lingling Shi, Sandra Spielvogel, and Bahar S. Razavi

Among the factors controlling root exudation, root hair proliferation and warming strongly influence exudate release, microbial substrate utilization and enzyme activities. The interactions of these two factors are important but poorly known in the rhizosphere. To clarify these interactions, two maize varieties – a wild type with root hairs and a hairless mutant – were grown at 20 and 30 °C for 2 weeks. We applied a unique combination of zymography to localize hotspots of β-glucosidase with microcalorimetry and substrate-induced respiration from soil sampled in hotspots. This approach enabled monitoring exudate effects on microbial growth strategy, enzyme kinetics (Vmax and Km), heat release and CO2 production in the hotspots in response to warming.

Root hair effects on enzyme activity and efficiency were pronounced only at the elevated temperature: i) β-glucosidase activity of the wild type at 30 °C was higher than that of the hairless maize; ii) temperature shifted the microbial growth strategy, whereas root hairs (i.e. C input) promoted the fraction of growing microbial biomass; iii) Km and the activation energy for β-glucosidase under the hairless mutant was lower than that under wild maize. These results suggest that microorganisms inhabiting hotspots of the wild type synthesized more enzymes to fulfill their higher energy and nutrient demands than those of the hairless mutant. In contrast, at higher temperature the hairless maize produced an enzyme pool with higher efficiencies rather than higher enzyme production, enabling metabolic needs to be met at lower cost. These changes in enzyme kinetics and metabolic shifts confirmed evolutionary theory on tradeoffs of enzyme structure–function and thermal–substrate under warming at the soil hotspot level. We conclude that, if microbial and enzymatic activities are stimulated by more substrate input under warming, then this shift in the microbial community and in enzyme systems to a lower efficiency could offset C losses.

How to cite: Zhang, X., Kuzyakov, Y., Zang, H., Dippold, M. A., Shi, L., Spielvogel, S., and Razavi, B. S.: Rhizosphere hotspots: root hairs and warming control microbial efficiency, carbon utilization and energy production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4140, https://doi.org/10.5194/egusphere-egu2020-4140, 2020.

EGU2020-730 | Displays | SSS4.8

Effect of Vaccinium vitis-idaea L. and moisture on mountain-meadow soils

Rida Sabirova, Michael Makarov, and Maxim Kadulin

Against the climate change there has been an overgrowing of phytocenoses of alpine lichen heath and arctic tundra with dwarf shrubs and shrubs over the past 40 years. Dwarf shrubs roots of Vaccinium vitis-idaea L. forms symbiosis with ericoid mycorrhiza, which may lead to change of soil properties. Mycorrhizal fungi regulate nitrogen, phosphorus and carbon cycles by secretion of active enzymes which depolymerize and mineralize soil organic matter and increase available of mineral nutrition elements for vegetation and microorganisms.

Moreover, in the previous research it was found that moisture was greater under shrubs than under alpine lichen heath. It is known that moisture plays key role in microbial processes in the soil, affect on enzyme activity, nitrification, mineralization and so on. Therefore, the objective of this research is to evaluate the influence of both dwarf shrubs and moisture on the soil characteristics.

Research area is located around 2750 m a.s.l. in the alpine heath of Teberda Nature Reserve, North Caucasus, Karachay-Cherkess Republic where 3 areas with different moisture (15, 21 and 27%) were chosen. In each area samples of mountain-meadow soil were collected from under dwarf shrubs and alpine lichen heath without dwarf shrubs (control) during 10 days of the second part of July and then frozen until laboratory analysis. Firstly, there were analyzed chemical (soil pH, mineral P, organic N, C, inorganic N) and biological (C and N of microbial biomass, basal respiration, mineralization, nitrification and activity of glucosidase, phosphatase, chitinase and leucinaminopeptidase) properties of the soil samples. Furthermore, it was made statistical analysis in Statistica 8.0 program.

 It was found that increase in moisture is accompanied by increase in concentrations of inorganic forms of nitrogen, C and N of microbial biomass, basal respiration and nitrification activity in heath without shrubs, which indicates a growth of microbiota activity. However concentrations of labile organic carbon and nitrogen, and enzymatic activity decrease at the same conditions. Such changes indicate a shift from a community of heath with herbal vegetation to communities dominated by ericoid mycorrhizal plants.

The investigation also revealed that soil acidity is significantly higher under V. vitis-idaea L., however, there is a noticeable decrease in nitrification activity, inorganic nitrogen concentrations, which indicates minor dependence of the dwarf shrubs on mineral compounds in nitrogen nutrition.

Thus, both the presence of V. vitis-idaea L. and various moisture have a significant effect on the soil characteristics. Moreover, the moisture under control plays an essential role, while under the dwarf shrubs many soil properties remain unchanged, therefore, V. vitis-idaea L. creates a microclimate in the soil among roots where moisture has no effect.

How to cite: Sabirova, R., Makarov, M., and Kadulin, M.: Effect of Vaccinium vitis-idaea L. and moisture on mountain-meadow soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-730, https://doi.org/10.5194/egusphere-egu2020-730, 2020.

EGU2020-5344 | Displays | SSS4.8

Tea Bag Index as potential indicator for soil microbial activity.

Gera Van Os, Karin Pepers, Jaap Bloem, Joeke Postma, and Johnny Visser

Worldwide there is an enormous interest in microbial indicators for soil quality, since this reflects the potential capacity for soil ecosystem functions i.e. nutrient cycles, carbon storage, biodiversity and resilience to climate change. Farmers are anxious to measure the effects of different soil management practices in order to improve soil quality and attain sustainable food production. Despite the rapid developments in (molecular) measurement techniques, adequately validated and affordable methods for field measurements on soil microbial activity are still lacking. Nowadays, farmers participate in campaigns to bury cotton undies in order to measure biological activity in their fields (Soil your undies).  If there’s not much left of the undies after a couple of months, this supposedly indicates good soil health. Of course this is by no means a quantitative nor validated indicator.

An elegant, cheap and simple method to measure biological activity in soil is the Tea Bag Index (TBI). This method was developed to determine the global variation in decomposition rate of organic matter by the soil microflora as influenced by abiotic circumstances. The TBI consists of two parameters describing decomposition and stabilization of organic matter by measuring weight loss of green tea and rooibos tea bags that have been buried in the soil for three months. The method is designed to discriminate contrasting ecosystems and, within ecosystems, differences in factors such as soil temperature and moisture content (Keuskamp et al. 2013, doi: 10.1111/2041-210X.12097).

Our research aimed to assess the possibility to use the TBI as an indicator for soil microbial activity, considering its sensitivity and robustness to discriminate between agricultural soil management practices that are known to have a significant impact on soil microbial diversity and activity. The responsiveness to soil pasteurization and organic amendments was investigated under both controlled and field conditions. The TBI decomposition rate differed significantly between both tea varieties (green tea > rooibos tea). Organic amendments had little or no effect. The TBI-results were plotted against some more established biochemical indicators which are sensitive to soil management and often related to microbial biomass, i.e. hot water extractable carbon, potentially mineralizable nitrogen and fungal biomass. Results are discussed, as well as factors which complicate the interpretation of TBI data with respect to soil microbial activity.

How to cite: Van Os, G., Pepers, K., Bloem, J., Postma, J., and Visser, J.: Tea Bag Index as potential indicator for soil microbial activity., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5344, https://doi.org/10.5194/egusphere-egu2020-5344, 2020.

EGU2020-1148 | Displays | SSS4.8

Pore size effect on soil carbon dynamics during decomposition of switchgrass

Kyungmin Kim, Andrey Guber, and Alexandra Kravchenko

Soil pore size distribution (PSD) regulates oxygen diffusion and transport of water/mineralized nutrients. Microbial activity, which drives the carbon (C) cycle in the soil system, can react to these physical factors regulated by PSD. In this study, we investigated the contribution of PSD to C-related microbial activity during the switchgrass decomposition. We used two types of soils, which have controlled PSD (dominant pore size of < 10um and > 30 um). 13C labeled switchgrass leaf and root were incorporated into different PSD of soils and incubated for 21 days under 50% water-filled pore space. During the incubation, microbial activity was assessed with several indicators. i) Fate and transport of mineralized switchgrass, ii) Priming effect, iii) Spatial distribution of b-glucosidase and phenol oxidase, and iv) Microbial biomass. Our preliminary results showed that CO2 emission from switchgrass leaf was greater in the soil dominated by < 10 um pores. Higher b -glucosidase activity and mineralized C from switchgrass leaf supported greater C-related activity in such soil. However, interestingly, we observed a greater priming effect in the soil dominated by > 30 um pores. Due to the less mineralization and transport of switchgrass-derived C in such pores, enzymes targeting more complex substrate could be more active in such soil stimulating mineralization of native soil C. Our full results of phenol oxidase, microbial biomass, and more detailed analysis on 13C and C dynamics will help understanding how PSD can affect biochemical reactions in plant decomposition system.

How to cite: Kim, K., Guber, A., and Kravchenko, A.: Pore size effect on soil carbon dynamics during decomposition of switchgrass, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1148, https://doi.org/10.5194/egusphere-egu2020-1148, 2020.

Climate change represents a key challenge to the sustainability of global ecosystems and human prosperity in the twenty-first century. The impacts of climate change combined with natural climate variability are predominantly adverse, and often exacerbate other environmental challenges such as degradation of ecosystems, loss of biodiversity, and air, water and land pollution. Besides, rapid industrialization and increasing adaption of agrochemical based crop production practices since green revolution have considerably increased the heavy metal contaminations in the environment.

Assessing the impacts of climate change on our planet and addressing risks and opportunities is essential for taking decisions that will remain robust under future conditions, when many climate change impacts are expected to become more significant.

Here, we established a review survey to assess the impact of biochar amendment and agroforstry system on CO2 sequestration and methaloid remediation.

Our data base showed that Agroforestry-based solutions for carbon dioxide capture and sequestration for climate change mitigation and adaptation in long-term is more practical and realistic options for a sustainable ecosystem and decreasing negative effect of climate change. This was more supported in arid and semi-arid regions as well as area with saline and alkaline soil (20%).

From a soil remediation standpoint, the general trend has been shifting from reduction of the total concentration to reduction of the physic-chemically and/or biologically available fractions of metals. This regulatory shift represents a tremendous saving in remediation cost. While metals are not degradable, their speciation and binding with soil through biochar amending reduced their solubility, mobility, and bioavailability. While agroforestry showed high efficiency in C sequestration (32%), biochar amendment raveled significant mitigation in heavymetals bioavailability (42%). However, studies which coupled both approaches are limited. Thus, we conclude that combined Agroforestry and biochar amendment regulates C sequestration and metalloids remediation more efficiently.

How to cite: Feizi, A. and Razavi, B.: Climate change mitigation and adaptation by biochar: mechanisms and regulatory trend in the rhizosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22654, https://doi.org/10.5194/egusphere-egu2020-22654, 2020.

EGU2020-5468 | Displays | SSS4.8

How 'hot' are the hotspots: Statistical approach to localize the high activity areas on soil images

Nataliya Bilyera, Irina Kuzyakova, Bahar S. Razavi, Sandra Spielvogel, and Yakov Kuzyakov

The recently raised topic of microbial hotspots in soil needs not only visualizations of their spatial distribution and biochemical analyses, but also statistical approaches to segregate these hotspots and separate them from the background.  We hypothesized that each type of hotspots (e.g. hotspots of root exudation, enzyme activities, root water uptake, pesticides accumulation in plant) is a result of processes driven by biotic or abiotic factors, and consequently corresponds to a statistical distribution follows of a composite functions (e.g. normal/Gaussian), which is significantly different from the background. Consequently, the elucidation of microbial hotspots should be based on statistical separation of the distributions or segregate of maximal values within one distribution. As examples, we collected 3 groups of published images: 1) 14C images on carbon input by roots into the rhizosphere, 14C localization in roots and glyphosate accumulation in the plant, 2) zymogram on leucine aminopeptidase, 3) neutron image on root water uptake. Each of the images was analyzed for statistical distribution of activity and its area. In the next step, respective distribution parameters (means and standard deviations) were calculated, the modeled distribution was fit, and the background was removed. For the parameters with one distribution, we identified hotspots as the areas outside of the “Mean+2SD” values (corresponding to the upper ~ 2.5% of activity being over 95.5 % of background values). Finally, images of solely hotspots locations were visualised. Comparison with previously used decisions of the hotspot intensity (i.e. Top-25% intensity) thresholding showed advantages of the “Mean+2SD” approach. The advantages (suitable for “time-specific” hotspots in temporal sequence of images, identification of hotspots with different level of activity, unification of thresholding approach for several imaging methods with different principles of activities distribution) and limitations (loss of hotspot areas at low quality images, several thresholding rounds for two or more distributions at on image) of the suggested approach and the potentials of its further development were discussed. We conclude that objective elucidation and separation of the hotspots is case specific and should be based on statistical tools of distribution analysis, which will also help to understand the processes responsible for the highest activities.

How to cite: Bilyera, N., Kuzyakova, I., S. Razavi, B., Spielvogel, S., and Kuzyakov, Y.: How 'hot' are the hotspots: Statistical approach to localize the high activity areas on soil images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5468, https://doi.org/10.5194/egusphere-egu2020-5468, 2020.

The roles of multiple global change are expected for many terrestrial ecosystems in future. As two main global change factors, the impact of drought and nitrogen deposition and their interaction on soil respiration and its components (R) remains unclear. To explore the responses of soil respiration (Rs), autotrophic respiration (Ra) and heterotrophic respiration (Rh) to multiple global change factors, we established a field experiment of throughfall reduction and nitrogen additions in a subtropical Moso bamboo (Phyllostachys heterocycla) forest in the Southwest China, using a 4 × 4 completely randomized design. Results showed that bivariate exponential equation with soil temperature (T) and soil moisture (SWC) (R=a.ebT.SWCc) was fitted to predict Rs, Ra and Rh. Throughfall reduction, nitrogen additions and their interaction had no effect on annual mean Rs and Ra, but nitrogen additions significantly depressed annual mean Rh. Nitrogen additions significantly decreased contribution of Rh to Rs and increased contribution of Ra to Rs, however, the contributions were non-responsive under throughfall reduction. The more positive effect of nitrogen additions on the contribution of Ra to Rs was appeared compared with that of throughfall reduction, thereby more negative effect on the contribution of Rh to Rs. The fine root biomass, fine root carbon and nitrogen storage regulated Rs, while fine root phosphorus storage determined Ra. The Rh was negatively correlated with vector lengths, thus suggesting that microbial carbon limitation caused the decline of Rh. Our findings demonstrate that the nitrogen additions played overriding role than throughfall reduction in affecting the contribution of Ra and Rh to Rs. Moreover, the negative response of temperature sensitivity of Rs and Rh to nitrogen additions, suggesting that that the nitrogen additions may weaken the positive response of soil CO2 emission to global climate warming. Our study highlights asymmetrical responses of Rs, Ra and Rh to throughfall reduction and nitrogen additions and could enhance accurate predictions of soil carbon dynamics in response to multiple global climate change in future.

How to cite: Wang, Y., Liu, S., and Luan, J.: Soil respiration and its components respond asymmetrically to throughfall reduction and nitrogen additions in a subtropical Moso bamboo forest in the Southwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6262, https://doi.org/10.5194/egusphere-egu2020-6262, 2020.

EGU2020-6227 | Displays | SSS4.8 | Highlight

Nitrous oxide production and sources in response to a simulated fall-freeze-thaw cycle

Sisi Lin and Guillermo Hernandez Ramirez

Thaw-induced N2O emissions have been shown to account for 30-90% of N2O emissions in agricultural fields. Due to the climate change, increased precipitatio is expected in fall and winter seasons for certain regions. As a result, this would in turn enhance the thaw-induced N2O emissions and aggravate climate change. A mesocosm study was conducted to investigate N2O production and sources from soils under elevated soil moisture contents in response to a simulated fall-freeze-thaw cycle. Treatments included two levels of N addition (urea versus control) and two different management histories [with (SW) and without (CT) manure additions]. Our results showed that at least 92% of the N2O emissions during the study were produced during the simulated thawing across all treatments. The thaw-induced N2O emissions increased with increasing soil water content. The fall-applied urea increased the soil-derived N2O emissions during thawing, indicating an excessive mineralization of soil organic N. Compared to the CT soils, the SW soils induced more soil-derived N2O emissions. This could be because the SW soil had more easily decomposable organic matter which was likely due to historical manure additions. Regarding to the daily primed N2O fluxes, different soil water contents impacted the dynamics of daily priming effect. At the high water content, the soils experienced a shift in daily primed N2O fluxes from positive to negative and eventually back to positive throughout the simulated thawing, while the soils at lower water contents underwent positive primed fluxes in general. The shift in daily primed fluxes was probably driven by the preference of soil microbes on the labile N substrates. When the microbes switched from easily to moderately decomposed substrates (e.g., from dissolved organic N to plant residuals), they started to uptake inorganic N from the soil due to a relatively high C:N ratio of plant residuals. Therefore, a net N immobilization and negative primed N2O production occur in the short term in the soils at the high water content.

How to cite: Lin, S. and Ramirez, G. H.: Nitrous oxide production and sources in response to a simulated fall-freeze-thaw cycle, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6227, https://doi.org/10.5194/egusphere-egu2020-6227, 2020.

EGU2020-6893 | Displays | SSS4.8

Combined application of manure and mineral fertilizers weakens the impact of manure on soil biochemical properties

Shibin Liu, Yakov Kuzyakov, Shengyan Pu, and Bahar Razavi

Manure application has been considerably emphasized to mitigate global soil degradation and improve soil fertility. Though there have been investigations on the contribution of manure application on soil properties in comparison with mineral fertilization, a comprehensive understanding of manure application on soil organic matter (SOM), total nitrogen (TN), microbial biomass carbon (MBC) and nitrogen (MBN) and activities of 7 enzymes is yet to be identified. This study extensively quantified the response of soil biochemical properties to manure application based on a meta-analysis of 83 articles including 460 observations with time span from days to years. The impact of explanatory factors (i.e. climatic factors, experimental types, soil properties and manure characteristics) was also elucidated. Manure application increased SOM, TN, MBC and MBN by 27 ± 3% and 41 ± 5.3%, 87 ± 4.3% and 88 ± 6.7 %. Soil C/N ratio did not vary but MBC/MBN ratio decreased after manure application, indicating a shift in microbial community. The activities of β-glucosidase, dehydrogenase, acid phosphatase, alkaline phosphatase, N-acetyl-β-D-glucosaminidase, urease and sulfatase were also elevated by 150%, 110%, 40%, 110%, 59%, 106% and 221%, respectively. Besides, all soils were neutralized following manure application, suggesting that manure accelerates soil nutrient cycling by adjusting pH to optimum. When mean annual temperature is within the range of 10-20 °C or initial soil pH within 6-8, the highest increase of enzyme activities was revealed. Furthermore, composting manure has stronger impact on soil enzyme activities compared to non-composted manure, which was attributed to beneficial microbial community composition as well as favourable soil organic compound composition in the compost. Contrarily, combined application of manure with mineral fertilizers induces an antagonistic effect and weakens the impact of manure on soil biochemical properties as compared to only manure application. This weakening effect may mitigate the competition between microbes and plant roots for nutrients. In conclusion, necessary differentiation of only manure and manure + chemical fertilizers application is required when developing and modeling the influence of management practices on arable lands.

How to cite: Liu, S., Kuzyakov, Y., Pu, S., and Razavi, B.: Combined application of manure and mineral fertilizers weakens the impact of manure on soil biochemical properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6893, https://doi.org/10.5194/egusphere-egu2020-6893, 2020.

EGU2020-11995 | Displays | SSS4.8

Land use change and management of a Duric Histic Placaquand in Southern Chile: effects on biological properties and greenhouse gas emissions

Leandro Paulino, Nelson Beas, Dorota Dec, Felipe Zúñiga, Oscar Thiers, Oscar Martínez, and José Dörner

Aquands are shallow depth and frequently waterlogged volcanic ash soils, presenting seasonal dynamics of water content in the soil profile. Land use change and management are expected to alter the Aquands biological activity due to their impact to water/air relationships as well as nutrient dynamics and greenhouse gases emissions. In southern Chile (41°26’S;73°07’W; 70 m a.s.l.), soil biological processes related to C- and N cycles, as well as greenhouse gas effluxes were assessed in relation to historical land use change and a drainage set in a naturalized grassland for animal husbandry. Disturbed soil samples were obtained in order to evaluate soil respiration, N mineral dynamics (NH4+ and NO3-), denitrification, nitrate reductase activity. Static-closed chambers were installed in the field to assess fluxes of CO2, N2O and CH4 from the soil surface at different seasons of the year with contrasting water table depths. Soil respiration responded to the historical land use change and draining effects. The aerobic and anaerobic biological processes related to soil nitrogen dynamics were less sensitive than respiration, and showed arbitrary effects according to the current use and management of the Aquand. Soil surface fluxes of greenhouse gases showed similar patterns, where CO2 emissions responded temporarily to land use, while N2O and CH4 did not respond conclusively. The content of soil organic carbon associated to the structural changes derived from land use change (e.g. fire clearance) and soil management (e.g. animal trampling) are plausible parameters to explain the variations of CO2 emissions from Aquand soils surface, while other elements such as microbial community and the ferrous wheel hypothesis, should be investigated in order to explain the biological responses and trace greenhouse gases emissions.

How to cite: Paulino, L., Beas, N., Dec, D., Zúñiga, F., Thiers, O., Martínez, O., and Dörner, J.: Land use change and management of a Duric Histic Placaquand in Southern Chile: effects on biological properties and greenhouse gas emissions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11995, https://doi.org/10.5194/egusphere-egu2020-11995, 2020.

EGU2020-9434 | Displays | SSS4.8

Hotspots created by earthworms, and their contribution to soil nitrogen cycling

Joann Whalen and Hicham Benslim

Earthworms create hotspots that support microbial diversity and activity in soil. These hotspots may be internal to the earthworm, such as in their intestinal tract, or external to the earthworm in the biopores, casts and middens they create on the soil surface and within the soil profile. This presentation summarizes some of the key hotspots associated with earthworms, and how the biostimulated microbial community in these areas contributes to soil nitrogen cycling. We will present observations about the diversity and activity of nitrogen-cycling microorganisms that live within the earthworm and in its built environments, as well as the population- and community-level contributions of earthworms to denitrification, nitrogen mineralization, and the soil nitrogen supply in temperate agroecosystems.

How to cite: Whalen, J. and Benslim, H.: Hotspots created by earthworms, and their contribution to soil nitrogen cycling , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9434, https://doi.org/10.5194/egusphere-egu2020-9434, 2020.

Annually, millions of tons of antibiotics in the world are used in medicine, veterinary and agriculture, and their excessive application have negative impacts on soil microorganisms and biological processes. In the present study, the effect of releasing the mostly used antibiotic in veterinary and ameliorative impact of organic and non-organic amendments was studied in which treatments include (control (without antibiotic), gentamicin, oxytetracycline and penicillin) and different concentrations (50, 100 and 200 mg/kg dry soil) with and without organic and mineral conditioners (cow manure, biochar and nano-zeolite) on soil urease (URE) and alkaline phosphatase (ALP) enzyme activity and their resistance and resilience indices at three time periods including 1-7, 7-30 and 30-90 days during a 90-day incubation time in a split-factorial design which soil conditioners were considered as the main plots and antibiotic types and concentration were as experimental factors. Resistance (RS) and resilience (RL) indices were calculated for enzymes activity. Results showed that in control treatment (without conditioner), application of gentamicin at 200 mg/kg caused a 68.9 percent decrease in soil ALP activity compared to control (without antibiotic), while a decrease in ALP activity in tetracycline-treated soils compared to control (without conditioner), manure, biochar, and nano-zeolite was 17.5, 13.8, 17.5 and 16 percent, respectively. URE enzyme activity at 30-90-days during incubation the period had an increasing trend from 1-7 days and the highest enzyme activity was measured on the 90th day of incubation. According to results, soil enzymes responded differently to antibiotics and conditioners in soil, so that penicillin and oxytetracycline had no considerable negative impact on ALP enzyme activity, while gentamicin and oxytetracycline at all applied concentrations significantly decreased URE activity. To sum up, findings showed that application of soil conditioners could alleviate negative impacts of antibiotics in soil and could improve resistance and resilience indexes of soil enzymes activities in soil.

How to cite: Rashtbari, M. and Safari Sinegani, A. A.: Enzymes Activity in Response to Veterinary Antibiotics in Presence of Organic (Biochar and Manure) and Mineral (Nano-Zeolite) amendment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10264, https://doi.org/10.5194/egusphere-egu2020-10264, 2020.

EGU2020-10754 | Displays | SSS4.8

Microbial necromass shaped plant traits in a warmer condition

Wioleta Stelmach-Kardel, Magdalena Frąc, Agata Gryta, and Bahar S. Razavi

Among many factors controlling root exudation, root hairs proliferation and warming have strong influence on exudate release as well as microbial substrate utilization and enzyme activities. Thus, the interactions of these two factors are important but least known in the rhizosphere. Phosphorus (P) is the most important growth limiting nutrient in soils. Concerns about a depleting supply of P as fertilizer has boosted research efforts on understanding P cycling and fluxes, as a breakdown of P availability would have disastrous global consequences. Efficient P recycling in temperate ecosystems provides an excellent possibility to study all kind of biogeochemical P transformations – those mobilizing low available P species and those recycling available P – maintaining a high level of microbial biomass P in the ecosystem. Such microbial cycling has been successfully shown for individual C compounds or within compound classes. P recycling, especially within microbial communities, has not been investigated so far. Microbial necromass as a source of available C and N affect microbial P utilization. However, the mechanisms underlying this alteration of biogeochemical transformations within the P cycle are not understood. To clarify these interactions for 21 days, rhizoboxes with Maize wildtype and mutant (rth3, no root hairs) under 20 and 30 °C, with and without necromass addition were incubated. The spatial distribution of acid phosphatase was assessed with MUF-based Zymography. Phosphatase activity as well as enzyme kinetics parameters (Vmax and Km) were determined in bulk and rhizosphere soil of all treatments. 
Our result showed that necromass addition accelerated microbial activity and phosphates hotspots at high temperature ranges. Necromass had no influence on rhizosphere size but increased hotspots independent of temperature. In treatment without necromass amendment, root-hairs effects on enzyme activity and efficiency was pronounced only at elevated temperature. Necromass addition caused formation of roots with special morphology comparable to root hairs in mutant type (hairless root). This was plant strategy to compensate P limitation and acquire more P under competition with soil microbiome. Consequently, P content in plant biomass after changes of root morphology increased while MBP decreased. This, shows that microbial necromass was decomposed and used as a source of P by plant. Thus, plant by adaptation of their morphology over compete microorganisms for more efficient P uptake.

How to cite: Stelmach-Kardel, W., Frąc, M., Gryta, A., and S. Razavi, B.: Microbial necromass shaped plant traits in a warmer condition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10754, https://doi.org/10.5194/egusphere-egu2020-10754, 2020.

EGU2020-13985 | Displays | SSS4.8

Soil warming leads to an up-regulation of genes involved in the decomposition of organic N in a subarctic grassland

Joana Séneca, Andrea Söllinger, Alexander Tveit, Petra Pjevac, Craig Herbold, Tim Urich, Josep Peñuelas, Ivan Janssens, Michael Wagner, Bjarni Sigurdsson, and Andreas Richter

Soil microorganisms control the breakdown (depolymerization) of high molecular weight organic matter in soil and its mineralization and release as CO2 to the atmosphere. The enzymatic reactions involved in these steps are known to be temperature sensitive. Therefore, increasing global temperatures are expected to accelerate microbial activity and ecosystem processes and stimulate further CO2 emissions, potentially causing a positive feedback to climate change. On the other hand, higher turnover rates demand an increased amount of energy allocated for growth, enzyme production and maintenance, which can progressively deplete soils from substrate, forcing a reduction of microbial biomass and/or activity and a higher metabolic investment in resource acquisition.

The response of ecosystems to warming has been shown to be related with its duration and magnitude. In this study, we analyzed soils from long-term (>50 years) and short-term (8 years) warmed plots at the natural geothermal warming experiment ForHot (https://forhot.is), located in a sub-arctic grassland in Iceland. Previous studies at this warming experiment have shown an accelerated C cycle in response to warming, with decreased soil carbon stocks, and higher rates of decomposition of labile and recalcitrant organic matter, regardless of the warming duration. In addition to carbon losses, increased N losses from soils were found, but no change in the N content of the vegetation along the temperature gradient. Additionally, both ammonification and nitrification rates were shown to increase under warming, pointing to higher N losses from warmed soils.

In this study, we tested the hypothesis that under warming microorganisms become progressively limited in organic substrates, leading to a higher microbial investment in organic N decomposing enzymes to mine the existing organic N sources present in their surroundings. This hypothesis is based on previous data, that showed that microbial turnover was increased in the warmed plots. Under this assumption, we expected to observe higher expression levels of genes coding for organic N mining extracellular enzymes in warmed plots.

We analyzed the metatranscriptome from a total of 16 soil samples representative of ambient (n=4) and +6°C warmed (n=4) soils, for both grassland types. Additionally, we sequenced the metagenomes of 4 soil samples, representative of each condition, to allow for transcript mapping and differential gene expression analysis.

We used Hidden Markov models to screen the assembled metatranscriptomes for genes involved in the degradation of chitin, proteinaceous compounds, nucleic acids and microbial cell walls. The subcellular location and presence/absence of signal peptides was assessed with Psort and SignalP to discriminate transcripts involved in internal recycling from those targeted for secretion. First results show a general up-regulation of all transcripts involved in organic N degradation in the grassland subjected to long-term warming, whereas this trend is less clear in the short-term warmed grassland. Further work includes cross-referencing gene expression patterns with potential changes in active community composition.

We conclude that an acceleration in microbial turnover rates in response to warming is coupled to a higher investment in N acquisition enzymes, as indicated by an up-regulation of genes involved in upstream processes of organic N degradation.

How to cite: Séneca, J., Söllinger, A., Tveit, A., Pjevac, P., Herbold, C., Urich, T., Peñuelas, J., Janssens, I., Wagner, M., Sigurdsson, B., and Richter, A.: Soil warming leads to an up-regulation of genes involved in the decomposition of organic N in a subarctic grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13985, https://doi.org/10.5194/egusphere-egu2020-13985, 2020.

How agroforestry systems influence the abundance of nitrogen-cycle contributing microbial genes under Mediterranean conditions?

 

Onurcan Özbolat *,1, Irene Ollio1, Eva Lloret1, Marcos Egea2, Raul Zornoza1

 

1 Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Spain.

 

2 Institute of Plant Biotechnology (IBV), Campus Muralla del Mar, Edificio I+D+I, Universidad Politécnica de Cartagena, 30202, Cartagena, Spain.

 

*

 

ABSTRACT

 

Agroforestry systems represent cropping systems in which woody crops are intercropped with alley crops to increase land productivity and enhance the delivery of ecosystem services. Avoiding bare soils in the alleys and cultivation of different annual or perennial species, with shifts in tillage and/or irrigation patterns, will have an influence in organic matter turnover and nutrient cycling, mostly carbon and nitrogen, mediated by soil microbial communities. The ability of the soil to conduct a healthy relation with the microbiome and the crops is one of the most important soil quality indicators. In this study, soil samples from two different case studies where different diversification systems were applied are examined in perspective of ammonia oxidizing (amoA) and denitrifying (nirK and narG) gene abundances through quantitative-PCR assays to assess how nitrogen cycle can be modified by agroforestry systems compared to tree monocultures. The first case study included an almond orchard intercropped weather with Capparis spinosa or Thymus hyemalis. The second case study represented a mandarin orchard intercropped with a rotation of fava bean and vetch/barley or a rotation of several vegetables and vetch/barley. Abundances of amoA, nirK and narG genes significantly decreased in all intercropped systems with respect to monocultures. Thus, the special root-microorganisms and plant-plant interactions in the diversified systems contributed to soil N-cycle by decreasing the functional gene abundances. Decreasing nitrification and denitrification through management is desirable to decrease N losses and increase N fertilizer use efficiency. Thus, agroforestry systems seem more efficient in N turnover than tree monocultures where alleys remain bare most of the year.

How to cite: Ozbolat, O.: How agroforestry systems influence the abundance of nitrogen-cycle contributing microbial genes under Mediterranean conditions?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21485, https://doi.org/10.5194/egusphere-egu2020-21485, 2020.

EGU2020-22683 | Displays | SSS4.8

Effects of snow cover on CO 2 production and microbial composition in a thin topsoil layer

Dalia López, Francisco Matus, and Carolina Merino

Temperate rain forest soils (>8000 mm yr -1 ) of south of Chile in the East Andes range are
intensively affected by increasing freezing and thawing cycles (FTC) due to increasing
climate variability in the last 20 years. Most of these volcanic forests soils are unpolluted
(pristine) and receive seasonal snow-cover. In spite of pollutant free precipitations, the
snow cover in these ecosystems contains aerosols, nutrients and microorganisms from
circumpolar south west winds. These inputs and FTC generate specific conditions at the
shallow layer at the soil surface for soil microbiology and biochemistry. The objectives of
the study were to compare (micro)biological and chemical properties of topsoil and snow
cover in an pristine forest and after clear-cut. The organic matter mineralization was
monitored in a microcosm experiment to explore the effects of FTC and snow melting on
redox potential and other topsoil parameters. FTC for soil+snow released more CO 2 in
closed forest (81.9 mg CO 2 kg -1 ) than that after clear-cut (20.5 mg CO 2 kg -1 ). Soil texture
and soil organic matter accumulation played a crucial role for organic matter mineralization
and CO 2 fluxes. Gradually increase of temperature after freezing reveled that loamy soils
with certain amount of available C maintain active microbial population that response very
fast to temperature change. Sandy soils with very low C content showed the opposite
results – very slow response of microbial community and CO 2 fluxes. In conclusion,
microbial community structure and functions have distinct transition from snow to the soil
in temperate snow-covered forest ecosystem. FTC showed that different microbial groups

are responsible for organic matter mineralization in soil under forest and clear-cut, because
the pH and redox potential are influenced by snow melting.

How to cite: López, D., Matus, F., and Merino, C.: Effects of snow cover on CO 2 production and microbial composition in a thin topsoil layer, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22683, https://doi.org/10.5194/egusphere-egu2020-22683, 2020.

Hummock-hollow microtopography is a common feature in northern peatlands. It
creates microsites of variable hydrology, vegetation, and soil biogeochemistry, thus affect soil C
cycling in peatlands at the local scale. This study investigated effects of microtopography on soil
enzyme (β-1,4-glucosidase (βG), β-1,4-N-acetylglucosaminidase (NAG), acid phosphatase (AP)
and peroxidase (PER)) activities and environment variables as well as their relationships in a
typical sedge peatland in Changbai Mountain, northeast of China. Our results showed that the
enzyme activities in the sedge peatland significantly varied across seasons and microtopographical
positions. Soil enzyme activities in hummocks exhibited more obvious seasonal variation than
hollows, with the βG, AP and PER activities presented a distinct valley in summer and the
maximum values occurred in Spring or Autumn. Soil hydrolase (βG, NAG and AP) activities in
hummocks were significantly higher compared to hollows, while soil oxidase (PER enzyme)
activity in hollows was higher than hummocks. The NMDS analysis revealed that the influence
degree of microtopography on the enzyme activities was higher than that of seasonal variation.
Redundancy analysis (RDA) indicated that the variations of soil enzyme activities in the peatland
were related to environmental variables, especially to water table depth (WTD), soil temperature
(ST), SOC, N availability and P availability. Furthermore, correlation analysis showed that the
three hydrolase (BG, NAG and AP) activities were positively correlated with soil TN, SOC and
C/N, and negatively correlated with WTD and TP. On the contrast, the PER activities were
positively correlated with TP, and negatively correlated with ST, SOC and C/N. The present
study demonstrated that small scale topographic heterogeneity created by hummock cause habitat
heterogeneity and thus lead to significant difference of soil enzyme activity between hummock
and hollow in the sedge peatlands. This finding provides further evidence of the importance of
peatland microtopography to C cycling and has direct implications for scaling biogeochemical
processes to the ecosystem level.

How to cite: Wang, M.: The response of soil enzyme activity to seasonal and microtopographical variations in the sedge peatlands in Changbai Mountain, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22531, https://doi.org/10.5194/egusphere-egu2020-22531, 2020.

SSS4.11 – Responses of terrestrial biogeochemical cycles to climate change

EGU2020-8424 | Displays | SSS4.11

Linking microbial communities to soil carbon cycling under anthropogenic change using a trait-based framework

Ashish Malik, Robert Griffiths, and Steven Allison

Microbial physiology may be critical for projecting future changes in soil carbon. Still, predicting the ecosystem implications of microbial processes remains a challenge. We argue that this challenge can be met by identifying microbial life history strategies based on their phenotypic characteristics, or traits, and representing these strategies in models simulating different environmental conditions. By adapting several theories from macroecology, we define microbial high yield (Y), resource acquisition (A), and stress tolerance (S) strategies. Using multi-omics and carbon stable isotope probing tools, we empirically validated our Y-A-S framework by studying variations in community traits along gradients of resource availability and abiotic conditions arising from anthropogenic change. Across a Britain-wide land use intensity gradient, we used isotope tracing and metaproteomics to show that microbial resource acquisition and stress tolerance traits trade off with growth yield measured as carbon use efficiency. Reduced community growth yield with intensification was linked to decreased microbial biomass and increased biomass-specific respiration which subsequently translated into lower organic carbon storage in such soil systems. We concluded that less-intensive management practices have more potential for carbon storage through increased microbial growth yield by greater channelling of substrates into biomass synthesis. In Californian grass and shrub ecosystems, we used metatranscriptomics and metabolomics to infer traits of in situ microbial communities on plant leaf litter in response to long-term drought. This experimental set-up provided gradients of resource availability and water stress. We observed that drought causes greater microbial allocation to stress tolerance. The most discernable physiological adaptations to drought in litter communities were production or uptake of compatible solutes like trehalose and ectoine as well as inorganic ions to maintain cellular osmotic balance. Grass communities also increased expression of genes for synthesis of capsular and extracellular polymeric substances possibly as a mechanism to retain water. These results showed a clear functional response to drought in grass litter communities with greater allocation to survival relative to growth that reduced decomposition under drought. In contrast, communities on chemically complex shrub litter had smaller differences in gene expression and metabolite profiles in response to drought, suggesting that the drought stress response is constrained by litter chemistry which also reduces decomposition rates. Overall, our findings suggest trade-offs between drought stress tolerance, resource acquisition and growth yield in communities across different ecosystems. These empirical studies demonstrate how trade-offs in key microbial traits can have consequences on soil carbon decomposition and storage. We recommend the use of our Y-A-S framework in experimental and modelling studies to mechanistically link microbial communities to system-level processes.

How to cite: Malik, A., Griffiths, R., and Allison, S.: Linking microbial communities to soil carbon cycling under anthropogenic change using a trait-based framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8424, https://doi.org/10.5194/egusphere-egu2020-8424, 2020.

EGU2020-8695 | Displays | SSS4.11

Drought stress memory in filamentous soil fungi

Alexander Guhr

Drought is a common stressor for soil organisms. One adaptive mechanism is “stress priming”, the ability to cope with a severe stress (“triggering”) by retaining a memory from a previous mild stress event (“priming”). While plants have been extensively investigated for drought memory, only scare information is available for filamentous soil fungi and its implications for soil microbial communities. We investigated the potential for drought-induced stress priming on single species as well its effect on microbial communities in forest A-horizons. Batch experiments with 4 treatments were conducted: exposure to priming and/or triggering as well as non-stressed controls. A priming stress was caused by desiccation to pF 4. The samples were then rewetted and after a recovery time of up to 14 days triggered (pF 6). After triggering, microbial biomass and activity as well as microbial communities by rDNA sequencing were analysed.

Some filamentous fungi show the potential for drought-induced stress priming leading to increased survival rates and activity under severe stress events. Yet, the effect seems to be species specific with potentially high impact on composition and activity of microbial communities considering the expected increase of drought events. Especially receptive to stress priming seem to be species within the fungal classes Mortierellomycetes, Pezizomycetes, and Tremellomycetes. Shifts in the microbial community compositions could be observed in some cases in response to stress priming. In general, the nature of the response depends on the original composition of the microbial community and the occurrence of a subsequent triggering event. For example, species investing high amounts of resources into the primed state only prevail if a triggering occurs (especially noteworthy was Byssonectria fusispora).

How to cite: Guhr, A.: Drought stress memory in filamentous soil fungi, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8695, https://doi.org/10.5194/egusphere-egu2020-8695, 2020.

EGU2020-269 | Displays | SSS4.11

The magnitude of temperature increase matters: how will soil organic mineralization respond to future climate warming?

Jie Zhou, Yuan Wen, Lingling Shi, Michaela Dippold, Yakov Kuzyakov, Huadong Zang, Davey Jones, and Evgenia Blagodatskaya

The Paris climate agreement is pursuing efforts to limit the increase in global temperature to below 2 °C above pre-industrial level. The overall consequence of relatively slight warming (~2 °C), on soil C and N stocks will be dependent on microorganisms decomposing organic matter through release of extracellular enzymes. Therefore, the capacity of soil microbial community to buffer climate warming in long-term and the self-regulatory mechanisms mediating soil C and N cycling through enzyme activity and microbial growth require a detailed comparative study. Here, microbial growth and the dynamics of enzyme activity (involved in C and N cycling) in response to 8 years warming (ambient, +1.6 °C, +3.2 °C) were investigated to identify shifts in soil and microbial functioning. A slight temperature increase (+1.6 °C) only altered microbial properties, but had no effect on either hydrolytic enzyme activity or basic soil properties. Stronger warming (+3.2 °C) increased the specific growth rate (μm) of the microbial community, indicating an alteration in their ecological strategy, i.e. a shift towards fast-growing microorganisms and accelerated microbial turnover. Warming strongly changed microbial physiological state, as indicated by a 1.4-fold increase in the fraction of growing microorganisms (GMB) and 2 times decrease in lag-time with warming. This reduced total microbial biomass but increased specific enzyme activity to be ready to decompose increased rhizodeposition, as supported by the higher potential activitiy (Vmax) and lower affinity to substrates (higher Km) of enzymes hydrolyzing cellobiose and proteins cleavage in warmed soil. In other words, stronger warming magnitude (+3.2 °C) changed microbial communities, and was sufficient to benefit fast-growing microbial populations with enzyme functions that specific to degrade labile SOM. Combining with 48 literature observations, we confirmed that the slight magnitude of temperature increase (< 2 °C) only altered microbial properties, but further temperature increases (2-4 °C) was sufficient to change almost all soil, microbial, and enzyme properties and related processes. As a consequence, the revealed microbial regulatory mechanism of stability of soil C storage is strongly depended on the magnitude of future climate warming.

How to cite: Zhou, J., Wen, Y., Shi, L., Dippold, M., Kuzyakov, Y., Zang, H., Jones, D., and Blagodatskaya, E.: The magnitude of temperature increase matters: how will soil organic mineralization respond to future climate warming?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-269, https://doi.org/10.5194/egusphere-egu2020-269, 2020.

EGU2020-11631 | Displays | SSS4.11

Effect of forest soil warming on the rate and temperature sensitivity of microbial C and N processes in a temperate mountain forest

Carolina Urbina Malo, Ye Tian, Chupei Shi, Shasha Zhang, Marilena Heitger, Steve Kwatcho, Werner Borken, Jakob Heinzle, Andreas Schindlbacher, and Wolfgang Wanek

Despite the intensified efforts to understand the impacts of climate change on forest soil C dynamics, few studies have addressed the long term effects of warming on microbially mediated soil C and nutrient processes. In the few long-term soil warming experiments the initial stimulation of soil C cycling diminished with time, due to thermal acclimation of the microbial community or due to depletion of labile soil C as the major substrate for heterotrophic soil microbes. Thermal acclimation can arise as a consequence of prolonged warming and is defined as the direct organism response to elevated temperature across annual to decadal time-scales which manifest as a physiological change of the soil microbial community. This mechanism is clearly different from apparent thermal acclimation, where the attenuated response of soil microbial processes to warming is due to the exhaustion of the labile soil C pool.

The Achenkirch experiment, situated in the Northern Limestone Alps, Austria (47°34’ 50’’ N; 11°38’ 21’’ E; 910 m a.s.l.) is a long term (>15 yrs) soil warming experiment that has provided key insights into the effects of global warming on the forest soil C cycle. At the Achenkirch site, we have observed a sustained positive response of heterotrophic soil respiration and of soil CO2 efflux to warming after nine years (2013), making it an appropriate setting for testing hypotheses about continued or decreasing warming effects at decadal scales. We collected soil from six warmed and six control plots in October 2019, from 0-10 cm and 10-20 cm depth, and incubated them at three different temperatures: ambient, +4, and +10 °C. We measured potential soil enzyme activities with fluorimetric assays, gross rates of protein depolymerization, N mineralization, and nitrification with 15N isotope pool dilution approaches, and microbial growth, respiration, and C use efficiency (CUE) based on the 18O incorporation in DNA and gas analysis.  Our preliminary results show that potential enzyme activities of aminopeptidase, N-acetylglucosaminidase, b-glucosidase, and acid phosphatase were stimulated by decadal soil warming by 1.7- to 3.5-fold, measured at the same i.e. ambient temperature. In contrast, the temperature sensitivity (Q10) remained unaltered between warmed and control soils for all enzyme activities (Q10=1.63-2.28), except for aminopeptidase where we observed a decrease in Q10 by 25% in warmed topsoils (0-10 cm). Aminopeptidase also had the highest temperature-sensitivity (Q10=2.39), causing a decrease of the enzymatic C: N acquisition ratio with warming. These results indicate an increasing investment in microbial N acquisition with warming. We will follow these trends based on results on gross rates of soil C and N processes, allowing to delineate decadal soil warming effects on soil microbial biogeochemistry and to understand their effect on the cross-talk between organic C and N cycling in calcareous forest soils.

How to cite: Urbina Malo, C., Tian, Y., Shi, C., Zhang, S., Heitger, M., Kwatcho, S., Borken, W., Heinzle, J., Schindlbacher, A., and Wanek, W.: Effect of forest soil warming on the rate and temperature sensitivity of microbial C and N processes in a temperate mountain forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11631, https://doi.org/10.5194/egusphere-egu2020-11631, 2020.

EGU2020-21256 | Displays | SSS4.11

The effect of drought on functional traits and diversity in Douglas Fir: snapshots before, during, and after the summer 2018 European drought event

Rosaleen March, Marjolein Paardekooper, Joris Timmermans, Celine Huisman, Manouk van der Aa, Qi Chen, Amie Corbin, and Peter van Bodegom

The summer of 2018 brought a record-breaking heat wave and record low rainfall, resulting in a severe drought in much of northern and central Europe. In the following year, precipitation increased but in many locations remained below average. A temporal study that began in 2017 in a temperate evergreen forest in the Netherlands allowed the opportunity examine the effects of this drought on functional traits before, during, and after the event. This gave us new trait-based insight into the resistance, resilience, and recovery abilities of the Douglas Fir to drought. During the growing season of 2017-2019, leaves were collected every 2-4 weeks. Functional traits were derived, including total chlorophyll, carotenoids, specific leaf area, and leaf dry matter content. Functional diversity metrics were also derived to examine response to drought. Using ANOVA to compare trait values during the same parts of the season, we found all traits showed significant changes at some point, but chlorophyll and carotenoids had the largest responses to the drought. Chlorophyll concentrations showed a continued decrease into 2019. Carotenoid concentration increased across the years, which has been shown to be an indication of plant stress. Though Douglas Fir has been considered drought resistant, this study reveals that the intensity of the 2018 drought had an impact on its traits and its resilience without sufficient soil moisture relief in the following year. Much attention has been paid to extreme events with climate change; however, it is these events paired with a lack of adequate recovery conditions that can push ecosystems past their tipping point.

How to cite: March, R., Paardekooper, M., Timmermans, J., Huisman, C., van der Aa, M., Chen, Q., Corbin, A., and van Bodegom, P.: The effect of drought on functional traits and diversity in Douglas Fir: snapshots before, during, and after the summer 2018 European drought event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21256, https://doi.org/10.5194/egusphere-egu2020-21256, 2020.

Soil moisture and temperature collectively regulate the production and consumption of carbon in soils. With expected changes in both the soil thermal and hydrological regimes globally, experimental data on carbon turnover under these changes in contrasting ecosystems are important for constraining predictive models of soil carbon turnover. We investigated the effect of changes in soil water and temperature on heterotrophic respiration (Rh) and net methane uptake (MU) in soils from grassland ecosystems in Arctic, temperate and subtropical climates.
The temperature sensitivity of RH increased with decreasing mean annual temperature, but there was no indication of a site-specific response of Rh to changes in soil moisture. All sites displayed MU, primarily controlled by the soil water content with little temperature dependence. Thus, the optimum temperature for MU did not differ between sites despite the differences in the climate. However, the optimal soil water content for the relative maximum MU decreased with increasing mean annual temperature at the sites.
These results point to site-specific adaptation of the microbial community that governs the sensitivity of Rh to temperature, but not soil moisture and the dependency of MU to soil moisture alone. We would also like to discuss how this insight can be used to inform ecosystem models.

How to cite: Hessilt, T., Lyberth Hauptmann, D., and Riis Christiansen, J.: Response of heterotrophic respiration and oxidation of atmospheric CH4 to changes in soil moisture and temperature in drylands across a global climate and ecosystem gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18064, https://doi.org/10.5194/egusphere-egu2020-18064, 2020.

EGU2020-3736 | Displays | SSS4.11

Modelling respiration pulses at rewetting as a stochastic process

Stefano Manzoni, Arjun Chakrawal, Thomas Fischer, Amilcare Porporato, and Giulia Vico

Respiration pulses at rewetting are prominent features of soil responses to soil moisture fluctuations. These pulses are much larger compared to respiration rates under constant soil moisture, pointing to variations in water availability as drivers of the enhanced CO2 production. Moreover, the respiration pulses tend to be larger when soil moisture before rewetting is lower. Thus, both the pre-rainfall soil moisture and the variation in soil moisture control the size of the respiration pulse. While these patterns are known from empirical studies, models have struggled to capture the relations between rainfall statistical properties (frequency of occurrence and rain event depths) and the occurrence and size of respiration pulses, framing the scope of this contribution. Specifically, we ask – how are the statistical properties of respiration pulses related to rainfall statistics?

Because rainfall can be regarded as a stochastic process generating variations in soil moisture, also respiration pulses at rewetting can be modelled through a probabilistic model. Here we develop such a model based on the premises that rainfall can be described as a marked Poisson process, and that respiration pulses increase with increasing variations of soil moisture (i.e., larger pulses after larger rain events) and decreasing pre-rain soil moisture (i.e., larger pulses after a long dry period). This model provides analytical relations between the statistical properties of soil respiration (e.g., long-term mean and standard deviation) and those of rainfall, allowing to study in a probabilistic framework how respiration varies along existing climatic gradients or in response to climatic changes that affect rainfall statistics.

Results show that the long-term mean CO2 production during respiration pulses increases with increasing frequency and depth of rainfall events. However, the relative contribution of respiration pulses to the total microbial respiration decreases with rainfall frequency and depth. Similarly, also the variability of the size of respiration pulses, as measured by their standard deviation, decreases with increasing rainfall frequency and depth. As a consequence, climatic changes exacerbating rainfall intermittency – longer dry periods and more intense rain events – are predicted to increase both the relative contribution of respiration pulses to total microbial respiration and the variability of the pulse sizes.

How to cite: Manzoni, S., Chakrawal, A., Fischer, T., Porporato, A., and Vico, G.: Modelling respiration pulses at rewetting as a stochastic process, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3736, https://doi.org/10.5194/egusphere-egu2020-3736, 2020.

EGU2020-776 | Displays | SSS4.11

Do microbial communities adapt to the temperature of their climate?

Daniel Tajmel, Carla Cruz Paredes, and Johannes Rousk

Terrestrial biogeochemical cycles are regulated by soil microorganisms. The microbial carbon release due to respiration and carbon sequestration through microbial growth determine whether soils become sources or sinks for carbon. Temperature i​s one of the most important environmental factors controlling both microbial growth and respiration. Therefore, to understand the influence of temperature on microbial processes is crucial. One strategy to predict how ecosystems will respond to warming is to use geographical ecosystem differences, in space-for-time (SFT) substitution approaches. We hypothesized (1) that microbes should be adapted to their environmental temperature leading to microbial communities with warm-shifted temperature relationships in warmer environments, and vice versa. Furthermore, we hypothesized  (2) that other factors should not influence microbial temperature relationships, and (3) that the temperature sensitivity of microbial processes (Q10) should be linked to the microbial temperature relationships.

 

In this project, we investigated the effects of environmental temperature on microbial temperature relationships for microbial growth and respiration along a natural climate gradient along a transect across Europe to predict the impact of a warming climate. The transect was characterized by mean annual temperature (MAT) ranging from - 4 degrees Celsius (Greenland) to 18 degrees Celsius (Southern Spain), while other environmental factor ranges were broad and unrelated to climate, including pH from 4.0 to 8.8, C/N ratio from 7 to 50, SOM from 4% to 94% and plant communities ranging from arctic tundra to Mediterranean grasslands. More than 56 soil samples were analyzed and microbial temperature relationships were determined using controlled short-term laboratory incubations from 0 degrees Celsius to 45 degrees Celsius. The link between microbial temperature relationship and the climate was assessed by using the relationship between the environmental temperature and indices for microbial temperature relationships including the minimum (Tmin), optimum (Topt) and maximum temperature (Tmax) for microbial growth as well as for respiration. To estimate the Tmin, Topt and Tmax the square root equation, the Ratkowsky model was used.

 

We found that microbial communities were adapted to their environmental temperature. The microbial temperature relationship was stronger for microbial growth than for respiration. For 1 degrees Celsius rise in MAT, Tmin increased 0.22 degrees Celsius for bacterial and 0.28 degrees Celsius for fungal growth, while Tmin for respiration increased by 0.16 per 1 degrees Celsius rise. Tmin was also found to be universally linked to Q10, such that higher Tmin resulted in higher Q10. Other environmental factors (pH, C/N ratio, SOM, vegetation cover) did not influence the temperature relationships. By incorporating the determined relationships between environmental temperature and microbial growth and respiration into large scale ecosystem models, we can get a better understanding of the influence of microbial adaptation to warmer climate on the C-exchange between soils and atmosphere.

How to cite: Tajmel, D., Cruz Paredes, C., and Rousk, J.: Do microbial communities adapt to the temperature of their climate?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-776, https://doi.org/10.5194/egusphere-egu2020-776, 2020.

EGU2020-11341 | Displays | SSS4.11

Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions

Chupei Shi, Carolina Urbina Malo, Ye Tian, Shasha Zhang, Marilena Heitger, Steve Kwatcho Kengdo, Werner Borken, Jakob Heinzle, Andreas Schindlbacher, and Wolfgang Wanek

Human activities have caused global warming by 0.95 °C since the industrial revolution, and average temperatures in Austria have risen by almost 2 °C since 1880. Increased global mean temperatures have been reported to accelerate carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, the extent of warming-induced increases in soil C, N and P processes can differ, causing an eventual uncoupling of biogeochemical C, N and P cycles, and leading to altered elemental imbalances between available plant and soil resources and soil microbial communities. The altered dynamics in soil C and nutrient availability caused by increased soil temperature could shift the growth-limiting element for soil microorganisms, with strong repercussions on the decomposition, mineralization and sequestration of organic C and nutrients. The latter relates to the conservative cycling of limiting elements while elements in excess are mineralized and released at greater rates by microbial communities.

Despite the many laboratory and in situ studies investigating factors that limit soil microbial activity, most of them explored nutrient addition effects on soil respiration or soil enzyme activities. A critical assessment, however, clearly indicated the inappropriateness of these measures to deduce growth-limiting nutrients for soil microbes. Similar to studies of plant nutrient limitation, unequivocal assessment of soil microbial element limitation can only be derived from the response of microbial growth to element amendments. To our knowledge this has not been performed on soils undergoing long-term soil warming.

In this study, we therefore investigated the effect of long-term soil warming on microbial nutrient limitation based on microbial growth measurements in a temperate calcareous forest soil. Soil samples were taken from two soil depths (0-10, 10-20 cm) in both control and heated plots in the Achenkirch soil warming project (>15 yrs soil warming by + 4 °C). Soil samples were pre-incubated at their corresponding field temperature after sieving and removal of visible roots. The soils were amended with different combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, the nutrients being dissolved in 18O-water. After 24 hours of incubation, microbial growth was measured based on the 18O incorporation into genomic DNA. Nutrient (co)limitation was determined by comparing microbial growth responses upon C and nutrient additions relative to unamended controls. Basal respiration was also measured based on the increase in headspace CO2, allowing to estimate microbial C use efficiency (CUE). The fate of C and nutrient amendments was finally traced by measurements of inorganic and organic extractable and microbial biomass C, N and P. This study will thereby provide key insights into potential shifts in limiting nutrients for microbial growth under long-term soil warming, and into concomitant effects on soil C and nutrient cycles.

How to cite: Shi, C., Malo, C. U., Tian, Y., Zhang, S., Heitger, M., Kengdo, S. K., Borken, W., Heinzle, J., Schindlbacher, A., and Wanek, W.: Does long-term soil warming affect microbial element limitation? A test by short-term assays of microbial growth responses to labile C, N and P additions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11341, https://doi.org/10.5194/egusphere-egu2020-11341, 2020.

EGU2020-11362 | Displays | SSS4.11

Changes in soil warming effects on microbial C, N and P cycling across seasons in a temperate calcareous mixed forest

Ye Tian, Carolina Urbina Malo, Chupei Shi, Shasha Zhang, Marilena Heitger, Steve Kwatcho Kengdo, Werner Borken, Jakob Heinzle, Andreas Schindlbacher, and Wolfgang Wanek

Global warming may accelerate soil carbon (C) and nutrient cycling as higher temperatures accelerate soil microbial and enzymatic activities. However, this enhanced soil C cycling can diminish with time due to the depletion of labile soil C or due to thermal acclimation of soil microbes, while the increased N cycling may be dampened over time in N-rich soils. Moreover, soil climate as well as the quality and quantity of plant inputs change between seasons, which could influence the C: nitrogen (N): phosphorus (P) stoichiometry of resources available for microbes and thereby alter the warming effect on microbial activities and nutrient cycling between seasons. Such seasonal changes caused inconsistent warming effects on extracellular enzyme activities and on soil respiration in some experiments, with warming effects turning from positive to negative between seasons, yet the underlying controls of these adverse effects are far from being well understood. In this study, we therefore aimed to investigate soil warming and seasonal effects on soil C, N, and P pools and processes in a temperate calcareous mixed forest. We collected soil samples in spring, summer and fall (May, August, and October 2019) from a long-term (>15 yrs) soil warming experiment in Achenkirch, Northern Limestone Alps, Austria (47°34’ 50’’ N; 11°38’ 21’’ E; 910 m a.s.l.). The samples were incubated at the corresponding in-situ temperatures in the laboratory. Microbial growth, respiration and C use efficiency were determined by following 18O-H2O incorporation in DNA and by gas analysis. 15N pool dilution assays were applied to quantify gross rates of protein depolymerization, N mineralization, and nitrification, whilst gross rates of soil inorganic P mobilization were measured by a 33P pool dilution assay. Moreover, we measured the potential soil enzyme activities of four hydrolases and two oxidases, and determined contents of labile (extractable) and microbial biomass C, N, and P. This study will thereby provide a comprehensive insight into how soil warming influences soil microbial C, N, and P cycling in a temperate calcareous mixed forest as well as into their energetic, stoichiometric and soil microclimatic constraints. The long-term nature of this soil warming experiment will therefore allow predictions of the future biogeochemical behavior of calcareous forest soils, and deduce potential feed-backs on forest productivity, atmospheric composition and climate change.

How to cite: Tian, Y., Urbina Malo, C., Shi, C., Zhang, S., Heitger, M., Kwatcho Kengdo, S., Borken, W., Heinzle, J., Schindlbacher, A., and Wanek, W.: Changes in soil warming effects on microbial C, N and P cycling across seasons in a temperate calcareous mixed forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11362, https://doi.org/10.5194/egusphere-egu2020-11362, 2020.

EGU2020-18383 | Displays | SSS4.11

The influence of short-term and long-term warming on physical soil carbon pools

Moritz Mohrlok, Victoria Martin, Niel Verbrigghe, Lucia Fuchslueger, Christopher Poeplau, Bjarni D. Sigurdsson, Ivan Janssens, and Andreas Richter

Soils store more carbon than the atmosphere and total land plant biomass combined. Soil organic matter (SOM) can be classified into different physical pools characterized by their degree of protection and turnover rates. Usually, these pools are isolated by dividing soils in different water-stable aggregate size classes and, inside these classes, SOM fractions with differing densities and properties: Stable mineral-associated organic matter (MOM) and labile particulate organic matter (POM). Increasing temperatures are known to initially enhance microbial decomposition rates, releasing C from soils which could further accelerate climate change. The magnitude of this feedback depends on which C pool is affected the most by increased decomposition. Since MOM, thought to be the best protected carbon pool, holds most of the soil C, losses from this pool would potentially have the biggest impact on global climate. Experimental results are inconclusive so far, as most studies are based on short-term field warming (years rather than decades), leaving the ecosystem response to decades to century of warming uncertain.

We made use of a geothermal warming platform in Iceland (ForHot; https://forhot.is/) to compare the effect of short-term (STW, 5-8 years) and long-term (LTW, more than 50 years) warming on soil organic carbon and nitrogen (SOC, SON) and its carbon and nitrogen isotope composition (δ13C and δ15N) in soil aggregates of different sizes in a subarctic grassland. OM fractions were isolated via density fractionation and ultrasonication both in macro- and microaggregates: Inter-aggregate free POM (fPOM), POM occluded within aggregates (iPOM) and MOM.

MOM, containing most of the SOC and SON, showed a similar response to warming for both macro- and microaggregates. Compared to LTW plots, STW plots overall had higher C and N stocks. But warming reduced the carbon content more strongly in STW plot than in LTW plots. δ13C of MOM soil increased with temperature on the STW sites, indicating higher overall SOM turnover rates at higher temperatures, in line with the higher SOC losses. For LTW, δ13C decreased with warming except for the most extreme treatment (+16°C). Warming duration had no impact on iPOM-C. fPOM-C decreased in STW sites with increasing temperature, while it increased on the LTW sites.

Overall our results demonstrate warming-induced C losses from the MOM-C-pool, thought to be most stable soil carbon pool. Thus, warming stimulated microbes to decompose both labile fPOM and more stable MOM. After decades of warming, C losses are less pronounced compared to the short-term warmed plots, pointing to a replenishment of the carbon pools at higher temperatures in the long-term. This might be explained by adaptations of the primary productivity and/or substrate-limitation of microbial growth.

 

How to cite: Mohrlok, M., Martin, V., Verbrigghe, N., Fuchslueger, L., Poeplau, C., Sigurdsson, B. D., Janssens, I., and Richter, A.: The influence of short-term and long-term warming on physical soil carbon pools , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18383, https://doi.org/10.5194/egusphere-egu2020-18383, 2020.

EGU2020-7551 | Displays | SSS4.11

Effects of long-term soil warming on nitrogen fluxes in forest soils

Erich Inselsbacher, Jakob Heinzle, and Andreas Schindlbacher

Forests are the main contributors to the global terrestrial carbon (C) sink but several studies suggest that global warming could significantly reduce their CO2 mitigation potential. The capacity of forest plants to sequester C is closely linked to soil nitrogen (N) availability, a major control of plant growth and ecosystem functioning. An increase of soil temperature caused by global change is critically affecting soil N supply rates, both directly by increasing diffusive N fluxes in the soil solution and indirectly by accelerating soil N turn-over rates. In recent short-term laboratory incubation studies, an increase in soil temperature has not only led to a significant increase in diffusive N fluxes but also to a concomitant shift in N quality available for plant uptake towards a higher portion of inorganic N forms compared to small organic N forms such as amino acids. However, until now long-term effects of soil warming on soil N fluxes have not been studied. Here, we present first results from a study on soil N availabilities at the long-term soil warming experimental site Achenkirch (Austria) in the Limestone Alps. This site is one of the few in situ climate manipulation experiments operational for more than 10 years and has already provided a wealth of novel insights into the potential effects of global warming on forest ecosystem responses. Applying in situ microdialysis, we estimated diffusive fluxes of inorganic N and amino acids along the growing season in soils warmed by resistance heating cables since 2005 (+4 °C compared to control plots) and control soils. Fluxes of all N forms were highly variable within each subplot (2 x 2 m) and reflected the high heterogeneity of soils at this forest site. Interestingly, fluxes of amino acids were less variable than of nitrate or ammonium throughout the year, indicating comparably stable protein depolymerization rates. In summary, long-term soil warming affected diffusive N fluxes but less than other factors operating on smaller (< 1 cm) scales.

How to cite: Inselsbacher, E., Heinzle, J., and Schindlbacher, A.: Effects of long-term soil warming on nitrogen fluxes in forest soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7551, https://doi.org/10.5194/egusphere-egu2020-7551, 2020.

EGU2020-19555 | Displays | SSS4.11

The impacts of long-term, high intensity N addition on the chemical composition of soil organic matter in a boreal forest

Shun Hasegawa, John Marshall, Torgny Näsholm, and Mark Bonner

The intense use of fertilisers for agricultural and forest management purposes as well as atmospheric nitrogen (N) deposition has changed ecosystem stoichiometry in some parts of the planet, drawing great attention to the long-term impacts of N additions on carbon (C) sequestration. Soil organic matters (SOMs) are the major sink of C in terrestrial ecosystems and hence it is essential to understand the impacts of N addition on SOM not only quantitatively but also qualitatively. In temperate and boreal forests, chronic N addition generally suppresses SOM decomposition and increases C accumulation. The potential mechanisms for this have long been discussed and yet to be unearthed.

Here, we examined the impacts of long-term N addition on the chemical composition of SOMs in boreal forests situated in northern Sweden under two vegetation types (Norway spruce or Scots pine) and a range of N addition regimes where N addition rates varied between 3 and 70 kg N ha-1 year-1, duration between 12 and 32 years and total added amount between 50 and 2000 kg N ha-1. Soil samples were collected from the organic layer (litter and humus layers) and analysed for the chemical composition of SOMs using two metrics: pyrolysis gas chromatography–mass spectrometry (GC/MS) and solid-state 13C nuclear magnetic resonance spectroscopy (13C-NMR).

We found that the chemical composition of SOMs shifted with soil C:N ratios regardless of vegetation types, or duration and rates of N addition. Preliminary results suggest that the observed shift in chemical composition in SOMs may have been attributed to altered decomposition of lignin and carbohydrate-derived compounds. This was in line with previous research conducted in the same study sites that demonstrated added-N enhanced non-enzymatic brown-rot lignin oxidation relative to enzymatic white-lot lignin mineralisation. Here, the comprehensive examination of SOM chemical composition demonstrates altered molecular characteristics of SOMs with soil C:N conditions. This may help us to elucidate the mechanisms by which N addition alters the balance of decomposition and accumulation of SOMs.

How to cite: Hasegawa, S., Marshall, J., Näsholm, T., and Bonner, M.: The impacts of long-term, high intensity N addition on the chemical composition of soil organic matter in a boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19555, https://doi.org/10.5194/egusphere-egu2020-19555, 2020.

EGU2020-18405 | Displays | SSS4.11

Using N2O to detect if a tipping point has been crossed in tropical soils after droughts

Simone Kilian Salas, Elisa Díaz García, Alberto Andrino, Katharina H. E. Meurer, Diana Boy, Marcus Horn, Jens Boy, and Hermann Jungkunst

The western Amazon is particularly sensitive to drought since precipitation is common even during "dry season". The combination of increasing land use pressure and droughts due to climate change makes the scenario of this ecosystem likely to cross or having crossed tipping points. We argue that nitrous oxide (N2O) emissions can be used to identify the crossing of tipping points in soils, particularly those related to N-cycling. This hypothesis is being tested within the BMBF funded Project PRODIGY, which will show that under stress microbial functional diversity in soils are a safety-net for ecosystems. The survey area (MAP) spreads across three countries (Peru, Brazil and Bolivia). Lab and field experiments are used to test our hypothesis based on the observations that N2O emission under tropical pasture shift after 10 years in use. Pre-measurement modeling is used to optimize measurement designs. Replicated above-ground biodiversity levels (n=4) will be sampled in each country. The soil will also be used for lab drought manipulation experiments to unravel underlying mechanisms. Measured values have shown to be lower than expected and simulated rates. Maybe because tipping points at different spacial and temporal scales are crossed faster than in temperate regions and biogeochemistry is less understood? Results from this investigation will allow the improvement of N2O models for tropical soils.

How to cite: Kilian Salas, S., Díaz García, E., Andrino, A., Meurer, K. H. E., Boy, D., Horn, M., Boy, J., and Jungkunst, H.: Using N2O to detect if a tipping point has been crossed in tropical soils after droughts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18405, https://doi.org/10.5194/egusphere-egu2020-18405, 2020.

EGU2020-10376 | Displays | SSS4.11

Effects of a simulated drying-rewetting cycle on microbial activity in soils degraded by post-fire erosion

Elena Fernández Boy, M. Belén Herrador, Violeta Ordoñez, Laura Morales, Oscar González-Pelayo, Jan Jacob Keizer, and María T. Domínguez

Large forest fires are expected to occur more frequently in some areas in the Iberian Peninsula with the current climate change predictions. Post-fire soil erosion is an important issue because of its potential large impact on soil carbon stocks and functioning. Addition of mulching to burnt soils has been proved as an effective measure to reduce post-fire erosion. This measure could also increase the stability of microbial activity to drought events, which are also expected to be more frequent in the region.

This study analyzes the response of three measurements of soil microbial activity (dehydrogenase activity, respiration rates and DNA concentration, as an index of microbial biomass) to a drying-rewetting cycle in soils that were burnt during large wildfires and that have been treated with different mitigation measures to prevent post-fire erosion.

Soil samples were collected from two field experiments on post-fire mitigation in Portugal, one in a Maritime Pine plantation over a Humic cambisol and one in a Strawberry tree stand over a Umbric leptosol. These sites were affected by large wildfires in june and october 2017, respectively. At the pine site, three treatments were compared: 1) control plots, where no treatment was applied and post-fire erosion rates were highest; 2) SM plots (Spontaneuos Mulching), in which spontaneous needle cast from the scorched pine crowns occurred (at an average rate of 0.5 kg m-2); 3) HM plots (Human Mulching), in which pine needles (were applied manually at a rate of 0.2 kg m-2. In addition, a nearby unburned Maritime Pine plantation was sampled (Unburnt). At the Strawberry tree site, control plots were compared with plots mulched with wheat straw (WM) at an application rate of 0.2 kg m-2. Sampling involved the organic surface horizon as well as the upper 15 cm of the Ah horizon.

Samples were preincubated during 28 days at 25°C and at 70% of field capacity. Afterwards, they were divided into two sets; one set was subjected to a drought event for 30 days that reduced soil moisture contents to 5-10% of field capacity. Subsequently, the drought replicates were rehydrated until they reached their initial moisture content, which was maintained for 14 days.

Dehydrogenase activity differed significantly between the burnt and unburnt soils, both for the drying and the re-wetting period. The burnt soils generally were more vulnerable to the drought episode than the unburnt soil. By contrast, dehydrogenase activity did not reveal significant impacts of the different mulching treatments compared to the untreated burnt soils. This was the case for both the organic surface horizon and the subsurface horizon. Respiration rates and DNA concentrations revealed basically the same results.

The three indicators of microbial activity studied here discriminated between burnt and unburnt soils, but they did not suggest any significant improvement in the response to drought by any of the post-fire emergency stabilization measures. Further research on the impacts of such measures on the resistance and resilience of microbial activity to drought should consider other soil quality indicators such as labile organic matter fractions.

How to cite: Fernández Boy, E., Herrador, M. B., Ordoñez, V., Morales, L., González-Pelayo, O., Keizer, J. J., and Domínguez, M. T.: Effects of a simulated drying-rewetting cycle on microbial activity in soils degraded by post-fire erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10376, https://doi.org/10.5194/egusphere-egu2020-10376, 2020.

EGU2020-1180 | Displays | SSS4.11

Effects of simulated drought and warming on microbial responses to drying and rewetting in contrasting land-uses

Ainara Leizeaga, Lettice C. Hicks, Albert C. Brangarí, Menale Wondie, Hans Sandén, and Johannes Rousk

Climate change will increase temperatures and the frequency and intensity of extreme drought and rainfall events. When a drought period is followed by a rainfall event, there is a big CO2 pulse from soil to the atmosphere which is regulated by soil microorganisms. In the present study, we set out to investigate how simulated drought and warming affects the soil microbial responses to drying and rewetting (DRW), and how those responses will interact with the level of land degradation. Previous work has shown that exposure DRW cycles in the laboratory and in the field can induce changes in the microbial community such that it resumes growth rates faster after a DRW cycle. In addition, it has been observed that a history of drought in both a humid heathland ecosystem in Northern Europe and in semi-arid grasslands in Texas can select for microorganisms with a higher carbon use efficiency (CUE) during DRW. In this study we tested if these observations could be extended to subtropical environments.

Rain shelters and open top chambers (OTC) were installed in Northwestern Ethiopia in two contrasting land-uses; a degraded cropland and a pristine forest. Soils were sampled (>1-year field treatments) and exposed to a DRW cycle in the laboratory. Microbial growth and respiration responses were followed with high temporal resolution over 3 weeks. We hypothesized that (i) simulated drought would result in more resilient and efficient microbial communities to DRW, while (ii) simulated warming should leave microbial community traits linked to moisture unchanged. In addition, (iii) we hypothesized that microbial communities would recover growth rates faster in the cropland since that ecosystem is more prone to DRW events.

Microbial responses in both land-uses and treatments universally showed a highly resilient type of community response with both bacterial growth and fungal growth increasing immediately upon rewetting, linked with the expected respiration pulse. The field treatments simulating drought and warming did not affect the already high resilience of soil microbial communities to DRW cycles. However, differences between the rates of recovery between fungi and bacteria were observed. Fungal growth recovered faster than bacterial growth, peaking c. 15 h in comparison to bacteria that peaked at c.20h after rewetting. Simulated drought reduced the microbial CUE during rewetting in croplands without affecting the forest soils. The CUE was also elevated in the warming treatments in both land-uses, and generally higher in croplands than in forest soils. Taken together, the responses in microbial CUE during the rewetting of dry soils were likely linked to either (i) differences in resource availability which were higher in warming treatments and in croplands compared to forests, or (ii) selection of  more efficient microbial communities due to a higher exposure to DRW events driven by the higher temperatures in the cropland, and increased evapotranspiration in the warming treatments.

 

How to cite: Leizeaga, A., Hicks, L. C., Brangarí, A. C., Wondie, M., Sandén, H., and Rousk, J.: Effects of simulated drought and warming on microbial responses to drying and rewetting in contrasting land-uses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1180, https://doi.org/10.5194/egusphere-egu2020-1180, 2020.

EGU2020-20220 | Displays | SSS4.11

Current knowledge and future perspectives on soil drying and rewetting, by the scientific community

Albert C. Brangarí, Lettice Hicks, Ainara Leizeaga, and Johannes Rousk

Drying and rewetting events induce enormous dynamics in soil biogeochemistry, known as the “Birch effect”. A series of laboratory studies have shown that during this phenomenon, respiration and microbial growth are uncoupled. In addition, it has been found that soil microorganisms exhibit one of two different response-patterns, the dynamics of which are strongly regulated by the harshness of the moisture disturbance experienced by soil microbes. Despite the potential significance of these responses for the global carbon cycle, the characteristics and mechanisms underlying them are still unclear.

In order to shed some light on the current status of research in this field, we will present the outcomes of an international workshop organized in Lund in November 2019. During it, we integrated researchers from different environments in order to identify knowledge-gaps and tackle outstanding and new challenges in this field. We will review the characteristics of the growth and respiration responses to moisture fluctuations and the putative mechanisms and factors governing them. We will also discuss the advantages of combining empirical and modelling approaches by using our own group experience as a case example.

How to cite: Brangarí, A. C., Hicks, L., Leizeaga, A., and Rousk, J.: Current knowledge and future perspectives on soil drying and rewetting, by the scientific community, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20220, https://doi.org/10.5194/egusphere-egu2020-20220, 2020.

EGU2020-16648 | Displays | SSS4.11

Is microbial resilience to drying-rewetting driven by selection for quick colonizers?

Lettice Hicks, Simon Lin, and Johannes Rousk

Climate change is exposing terrestrial ecosystems to more extreme drought and rainfall events, resulting in an increased frequency and intensity of drying-rewetting (D/RW) events in soils. Rewetting a dry soil induces enormous dynamics in both microbial growth and biogeochemistry, including a large pulse of COrelease to the atmosphere. Upon D/RW, two different microbial growth responses have been identified; a more resilient response where bacteria start growing immediately with a quick recovery after rewetting and a less resilient response where there is a lag-period of up to 30 hours of near-zero growth before bacteria start to grow. The resilience of microbial growth following D/RW has important implications for the ecosystem C budget, since an extended lag-period of no growth during a time of high COrelease will result in net soil C loss. In natural systems, it has been found that a legacy of drought led to a more resilient bacterial growth response upon rewetting, with a reduced lag-period before the onset of growth. Exposing soils to repeated cycles of D/RW in the laboratory has also been shown to shift bacterial growth responses to a more resilient type. We hypothesised that this shift in response is explained by selection for a microbial community which is quick at colonizing the labile C resources made available upon D/RW.  

In order to test our hypothesis, we pre-treated soils by exposing them to either (i) three cycles of D/RW, (ii) three pulses of glucose addition or (iii) three pulses of litter addition. The substrate additions were used to simulate the labile C release in soils during D/RW, thereby enabling us to investigate if the colonization of new substrate is the causal mechanism explaining the observed shift in bacterial resilience in soils with a history of D/RW. The pre-treated soils – along with an unamended control soil – were then exposed to the same D/RW event, with bacterial growth, fungal growth and respiration responses measured at high temporal resolution over 4 days. As previously reported, exposing the soil to a series of D/RW events resulted in a more resilient bacterial growth response, with the lag-period reduced from ca. 30 hours to an immediate initiation of growth. Pre-treating the soils with glucose reduced the lag-period before the onset of bacterial growth by ca. 50% whereas pre-treatment with litter induced only a marginally (< 10%) more resilient bacterial growth response to D/RW. Interestingly, pre-treatment of the soils with glucose and litter both induced a more resilient fungal growth response, with the responses resembling the shift in fungal resilience induced by exposing the soils to repeated cycles of D/RW. Overall, our results show that selection for quick colonizers partly explains the shift to more resilient microbial growth in soils exposed to repeated D/RW events, but further investigation is required to identify additional factors contributing to the shift in resilience.

How to cite: Hicks, L., Lin, S., and Rousk, J.: Is microbial resilience to drying-rewetting driven by selection for quick colonizers? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16648, https://doi.org/10.5194/egusphere-egu2020-16648, 2020.

The influence of drought on terrestrial carbon cycling has received great attention because of the increasing frequency of extreme drought events in climate scenarios. In the CLIMAITE experiment, we have exposed plots to reduced precipitation since 2006. During the first years, precipitation was only reduced for 4-6 weeks during spring/early summer. In order to increase our focus on finding thresholds for functional and structural change in the ecosystem, the experiment was redesigned towards more extreme manipulations in June 2016 using a new gradient design continuously removing 40, 50, and 66% of ambient precipitation with permanent rainout shelters.

Rates of net ecosystem exchange (NEE), ecosystem respiration (RE) and soil respiration (Rs) are measured inside treatment plots using an LI-6400 connected to a custom-built 210L transparent chamber (for NEE) that can be darkened (for RE) as well as a 1L dark chamber (for Rs). In addition, environmental variables such as soil temperature, precipitation, soil water content and photosynthetically active radiation (PAR) are recorded continuously at the plot or site level. In addition, soil cores from the different treatments will be collected and analyzed for soil substrate (e.g. soil organic carbon) and incubated in the lab for analysis of Q10.  Using the observations from the field and the lab together we will develop a new multiple regression model to fit the CO2 fluxes under severe precipitation removal treatments.

 

To obtain more reliable and accurate estimates of the seasonal and annual responses of soil carbon flux exchange under precipitation change scenarios, the change in soil water content and temperature, the soil substrate availability as well as the variation of the frequency and timing of precipitation events are included in the carbon flux model. The fitting of models to the observational data will reveal if functional/structural thresholds for the carbon exchange have been exceeded in the ecosystem, thus providing novel experimental and modeling evidence for such thresholds.

How to cite: Li, Q., Larsen, K. S., and Gundersen, P.: Long-term effects of precipitation removal manipulations on soil carbon balance and exchange in a Danish heathland/grassland ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13404, https://doi.org/10.5194/egusphere-egu2020-13404, 2020.

EGU2020-12125 | Displays | SSS4.11

Exploring The Birch Effect In The Subsurface Using Diffusive Soil Probes

Joseph Roscioli, Joanne Shorter, Jordan Krechmer, Laura Meredith, and Juliana Gil Loaiza

Soil gases are efficient messengers of the subsurface biogeochemical processes that underlie important nutrient cycles.  Recent advances in subsurface gas sampling techniques can be combined with high precision trace gas instrumentation to yield novel insights into these processes and their mechanisms.

We present measurements of a wide range of trace gases before, during, and after a simulated rainfall upon northeastern US temperature forest soil in meso-scale columns.  Subsurface concentrations and above-ground fluxes of N2O and its isotopes, CH4 and its isotopes, CO2, NO, NO2, NH3, and a wide range of volatile organic compounds (e.g. monoterpenes, sesquiterpenes, isoprene, acetonitrile, aromatics) were quantified in real time with 30 minute temporal resolution.  Small molecules were measured using Aerodyne TILDAS instruments, while VOCs were measured using a Vocus mass spectrometer.

Addition of water to the dried soil column produced a classic Birch effect pulse of both C and N species, including for VOCs.  We explore correlations between responses of trace gases above- and below-ground, and relate the small molecule pulses to the larger VOC responses.  In addition, we demonstrate the value of isotopic signatures for these studies, with the observation of fast, large isotopic shifts in the 15N2O isotopomers.  We compare these isotopic signatures to simple kinetic models to provide insight into the mechanisms underlying the nitrogen Birch effect.

How to cite: Roscioli, J., Shorter, J., Krechmer, J., Meredith, L., and Gil Loaiza, J.: Exploring The Birch Effect In The Subsurface Using Diffusive Soil Probes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12125, https://doi.org/10.5194/egusphere-egu2020-12125, 2020.

EGU2020-12151 | Displays | SSS4.11

Effect of Drought and Recovery on Microbial, Fungal, and Crop Response in a Diverse Multi-Crop Rotation

Songul Senturklu, Douglas Landblom, and Joshua Steffan

Soil nutrient availability is essential for adequate crop production and drought conditions that result in abnormally low amounts of precipitation for extended periods of time have a substantial impact on soil microbial activity and therefore nutrient cycling. The northern Great Plains region of the USA suffered an extended period of time in which effective precipitation for crop production was severely reduced and based on the USA Drought Monitor the drought during the growing season from April through October 2017 was classified as exceptional drought. At the NDSU – Dickinson Research Extension Center, a long-term integrated system that includes a diverse multi-crop rotation (spring wheat, cover crop, corn, pea-barley intercrop, and sunflower), beef cattle grazing of the pea-barley, corn, and a 13-specie cover crop within the rotation, is being utilized to monitor the effects soil microbial and fungal activity have on production over time and space in this crop and animal production system. Moreover, the overall effects of increased soil health indices on production are being monitored. Research results have previously been reported showing that soil organic matter (SOM) mineralization has resulted in reduced nitrogen fertilizer application. Regression analysis of SOM and potential nitrogen mineralization suggests that 8.4 mg N/kg are mineralized for each 1% increase in SOM. However, during periods of restricted precipitation on rain-fed crops, soil microbial respiration and fungal activity are negatively impacted, and crop production and animal grazing days are sharply reduced. Soil microbial biomass was correlated to overall production with the exception of spring wheat in rotation which may be due to increased water use by the previous crop (sunflower). Further analysis indicated that most soil microbial organisms recovered two years post drought with the exception of Rhizobia spp. populations which did not recover two years post drought. However, compared to the pre-drought 2016 production year, overall crop production yields had not fully recovered by 2019. Compared to the 2016 crop production, overall crop production in the rotation was reduced 64% in 2017, recovered to 54% of 2016 in 2018, and recovered to 66% of 2016 by the 2019 crop year. Whether crop yields are on par with 2016 by the end of the 2020 crop year is still to be determined. These yield observations point to the amount of time needed to fully recover from the long-term effects of exceptional drought on crop production.

How to cite: Senturklu, S., Landblom, D., and Steffan, J.: Effect of Drought and Recovery on Microbial, Fungal, and Crop Response in a Diverse Multi-Crop Rotation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12151, https://doi.org/10.5194/egusphere-egu2020-12151, 2020.

EGU2020-20312 | Displays | SSS4.11

Vaccinium vitis-idaea decreases the dependence of alpine soil properties from soil moisture

Mikhail Makarov, Tatiana Malysheva, Maksim Kadulin, and Rida Sabirova

Climatic and plant community changes are observed in the alpine belt of the Teberda Reserve (the Northwest Caucasus) in the last decades. Increase of average monthly temperature in the summer months in 2006-2018 was 1.8-2.2 ºC in comparison with 1966-1990. For the last 13 years, the maximum temperature in July and August reached 22.1-23.2 ºC vs. 20.5 ºC in 1966-1990, and minimum temperature during these months did not fall lower than -1.8 ºC whereas in 1966-1990 it fell up to -7.0 ºC. At the same time decrease of summer precipitation, especially in July and August is observed (average 80-100 mm per month vs. 150-160 mm in 1966-1990). Against this climatic background, a significant increase of dwarf shrub with ericoid mycorrhizal symbiosis (Vaccinium vitis-idaea) occurs in plant community of alpine lichen heath. As ericoid mycorrhiza is characterized by high enzymatic activity capable to transform and mobilize soil organic matter, we assume that the appearance of Vaccinium vitis-idaea in grass ecosystems can change soil properties. Simultaneously the observed tendency to decrease the amount of summer atmospheric precipitation in mountain regions can change soil moisture which is also highly important to control soil microbial activity and organic matter transformation.

The properties of the mountain-meadow soil of the alpine lichen heath, characterizing labile forms of carbon, nitrogen and phosphorus, as well as biological activity at different soil moisture and in the presence or absence of Vaccinium vitis-idaea in the plant community, have been studied. It has been shown that under V. vitis-idaea soil is characterized by greater acidity and less responsive to changes in soil moisture. Differences in properties in the presence and absence of V. vitis-idaea are predominantly determined by the expressed response of the soil to changes in moisture in the absence of dwarf shrub. Under herbal vegetation, when soil moisture decreases, concentrations of inorganic nitrogen, activity of N-mineralization and nitrification, microbial biomass and soil respiration decrease, but concentrations of labile organic carbon and nitrogen, and enzymatic activity increase. Such changes indicate a shift in organic matter transformation from mineralization to depolymerization, more characteristic of ectomycorrhizal and ericoid mycorrhizal dominated ecosystems. Thus, both factors (soil moisture and invasions of ericoid mycorrhizal plant species) should be taken into account in predicting changes of alpine ecosystems functioning.

This study was supported by Russian Science Foundation (16-14-10208).

How to cite: Makarov, M., Malysheva, T., Kadulin, M., and Sabirova, R.: Vaccinium vitis-idaea decreases the dependence of alpine soil properties from soil moisture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20312, https://doi.org/10.5194/egusphere-egu2020-20312, 2020.

Beef cattle grazing, soil microbial respiration, and Rhizobia spp. populations serve important roles in soil nutrient cycling and during periods of drought, when abnormal precipitation declines, forage production for animal grazing and performance are negatively impacted. Soil nutrient availability is essential for adequate crop production and extended drought reduces soil microbial activity and therefore nutrient cycling. During the 2017 growing season between April and October in the northern Great Plains region of the USA, effective precipitation for crop production and animal grazing was severely reduced due an exceptional drought as classified by the US Drought Monitor. At the NDSU – Dickinson Research Extension Center, Dickinson, North Dakota, USA, a long-term integrated system that includes yearling steer grazing within a diverse multi-crop rotation (spring wheat, cover crop, corn, pea-barley intercrop, and sunflower). Within the rotation of cash and forage crops, beef cattle graze the pea-barley, corn, and cover crop (13-specie) within the rotation and is being utilized to monitor the effects of animal, microbial and fungal activity over time and space in the crop and animal production system. Nitrogen fertilizer has been replaced in the system by soil microbial and fungal activity (Potential Mineralizable Nitrogen: 8.4 mg N/kg) such that for each 1% increase in SOM there is a corresponding increase of 18.8 kg of potential nitrogen mineralized per ha. Animal grazing days are severely reduced when precipitation is inadequate for soil microbial respiration to occur. What is even more concerning, when relying on microbial activity to supply plant nutrients, is recovery time for microbial activity to fully recover from exceptional drought as was the case in this research project. Compared to the 2016 crop production year that preceded the 2017 drought, cover crop (13-specie), pea-barley, and corn yields were reduced 86, 33, and 64% during the 2017 drought. This decline in crop production reduced the number of days of grazing by an average 50% and average daily gains were also reduced. Steer average daily gains were 1.05 0.95, and 0.83 kg/steer/day in 2017 when grazing pea-barley, corn, and cover crop, respectively. For this research that relies on soil derived plant nutrients soil analysis for microbial and Rhizobia spp. biomass began recovery in 2018 and continued into 2019 as evidenced by large percentage increases in organism biomass; however, complete production recovery did not occur by the end of the 2019 grazing season in which days of grazing were reduced compared to the 2016 grazing season. Biological animal, crop, microbial, fungal, and nutrient replacement recovery will be presented in the poster.

How to cite: Landblom, D. and Senturklu, S.: Effect of Drought and Recovery on Grazing Animal, Microbial, and Fungal Response in a Diverse Multi-Crop Rotation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20195, https://doi.org/10.5194/egusphere-egu2020-20195, 2020.

Changes in climate and land-use are altering soil respiration patterns and thus affecting C sequestration rates globally. This study aims to understand the effect of revegetation induced land-use change on the response of soil respiration to precipitation pulses during an extreme-drying-and-rewetting period. Soil respiration (SR) in cropland, grassland, shrubland, and orchard were intensively monitored along with environmental variables during an extreme drought period with precipitation pulse on China’s Loess Plateau. SR was strongly correlated to soil water content for all land-uses. However, the relationship was highly dependent on land-use types: SR was only strongly suppressed in cropland and orchard when moisture content exceeded 10.8% and 13.7%, respectively, whereas no clear suppression was observed under other land-uses. As a result, the C loss in grassland and shrubland was 49.1-78.9% higher than in cropland following significant precipitation events. In addition, SR was negatively and weakly correlated with soil temperature, indicating the change in the dominant control on SR due to extreme drought. Land-use change alters the response of soil respiration to soil moisture during extreme-drying-and-rewetting periods in this revegetated ecosystem. Its effect on respiration pulses will amplify as extreme climate events increase in the future, which may potentially alter the existing C balance.

How to cite: Sun, W.: Revegetation modifies patterns of temporal soil respiration responses to extreme-drying-and-rewetting in a semiarid ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6591, https://doi.org/10.5194/egusphere-egu2020-6591, 2020.

EGU2020-4454 | Displays | SSS4.11

Climatological study of the Boundary-layer air Stagnation Index for China and its relationship with air pollution

Qianqian Huang, Xuhui Cai, Jian Wang, Yu Song, and Tong Zhu

The Air Stagnation Index (ASI) is a vital meteorological measure of the atmosphere’s ability to dilute air pollutants. The original metric adopted by the US National Climatic Data Center (NCDC) is found to be not very suitable for China, because the decoupling between the upper and lower atmospheric layers results in a weak link between the near-surface air pollution and upper-air wind speed. Therefore, a new threshold for the ASI–Boundary-layer air Stagnation Index (BSI) is proposed, consisting of daily maximal ventilation in the atmospheric boundary layer, precipitation, and real latent instability. In the present study, the climatological features of the BSI are investigated. It shows that the spatial distribution of the BSI is similar to the ASI; that is, annual mean stagnations occur most often in the northwestern and southwestern basins, i.e., the Xinjiang and Sichuan basins (more than 180 days), and least over plateaus, i.e., the Qinghai–Tibet and Yunnan plateaus (less than 40 days). However, the seasonal cycle of the BSI is changed. Stagnation days under the new metric are observed to be maximal in winter and minimal in summer, which is positively correlated with the air pollution index (API) during 2000–2012. The correlations between the BSI and the concentration of fine particulate matter (PM2.5) during January 2013 and November to December in 2015–2017 of Beijing are also investigated. It shows that the BSI matches the day-by-day variation of PM2.5 concentration very well and is able to catch the haze episodes.

How to cite: Huang, Q., Cai, X., Wang, J., Song, Y., and Zhu, T.: Climatological study of the Boundary-layer air Stagnation Index for China and its relationship with air pollution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4454, https://doi.org/10.5194/egusphere-egu2020-4454, 2020.

SSS4.13 – Soil biodiversity and microbial turnover

EGU2020-6545 | Displays | SSS4.13

Soil fauna regulates the ecosystem service/disservice balance in mulched soils

Christine van Capelle, Friederike Meyer-Wolfarth, Torsten Meiners, Mignon Sandor, and Stefan Schrader

A sustainable agricultural management can contribute to promoting soil biodiversity performance, thereby preserving soil functions and ensuring the provision of soil biota-induced ecosystem services. In order to make the best possible use of these services for the benefit of agricultural production, a better understanding of interlinkages between management measures, ecosystem service/disservice balance and soil self-regulation potential is essential. In this context, it is well known that the reduction of soil tillage intensity combined with mulching techniques, on the one hand, promote the survival, development and spread of plant pathogenic mycotoxin-producing soil-borne fungi, but, on the other hand, enhance the diversity of antagonistic mycotoxin-degrading fungivorous soil animals. However, up to now it is still unclear, which ecosystem service/disservice balance results from both pathways and which self-regulation mechanisms are involved.

 

To analyse and assess the bioregulation potential of fungivorous soil faunal key species (earthworms: Lumbricus terrestris, collembolans: Proisotoma minuta, enchytraeids: Enchytraeus crypticus and E. christenseni) on economically relevant plant pathogenic species of the fungal genus Fusarium (F. graminearum, F. culmorum, F. verticillioides) and its mycotoxins (deoxynivalenol (DON), zearalenon (ZEN), 3-acetyl-deoxynivalenol (3AcDON) and fumonisin B1 (FB1)) in maize residues, field and laboratory experiments were performed as part of the EU BiodivERsA project SoilMan. Based on these studies the following hypotheses were tested: (1) soil faunal key organisms supress Fusarium species and reduce their mycotoxins in maize residues, (2) the bioregulation potential depends on substrate size and soil texture (3) interactions between fungivorous key species affect their bioregulation potential, (4) leaching of mycotoxins represents a potential risk for arable soils.

 

The results reflect that soil faunal key species regulate amounts of F. graminearum and F. culmorum in maize residues depending on substrate size and soil texture, but did not affect amounts of F. verticillioides. Fungivorous soil animals significantly accelerate degradation rates of Fusarium mycotoxins by up to 300%, depending on soil faunal species, respective mycotoxin and soil texture. In particular, primary decomposers within the earthworm community (L. terrestris) are pivotal for the bioregulation of Fusarium species and their mycotoxins in the mulch layer. The bioregulation potential of the mesofauna (collembolans and enchytraeids) strongly depends on soil faunal interactions. The findings further indicate that the mycotoxins DON and ZEN leach from infected maize residues.

 

The present studies contribute to improve understanding of the complex interrelations between arable management and ecosystem service/disservice balance in agroecosystems.

How to cite: van Capelle, C., Meyer-Wolfarth, F., Meiners, T., Sandor, M., and Schrader, S.: Soil fauna regulates the ecosystem service/disservice balance in mulched soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6545, https://doi.org/10.5194/egusphere-egu2020-6545, 2020.

EGU2020-274 | Displays | SSS4.13

Local, landscape and continental scale factors controlling earthworm community structure

Ashley Cameron, Robert Bradley, Petra Benetkova, Agnieszka Józefowska, Gabriel Boilard, Miloslav Šimek, Joann Whalen, and Naresh Thevathasan

Past studies have praised earthworms for improving soil structure and fertility, but criticized earthworms for increasing the leaching of nutrients and soil greenhouse gas emissions. Therefore, in order to maximize the environmental benefits and reduce the environmental costs of earthworms, it is important to determine the factors controlling the structure of earthworm communities at local, landscape and continental scales. We first hypothesized that forested riparian buffer strips (FRBS) within agricultural landscapes would be a refuge for earthworms, due to higher soil moisture and organic matter compared to adjacent agricultural fields (“treatment” = FRBS vs. Field).  Within sites, we hypothesized that earthworms would be most abundant where the chemical quality of above- and belowground plant litter is high, or where soil disturbance is low. At the continental scale, we hypothesized that total summer precipitation interacts with regional and local scale factors in controlling earthworm community structure.  A field survey was conducted to quantify earthworm species abundances in FRBS and adjacent agricultural fields across Eastern Canada and Central Europe (two “bioregions” differing in rainfall). At each of 77 sites, we collected and identified earthworms from three plots within FRBS and adjacent agricultural fields, and noted the tree species, understory vegetation, drainage class, agricultural crop as well as five soil physicochemical variables (texture, pH, total C, total N and % organic matter). In each bioregion and treatment, we found proportionately more endogeic than anecic or epigeic earthworm species. In Eastern Canada there were proportionately fewer anecic and more epigeic individuals in FRBS than in fields, whereas in Central Europe there were fewer endogeic and more anecic earthworms in FRBS than in fields. We also found significant interactions between bioregion and treatment on total earthworm abundance and biomass, and on soil moisture. More specifically, in Eastern Canada we found higher earthworm abundance and biomass, soil moisture and organic matter in FRBS. Conversely, in Central Europe we found higher earthworm abundance and biomass in fields, no treatment effects on soil moisture, and higher soil organic matter in FRBS. The different earthworm distribution patterns in each bioregion were not related to the types of agricultural crops, but rather to differences in precipitation and soil moisture across bioregions. Within FRBS in Eastern Canada, earthworm abundance in deciduous and mixedwood stands were higher than in coniferous stands; in Central Europe, earthworm abundance was higher in deciduous stands only. Within FRBS in Eastern Canada, the abundance of the prominent endogeic species Apporectodia rosea was correlated with herbaceous plants, notably ferns and graminoids. Conditional regression tree analysis revealed positive relationships between earthworms and soil clay content, pH, moisture and organic matter. Our results suggest that local and landscape patterns in earthworm diversity can be predicted by soil and vegetation attributes, but the relative importance of these factors change across continual scales due to climate.  Comparing the distributions of earthworms across different scales provides insights into the potential of different species to spread into new habitats with climate change.

How to cite: Cameron, A., Bradley, R., Benetkova, P., Józefowska, A., Boilard, G., Šimek, M., Whalen, J., and Thevathasan, N.: Local, landscape and continental scale factors controlling earthworm community structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-274, https://doi.org/10.5194/egusphere-egu2020-274, 2020.

EGU2020-9043 | Displays | SSS4.13

Long-term effects of tillage intensity on the distribution of microbial biomass and activity in four arable field-sites across Europe

Ilka Schmoock, Deborah Linsler, Mignon Sandor, Rainer Georg Joergensen, and Martin Potthoff

Over the last decades, reduced tillage became more and more important as a suitable soil management practice. Moreover, reduced tillage is expected to promote a healthy and active soil life as a feature of sustainable agricultural. The determination of soil microbial biomass and microbial indices are suitable indicators for estimating soil quality. This study follows a regional approach and focusses at four different countries with varying environmental conditions at long-term experimental field-sites (LTE´s) across Europe. Soil microbial biomass carbon (SMB-C), the metabolic quotient (qCO2) and the ratio of SMB-C to soil organic carbon (SOC) were measured as microbial properties.

Our contribution to the ongoing discussion of the effectiveness of non-conventional tillage systems is (i) the comparison between conventional ploughing (CT) and minimum tillage (MT), (ii) the comparison of inversion vs. not inversion tillage at the same working depth, (iii) the comparison of ploughing vs. no-tillage (NT), (iv) the comparison between reduced tillage systems with each other (MT vs. NT).

We found a significant difference of SMB-C for CT and MT between 0 and 10 cm in Germany and Sweden, but no difference between tillage treatments for the sampled soil profile (0-30 cm). We highlight that tillage changed the vertical distribution of SMB-C, showing similar values among soil depths under CT and a depth gradient with decreasing values for MT.

The comparison of inversion vs. not inversion tillage at the same working depth in Romania showed no differences between CT and MT at all. This suggests that humus-rich soils seem to be more resistant to tillage-related disturbances. The working depth might have a greater impact for both, inversion and non-inversion tillage than the type of the tillage system itself.

For the comparison of CT and NT, we used the field-sites in Spain and Sweden. In Spain, NT was clearly of advantage for microbial biomass and activity, compared to CT. This was true for the whole sampled soil profile (0-30 cm) whereas in Sweden differences could only be detected between SMB-C levels in two soil depths. Our results indicate that the effect of tillage seems to be smaller in cold-temperate areas.

Comparing MT and NT in Sweden, we found no difference in SMB-C between these two forms of conservation tillage, neither in the first centimeters, nor in the whole sampled profile. Consequently, minimum tillage seems to be an alternative in cold and moist regions if no-tillage is not possible to apply without reducing soil quality or crop yields.

We conclude that even if minimum and no-tillage are generally beneficial for microorganisms, there is a big variance between the different forms of reduced tillage systems. Thus, statements cannot be made across different soils and machine types, but have to be made on a regional scale.

 

How to cite: Schmoock, I., Linsler, D., Sandor, M., Joergensen, R. G., and Potthoff, M.: Long-term effects of tillage intensity on the distribution of microbial biomass and activity in four arable field-sites across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9043, https://doi.org/10.5194/egusphere-egu2020-9043, 2020.

EGU2020-11209 | Displays | SSS4.13

Organic matter additions to soil and effects on microbially mediated carbon cycling

Rachel hasler, Mark pawlett, Jim harris, Helen bostock, and Marc redmile-gordon

The type of soil organic amendment selected can have profound implications for carbon cycling processes in soils. Understanding the link between this choice and its effect on the soil microbiome will improve our understanding of the capacity of these materials to improve carbon sequestration and cycling dynamics. Understanding and facilitating the lifestyle strategies of microorganisms processing organic matter is essential to improving our understanding of the terrestrial carbon cycle. This research focuses on utilising organic amendments to alter the indigenous soil microbial community composition and function to improve the capacity of the soil to cycle and store carbon in horticultural soils.  The effects of annual application of various organic fertilisers (peat, bracken, bark, horse manure, garden compost) in a long-term (10year) field experiment were explored. Sampling was completed pre and post application of organic matter within one season (following 10 years of applications) to identify which organic amendment was more effective in producing benefits to plants through improved soil organic matter and which amendments provide the greatest legacy effect on carbon cycling. The response of the soil microbial community composition (phospholipid fatty acid analysis) and carbon functional cycling dynamics (respiration using MicroResp™) were determined with a view to improving our understanding of the interaction between the materials applied and microbial processes. PCA of the MicroResp™ data identified that all treatments had a different functional profile compared to the control[PM1]  with peat being significantly different from all other treatments. Horse manure and bark differed significantly within a single growing season; prior and post organic matter addition in spring 2019.  Microbial biomass measurements for garden compost and horse manure were significantly higher following organic matter addition compared to all other treatments and the control[PM2] .  All treatments had a significant effect [PM3] on hot water extractable carbon and total carbon. Peat had a significantly different effect[PM4] , when compared to other treatments, on the soil PLFA profile and bark application significantly increased [PM5] the neutral lipid (NLFA) biomarker 16:1ω5.  Bark and horse manure application both significantly increased PLFA fungal biomarker 18:2ω6,9. No significant differences were found between the fungal/bacterial ratios of the organic matter additions prior to being added to the soil. These findings show that altering the resources available to the soil microbial community has a significant impact on soil microbial community composition and microbially mediated carbon cycling functionality. Increasing our understanding of how soil functions are altered by land management decisions will enable better informed predictions of the long-term benefits of organic matter applications on carbon sequestration and cycling dynamics.

How to cite: hasler, R., pawlett, M., harris, J., bostock, H., and redmile-gordon, M.: Organic matter additions to soil and effects on microbially mediated carbon cycling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11209, https://doi.org/10.5194/egusphere-egu2020-11209, 2020.

EGU2020-10283 | Displays | SSS4.13

From soil degradation to restoration via soil microorganisms

Oksana Coban, Gerlinde de Deyn, and Martine van der Ploeg

Soil, the living skin of the Earth, provides ecosystem services critical for life: soil acts as a water filter and a growing medium, offers habitat for billions of organisms, and supplies most of the antibiotics. In places, it may take a hundred years to form one cm of soil, but it can be degraded only in a few years or less by a number of natural and anthropogenic factors, including climate change. Presently, one third of all land is degraded to some extent, and fertile soil is lost every year. Droughts are becoming more common, also in humid climates, and the combination of erratic weather patterns with an increased pressure on land by human activities leads to soil degradation. Soil degradation results in a loss of fertile topsoil, thereby altering the soil hydrology completely. As the consequences, soil water holding capacity decreases, hydrophobicity increases, and more runoff is observed, that leads to further soil degradation. Thus, soil hydrology is the key for a healthy functioning topsoil/soil ecosystem. We are in urgent need for novel solutions for improving soil hydraulic properties that will lead to restoration of degraded soils.

In this study we investigate a possibility of restoring degraded soil using microorganisms. The hypothesis is that microorganisms can improve soil hydraulic properties such as infiltration and water retention, and reduce hydrophobicity that will facilitate further ecosystem restoration. Such strategy is based on combining the research fields of microbiology and soil physics that to date have hardly been combined. To test this hypothesis, we have inoculated sandy soil with a bacterium Bacillus mycoides and then measured its hydraulic properties using evaporation and pressure plate methods. We have also made efforts of standardizing this methodology by testing incubation time and inoculum concentrations on the hydraulic properties of the soil. Evaluation of an effect of bacteria addition on the soil water holding capacities and unsaturated water conductivity have been conducted as a comparison between inoculated soil and uninoculated (control). Results of this ongoing study will be presented here.

How to cite: Coban, O., de Deyn, G., and van der Ploeg, M.: From soil degradation to restoration via soil microorganisms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10283, https://doi.org/10.5194/egusphere-egu2020-10283, 2020.

The high diversity of densely packed organisms occurring in small volumes of soils has long been intriguing and we still poorly understand what drives such diversity. Exploring the role of small scale physical structure of the soil, constituting the habitat of these organisms offers unprecedented clues for explaining how organisms interact, notably through trophic interactions and how, in turn, these interactions drive this extraordinary diversity. We review here how restrictions on soil organisms’ ability to sense (e.g. volatiles) and access food resources/prey imposed by the soil physical structure and aqueous habitats within are important drivers for trophic interactions, and consequently, of soil biodiversity. Examples from micro- to macrofauna are presented, focusing on organisms unable to create their own pore space, such as bacteria, fungi, protists, nematodes and microarthropods. Finally, we discuss interdisciplinary challenges to develop research merging soil physics and soil food web ecology.

How to cite: Erktan, A., Or, D., and Scheu, S.: Into the soil labyrinth: soil physical structure as a driver of trophic interactions and soil biodiversity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4802, https://doi.org/10.5194/egusphere-egu2020-4802, 2020.

EGU2020-19246 | Displays | SSS4.13

Towards standardized experimentation in soil research – a synthetic ecology approach

Hannes Schmidt, Julia Horak, K. Dimitri Kits, Alberto Canarini, Leila Hadziabdic, and Andreas Richter

Soils contain a vast diversity of microorganisms including millions of cells and thousands of species. Many of those species encode for similar functions which is known as functional redundancy. From an ecosystem perspective, it remains unknown how many of such species are contributing to processes and are actually necessary to perform functions. Not knowing about the number and type of taxa of a soil sample a priori, let alone of the interaction between those taxa or the chemical environment of their habitats, hampers the reproducibility of soil ecological research and renders a targeted experimentation virtually impossible. This is one of the most important reasons why linking microbial identity to processes at the soil scale has proven to be everything but easy.

A promising avenue to overcome these limitations are model ecosystems that allow to identify principles of community functioning via standardised experimentation. Here, we will present a synthetic ecology approach using artificial soil mimicking the structural and chemical complexity of a soil and a synthetic microbial community to investigate microbial functioning in soil. Our approach includes genome-guided in silico design of synthetic communities to reproduce the functionality of soil heterotrophic bacteria and fungi, while largely decreasing the number of individual taxa for laboratory experimentation.

Initial experiments suggested that our synthetic community was able to establish in artificial soil and sterilized natural soil and to perform a range of simple soil processes, as evident through potential enzymatic activities, heterotrophic respiration, and changes in organic and inorganic soil components. Molecular analysis of the community composition over time demonstrated high similarities of the established community among replicates, indicating low effects of stochasticity on community assembly, a major requirement for reproducible experimentation. These promising preliminary data indicate that our model system could indeed represent the experimental platform for targeted experimentation in soil ecological research in the future.

How to cite: Schmidt, H., Horak, J., Kits, K. D., Canarini, A., Hadziabdic, L., and Richter, A.: Towards standardized experimentation in soil research – a synthetic ecology approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19246, https://doi.org/10.5194/egusphere-egu2020-19246, 2020.

EGU2020-16475 | Displays | SSS4.13

Modelling the role of selection and complementarity in ecosystem function under climate change

Rebecca Millington, Peter M. Cox, Francisca C. García, and Gabriel Yvon-Durocher

Understanding how ecosystem function depends on temperature is important in understanding ecosystem resilience to climate change. The response to warming at a species level is relatively well understood, through the metabolic theory of ecology, which captures the temperature dependence of biological processes. However, when multiple species are present, interactions between the species are important too. Therefore, to understand community function, we must understand the response of the individual species, and the interactions between them. These interactions may depend on temperature, and can be split into two main mechanisms: selection and complementarity. Both of these processes are likely to depend on the number of species present; the biodiversity of the ecosystem. Currently, the response of communities to temperature change, and how changes in diversity may increase or buffer impacts, is poorly understood.

 

Our understanding of ecosystem function can be improved by using mathematical models to constrain the mechanisms underlying key processes. Using data from laboratory experiments, we model communities of heterotrophs responding to temperature change. To model selection, we use a simple model of a community sharing a resource, with parameters measured empirically. Without complementarity, the model underestimates community function. Complementarity is included through a single parameter, which determines to what extent different taxa share the same resource pool. This parameter is difficult to measure directly, so must be fitted using empirical community function data. Through our model, we show that the strength of complementarity within a community depends on both diversity and temperature. Interestingly, we also find that complementarity is strongest at higher and lower temperatures, and more dependent on diversity at medium temperatures.

How to cite: Millington, R., Cox, P. M., García, F. C., and Yvon-Durocher, G.: Modelling the role of selection and complementarity in ecosystem function under climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16475, https://doi.org/10.5194/egusphere-egu2020-16475, 2020.

EGU2020-13094 | Displays | SSS4.13

Microbial necromass as a source for soil organic matter formation - implications for soil processes

Anja Miltner, Tiantian Zheng, Chao Liang, and Matthias Kästner

The vital role of soil microorganisms as catalysts for soil organic matter (SOM) formation has long been recognised. Plant residues are now considered to be transformed by soil microorganisms who use the plant litter as a carbon source for microbial biomass formation. How much carbon is retained as microbial biomass during transformation of plant material, critically depends on substrate availability, carbon use efficiency of the microorganisms, and maximum microbial growth. In addition, microorganisms presumably recycle biomass building blocks from plant or microbial material to avoid energy expenditure for biomass synthesis. After cell death, a part of the microbial necromass is cycling through the microbial food web; the other part is stabilised in soil (Miltner et al., 2012). Potential stabilisation mechanisms are similar to those for SOM in general, with organo-mineral interactions, in particular encapsulation and physical isolation, being important mechanisms. Independent of which pathway the plant-derived carbon goes, SOM constitutes a continuum of plant and microbial necromass at various stages of decay. The contribution of microbial necromass to the topsoil organic matter pool has recently been estimated to range from 30 to 60% (Liang et al., 2019). Such high contributions of microbial necromass have a number of important implications for understanding SOM transformation and sequestration processes. Most obviously, the chemical identity of the organic material changes. For example, while retaining a substantial part of the carbon, the elemental stoichiometry changes substantially. Some microbial necromass materials are rather long-lasting in soil. In general, cell envelope residues have a higher stability than bulk biomass carbon. Proteins have also been shown to be rather persistent in soil, presumably due to conformational changes and the spatial arrangement of microbial necromass material, e.g. fragments of cell envelopes presumably pile up in multiple layers and the material forms clusters of macromolecular size. Residual electron-shuttle biomolecules (e.g. oxidoreductases, Fe-S-cluster, quinoid complexes of respiratory chains) may persist and retain some activity and thus contribute to redox reactions in soil. In addition, the necromass is expected to cover soil particle surfaces and thus determine the surface properties of these particles. In particular, these materials contribute to the water storage potential. They affect water retention and nutrient diffusion as well as microbial motility. Adaption of microbes to water stress changes their cell surface properties and molecular composition and thus may determine overall soil wettability. Knowledge on the contribution of microbial necromass to SOM would thus be essential for modelling SOM formation and optimising soil management practices for maintaining soil functions.

 

References:

Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111: 41-55.

Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25: 3578-3590.

How to cite: Miltner, A., Zheng, T., Liang, C., and Kästner, M.: Microbial necromass as a source for soil organic matter formation - implications for soil processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13094, https://doi.org/10.5194/egusphere-egu2020-13094, 2020.

During the decomposition of organic matter (OM), microorganisms use the assimilated carbon (C) for biomass production or respiration, and the fraction of growth to total assimilation defines the microbial carbon-use efficiency (CUE). Therefore, microbial CUEs have direct consequences for the balance of C between atmosphere and soil, and is as such a central parameter to represent the global C cycle well in Global Cycling Models (GCMs). Despite its enormous leverage this factor remains critically underexplored. Based on the physiology of cultured microorganisms, it is anticipated that (H1) high nutrient availabilities will increase microbial CUE, (H2) that higher quality substrate will increase microbial CUE, (H3) that microbial communities more dominated by fungi will have higher CUE, and (H4) that microbial CUE will decrease in response to environmental stress. We combined extensive field surveys with experimental treatments in microcosms to assess our hypotheses. We sampled temperate forest soils, temperate agricultural soils, and subarctic forest soils, encompassing a wide range of soil pHs (4.0-7.1), nutrient availabilities (10<soil C/N<33), and soil OM qualities (7-fold differences in respiration per SOM). We also surveyed environmental pollution gradients where metallurgy had contaminated soil with high heavy metal concentrations in boreal forest and temperate grassland sites. We also subjected selected soils to microcosm experiments where soil pH (liming), mineral N (50 kg N ha-1), OM quality (plant litter), or heavy metal stress were manipulated and the resulting bacterial and fungal growth, respiration, and CUE were monitored over the course of 2 months.

 

Fungal-to-bacterial growth ratios (F:B) ranged from 0.02 to 0.44 across the studied ecosystems, and that the fungal dominance was higher in soils with lower C:N ratio and higher C-quality. CUE ranged from 0.03 to 0.30, and values clustered most strongly according to site rather than level of soil N. CUE was higher in soil with high C:N ratios and high C-qualities. However, within each land-use type, a high mineral N-content did result in lower F:B and higher resulting CUE. In the microcosm experiments, plant litter addition stimulated the growth of fungi more than bacteria, while increasing soil pH stimulated bacteria more than fungi. Mineral N additions inhibited bacterial growth and stimulated fungal growth. This resulted in microbial CUE estimates in real time that ranged from ca 0.05 to 0.55, and where increased pH and litter increased values while mineral N supplements decreased values. Long-term exposure to heavy metals decreased microbial CUE, but only marginally, even at very high rates of metal exposure. Short-term exposure to metal stimulated microbial CUE in soil from contaminated sites, while CUE was reduced in soil with no history of metal contamination. In conclusion, a higher site soil C-quality coincided with lower F:B and higher CUE across the surveyed sites, while a higher N availability did not. A higher site N availability resulted in higher CUE and lower F:B within each site, while mineral N supplements in the microcosm induced the opposite response, suggesting that site-specific differences associated with fertility such as the effect of plant communities, overrode the influence of mineral N-availability.

How to cite: Rousk, J.: Soil microbial growth and carbon-use efficiency: ecological control mechanisms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2166, https://doi.org/10.5194/egusphere-egu2020-2166, 2020.

EGU2020-20248 | Displays | SSS4.13

Microbial diversity drives carbon use efficiency in a model soil

Luiz A. Domeignoz-Horta, Grace Pold, Xiao-jun A. Liu, Serita D. Frey, Jerry M. Melillo, and Kristen M. DeAngelis

Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combined distinct community inocula (biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil system. Abiotic factors indirectly influenced CUE through their impacts on diversity and community structure, which were the strongest predictors of CUE. We also found that abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity under high moisture. Altogether these results indicate that drier soils diminished the synergistic effect between diversity and CUE, with potential consequences for the fate of C in soils.

How to cite: Domeignoz-Horta, L. A., Pold, G., Liu, X.-A., Frey, S. D., Melillo, J. M., and DeAngelis, K. M.: Microbial diversity drives carbon use efficiency in a model soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20248, https://doi.org/10.5194/egusphere-egu2020-20248, 2020.

EGU2020-13148 | Displays | SSS4.13

How drought modulates carbon-use efficiency and soil carbon formation in rhizosphere, detritusphere, and bulk soils

Noah Sokol, Steve Blazewicz, Megan Foley, Alex Greenlon, and Jennifer Pett-Ridge

Carbon use efficiency (CUE) is theorized to be positively associated with the formation of microbially-derived, mineral-associated soil carbon.  Yet few empirical studies have directly tested this relationship. Moreover, it is unclear: (1) how differences between distinct soil microbial communities (for example, differences in competitive interactions and/or growth rate among rhizosphere, detritusphere, and bulk soil communities) may yield different relationships between carbon-use efficiency and soil carbon formation, and (2) how microbial ecophysiology – such as physiological changes induced by drought – may modulate the strength and/or direction of the CUE-soil carbon relationship.

To investigate these questions, we conducted a 12-week 13C tracer study to track the movement of two dominant sources of plant carbon – rhizodeposition and root detritus – into soil microbial communities and carbon pools under normal moisture vs drought conditions. Using a continuous 13CO2-labeling system, we grew the Mediterranean annual grass Avena barbata in controlled growth chambers and measured the formation of organic matter from 13C-enriched rhizodeposition. As the plants grew, we harvested rhizosphere and bulk soil at three time points (4, 8, and 12 weeks) to capture changes in soil carbon pools and microbial community dynamics. In parallel microcosms, we tracked the formation of soil carbon derived from 13C-enriched A. barbata root detritus during 12 weeks of decomposition; harvesting detritusphere and bulk soil at 4,8, and 12 weeks. In all microcosms, we manipulated soil moisture to generate drought (7.8 ± 2.1 % soil moisture) and ‘normal moisture’ (15.1 ± 4.2 % soil moisture) treatments.

In all samples (over 150 observations), we measured CUE via the 18O-H2O method, and quantified the formation of different 13C-soil organic carbon pools via density fractionation. Here we will present data on how soil moisture influences CUE in rhizosphere, detritusphere, and bulk soil communities, and whether differences in CUE are correlated with the formation of mineral-associated soil organic carbon. These results will help to illustrate whether CUE acts as a lynchpin variable with predictive power for stable soil carbon formation, or whether other microbial traits may require consideration.

 

 

How to cite: Sokol, N., Blazewicz, S., Foley, M., Greenlon, A., and Pett-Ridge, J.: How drought modulates carbon-use efficiency and soil carbon formation in rhizosphere, detritusphere, and bulk soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13148, https://doi.org/10.5194/egusphere-egu2020-13148, 2020.

EGU2020-9254 | Displays | SSS4.13

Impact of soil sample pre-treatment on microbial carbon use efficiency and associated parameters

Julia Schroeder, Lisa Kammann, Christoph C. Tebbe, and Christopher Poeplau

The 18O-labelling method is a powerful tool for studying soil microbial carbon use efficiency (CUE), as the label itself does not affect the soil microbial carbon metabolism. Beside parameters of soil microbial activity, the DNA extracted within this method can be used to gain information on soil microbial metagenome, e.g. community composition. Amongst others, the 18O-CUE method can support studies on the impact of land use change on the soil microbial metabolism and thus soil carbon dynamics.

As soil sample handling and length of incubation prior to analysis have been shown to affect measured parameters of soil microbial activity (e.g. Birch-effect) and community, different sample preparation measures are recommended in the literature depending on the focus of the study. However, so far the sensitivity of CUE and associated parameters to sample pre-treatment is unknown. We therefore tested i) how different sample pre-treatments (freezing, drying, and fresh) affect the parameters of soil microbial metabolism and community measured within the 18O-CUE method. In order to determine the potential to use the 18O-CUE in land use change studies we tested ii) if mentioned parameters of the two compared systems forest and cropland were - if applicable -affected in a similar way.

Based on five different paired sites (cropland and forest each), we evaluated the effects on the CUE and associated parameters (respiration, soil microbial biomass C, DNA extracted, abundance of fungi, bacteria and archaea) of six pre-treatments for soil samples via the 18O-CUE method: (i) direct analysis of field-fresh soil samples, analysis after pre-incubation of (ii) field-fresh, (iii) air-dried, (iv) oven-dried, (v) frozen at -20°C and (vi) in-situ frozen soil samples (dry ice and subsequently liquid N2).

Among all pre-treatments, the pre- incubation of 14 days as such had the strongest effect on metabolic parameters. Furthermore, while individual parameters (respiration, microbial biomass C) were influenced by the pre-treatment the 18O-CUE was relatively insensitive. We therefore conclude that not only fresh but also archived, dried soil samples can be used to obtain representative CUE values. Drying soil samples and rewetting led to increased fungal abundance in the forest soil, while this was not the case for croplands.

How to cite: Schroeder, J., Kammann, L., Tebbe, C. C., and Poeplau, C.: Impact of soil sample pre-treatment on microbial carbon use efficiency and associated parameters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9254, https://doi.org/10.5194/egusphere-egu2020-9254, 2020.

EGU2020-14553 | Displays | SSS4.13

Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration

Alberto Canarini, Wolfgang Wanek, Margarete Watzka, Taru Sandén, Heide Spiegel, Stefanie Imminger, Dagmar Woebken, Jiří Šantrůček, and Jörg Schnecker

As the global hydrological cycle intensifies with future warming, more severe droughts will alter the terrestrial biogeochemical carbon (C) cycle. As soil microbial physiology controls the large fluxes of C from soil to the atmosphere, improving our ability to accurately quantify microbial physiological parameters in soil is essential. However, currently available methods to determine microbial C metabolism in soil require the addition of water, which makes it practically impossible to measure microbial physiology in dry soil samples without stimulating microbial growth and respiration (namely, the “Birch effect”).

We developed a new method based on in vivo 18O water vapor equilibration to minimize soil re-wetting effects. This method allows the isotopic labelling of soil water without any liquid water or dissolved substrate addition to the sample. This was compared to the main current method (18O-water application method) in soil samples either at near-optimal water holding capacity or in air dry soils. We generated time curves of the isotopic equilibration between liquid soil water and water vapor and calculated the average atom percent 18O excess over incubation time, which is necessary to calculate microbial growth rates. We tested isotopic equilibration patterns in nine different soils (natural and artificially constructed ones) covering a wide range of soil texture and organic matter content. We then measured microbial growth, respiration and carbon use efficiency in three natural soils (either dry or at near-optimal water holding capacity). The proposed 18O vapor equilibration method provides similar results as the currently widely used method of liquid 18O water addition to determine microbial growth when used a near-optimal water holding capacity. However, when applied to dry soils the liquid 18O water addition method overestimated growth by up to 250%, respiration by up to 500%, and underestimated carbon use efficiency by up to 40%.

Finally, we applied the new method to undisturbed biocrust samples, at field water content (1-3%), and show for the first time real microbial growth rates and CUE values in such arid ecosystems. We describe new insights into biogeochemical cycling of C that the new method can help uncover and consider the wide range of questions regarding microbial physiology and its response to global change that can now be proposed and addressed.

How to cite: Canarini, A., Wanek, W., Watzka, M., Sandén, T., Spiegel, H., Imminger, S., Woebken, D., Šantrůček, J., and Schnecker, J.: Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14553, https://doi.org/10.5194/egusphere-egu2020-14553, 2020.

EGU2020-5450 | Displays | SSS4.13

New insights on carbon use efficiency using calorespirometry – a bioenergetics-based model

Arjun Chakrawal, Anke M. Herrmann, and Stefano Manzoni

Soil organic carbon (SOC) represents both a source of energy (catabolism) and a building material for biosynthesis (anabolism) for microorganisms. Microbial carbon use efficiency (CUE) – the ratio of C used for biosynthesis over C consumed – measures the partitioning between anabolic and catabolic processes. While most work on CUE has been based on C mass flows, the role of SOC energy content, microbial energy demand, and general energy flows on CUE have been rarely considered. Thus, a bioenergetics perspective on CUE could provide new insights on how microorganisms utilize C substrates and ultimately allow C to be stabilized in soils.

The microbial growth reactions are generally associated with a negative enthalpy change, which results in heat dissipation from the system. This heat can be measured using an isothermal calorimeter, which is often coupled with respiration measurements. This coupled system allows studying energy and C exchanges, and calculating their ratio referred to as the calorespirometric ratio (CR). Here, we formulate a coupled mass and energy balance model for microbial growth and provide a generalized relationship between CUE and CR. In the model, we consider two types of organic C in soils, the added substrate (i.e., glucose) and the native SOC. Furthermore, we assume that glucose is taken up via aerobic (AE) and two fermentation metabolic pathways – glucose to ethanol (F1) and glucose to lactic acid (F2); for simplicity, only aerobic growth on the native SOC was adopted. We use this model as a framework to generalize previous formulations and generate hypotheses on the expected variations in CR as a function of substrate type, metabolic pathways, and microbial properties (specifically CUE). In turn, the same equations can be used to estimate CUE from measured CR.

Our results show that in a non-growing system, CR depends only on the rates of different metabolic pathways (AE, F1, and F2). While in growing systems, CR is a function of rates as well as growth yields for these metabolic pathways. Under purely aerobic conditions, our model predicts that CUE increases with increasing CR when the degree of reduction of the substrate is higher than that of the microbial biomass. Similarly, CUE decreases with increasing CR when the degree of reduction of substrate is lower than that of the biomass. In the case of combined metabolism – aerobic and fermentation simultaneously – CUE is not only a function of CR and the degree of reduction of substrates but also the rates and growth yields of all metabolic pathways involved. To summarize, in this contribution we illustrate how calorespirometry can become an efficient tool to evaluate CUE and the role of different metabolic pathways in soil systems.

How to cite: Chakrawal, A., M. Herrmann, A., and Manzoni, S.: New insights on carbon use efficiency using calorespirometry – a bioenergetics-based model , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5450, https://doi.org/10.5194/egusphere-egu2020-5450, 2020.

Energy crops are grown at low cost and low maintenance used in making biofuels, such as bioethanol, or combusted to generate electricity or heat. Production of energy crops as an alternative to fossil fuels will help to reduce CO2 emission, thus leading to large scale changes in agricultural landscapes. Increase in the cultivation of annual energy crops such as maize (Zea mays) is assumed to decrease biodiversity in the agrarian landscape. This may lead to changes in soil properties, thereby affecting the soil biodiversity and its ecosystem functions and services like for instance soil microarthropod communities and their contribution to decomposition of plant litter. Perennial crops such as field grass (a mixture of Festulolium,  Dactylis glomerate, Loliuim perenne, Festuca pratensis and Festuca arundinacea) and cup plant (Silphium perfoliatum) are assumed to protect and promote soil biodiversity through less intensive management. The relationship between decomposer diversity and ecosystem functioning is little understood. So far, the role of soil microarthropods in decomposition is the most disputed aspect due to scarce empirical data.

The main aim of this field study was to assess the effect of soil microarthropods on litter of maize, field grass and cup plant, via decomposition using litter bags with 2 different mesh sizes (0.02 mm and 0.5 mm) for a period of 3 months during the vegetation period. At the end of the experiment, the decomposition rate was higher in cup plant followed by maize and field grass in the coarse mesh size, and higher in the cup plant followed by field grass and maize in the fine mesh size. A total of 55,464 soil microarthropods (73% mites, 25% collembola and 2% others) were extracted from the litter bags. The diversity and abundance of soil microarthropods was higher under cup plant cultivation followed by field grass and maize.

How to cite: Dioh Lobe, P. and Schrader, S.: How energy crops (Maize, Field grass, Cup Plant) affect soil microarthropods and their decomposition services, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6624, https://doi.org/10.5194/egusphere-egu2020-6624, 2020.

EGU2020-7128 | Displays | SSS4.13

Dynamics of selected chemical and microbiological properties changes in soils after application of ultra-fine powdered calcium carbonate – incubation studies

Karolina Woźnica, Michał Gąsiorek, Justyna Sokołowska, Agnieszka Józefowska, and Tomasz Zaleski

Soil acidification is a serious problem on a global scale, about 30% of land surface is occupied by acidic soils (pH≤ 5.5). Recent research indicates, that more than 50% of arable soils in Poland have too low pH. Acid soils are characterised the ability to mobilize toxic metals and increased plant uptake as well as decreased microbial activity in the soil. Progressive acidification leads to degradation of soils and caused that they are marginal for agricultural production. Soil acidification is a naturally occurring process, but only when natural factors are supported by intensive human activity, especially by nitrogen fertilisers application, intensive degradation is observed. Traditionally method to increase soil pH is the application of lime materials e.g. calcite, burnt lime or dolomite. The liming efficiency depends on lime material type (primarily chemical form of calcium compounds), the neutralising value, lime application method, soil properties and the particle size distribution of lime. The aim of this research was to determine the rate of action and influence of ultra-fine powdered calcium carbonate on selected chemical and microbiological soil properties.

The incubation studies were conducted on the three soils (G1, G2 – silt loam and G3 – sandy loam). Soil samples were taken from the 0-20 cm layer. Soil properties were measured after 7, 14, 30, 60 and 120 days of incubation. The liming factor was ultra-fine powdered calcium carbonate with particle size distribution < 0.08 mm. The application dose was calculated for 0.5 soil hydrolytic acidity. In the soil samples pHKCl, buffer capacity, microbial biomass carbon and dissolved organic carbon content were measured.

Application of lime caused an increase of pH value in all studied soils. The highest increase of the pHKCl was noted between 0 to 7th day of incubation. Afterward, the pHKCl decreased slowly for the soil G1 and G2. However, in the soil G3 significantly decreased just after 7th to 14th day, and afterward, the pHKCl decreased slowly to the end of the incubation period. As a result of liming long-term changes in soil buffer capacity were not noted. The studied soils were characterised by the higher buffer capacity in alkaline than in acidic range. The microbial biomass carbon content was varied during the incubation in all studied soils. The dissolved organic carbon content increased during the incubation, starting from the 7th to the 120th day of incubation for G2 and G3 soils and from 14th to last day of incubation for G1 soil. Application of lime caused an increase of the dissolved organic carbon content in all studied soils. These studies show that application of ultra-fine powdered calcium carbonate is an effective and fast way to improve soil properties.

How to cite: Woźnica, K., Gąsiorek, M., Sokołowska, J., Józefowska, A., and Zaleski, T.: Dynamics of selected chemical and microbiological properties changes in soils after application of ultra-fine powdered calcium carbonate – incubation studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7128, https://doi.org/10.5194/egusphere-egu2020-7128, 2020.

EGU2020-7130 | Displays | SSS4.13

The effects of natural forest succession on soil respiration in Bieszczady National Park (south-eastern Poland)

Justyna Sokołowska, Agnieszka Józefowska, Karolina Woźnica, and Tomasz Zaleski

The Polish Carpathian Mountains characterise the unique landscape containing high valuable seminatural mountain meadows. However, due to land abonnement, especially decrease agriculture and pasture activity, land cover changes occur. As a result of such changes, natural forest succession in the Carpathians become more and more widespread process. Despite, landscape transformations the natural forest succession is an important issue of science in the context of carbon sequestration. It is well known, that soil organic carbon is the largest terrestrial organic carbon pool in the world. Land cover transformations are regarded as the most dynamic factors of soil organic carbon changes. So far, studies have presented no clear organic carbon accumulation pattern, there is a lack of study covered different land use conversions.

Soil microbiota is the major factor influence on decomposition and transformation of organic matter in the soil. One of the predominantly measured parameters of microbial activity is soil respiration. Moreover, soil respiration is widely used as an indicator of soil quality, degree of development and especially the carbon cycling dynamics. Furthermore, understanding the mechanism controlling microbial respiration is critical to efforts to model carbon cycling at a regional and global scale. The purpose of this study was to investigate the influence of natural forest succession on microbial respiration.

The study area was located in Bieszczady National Park in south-eastern Poland. The samples from two layers (0-10 cm and 10-20 cm) in the four transects each consisted of a meadow, a succession (covered by 30-60 years trees) and a forest (more than 150 years old trees) were taken. Microbial respiration was determined by the incubation method. Respiration was measured for 5 weeks in closed vials. During the three days, the soil was carried in the vial with the small baker containing NaOH and hermetically closed. After this period the baker was removed and trapped CO2 was quantified by titration with HCl and with participation BaCl2. Additionally, based on the first-order kinetic model of microbial respiration cumulative respiration, the content of carbon available for microbial respiration present at the start of the experiment and the rate constant were calculated. Moreover, other microbiological, chemical and physical soil properties were determined in previous research.

Soil respiration C-CO2 after the first week of incubation was significantly higher in the 0-10 cm layer compare to 10-20 cm, however, after the fifth week of incubation differences between investigated layers were no significant differences. In the 0-10 cm layer, the highest cumulative respiration was observed in succession (74.9 mgC-CO2 g-1 h-24) and the lowest in forest (51.9 mgC-CO2 g-1 h-24). However, in the 10-20 cm layer meadow characterised the highest cumulative respiration (42.0 mgC-CO2 g-1 h-24) and forest the lowest (26.8 mgC-CO2 g-1 h-24). Following cumulative respiration, significant the highest content of carbon available for microbial respiration was observed in succession and meadow, in the 0-10 and 10-20 cm layers respectively. Cumulative respiration of investigated soils was positively correlated with total nitrogen content, microbial biomass carbon as well as dehydrogenase and cellulase activity.

How to cite: Sokołowska, J., Józefowska, A., Woźnica, K., and Zaleski, T.: The effects of natural forest succession on soil respiration in Bieszczady National Park (south-eastern Poland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7130, https://doi.org/10.5194/egusphere-egu2020-7130, 2020.

Maize (Zea mays) is the most commonly cultivated energy crop throughout Europe. However, its cultivation has severe negative effects such as loss of biodiversity and its delivery of ecosystem services, soil compaction and enhanced greenhouse gas emissions. These negative effects tend to be even more pronounced in wet soils such as pseudogleys. As an alternative to annual maize, the perennial cup plant (Silphium perfoliatum) is known to produce a similar yield, especially under waterlogging conditions, while management impacts of its cultivation are assumed to be less harmful to soil biota. Therefore, the aim of the present study was to quantify the provision of ecosystem services (here: control of the soil water balance) delivered by earthworm communities in wet soils under cultivation of cup plant compared with maize and to assess the ecological impact of both energy crops.

Fieldwork was conducted cup plant and maize fields (n = 4) in South Western Germany in spring and autumn 2019. The overall soil type was pseudo gleyic luvisol. All fields are managed for commercial purposes by farmers in the area. Sampling included earthworm extraction with allyl isothiocyanate (AITC) while the infiltration rate was measured simultaneously. Afterwards, hand sorting completed the earthworm sampling. Earthworm species, their abundance and biomass (live weight) were determined.

On average, earthworm abundance and biomass were higher in cup plant fields than in maize fields. In addition, variations in earthworm communities were found. While endogeic earthworms, especially of the genus Aporrectodea, were present in all fields, anecic earthworms were more abundant in cup plant fields. Higher infiltration rates were measured in maize fields. Hints to a correlation between the infiltration rates and the functional earthworm groups were found.

Our results suggest that cup plant fields host overall more diverse earthworm communities. These communities are able to produce a wider range of ecosystem services, even though the link between the infiltration and the crops studied in this stud is not yet validated.

How to cite: Wöhl, L. and Schrader, S.: Effects of earthworm communities on water infiltration in wet soils with energy crops, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7628, https://doi.org/10.5194/egusphere-egu2020-7628, 2020.

EGU2020-8773 | Displays | SSS4.13

Automatic detection and mapping of European ground squirrel burrows on UAV-based multi- and hyperspectral imagery with classification methods

Mátyás Árvai, János Mészáros, Zsófia Kovács, Eric C. Brevik, László Pásztor, and Csongor I. Gedeon

European ground squirrels (EGS) are members of the soil megafauna and part of the ecosystem engineers that shape physical, chemical, and biological characteristics of soil ecosystems in European grasslands. Thanks to their strict protection their abundance and distribution have been surveyed systematically and annually in Hungary. The results of their 20 year monitoring indicate that their population is declining, there are sudden extinctions of local populations, and a desynchronized variation of the abundance of local populations occur either spatially or temporally.

The monitoring protocol involves the estimation of their abundance in each colony by a strip-transect method and the habitat-colony area by visual observations or digital maps. Both approaches use animal burrows as proxies for either their presence (colony area) or density (colony size). These estimation methods, however, consist of systematical errors: first, they consider the animals’ density to be even over the entire habitat-area, second, they conjecture that animals occupy the habitable area completely, and third, evenly. If we were able to survey distribution and abundance of EGS more accurately, frequently, and efficiently, we could better intervene in time when local populations begin to decline or before they disappear. In addition, we could better estimate the effects (+ or -) of management strategies in real time.

The primary aims of our study were to develop a non-invasive, semi-automated method for (1) estimating abundance of EGS in the area of occupation of a colony, and (2) delineating their occupancy within the habitable area. We have defined burrow openings and mounds as quantitative proxies for the presence of animals. We have started to develop a monitoring technique to identify, locate, and count objects of interest in images automatically and to delineate the area of occupancy by identifying those objects of interest from the surroundings. To survey EGS colonies and habitats we have used a multirotor platform UAV equipped with either an RGB visible-range or a hyperspectral sensor.

To test our method several pilot areas with different vegetation and relief were surveyed. Acquired aerial images have been processed by photogrammetric software and resulting high spatial resolution orthomosaics are classified by machine-learning algorithms (randomforest, CART, C5.0) implemented in a custom R script. As detection of mounds and openings are visually restricted by vegetation height (e.g. grass, shrubs, weeds, herbs), we have studied the effect of grass height on detection success. Preliminary results suggest that successful classification can be performed either on RGB visible-range and hyperspectral images. However, the appropriate spatial resolution (below cm range) and the presence of high grass are more important key factors than number of spectral bands.

Detecting EGS burrow openings and mounds is based on surface characteristics of EGS burrow openings and mounds consequently the method is being developed for EGS specifically but can be modified to the characteristics of other burrowing mammals of this size (e.g. mole-rats, moles).

How to cite: Árvai, M., Mészáros, J., Kovács, Z., Brevik, E. C., Pásztor, L., and Gedeon, C. I.: Automatic detection and mapping of European ground squirrel burrows on UAV-based multi- and hyperspectral imagery with classification methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8773, https://doi.org/10.5194/egusphere-egu2020-8773, 2020.

EGU2020-10240 | Displays | SSS4.13

Microbial properties in European arable soils with different tillage systems

Deborah Linsler, Jacqueline Gerigk, Ilka Schmoock, Rainer Georg Jörgensen, and Martin Potthoff

Reduced tillage is assumed to be a suitable practice to maintain and promote microbial biomass and microbial activity in the soil. The microbial biomass in particular is considered as a sensitive indicator for detecting soil disturbances. The objective of this study was to quantify the influence of different tillage practices on microbial parameters in the soil. Furthermore, we analyzed the relation of those microbial parameters with site-specific conditions.

To get a deeper insight in that topic, soils from different fields of agricultural farms with different tillage practices in France (12 fields), Romania (15 fields) and Sweden (17 fields) were examined within the “SoilMan project”. The tillage practices were no-tillage (absence of any tillage), minimum tillage (non-inversion tillage for instance by chisel plough or cultivator) and conventional tillage (inversion tillage by ploughing), all of which were carried out for at least five years prior to sampling. Soil samples were taken in spring 2018 from all fields under winter wheat (Triticum aestivum) at three soil depths (0-10 cm, 10-20 cm, 20-30 cm). As microbial parameters we measured microbial biomass carbon and nitrogen contents, ergosterol contents (as proxy for fungi) and basal respiration rates. For site-specific conditions we measured soil organic carbon, total nitrogen and total phosphorus contents, texture, pH and the soil water content.

Results show that microbial biomass carbon and nitrogen were more affected by soil type and soil texture as well as climatic conditions (mean precipitation and temperature) than by tillage practices. For instance, an increased clay content had a positive effect on the microbial biomass and, in addition to the higher average annual temperature, explained the generally low values ​​in France. The lack of inversion tillage primarily led to stratified levels of soil organic carbon, microbial biomass carbon and ergosterol contents, which can be explained by the lack of crop residue incorporation. There were hardly any differences in microbial indicators between the tillage intensities when looking at the whole of the sampled soil profile (0-30 cm). In France, the microbial biomass carbon / soil organic carbon ratio was lower for no-tillage than for conventional tillage, which may indicate, among other things, that the mechanically ground organic matter incorporated into the soil under conventional tillage was better colonized by microorganisms. However, this effect could not be confirmed in the other countries. The metabolic quotient was generally increased at the lowest sampled depth (20-30 cm), irrespective of the cultivation.

We can conclude that the soil tillage intensity influenced the distribution of microbial biomass carbon and soil organic carbon contents more strongly than the total amounts in the sampled soil profile and that the soil texture had a greater impact on microbial soil properties than the agricultural management practice.

How to cite: Linsler, D., Gerigk, J., Schmoock, I., Jörgensen, R. G., and Potthoff, M.: Microbial properties in European arable soils with different tillage systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10240, https://doi.org/10.5194/egusphere-egu2020-10240, 2020.

EGU2020-11299 | Displays | SSS4.13

Effects of agricultural soil management practices on soil microbiota across Europe – investigations in seven long term field experiments

Luis F. Arias, Gema Guzmán, José A. Gómez, Manuel Anguita-Maeso, Dumitria Dascalu, Deborah Linsler, Thierry Morvan, Maarja Öpik, Guénola Pérès, Martin Potthoff, Mignon Sandor, Astrid Taylor, Kaisa Torppa, Tanel Vahter, and Blanca B. Landa

Traditionally, soil quality has been assessed through physical, chemical and biological properties without paying attention to soil biota and the different associated ecosystem services provided (Tyler, 2019). To fill that gap, the european BiodivERsA “SoilMan” project (Ecosystem services driven by the diversity of soil biota – understanding and management in agriculture) is focused on the relations among soil management, soil biodiversity, and ecosystem services, at seven different management gradients in agricultural long term observations (LTO’s) trials across Europe (France “SOERE-PROs EFELE” and “SOERE-ACBB Lusigan”, Romania “Turda”, Sweden “Angermanland” and “Säby-Uppland”, Germany “Garte Süd” and Spain “La Hampa”). Management gradients covered different tillage regimes (zero, minimum and conventional) and different crop rotations (crop types and duration).

In the present study, we characterised the bacterial and fungal communities of soils from the different countries and agricultural managements in arable land. The samplings were carried out following the same methodology in all the countries during 2017-2018 when wheat was sown in the LTO’s. The soil DNA was extracted and subjected to metabarcoding analysis of 16S and Internal Transcribed Spacer (ITS) ribosomal RNA (rRNA) for bacterial and fungal community analysis, respectively.

Different alpha diversity metrics, including number of OTUs, Simpsons and Shannon indexes, as well as beta diversity distances (weighted and unweighted UNIFRAC, Jaccard and Bray-Curtis) were calculated. Multidimensional Scaling ordination plots (PCoA) were used to visualize the existence of community gradients among locations and soil managements. All the statistical data  procedure  was analysed using the vegan R package (Oksanen, 2011).

In general terms, results show that alpha diversity for both bacteria and fungi, clearly differs among countries while soil management effects are less defined among and within countries. Concerning the beta diversity indexes, communities tend to cluster more according to the spatial location than due to the soil management regimen. This is especially true for fungal communities. Further analysis will identify possible correlations of bacterial and fungal communities with environmental variables and other physicochemical and biological soil properties.

References:

Oksanen, J. (2011). Multivariate Analysis of Ecological Communities in R: vegan tutorial.

Tyler, H. L. (2019). Bacterial community composition under long-term reduced tillage and no till management. Journal of Applied Microbiology, 126(6), 1797–1807. https://doi.org/10.1111/jam.14267

How to cite: Arias, L. F., Guzmán, G., Gómez, J. A., Anguita-Maeso, M., Dascalu, D., Linsler, D., Morvan, T., Öpik, M., Pérès, G., Potthoff, M., Sandor, M., Taylor, A., Torppa, K., Vahter, T., and Landa, B. B.: Effects of agricultural soil management practices on soil microbiota across Europe – investigations in seven long term field experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11299, https://doi.org/10.5194/egusphere-egu2020-11299, 2020.

EGU2020-21058 | Displays | SSS4.13

Evaluation of the enzymatic activity and diversity of soil microorganism in Andean temperate forests degradation gradient

Alejandro Atenas, Felipe Aburto, Rodrigo Hasbun, and Carolina Merino

Soil microorganism are an essential component of forest ecosystem. Microbes and plant release enzymes that catalyse reactions needed to decomposed soil organic matter and crucial to release nutrient in available forms. Therefore, soil enzymes are relevant indicators of microbial activity and nutrient cycling in forest ecosystems. Anthropic disturbances in natural forest, such as logging and exotic livestock, modify the structure and composition of forest thereby altering the structure and activities of soil microbial communities.

Here we determine the effect of these disturbances on the enzymatic activity (Dehydrogenase-DHA; Phosphatase Acid-AP; Ureasa-UA) and the microbial diversity using a forest degradation gradient of native temperate forest dominated by Nothofagus dombeyi, Nothofagus obliqua and Nothofagus alpina. In addition we quantify C:N:P nutrient reservoirs, stoichiometry and available pools. Preliminary results suggest a higher activity of the DHA enzyme in degraded forest dominated by N. obliqua. AP and UA showed no relationship with the phosphorus and total nitrogen reservoirs. Forest degradation modify microbial communities, C:N:P stoichiometry, total and available nutrient pools, where the biggest pool of total C and N was registered on low degraded condition and decrease as degradation condition increase from medium to high degraded forest (74.44%; 65.35%; 48.05% for total C and 3.71; 3.41; 3.24 for total N respectively). Inverse relation was registered for total P pool were the highest pool was registered on high degraded condition (14963ppm; 13092ppm and 11299ppm from high to low degraded condition). Degraded sites were dominated mainly by members of Gammaproteobacteria, Alfaproteobacteria, Acidobacteria and Bacteroidia. Chitinophagaceae and Burkholderiacea were not detected in degraded plots, which suggest that some of the specialised functions carried by this groups could be lost. With respect to fungi Ascomycota and Basidomicota Phylum dominated the soil profiles. A species of the genus Clonostachys (Bionectriaceae) was identified, an endophyte fungus that acts as a saprophyte, also known to be a parasite of other fungi and some nematodes.

This research contributes to a better understanding of the direct effects of anthropic disturbances on the biogeochemical functioning of temperate forests and their relationship to the activity and composition of microbial communities.

Acknowledgment: Proyecto Reforestación Enel – UdeC

How to cite: Atenas, A., Aburto, F., Hasbun, R., and Merino, C.: Evaluation of the enzymatic activity and diversity of soil microorganism in Andean temperate forests degradation gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21058, https://doi.org/10.5194/egusphere-egu2020-21058, 2020.

EGU2020-21272 | Displays | SSS4.13

Soil microbial functional diversity along an elevation gradient in Northwestern Caucasus

Kristina Ivashchenko, Alexandra Seleznyova, Sofia Sushko, Anna Zhuravleva, Alexander Tronin, Nadezhda Ananyeva, and Valery Kudeyarov

In contrast to taxonomic diversity of soil microbiome, the distribution patterns of functional diversity for various ecosystems, including along an altitudinal gradient, is poorly understood. Consequently, the study focuses on finding out the spatial distribution features of microbial functional diversity in mountainous soils along elevation through forests and meadows ecosystems. We hypothesized that soil microbial functional diversity is increasing along the altitudinal gradient in conjunction with plant diversity. In Northwestern Caucasus (Karachay-Cherkess Republic, Russia) the north-eastern mountain slope was studied across mixed, fir and deciduous forests, subalpine and alpine meadows located from 1260 to 2480 m above sea level. Twelve plots (0.25 m2 each) were randomly chosen within each ecosystem (total 60). Plant species composition and Shannon plant diversity index (H) were assessed for the plots. Topsoil samples (0-10 cm) were taken from the plots in August for assessment microbial functional diversity through community level physiological profile (CLPP). It was determined by microbial respiration response on amino, carboxylic, phenolic acids and carbohydrates (MicroResp). Shannon's functional diversity index based on the CLPP (HCLPP) was calculated. Edaphic properties as moisture, temperature, pH, total carbon (C) and nitrogen (N) contents were determined as possible drivers of CLPP. As expected, plant diversity was increased along the elevation gradient with the lowest H value in the mixed forest (0.6) and the highest – in the alpine meadow (1.9). The HCLPP did not differ among studied ecosystems and reached on average 2.4 for each. Microbial respiration response on amino acids was mainly contributed to dissimilarities between studied ecosystems and increased on average by 1.3 times with elevation from mixed to fir and deciduous forests. Along this elevation row, the soil N content was the most significant driver compared to other edaphic properties. Among subalpine and alpine meadows the differences between microbial responses on studied carbon substrates were not found.

Considering that elevation didn’t contribute to distribution patterns of soil HCLPP at the inter-ecosystems level, consequently, the hypothesis of our study was rejected. Plant diversity was not related to HCLPP as expected. Meanwhile, the distribution patterns of soil microbial community, utilizing amino acids, along the altitudinal gradient was found.

The current research was financially supported by RFBR No 20-34-70121

How to cite: Ivashchenko, K., Seleznyova, A., Sushko, S., Zhuravleva, A., Tronin, A., Ananyeva, N., and Kudeyarov, V.: Soil microbial functional diversity along an elevation gradient in Northwestern Caucasus, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21272, https://doi.org/10.5194/egusphere-egu2020-21272, 2020.

EGU2020-22032 | Displays | SSS4.13

Microbiological and FTIR applications in Atlantic forest regeneration areas

Laura Borma, Breno Pupin, and Kumiko Sakani

Soil regulates plant productivity in terrestrial ecosystems and maintains the balance of biogeochemical cycles through biotransformations mediated by living organisms, which are responsible for 80 to 90% of these functions. Therefore, it is necessary to evaluate whether restoration/natural regeneration processes in land degraded areas may allow the soil to partially or fully recover its microbial functions reflecting thus, in the fertility of these soils and consequently in the regeneration of forests. The use of microbiological attributes combined with infrared spectroscopy (FTIR) offers many opportunities to understand temporal dynamics and spatial variability in the recovery of important ecosystems during forest regeneration stages.The present work aims to evaluate the evolution of microbial quality in soils under three Atlantic Forest areas at different stages of regeneration (R40 - advanced, R12 - intermediate and RP - early regeneration pasture area) located in São Paulo state, Brazil. We used as indicators of the soil microbial quality the number of colony-forming units (CFU) of total bacteria and fungi, spore density and root colonization by arbuscular mycorrhizal fungi (AMF). We also analyzed these soils by Fourier Transform Infrared Spectroscopy (FTIR-UATR). For each area, seven soil samples and plant roots were randomly collected at a depth of 0-20 cm at the end of the dry season (October 2019). In terms of dry soil, the CFU bacteria for each area was, respectively, 7.7, 4.6 and 3.2 x 105 CFU g-1; fungi, 1.2, 1.0 and 0.6 x 103 g-1, and AMF spore density, 39, 33 and 27 spores 50 ml-1. On average, AMF root colonization was 26 (R40), 25 (R12) and 21% (PR). For the FTIR spectrum, the major bands and their assignments were identified as a 3.370 cm-1 wide band assigned to the O-H groupings; a peak at 1.635 cm-1 attributed to aromatic C=C vibration, with contribution of C=O of the COO- and a peak at 1.072 cm-1 attributed to the carbohydrate C-O bond. No difference was attributed to the composition of the main functional groups (O-H, C=O, COO- and C-O) between the soils from R40 and R12, but this difference was more evident when compared to the RP area.  The microbiological results show good similarity between the tree areas in terms of spores, fungi and root colonization. However, in terms of bacteria, there is a more pronounced difference between the recent (RP) and the older regeneration areas (R12 and RP). Similar pattern was pointed by the FTIR results. Considering pasture as a strongly degrading area, these results are interesting since they show the differences in the soil quality between the three areas is not highly pronounced. They also show that in twelve years of regeneration, in many aspects’ soils become similar to the area with forty years regeneration. Given these results, a further investigation on soil physics of these areas is being developed to relate soil regeneration processes and soil physical properties such as porosity, density and water retention capacity, all of them important to the maintenance of vegetation and ecosystem services of water and climate regulation.

How to cite: Borma, L., Pupin, B., and Sakani, K.: Microbiological and FTIR applications in Atlantic forest regeneration areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22032, https://doi.org/10.5194/egusphere-egu2020-22032, 2020.

EGU2020-16110 | Displays | SSS4.13

Fertilization effects on the fungal biomass in grasslands

Ana Barreiro, Aaron Fox, Andreas Lüscher, Franco Widmer, and Linda-Maria Dimitrova Mårtersson

Fertilisation is a common practise in grass production systems performed to increase primary production, a supporting ecosystem service essential for other services. However, different fungal groups, like saprothropic fungi (SF) and the obligate symbionts arbuscular mycorrhizal fungi (AMF), have potential differential response to the fertilizer concentration and composition. Three controlled field experiments were utilised in our study, two medium-term (6 years) in the south of Sweden (SE) and one long-term experiment (46 year) in Switzerland (CH), all sampled in 2018. The Swedish sites included the same two factor treatment, i.e. four different plant mixtures and two (SE-Lanna) or three (SE-Alnarp) nitrogen fertilization levels (0, 60, 120 kg ha-1 yr-1); while the Swiss experiment  included different proportions of N, P and K fertilization under different cutting regimes (CH-Bremgarten). The PLFA and NLFA (phospholipid- and neutral lipid fatty acid) analysis was used to estimate the fungal biomass (SF+AMF). The application of N was associated with a decrease in the AMF biomass, with significant effects with the application of 60 and 120 kg N ha-1 in SE-Alnarp, and 75 and 150 kg N ha-1 in CH-Bremgarten. On the other hand, the SF biomass was only negatively affected by the N fertilization in SE-Lanna (60 kg N ha-1) under the plant mixture that showed the biggest SF biomass in the unfertilized plot; and by the highest application of N in CH-Bremgarten. Our findings indicate that nitrogen fertilization influences microbial community structure and reduces the abundance of AMF, with these being more sensitive than SF to fertilizer application.

How to cite: Barreiro, A., Fox, A., Lüscher, A., Widmer, F., and Dimitrova Mårtersson, L.-M.: Fertilization effects on the fungal biomass in grasslands , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16110, https://doi.org/10.5194/egusphere-egu2020-16110, 2020.

Studying the soil seed bank is a time and space-consuming task, and therefore only a small fraction of the soil is sampled. It is then critical to optimize sampling effort to reliably estimate soil seed bank properties. Here, we test whether the spatial patterns of species richness in the soil seed bank differ under increasing sampling effort. For this, we used data of germination from soils in a mediterranean shrubland in Central Spain. Two data sets were used, one of the seedlings emerging after heating the soil to break dormancy, and one with the combined germinations of heated and non-heated soil subsamples. We simulated increased sampling effort with sample-based rarefaction curves, extrapolating the species richness corresponding to a 2x and 3x increase in the number of individuals (seedlings) per sample. We then analyzed the spatial pattern of the original and extrapolated species richness using linear regression and semivariograms. Species richness increased by 34% and 52% in the 2x and 3x estimations, however the spatial pattern of species richness remained largely unchanged. For the long-distance spatial pattern, the slope of the plot-scale trend (i.e., the regression coefficient) increased only slightly with increasing sampling effort, while the adjusted R-squared of the regression decreased with increasing sampling effort. For the short-distance spatial pattern we could only fit spherical model semivariograms to the data from soils exposed to a heat shock, and the intensity of the spatial pattern (spatial dependence) increased very slightly with increased sampling effort. These results suggest that even with a doubled or tripled sampling effort, as provided by the simulations, the spatial pattern of species richness would have remained unchanged. We argue that increased effort in detecting species in the seed bank needs not necessarily improve the detection of spatial pattern.

How to cite: Torres, I. and Moreno, J. M.: Relating sampling effort to the detection of spatial patterns of species richness in the soil seed bank of a mediterranean shrubland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18218, https://doi.org/10.5194/egusphere-egu2020-18218, 2020.

EGU2020-4224 | Displays | SSS4.13

Soil microbial communities from olive cultivars are shaped by seasonality and geographical scales

Manuel Anguita-Maeso, Juan C. Rivas, Guillermo León, Cristina Estudillo, Juan A. Navas-Cortés, and Blanca B. Landa

Soil biodiversity is essential to sustain healthy ecosystems supporting the maintenance of the environment and agricultural practices. Soils provide vital habitat for microorganisms which play determinant roles through organic matter transformation and nutrient cycling, which have a great impact in agriculture and food production and climate regulation. Understanding soil microbiome is becoming a relevant matter for supporting plant productivity and plant health. Unravelling the function and structure of microbial communities prevailing in soils is essential for a better understanding of plant development. However, the vast majority of soil microorganisms remain unknown and their variability at regional and temporal seasonal scale is still an unexplored field. In this study, soils associated to the rhizosphere of three olive varieties were sampled during autumn 2018 and spring 2019 in three olive orchards with differences in physicochemical soil characteristics and climate, located in the provinces of Jaén, Córdoba and Málaga, in Andalusia, Southern Spain. Bacterial and fungal populations were analysed using Illumina MiSeq platform to determine the structure and diversity of soil microbial communities and how those environmental factors may affect them. Sequencing data resulted in a total of 730 bacteria OTUs, distributed in 23 phyla and 312 genera while there were 553 fungal OTUs divided in 8 phyla and 280 genera. Proteobacteria was the most abundant bacterial phylum across olive orchard location (30.37%-5.52%) followed by Actinobacteria (10.72%-5.49%) and Bacteroidetes (7.73%-0.89%). There was circa 50% abundance reduction of these phyla on samples taken in autumn compared to that sampled in the spring. Unique bacterial genera differed according to field location in Jaén (72), Córdoba (45) and Málaga (48) while the shared bacteria genera among plots was 82. Fungi results showed Ascomycota (49.13%-3.13%) and Basidiomycota (25.64%-2.79%) as the two most abundant phyla in all olive orchards. A reduction on the abundance of Ascomycota was noticed on samples from autumn to spring (37.84% and 20.42%, respectively), while Basidiomycota displayed a distinct behavior (11.89% to 20.27%). Exclusive fungal genera varied from Jaén (50), Córdoba (7) and Málaga (14), whereas the core fungal genera among fields was 28. This information can contribute to generate new knowledge regarding temporal and spatial scale insights on soil microbiome associated to olive crop that may be considered to increase plant health and soil biodiversity.

Study supported by Projects 01LC1620 SOILMAN, XF-ACTORS 727987 (EU-H2020) and AGL2016-75606-R (MICINN Spain and FEDER-EU).

How to cite: Anguita-Maeso, M., Rivas, J. C., León, G., Estudillo, C., Navas-Cortés, J. A., and Landa, B. B.: Soil microbial communities from olive cultivars are shaped by seasonality and geographical scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4224, https://doi.org/10.5194/egusphere-egu2020-4224, 2020.

EGU2020-6297 | Displays | SSS4.13

Litter decomposition under drought related with litter and decomposer diversity

Junwei Luan, Shirong Liu, Siyu Li, Yi Wang, Haibo Lu, Junhui Zhang, Shijie Han, Hui Wang, Lin Chen, Wenjun Zhou, and Yiping Zhang

Litter decomposition is a crucial ecosystem process that driven carbon and nutrient cycling, which can be determined by the diversity of biota that involved in decomposition process. Forest ecosystems at globally have been or being expected to experience drought stress and cause dieback, consequently may lead losses of tree species and soil biota. However, how projected drought affect litter decomposition and its relationship with biodiversity is less understood. We hypothesize that 1) drought depressed the activity of soil biota and retard litter decomposition, while biodiversity loss at both plant and soil organism levels exacerbated the drought induced retarding of litter decomposition; 2) soil biota interaction or the top down control of ecosystem process can be relieved under drought stress. In our study, throughfall reduction experiments were conducted in five locations representing different forest types (i.e., temperate broadleaf-Korean pine mixed forest, warm-temperate oak forest, subtropical bamboo forest, south subtropical evergreen forest, tropical rainforest) along a climate gradient in China. In each location, leaf litter from 4 common native plants and 11 mixtures of these litter types were enclosed in three types of nylon mesh screens litterbags, and were placed in the field of throughfall reduction and control treatments replicated five times. Different combination of litter types represent diversity of litters, and mesh size of litterbags represent diversity of functional group of soil biota (i.e., microorganism, medium-sized fauna, large-bodied fauna) participate into decomposition. The litterbags were incubated in situ for a period of time and were collected, all litter samples were separated into the constituent species immediately after litter retrieval, mass loss, C and N loss of each sample was determined. Thereby the hypothesizes can be testified.

How to cite: Luan, J., Liu, S., Li, S., Wang, Y., Lu, H., Zhang, J., Han, S., Wang, H., Chen, L., Zhou, W., and Zhang, Y.: Litter decomposition under drought related with litter and decomposer diversity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6297, https://doi.org/10.5194/egusphere-egu2020-6297, 2020.

EGU2020-12665 | Displays | SSS4.13

Microbial and abiotic interactions driven higher microbial anabolism on organic carbon accumulation during 2000 years of paddy soil development in the Yangtze River Delta, China

Qingfang Bi, Xianyong Lin, Wolfgang Wanek, Shasha Zhang, Alberto Canarini, Andreas Richter, and Yong-Guan Zhu

Paddy soil as a major component of cropland, plays an important role in the global carbon (C) cycle and favors carbon sequestration especially in southern China. Soil microorganisms are central to the conversion of organic matter into SOC, yet the mechanisms underlying the paddy management at long time scales remain largely unknown, including microbial enzyme and functional potential kinetics, microbial growth and turnover. Here, using observations from a 2000-year-old paddy chronosequence since reclamation from tidal wetland at two different soil depths (0-20 cm and 20-50 cm) in the Yangtze River Delta, China, we show how paddy soil C sequestration is driven by the relationship between short-term responses in microbial physiology and long-term changes in biogeochemical soil properties. The samples were analyzed for nutrient pools, microbial biomass and growth, microbial activity and community composition, functional gene abundances, as well as microbially mediated nitrogen (N) cycling rate to determine how these microbial functionalities and processes affect microbial carbon use efficiency (CUE), an important indicator for microbial C sequestration. Across multiple time-scales ranging from decades to millennia, SOC in topsoil was increased by 65% during the first 50 years and reached the steady-state condition until 700-year, then was largely accumulated by 169% and 125% in 1000- and 2000-year, respectively, while C loss appeared in subsoil after 700 years of paddy cultivation. For topsoil and subsoil, microbial CUE reached to the highest values in 1000- and 700-year (0.46 and 0.36, respectively, while only 0.20 in the tidal wetland), along with microbial growth which both increased 5.2- and 3.3-fold in 1000-year, respectively. We found the similar increasing trends between microbial CUE and soil C:P and N:P ratios, the reduction of N limitation and functional potentials including N- and P-cycling, C degradation, C-fixation (acsA gene), microbial community homogenization and microbial biomass across soil chronosequence in topsoil. Moreover, the structural equation model revealed that with longer paddy management, the decline in soil pH had positive effects on microbial functional potentials and microbial biomass carbon. The enhanced functional potentials directly positively affected microbial growth, and thereby on microbial biomass carbon. Finally, the prolonged paddy cultivation increased SOC content via its direct positive effect and indirect positive influence on microbial biomass carbon. We conclude that longer paddy management captures the cumulative microbial anabolism on SOC sequestration in the plough layer, with the shifts in abiotic and biotic conditions towards increased nutrient availability and homogenous microbial community with higher functional potentials.

How to cite: Bi, Q., Lin, X., Wanek, W., Zhang, S., Canarini, A., Richter, A., and Zhu, Y.-G.: Microbial and abiotic interactions driven higher microbial anabolism on organic carbon accumulation during 2000 years of paddy soil development in the Yangtze River Delta, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12665, https://doi.org/10.5194/egusphere-egu2020-12665, 2020.

SSS5.2 – Mechanisms of soil organic matter stabilization and carbon sequestration

Soils are continuously exposed to recurrent cycles of drying and rewetting, for instance, when extended periods of drought are followed by rainfall events. For nearly a century it has been known that the balance of the soil C budget is affected by these moisture fluctuations, which is characterized by very large mineralization losses when dry soils are rewetted. In some ecosystems, the soil C losses resulting from this phenomenon (“the Birch effect”) even represent a dominant fraction of the annual C-transfer from soils to the atmosphere. However, to balance the soil C budget, the microbial control of C input to the soil during these events also needs to be known. It was recently discovered that the growth of microorganisms, driving C stabilization in soils, has a far slower response to rewetting than does respiration. This results in a pronounced and dynamic disconnection between the mechanisms controlling microbial respiration and growth. Despite the significance of this decoupling for the C budget and the long-term balance of soil C stocks, this feature has so far been entirely overlooked by biogeochemical models, potentially leading to a failure to capture the capacity of soils to mitigate the effects of climate change.

To close this knowledge gap, we developed a new process-based soil microbial model that includes a wide range of physical, chemical and biological mechanisms to explore the nature of soil C dynamics induced by moisture changes. The model was validated using respiration data from soils exposed to repeated cycles of drying and rewetting which has been frequently studied (Miller et al., 2005, Soil Biol Biochem) and compared to other models existing in the literature. The proposed model was able to capture, at once and for the first time, the respiration data and the decoupled behaviour of growth. Simulation results identified the drought-legacy effects on C use efficiency and microbial physiology as the main mechanisms controlling the soil responses to moisture fluctuations. This represents a critical step towards unravelling the C sequestration capacity of soils, its drivers and feedback on climate.

How to cite: Brangarí, A. C., Manzoni, S., and Rousk, J.: Uncovering the diverging factors that control microbial carbon sequestration and respiration in soils exposed to moisture fluctuations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-415, https://doi.org/10.5194/egusphere-egu2020-415, 2020.

EGU2020-514 | Displays | SSS5.2 | Highlight

The chemical and physical stability soil organic carbon in the top 1 m of the soil profile under different land uses in the UK

Dedy Antony, Jo Clark, Chris Collins, and Tom Sizmur

Soils are the largest terrestrial pool of organic carbon and it is now known that as much as 50% of soil organic carbon (SOC) can be stored below 30 cm. Therefore, knowledge of the mechanisms by which soil organic carbon is stabilised at depth and how land use affects this is important.

This study aimed to characterise topsoil and subsoil SOC and other soil properties under different land uses to determine the SOC stabilisation mechanisms and the degree to which SOC is vulnerable to decomposition. Samples were collected under three different land uses: arable, grassland and deciduous woodland on a silty-clay loam soil and analysed for TOC, pH, C/N ratio and texture down the first one metre of the soil profile. Soil organic matter (SOM) physical fractionation and the extent of fresh mineral surfaces were also analysed to elucidate SOM stabilisation processes.

Results showed that soil texture was similar among land uses and tended to become more fine down the soil profile, but pH did not significantly change with soil depth. Total C, total N and C/N ratio decreased down the soil profile and were affected by land use in the order woodland > grassland > arable. SOM fractionation revealed that the free particulate organic matter (fPOM) fraction was significantly greater in both the topsoil and subsoil under woodland than under grassland or arable. The mineral associated OC (MinOC) fraction was proportionally greater in the subsoil compared to topsoil under all land uses: arable > grassland > woodland. Clay, Fe and Mn availability play a significant role (R2=0.87) in organic carbon storage in the top 1 m of the soil profile.

It is evidently clear from the findings that land use change has a significant effect on the dynamics of the SOC pool at depth, related to litter inputs to the system.

How to cite: Antony, D., Clark, J., Collins, C., and Sizmur, T.: The chemical and physical stability soil organic carbon in the top 1 m of the soil profile under different land uses in the UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-514, https://doi.org/10.5194/egusphere-egu2020-514, 2020.

It has long been known that processes that determine soil carbon dynamics are spatially heterogeneous. However, the spatially heterogeneous mechanisms have not been well characterized nor incorporated into Earth system models for predicting soil carbon sequestration in response to climate change. This presentation shows our recent results from an integrated approach that combines deep learning, data assimilation, big data with >100,000 vertical soil organic carbon (SOC) profiles worldwide, and the Community Land Model version 5 (CLM5) to optimize the model representation of SOC over the world. Our results indicate that CLM5 that is trained by >100,000 data via data assimilation alone is constrained with spatially homogeneous parameter values over the globe. However, CLM5 that is not only trained by data assimilation but also optimized by deep learning from the big data is constrained with spatially heterogeneous parameter values. Our further analysis suggests that those parameters representing microbial carbon use efficiency greatly vary across space. The spatial heterogeneity in carbon use efficiency is caused by interactions of edaphic, climate and vegetation factors. When the spatially heterogenous parameterization is applied to simulation over time with temporal variation, CLM5 predicts substantial carbon sequestration under climate change. In contrast, CLM5 with the spatially homogeneous parameters predicts carbon loss. Our study demonstrates the importance to uncover and represent spatially heterogeneous mechanisms underlying soil carbon sequestration in order to realistically predict SOC dynamics in the future.

How to cite: Luo, Y., Tao, F., and Huang, X.: Spatially heterogeneous mechanisms underlying soil carbon sequestration as revealed via big data-driven Earth system modelling and deep learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2473, https://doi.org/10.5194/egusphere-egu2020-2473, 2020.

EGU2020-3613 | Displays | SSS5.2

Modelling dynamic interactions between soil structure and soil organic matter

Nicholas Jarvis, Elsa Coucheney, Claire Chenu, Anke Herrmann, Thomas Keller, Thomas Kätterer, and Katharina Meurer

The aggregated structure of soil is known to reduce rates of soil organic matter (SOM) decomposition and therefore influence the potential for long-term carbon sequestration. In turn, the storage and turnover of SOM strongly determines soil aggregation and thus the physical properties of soil. The two-way nature of these interactions has not yet been explicitly considered in soil organic matter models. In this study, we present and describe a new model of these dynamic feedbacks between SOM storage, soil pore structure and soil physical properties. We show the results of a test of the model against measurements made during 61 years in a field trial located near Uppsala (Sweden) in two treatments with different OM inputs (bare fallow, animal manure). The model was able to successfully reproduce long-term trends in soil bulk density and organic carbon content (SOC), as well as match limited data on soil pore size distribution and surface elevation. The results suggest that the model approach presented here could prove useful in analyses of the effects of soil and crop management practices and climate change on the long-term potential for soil organic carbon sequestration.

How to cite: Jarvis, N., Coucheney, E., Chenu, C., Herrmann, A., Keller, T., Kätterer, T., and Meurer, K.: Modelling dynamic interactions between soil structure and soil organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3613, https://doi.org/10.5194/egusphere-egu2020-3613, 2020.

Microbial transformation of organic substances is a key process of soil organic matter (SOM) formation. Carbon (C) entering the soil can be transformed in three main directions: i) stabilization over long period without relevant microbial utilization, ii) recycling by microorganisms for production of new and reparation of old cells, and iii) microbial utilization for energy production leading to C losses from soil as CO2. So, individual compounds within huge diversity of the organic substances entering the soil will follow predominantly one of these directions, depending on the substance chemistry, soil properties, microbial activities and environmental conditions. Therefore, organic substances can have two general trends: i) they converge from any initially distinct compounds (e.g. in litter or rhizodeposition) to completely mixed, so that it is impossible to trace back their origin; or ii) divergence: the substances maintain their differences despite microbial transformations by SOM formation.

We proved two opposite hypotheses that convergence and divergence of the fate of organic substances depends on microbial utilization at two levels: 1) intermolecular: high recycling intensity leads to convergence, whereas stabilization leads to divergence of the C originated from various organic compounds, and 2) incorporation of C from various molecule positions into microbial metabolic cycles define the C fate at intramolecular level. We tested the first hypothesis based on own and literature data to the fate of polymeric substances: sugars, proteins, lipids and lignin. The second hypothesis was tested by the C atoms from various positions of pentoses and hexoses by position-specific 13C and 14C labeling.

The polymeric substances as well as monomers from the same chemical group clearly converge to three groups stabilization, recycling and losses. Carboxylic acids will be nearly completely mineralized and are lost from soil. The fate and functions organic compounds depend mainly on microbial recycling. Proteins, amino acids and sugars - key components of microbial biomass - are intensively recycled and e.g. proteins remain relatively long in soil.

For the intramolecular differences, we traced the fate of position-specific 13C labeled glucose and ribose under field conditions for 800 days. Both sugars were simultaneously metabolized via glycolysis and pentose phosphate pathway. The similarity between position-specific 13C recovery in microbial biomass and soil reflected high contribution of microbial necromass to SOM. The mean residence time of uniformly labeled 13C ribose in the soil was 3 times longer than that of glucose. Consequently, ribose and glucose were incorporated into different cellular components, defining their long-term fate in soil. The convergence of glucose C positions in soil and microbial biomass revealed that recycling dominated glucose transformation. In contrast, divergence of ribose C positions in soil revealed that intact ribose-derived cell components are reused or preserved in SOM.

Thus, convergence vs. divergence distinguished the two general trends explaining the long persistence of C at inter- and intra-molecular levels: microbial recycling leads to convergence, whereas slow decomposition and preservation define the divergence of C pathways in soil.

How to cite: Kuzyakov, Y., Bore, E., and Dippold, M.: Soil organic matter formation: Convergence and divergence of three carbon pathways: Stabilization, recycling and losses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6174, https://doi.org/10.5194/egusphere-egu2020-6174, 2020.

Improvements in management practices can prevent the decline of soil organic carbon (SOC) storage caused by conventional tillage practice in Northeast China. Density and size fractionation can track the transformation of plant residue into SOC and its location in soil matrix. We used a long-term field study in China to evaluate these changes as a result of improved management involving tillage and cropping systems. Experimental treatments included no-till (NT) and moldboard ploughing (MP) under monoculture maize (Zea mays L.) (MM) and maize-soybean (Glycine max Merr.) rotation (MS); these were compared to the traditional management involving conventional tillage (CT) under MM. An incubation study was conducted to evaluate mineralization and the biodegradability of SOC. The soils were also physically fractionated by density (light fraction, LF) and size (sand, silt, clay). With improved management, the SOC storage in the clay showed the largest increase across all fractions. This increase was greater for MS than MM. The NTMS treatment resulted in a decline in silt-OC storage compared to CTMM. The SOC mineralization (mg CO2-C g-1 soil) was affected by tillage and driven by LF-OC and was observed in the order: NTMM (2.06) > MPMM (1.72) ≈ NTMS (1.71) > CTMM (1.52) ≈ MPMS (1.41). Both cropping and depth affected the biodegradability of SOC. Considering the plough layer (0-20 cm), treatments under MM had larger proportion of biodegradable SOC than under MS. We conclude that the significant differences in SOC storage in physical fractions and SOC biodegradation were caused by differences in soil management.

How to cite: Zhang, Y.: Tillage and cropping effects on soil organic carbon: biodegradation and storage in density and size fractions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8186, https://doi.org/10.5194/egusphere-egu2020-8186, 2020.

Aggregation of mineral and organic particles is a key process of soil development, which promotes carbon (C) stabilization by hindering decomposition of plant and microbial residues. All microbial utilization and C stabilization processes lead to 13C fractionation and consequently to various δ13C values of organic matter in aggregate size classes, sand, silt, and clay-sized particles, as well as density fractions. Differences in δ13C within the aggregates and density fractions may have two reasons: 1) preferential stabilization of organic compounds with light or heavy δ13C and/or 2) stabilization of organic materials after passing one or more microbial utilization cycles, leading to respiring of 13C depleted CO2 and heavier δ13C in remaining C. Assuming these two reasons, the new approach based on the natural differences in stable C isotopic composition between SOM fractions was proposed and tested on soils developed solely under C3 vegetation (arable, coniferous and deciduous forests) in boreal climate (Gunina and Kuzyakov, 2014). This approach assumes that: 1) 13C enrichment between the SOM fractions corresponds to successive steps of SOM formation; 2) 13C fractionation (but not the δ13C signature) depends mainly on the transformation steps and not on the C precursors. Consequently, 13C enrichment of SOM fractions allows reconstructing the SOM formation pathways. To prove these initial results we reviewed  δ13C values of soils globally and focused on the i) estimation of the validity of this approach for soils developed under various climatic conditions and parent materials, and depending on fertilization, and ii) C flows not only between aggregate size classes and density fractions but also between various particle size classes of the soils (i.e. sand, silt, and clay) and iii) on revealing the intensities of natural 13C fractionation during the stabilization of litter C in aggregates, particle size classes, and density fractions. Results showed that density fractions were 13C enriched in the order: free particulate organic matter (POM) < light occluded POM < heavy occluded POM < mineral fraction, with the strongest increase between the light occluded and heavy occluded POM. The maximum 13C fractionation during stabilization of litter C in density fractions and aggregate size classes was < 2‰. Δ13C enrichment of the SOM fractions showed that the main direction of C flows within the aggregates and SOM fractions was from the macroaggregate-free POM to the mineral microaggregate fraction. Thus, despite some limitations, δ13C natural abundance approach based on 13C fractionation within individual steps of SOM formation is very useful and probably the sole approach to estimate C flows under steady-state without labeling.

How to cite: Gunina, A. and Kuzyakov, Y.: Carbon flows by soil organic matter formation: A review based on 13C natural abundance, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10730, https://doi.org/10.5194/egusphere-egu2020-10730, 2020.

EGU2020-18700 | Displays | SSS5.2

Impact of soil wetness on plant litter decomposition using low-cost soil moisture sensors and off-the-shelf tea bags

Angelika Xaver, Taru Sandén, Heide Spiegel, Luca Zappa, Gerhard Rab, Drew Hemment, and Wouter Dorigo

Soil organic matter plays a key role within the nutrient cycle, serves as an agent to improve soil structure, and is also known to impact concentrations of greenhouse gases and stabilize soil pollutants. Thus, the soil organic matter content and its potential losses through decomposition are of high interest, especially in the light of a changing climate. As the decomposition process is significantly influenced by climatic conditions, it is important to understand the relationship between decomposition and environmental variables. Previous studies primarily focused on determining the influence of air temperature and precipitation on litter decomposition, but the impact of soil moisture has hardly been investigated.

In this study, we evaluate the relationship between plant litter decomposition, using commercial tea bags (Green and Rooibos tea) as standardized plant litter, and soil moisture, observed with low-cost sensors used within the European citizen science project GROW Observatory (GROW; https://growobservatory.org/). The low-cost soil moisture sensors were placed alongside the tea bags at eight different locations, covering four different land cover types, within the Hydrological Open Air Laboratory (HOAL), a small agricultural catchment in Petzenkirchen, Austria. Data has been collected for two years providing decomposition rates (k) and stabilization factors (S) for the four different seasons of both years. Apart from soil moisture, we investigate air and soil temperature, precipitation and soil parameters as drivers for litter decomposition.

We will show preliminary results on the relationship between decomposition and different environmental variables, in particular soil moisture, throughout all seasons and various land cover classes.

 

This study was funded by the GROW Observatory project of the European Union’s Horizon 2020 research and innovation programme (https://growobservatory.org/).

How to cite: Xaver, A., Sandén, T., Spiegel, H., Zappa, L., Rab, G., Hemment, D., and Dorigo, W.: Impact of soil wetness on plant litter decomposition using low-cost soil moisture sensors and off-the-shelf tea bags, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18700, https://doi.org/10.5194/egusphere-egu2020-18700, 2020.

Studies of the distribution of soil organic matter (SOM) below intensively cultivated fields on clayey sediments of Quaternary age in Denmark show three markedly different zones from the surface and down to about 10 meters below surface. Each zone reflects the balance between input and losses of since the last glaciation.

The upper zone makes up the uppermost few meters below the soil surface. Here, the inherited bioavailable pool of SOM has mineralized and only small amounts of not-bioavailable SOM are present. The largest pool of SOM is renewable and derives from crops grown in the field.

In the underlying middle zone, the content of inherited SOM is very low and seems well protected against biological decomposition (not-bioavailable). No renewable source of SOM from the crops seems to reach down to this middle zone.

In the third and deepest zone, only inherited SOM is present. The SOM origins from the sediments deposited during the last glaciation, about 12,000 years ago.

Typically, the lowest contents of SOM is in the middle zone.

Zonation by content, composition, and bioavailability of the organic matter in soils and deeper sediments is important for the fate of many environmentally substances and for the quality of soil water as well of the quality of other parts of the aquatic environment. In addition, the SOM- pools of different composition in the three zones will most likely behave different to future changes in atmospheric CO2 and climate change adoption.

How to cite: Ernstsen, V.: Postglacial zonation of soil organic matter in clayey till sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20704, https://doi.org/10.5194/egusphere-egu2020-20704, 2020.

EGU2020-21025 | Displays | SSS5.2

Fractionation of soil organic carbon under different land management in dry tropics, south India

Eito Nonomura, Soh Sugihara, Mayuko Seki, Hidetoshi Miyazaki, Muniandi Jegadeesan, Pandian Kannan, and Haruo Tanaka

An understanding of the mechanisms of soil organic carbon (SOC) stabilization is essential to develop the appropriate management for C sequestration and soil health. In southern India, where neutral-alkaline soils are mainly distributed, soil C stocks are inherently low in cropland, despite relatively high clay contents (Clay>ca. 30%, OC<ca. 5 g C kg-1 soil). To consider this reason of low SOC in this area, we evaluated the fractionated C contents and its controlling factors, by measuring the particulate organic matter (POM). The objective of this study was to evaluate the effect of land management on the amount and composition of each fraction of soil in southern India. We collected the surface soils (0-10 cm) from two representative sites of southern India; Vertisols with alkaline soil pH (8.4-8.8) and Alfisols with neutral soil pH (6.0-7.0). At each site, two different land management were selected; forest and cropland of Vertisols, and cropland with no organic matter application (no-OM) and with manure application (with-OM) of Alfisols. Soils were separated into the four fractions; (1) Light Fraction; LF (<1.7 g cm-3) , (2) Coarse POM; cPOM (>1.7 g cm-3, 250-2000 µm), (3) Fine POM; fPOM(>1.7 g cm-3, 53-250 µm), and (4) Silt+Clay; S+C (>1.7 g cm-3, <53 µm). Each fraction was analyzed by elemental analysis (C, N) and CPMAS 13C NMR spectroscopy. In Vertisols, C contents of cPOM, fPOM, S+C were significantly higher in forest (0.65, 0.91, 4.8 g kg-1 soil, respectively) than those of cropland (0.17, 0.22, 4.1 g kg-1 soil, respectively), causing the higher total SOC in forest (7.8 g kg-1 soil) than in cropland (4.5 g kg-1 soil). C concentration of cPOM, fPOM, and S+C fractions were also significantly higher in forest (3.7, 7.6, 6.7 g kg-1 fraction, respectively) than those of cropland (1.0, 2.7, 5.4 g kg-1 fraction, respectively). In particular, increasing rates in cPOM and fPOM (180-280 %) were greater than S+C (24 %), possibly suggesting that forest management should increase the relatively active and intermediate SOC pools through the C accumulation in cPOM and fPOM fractions of Vertisols. In Alfisols, C contents in LF and S+C were significantly higher in with-OM (1.1 and 5.2 g kg-1 soil, respectively) than in no-OM (0.76 and 4.7 g kg-1 soil, respectively). C concentration of S+C fraction was significantly higher in with-OM (14 g kg-1 fraction) than in no-OM (11 g kg-1 fraction), but not of cPOM and fPOM fractions. It suggests that the OM application to cropland should increase the slow SOC pool through the C accumulation in S+C fractions of Alfisols. These results indicate that different fraction may contribute to SOC stabilization between Vertisols and Alfisols in southern India.

How to cite: Nonomura, E., Sugihara, S., Seki, M., Miyazaki, H., Jegadeesan, M., Kannan, P., and Tanaka, H.: Fractionation of soil organic carbon under different land management in dry tropics, south India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21025, https://doi.org/10.5194/egusphere-egu2020-21025, 2020.

EGU2020-6731 | Displays | SSS5.2

Interaction of exogenous microbial inoculum with soil organic matter fractions

Luciano Beneduce, Cesar Plaza, Stefano Trotta, and Claudio Zaccone

In a previous study (Zaccone et al., 2018. Appl. Soil Ecol. 130, 134-142), we evaluated the potential ecological partition of microbial and plant DNA across soil organic matter (SOM) fractions linked to conceptual stabilization mechanisms. We found that different microbial taxa (bacterial and fungal) seem to be specifically associated to SOM fractions. In the present work we investigated the short-term distribution of exogenous microbial population in SOM fractions following inoculation, in order to track the fate of bacterial DNA (in the form of spores) artificially spiked in bulk soils. The main hypothesis was that the colonization of external organisms proceeds from the unprotected fraction (FR) towards those protected physically and/or chemically by soil minerals from decomposition (i.e., into macro and micro-aggregates [MA, MI] or interacting with mineral surfaces [MIN]).

Three different soils with different pH, SOM content and texture were used in the experiment. One aliquot of soil was spiked with approx. 8 Log cfu of spore of Bacillus clausii from a commercial preparation of 4 strains. DNA was extracted from soil and recovered from SOM pools isolated using a physical fractionation method [Plaza et al., 2012. CLEAN-Soil Air Water 40, 134-139] and quantified by fluorescence (Qubit).

DNA recovered from spiked vs. non-spiked samples followed two different patterns of distribution, according to the SOM fractions. Total DNA in the bulk soils varied according to the soil types and the effect of spiking 8 cfu was negligible. In the SOM fractions, while MI and MIN showed different concentration according to the soil type (no apparent influence of spiking), total DNA in FR was clearly higher for spiked samples, while MA had a putative interaction between soil type and spiking. Even if very preliminary, our results point out a possible mechanism of short-term distribution of exogenous DNA (through spores and potential vegetative forms of B. clausii germinated during the incubation) from the free SOM to the macroaggregates, with no apparent influence on MI and MIN yet.

Further analyses (e.g., PCR-ARISA and qPCR) will allow to disclose whether indigenous vs. exogenous bacterial DNA are differentially distributed in SOM, possibly enhancing the description of the mechanisms underlying the distribution of microbial communities in soil, according to the different organization of the SOM in soil aggregates.

How to cite: Beneduce, L., Plaza, C., Trotta, S., and Zaccone, C.: Interaction of exogenous microbial inoculum with soil organic matter fractions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6731, https://doi.org/10.5194/egusphere-egu2020-6731, 2020.

EGU2020-6997 | Displays | SSS5.2

Characterizing soil organic matter differences among extracts and the solid phase – the role of conservation tillage

Gergely Jakab, Tibor Filep, Csilla Király, Balázs Madarász, Dóra Zacháry, Marianna Ringer, Anna Vancsik, Malihe Masoudi, and Zoltán Szalai

Soil organic matter (SOM) is in the focus of research as it plays crucial role in soil fertility, carbon sequestration, and all adsorption related processes in the soil. Nevertheless, its compound and the methods to investigate it are rather diverse. Some approach prefers to define different theoretical carbon pools in the soil based on input and mineralization dynamics using mean residence times. Other studies apply physical and/or chemical fractionations of the soil to separate the various eg. mineral phase associated or aggregate occluded carbon pools to gain less heterogeneous material. However, in practice, these two approaches are hardly met each other. As a considerable part of SOM is strongly associated with the mineral colloid fraction or even cations its investigation reveals the question of extractions. Traditional methods aimed to extract pure SOM fractions such as fulvic and humic acids (FA; HA)  and characterized the whole SOM based on them, even though these pure fractions represented only a small part of the total SOM and were not present under natural conditions. Recent methods try to characterize the SOM using in situ samples where the role of organic mineral complexes is still not fully understood. As a result, findings based on several approaches are hardly comparable with each other. The present study aims to characterize SOM based on parallel in situ solid-phase investigation FA separation, and water dissolved organic matter extraction. The study site is a haplic Luvisol under plowing and conservation tillage. Fourier transform infrared spectroscopy on the solid phase fractions resulted in an inverse proportion between organic carbon content and aromaticity independently from tillage. The aggregate occluded SOM was characterized by the lack of aliphatic components, whereas the fine fraction, and the bulk soil associated SOM seemed to be rich in them. The water-soluble SOM revealed molecular size increase in both the fine fraction related and the aggregate occluded organic matter owing to plowing, nonetheless, aggregates occluded the same sized OM molecules as those attached to the fine fraction. In general, FA fractions provided more humified organic matter, whereas water dissolved SOM showed a more intensive microbiome origin. The photometric properties of the FA fractions did not differ between the tillage systems, except for the SUVA254, which provided higher aromaticity under conservation tillage due to the lack of plowing. Also, the water-soluble part of SOM showed more humified composition and increased aromaticity under conservation tillage compared to plowing tillage. As a consequence, beneath the fingerprint of recent microbial activity, DOM reflects soil organic matter composition as well, therefore it seems to be suitable as a direct SOM proxy. The present research was supported by the Hungarian National Research and Innovation Office (NKFIH) K-123953, which is kindly acknowledged.

How to cite: Jakab, G., Filep, T., Király, C., Madarász, B., Zacháry, D., Ringer, M., Vancsik, A., Masoudi, M., and Szalai, Z.: Characterizing soil organic matter differences among extracts and the solid phase – the role of conservation tillage, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6997, https://doi.org/10.5194/egusphere-egu2020-6997, 2020.

EGU2020-9794 | Displays | SSS5.2

Influences of repeated application of organic waste products on soil organic carbon content and stability assessed using Rock-Eval 6® thermal analysis

Amicie Delahaie, Pierre Barré, Lauric Cécillon, François Baudin, Camille Resseguier, Thierry Morvan, Denis Montenach, Florence Savignac, Aurélia Michaud, Florent Levavasseur, and Sabine Houot

The term Organic Waste Products (OWPs) encompasses a wide range of byproducts such as manure, sewage sludge or green waste compost. The use of OWPs impacts soil quality and functioning, agricultural yields, carbon (C) sequestration, biogeochemical cycles of nutrients like nitrogen (N) or phosphorus, and organic matter (OM) dynamics. These impacts likely depend on the considered OWP.

Taking advantage of 3 mid to long-term experimental trials (6 to 20 years) located in the Northern part of France (Paris region; Brittany; Alsace), we investigated the impact of 16 different OWPs on C content and stability. To do so, surface soil samples from replicated plots amended with the different OWPs used either alone or in addition with mineral N fertilization and appropriated control treatments were analyzed using Rock-Eval 6® thermal analyses. Samples taken up at the onset of the experiment and after 6, 18 and 20 years for the 3 sites respectively were analyzed. It resulted in the analyses of 248 different samples whose Rock-Eval 6® (RE6) signature can be used as a proxy for soil organic carbon (SOC) biogeochemical stability. In particular, we determined 2 RE6 parameters that were related to SOC biogeochemical stability in previous studies (e.g. Barré et al., 2016): HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1 SOC), and T50 CO2 oxidation (the temperature at which 50% of the residual organic C was oxidized to CO2 during the RE6 oxidation phase; °C). We also computed the amount of centennially stable SOC from RE6 parameters using the model developed in Cécillon et al. (2018).  

 

Our results showed that no clear effect of OWPs addition can be established for the youngest site (6 years). On the contrary, OWPs amendments had a clear effect on SOC quantity and quality at the sites having experienced 18 and 20 years of OWPs addition. For these sites, OWPs amendments increased SOC content, decreased SOC thermal stability (T50 CO2 oxidation) and increased the Rock-Eval 6® Hydrogen Index (HI) compared to control plots. OWPs amendments tended to increase slightly the amount of centennially stable SOC at the sites having experienced 20 years of repeated OWPs application. Our results suggest that if OWPs addition does increase SOC content, at least in the long run, the majority of this additional SOC is labile and may be quickly lost if OWPs additions are stopped.

 

References:

Barré P., Plante A.F., Cécillon L., Lutfalla S., Baudin F., Bernard S., Christensen B.T., Eglin T., Fernandez J.M., Houot S., Kätterer T., Le Guillou C., Macdonald A., van Oort F. & Chenu C. (2016) The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry, 130: 1-12.

Cécillon L., Baudin F., Chenu C., Houot S., Jolivet R., Kätterer T., Lutfalla S., Macdonald A.J., van Oort F., Plante A.F., Savignac F., Soucémarianadin L.N. & Barré P. (2018) A model based on Rock-Eval thermal analysis to quantify the size of the centennially persistent organic carbon pool in temperate soils. Biogeosciences, 15, 2835-2849.

How to cite: Delahaie, A., Barré, P., Cécillon, L., Baudin, F., Resseguier, C., Morvan, T., Montenach, D., Savignac, F., Michaud, A., Levavasseur, F., and Houot, S.: Influences of repeated application of organic waste products on soil organic carbon content and stability assessed using Rock-Eval 6® thermal analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9794, https://doi.org/10.5194/egusphere-egu2020-9794, 2020.

EGU2020-11972 | Displays | SSS5.2

Larger contribution of non-protonated aromatics for organic matter in subsoil than topsoil horizons in Brazilian Ferralsols

Ivan F. Souza, Aline A. Vasconcelos, Robert L. Johnson, Luis Fernando J. Almeida, Emanuelle M. B. Soares, Klaus Schmidt-Rohr, and Ivo R. Silva

Several processes are involved in soil organic matter (SOM) formation and turnover across the soil profile. Interestingly, while deep soil C appears to turn over very slowly, it remains unclear whether this trend is related to the molecular chemistry of SOM retained therein or its interaction with the mineral matrix. Besides, the extent to which the molecular chemistry of SOM is related to the chemistry, amount, and frequency of C inputs in topsoil and subsoil horizons remains unclear. We addressed these questions by collecting soil samples from three deep Ferralsols (a Gibbsic, a Ferritic, and a Haplic Ferralsol) across the Brazilian Cerrado to include samples with distinct texture classes and mineralogical combinations. Interestingly, the vegetation of the Brazilian Cerrado is characterized by different proportions of trees and grasses, implying different depth of rooting. Moreover, the Cerrado biome is subjected to frequent fire events, which could affect the input rate and the chemistry of C added to the soils. At each site, samples were taken from topsoil (0–10 cm) and subsoil horizons (60–100 cm) and incubated with a double-labeled (13C and 15N) eucalypt litter for 12 months under laboratory conditions. After the incubation, the samples were submitted to physical fractionationation to isolate SOM within the particle-size fractions (PSF) greater and smaller than 53 µm. Subsequently, we quantified the total C and N remaining in these PSF. Subsamples of the clay+silt fraction (<53 µm) were treated with a 10% HF solution to concentrate SOM. The molecular composition of SOM within the HF-insoluble fraction was assessed by 13C/15N Nuclear Magnetic Resonance (NMR) spectroscopy by applying a multi/cross-polarization (multi/CP) pulse sequence, yielding a quantitative solid-state magic-angle spinning (MAS) 13C/15N NMR. After the incubation, litter-C was retained at approximate proportions in both PSF evaluated, while a larger fraction of the litter-N was concentrated within the clay+silt fraction. Based on the multi-CP MAS NMR results, carbohydrates (65–110 ppm) accounted for most of the total C forms identified in the HF-insoluble fraction, regardless of soil type, soil depth, and plant litter addition. In topsoil, differences in the molecular chemistry of SOM between samples treated with plant litter and the controls were small. Otherwise, plant litter inputs to subsoil led to major changes in the chemistry of SOM, with a substantial reduction in the proportion of non-protonated aromatics and the aromaticity degree of SOM. Although observed in the topsoil, this effect was much less pronounced for the three Ferralsols evaluated. In addition, following eucalypt litter addition the molecular composition of SOM in topsoil and subsoil tended to converge, becoming enriched in alkyl-C (0–46 ppm), carboxylic and/or amide groups (160–190 ppm for 13C and 120 ppm for 15N-NMR). Our results suggest that in topsoil, SOM molecular chemistry is consistent with a continuous supply of fresh plant litter. Otherwise, the deep burial of plant litter appears to be less relevant for SOM formation in subsoil horizons, where the accumulation of charred/pyrogenic materials are significant.

How to cite: F. Souza, I., A. Vasconcelos, A., L. Johnson, R., J. Almeida, L. F., M. B. Soares, E., Schmidt-Rohr, K., and R. Silva, I.: Larger contribution of non-protonated aromatics for organic matter in subsoil than topsoil horizons in Brazilian Ferralsols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11972, https://doi.org/10.5194/egusphere-egu2020-11972, 2020.

EGU2020-18999 | Displays | SSS5.2

Does soil disturbance result in soil carbon losses? – A case study on bioturbation effects of wild boar

Axel Don, Christina Hagen, Erik Grüneberg, and Cora Vos

Soil disturbance and disruption is assumed to enhance mineralisation and cause losses of soil organic carbon. Therefore, no tillage is promoted as soil carbon sequestration measure. However, the experimental evidence of enhanced carbon turnover due to soil disturbance is rare.  We investigated soil disturbance in forest ecosystems with simulated bioturbation of wild boar. Wild boar are effective at mixing and grubbing in the soil and wild boar populations are increasing dramatically in many parts of the world. In a six-year field study, we investigated the effect of wild boar bioturbation on the stocks and stability of soil organic carbon in two forest areas at 23 plots. The organic layer and mineral soil down to 15 cm depth were sampled in the disturbed plots and adjacent undisturbed reference plots.

No significant changes in soil organic carbon stocks were detected in the bioturbation plots compared with non-disturbed reference plots. However, around 50% of forest floor carbon was transferred with bioturbation to mineral soil carbon and the stock of stabilised mineral-associated carbon increased by 28%. Thus, a large proportion of the labile carbon in the forest floor was transformed into more stable carbon. Carbon saturation of mineral surfaces was not detected, but carbon loading per unit mineral surface increased by on average 66% due to bioturbation. This indicates that mineral forest soils have non-used capacity to stabilise and store more carbon.

Our results indicate that soil disturbance and bioturbation alone does not affect soil carbon turnover and stocks, but only change the distribution of carbon in the soil profile. This is in line with results from no-tillage experiments. The prevailing effect is a redistribution of carbon in the soil profile with no changes in total soil carbon stocks. We discuss these findings in the light of soils as potential sinks for carbon.

 

How to cite: Don, A., Hagen, C., Grüneberg, E., and Vos, C.: Does soil disturbance result in soil carbon losses? – A case study on bioturbation effects of wild boar , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18999, https://doi.org/10.5194/egusphere-egu2020-18999, 2020.

EGU2020-983 | Displays | SSS5.2

Soil microstructure is sensible to ecosystem and land use changes: simple approach to monitoring C pools

Anna Yudina, Dmitriy Fomin, Yulian Farkhodov, Polina Tregubova, Konstantin Abrosimov, and Vladimir Cheptsov

Soil organic matter (SOM) as one of the main aggregation factors supports the hierarchy structure organization of soils. Structure organization at the micro-level (µm-mm) is based on soil primary particles, composite building units and microaggregates characterized by different SOM composition, stabilization mechanisms and dynamics (Yudina et al., 2018; Yudina & Kuzyakov, 2019). This presentation aims to show the specifics in composition and sensitivity of soil microstructure to ecosystem type and land use changes. The studied objects are Haplic Chernozems (Kursk region, Russia) under 6 land use types differing in vegetation: natural steppe, natural forest, conventional arable field, long-term bare fallow, and afforestation. Separation of C pools associated with particle size distribution (PSD) were obtained with high resolution by laser diffraction technique. Mathematical computations with PSD's allow to find localization of particles sensitive to the chosen factor. Two parameters (mean volume diameter MVD, µm and content of particles, %) for each of the three particle types (organo-mineral OMp, particulate organic matter POM, microaggregates µA) can be calculated. POM is the smallest (3 or less %) but the most labile solid phase C pool and very sensitive indicator to changes in land use and C accumulation with the soil depth. OMp is sensitive to long-term factors and were the lowest in bare fallow soil. Since Chernozems are well-structured soils, the content of µA is less sensitive than MVD, which vary from 50 µm under bare fallow to 170 µm in forest soil. Presented indicators in combination with C storage characterize role of SOM in soil microstructure organization. We have supposed that the differences in dynamics between OMp, POp and µA is attributable to internal particle structure and microbial availability of SOM. The marking particle types were separated for physical and biological justification of suggested indicators. Their thermal stability, specific surface area, microporosity, microbial activity and composition were characterized. Following hypotheses were tested: 1) content of the thermostable organic C fraction will increase from POM to µA and OMp; 2) value of specific surface area and porosity will be higher in µA compare to OMp. The proposed approach to describe C dynamics based on combination of high-resolution PSD data is a simple, sensitive and effective tool for monitoring of SOM pools dynamics.

Yudina, A. V., Fomin, D. S., Kotelnikova, A. D., & Milanovskii, E. Y. (2018). From the Notion of Elementary Soil Particle to the Particle-Size and Microaggregate-Size Distribution Analyses: A Review. Eurasian soil science, 51(11), 1326-1347. DOI: 10.1134/S1064229318110091

Yudina, A., & Kuzyakov, Y. (2019). Saving the face of soil aggregates. Global change biology, 25(11), 3574-3577. DOI: 10.1111/gcb.14779

The reported study was funded by Russian Foundation for Basic Research according to the research project No 18-34-00825.

How to cite: Yudina, A., Fomin, D., Farkhodov, Y., Tregubova, P., Abrosimov, K., and Cheptsov, V.: Soil microstructure is sensible to ecosystem and land use changes: simple approach to monitoring C pools, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-983, https://doi.org/10.5194/egusphere-egu2020-983, 2020.

EGU2020-1058 | Displays | SSS5.2

Soil organic matter in soils of the Russian Arctic: insights from 13C-NMR spectroscopy

Ivan Alekseev and Evgeny Abakumov

Polar soils play a key role in global carbon circulation and stabilization as they contain maximum stocks of soil organic matter (SOM) within the whole pedosphere. Cold climate and active layer dynamics result in the stabilization of essential amounts of organic matter in soils, biosediments, and grounds of the polar biome. Chemical composition of soil organic carbon (SOC) determines its decomposability and may affect soil organic matter stabilization (SOM) rate (Beyer, 1995). This is quite important for understanding variability in SOC pools and stabilization rate in context of changes in plant cover or climate (Rossi et al. 2016). 13C nuclear magnetic resonance spectroscopy, which provides detailed information on diversity of structural composition of humic acids and SOM, may also be used to study the SOM dynamics under decomposition and humification proceses (Kogel-Knabner, 1997; Zech et al., 1997). This study aims to characterize molecular organization of the humic acids, isolated from various permafrost-affected soils of Yamal region and to assess the potential vulnerability of soils organic matter in context of possible mineralization processes. Organic carbon stocks for studied area were 7.85 ± 2.24 kg m-2 (for 0-10 cm layer), 14.97 ± 5.53 kg m-2 (for 0-30 cm), 23.99 ± 8.00 kg m-2 (for 0-100 cm). Results of solid-state 13C-NMR spectrometry showed low amounts of aromatic components in studied soils. All studied humic powders are characterized by predominance of aliphatic structures, and also carbohydrates, polysaccharides, ethers and amino acids. High content of aliphatic fragments in studied humic acids shows their similarity fulvic acids. Low level of aromaticity reflects the accumulation in soil of lowly decomposed organic matter due to cold temperatures. Our results provide further evidence of high vulnerability and sensitivity of permafrost-affected soils organic matter to Arctic warming. Consequently, these soils may play a crucial role in global carbon balance under effects of climate warming.

How to cite: Alekseev, I. and Abakumov, E.: Soil organic matter in soils of the Russian Arctic: insights from 13C-NMR spectroscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1058, https://doi.org/10.5194/egusphere-egu2020-1058, 2020.

As the climate emergency gathers pace there is a growing imperative to reduce carbon emissions and move to a low carbon economy. Such shifts in global economics and politics will inevitably take time and therefore there is also a pressing need to identify immediate actions that can help limit or reduce carbon emissions.

 

Soils store large quantities of carbon. However, chemical, physical and biological properties limit the amount of carbon that any particular soil can store. It may be possible to alter soil properties such that the carbon sequestration potential of a soil is increased without causing a reduction in (or even increasing) other important ecosystem services delivered by the soil.

 

Soil aggregates are widely acknowledged to play an important role in the storage of carbon in soil. One limiting factor for aggregate formation in some soils is the amount of iron oxide present; the iron oxide is an important binding agent, holding aggregates together.

 

Ochres comprise a variety of poorly crystalline iron (III) oxides and form in a number of environments such as mine drainage when water moves to increasingly oxygenated environments and dissolved iron (II) is oxidised and precipitates from solution. In many countries these ochres are treated as wastes and are landfilled.

 

In batch experiments in which soil was amended with 0, 0.5 or 5% by mass ochre and shaken with water in a ratio of c. 1:5 (g:mL) ochre amendments reduced the concentration of dissolved organic carbon released into solution by almost a factor of 2. In experiments that are more realistic of field deployment of ochre amendments to increase soil carbon sequestration in which soils were amended with 0, 0.5 or 5% by mass ochre and kept moist for c. 9 weeks with treatments comprising presence/absence wheat and presence/absence earthworms, ochre amendments reduced the concentration of cold water extractable carbon by a factor of 2 and hot water extractable carbon by a factor of 1.3.


In this presentation the above results together with additional results relating to impacts on other soil properties will be presented. The data confirm the potential of waste iron ochres as a soil amendment to increase soil carbon sequestration though further work with more soil types and a variety of ochres is needed and the carbon footpring of applying the amendments needs to be calculated. Whilst methods such as these may provide vital time to transition to low carbon lifestyles, it is the move to such lifestyles that must be the ultimate solution to the climate emergency.

How to cite: Hodson, M. E.: Ochre amendments as a means of increasing carbon sequestration in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1653, https://doi.org/10.5194/egusphere-egu2020-1653, 2020.

EGU2020-3020 | Displays | SSS5.2

Biotic and abiotic controls on carbon storage in aggregates from grassland soils in the Northern Limestone Alps of Germany

Noelia Garcia-Franco, Martin Wiesmeier, Roswitha Walter, Luis Carlos Colocho-Hurtarte, Vincent Buness, Bernd Josef Berauer, Marcus Zistl-schlingmann, Ralf Kiese, Michael Dannenmann, and Ingrid Kögel-Knabner

Alpine and pre-alpine grassland soils in Bavaria provide important ecosystem services and are hotspots for soil organic carbon (SOC) storage.  However, information on the underlying factors that control SOC stabilization via soil aggregation is limited. In three grassland soils with the same parent material but at different elevation (Fendt: 600 m.a.s.l, Graswang: 860 m a.s.l and Esterberg: 1,260 m a.s.l), we studied the soil aggregate distribution and associated SOC according to aggregate size classes (large-macroaggregates > 2,000 µm, small-macroaggregates 250-2000 µm, microaggregates 63-250 µm, silt plus clay particles <63 µm). Furthermore, the biomass and abundance of different ecological groups of earthworms were determined. Our results showed an increase in SOC contents and aggregate stability with elevation. SOC and N stocks of bulk soils showed the same trend as OC contents in aggregates.  Principal component analysis revealed that carbonates, SOC, aboveground plant biomass and the earthworm biomass are the main facilitating agents of aggregation and SOC and N storage in grassland soils of the Northern Limestone Alps of Germany

How to cite: Garcia-Franco, N., Wiesmeier, M., Walter, R., Colocho-Hurtarte, L. C., Buness, V., Berauer, B. J., Zistl-schlingmann, M., Kiese, R., Dannenmann, M., and Kögel-Knabner, I.: Biotic and abiotic controls on carbon storage in aggregates from grassland soils in the Northern Limestone Alps of Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3020, https://doi.org/10.5194/egusphere-egu2020-3020, 2020.

EGU2020-11229 | Displays | SSS5.2

Does agricultural practices impact the quantity and the forms of organic carbon stored in cultivated soils of the Senegal groundnut basin? A Rock-Eval approach

Oscar Pascal Malou, David Sebag, Patricia Moulin, Tiphaine Chevallier, Yacine Badiane Ndour, Abou Thiam, and Lydie Chapuis-Lardy

Soil organic carbon (SOC) is a key element in the functioning of agrosystems. It ensures soil quality and productivity of cultivated systems in the Sahelian region. This study uses Rock-Eval pyrolysis to examine how cultural practices impact SOC quantity and quality of cultivated sandy soils in the Senegal groundnut basin. Such thermal analysis method provides cost-effective information on SOC thermal stability that has been shown to be qualitatively related to SOC biogeochemical stability. Soils were sampled within 2 villages agricultural plots representative of local agricultural systems and for local preserved areas. Total SOC concentrations ranged from 1.8 to 18.5 g.kg-1 soil (mean ± standard deviation: 5.6 ± 0.4 g.kg-1 soil) in the surface layer (0-10 cm) and from 1.5 to 11.3 g.kg-1 soil (mean ± standard deviation: 3.3 ± 0.2 g.kg-1 soil) in 10-30 cm deep layer. SOC of cultivated soils significantly (p-value < 0.0001) decreased according to treatments in the following order: +organic wastes > +manure > +millet residues > no input. Our results show that the quantity and the quality of SOC are linked to each other and both depend on land-use and agricultural practices, especially the nature of organic inputs. This correlation is very strong in the tree plantation (R² = 0.98) and in the protected shrubby savanna (R² = 0.97). It remains important for cultivated soils receiving organic wastes (R² = 0.82), manure (R² > 0.75), or millet residues (R2 = 0.91) but it’s no more significant in no-input situations. The Rock-Eval based indexes were depicted in a I/R diagram that illustrate the level of SOC stabilization and plotted against comparable results from literature. The Senegalese sandy soils have thermal signatures showing an inversion of the I and the R indexes compared to data from the literature and highlighting SOC stabilization as a function of soil depth. Indeed, the studied soils were characterized by a more abundant refractory pool (A5 which ranged from 7.7 to 21.3 % in 0-10 cm layer and from 12.5 to 24.3 % in 10-30 cm, respectively) compared to other tropical soils. The SOC in these sandy soils while positively affected by organic inputs is dominated by labile forms that mineralize quickly which is excellent for the needs of productivity of these agrosystems but not for mitigation of climate change.

Keywords: Soil organic carbon; Organic inputs; Thermal analysis; Agrosystems; West Africa

How to cite: Malou, O. P., Sebag, D., Moulin, P., Chevallier, T., Badiane Ndour, Y., Thiam, A., and Chapuis-Lardy, L.: Does agricultural practices impact the quantity and the forms of organic carbon stored in cultivated soils of the Senegal groundnut basin? A Rock-Eval approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11229, https://doi.org/10.5194/egusphere-egu2020-11229, 2020.

EGU2020-13082 | Displays | SSS5.2

The potential for full inversion tillage to increase soil carbon storage following pasture renewal in New Zealand

Mike Beare, Erin Lawrence-Smith, Denis Curtin, Sam McNally, Frank Kelliher, Roberto Calvelo-Pereira, and Mike Hedley

EGU2020-13609 | Displays | SSS5.2

Soil carbon respiration in tropical forest soils along geomorphic and geochemical gradients

Benjamin Bukombe, Laurent Kidinda, Alison Hoyt, Cordula Vogel, Marijn Bauters, Florian Wilken, Karsten Kalbitz, Peter Fiener, and Sebastian Doetterl

Tropical ecosystems and the soils therein have been reported as one of the most important and largest terrestrial carbon (C) pools and are considered important climate regulator. Carbon stabilization mechanisms in these ecosystems are often complex, as these mechanisms crucially rely on the interplay of geology, topography, climate, and biology. Future predictions of the perturbation of the soil carbon pool ultimately depend on our mechanistic understanding of these complex interactions.

Using laboratory incubation experiments, we investigated if carbon release from soils through heterotrophic respiration in the African highland forests of the Eastern Congo Basin follows predictable patterns related to topography, soil depth or geochemical soil properties that can be described at the landscape scale and ultimately be used to improve the spatial accuracy of soil C respiration in mechanistic models. In general, soils developed on basalt and granite parent material (mafic and felsic geochemistry of parent material) showed significantly (p <0.05) higher specific respiration than soils developed on sedimentary rocks (mixed geochemistry) with highest rates measured for soils developed on granite. For soils developed on basalt, specific respiration decreased two-fold with soil depth, but not for soils developed on granite or sedimentary rocks. No significant differences in respiration under tropical forest were found in relation to topography for any soil and geochemical background.

Using a non-linear,  stochastic gradient boosting machine learning approach we show that soil biological, physical and chemical properties can predict the pattern of specific soil respiration (R2=0.41, p<0.05). An assessment of the relative importance of the included predictors for soil respiration resulted in 43 % of the model being driven by geochemistry (pedogenic oxides, nutrient availability), 12 % driven by soil texture and clay mineralogy, 34 % by microbial biomass, C:N, and C:P ratios and 11 % by topographic indices. 

We conclude that, in order to explain soil C respiration patterns in tropical forests, a complex set of variables need to be considered that differs depending on the local bedrock chemistry. Its effect is likely related to the varying strength of C stabilization with minerals as well as nutrient availability that might drive C input patterns and microbial turnover.

How to cite: Bukombe, B., Kidinda, L., Hoyt, A., Vogel, C., Bauters, M., Wilken, F., Kalbitz, K., Fiener, P., and Doetterl, S.: Soil carbon respiration in tropical forest soils along geomorphic and geochemical gradients, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13609, https://doi.org/10.5194/egusphere-egu2020-13609, 2020.

Agricultural soils in Germany store about 2.5 Pg (1 Pg = 1015 g) of organic carbon in 0-100 cm depth. If this carbon was all powdered charcoal, it would fill a train with 61 million carriages, extending 2.5 times the distance to the moon. This study aimed at better understanding the origin of the organic carbon contained in mineral soils under agricultural use. For this, total organic carbon (TOC), C:N ratios and particulate organic carbon (POC) of 2,939 crop- and grassland sites scattered in a 8x8 km grid across Germany were evaluated. RandomForest algorithms were trained to predict TOC, C:N, POC and their respective depth gradients down to 100 cm based on pedology, geology, climate, land-use and management data. The data originated from the first German Agricultural Soil Inventory, which was completed in 2018, comprising 14,420 mineral soil samples and 36,163 years of reported management.

In 0-10 cm, land-use and/or texture were the major drivers for TOC, C:N and POC. At larger depths, the effect of current land-use vanished while soil texture remained important. Additionally, with increasing depth, soil parent materials and/or pedogenic processes gained in importance for explaining TOC, C:N and POC. Colluvial material, buried topsoil, fluvio-marine deposits and loess showed significantly higher TOC and POC contents and a higher C:N ratios than soil that developed from other parent material. Also, Podzols and Chernozems showed significantly higher TOC and POC contents and a higher C:N ratio in the subsoil than other soil types at similar depths because of illuvial organic matter deposits and bioturbation, respectively. In 30-70 cm depth, many sandy sites in north-western Germany showed TOC, POC and C:N values above average, which was a legacy of historic peat- and heathland cover. The depth gradients of TOC, POC and C:N showed only little dependence on soil texture suggesting that they were robust towards differences in carbon stabilization due to organo-mineral associations. Instead, these depth gradients were largely driven by land-use (redistribution of carbon in cropland by ploughing) and variables describing historic carbon inputs (e.g. information on topsoil burial). Hardpans with packing densities > 1.75 g cm-3 intensified the depth gradients of TOC, POC and C:N significantly, suggesting that such densely packed layers restricted the elongation of deep roots and therefore reduced organic carbon inputs into the subsoil.

Today’s soil organic carbon stocks reflect past organic carbon inputs. Considering that in 0-10 cm, current land-use superseded the effect of past land-cover on TOC while land-use showed no effect on POC and C:N, we conclude that topsoil carbon stocks derived from relatively recent carbon inputs (< 100 years) with high turnover. In the subsoil, however, most carbon originated from the soil parent material or was translocated from the topsoil during soil formation. High C:N ratios and POC content of buried topsoils confirm low turnover rates of subsoil carbon. The contribution of recent, root-derived carbon inputs to subsoils was small but significant. Loosening of wide-spread hardpans could facilitate deeper rooting and increase carbon stocks along with crop yield.

How to cite: Schneider, F. and Don, A.: What do carbon fractions and C:N ratios tell us about the origin of carbon in German agricultural soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18540, https://doi.org/10.5194/egusphere-egu2020-18540, 2020.

SSS5.5 – Biomass and waste valorization within a circular economy: from urban mining to soil amendments

EGU2020-22161 | Displays | SSS5.5 | Highlight

Evaluating phosphorus availability from sewage sludge derived pyrochar and hydrochar in European agriculture

Maria Pimenta, Ruben Sakrabani, Wilfred Otten, Gabriel Gasco, and Ana Maria Mendez

Currently, phosphorus (P) mine reserves are monopolised by several countries and its market price variations represents a challenge for modern agriculture systems. Consequently relying on alternative renewable sources of P such as sewage sludge (SS) is timely as its supply is expected to increase with population worldwide. However, this has to be carefully managed to ensure potential pollutant transport when applied to soils.

However, alternative treatment options can reduce this risk and create greater value from SS as a P-fertiliser. By carbonizing the residues through Pyrolysis or Hydrothermal Carbonization (HTC), organic pollutants can be significantly decomposed, and its volume reduced, which ease enormously its management (R. Huang & Tang, 2015). Different characteristics will be obtained depending on the thermal process and the conditions to which the sample is subjected, differentiating the potential applications of the pyrochar/hydrochar obtained respectively. Nevertheless, the data gathered for yield crop responses from sewage sludge thermal derivatives is still very scarce and hence more information needs to be produced.

The aim of this research is to evaluate interactions in phosphorus availability of spring wheat from SS and its thermally treated derivatives, when added on its own and in combination with raw SS as soil amendment. Two pyrochars were produced at the Polytechnic University of Madrid though pyrolysis at 400⁰C-1h and 300⁰C-1h using pre-oven dried (105⁰C-48h) sewage sludge from Spain.  Two hydrochars were obtained through Hydrothermal Carbonization in another reactor at 180⁰C-4h and 240⁰C-4h using raw sludge adjusted to 15% d.m. All samples were analyzed for physical-chemical changes and applied to the soil in a glasshouse experiment.

Results confirmed different degrees of carbonization through the selected treatments, gaining similar characteristics to sub-bituminous coals after pyrolysis and midpoint after HTC. A germination test indicated that the phytotoxicity of the raw material was reduced after all thermal treatments, with the best effect being through pyrolysis. However, P availability was reduced in all derivatives, 65.6% in Pyrochars and 41.5% HTC from the original SS.

 A 136 pots study with amended soils at different rates showed that despite P availability on initial conditions, after 3 months P became more available, being at least twice the amount found in the original soil, higher if the treatments were combined with additional wet SS (1:1). It also revealed a reduction of pHinitial=[7-8] to pHfinal=[6-7] after harvesting and a slight increment on the Electrical Conductivity [0.15-6.7]µS/cm (max value 16.6µS/cm) probably due the different mineralization of the derivatives amendments and the washing of the materials through the soil profiles.

The data gathered with this research to date suggests that, the addition of the sewage sludge derivatives on their own indeed decreases the production of grain. However, with the combination of a commercialized sludge (SS2) at the highest rate, no negative effects have been reported after the first crop season. Derived pyrochar and hydrochar offer an alternative source of available phosphorus to mitigate the growing demand of mineral phosphorus reserves whilst providing at the same time a good base of organic matter for low fertile soils.

How to cite: Pimenta, M., Sakrabani, R., Otten, W., Gasco, G., and Mendez, A. M.: Evaluating phosphorus availability from sewage sludge derived pyrochar and hydrochar in European agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22161, https://doi.org/10.5194/egusphere-egu2020-22161, 2020.

EGU2020-6817 | Displays | SSS5.5

Conifer wood biochar as an amendment for agricultural soils in South-Tyrol: impact on greenhouse gases emissions and soil carbon stocks

Irene Criscuoli, Maurizio Ventura, Katja Wiedner, Bruno Glaser, Pietro Panzacchi, Christian Ceccon, Marta Petrillo, Damiano Zanotelli, Carlo Andreotti, and Giustino Tonon

Biochar is a carbonaceous material produced through the pyro-gasification of biomass. In the last decade, biochar has been proposed as a soil amendment because it can improve soil physico-chemical properties and carbon stocks, contributing to climate change mitigation.

In the framework of the Wood-Up project (Optimization of WOOD gasification chain in South Tyrol to prodUce bioenergy and other high-value green Products to enhance soil fertility and mitigate climate change, FESR1028), we studied the impact of conifer wood biochar on the emissions of the main greenhouse gases (GHGs) from the soil: carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4), as well as on the soil carbon stock of agricultural fields in South Tyrol.

In May 2017, 25 and 50 t ha-1 of pure biochar and biochar mixed with compost (45 t ha-1), were applied to the soil of a vineyard near Merano (South-Tyrol, northern Italy) following a randomized block experimental design with four replicates per treatment.

Soil GHGs fluxes were monitored from June 2017 until December 2019. Fluxes were measured, in real time, with a high-resolution portable multi-gas analyzer based on cavity ring-down spectroscopy technology (Picarro inc., Santa Clara, CA, USA) connected to an automated dynamic chambers system (Eosense Inc., Dartmouth, NS, Canada). Gas emissions were measured monthly and were related to soil temperature and moisture to evaluate the impact of treatments on the sensitivity of GHGs fluxes to environmental parameters. The stability of conifer wood biochar in soil was assessed through the quantification of the Benzene PolyCarboxylic Acids (BPCA), specific biomarkers of black carbon, over time. The BPCA content in the soil was measured before the application of biochar and compost, three weeks after the application and two years later.

During the first year of experiment, in biochar-amended soils, we observed a reduction of the temperature sensitivity of all GHGs fluxes in comparison to treatments without biochar (control and compost alone). In the second and third year an opposite trend was observed, with an increase of temperature sensitivity of GHGs fluxes in biochar-treated soil. The change of biochar effect over time might be linked to biochar ageing in soil. However, a role of soil moisture cannot be excluded, as it was higher in the first year of experiment. The experimental results will be presented in the broader context of the Wood-Up project.

How to cite: Criscuoli, I., Ventura, M., Wiedner, K., Glaser, B., Panzacchi, P., Ceccon, C., Petrillo, M., Zanotelli, D., Andreotti, C., and Tonon, G.: Conifer wood biochar as an amendment for agricultural soils in South-Tyrol: impact on greenhouse gases emissions and soil carbon stocks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6817, https://doi.org/10.5194/egusphere-egu2020-6817, 2020.

EGU2020-856 | Displays | SSS5.5

Effect of biochar application at a trace-elements polluted area on soil carbon stability

Paloma Campos Díaz de Mayorga, Ana Z. Miller, Heike Knicker, Águeda Sánchez-Martín, Elena Fernández-Boy, and José María De la Rosa

Biochar, the solid carbonaceous material produced by pyrolysis of biomass, is a promising alternative for restoring degraded soils [1]. Specifically, biochar has been reported to increase agronomic productivity of acidic soils. Nevertheless, the theoretical high stability and recalcitrance of biochar is being questioned by recent studies [2]. In addition, the alterations on biochar C after its application into low C soil is still under debate. Thus, this study intends to evaluate the changes in carbon stability when biochars from different feedstock are applied into trace element polluted soils.

For this purpose, biochars were produced from rice husk-RHB, olive pit-OPB and almond shell-ASB using a steel batch reactor (temperature of 500 ºC; reaction time of 2 h under N2 atmosphere with a heating rate of 20 ºC min-1). A certified wood biochar (CWB) was also studied for comparative purposes. Two soils with a moderate and a high concentration of trace elements (called MPS and HPS respectively) were sampled for this study. Mixtures of each soil and 10 % (w/w) of the biochars were prepared in triplicates. Each pot was inoculated with 1 ml of a standard microbial suspension, the moisture was adjusted to 50 % of the water holding capacity and incubated in the automatic respirometer Respicond (Nordgren Innovations, Sweden) at 25 ºC for 60 days similarly to the procedure described by De la Rosa et al (2018) [2]. The CO2 released was measured automatically every 6 h and the kinetics of the biological decomposition of the materials were fitted by a double exponential model. Results showed that the feedstock nature influenced the decomposition rates. Thus, the biochar stability of the tested materials followed the order ASB>RHB>OPB according to MTR2.

Soil respiration showed a different C decomposition rate in both soils, having greater mean residence time in HPS (MTR2=14.9 years) than in MPS (MTR2=5.7 years). Our findings suggest that biochar addition increased the MTR2 of the slow C pool in both soils.

References:

[1] Lehmann, J., Joseph, S., 2015. Biochar for environmental management: science and technology. 2nd ed. London & New York: Earthscan from Routledge.

[2] De la Rosa, J.M., Rosado, M., Paneque, M., Miller, A.Z., Knicker, H., 2018. Effects of aging under field conditions on biochar structure and composition: Implications for biochar stability in soils. Science of the Total Environment 613-614, 969-976.

Acknowledgements:

The former Spanish Ministry of Economy, Industry and Competitiveness (MINEICO) and AEI/FEDER are thanked for funding the projects CGL2016-76498-R and GL2015-64811-P. P. Campos thanks the “Fundación Tatiana Pérez de Guzmán el Bueno” for funding her PhD.

How to cite: Campos Díaz de Mayorga, P., Miller, A. Z., Knicker, H., Sánchez-Martín, Á., Fernández-Boy, E., and De la Rosa, J. M.: Effect of biochar application at a trace-elements polluted area on soil carbon stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-856, https://doi.org/10.5194/egusphere-egu2020-856, 2020.

EGU2020-2880 | Displays | SSS5.5

Biochar from sugarcane residues: An overview of its sequestration potential in Sao Paulo, Brazil

David Lefebvre, Jeroen Meersmans, Guy Kirk, and Adrian Williams

Harvesting sugarcane (Saccharum officinarum) produces large quantities of biomass residues. We investigated the potential for converting these residues into biochar (recalcitrant carbon rich material) for soil carbon (C) sequestration. We modified a version of the RothC soil carbon model to follow changes in soil C stocks considering different amounts of fresh sugarcane residues and biochar (including recalcitrant and labile biochar fractions). We used Sao Paulo State (Brazil) as a case study due to its large sugarcane production and associated soil C sequestration potential.

Mechanical harvesting of sugarcane fields leaves behind > 10 t dry matter of trash (leaves) ha-1 year-1. Although trash blanketing increases soil fertility, an excessive amount is detrimental and reduces the subsequent crop yield. After the optimal trash blanketing amount, sugarcane cultivation still produces 5.9 t C ha-1 year-1 of excess trash and bagasse (processing residues) which are available for subsequent use.

The available residues could produce 2.5 t of slow-pyrolysis (550°C) biochar C ha-1 year-1. The model predicts this could increase sugarcane field soil C stock on average by 2.4 ± 0.4 t C ha‑1 year‑1, after accounting for the climate and soil type variability across the State. Comparing different scenarios, we found that applying fresh residues into the field results in a smaller increase in soil C stock compared to the biochar because the soil C approaches a new equilibrium. For instance, adding 1.2 t of biochar C ha‑1 year‑1 along with 3.2 t of fresh residue C ha‑1 year‑1 increased the soil C stock by 1.8 t C ha‑1 year‑1 after 10 years of repeated applications. In contrast, adding 0.62 t of biochar C ha‑1 year‑1 with 4.5 t of fresh sugarcane residues C ha‑1 year‑1 increased the soil carbon soil stock by 1.4 t C ha‑1 year‑1 after 10 years of application. These are reductions 25% and 40% of the potential soil C accumulation rates compared with applying available residues as biochar.   

We also tested the sensitivity of the model to biochar-induced positive priming (i.e. increased mineralization of soil organic C) using published values. This showed that the C sequestration balance remains positive over the long term, even considering an extremely high positive-priming factor. Upscaling our results to the total 5 Mha of sugarcane in Sao Paulo State, biochar application could sequester up to 50 Mt of CO2 equivalent per year, representing 31% of the emissions attributed to the State in 2016.

This study provides first insights into the sequestration potential of biochar application on sugarcane fields. Measurements of changes in soil C stocks in sugarcane field experiments are needed to further validate the model, and the emissions to implement the practice at large scale need to be taken into account. As the climate crisis grows, the need for greenhouse gas removal technologies becomes crucial. Assessing the net effectiveness of readily available technologies is essential to guide policy makers.  

How to cite: Lefebvre, D., Meersmans, J., Kirk, G., and Williams, A.: Biochar from sugarcane residues: An overview of its sequestration potential in Sao Paulo, Brazil , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2880, https://doi.org/10.5194/egusphere-egu2020-2880, 2020.

Biochar is extensively used in environmental pollutant remediation because of its diverse property, however the effect of biochar on microbial nitrate reduction and electrochemical behavior of biochar remain unknown. Also electron transfer from the microbial cells to electron donor or acceptor have been transport across the extracellular polymeric substances (EPS), however it was unclear whether extracellular polymeric substances captured or enhance the electrons.  Hence, aim of the present study is to investigate the electrochemical behavior of biochar and its effects on microbial nitrate reduction and elucidate the role of extracellular polymeric substances in extracellular electron transfer (EET).  The biochar was prepared at different pyrolysis temperatures (400 °C, 500 °C and 600 °C) and their electrochemical behavior was characterized by electrochemical analysis (cyclic voltammetry, electrochemical impedance spectrum, chronoamperometry). Results demonstrated that all the biochars could donate and accept the electrons, impact of biochar on microbial nitrate reduction was studied and the results showed that biochar prepared at 400 °C significantly enhances microbial nitrate reduction process. Phenol O-H and quinone C=O surface functional groups on the biochar contributes in the overall electron exchange which accelerated the nitrate reduction. The role of EPS in EET by electrochemical analysis results reveals that outer membrane c-type cytochrome and flavin protein from the biofilm was involved in electron transfer process, and EPS act as transient media for microbial EET. Overall, present study suggested that biochar could be used as eco-friendly material for the enhancement of microbial denitrification.

How to cite: Sathishkumar, K., Li, Y., and Ikram, R. M. A.: Wood derived biochar as electron donor and its influence on microbial denitrification: Role of extracellular polymeric substances in extracellular electron transfer , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3824, https://doi.org/10.5194/egusphere-egu2020-3824, 2020.

EGU2020-20731 | Displays | SSS5.5

The Biochar challenge in Mediterranean viticulture: results from 10 years of field experiment

Silvia Baronti, Anita Maienza, Fabrizio Ungaro, Antonio,Antonello Montagnoli, Lorenzo Genesio, Alessandro, Girolamo Rombolà, Laura Giagnoni, and Francesco, Primo Vaccari

There are extensive reports and scientific articles in literature on the applicability of biochar as soil amendment in agriculture and on the benefits that this practice can bring in terms of soil improvement and optimization of water resources. The use of biochar as a soil amendment in agriculture is a suitable option that helps to mitigate the effects of climate change. Biochar has an approximate mean residence time in the soil over 1,000 years and this long-term stability is a fundamental prerequisite for considering biochar as a suitable method for carbon sequestration. Unfortunately, most literature provides results based on one-year trials. Not enough for a soil amendment to be able to claim effectiveness for many decades and not enough for a soil treatment to be considered irreversible. An effective option to fill this knowledge gap is represented by long-term field experiments. In this study, we investigated the effect of biochar application on plant water relations and soil properties during 10 years in a field experiment in Central Italy on Vitis vinifera. Biochar was applied at a rate of 22 t ha-1 in two consecutive growing seasons: 2009 and 2010. The results obtained during these years on biochar treatment compared to the control treatment are exciting: we demonstrated an increase in grape production, up to 66%, without a decrease of the grape quality, an increase in plant-soil water relations, no effects on the concentrations of soil PAHs, no eco-toxicity soil effect and a positive effect on soil chemical and biological parameters. Surprisingly, after 10 years the biochar effect continued to demonstrate significant differences among treatments, in particular: a significant increase of soil biological quality, decrease in soil bulk density coupled with a corresponding increase in saturated hydraulic conductivity, an enhance in soil available water content and a significant improvement of plant water status. The modification of plant water availability induced by biochar application increase the resilience of vineyards to droughts, as demonstrated by the lower leaf potential and higher stomatal conductance. This effect has a significant impact on quantity and quality of grape production after 10 years. Moreover, in the long-term perspective the biochar demonstrates to have an effect on soil biological communities that resulted sensitive to biochar with positive increase of abundance of species related to soil moisture content and enhance of biodiversity index. According to these results, the viticulture is now in the position to provide an effective contribution to mitigate climate change and we expect that this will be an example for other Mediterranean countries.

How to cite: Baronti, S., Maienza, A., Ungaro, F., Montagnoli, A., Genesio, L., Rombolà, A. G., Giagnoni, L., and Vaccari, F. P.: The Biochar challenge in Mediterranean viticulture: results from 10 years of field experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20731, https://doi.org/10.5194/egusphere-egu2020-20731, 2020.

Soil organic carbon management is a key element in solving such urgent global-scale challenges as overcoming degradation of soils and mitigating climate change. Organic fertilizers application has a significant potential for sequestering C in soils, but their efficiency depends on decomposition characteristics. Firstly, it noted the dependence of resynthesis of humic compounds in a soil on a quality of organic inputs, secondly - a need for zonal approach to fertilizers production based on amphiphile properties of macromolecules.

The present study was conducted in long-term field experiment on black soil in Forrest-Steppe zone of Ukraine. The technology of production of organo-mineral fertilizers (OMFs) was based on the regulated processing of livestock waste with mineral components to stabilize it with hydrophobic bonds. OMFs in amorphous and granular form were compared in case of broadcast and band method of incorporation. The dose of OMF input was equivalent 350 C kg ha-1 and 80 N, 80 P, 80 K kg ha-1. Organic carbon content in soil was determined by Turin method. Different organic matter fractions were isolated: humic acids (HA), fulvic acids (FA), and humin.

The soil C accumulation rates in OMF treatment was by 15 % higher than in manure treatment and up to 70 % higher than in chemical fertilizer treatment, respectively. The soil C accumulation was strongly influenced by the form of OMF and method of their application. The highest TOC level was found over band application of amorphous OMF, accumulating 6.2 t C ha–1 yr–1 in 0-20 cm soil layer. Lower efficiency of broadcast incorporation OMFs could be explained by more intensive mineralization due to higher aeration. Taking into account the effect of OMFs on C stock an advantage of amorphous form versus granulated OMF with similar composition was proven. Black soil on control plot (without fertilization) had almost equal ratio between HA, FA and humin in humus composition. The content of humic compound increased in all treatments. Applying OMF significantly increased HA content in black soil compared to applying mineral fertilizer. OMFs application promoted the increase of the degree of condensation of organic matter. The highest HA/FA was found under the effect of broadcast incorporation OMF. That means that low molecular weight compounds were rapidly degraded while more resistant to mineralization HA were formed in soil. There was no significant difference in humus composition between amorphous and granulated OMF.

How to cite: Hetmanenko, V., Skrylnyk, I., and Kutova, A.: Soil Organic Carbon Accumulation under Different Forms of Organo-Mineral Fertilizers and Methods of Their Application on Ukrainian Black Soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3282, https://doi.org/10.5194/egusphere-egu2020-3282, 2020.

Biochar is a carbon-rich black stable solid substance that when utilized as soil amendment can effectively mitigate greenhouse gas (GHG) emission. However, during the pyrolysis process of organic feedstock (i.e. manure) greenhouse gases are released as the feedstock undergo thermochemical degradation. Many studies were reported with regards to the effectiveness of biochar to mitigate greenhouse gas emission and to maintain soil quality via carbon sequestration. However, no clear investigation was done regarding biochar utilization on reducing GHG emission in an integrated perspective that starts from pyrolysis (production) to field application (utilization). To evaluate the integrated influence of biochar utilization on the overall Global Warming Potential (GWP) and (Greenhouse Gas Intensity) GHGI at different temperature, the fluxes of GHGs during feedstock pyrolysis to soil application were calculated. The key components include GHGs released during production processes and biogenic GHG emissions taking place in the soil via short-term incubation experiment in lowland and upland condition treated with biochar pyrolyzed at different temperature. Highest pyrolysis temperature of 700oC emitted 6.92 Mg CO2-eq ton-1 biochar, wherein 8.7% and 91.2% was contributed by Carbon dioxide (CO2) and Methane (CH4) effluxes, respectively, during pyrolysis. This GHG emission during pyrolysis at 700oC was 5.6, 2.2, and 1.5 times higher than at 400oC, 500oC and 600oC, respectively. Meanwhile, biochar produced at lowest temperature (Biochar400) when utilized as soil amendment emitted 43.4 and 38.2 Mg CO2-eq ha-1 in lowland and upland condition, respectively. In addition, this emission value under lowland (and upland) condition was 1.38 (1.36), 1.51 (1.56) and 1.86 (1.91) times higher than Biochar500, Biochar600 and Biochar700, respectively. Combining the GWP during the production and the utilization processes in lowland and upland condition reveal that at 400oC emanates the lowest overall GWP of 93.3 and 88.1 Mg CO2-eq ha-1, respectively.  Moreover, under lowland (and upland) condition, overall GWP at 400oC was noted to be 65.7% (71.7%), 131.6% (140.4%) and 221.9% (237.1%), lower than at 500oC, 600oC and 700oC, respectively. In conclusion, the use of lower temperature during biomass pyrolysis and utilization of its derived biochar could be a practical approach to mitigate GHG emissions.

 

Keywords: Biochar, Pyrolysis, Greenhouse gas, Methane, Global warming potential, Greenhouse gas intensity

How to cite: Canatoy, R., Jeong, S. T., and Kim, P. J.: Biochar production under low pyrolysis temperature leads to lesser overall global warming potential and greenhouse gas intensity under lowland and upland short-term condition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6273, https://doi.org/10.5194/egusphere-egu2020-6273, 2020.

EGU2020-9632 | Displays | SSS5.5

Effect of biochar addition to compost on biological stability of the mixture

Aubertin Marie-Liesse, Girardin Cyril, Houot Sabine, Le Brech Yann, Bena Sarah, and Rumpel Cornelia

Application of biochar, a solid product produced from biomass pyrolysis under low oxygen conditions, has been suggested as a low emission technology capable of increasing soil C sequestration to mitigate climate change. Its combined application with compost may be a promising avenue to ameliorate soil quality while increasing C sequestration. We hypothesized that biochar addition to compost reduces the mineralization of the mixture compared to compost alone. The study aimed to compare the mineralization rate of six biochar-compost mixtures differentiated by biochar feedstocks. Biochars were produced at temperatures ranging from 450 to 650°C for 10 minutes. Our conceptual approach included incubation of fresh and artificially aged biochar-compost mixtures. Physical ageing of the mixtures was performed with successive cycles of humidification/drying and freezing/thawing. We evaluated elemental composition and biological stability of the fresh and aged mixtures after incubation with a soil inoculum for 1 year. We monitored components of biochar-compost mixtures decomposition when biochar were produced from C4 feedstock by determination of the 13C signature of emitted CO2.

Combination of compost with biochar induced synergistic effects in terms of the mixtures stability. Isotopic analyses showed that carbon mineralization from compost was greatly reduced, while biochar mineralization was increased. Physical ageing induced a strong leaching of water-soluble compounds of both substrates. Carbon mineralization of aged material was however not reduced as much as expected when comparing with mineralization rates of single compounds of the mixture. Furthermore, isotopic signatures showed that compost, when amended with biochar, mineralized better after ageing. We thus suggest that the water-soluble fraction of biochar may induce an inhibitive effect on the mineralization of compost. The intensity of this effect seems to be dependent upon the feedstock of the biochar in the mixture.

We conclude that biochar addition to compost may reduce the mineralization of the mixture depending on biochar feedstock and that this effect may be alleviated after ageing.

How to cite: Marie-Liesse, A., Cyril, G., Sabine, H., Yann, L. B., Sarah, B., and Cornelia, R.: Effect of biochar addition to compost on biological stability of the mixture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9632, https://doi.org/10.5194/egusphere-egu2020-9632, 2020.

Biochar is related to multiple greenhouse gas (GHG) mitigation potentials, namely nitrous oxide (N2O) mitigation, carbon (C) sequestration and the possible green electricity produced in the pyrolysis process. Whereas the mechanisms behind potential N2O mitigation effects of biochar are still unclear, the mechanisms behind C sequestration is agreed to be caused by C compound conversion towards aromatic structures in the biochar C as a consequence of the heating treatment in the pyrolysis process. The specific recalcitrance of the biochar is, however, difficult to estimate. The possible electricity production from the syn-gas and bio-oil pyrolysis products depends on the feedstock and process temperature, and can contribute considerably to total system GHG mitigation. However, the multiple effects on GHG balances of biochar and pyrolysis represent a complexity, which may best be analysed by a life cycle assessment (LCA) approach. In this study, the average Danish oilseed rape cultivation was set as the reference scenario in an LCA of cultivation related GHG emissions. The reference was compared with two scenarios with theoretical inclusion of pyrolysis and biochar, meaning that the oilseed straw residue was transported to a pyrolysis plant and the biochar was returned to the field in a corresponding amount (ca. 1 Mg ha-1). Transportation, additional field operations, N2O mitigation, electricity production and C sequestration was included, and the latter was calculated by using the concept of avoided atmospheric CO2 load. The latter approach resulted in larger mitigation effects than derived from calculations of just the remaining C in soil. In total, GHG emissions were reduced by 73 to 83% in the two biochar scenarios as compared with the reference scenario, mainly due to increased C sequestration. The study suggests that even low application rates and rather conservative biochar C recalcitrance estimates lead to considerably reductions in GHG emissions from oilseed rape and expectedly other crops.

How to cite: Thers, H., Njakou Djomo, S., Elsgaard, L., and Trydeman Knudsen, M.: Biochar reduces total greenhouse gas emissions from oilseed rape cultivation, mainly due to C sequestration quantified by the concept of avoided atmospheric CO2 load – a theoretical life cycle assessment study., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20412, https://doi.org/10.5194/egusphere-egu2020-20412, 2020.

EGU2020-17771 | Displays | SSS5.5

The use of MSW-compost on land, a study of metal and nutrient leaching
not presented

Jessica Graca, Brian Kelleher, and Brian Murphy

It is estimated that up to 138 million tonnes of bio-waste are produced in Europe annually, with only 25% being recycled into high-quality compost and digestate. Currently, residual organic waste is generated as by-product of municipal solid waste treatment. Its reuse options vary across EU countries, due to the lack of clear guidance at European level. In some countries, compost derived from municipal solid waste (MSW – compost) is restricted to being used as landfill cover or in land reclamation, under the premises of meeting national legal criteria. Other countries, have regulated its used as marketable compost if it meets defined compost standards. However, for many countries the value-added use of MSW derived compost is uncertain.

The restricted use of MSW - compost is linked to the organic and inorganic contamination associated with such a heterogeneous material. Despite this, under the European view of the Circular Economy, MSW-compost has great potential to be reused and recycled for the benefit of all. Controlled use on land would off-set carbon emissions by diverting the material from a waste that is largely incinerated or added to landfill to a carbon positive soil additive that increases soil quality particularly in restoration sites. 

Our study aims to risk-assess the use of MSW-compost as a soil amendment by monitoring resulting water run-off for metal and nutrient content. Leaching trials, conducted over 6 months were performed in a forest soil (20 cm depth) with a history of Sitka Spruce plantation (c.a 20 years). Adapted water storage tanks were set-up to conduct the trials. Leachate was collected weekly in the first two months, and monthly thereafter. Four treatments 1) control, 2) sewage sludge chemically stabilized (10 t/ha), 3) MSW-compost (10 t/ha) and 4) MSW-compost (25 t/ha) were established in duplicate. Sewage sludge was used as a comparison material, due to its current legal status allowing for controlled land spreading. Leachate samples were analysed for nitrate, ammonium and the metals aluminium, cadmium, copper, total chromium, mercury, nickel, zinc and lead. 

Preliminary results from the first 6 weeks show that metals concentrations in the leachate from all trials were below threshold criteria in surface water quality regulations. Levels of ammonium above detection limits were only detected at week one and surpassed 0.2 mg/L. Nitrate concentration in the leachates was found to be below 50 mg/L and it peaked in the sewage sludge and MSW-compost (25 t/ha) at week 2.

Results gathered so far show that the use MSW-compost in land compares to sewage sludge application in relation to their potential for water pollution. MSW-compost could be used as a soil improver under a regulatory alignment similar to the sewage sludge regulations, aligned with the current European Circular Economy goals.

How to cite: Graca, J., Kelleher, B., and Murphy, B.: The use of MSW-compost on land, a study of metal and nutrient leaching , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17771, https://doi.org/10.5194/egusphere-egu2020-17771, 2020.

EGU2020-11376 | Displays | SSS5.5

Long Term Experiment Platform (LTEP) to establish the effectiveness of biochar applications: a case study in vineyards at Tebano, Ravenna, Italy.

Nicolas Greggio, Carlotta Carlini, Francesco Vaccari, Silvia Baronti, Andrea Contin, and Diego Marazza

In the recent years many papers explored the potentiality of biochar as soil improver as for water retention capacity and chemical and biological fertility. Many of these studies are 1-2 years lab-scale to study the biochar short term effects.

Although is well known that the behavior of biochar in soil changes with the progress of time, few are the open-field 5 years longer experiments which we propose to consider as Long Term Experiments (LTE). Furthermore the few current LTE experiments repeat the same experimental design, changing every time biochar (feedstocks and pyrolysis parameters), soil type and crop.

In this context, there is an evident need for a common platform where assembling information e where new experiments can be designed to progress and demonstrate biochar effectiveness.

The ICHAR (the Italian Biochar Association) and the University of Bologna - CIRSA Department are launching a Long-Term Experiment Platform (LTEP) aiming to be the house for all the Italian LTE for agronomic applications of the biochar. The LTEP is currently based on data from more than 15 experiments in Italy, looking for include also other European trials and it is preparing an identity card with a) a description of the project and its objectives, b) site description, c) tested biochar and substrates, d) published results, e) a working group description.

As an example of application and identity card, we present the experiment started in Tebano during 2019. Differently from the other operating LTEs, it brought biochar in a new vineyard field, amending soil before the shoot transplanting and just in proximity of the rows, exactly at root depth. The applied biochar has been produced by local the vineyard pruning residues with the purpose to establish a closed circular pattern in grape cultivation. Biochar was applied to soil as such and blended with a fertilizing sludge-based compost, produced by a company owned by a winery cooperative.  The compost, labelled as ACFa in accordance to the Italian legislation, is obtained mixing ligno-cellulosic biomass and centrifuged-sludge from digestate from anaerobic digestion plants, in a ratio 6:4, respectively. Biochar as such and 3 blends were distributed, four replica each one, in a randomized design experiment. Each of the 20 treated parcels includes 15 grape plants. Soil characterization, before the amending and yearly at the end of the growing season is planned. Plant biomass, leaf nutrient content, quantity and quality of the production of grape and wine will be monitored. Weathering of the amending matrices, especially biochar will be investigated every year. From last summer, 4 stations for continuous monitoring of water content, electrical conductivity and temperature are operating for all the matrices.

The working group involved in the project is multidisciplinary including environmental scientist, chemists, soil experts, agronomic experts, grape and winery expert, as well as personnel of a regional research center for agronomic studies and personnel from the industry and winery cooperative of compost suppliers.

How to cite: Greggio, N., Carlini, C., Vaccari, F., Baronti, S., Contin, A., and Marazza, D.: Long Term Experiment Platform (LTEP) to establish the effectiveness of biochar applications: a case study in vineyards at Tebano, Ravenna, Italy., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11376, https://doi.org/10.5194/egusphere-egu2020-11376, 2020.

EGU2020-7464 | Displays | SSS5.5

Persisting effects of ligneous organic soil amendments on CO2, N2O and CH4 emissions in relation to moisture content in northern agricultural clay soil

Kenneth Peltokangas, Jimi Havisalmi, Jussi Heinonsalo, Kristiina Karhu, Liisa Kulmala, Jari Liski, and Mari Pihlatie

In agriculture, organic soil amendments are envisioned to mitigate climate change through carbon sequestration. However, the full impact of the organic amendments on soil physico-chemical dynamics is still poorly understood. We conducted a laboratory incubation to assess the net climate effect of four ligneous organic amendments: two biochars (willow and spruce) and two fiber byproducts of paper and pulp industry. Soil samples were collected from a soil-amendment field experiment at Qvidja farm, South-West of Finland. Soil samples were sieved, air-dried and adjusted to 30%, 50%, 80% and 110% of water holding capacity (WHC), and incubated for 32 days in standard laboratory conditions. Greenhouse gas (GHG) emissions were measured after 1, 5, 12, 20 and 33 days. 

The carbon dioxide (CO2) emissions were highest at 80% WHC, and lowest at severely water stressed conditions at 30% WHC. The organic amendments did not have an observable effect on CO2 dynamics. The CO2 emissions correlated linearly with soil moisture and microbial biomass nitrogen. Nitrous oxide (N2O) emissions were systematically lower in the amended soils compared to the control soil, and independent of soil nitrate concentrations. Without organic amendments, N2O emissions increased exponentially with soil moisture content. Methane (CH4) emissions fluctuated throughout the incubation, exhibiting mostly negative values. Consequently, CH4 emissions played only a minor role in the GHG budget.

CO2, N2O and CH4 emissions, calculated as CO2 equivalent, exhibited a linear correlation with the moisture gradient. CO2 dominated the GHG budget up to a moisture of 80% WHC, but was superseded by N2O emissions at 110% WHC. The results indicate that soil moisture content is critically affecting the GHG emissions and that while organic soil amendments may have persisting effects on GHG exchange, they primarily occur through N2O dynamics.

How to cite: Peltokangas, K., Havisalmi, J., Heinonsalo, J., Karhu, K., Kulmala, L., Liski, J., and Pihlatie, M.: Persisting effects of ligneous organic soil amendments on CO2, N2O and CH4 emissions in relation to moisture content in northern agricultural clay soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7464, https://doi.org/10.5194/egusphere-egu2020-7464, 2020.

EGU2020-21932 | Displays | SSS5.5

Graphene oxide modified magnetic sludge biochar as a green adsorbent for environmental concentration level of pesticide removal

Zulin Zhang, Yongfei Ma, Siyu Chen, Tingmei Lu, Lie Yang, and Li Wu

In addition to the advantage for resource utilization of municipal sludge which is an important solution to reduce the secondary pollution (e.g. landfill and incineration) to the environment, biochar derived from municipal sludge displayed a potential adsorption capacity for emerging contaminants, particularly with appropriate modification. This study synthesized a green adsorbent (Graphene oxide modified magnetic sludge biochar, GO/CoFe2O4-SBC), which showed the superiority of low cost, effective adsorption and separation for the environmental concentration level of pesticide (Imidacloprid, IMI) removal from water. The results suggested that higher dose and temperature would facilitate the contaminant removal. The optimum removal rate of IMI obtained at pH=6 was due to the weakest electrostatic repulsion. Pseudo-second kinetic, Freundlich and Temkin isotherm models fitted the experimental data, which indicated that both physisorption and chemisorption were involved in the adsorption process. The maximum adsorption capacity of sludge biochar (SBC), magnetic sludge biochar (CoFe2O4-SBC) and GO/CoFe2O4-SBC were 3.11×103, 5.99×103 and 8.92×103 μg g-1, respectively. Physicochemical characteristics, kinetics, isotherms and thermodynamics analysis suggested that the better adsorption performance for GO/CoFe2O4-SBC was attributed to pore filling, π-π electron donor-acceptor and oxygen-containing functional groups (e.g. C=O, C-O, -OH, Fe-O and Co-O) interaction. IMI adsorption was a spontaneous endothermic process and GO/CoFe2O4-SBC exhibited the greater spontaneous. Ethanol extraction increased the regeneration of adsorbents and maintained more than 90% of adsorption capacity in the recycles (1-5 cycles) of the fresh. The leaching concentrations of Fe and Co of adsorbent (GO/CoFe2O4-SBC) were below drinking water standard (0.5 mg L-1) in the range of pH 3 to 12. In conclusion, this work not only provided a promising biochar (e.g. GO/CoFe2O4-SBC) with superior removal capacity for pesticides in water at low concentrations, but also offered a sustainable and cost-effective way for the resource utilization of municipal sludge.

How to cite: Zhang, Z., Ma, Y., Chen, S., Lu, T., Yang, L., and Wu, L.: Graphene oxide modified magnetic sludge biochar as a green adsorbent for environmental concentration level of pesticide removal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21932, https://doi.org/10.5194/egusphere-egu2020-21932, 2020.

EGU2020-6953 | Displays | SSS5.5

Effect of sewage sludge biochar on tomato plant (Solanum lycopersicum L.) cultivation

Evan Diamadopoulos, Paraskevi Velli, and Ioanna Manolikaki

The present study refers to biochar production, its application to soil with or without combining it with compost, as well as its effect on tomato (Solanum Lycopersicum L.) cultivation. The feedstock selected for biochar production was a mixture of primary and secondary sewage sludge, which had previously been anaerobically digested and thermally dehydrated. Sewage sludge pyrolysis was conducted at 300 °C. The produced biochar was initially characterized and subsequently applied to soil, in order to study its effect on Solanum Lycopersicum L. cultivation. Pot trials which included four treatments, each comprising of three replicates, were carried out during a period of three months, using pots with a 10 kg capacity. More specifically, the following treatments were studied: i) Control (soil without biochar addition), ii) soil with biochar at a rate of 2% w/w (BC-SS), iii) soil with compost at a rate of 2% w/w (Compost), and iv) soil with a mixture of biochar and compost at a total rate of 2% w/w (BC-SS+Compost). The aim of the study was to examine whether sewage sludge biochar with or without compost affects: a) the dry weight and morphological characteristics of the plant, b) the concentrations of macronutrients, micronutrients and heavy metals in aboveground and belowground plant tissues, c) soil properties, including nutrients and heavy metals.

With biochar application a number of soil properties exhibited substantial improvement. Specifically, significant increases were noticed for TOC (67% - 85% increase), NO3–N (55% increase) and ΝΗ4–Ν (145% increase). Moreover, biochar with or without compost, substantially improved plant growth (25% – 34% increase in the first 40 days), and led to a significant increase of the dry weight of aboveground and belowground plant tissues. Heavy metal concentrations in plant tissues were quite low. Specifically, traces of Cr, Ni and Co were found only in plant roots, while Si was present in plant roots and stems. As, Mo and Pb were present in all plant tissues, albeit without exceeding the permissible levels established for vegetables. Finally, no traces of Hg, Se and Cd were found in any of the tissues.

Generally, sewage sludge biochar addition to soil, with or without compost, improved soil characteristics and increased plant yield. Moreover, heavy metal concentrations within permissible levels do not raise any concerns regarding safe consumption of tomato fruits.

 

How to cite: Diamadopoulos, E., Velli, P., and Manolikaki, I.: Effect of sewage sludge biochar on tomato plant (Solanum lycopersicum L.) cultivation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6953, https://doi.org/10.5194/egusphere-egu2020-6953, 2020.

EGU2020-7268 | Displays | SSS5.5

Environmental and Hydrological Implications of Innovative Sprayable Biodegradable Polymer Membrane: First Results

Vilim Filipović, Lana Filipović, Yusong Wang, Michael V. Braunack, Raju Adhikari, George Freischmidt, Priscilla Johnston, Phil S. Casey, and Keith L. Bristow

Agricultural management techniques like plastic mulch films are widely used to enhance crop production by conserving soil water and increasing temperature with the ability to suppress weeds. However, the use of plastic represents large environmental concern since the recovery of plastics from soils and its persistence in the environment is causing global problems. The EU in leading in policy with ban on single use plastics and it is a matter of time when conventional plastic mulch films will be banned as well. To solve the problem, researchers have turned their attention to biodegradable products while lately sprayable biodegradable polymer membrane (SBPM) technology was introduced. Here, we present first results of glasshouse study and in-field experiments with SBPM technology in Australia where with the use of subsurface drip irrigation we could improve water use efficiency of crops with reducing evaporation. First results indicate that SBPM technology could limit soil evaporation, reduce irrigation needs and prevent weed emergence while at the same time providing environmentally sustainable agricultural practice through its biodegradability, nontoxicity and sprayability nature. This innovative technology shows large potential even at this early development stage with the need for further improvement of SBPM formulation, management and properties.

How to cite: Filipović, V., Filipović, L., Wang, Y., Braunack, M. V., Adhikari, R., Freischmidt, G., Johnston, P., Casey, P. S., and Bristow, K. L.: Environmental and Hydrological Implications of Innovative Sprayable Biodegradable Polymer Membrane: First Results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7268, https://doi.org/10.5194/egusphere-egu2020-7268, 2020.

EGU2020-1114 | Displays | SSS5.5

Impacts of different treatment methods on spread of pathogens from organic wastes to vegetable crops in Nigeria

Vince Chukwu, Jo Smith, Norval Strachan, Lisa Avery, and Smart Obiekezie

Organic wastes, such as cattle manure, are widely used as organic amendments but may constitute a potential risk to human and animal health if they are not properly treated before application to agricultural soil. This study investigated the impact of different common household treatment methods on the reduction of pathogens in organic wastes and the spread of pathogens to food crops. Fresh cattle manure was subjected to three different treatments available to households; anaerobic digestion, burning and composting. Sub-samples were screened for E. coli contents using standard plating and IDEXX Colilert Quanti-Tray 2000 system. The numbers of organisms were used to assess the effectiveness of the treatment methods in the reduction of pathogens in the organic wastes. The E. coli count of the cattle manure was 391.42 CFU/g before treatment. After treatment, there was significant reduction in the E. coli in all treatments. Burning was most effective at reducing pathogens in the cattle manure (95%) followed by anaerobic digestion (50%) and composting (40%). Ash, bioslurry, compost and untreated manure were all significantly different in the ratio of pathogens to nitrogen. Bioslurry contained more nitrogen than ash, compost and untreated manure. Application of the recommended nitrogen dose of 120 kg/ha as bioslurry resulted in significantly lower contamination of soil (4.19 most probable number (MPN) per g) than ash (9.73 MPN/g), compost (6.89 MPN/g) or untreated manure (13.77 MPN/g). The E. coli content of lettuce grown on soil amended with ash, bioslurry or compost at recommended rates was significantly lower than lettuce crop grown on soil amended with untreated cattle manure. The results from this study provide information on the transmission of the pathogens remaining in the treated and untreated wastes when applied as organic fertilizer to food crops. This information will help to reduce the potential risks associated with the use of organic manures in growing food crops, as well as determining the optimum rate of application of organic waste after treatment.

How to cite: Chukwu, V., Smith, J., Strachan, N., Avery, L., and Obiekezie, S.: Impacts of different treatment methods on spread of pathogens from organic wastes to vegetable crops in Nigeria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1114, https://doi.org/10.5194/egusphere-egu2020-1114, 2020.

The present study aimed to investigate the effect of the waste lemon extract on the flushing treatment of the copper-contaminated soil collected from contaminated farmland, in which the copper concentration was measured as high as 2487 mg/kg. The soil flushing solution was prepared using the extract from collected waste lemons. The soil flushing treatment using the solution containing commercial citric acids was also conducted for comparison. Additionally, the waste lemon was used for soil rehabilitation after composting treatment.

The soil copper concentration treated with the solution containing waste lemon extract decreased more than that treated by the commercial citric acid solution at the comparable citric acid concentration. This is because the waste lemon extract solution contains additional co-dissolved organic substances other than citric acid and the flushing treatment had a higher retention time. For the treatment with lemon extract, the soil pH values were 4.56, 5.70 and 6.29 before, after lemon extract flushing and after compost treatment. The copper plant availability dropped from 677 mg/kg for the soil before flushing to 156 mg/kg after stabilization with composted waste lemon. Therefore, the citric acid flushing combined with stabilization was found effective for heavy metal removal in the soil environment.

How to cite: Fan, C., Chang, P.-W., and Huang, Y.-Z.: Application of waste lemon extract to rehabilitate the copper-contaminated farmland through gravitational soil flushing and stabilization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2681, https://doi.org/10.5194/egusphere-egu2020-2681, 2020.

EGU2020-2762 | Displays | SSS5.5

Iron-based water treatment residuals as sorbent of heavy metals and metalloids

Magdalena Wołowiec, Małgorzata Komorowska-Kaufman, Alina Pruss, Grzegorz Rzepa, and Tomasz Bajda

The ever-increasing water pollution caused by an increase in industrial activity in developing countries is a major worldwide problem. Heavy metal contamination is particularly dangerous because of their toxic and carcinogenic nature as well as harmful effects on human and animal health. Over the past decades, considerable efforts have been made to develop effective technologies for removing heavy metals from water. Adsorption seems to be the most promising out of the many methods. Conventional adsorbents used to remove heavy metals include activated carbon or clay minerals. However, due to the need for waste management, waste products have recently become very popular, especially industrial wastes containing iron and/or aluminum oxides. One of the possible sorbent are water treatment residuals (WTRs) which are generated during drinking water treatment process. The aim of this work was to examine the possibility of using residuals from deironing of underground water (G-WTRs) as effective sorbents of Cd (II), Pb(II), Zn(II), Cu(II), Cr(III), Cr(VI) P(V), and As(V) as a function of initial concentration, pH, temperature and time.

The G-WTRs were poorly crystalline and composed predominantly of ferrihydrite with minor calcite and quartz admixture. The main chemical components were iron (32%) and calcium (17%). Specific surface area was 144 m2/g with a total pore volume of 0.181 cm3/g. The proportion of micropores was 29%, mesopores occupied the greatest volume – 54%, while micropores the lowest volume – 17%.

Cation sorption efficiecy was almost 100%, in the case of anions it ranges between 50 – 100%. Sorption capacity increased with an increase in the initial pollutant concentration. Adsorption of the metal cations was higher with and increasing pH of the solution and the best results were obtained for pH 6.0 to 7.0. While anions were preferably sorbed in lower pH. Sorption was the efficient in the temperature range of 20-40 ℃. The greatest differences in the sorption efficiency were observed within the first 2 – 4 h. The possible sorption mechanism was chemisorption.

The results showed that G-WTRs can be effective and cheap sorbents of heavy metals and metalloids. However, further research including desorption process as well as the long-term stability of formed metal-G-WTRs complexes.

Acknowledgments: This work was financed by the National Science Centre, Poland Grant No. 2017/27/N/ST10/00713.

How to cite: Wołowiec, M., Komorowska-Kaufman, M., Pruss, A., Rzepa, G., and Bajda, T.: Iron-based water treatment residuals as sorbent of heavy metals and metalloids, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2762, https://doi.org/10.5194/egusphere-egu2020-2762, 2020.

Reclaimed land in Korea is increasingly being used for horticulture, grains, livestock, etc. However, soil reclaimed land located in coastal lowland have so high salinity, poor fertility, high possibility of pollution that farming is difficult. Therefore, it is needed to reduce environmental burden and to promote fertility of soil through natural circulation farming. Therefore, we presented sustainable eco-friendly natural circulation model of agricultural resources in reclaimed land. It promotes desalination and fertility of soil through eco-friendly circular farming by integrating horticulture and livestock. To demonstrate the model, the test complex is planned to apply energy and resources circulation between horticulture and livestock focusing on Hanwoo, Korean-bred cattle. Basically high-technical plastic greenhouse-type horticultural complexes and livestock complexes including fuel facility using manure pellet are planned. Additionally, agricultural product processing, sales and distribution centers, themed landscape agricultural complexes, ecological parks, agricultural tourism facilities, and observation facilities were arranged.

How to cite: Seo, D.: A Study on Development of Test Complex for Natural Circulation Agriculture in Reclaimed Land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8532, https://doi.org/10.5194/egusphere-egu2020-8532, 2020.

EGU2020-9370 | Displays | SSS5.5

Innovative Drone-based Hyperspectral Detection of Heavy Metals (Ni, Zn, and Cu) in Plants cultivated for Phytomining

Friederike Klos, Magdalena Sut-Lohmann, Thomas Raab, and Florian Hirsch

Natural and anthropogenic activities can result in soil contamination and thus disturb their important functions for the abiotic and biotic environment, e.g. filtering, buffering or plant growth. Specific remediation measures are already taken for such environmental issues including phytoremediation using plants that are able to reduce heavy metal concentrations in the pedosphere and accumulate these heavy metals in their biomass. A fast monitoring system for a large-scale and area-wide mapping of metal contents in plants is still missing. However, such a monitoring system would be a very helpful tool to the recycling of heavy metals and supports the development of environmentally friendly processes for metal recovery. We present the concept of the innovative HyPhy project, which studies the possibility of monitoring heavy metal accumulation in hyperaccumulators with drone-based hyperspectral sensors. The phytoscreening considered here can be used to profitably mine raw materials such as nickel, zinc and copper using hyperaccumulating plants. Method will be validated using green house and field measurements based on hyperspectral sensors supported by drones. Two sensors will be used, the VNIR hyperspectral sensor from Cubert GmbH (450-950nm) and the SWIR hyperspectral sensor HySpex from the Norwegian company NEO (1000-2500nm). The two optical sensors are validated with the point spectrometer PSR+ from Spectral Evolution (350-2500nm). This presentation will show background, methods and first results of our project.

 

How to cite: Klos, F., Sut-Lohmann, M., Raab, T., and Hirsch, F.: Innovative Drone-based Hyperspectral Detection of Heavy Metals (Ni, Zn, and Cu) in Plants cultivated for Phytomining, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9370, https://doi.org/10.5194/egusphere-egu2020-9370, 2020.

EGU2020-9436 | Displays | SSS5.5

Detailed monitoring of groundwater quality near municipal solid waste landfills. Case study in Valencia region (Spain)

Javier Rodrigo-Ilarri and María-Elena Rodrigo-Clavero

Municipal solid waste landfills are one of the most relevant soil and groundwater pollution sources. Monitoring networks should be designed on the preliminary phases to guarantee that groundwater quality control is performed periodically over both the operation and post-closure phase of the landfill.

This work shows the results of a groundwater quality detailed monitoring campaign developed on a municipal solid waste landfill in Valencia Region (Spain). The sampling campaign included the continuous analysis over 11 boreholes of the following parameters: mineral oil, As, B, Ba, Cd, Chlorine, electric conductivity, TOC, total Cr, Cr VI, Cu, COD, phenols, fluorine, total P, Hg, hydrocarbons, Mo, total N, Ni, Pb, pH, Sb, Se, suspended solids, sulphates and Zn. Besides, the piezometric levels around the landfill were also controlled.

Despite there is no clear Spanish legislation concerning groundwater quality, results show that the evolution of groundwater quality over time is satisfactory, fulfilling the requirements of the American (USEPA) and European (Dutch) legislation standards.

How to cite: Rodrigo-Ilarri, J. and Rodrigo-Clavero, M.-E.: Detailed monitoring of groundwater quality near municipal solid waste landfills. Case study in Valencia region (Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9436, https://doi.org/10.5194/egusphere-egu2020-9436, 2020.

EGU2020-9437 | Displays | SSS5.5

Evaluation of future municipal solid waste production. Case study in Valencia region (Spain)

María-Luisa Carnero-Pousa, Javier Rodrigo-Ilarri, and María-Elena Rodrigo-Clavero

Municipal Solid Waste (MSW) management activities are an important tasks of both national and municipal governments as they can induce significant impacts on the environment, the economy and the living quality of the population involved.

The optimal design of a MSW management plan depends greatly on the waste production values and its distribution over the territory. This production depends mainly on the socioeconomic level of its inhabitants. On the scientific literature several studies have already been carried out, concluding that there exist a direct relationship between the waste production of a certain country or region and its Gross Domestic Product (GDP). Therefore, if GDP increases, so will the rate of waste production, although not necessarily at the same rate.

The objective of the work was to carry out an evaluation of the future production of (MSW) within the V5 production area inside Valencia Region (Spain) in the 2012-2034 time horizon. The year 2011 was used as the starting point for the simulation as this was the last year in which the population census was taken. The correlation between the evolution of the economic growth indicators and the waste production indicators was analyzed. Results showed a linear correlation between all the variables studied so that variations in one of them are reflected in the same direction in the others.

How to cite: Carnero-Pousa, M.-L., Rodrigo-Ilarri, J., and Rodrigo-Clavero, M.-E.: Evaluation of future municipal solid waste production. Case study in Valencia region (Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9437, https://doi.org/10.5194/egusphere-egu2020-9437, 2020.

EGU2020-9694 | Displays | SSS5.5

Biochar production from waste biomass: Characterization and evaluation for potential applications

Frantseska-Maria Pellera, Panagiotis Regkouzas, Ioanna Manolikaki, and Evan Diamadopoulos

In the last years, global focus has been directing towards the circular economy model. In this framework materials that had so far been regarded as waste, are now considered as valuable resources for both energy and added-value materials recovery. In this context, more and more valorization methods and technologies are being developed for waste valorization, with biomass materials of municipal and agroindustrial origin constituting ideal options, due to both composition and availability.

Biochar generation from waste biomass is a method with high potential for effectively valorizing such residual resources, by providing not only a waste management option, but also multiple agronomic and environmental benefits. In fact, biochar materials are characterized by high versatility as far as their applications are concerned. Due to their wide variety of properties, biochars can be used in various applications, such the use as an adsorbent for contaminant removal from water or wastewater, or the use as an amendment for improving soil characteristics and remediating contaminated sites.

In the present study, six different waste biomass feedstocks, specifically three of municipal origin, namely two types of sewage sludge and the organic fraction of municipal solid waste, and three of agroindustrial origin, namely grape pomace, rice husks and exhausted olive pomace, were used to generate biochar through pyrolysis at two different temperatures, i.e. 400 and 600 °C. The resulting carbonaceous materials were then characterized through a series of analyses. Based on both physical and chemical biochar properties, it was able to evaluate their potential use in different applications, for agronomic or environmental purposes.

How to cite: Pellera, F.-M., Regkouzas, P., Manolikaki, I., and Diamadopoulos, E.: Biochar production from waste biomass: Characterization and evaluation for potential applications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9694, https://doi.org/10.5194/egusphere-egu2020-9694, 2020.

EGU2020-10568 | Displays | SSS5.5

Construction and demolition waste in Macedonia, a study financed by the know-how exchange program SAMCODE promoted by the Central European Initiative

Gianluca Bianchini, Ristovski Igor, Milcov Igor, Zupanc Alojz, Natali Claudio, Salani Gian Marco, Marchina Chiara, and Valentina Brombin

Construction and Demolition (C&D) waste is the solid debris resulting from construction and demolition activities. Recycling of this solid waste may result in substantial economic and environmental benefits. Unfortunately, is some Balkan countries such as Macedonia C&D recycling awareness is not developed yet. In this country, C&D are often dumped without control. According to the Macedonian landfill operator "Drisla" the estimated amounts of C&D waste generated per year in the Skopje surroundings approach 150.000 tons, but nothing is known on their composition. On this basis, a know-how exchange programme (KEP) called SAMCODE was financed by the Central European Initiative (CEI) and specifically dedicated to the characterization of C&D waste in Macedonia. GAYA operators sampled C&D landfills in the surroundings of Skopje, verified the absence of radioactivity, and then crushed the C&D down to the grain size of two millimetres. Crushed C&D chips were sent to the Department of Physics and Earth Sciences of the University of Ferrara, where the materials were powdered and analysed by X-ray fluorescence (XRF). Moreover, to characterize elemental mobility leaching tests on the C&D powders were carried out according to the following protocol: 1g of C&D powder has been soaked with 10 ml of deionized water, for 24 h. Subsequently the solutions have been centrifuged, filtered (at 45 mm) and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). XRF analyses showed that – although variable - silica, calcium and aluminium are always the dominant components (SiO2 between 32 and 60 wt%, CaO between 7 and 30 wt%, Al2O3 between 7 and 16%) suggesting possible recycling in the ceramic/cement industrial processes. However, the real re-use of these materials in industrial processes is hampered by the lack of homogeneity, a feature required by the industries. The analysis of trace elements emphasized another critical aspect: Macedonian C&Ds often contain anomalously high concentrations of elements potentially hazardous, especially chromium (Cr), nickel (Ni), lead (Pb) and zinc (Zn). Note that the high concentrations of Cr, Ni, Zn and Pb do not necessarily recall the presence of contaminants, as these elements can be present in natural raw materials used in the country. Noteworthy, in Macedonia there are rocks included in the ophiolite sequences such as peridotites, serpentinites, pyroxenites and chromitites that can contain thousand(s) ppm of chromium and nickel, and also mining areas where there are sulphides of lead (galena) and zinc (sphalerite). If similar rocks are used as raw materials in the building activity, it is not strange to have C&D anomalously enriched in Cr, Ni, Pb, Zn. This hypothesis is confirmed by soil studies retrieved in the literature that highlighted that Macedonian soils can contain anomalous content of these elements. ICP-MS analyses of leachates show negligible concentrations of Ni, Pb and Zn, but significant concentrations of Cr. The results indicate that to foresee effective recycling Macedonian C&D have to be preliminarily screened to eliminate Cr-bearing components, crushed and sorted to obtain a better homogenization.

How to cite: Bianchini, G., Igor, R., Igor, M., Alojz, Z., Claudio, N., Gian Marco, S., Chiara, M., and Brombin, V.: Construction and demolition waste in Macedonia, a study financed by the know-how exchange program SAMCODE promoted by the Central European Initiative, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10568, https://doi.org/10.5194/egusphere-egu2020-10568, 2020.

EGU2020-16760 | Displays | SSS5.5

Study of pre-treatments of fly ashes aimed to the reuse as construction materials: chemical and mineralogical characterization

Enrico Destefanis, Caterina Caviglia, Davide Bernasconi, Costanza Bonadiman, Giorgia Confalonieri, Linda Pastero, Renzo Tassinari, and Alessandro Pavese

The management of waste and its sustainable reuse is one of the most important concern in our society in recent years, together with the increasing need to find primary materials without resorting to new extraction of resources. In this context, the thermovalorization of municipal solid waste (MSW) is currently the method that is spreading and replacing landfill disposal; the thermal treatment allows to reduce the volumes significantly, producing energy and returning bottom ashes (BA) and fly ashes (FA) in the measure of 20% and 5% of the total waste respectively.
The MSW incineration BA are classified as non-hazardous waste and can be reused as a raw material after some physical-chemical treatments.
The FA, on the contrary, are classified as hazardous waste and according to current legislation, they are usually subjected to vitrification treatments and stored in dedicated landfills. The hazard is due to the high content of soluble salts (chlorides and sulfates) and heavy metals (mainly Zn and Pb). Therefore, for their possible reuse as construction materials (e.g. ceramic, cement, concrete aggregates) or base roads, a preliminary stabilization step is required which often requires the use of significant quantities of energy.
In the present work, low energy cost methods are considered to reduce the dangerousness of FA and consequently make them more easily treatable for their reintegration into the production cycles.
Among the methods, washing of FA with water is examined, to find the lowest L / S ratio in the reduction of salts and heavy metals, analyzing the dissolution kinetics and the mineralogical content of fly ash before and after each washing treatment.
For a better definition of the kinetics, the FA are previously submitted to particle size separation to understand in which fractions the most dangerous substances are concentrated.
Washing treatments can be useful to remove or reduce soluble salts, in particular chlorides, by using a different liquid / solid (L / S) ratio, in order to obtain a more suitable material for the solidification / stabilization treatments carried out by geopolymerization or in cement.
The eluates of washing are also taken into consideration to evaluate the recovery of elemental species of interest and the purification of the liquid phase with biochar.

How to cite: Destefanis, E., Caviglia, C., Bernasconi, D., Bonadiman, C., Confalonieri, G., Pastero, L., Tassinari, R., and Pavese, A.: Study of pre-treatments of fly ashes aimed to the reuse as construction materials: chemical and mineralogical characterization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16760, https://doi.org/10.5194/egusphere-egu2020-16760, 2020.

EGU2020-19514 | Displays | SSS5.5

Do different organic amendments effectively improve the soil biochemical activity of very poor arid soils from Tunisia?

Houda Oueriemmi, Petra S Kidd, Ángeles Prieto-Fernández, Beatriz Rodriguez-Garrido, Mohamed Moussa, and Carmen Trasar-Cepeda

Soils from arid and semi-arid ecosystems are generally very low in organic matter content, poor in nutrients and typically with sandy texture.  The application of different organic amendments has been proposed as an adequate approach to improve the quality of these soils for their use in agriculture. The use of organic wastes of different origins (agricultural, industrial, urban, etc.) as soil amendments has a dual goal: i) improving soil fertility and quality, ii) reducing the environmental problem that poses the disposal of these residues. However, despite of the beneficial effects of these residues, undesirable changes may also occur in agricultural soils after their addition. For example, the presence of various pollutants of anthropogenic origin in organic wastes may cause adverse effects on soil microbiota.  Generally, the arid and semi-arid soils of Tunisia are well characterised. However, the use of organic amendments to improve the quality of these soils has been scarcely investigated. Soil biochemical properties, and specifically soil enzyme activities, have been often used to investigate the impact of different amendments on soil quality, because they are highly sensitive to human or environmental perturbations.

In this work, the results of a field trial established for investigating the effectiveness of three organic residues (composted municipal solid waste, composted sewage sludge and farmyard manure) to improve the quality of one agricultural soil from Tunisia are reported. The soil had a sandy texture, alkaline pH (pH 8.3) and was very poor in organic matter (0.21 and 0.03% of total C and N, respectively). Each of the organic residues was applied in triplicate at three different doses in nine sub-plots randomly distributed; three untreated sub-plots were also established for comparison. One, 6 and 18 months after the soil amendments, surface (0-20 cm) soil samples were collected from all the treated and untreated subplots. The soil samples were analysed for the enzyme activities of four hydrolases involved in the C, N, P and S cycles and for an oxidoreductase (dehydrogenase) reflecting soil microbial activity. All the soil samples were also characterised for their main physicochemical properties.

Addition of the three organic amendments induced slight increases of the total organic carbon and nutrients content; however, the improvements observed were generally not related with the amount of applied residue. The activity of the enzymes increased after the application of the three residues, but these increments were not correlated with the dose of residue and did not consistently varied with the time elapsed after residue application. Generally, the highest increases in absolute values were observed for manure-amended soils, but when the activities were considered in relation to the total organic C of the soils, the sludge amended soils appeared to be the most favoured. The results are discussed with regards to their implications for improving very poor agricultural soils.

Acknowledgements: This research was financially supported by the Xunta de Galicia (IN607A 2017/6), UE Interreg-Sudoe program (SOE1/P5/E0189) and the Tunisian Ministry of Higher Education and Scientific Research. H. Oueriemmi thanks founding support of Erasmus plus program for her stay at the IIAG-CSIC.

How to cite: Oueriemmi, H., Kidd, P. S., Prieto-Fernández, Á., Rodriguez-Garrido, B., Moussa, M., and Trasar-Cepeda, C.: Do different organic amendments effectively improve the soil biochemical activity of very poor arid soils from Tunisia?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19514, https://doi.org/10.5194/egusphere-egu2020-19514, 2020.

EGU2020-19535 | Displays | SSS5.5

The effect of lignin application on plant growth and soil biological quality

Mesfin Gebremikael, Ramon Vandendaele, Marta Alarcon, Ruben Torregrosa, and Stefaan De Neve

There is a wide variety of agricultural waste co- and by-products that could potentially be valorised in high-value applications. One of such products is lignin, the second most abundant organic biopolymer after cellulose. Because of the large amounts of pruning wastes in the Mediterranean regions, lignin extraction can be one of the possibilities for valorisation and sustainable management of agricultural wastes. Research on the application of lignin, particularly lignosulfonates, is limited to its use as a biostimulant for root growth under controlled laboratory conditions and as a complexing agent in micronutrient foliar fertilizer formulations. Little is known about the impacts of lignin extracted from various feedstock on plant growth and soil quality.

 

We investigated the potential of lignin as plant biostimulator and soil conditioner in a pot experiment with fresh soil and lignin extracts obtained from three types of pruning wastes (urban trees, fruit and forest trees) using ryegrass as a test plant, under laboratory conditions. Two doses of lignin extracts (equivalent to 5 and 20 kg lignin-C ha-1) were applied to assess whether the effect on plant growth and soil quality depends on the rate of application. Soil and plant parameters were determined seven weeks after the grass was planted at 17 °C and 16 h photoperiod. 

 

Root biomass significantly increased (62-152%) in treatments with lignin addition, particularly lignin from urban and forest pruning wastes compared to the control. However, the increase in root biomass did not result in a simultaneous increase in shoot biomass or N uptake showing the need to apply additional plant nutrient. The microbial biomass C did not significantly respond to the application of lignin. A significantly higher dehydrogenase enzyme activity was recorded in samples with the high dose of lignin extracted from the urban wastes compared to the lower dose. Urban waste lignin extract contains 15-18 times more total N compared to the lignin extracts from forest and fruit trees, which could explain its significant effect on enzymatic activities and root biomass.

 

The findings show that differences in feedstock properties may influence the plant growth stimulating activity of the lignin. Further research is needed to improve the plant growth-stimulating effect of lignin, to investigate the simultaneous application of the major plant nutrients and the response of the microbial community to lignin application.   

 

How to cite: Gebremikael, M., Vandendaele, R., Alarcon, M., Torregrosa, R., and De Neve, S.: The effect of lignin application on plant growth and soil biological quality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19535, https://doi.org/10.5194/egusphere-egu2020-19535, 2020.

EGU2020-19906 | Displays | SSS5.5

Recovery of metals from mining tailings by eco-friendly hydrometallurgical processes

Gabriel Gascó, Ignacio Sánchez, José Manuel Fidalgo, Antonio Saa, Jorge Paz-Ferreiro, and Ana Méndez

Metal´s demand and price are increasing due to the global trend towards urbanisation and industrialisation. Metals and raw materials are crucial to Europe’s society, economy and industry. However, some of them show a high-supply risk due to high dependence of imports, being necessary to find alternative materials or new sources for their recovery. Additionally, the overall global reserves of high-grade ores are close to depletion. In this context, low-grade, complex ores like sulphide minerals and old waste deposits related to past mining activities have received much more attention in recent years as new metal sources. The main objective of the present work is the recovery of metals from mining tailings, mainly post-flotation wastes, by eco-friendly hydrometallurgical processes. The presence of low-grade minerals hinders metal extraction by traditional pyrometallurgical processes. Spanish mining tailings show different compositions depending on their origin. However, complex ores like sulphide minerals (pyrite; sphalerite; chalcopyrite; arsenopyrite and other polymetallic sulphides) are generally present. It is known that metals in the form of complex sulphide precludes their chemical leaching.  For this reason, some carbon materials have been studied during last years as efficient catalysts for the leaching of metals from complex sulphides. The present work will be performed during the project RTI2018-096695-B-C31 (Ministerio de Economía y Competitividad). Different mining taillings will be selected from Spanish mining areas and mix with corresponding carbon catalysts. Leaching experiments will be performed during 96 hours at 60 and 90ºC under continuous agitation. The results obtained in the project will contribute to better understanding of the influence of catalysts in the leaching of metals from mineral sulphides. 
Authors wish to thank Spanish Ministerio de Economía y Competitividad for economic support (RTI2018-096695-B-C31)

How to cite: Gascó, G., Sánchez, I., Fidalgo, J. M., Saa, A., Paz-Ferreiro, J., and Méndez, A.: Recovery of metals from mining tailings by eco-friendly hydrometallurgical processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19906, https://doi.org/10.5194/egusphere-egu2020-19906, 2020.

EGU2020-21181 | Displays | SSS5.5

Soil respiration and soil organic matter pools in soils amended for 7 years with biochar combined with mineral and organic fertilizers

Iria Benavente-Ferraces, Fátima Esteban, Denis Courtier-Murias, Ana Rey, Claudio Zaccone, Eduardo Moreno-Jiménez, Gabriel Gascó, Marco Panettieri, María del Mar Delgado, Juan C. García-Gil, and César Plaza

Biochar application is now considered to be one of the most promising agricultural practices to mitigate climate change. However, to fully assess the benefits of biochar, we still need to better understand its effects on soil properties, and particularly on native soil organic matter (SOM) dynamics.

In this work, we investigated soil respiration and changes in SOM pools (mineral-free, intra-aggregate, and mineral-associated SOM) as affected by the application of 20 t / ha per year of biochar alone or combined with mineral fertilizer, municipal solid waste compost, or sewage sludge. The experiment was run for 7 years in a semiarid agricultural soil. We found that biochar had no effect on soil respiration with respect to mineral fertilization and no amendment (control), and tended to decrease CO2 emissions from soils amended with municipal solid waste compost and sewage sludge. Biochar accumulated mainly in the mineral-free SOM fraction and its addition, especially in combination with municipal solid waste compost, promoted the amount of SOM occluded with aggregates and associated to mineral surfaces.

Acknowledgments: to the Spanish MICINN (MINECO, AEI, FEDER, EU) for supporting the research project AGL2016-75762-R.

How to cite: Benavente-Ferraces, I., Esteban, F., Courtier-Murias, D., Rey, A., Zaccone, C., Moreno-Jiménez, E., Gascó, G., Panettieri, M., Delgado, M. M., García-Gil, J. C., and Plaza, C.: Soil respiration and soil organic matter pools in soils amended for 7 years with biochar combined with mineral and organic fertilizers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21181, https://doi.org/10.5194/egusphere-egu2020-21181, 2020.

EGU2020-21238 | Displays | SSS5.5

The Potential for Biochar to Mitigate the Impact of Climate Change

Naeema Al Nofeli and Fred Worrall

The date palm tree has been mainly used as a source of food in the MENA (Middle East North Africa) region. Specifically, in the United Arab Emirates produces over 44 million date palm trees yearly, each tree generates approximately 20 Kilograms of palm frond waste per year and this waste is currently sent to landfills. In this study, we proposed that in the arid soil conditions found in the UAE, this date palm waste could be converted to biochar and used to improve the water holding capacity of UAE soils. Therefore, the aim of this study was to test whether amendments of date palm frond (DPF) and its biochar could improve the water holding capacity of soils. A mesocosm design and a plant growth experiment were used to assess the treatments at summer temperature conditions. For the mesocosm, there were 6 different biochar and DPF treatments (1%, 3%, 6%, 12%, 15% and 18% biochar or DPF in soil) along with the controls (sharp sand, DPF biochar and DPF). The experiment was divided into 3 cycles (wet, dry, and dry with a water bowl (waw)). The impact of the experimental treatments was assessed using ANOVA. Both Biochar and DPF had no significant effect during the first two cycles (wet and dry) but during the third cycle, the DPF appeared to have better water holding capacity than Biochar. A plant growth experiment was conducted with 6 different treatment (controls - sand, DPF and Biochar; and Biochar at 1%, 6%,15% and 18%). Cat grass was used for measuring its temperature, height, moisture and pH. Water was irrigated during the first 3 weeks then the soil treatments left to dry. The results of the greatest growth for 1% Biochar. Further investigations are being processed using thermal gravimetric analysis (TGA), Carbon, Nitrogen, Hydrogen & Oxygen (CHNO), Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM) & Computerized tomography (CT) scan. This is to assess water binding capacity and physiochemical properties of the Biochar, DPF and soil.  

How to cite: Al Nofeli, N. and Worrall, F.: The Potential for Biochar to Mitigate the Impact of Climate Change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21238, https://doi.org/10.5194/egusphere-egu2020-21238, 2020.

EGU2020-21430 | Displays | SSS5.5

Nanominerals and biochar as additives in the composting of agricultural waste: effects on GHG emissions, composition and biodegradability of end-products on grassland soils.

Jorge Medina, Marcela Calabi-Floody, Marco Panettieri, Pablo Cornejo, Fernando Borie, and Heike Knicker

The utilization of additives is a strategy commonly used in composting operations to enhance the physicochemical properties and optimize the process. However, little is known about the impact of nanominerals, biochar and their combination during composting. The objective of this research was to evaluate the effects of iron oxide/halloysite nanominerals and oat hull-biochar as additives in the physicochemical properties of an aerobic composting process, the emission of greenhouse gases (GHG) and the composition of end-products. In order to analyze the biodegradability of composting end-products in grassland soils, an incubation experiment was also carried out. Wheat straw, lupine and beef manure were mixed (C/N: ~25) with iron oxide (Fe) or halloysite (Ha) nanoparticles (2% w/w), oat hull-biochar (B) (7% w/w) and their combination (BFe, BHa). pH, EC, C/N ratio, NH4-NO3 contents and the emission of CO2 and CH4 were analyzed. After 128 days of aerobic composting process, the end-products and their NaOH soluble fraction were characterized by using spectroscopic analysis that included E4/E6 ratio and solid state nuclear magnetic resonance (13CNMR). To analyze the biodegradability of produced compost in grassland soils, a respiration experiment (60 days) using Respicond Apparatus IV, combined with δ13C isotopic analysis was conducted. A decrease of final C/N ratio was observed in all treatments that was lower in B treated compost. Nitrate concentration increased as composting progressed, and compost supplied with Ha showed the higher final content of NO3 (5800 mg kg-1) and NH4 (220 mg kg-1). The addition of B significantly decreased the mean emission of both CO2 (~400 g CO2 m2 d-1) and CH4 (~4.5 g CH4 m2 d-1). Nanominerals significantly decreased the final E4/E6 ratio (<6) and the addition of B increased the aromaticity (twice), the alkyl-C/O alkyl-C ratio and the hydrophobicity which are parameters associated to stabilized end-products. In soil, the incorporation of additives reduced the loss of C (<5% after 60 days of incubation). Treatments supplied with B and Ha showed a higher mean residence time (8 and 5 years respectively) than compost without additives. These results suggest that the addition of halloysite and biochar to composting operations have significant effects on C stabilization and biodegradability of compost in grassland soils, that is relevant in the production of C sequestrant amendments. Acknowledgments to FONDECYT N° 3170677.

How to cite: Medina, J., Calabi-Floody, M., Panettieri, M., Cornejo, P., Borie, F., and Knicker, H.: Nanominerals and biochar as additives in the composting of agricultural waste: effects on GHG emissions, composition and biodegradability of end-products on grassland soils., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21430, https://doi.org/10.5194/egusphere-egu2020-21430, 2020.

EGU2020-21625 | Displays | SSS5.5

Design and experimental production of organic fertilizers from biogas digestates and secondary materials for horticultural purposes

Frank Repmann, Nils Dietrich, Florian Hirsch, and Thomas Raab

An ever growing quantity of digestates produced from agricultural biogas facilities puts alternative use options, other than spreading those residues on agricultural land, into focus, particularly to protect the ground water from nitrogen leaching in intensively used regions. Within the framework of the FNR funded project Skarabäus, Brandenburg University of Technology (BTU) together with partners from the Institute of Agricultural and Urban Ecological Projects affiliated to Humboldt University Berlin (IASP) and the Humboldt University Berlin (HU) investigate whether biogas digestates could be converted to fertilizer products of defined composition to be used outside agricultural production particularly for gardening and landscaping. The project rationale is to agglomerate the separated digestates to produce a fertilizer which is flexible in the design of properties, easy to handle for application and  effective to plant’s growth. Basically the tumble agglomeration was considered as the main process. The properties of the fertilizer product, particularly the nutrient content with respect to nitrogen, phosphorus and potassium, was thought to be adjusted by adding nutrient rich secondary materials like meat and bone meal, replaced powders from fire extinguishers and recycled material originating from waste water treatment during the agglomeration process.

Experiments revealed that separated digestates could hardly be agglomerated due to the high amount of relatively large and inflexible fiber contained. The addition of binding agents like clay minerals strongly improved the agglomeration process. However, so far best results were achieved when separated digestates were composted prior to the agglomeration process. In this way no binding agents were necessary. Agglomerates produced from composted digestates showed a reasonable particle size distribution and nutrient- and organic matter content generally suitable for application in horticulture, given that future greenhouse and field experiments could also demonstrate the beneficial application.

How to cite: Repmann, F., Dietrich, N., Hirsch, F., and Raab, T.: Design and experimental production of organic fertilizers from biogas digestates and secondary materials for horticultural purposes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21625, https://doi.org/10.5194/egusphere-egu2020-21625, 2020.

The use of biochar as a soil amendment has been proposed to increase the carbon (C) sequestration in soils. However, a more rapid soil organic matter turnover after biochar application might reduce the effectiveness of biochar applications for C sequestration. Data on the effects of biochar on soil C turnover is particularly important in boreal forests where large quantities of forest harvest residues would be available as feedstock for biochar production. To better understand the effects of biochar on boreal forest soil, we established a split-plot experiment where two spruce biochar produced with different temperatures (500°C and 650°C) were applied at a rate of 1.0 kg m-2 and 0.5 kg m-2 in a young xeric Scots pine forest in southern Finland. Measurement of soil CO2 effluxes and microbial biomass were used to investigate changes in soil C dynamics. Biochar application increased the rate of soil CO2 efflux by 10.6% across all biochar treatments and significantly (P<0.05) in 1.0 kg m-2 treatments. Soil microbial biomass remained unchanged. Soil temperature was 0.1 to 0.5°C higher in the biochar-amended treatments. Further analysis revealed that when soil CO2 efflux was corrected for the changes in soil temperature and soil moisture, there were no significant differences between treatments. We conclude that increase in soil CO2 efflux was attributed to warmer soils at the initial stage after biochar application to the soil surface; changes in soil chemical properties did not have any detectable effect on soil respiration.

How to cite: Zhu, X.: Short-term effects of biochar on soil CO2 efflux in boreal Scots pine forests, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21914, https://doi.org/10.5194/egusphere-egu2020-21914, 2020.

EGU2020-21730 | Displays | SSS5.5

Effects of liquid organic fertilisers on selected soil quality indicators

Susanne Eich-Greatorex, Annbjørg Øverli Kristoffersen, Jan Stabbetorp, Svein Jarle Horn, Trond Børresen, and Trine Aulstad Sogn

Anaerobic digestion of organic household waste as a means of energy production leaves considerable amounts of organic residues. These biogas digestates may represent a valuable source of nutrients and organic material, especially in areas with little application of animal manure to arable land. However, due to a typically high amount of available nitrogen and a low dry matter content, only small amounts of organic material are added with untreated digestates, also compared to other liquid organic fertilisers such as cattle slurry. The main objective of the study was to determine how the quality of liquid organic fertilisers affects soil properties. In soil samples from three field experiments in south-eastern Norway, aggregate stability, water retention characteristics, and selected chemical properties were determined. After three to seven years of application, the organic fertiliser treatments showed a positive effect on aggregate stability and pH compared to inorganic or no fertiliser, as well as a trend to higher carbon concentrations especially in soils with relatively low organic matter content. Effects on water retention characteristics depended on the quality of the organic fertilisers: Cattle slurry addition increased the number of medium-sized pores and thus plant-available water, whereas digestate addition instead increased the number of small pores in the soil.

How to cite: Eich-Greatorex, S., Kristoffersen, A. Ø., Stabbetorp, J., Horn, S. J., Børresen, T., and Sogn, T. A.: Effects of liquid organic fertilisers on selected soil quality indicators, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21730, https://doi.org/10.5194/egusphere-egu2020-21730, 2020.

EGU2020-21013 | Displays | SSS5.5

Nutrient Recovery from Agricultural Wastewater by Integrated Electrokinetic Processes

Shu-Yuan Pan, Chao-Yu Wei, Anwar Jamaal Wade, and Po-Chih Tseng

Agricultural wastewater including anaerobic digestate is annually generated in a huge quantity in Taiwan. The management of agricultural wastewater should be emphasized on the recovery and production of value-added resources, such as macronutrients (nitrogen, phosphorus, and potassium), for realizing the circular bioeconomy. In this paper, we will illustrate the development of energy-efficient electrokinetic processes for nutrient recovery from agricultural wastewater. First, we evaluate the performance of electrokinetic separations processes for recovery of macronutrients. We also discuss major challenges in managing nutrient reuse by the developed electrokinetic methods. Then, we elucidate the process chemistry and reaction kinetics by the processes. Lastly, we consider the interconnectivity among water, energy and the produced macronutrients in the context of large-scale deployment.

How to cite: Pan, S.-Y., Wei, C.-Y., Wade, A. J., and Tseng, P.-C.: Nutrient Recovery from Agricultural Wastewater by Integrated Electrokinetic Processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21013, https://doi.org/10.5194/egusphere-egu2020-21013, 2020.

SSS5.6 – Organo-mineral associations and microaggregates in soil: Dynamics and functions

EGU2020-17147 | Displays | SSS5.6 | Highlight

Elucidating the 3D structure of soil microaggregate and the fate of organic matter

Tianyi Wu, Alexander Ost, Jean-Nicolas Audinot, Tom Wirtz, Franz Buegger, Carmen Höschen, and Carsten W. Mueller

Soil microaggregates play an important role for the long-term sequestration of soil organic matter (SOM) and are the nucleus of larger soil structures. However, it is still not well understood how the interplay of microaggregate structure and composition determine their functionality. This is especially due to analytical limitations that lead to the fact that the 3D architecture of microaggregates in conjunction with the fate of OM at the sub-micron scale is still hard to analyze. Combining microscopic and spectroscopic techniques with high sensitivity and high spatial resolution enables the correlation of microscale topographic information together with elemental and isotopic composition. In the present study we use novel imaging techniques at a previously unresolved spatial resolution to analyze and reconstruct the 3D architecture of microaggregates and the associated SOM.

In this study, isotope labelling was used to understand the fate of fresh C and N within newly developed soil microstructures. To explore the role of the inherited carbon content, soils from three different management practices, namely bare fallow, three-field and direct drilling, with different OM content, from an agricultural cropland research farm were used. To investigate the impact of fresh OM differing in C/N ratio on the 3D architecture of new formed soil microstructures, we performed an amendment with a substrate lacking N (highly labelled glucose (>99% 13C) ) and a substrate containing N (amino acid mixture (>98% 13C, >98% 15N) . After the incubation, all bulk soils and fractions were measured by Isotope-ratio mass spectrometry (IRMS) for 13C and 15N abundances. Microaggregates, clay and fine silt after 24 hours incubation were analyzed using Helium Ion Microscope (HIM) coupled with Secondary Ion Mass Spectrometer (SIMS) system and Nano Secondary Ion Mass Spectrometry (NanoSIMS) instrument for topography and elements/isotopes distribution, respectively. HIM-SIMS produced secondary electron images with a high resolution down to 0.5 nm and SIMS images of 24Mg, 27Al, 39K and 56Fe with a sub 20 nm resolution. NanoSIMS was capable to locate 12C2, 12C13C, 12C14N and 12C15N for organic matter and 16O, 27Al16O and 56Fe16O as mineral phases at a submicron scale.

Significant (p < 0.01) difference found between clay and fine silt fractions in amino acid treatment shows that the clay plays a more important role in fresh OM sequestration than fine silt, as more 13C and 15N were detected on mineral surfaces in the clay sized fraction. Interestingly, no difference between fractions were observed for the glucose (C added only) treatments, here N can be assumed to act as a limiting factor. By correlative image registration of HIM-SIMS with NanoSIMS data, the 3D architectural buildup soil microaggregates was reconstructed. The combination of HIM-SIMS and NanoSIMS analyses allows a considerable step forward in the capability to investigate soil microaggregate and their organo-mineral associations at a previously unresolved sub-micron scale. The ongoing work points to the chemical composition of the mineral microaggregate constituents as being decisive for the spatial arrangement of the organo-mineral associated OM.

How to cite: Wu, T., Ost, A., Audinot, J.-N., Wirtz, T., Buegger, F., Höschen, C., and Mueller, C. W.: Elucidating the 3D structure of soil microaggregate and the fate of organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17147, https://doi.org/10.5194/egusphere-egu2020-17147, 2020.

EGU2020-11335 | Displays | SSS5.6

Processing of organic matter input influences aggregate formation in artificial soils with different texture

Franziska Bucka, Shu-Yin Tung, and Ingrid Kögel-Knabner

Aggregate formation and stabilization depends on the interaction of minerals and soil organic matter (SOM). So far, little is known about the interplay of individual organic matter qualities and soil texture within this process. We developed an experimental set-up to study early soil development and aggregate formation within a controlled lab environment. We designed artificial soil microcosms with different texture, mimicking natural soils, and added organic carbon (OC) derived from particulate organic matter (POM, milled hay litter), dissolved organic matter (DOM, solution derived from hay), and bacterial necromass (Bacillus subtilis). We performed a short-term incubation for 30 days under constant water tension and investigated microbial activity, soil structure development and OC allocation compared to a control that did not receive additional OC input. 

OC input led to the formation of mostly large, water-stable macroaggregates (3000-630 µm) and some small microaggregates (<63 µm) in all microcosms as effect of microbial processing of the added OM. The addition and microbial decay of litter pieces led to physical occlusion of the particles into mainly large (3000-630 µm), OC-rich macroaggregates independent of the texture. The addition of DOM solution also induced the formation of large macroaggregates besides small microaggregates, although the OC input was much lower. Here, the aggregate formation was impaired by higher sand content in the mixtures. The addition of bacterial necromass led to the highest microbial activity, but relatively low aggregate formation, which might be a result of less physically active organic matter nuclei.

The results show that our experimental design allows to specifically investigate selected process complexes of soil structure formation defined by the addition of OM and soil texture.

How to cite: Bucka, F., Tung, S.-Y., and Kögel-Knabner, I.: Processing of organic matter input influences aggregate formation in artificial soils with different texture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11335, https://doi.org/10.5194/egusphere-egu2020-11335, 2020.

EGU2020-9493 | Displays | SSS5.6

Microaggregation of goethite and illite: Linking mechanistic modeling and laboratory experiments

Alexander Prechtel, Simon Zech, Stefan Dultz, Georg Guggenberger, and Nadja Ray

Microaggregates are the fundamental building blocks of soils and thus important for their structure, properties, and functions. Hence, experimental aggregate formation studies (Dultz et al. 2019) were conducted to reveal the mechanisms leading to the establishment of soil microaggregates from mixtures of the mineral building units goethite and illite. Mathematically based modeling can further illuminate the mechanisms and factors behind structure formation as well as facilitate this understanding, even if the experimental capability is limited.

To this end, we present and extend a mechanistic modeling approach (Rupp et al. 2018, Rupp et al. 2019) which is based on a cellular automaton method that resolves explicitely particles at the micrometer scale. Thus it is capable to represent structural changes originating from (electrostatic) interaction of building units (aggregate forming materials). As prototypic building units goethite and illite with needle like and platy shapes of different size and charge are implemented. The operational, comprehensive model allows studying structure formation as a function of composition and charge of such mineral mixtures. Along this line, homoaggregation as well as heteroaggregation scenarios are investigated. The resulting microaggregates are investigated with respect to size, structure, and stability. Moreover, the role of the aspect ratio for stability, the point of zero charge for aggregation, and the amount of excess particles with respect to time is illustrated. Finally, the results are evaluated and compared to experimental data given in Dultz et al. (2019), and extend the scenarios studied there

S. Dultz, S.K. Woche, R. Mikutta, M. Schrapel, G. Guggenberger (2019): Size and charge constraints in microaggregation: Model experiments with mineral particle size fractions. Applied Clay Science 170, 29-40.

A. Rupp and K. Totsche and A. Prechtel and N. Ray (2018): Discrete-continuum multiphase model for structure formation in soils including electrostatic effects. Frontiers in Environmental Science, 6, 96.

A. Rupp, T. Guhra, A. Meier, A. Prechtel, T. Ritschel, N. Ray, K.U. Totsche (2019): Application of a cellular automaton method to model the structure formation in soils under saturated conditions: A mechanistic approach. Frontiers in Environmental Science 7, 170.

How to cite: Prechtel, A., Zech, S., Dultz, S., Guggenberger, G., and Ray, N.: Microaggregation of goethite and illite: Linking mechanistic modeling and laboratory experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9493, https://doi.org/10.5194/egusphere-egu2020-9493, 2020.

EGU2020-17611 | Displays | SSS5.6

The contribution of earthworms to soil aggregate formation

Tom Guhra, Katharina Stolze, Thomas Ritschel, and Kai Uwe Totsche

Anecic and endogeic earthworm species are known as “ecosystem engineers” that significantly contribute to the porosity and coherence of soil as well as soil water infiltration and the turnover rates of organic matter (OM). Additionally, earthworms actively excrete nutrient rich mucus, release bacteria within casts and translocate litter into the subsurface. In this way, earthworms not only shape the structure of soils but also the chemical milieu of the drilosphere where mucus forms a prominent fraction of OM. Furthermore, other biogenic extracellular polymeric substances (EPS) are known to form organo-mineral associations, which suggests that earthworms also facilitate their further attachment into soil aggregates.

With this study, we investigated how earthworms contribute to soil aggregate formation and impact aggregate properties by OM translocation and incorporation in the drilosphere. At vertically sampled burrow walls predominantly formed by Lumbricus terrestris, a patchy and depth dependent distribution of hydrophobic and hydrophilic regions was found with the water drop penetration time (WDPT) test. In the hydrophobic regions, we identified an enrichment of carbon and aggregate surface coatings containing plant residuals, bacteria, OM screenings and enmeshments by scanning electron microscopy (SEM) and elemental analysis. These structures were further investigated by factor analysis of Fourier transform infrared (FTIR) spectra that permitted the FTIR-band extraction of earthworm typical aggregation agents as, e.g., bacterial EPS, earthworm mucus and plant components (leaves, roots and sprout). Furthermore, with sorption experiments to typical minerals of temperate soils (e.g. illite and goethite), we found a mineral-specific adsorption of earthworm cutaneous mucus (of Lumbricus terrestris and Aporrectodea caliginosa) and bacterial EPS (of Bacillus subtilis). Specifically, a preferential adsorption of phosphorus containing constituents of mucus and bacterial EPS to goethite has been observed. The resulting formation of organo-mineral associations characterized by screened mineral surface charges was shown by zeta potential measurements.

We show that besides the active incorporation of particulate OM, as e.g. plant residuals and microorganisms, the mineral specific adsorption of EPS formed by earthworms and bacteria induce the formation of organo-mineral associations and alteration of the physico-chemical properties of earthworm-formed structures and soil aggregates.

How to cite: Guhra, T., Stolze, K., Ritschel, T., and Totsche, K. U.: The contribution of earthworms to soil aggregate formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17611, https://doi.org/10.5194/egusphere-egu2020-17611, 2020.

EGU2020-16496 | Displays | SSS5.6

Free soil colloids and colloidal building units of soil aggregates

Ni Tang, Nina Siebers, and Erwin Klumpp

Nanosized mineral particles and organic matter (<100 nm) ,as well as their associations, belong to the most important ingredients for the formation of the soil aggregate structure being a hierarchically organized system. Colloids (< 220 nm) including nanoparticles can be occluded as primary building units of soil aggregates. Nevertheless, a large proportion of these colloids is mobile and presents in the solution phase (as “free”) within the soil matrix. However, the differences between “free” and occluded colloids remain unclear.

Here, both occluded and free colloids were isolated from soil samples of an arable field with different clay contents (19% and 34%) using wet sieving and centrifugation. The release of occluded colloids from soil macroaggregates (>250 µm) was carried out with ultrasonic treatment at 1000 J mL-1. The free and occluded colloidal fractions were then characterized for their size-resolved elemental composition using flow field-flow fractionation inductively coupled plasma mass spectrometry and organic carbon detector (FFF-ICP-MS/OCD). In addition, selected samples were also subjected to transmission electron microscopy as well as pyrolysis field ionization mass spectrometry (Py-FIMS).

Both, free and occluded colloids were composed of three size fractions: nanoparticles <20 nm, medium-sized nanoparticles (20 nm–60 nm), and, fine colloids (60 nm–220 nm). The fine colloid fraction was the dominant size fraction in both free and occluded colloids, which mainly consist of organic carbon, Al, Si, and Fe, probably present as phyllosilicates and associations of Fe- and Al- (hydr)oxides and organic matter. However, the organic matter contents for all three size fractions were higher for the occluded colloids than for the free ones. The role of OM concentration and composition in these colloids will be discussed in the paper.

How to cite: Tang, N., Siebers, N., and Klumpp, E.: Free soil colloids and colloidal building units of soil aggregates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16496, https://doi.org/10.5194/egusphere-egu2020-16496, 2020.

EGU2020-10404 | Displays | SSS5.6

Imaging organo-mineral associations of creek sediments

Karin Eusterhues, Jürgen Thieme, Lars Lühl, Andreas Haidl, S. Johannes Heym, Konstantin Adrianov, Aurelie Dehlinger, Stefan Rehbein, Thomas Wilhein, Birgit Kanngießer, and Kai Uwe Totsche

Interactions of organic matter with mineral surfaces are seen as one of the important mechanisms to increase carbon preservation in soils. Often, the mineral associated organic matter is assumed to consist of microbial derived material, because of its small C/N ratio and its isotopic signature.

We sampled sediments and surface water flocs from a small creek (pH 6.4) to obtain natural samples with a much higher microbial versus plant derived organic matter input than expected for soils. The bulk material was investigated by CNS analysis, X-ray diffraction (XRD), and infrared spectroscopy (FTIR). Organo-mineral associations were imaged by a combination of atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray fluorescence spectroscopy (STXM-XRF) at 2550 eV (S, P, Si, Al, Fe) and 320 eV (C) at a spatial resolution of 50 nm. The speciation of C and P was addressed by near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS). Synchrotron measurements were performed at the PO4 beamline at PETRA III using the Animax STXM endstation with a 4-channel fluorescence detector with a solid angle of detection of up to 1.1 sr.

Organic matter was mainly found on Fe oxides (ferrihydrite). However, the C concentration on the Fe oxides varied and some Fe oxides were not covered by organic matter. Clay minerals (mainly illite) were either free of organic matter or showed a lower concentration of organic matter than the Fe oxides. Phosphorus was only observed on some of the Fe oxides surfaces and its P K-edge NEXAFS spectrum usually showed a small pre-edge peak at ~2150 eV, which can be taken as evidence for inner-sphere Fe-O-P bonds. Although Fe oxides were often found in close proximity of bacterial cells, the Fe oxide-associated organic matter was rich in carbonyl C and O-alkyl C, but showed higher contributions of aryl C and/or alkyl C than pure extracellular polymeric substances (EPS) or bacterial cells.

Our observations confirm a high reactivity of Fe oxides towards organic matter and phosphate. However, the Fe oxides were not fully coated, i.e. saturated with organic matter. The mineral associated organic matter was not similar to EPS or bacterial cells.

How to cite: Eusterhues, K., Thieme, J., Lühl, L., Haidl, A., Heym, S. J., Adrianov, K., Dehlinger, A., Rehbein, S., Wilhein, T., Kanngießer, B., and Totsche, K. U.: Imaging organo-mineral associations of creek sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10404, https://doi.org/10.5194/egusphere-egu2020-10404, 2020.

EGU2020-11509 | Displays | SSS5.6

Investigation on organic matter-mineral interaction by confocal multispectral and time-resolved microscopy

Francisco E G Guimaraes, Carla P Morais, Amanda Tadini, Mauricio Falvo, Odemir Bruno, Hajjoul Housam, Roland Redon, Ladislau Martin Neto, Stéphane Mounier, and Debora M B P Milori

Organic matter makes up less than 5% of soil and sediment and is often linked to the particulate mineral fraction, forming an organo-mineral microsystem that certainly contributes to its stability in the natural environment. However, most of the techniques used to study and quantify organic matter necessarily require the separation of the organic phase from the mineral phase by chemical or physical extraction and, subsequently fractionation methods that destroy and/or degrade the original aggregate morphological structure. The present work demonstrates that Scanning Confocal Microscopy (MC) can be used as a non-destructive fluorescence technique capable of characterizing organic matter (OM) interacting with the surface of the mineral fraction in soils and sediments without prior sample preparation and use of extraction or chemical fractionation of its components. Organic matter (OM) interacts with the mineral surface through molecular stacking in the form of stable molecular aggregates. Besides that, aggregate states also favor energy transfer processes between aggregated molecules which strongly affects the dynamics of excited state producing spectral shifts to the red and changes in life-time that can be correlated to aggregate morphology and to molecular amount deposited on the surface. These features confer a high spectral and intensity contrast of the confocal images. Here, infrared 2-photon (2P) excitation proved to be adequate to selectively excite OM aggregate states in the visible region between 400 and 700 nm, which allows a direct access to the fundamental aspects of the organic matter-mineral interactions.

We will show that the use of confocal methodologies, together with image analysis, provide helpful tools to understand the complex OM interactions at a molecular level. Here, we studied the interaction of OM with sodium bicarbonate and sodium hydroxide surfaces that form fractal crystals. When a drop of water containing both soil and solubilized bicarbonate or hydroxide salts is dried on a glass surface, dendritic-type salt crystals are first formed on the glass surface within the water droplet. In a second step of the droplet drying process, suspended organic molecules deposit on the surface of these fractal crystals. We will show that the morphology and molecular packaging substantially change spectral and life-time properties which strongly depend on the amount of OM on the crystal surface. Special features can be obtained from linear unmixing of spectral images using 1P and 2P excitation at 375 nm and 750 nm respectively for OM interacting with powder bicarbonate. Therefore, molecular aggregates of interacting fluorescence-emitting species can be used to characterize OM regarding the morphological, molecular structure and interactions with inorganic surfaces. These properties determine the stability of the original OM packing and the limits for the molecular stacking on different active surfaces in nature.

How to cite: Guimaraes, F. E. G., Morais, C. P., Tadini, A., Falvo, M., Bruno, O., Housam, H., Redon, R., Martin Neto, L., Mounier, S., and Milori, D. M. B. P.: Investigation on organic matter-mineral interaction by confocal multispectral and time-resolved microscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11509, https://doi.org/10.5194/egusphere-egu2020-11509, 2020.

EGU2020-11295 | Displays | SSS5.6

Biological sources and molecular composition of iron oxides bound organic carbon in agricultural soils

Qiaoyun Huang, Wenli Chen, and Yurong Liu

A strong link exists between iron oxides and soil organic carbon (SOC). However, the role of iron oxides in the preservation of SOC in agricultural soil remains poorly understood. In this study we comprehensively examined the concentration, molecular composition and biological sources of iron oxide-bound organic carbon (Fe-bound OC) in arable soils collected from 12 sites in central and east China. The effect of elevated temperatures on Fe-bound OC in two contrasting soils was also investigated. The results indicated that 6.2 ~ 31.2% of the SOC was bound to iron oxides in agricultural soil, and that the binding mechanisms varied from adsorption in most soils to coprecipitation in those with a large content of organic carbon. The distribution of Fe-bound OC showed no clear variation in relation to site, but Fe-bound OC reached a peak in soils with an annual mean temperature of 16.4°C. Correlation analysis demonstrated that TOC might be the main determinant for the amount of Fe-bound OC, and that the binding mechanism is influenced by both TOC and the active Fe ratio. Analysis of C/N, 13C isotope, and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy showed that iron oxides selectively protected plant-derived aliphatic compounds and polysaccharides in agricultural soil. Warming decreased the content of Fe-bound OC from 3.46 g kg−1 to 1.99 g kg−1 in Ultisol, while enhanced that from 4.04 g kg−1 to 5.12 g kg−1 in Histosol. NMR results suggested that warming could alter the composition of soil organic matter by accelerating O-alkyl C degradation and increasing the sequestration of recalcitrant alkyl C and carboxyl C. It is supposed that warming promoted the association of iron oxides with microbial-derived polysaccharides and aliphatic compounds. This study revealed the quantitative characterization, biological sources and molecular composition of Fe-bound OC in arable soils, which provides useful information for evaluating and managing the global C cycle under the framework of climate change.

How to cite: Huang, Q., Chen, W., and Liu, Y.: Biological sources and molecular composition of iron oxides bound organic carbon in agricultural soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11295, https://doi.org/10.5194/egusphere-egu2020-11295, 2020.

EGU2020-4678 | Displays | SSS5.6

Nanoscale chemical imaging of soil organo-mineral associations.

Floriane Jamoteau, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, Emmanuel Doelsch, Jérôme Rose, and Isabelle Basile-Doelsch

Organo-mineral associations drive organic matter (OM) stabilization in soils, but mechanisms controlling their dynamics are still not fully known at micro and nanoscale. Adsorption of OM on minerals’ surfaces is a prevalent viewpoint of OM stabilization processes (Kleber et al., 2007), but Basile-Doelsch et al., (2015) suggested that mineral alteration generating amorphous nanophases and cationic oligomers on minerals’ surfaces is also a driver of OM stabilization through coprecipitation processes. Lab experiments which mimic these processes showed that the nanosized co-precipitates (Nanosized Coprecipitates of inorganic oLIgomers with organiCs: nanoCLICs) are made of inorganic Fe, Al, Si oligomers associated with organic molecules (Tamrat et al., 2019). Andosols are known to have a high OM-stabilization capacity, mostly attributed to associations of OM with nanominerals (imogolite, allophane, proto-imogolite) (Basile-Doelsch et al., 2007; Levard et al., 2012). In the present study, we investigated the presence of nanoCLICs in Andosol fractions from La Martinique (French West Indies). We used Transmission Electron Microscopy (TEM, FEI Tecnai Osiris 200kV) coupled with 4 EDX detectors and EELS to semi-quantify and map major elements. TEM analyzed zones of interest ranged from 5 µm to 10 nm with pixel size from 500 to 1 nm. Few crystallized minerals, particulate OM and amorphous thin fibers that could not be definitively attributed to imogolite nanotubes were observed. However, we mainly observed totally amorphous phases to electron diffraction. Al, Si, C, Fe and O were the main component of the latter amorphous phases. Al, Si and Fe were systematically associated to C even at a size resolution down to 1 nm (semi-quantifications ranged from 11 to 41% of C, 4 to 7% of Fe, 34 to 36% of Al and 22 to 46% of Si). Similar high-resolution images were obtained for the andosol organo-mineral associations and the synthetic nanoCLICs. At the working TEM resolution, the nanoCLICs model proposed by Tamrat et al., (2019) is consistent with the structures observed on the andosol. Based on these results, the majority of C appears to be in nanoCLICs form in these Andosol fractions and confirms the hypothesis puts forward by Basile Doelsch et al., (2015).

Basile Doelsch et al., 2007. Mineral control of carbon pools in a volcanic soil horizon. Geoderma, 137 (3-4), 477-489. ISSN 0016-706.

Basile-Doelsch et al., 2015. Are Interactions between Organic Compounds and Nanoscale Weathering Minerals the Key Drivers of Carbon Storage in Soils? Environ. Sci. Technol. 49, 3997–3998.

Kleber et al., 2007. A Conceptual Model of Organo-Mineral Interactions in Soils: Self-Assembly of Organic Molecular Fragments into Zonal Structures on Mineral Surfaces. Biogeochemistry 85, nᵒ 1 (1 août 2007): 9‑24.

Levard et al., 2012. « Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils ». Geoderma 183‑184 (1 août 2012): 100‑108. 

Tamrat et al., 2019. « Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands ». Geochimica et Cosmochimica Acta, 10 juin 2019. 

How to cite: Jamoteau, F., Cam, N., Levard, C., Woignier, T., Boulineau, A., Doelsch, E., Rose, J., and Basile-Doelsch, I.: Nanoscale chemical imaging of soil organo-mineral associations., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4678, https://doi.org/10.5194/egusphere-egu2020-4678, 2020.

EGU2020-12377 | Displays | SSS5.6

Long-term soil water content and exchangeable Ca interact to stabilize organic matter

Itamar Shabtai, Srabani Das, Thiago Inagaki, Ingrid Kogel-Knabner, and Johannes Lehmann

Organo-mineral interactions stabilize soil organic matter (SOM) by protecting from microbial enzymatic attack. Soil water content affects aggregation, mineral weathering, and microbial respiration, thus influencing the relative importance of SOM stabilization mechanisms. While the response of microbial respiration to momentary changes in water content is well established, it is unclear how microbial activity will impact stabilization mechanisms under different long-term moisture contents.

To understand how long-term soil moisture affects SOM stabilization mechanisms we studied fallow soils from upstate New York situated on a naturally occurring water content gradient. Wetter (but not saturated) soils contained more exchangeable Ca and had more strongly stabilized SOM, resulting in SOM accumulation. But it was not clear whether Ca-driven surface interactions or occlusion in micro-aggregates was more important, and if interactions with Fe and Al played a role in the Ca-poor soils. Also, the role of biotic drivers in SOM stabilization at different water contents was unknown.

We tested which mechanisms governed SOM stabilization by determining C and N contents and natural isotope abundances in particulate and mineral-associated organic matter fractions. We also extracted the C bound to Ca and to reactive Fe+Al phases. Wetter, Ca-rich soils had higher oPOM content, and in the heavy mineral fraction, higher relative concentrations of Ca-bound C, lower C:N values, and more oxidized C forms. In addition, wetter soils had greater microbial biomass. Together, these results showed that high long-term soil moisture increased microbial SOM cycling, and that processed SOM was better stabilized, in agreement with the recent notion that stable SOM consists of processed labile C. Additionally, higher soil moisture augmented the role of Ca in SOM stabilization over that of Al+Fe phases. We then manipulated the exchangeable Ca content and incubated soils with 13C15N labeled plant litter. Ca-amended soils emitted less CO2 while incubated with litter, confirming that Ca is instrumental in SOM stabilization. Tracing the labeled isotopes in the gaseous phase and soil fractions will allow us to gain a clearer understanding of how water content and soil Ca interact to stabilize SOM.  

How to cite: Shabtai, I., Das, S., Inagaki, T., Kogel-Knabner, I., and Lehmann, J.: Long-term soil water content and exchangeable Ca interact to stabilize organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12377, https://doi.org/10.5194/egusphere-egu2020-12377, 2020.

EGU2020-4559 | Displays | SSS5.6

Chemical complexity matters: differential mobilization of mineral-associated organic matter driven by functionally distinct rhizodeposits

Tobias Bölscher, Hui Li, Mariela Garcia Arredondo, Zoe G. Cardon, Carolyn M. Malmstrom, Matthew Winnick, and Marco Keiluweit

Protective mineral-organic associations are the quantitatively most important soil carbon storage mechanism, but their vulnerability to environmental change is largely uncertain. While it is well established that root growth can promote (or “prime”) the microbial decomposition of organic matter (OM), our mechanistic knowledge of the ability of roots to destabilize OM protected within mineral-organic associations remains limited. Here we examined how the composition of root-derived compounds (rhizodeposits) affects the stability of mineral-organic associations.

In model systems, we first tested the ability of functionally distinct low-molecular weight compounds (ligands, reductants, simple sugars) commonly observed in the rhizosphere to cause the mobilization and mineralization of isotopically labeled OM from different mineral types (Fe and Al hydroxides). Our results showed that all compounds stimulated mobilization and mineralization of previously mineral-associated OM. However, OM bound to Al hydroxide was less susceptible to mobilization than OM bound to Fe hydroxide. Further, sugars and reductants revealed a greater mobilization potential than ligands for both mineral types, suggesting that OM mobilization in soils may be microbially mediated, rather than driven by direct mineral dissolution. In complementary pot experiments, we investigated the effect of rhizodeposition on the mobilization of mineral-associated OM. We grew Avena sativa in soils amended with isotopically-labeled mineral-organic associations and followed mobilization dynamics over four weeks. First results indicated that rhizodeposition dynamics dictate the mobilization and mineralization of mineral-associated OM. Together, our results suggest a strong mechanistic linkage between the composition and functionality of rhizodeposits and their ability to destabilize mineral-associated OM.

How to cite: Bölscher, T., Li, H., Garcia Arredondo, M., Cardon, Z. G., Malmstrom, C. M., Winnick, M., and Keiluweit, M.: Chemical complexity matters: differential mobilization of mineral-associated organic matter driven by functionally distinct rhizodeposits, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4559, https://doi.org/10.5194/egusphere-egu2020-4559, 2020.

EGU2020-171 | Displays | SSS5.6

Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ conditions

Lydia Pohl, Kristof Dorau, Christopher Just, Carmen Höschen, Kristian Ufer, Tim Mansfeldt, and Carsten W. Mueller

In redoximorphic soils, iron (Fe) and manganese (Mn) oxides undergo reduction with subsequent oxidation of their reduced counterparts (Fe2+ and Mn2+) impacting nutrient sorption and the stability of soil organic matter (SOM). One tool to investigate the soil redox status is the indicator of reduction in soils (IRIS) method. Thereby, synthetic Fe and Mn oxides are coated onto polyvinyl chloride (PVC) bars, which are typically installed for an operator-defined period in the soil. After removal of the bars we studied organo-mineral associations, which have been formed under field conditions on the surface of the coated bars.

In this study, each one Mn and Fe oxide-coated redox bar were installed for 30 days in a Mollic Gleysol. A previous study revealed, that the Mn oxide coating facilitated a non-enzymatic redox reaction under anoxic conditions, while Fe2+ from the soil solution is oxidized to Fe3+ along the Mn oxide coating and Mn2+ is removed from the PVC surface [1]. In consequence, in situ Fe oxides formed along the Mn oxide coatings and were further considered as ‘natural’ Fe oxides. This enables us to differentiate between sorption occurring onto the surfaces of ‘synthetic’ Fe oxides from the Fe bar versus ‘natural’ formed Fe oxides along the Mn bar. They were analysed by nanoscale secondary ion mass spectrometry (NanoSIMS) to study the distribution of Fe (56Fe16O), SOM (12C14N), and phosphorus (31P16O2). NanoSIMS is a spectromicroscopic technique offering a high lateral resolution of about 100 nm, while having a great sensitivity for light elements. In contrast to classic bulk analysis, it offers the possibility to examine the spatial distribution of SOM and phosphorous at the microscale within the intact organo-mineral matrix. 

Image analysis of individual Fe oxide particles revealed a close association of Fe, SOM, and P resulting in coverage values up to 71% for synthetic and natural iron oxides. Furthermore, ion ratios between sorbent (56Fe16O) and sorbate (12C14N; 31P16O2) were smaller along the natural oxides when compared with those for synthetic Fe oxides. We conclude that both natural and synthetic Fe oxides rapidly sequestered SOM and P (i.e., within 30 days) but that newly, natural formed Fe oxides sorbed more SOM and P than synthetic Fe oxides.

 

[1] Dorau, K.; Eickmeier, M.; Mansfeldt, T. Comparison of Manganese and Iron Oxide-Coated Redox Bars for Characterization of the Redox Status in Wetland Soils. Wetlands 2016, 36, 133–144.

How to cite: Pohl, L., Dorau, K., Just, C., Höschen, C., Ufer, K., Mansfeldt, T., and Mueller, C. W.: Soil organic matter and phosphate sorption on natural and synthetic Fe oxides under in situ conditions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-171, https://doi.org/10.5194/egusphere-egu2020-171, 2020.

EGU2020-18840 | Displays | SSS5.6

Redox-driven colloidal mobility and its effects on carbon cycling in temperate paddy soils

Daniel Said-Pullicino, Beatrice Giannetta, Beatrice Demeglio, Anna Missong, Nina Gottselig, Roland Bol, Erwin Klumpp, and Luisella Celi

Rice paddy soils are known to represent a large proportion of global terrestrial carbon (C) stocks (ca.10 Pg), accumulating organic C in the topsoil due to cultivation under submerged conditions. Apart from the limited mineralization under anoxic soil conditions resulting from frequent field flooding, other mechanisms involving the dynamic interactions between organic C and redox-active minerals particularly Fe (oxy)hydroxides, together with the transport of organic C to deep mineral horizons, can lead to long-term C stabilization. Our previous studies have shown that up to 30-50 g m-2 of dissolved organic C (DOC, defined as <450 nm) and 25-40 g m-2 of Fe2+ may be mobilized and translocated into the subsoil over a rice cropping season in temperate rice paddies, contributing to an increase in belowground C stocks. However, little is yet know on influence of frequent redox fluctuations on the contribution of colloidal organo-mineral associations to C mobilization and accrual in paddy subsoils.

We hypothesized that (i) redox fluctuations may lead to an overall increase in colloid dispersion (via reductive dissolution of Fe oxides, changes in soil pH, as well as neoformation of colloidal organo-mineral associations), and that (ii) colloidal mobility may represent an important C input to paddy subsoils. In order to evaluate the effects of redox fluctuations on colloid dynamics in situ, water-dispersible fine colloids (WDFC) were isolated from soils collected from different horizons along two profiles opened in adjacent plots under long-term paddy (P) and non-paddy (NP) management in NW Italy. Moreover, WDFC were also isolated from anaerobically-incubated topsoil samples to evaluate the changes in colloid dispersion under reducing conditions as a function of management. Colloidal size-fractionation and their elemental compositions were evaluated by asymmetric flow field-flow fractionation (AF4) coupled with OCD or ICP-MS. 

Our results evidenced that redox cycling favours colloidal stability in the topsoils, with a preferential dispersion of the smallest-sized colloidal C (<30 nm and 30-240 nm fractions), even though larger-sized colloidal C (>240 nm) contributes predominantly to the WDFC. Consequently, under long-term paddy management colloidal dispersion and transport along the soil profile were probably responsible for the lower amounts of colloidal C (and Fe) observed in the Ap topsoil horizons of P with respect to NP, as well as for the significant accumulation of colloidal C in correspondence with the Brd subsoil horizons just beneath the plough pan. These illuvial horizons were also particularly rich in small-sized (30-240 nm) colloidal Fe, Al and Si possibly due to mineral phase changes induced by redox fluctuations.

Our findings therefore indicate that downward mobilization of colloidal C associated with Fe (hydr)oxides (e.g. coprecipitates) or small aluminosilicate minerals, rather than dissolved organic C, may represent an important process driving organic C accrual in paddy subsoils. However, further insights are still required to entangle the contribution of the different mechanisms involved.

How to cite: Said-Pullicino, D., Giannetta, B., Demeglio, B., Missong, A., Gottselig, N., Bol, R., Klumpp, E., and Celi, L.: Redox-driven colloidal mobility and its effects on carbon cycling in temperate paddy soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18840, https://doi.org/10.5194/egusphere-egu2020-18840, 2020.

EGU2020-1107 * | Displays | SSS5.6 | Highlight

How much more carbon can be sorbed to soil?

Rose Abramoff, Katerina Georgiou, Bertrand Guenet, Margaret Torn, Yuanyuan Huang, Haicheng Zhang, Wenting Feng, Sindhu Jagadamma, Klaus Kaiser, Dolly Kothawala, Melanie Mayes, and Philippe Ciais

Quantifying the upper limit of stable soil carbon storage and relative saturation is essential for guiding policies designed to increase soil carbon storage, such as ‘4 per 1000’ sequestration initiative. Carbon stabilization processes are diverse, but one particular pool of carbon that is considered stable across climate zones and soil types is the mineral-associated fraction, measured using density or size fractionation. Some soil carbon decomposition models assume sorption to minerals is the main form of stabilization in this fraction. We estimate the global capacity of mineral soils in six soil orders to sorb additional dissolved organic carbon (DOC). We gathered data from 400 DOC sorption experiments representing 133 soil profiles across six soil orders. We used the relationship between DOC added and DOC sorbed to calibrate a modified Langmuir sorption equation, from which we quantified the DOC sorption potential in each soil. We found that the sorption potential is empirically related to climate variables (including mean annual temperature and mean annual precipitation) and soil geochemical variables (chiefly, percent clay, pH, and soil order). From this relationship, we then estimated the DOC sorption potential for 14631 profiles distributed globally. This amount was 1.4 (global median; 95% CI: 0.50, 2.8) kg C m-3, totaling 102 Pg C globally across six soil orders, representing up to a 7% increase in the existing total C stock. We show that there is greater capacity for additional DOC sorption in subsoils (30cm-1m) compared to top-soils (0-30cm). The gap between the modest potential of mineral sorption processes found in this study and the large total capacity of long-term organic matter stabilization (2541 Pg C for the six soil orders of this study) indicates that other mechanisms such as aggregation, the sorption of microbial necromass, layering, and co-precipitation also play a critical role in stable organic matter formation and persistence.

How to cite: Abramoff, R., Georgiou, K., Guenet, B., Torn, M., Huang, Y., Zhang, H., Feng, W., Jagadamma, S., Kaiser, K., Kothawala, D., Mayes, M., and Ciais, P.: How much more carbon can be sorbed to soil?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1107, https://doi.org/10.5194/egusphere-egu2020-1107, 2020.

Recent studies suggest significant control on pedogenic iron (Fe) and aluminum (Al) on organic matter (OM) storage and stability across a wide range of soils around the world. This information would be useful to improve or replace existing SOM models. On the other hand, metal extraction studies have shown that only minor portions of soil OM are directly bound to pedogenic Fe and Al. How can these metals control OM storage and stability without direct binding with bulk of OM? To answer this, an important step is to understand the location of the metals and OM within bulk soils. Sequential density fractionation is useful to examine their localizations because pure OM (e.g., plant detritus) and pure mineral particles (e.g., quartz, clay, Fe oxide) are the two endmembers along particle density gradient. We tested if Fe and Al released by chemical weathering are mainly present in association with OM using 22 soil samples from 11 sites spanning 5 climate zones, 5 soil orders (Andisols, Spodosols, Inceptisols, Mollisols, Ultisols), and including several subsurface horizons and both natural and managed (upland and paddy) soils. Across all the studied soil samples, meso-density fractions (1.8-2.4 g cm-3) accounted for major portions of OM and the metals extractable by pyrophosphate, acid oxalate, and dithionite. We also found a strong stoichiometric relationship between the extractable metals and co-dissolved OM. We discuss the biogeochemical processes that may cause the co-localization of the metals and OM at the mesodensity across the soils from a wide range of pedogenic environments.

How to cite: Wagai, R., Kajiura, M., and Asano, M.: Co-localization of iron and aluminum with organic matter across a range of soils: a density-based approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22089, https://doi.org/10.5194/egusphere-egu2020-22089, 2020.

Formation of Microaggregates and organo-mineral composite building units: Novel pathways in the soil-parent rock continuum

 

Summary

 

Microaggregates and organo-mineral composite building seem to be unique structural features of natural permeable media like soils, rocks and aquifers. Thee develop in response to various aggregation processes and mechanisms that result in a non-random spatial arrangement of the solid phase already at the submicron scale. Soil microaggregates are defined as compound structures smaller <0.25mm, comprising the colloidal-sized and nanoparticulate composite building units and the organo-mineral composites (Totsche et al. 2018). Noteworthy, microaggregates, may be present as suspended or colloidally-dispersed components of the mobile phase. As such, they are prone to transport with the seepage and may affect the surface and pore-space properties. Surface alteration by interactions of seepage components with immobile surfaces is likely an important, yet essentially unexplored pathway triggering formation of microaggregates in the soil-parent rock continuum. In matured soils, the commonly found associations of clays with other, often poorly crystallized but highly reactive minerals and organic matter is the consequence of nucleation in the chemically heterogeneous soil suspension. Both pathways coexist and can be studied in the soil-parent-rock transition zone were weathering and formation/alteration of secondary mineral phases are still in the early stage. The stability of microaggregates and their interactions are dependent on wetting-drying and in turn by hydration-dehydration cycles. Such moisture-related dynamics regularly take place in soils of the temperate regions even down to the soil-parent-rock transition zone and suggests that the hydraulic and osmotic stress and their history results in attachment, detachment, translocation and accumulation. The presentation will We focus on two so far vastly ignored formation pathways of microaggregates and composite building units, i.e., the “geochemical inheritance” and “heteroaggregation from suspension”, thereby considering the role of dynamic relocation of composite building units and microaggregate forming materials from upstream compartments.

 

Totsche K.U., Amelung W., Gerzabek M.H., Guggenberger G., Klumpp E., Knief C., Lehndorff E., Mikutta R., Peth S., Prechtel A., Ray N., Kögel-Knabner I. (2018) Microaggregates in soils. Journal of Plant Nutrition and Soil Science 181(1), 104-136.

How to cite: Totsche, K. U.: Formation of Microaggregates and organo-mineral composite building units: Novel pathways in the soil-parent rock continuum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10220, https://doi.org/10.5194/egusphere-egu2020-10220, 2020.

EGU2020-8349 | Displays | SSS5.6

Role of bedrock weathering in microaggregate formation - limestone alteration in the aeration zone

Michaela Aehnelt, Thomas Ritschel, and Kai Uwe Totsche

During pedogenesis, the development of the soil aggregate system may be strongly dependent on weathering of bedrock in the vadose zone. There, periodic drying and flushing by meteoric waters provides alternating hydro- and biogeochemical conditions for fluid-rock interactions and provokes the dissolution, displacement and placement of minerals as well as the release or adsorption of colloids. As a result, the seepage suspension is enriched with mobile mineral and organic matter that infiltrates into the bedrock void system thereby fueling aggregate forming materials and composite building units to exposed surfaces of the bedrock. We aim to elucidate related bedrock alteration processes in dependence on water composition, seepage vs. saturation and the fracture network during weathering.

Our study combines the investigation of the weathering rim of natural bedrocks (outcrop analogue) with the simulation of the natural conditions by column experiments in the laboratory. Study object are Triassic limestones (Upper Muschelkalk) of the Hainich area in Thuringia (central Germany). The columns were filled with fresh, unaltered material, crushed into coarse gravel fraction size and percolated with artificial rainwater or soil litter extract over a runtime of 6 months. In order to mimic natural conditions percolation periods changed with periods of drying. Geochemical data of the liquid phase resemble very well the alternating periods of drying and flushing by systematic changes of the element concentration and milieu parameters. Generally, dissolved elements in the seepage are higher in concentration when litter extract is used pointing towards a significant impact on dissolution kinetics, especially after periods of longer water-rock interaction. Weathered natural bedrock surfaces (bedrock clasts in the covering soil and fractures and voids in the bedrock) exhibit carbonate dissolution (edge pits and dissolution vugs) and the formation of clay mineral coatings, in part with iron oxides. The same holds true for rock clasts after the column experiments. The alteration is macroscopically visible by brownish and beige coatings on formerly greyish pristine surfaces. This feature seems more pronounced on clasts percolated with liquids from soil litter extracts than on clasts treated with artificial rainwater indicating the formation of organo-mineral associations during solid-liquid interaction.

Generally in both, nature and experiment, facial aging features include the dissolution of carbonates, the formation of clay minerals as well as oxides and hydroxides of iron, but also the appearance of organic constituents. Our results contribute to a better mechanistic understanding of the role of bedrock alteration during weathering for (a) the provision of microaggregate forming materials and (b) the formation of composite building units and microaggregates from pristine environments.

 

How to cite: Aehnelt, M., Ritschel, T., and Totsche, K. U.: Role of bedrock weathering in microaggregate formation - limestone alteration in the aeration zone, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8349, https://doi.org/10.5194/egusphere-egu2020-8349, 2020.

EGU2020-5314 | Displays | SSS5.6

The role of mineral composition regulating the turnover of organic matter in 13 forest soils from Hungary

Dóra Zacháry, Gergely Jakab, Tibor Filep, Réka Balázs, and Zoltán Szalai

The organic matter stability is regulated by the different protection mechanisms of the soil matrix and soil minerals. In spite of that, beyond the determination of the amount of fine fractions, relatively little research studied the mineralogical composition of these fractions and their organic matter stabilizing effects. Therefore, the aim of my work was to investigate the influence of the soil mineral phases on the decomposition of soil organic carbon pools of soils under forest vegetation.

Maize residues were added to the 13 soil samples (depth of 0−20 cm) collected from Hungary. The samples were incubated at 20°C and 70% field capacity during 163 days. The soil respiration was measured at specified intervals (on day 3, 8, 15, 30, 51, 79, 107, 135 and 163) and trapped in 2M NaOH and quantified by titration with 1M HCl. Another aliquot of NaOH was mixed with 2MSrCl2 to get SrCO3 for δ13C analysis.

The samples were analysed with an X-ray diffractometer (Rigaku Miniflex 600), a microwave plasma-atomic emission spectrometer (4200, Agilent Technologies) and an isotope ratio mass spectrometer (Delta plus XP, Thermo Finnigan). Carbon mineralization kinetics was modelled by fitting a first-order two pools model.

The results showed that 1−6% and 2−18% of the organic carbon content of the soils was mineralized in the control and amended samples during the incubation, respectively. Carbon mineralization was mostly reduced by the illite content (R2=0,797; p<0,001), Al-oxide content (R2=0,708; p<0,001) and clay content (R2=0,475; p<0,05) of the soils. The decomposition rates of the two carbon pools were found to be influenced to the greatest extent by the illite and total Al-oxide content of the soils investigated. Whereas the decomposition rate constant of the slowly mineralizable C pool was only affected by the Al-oxide and illite content, the decomposition rate constant of the easily mineralizable carbon pool was also sensitive to the other soil parameters (aromaticity, Fe-oxide content, C/N ratio, pH and clay content).

The priming effect was found to be influenced to the greatest extent by the pH (R2=0,715; p<0,05), whereas weaker negative relationship with the content of non-swelling clay minerals (R2=0,396; p<0,05), illite content (R2=0,389; p<0,05) and the C/N ratio (R2=0,345; p<0,05) of the soils was also detected.

This work was supported by the Development and Innovation Fund of Hungary [Nr. NKFIH 123953].

How to cite: Zacháry, D., Jakab, G., Filep, T., Balázs, R., and Szalai, Z.: The role of mineral composition regulating the turnover of organic matter in 13 forest soils from Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5314, https://doi.org/10.5194/egusphere-egu2020-5314, 2020.

EGU2020-6068 | Displays | SSS5.6

Impact of integrated crop-livestock system (ICLS) on endogenous organic matter in a subtropical Oxisol

Deborah Pinheiro Dick, Gabriel Garcia, Ibanor Anghinoni, and Paulo Cesar de Faccio Cravalho

In this work, soil organic matter (SOM) content and composition was investigated in a Brazilian Red Oxisol submitted to ICLS during 15 years. The experiment was conducted in a clayey Oxisol in South Brazil in randomized blocks (n=3) with different grazing intensities according to pasture height: 10 (P10), 20 (P20) and 40 cm (P40) cm). The ICLS system consisted of black oat (Avena strigosa) and ryegrass (Lolium multiflorum) in winter and soybean (Glycine max) in summer (C3 plants). Litter and soil samples were collected within 1 m depth from treatments and from secondary bush forest (SF) soil. Previous to experiment, the whole area had been used for conventional agriculture for about 45 years. Before that (circa 60 years ago), the area was under native pasture (Aristida pallens, C4 plant). C and N contents and isotopic signature δ13C were determined and SOM chemical composition was investigated in HF-concentrated samples by 13C NMR CP/MAS spectroscopy. δ13C from a modal profile under native vegetation was determined as well. Grazing intensity did not affect C contents, that varied from 31.5 g kg-1 in surface to 7.6 g kg-1 at 1 m depth in ICLS. The greatest C contents were observed under SF down to 20 cm depth (47.8 to 20 g kg-1), evidencing the more relevant contribution of forest vegetation on C sequestration in this area. C/N ratio under ICLS tended to increase with depth from 11 to 16. In contrast, no such trend was observed under SF, where C/N ratio was smaller than under ICLS in all analyzed layers. For SF and P40 soils, δ13C values were around -22 ‰ at 0-5 cm (typical for C3 plants SOM), changing abruptly to -17 ‰ at 5-10 cm layer and increasing steadily downward the profile to -14 ‰. In the modal profile, δ13C values were typical for C4 plants and varied from –12.4 ‰ in A horizon to -9.7 ‰ at Bw horizon. It follows that residues from past and recent agriculture use contributed relevantly to surface layer (0-5 cm) SOM, whereas below 5 cm, endogenous SOM was the main constituent. SOM chemical composition at 0-5 cm layer was dominated by O alkyl C groups (45-110 ppm) that contributed with 52 to 54 %, followed by alkyl C groups (0-45 ppm) with 18 to 26 % and aromatic C groups (110-160 ppm) with 9 to 16%. In all analyzed sites, alkyl C decreased and aromatic C proportions increased with depth, reaching 14 to 17 % and 19 to 23 %, respectively, at 80-100 cm layer. Nevertheless, at this depth, O alkyl C proportion tended to remain high (49 to 52%). Under P10, alkyl C/O alkyl C ratio at surface was lower than in P40, indicating that grazing affected SOM composition mainly at the surface layer. Our results suggest that in the studied Oxisol profile, endogenous SOM resists to be exchanged by “recent vegetation” SOM from ICLS due to stabilization via interactions with Fe-Oxides that also preserve biochemically labile C groups.

How to cite: Pinheiro Dick, D., Garcia, G., Anghinoni, I., and de Faccio Cravalho, P. C.: Impact of integrated crop-livestock system (ICLS) on endogenous organic matter in a subtropical Oxisol, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6068, https://doi.org/10.5194/egusphere-egu2020-6068, 2020.

EGU2020-7299 | Displays | SSS5.6

Impact of Feedstock on Biochar Surface Properties: Practical Application of Boehm’s and Potentiometric Titration

Agnieszka Tomczyk, Katarzyna Szewczuk-Karpisz, Zofia Sokołowska, Milena Kercheva, and Emil Dimitrov

Biochar is a material created through the pyrolysis of different kind of biomass. On the basis of last research reports, it was found, that the kind of used biomass influences on surface properties of biochar. These properties are of key importance in effectiveness of biochar as a soil sorbent.

The experiments were carried out using three biochars derived from: tobacco, sweet corn cobs and vineyard which are produced by the "double-barrel" method.

The aim of the research was an investigation the effects of feedstock kind on surface properties of biochar. The characteristics of selected surface properties of biochar included the determination of: functional group content by Boehm's acid-base titration method; determination of the variable surface charge and distribution of surface functional groups from potentiometric titration.

Biochar samples exhibit a high variable surface charge (Q) and content of surface functional groups. Tobacco has the highest Q and content of acidic groups, while sweet corn cobs - the lowest one. Variable surface charge provides information about the quantity of surface functional groups. The distribution of surface functional groups exhibits the existence of 3 peaks, which indicate the presence of acidic groups (carboxylic, lactonic and phenolic).

The biochar from tobacco, vineyard or sweet corn cobs possessed merit for the improvement pollution removal from soil.

Research was conducted under the project "Water in soil - satellite monitoring and improving the retention using biochar" no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of "Environment, agriculture and forestry" - BIOSTRATEG strategic R&D programme

How to cite: Tomczyk, A., Szewczuk-Karpisz, K., Sokołowska, Z., Kercheva, M., and Dimitrov, E.: Impact of Feedstock on Biochar Surface Properties: Practical Application of Boehm’s and Potentiometric Titration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7299, https://doi.org/10.5194/egusphere-egu2020-7299, 2020.

EGU2020-7351 | Displays | SSS5.6

Biochar impact on tensile strength of Dystric Cambisol aggregates – a model study

Katarzyna Szewczuk-Karpisz, Agnieszka Tomczyk, Zofia Sokołowska, Marcin Turski, Marta Cybulak, and Kamil Skic

Aggregate tensile strength is a significant parameter of soil structure. Adequate mechanical stability of aggregates promotes long-term crop productivity due to, inter alia, maintaining gas diffusion, facilitating root penetration and improving water infiltration. Soil aggregates characterized by high tensile strength are also resistant to erosion. Nowadays, intensive agriculture and environmental pollution contribute to clear deterioration of soil condition. The soil structure is often destroyed. In order to limit the negative phenomena, various soil additives are used, e.g. biochar.

In this paper, the effect of wood waste biochar on tensile strength and porosity of Dystric Cambisol artificial aggregates was examined. The experiments were performed on dry-air and wet soil aggregates non-containing and containing 0.1% or 5% dose of biochar. Tensile strength of the probes was determined using strength testing device (Zwick/Roell), whereas porosity – by mercury intrusion porosimetry (Micrometrics). The obtained results indicated that the biochar addition decreases tensile strength of all examined aggregates. This effect was more significant for higher biochar dose – 5%. This phenomenon is probably connected with formation of macropores of larger sizes within aggregates after the biochar addition.

Research was conducted under the project "Water in soil - satellite monitoring and improving the retention using biochar" no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of "Environment, agriculture and forestry" - BIOSTRATEG strategic R&D programme.

How to cite: Szewczuk-Karpisz, K., Tomczyk, A., Sokołowska, Z., Turski, M., Cybulak, M., and Skic, K.: Biochar impact on tensile strength of Dystric Cambisol aggregates – a model study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7351, https://doi.org/10.5194/egusphere-egu2020-7351, 2020.

EGU2020-7673 | Displays | SSS5.6

Subsoil organo-mineral associations under contrasting climate conditions

Thiago M. Inagaki, Angela R. Possinger, Katherine E. Grant, Steffen A. Schweizer, Carsten W. Mueller, Louis A. Derry, Johannes Lehmann, and Ingrid Kögel-Knabner

Organo mineral associations intermediated by Fe and Al are considered one of the most important mechanisms for soil organic carbon (SOC) stabilization. However, since Fe and Al are normally mentioned together as stabilizing agents, we still lack knowledge about their relative role. In addition, this stabilization mechanism can be profoundly affected by climate differences, but the magnitude of this influence whether as a direct effect or an indirect consequence due to changes in soil mineralogy is not yet fully understood. In this study, we evaluated a series of subsoil samples throughout a climate gradient (1800–2400 mm precipitation year-1 and 15–24º C) on Kohala Mountain, Hawaii to understand the impact of climate differences on organic matter protection. We have used a combined approach of analyses at the bulk soil and microscale using NanoSIMS. At the bulk soil scale, we have observed a concurrent decline of subsoil Fe, Al (i.e., dithionite citrate and ammonium oxalate extractions) and SOC above a precipitation level of 2000 to 2200 mm year-1. This decline co-occurred with more reduced forms of Fe s (evaluated by Fe K-edge XANES) and declines in carboxyl-C (evaluated by CP-MAS 13C NMR). We found significant positive correlations between SOC with Fe and Al in the bulk soil throughout the gradient, and we could discern the relative role of Fe and Al in promoting organo-mineral associations in contrasting climate conditions (e.g., ~1800 and ~2300 mm year-1) using NanoSIMS. While Fe contributed to approximately 40% of the microscale organo-mineral associations in the lower precipitation site (assessed by co-localizations with OM segments), this contribution at the higher rainfall regime was only 5%. In contrast, the contribution of Al was approximately the same in both rainfall levels (approximately 30%). This fact indicates that Al may be more important than Fe in stabilizing SOC especially under high precipitation levels. The normalized CN:C ratio was higher when associated with Fe and Al especially in the high precipitation level, which demonstrates the importance of Fe and Al in stabilizing N-rich organic matter. Here we demonstrate that spatial relationships between Fe and Al with SOC at the microscale display a shift towards Al-dominated SOC associations at higher precipitation that could not be ascertained from bulk measurements alone. Thus, they are of great importance to understand the impact of climatic differences on SOC sequestration in organo-mineral associations.

 

How to cite: Inagaki, T. M., Possinger, A. R., Grant, K. E., Schweizer, S. A., Mueller, C. W., Derry, L. A., Lehmann, J., and Kögel-Knabner, I.: Subsoil organo-mineral associations under contrasting climate conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7673, https://doi.org/10.5194/egusphere-egu2020-7673, 2020.

EGU2020-8660 | Displays | SSS5.6

Colloidal iron and organic carbon control soil aggregate formation and stability

Liming Wang, Lars Krause, Erwin Klumpp, Ines Nofz, Anna Missong, Wulf Amelung, and Nina Siebers

Several beneficial soil functions are linked to aggregates, but how the formation and stability depend on the presence of colloidal building blocks is still understood poorly. Here, we sampled subsites from an arable toposequence with 190 and 340 g kg-1 clay, and isolated small soil microaggregates (small SMA; < 20 µm) from larger macroaggregate units (> 250 µm) using an ultrasonic dispersion energy of 60, 250, and 440 J mL-1 , respectively. We then allowed these small SMA to reaggregate after chemical removal of organic carbon (OC) as well as of Fe- and Al (hydr)oxides, respectively. The size distribution of the reaggregated small SMA and fine colloids (< 0.45 µm) was analyzed via laser diffraction and asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry and OC detection, respectively. We found elevated amount of both fine colloids and stable SMA at subsites with larger clay contents. The size distribution of small SMA was composed of two distinct fractions including colloids (< 1 µm) and SMA with an average size of 5 µm. The removal of Fe with Dithionite-Citrate-Bicarbonate (DCB) shifted the size of the small SMA to a larger equivalent diameter, while destruction of OC with NaOCl reduced it. After three wetting and drying cycles, the concentration of colloids declined, whereas the small SMA without chemical pre-treatments reaggregated to particles with larger average diameters up to 10 µm, with the size depending on the clay content. Intriguingly, the gain in size was more pronounced after Fe removal, but it was not affected by OC removal. We suggest that Fe (hydr)oxides impact the stability of small SMA primarily via cementing the aggregates to smaller size. In contrast, the effect of OC was restricted to the size of colloids, gluing them together to small SMAs within defined size ranges when OC was present but releasing these colloids when OC was absent.

How to cite: Wang, L., Krause, L., Klumpp, E., Nofz, I., Missong, A., Amelung, W., and Siebers, N.: Colloidal iron and organic carbon control soil aggregate formation and stability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8660, https://doi.org/10.5194/egusphere-egu2020-8660, 2020.

EGU2020-12457 | Displays | SSS5.6

Size-dependent organo-mineral interactions and dynamics in a seasonally-flooded wetland

Mohammad Afsar, Bruce Vasilas, and Yan Jin

Understanding the mechanisms governing the composition and stability of organo-mineral associations is critical to predicting the dynamics of soil organic matter (SOC) and the related global carbon cycling. Redox-induced biogeochemical transformations are the key processes that control the stabilization of SOC via association with metal oxides in terrestrial environments such as wetlands. Despite its high C content (20-30% of terrestrial C), size-dependent organo-mineral associations and their dynamic changes in the redox-dynamic wetlands are poorly understood. Here we present size distribution, concentration, and composition of organo-mineral associations in pore water samples from a depressional wetland located at the Delmarva Bay in Delaware, USA, as influenced by seasonal fluctuations in water table level. The samples were collected from piezometers installed at multiple depths (50 cm, 100 cm, and 200 cm) and in three zones (upland, transitional, and wetland), respectively. Four size fractions were analyzed: dissolved (<2.3 nm), natural nanoparticle (2.3-100 nm, NNP), fine colloid (100-450 nm), and particulate (450-100 nm). Our results revealed that dissolved, NNP, fine colloid and particulate fractions comprised 47 ± 4%, 37 ± 4%, 8 ± 3% and 8 ± 3% of  the bulk organic C (<1000 nm) concentration, respectively. Relative percentages of respective Al, Mn, and Fe were 47 ± 24%, 30 ± 22%, 50 ± 18% at 2.3-450 nm and 22 ± 16%, 17 ± 12%, 25 ± 19% at 450-1000 nm size fraction. The main finding from this study are 1) dissolved and NNP fractions contain higher amount of C than colloidal and particulate fractions and 2) organo-mineral associations have significant differences in their elemental concentrations among different size fractions within colloidal size range. Additionally, the results clearly indicate that the commonly used operational definition for dissolved organic matter (DOM, <450 nm) significantly overestimates the dissolved phase C concentration by including the NNP and colloidal fractions, which contain mineral-associated C. This has important implications in the estimation of SOC decomposition rate in soils, particularly in redox sensitive wetlands, thus in assessing terrestrial C cycling and the transport of OC as well as the associated elements.

How to cite: Afsar, M., Vasilas, B., and Jin, Y.: Size-dependent organo-mineral interactions and dynamics in a seasonally-flooded wetland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12457, https://doi.org/10.5194/egusphere-egu2020-12457, 2020.

EGU2020-13589 | Displays | SSS5.6

Pore space characteristics of soil microaggregates – Possible implications for functioning

Stefan Dultz, Vincent Felde, Susanne K. Woche, Robert Mikutta, Daniel Uteau, Stephan Peth, and Georg Guggenberger

Soil microaggregates (SMA) are characterized by a pronounced small-scale structural heterogeneity, with recognizable chemical differences between the aggregate`s interior and its surface. Latter suggests a deterministic spatial pattern with respect to C stabilization, element exchange, and habitat function for microorganisms. Here, a detailed characterization of the pore space is crucial for the understanding of element transfer and microbial colonization in SMA. In our study, the 53-250 µm size fraction of SMA isolated along a soil clay content gradient (19-35%) were investigated in terms of their pore space characteristics. For the visualization of connected “open” pore structures as well as “closed” pores, a modified Hg-porosimetry technique utilizing Wood´s metal was used (WIP). The molten alloy was pressed into accessible connective pores by applying an argon pressure of 55 MPa, filling up pores with a diameter down to ≈20 nm. After solidification of the alloy, polished sections of SMA were analyzed by laser scanning confocal microscopy (Keyence, VK-9700). To image and quantify open and closed pores, grayscale-histograms were segmented and three pore size classes (<10, 10-100, and >100 µm²) were distinguished for open and closed pore systems. Additionally, we scanned 27 samples with high-resolution X-ray tomography (CT, Zeiss Xradia 520 versa) to characterize the 3D pore features at resolutions between 480 and 928 nm. SMA typically consist of two different sections, where particle arrangements are loose or dense. Relatively coarse-sized aggregate-forming materials were observed in sections with loose particle arrangements, where pores appear well connected. To some extent, these coarse aggregate-forming materials are arranged in larger circular structures. In contrast, dense particle arrangements consist primarily of fine aggregate-forming materials. The total porosity of the SMA derived by WIP was highly variable with a maximum of 40 area-%. While CT aggregate volume and CT aggregate surface area did not change with clay content, CT-porosity (vol.-%) increased with increasing clay content. Maximum CT porosity of 27 % was found in the samples with the highest clay content. Maximum pore diameter was similar across all clay contents, but the share of macropores with diameters >10 µm increased with increasing clay content. The Euler number decreased with increasing clay content, which indicates an increased connectivity of the pore space. Another parameter that increased with increasing clay content was the CT aggregate volume / CT internal pore surface area ratio, signifying more accessible surfaces for element exchange and/or C storage. While pores exceeding 100 µm² had the highest share within the open pores, it was the pore system <10 µm² for the closed pores. The proportion of closed pores of total porosity was smaller for the finer SMA sizes within the 53-250 µm fraction, which confirms the CT results (increasing Euler number). Our WIP data reveal that higher shares of clay minerals in SMA cause a narrower pore size distribution with smaller average diameters and increased tortuosity. Consequently, element transport and habitation by microorganisms might be slowed down in smaller, more clay-rich SMA, potentially resulting in larger C conservation within the interior of smaller SMA.

How to cite: Dultz, S., Felde, V., Woche, S. K., Mikutta, R., Uteau, D., Peth, S., and Guggenberger, G.: Pore space characteristics of soil microaggregates – Possible implications for functioning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13589, https://doi.org/10.5194/egusphere-egu2020-13589, 2020.

Soil microaggregates are considered to play an important role in soil functioning and soil organic carbon (SOC) is of great importance for the formation and stabilization of these aggregates. The loss of SOC can occur, for example, after a change in land use and may lead to a decreased aggregate stability, which makes soils vulnerable to various threats, such as erosion or compaction. It is therefore important to understand the effect of SOC loss on aggregate stability in order to better understand and preserve the functioning of healthy soils.

We sampled two adjacent plots from a loess soil in Selhausen (North Rhine-Westphalia, Germany) in November of 2019 and measured aggregate stability and architecture of soil microaggregates. One plot was kept free from vegetation by the application of herbicides and by tillage (to a depth of 5 cm) from 2005 on, while the other plot was used for agriculture (conventional tillage). Over the course of 11 years, the SOC concentration in the bulk soil was reduced from 12.2 to 10.1 g SOC kg-1 soil. We took 10 undisturbed soil cores from two depths of each plot (Ap and Bt horizons).

The stability of aggregates against hydraulic and mechanical stresses was tested using the widespread wet sieving approach and a newly developed dry crushing approach. Isolated microaggregates gained from the latter procedure were tested against tensile stress by adapting a crushing test in a load frame to the microaggregate scale. To shed light on the effect of a decreased SOC content on microaggregate structure, we scanned several microaggregates with a high-resolution computed tomography scanner (Zeiss Xradia 520 versa) at sub-micron resolutions and analyzed the features of their pore systems.

This will give us valuable insights into the interplay of mechanical and physicochemical stability, as well as the structural properties of microaggregates with regard to SOC depletion. The consequences for various soil functions provided by microaggregates, like the habitat function for microorganisms or their capacity to store and transport gas, water and nutrients, are discussed.

How to cite: Roosch, S., Felde, V., Uteau, D., and Peth, S.: Effect of soil organic carbon loss on the stability and structure of microaggregates: First insights from an organic carbon depletion field trial in a loess soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17358, https://doi.org/10.5194/egusphere-egu2020-17358, 2020.

EGU2020-22405 | Displays | SSS5.6

Spatial organization of soil microaggregates

Eva Lehndorff, Nele Meyer, Andrey Radionov, Lutz Plümmer, Peter Rottmann, Beate Spiering, Wulf Amelung, and Stefan Dultz

The physical arrangement of soil compounds in microaggregates is important in many ways, e.g. by controlling soil stability and C sequestration. However, little is known about the spatial arrangement of organic and inorganic compounds in soil microaggregates, due to the lack of in-situ analyses in undisturbed material. Here we hypothesize that microaggregates are spatially organized, resulting in deterministic, predictable spatial patterns of different organic matter and mineral phases and that this organization depends on the abundance of specific phases such as on clay mineral content. We separated the water stable, occluded large and small microaggregate fractions from Ap horizons of a sequence of sandy to loamy Luvisols (19 to 35% clay, Scheyern, Germany) and subjected in total 60 individual aggregates to elemental mapping by electron probe micro analysis (EPMA), which recorded C, N, P, Al, Fe, Ca, K, Cl, and Si contents at µm scale resolution. Spatial arrangements of soil organic matter and soil minerals were extracted using cluster analyses. We found a pronounced heterogeneity in aggregate structure and composition, which was not reproducible and largely independent from clay content in soil. However, neighborhood analyses revealed close spatial correlations between organic matter debris (C:N app. 100:10) and microbial organic matter (C:N app. 10:1) indicating a spatial relationship between source and consumer. There was no systematic relationship between soil minerals and organic matter, suggesting that well-established macroscale correlations between contents of pedogenic oxides and clay minerals with soil organic matter storage do not apply to soil microaggregates.

How to cite: Lehndorff, E., Meyer, N., Radionov, A., Plümmer, L., Rottmann, P., Spiering, B., Amelung, W., and Dultz, S.: Spatial organization of soil microaggregates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22405, https://doi.org/10.5194/egusphere-egu2020-22405, 2020.

EGU2020-13488 | Displays | SSS5.6

Aggregate formation dynamics driven by 3D fluid flow in natural porous media

Thomas Ritschel and Kai Totsche

Fluid flow and reactive transport in natural porous media take place in a three-dimensional, hierarchically organized network of voids and pores in the size range of sub-micrometers inside small aggregates to several millimeters in, e.g., earthworm burrows or cracks. Thus, fluid flow regimes are manifold with consequences not only for the transport of solutes, but also for the displacement of colloidal particles and organic matter and thus, for their inclusion into soil aggregates. Therefore, we incorporated the simulation of three-dimensional fluid flow in pore networks typical for natural porous media into our recent approach to model soil aggregate formation using DLVO theory and diffusion-limited aggregation to overcome its previous limitation to suspensions at rest. To visualize the model capabilities, we simulated aggregation in pore networks that were either synthetically designed to represent certain structural features such as pore junctions and dead-end pores, or taken directly from X-ray µ-CT measurements of undisturbed soil cores. We explored the development of structural aggregated features that evolve in response to flow, transport and the topology of the soil pore space. The resulting three-dimensional arrangement of compounds and the entire aggregates were classified according to their morphological metrics, e.g. the pore space distribution, and functional properties, e.g. the water retention capacity, that are provided by these structures. By this fusion of complementary modeling approaches, we significantly contribute to the fundamental mechanistic understanding of the complex interplay and feedback of structure, interactions and functions on the scale of (micro-)aggregates.

How to cite: Ritschel, T. and Totsche, K.: Aggregate formation dynamics driven by 3D fluid flow in natural porous media, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13488, https://doi.org/10.5194/egusphere-egu2020-13488, 2020.

EGU2020-7642 | Displays | SSS5.6

Glucose-stimulation of natural microbial activity causes transient aggregation and alteration of clay mineralogy in sandy and loamy sediments

Pavel Ivanov, Natalia Manucharova, Svetlana Nikolaeva, Alexey Safonov, Viktoria Krupskaya, Mikhail Chernov, Karin Eusterhues, and Kai Uwe Totsche

Subsurface sediments usually show limited microbial activity, however, inputs of nutrients due to anthropogenic spills or infiltration from the surface may quickly activate the native microbial communities, thereby changing composition, structure and properties of sediments. We studied the effect of glucose addition, an easily available carbon source, on mineralogy, microstructure and properties of several (0.5-35 m) loamy and sandy sediments over 30 days in laboratory experiments. We followed the time changes in biomass by direct cell count; respiratory activity by CO2 emission; clay mineralogy by X-ray diffraction (XRD); microaggregate size distribution by pipette analysis; and observed microbial binding via scanning electron microscopy (SEM).

Glucose addition caused transient buildup of respiratory activity and biomass with maximal values 3-10 times more than in control (water-treated) samples appearing around the 7th day after the treatment. The biomass of bacteria, archaea, actinomycetes and fungi increased. After that the biomass and the CO2 emission declined sharply and reached stable values about twice as much as in control samples.

On day 7, we noted an increase in the proportion of smectite layers in the disordered mixed layer illite-smectite minerals (MLM), yet no changes in content and composition of other clay and non-clay minerals. After 30 days of observation, XRD showed further transformation of MLM composition, as well as partial destruction of other clay minerals. We hypothesize that with abundant external nutrition, microbes mined the lacking K from illite layers of the MLM. After the consumption of glucose, all clay minerals were a source of essential elements.

The content of microaggregates of 0.1-0.05 mm in size increased in loams on the 7th day after the treatment, presumably due to microbial binding and gluing of aggregates by cells and EPS. With the decline of the biomass, the previously-formed microaggregates partially disintegrated. We assume that after the consumption of glucose, the microorganisms lived on biomass and EPS, thereby removing previously formed glue and meshes from the aggregates.

SEM performed on air dried sands collected during maximal microbial activity revealed biofilms consisting of microbial cells and EPS, attaching to the fine clay coatings around sand grains. SEM on lyophilized loams showed filamentous structures, which we interpret to be actinomycete mycelium that enmeshes particles into microaggregates.

Irreversible changes in clay mineralogy and transient aggregation caused temporary alteration of stress-strain properties: increased cohesion, and decreased friction and compressive strength.

Our data show that ongoing/continued microbial activity is crucial for the formation of aggregates as well as for the clay mineral paragenesis in sediments. Both processes affect sediment quality, e.g. in terms of soil organic matter stabilization or with respect to the overall mechanical properties.

How to cite: Ivanov, P., Manucharova, N., Nikolaeva, S., Safonov, A., Krupskaya, V., Chernov, M., Eusterhues, K., and Totsche, K. U.: Glucose-stimulation of natural microbial activity causes transient aggregation and alteration of clay mineralogy in sandy and loamy sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7642, https://doi.org/10.5194/egusphere-egu2020-7642, 2020.

EGU2020-13629 | Displays | SSS5.6

Effects of Flow Regime on DOM Retention in Soils: Continuous Flow vs. Flow Interruption

Jannis Florian Carstens, Georg Guggenberger, and Jörg Bachmann

Dissolved organic matter (DOM) is one of the most mobile components of the global carbon cycle. Corresponding transport processes in the environment have received plenty of attention in the context of carbon sequestration as well as the mobility of DOM-associated contaminants.

However, most previous transport studies have been conducted exclusively under continuous flow conditions, which are not comparable to real water flow characteristics in soil. The present study aims to address that gap in knowledge by systematically assessing the effect of defined flow interruption phases on the retention of DOM.

For that, the breakthrough behavior of DOM as affected by phases of flow interruption was investigated in an increasingly complex system of solid matrices rich in oxide mineral coatings: goethite coated quartz sand, disturbed Cambisol subsoil, and undisturbed Cambisol subsoil. The classic DLVO and extended DLVO (XDLVO) models including Lewis acid—base parameters were applied based on measurements of sessile drop contact angles and zeta potentials.  

DOM retention was increasing with the duration of flow interruption, and retention was considerably higher in the soils than in goethite coated sand. After 112 hours of flow stagnation, DOM release from the soils was reduced to 16 to 22 % as compared to continuous flow conditions. The retention in the different solid matrix materials was well correlated with the respective amounts of oxalate and dithionite extractable oxide mineral phases. The DLVO model was capable of correctly predicting the mobility of DOM in goethite coated sand, but not in the soils, due to the fact that soil surface charge heterogeneities could not be measured. The XDVLO model predicted short-range hydrophilic repulsive interactions that may have contributed to the distinct tailing of the DOM breakthrough curves.

We conclude that the significant DOM retention during phases of flow stagnation phases shows that more complex flow regimes need to be considered in order to assess the mobility of DOM in soils. In fact, many previous studies excluding phases of flow stagnation likely overestimated the mobility of DOM in the environment.

How to cite: Carstens, J. F., Guggenberger, G., and Bachmann, J.: Effects of Flow Regime on DOM Retention in Soils: Continuous Flow vs. Flow Interruption , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13629, https://doi.org/10.5194/egusphere-egu2020-13629, 2020.

Land use change can significantly influence both mineralogy and chemical soil properties. This conversion, particularly from forest to agricultural system occurs often in volcanic soils due to their favorable properties for food production. Under agriculture, minerals can weather faster than in natural vegetation and this also impacts soil functioning. We aim to assess the impact of land use on geochemical soil properties and soil organic carbon across soils of different age. This study was conducted in Mt. Tangkuban Perahu and Mt. Burangrang where the soils were derived from similar andesitic parent material and have different ages based on their lithology. Five sites were selected representing land uses that have been converted (pine forest and agricultural land) and one site of natural forest as the origin of land use. The results showed that land use management enhances the mineral transformation. Pine forest and agricultural sites displayed higher weathering degree than natural forests as indicated by higher clay content, iron crystallinity index and the presence of gibbsite. The weathering degree of soils in agricultural sites might result from the length of cultivation period and soil age. Land use conversion also altered chemical properties such as pH, CEC, basic cations, and the proportion of amorphous materials. Non-crystalline Al and Fe minerals as indicated by Alo+1/2Feo were highly correlated with organic carbon and specific surface area (SSA) in the subsoils of all land uses. However, we did not see the accumulation of organic carbon in subsoils compared to topsoils as the amount of non-crystalline Al and Fe minerals increases with depth, especially in agricultural lands where the organic fertilizer input is very high. In addition, a significant proportion of carbon was stored in sand aggregate fractions in agricultural land which have longer cultivation period, while it was more readily found in silt and clay fractions in the site with shorter period.

 

How to cite: Anindita, S., Finke, P., and Sleutel, S.: Land use effects on the geochemical soil properties and their control on organic carbon in volcanic soils, near Bandung area (Indonesia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5516, https://doi.org/10.5194/egusphere-egu2020-5516, 2020.

EGU2020-18375 | Displays | SSS5.6

FTIR spectral properties affected by OM-cation interactions

Ruth Ellerbrock and Horst H. Gerke

Soil organic matter (OM) interacts with cations like Ca by using C=O and OH functional groups. Such interactions are known to protect soil OM against decomposition. This process affects the bonding strength of functional groups. Changes in bonding strength are assumed to shift the wavenumber region of OH and C=O absorption band maxima in Fourier transform infrared (FTIR) spectra. The aim is to analyze the extent of such shifts to determine presence and strength of OM–cation interaction. Solutions of PGA and Chia seed mucilage were mixed at different ratios with CaCl2 solution. The mixtures were freeze dried. FTIR spectra of PGA–Ca, and mucilage-Ca mixtures indicate that the OH band is affected by the presence of Ca. However, the C=O band maximum and the CH/C=O ratio were not affected. For the PGA–Ca and mucilage-Ca mixtures the shift in OH band maxima relative to PGA and mucilage, respectively, increases with Ca content. Such shifts in OH band maxima are in a similar range as the ones observed for the outer compared to inner regions of an intact chia seed mucilage droplet. The results suggest that it is necessary to know the relation between OM-cation interactions and band shifts for the correct interpretation of the FTIR spectra of soil and rhizosphere samples.

How to cite: Ellerbrock, R. and Gerke, H. H.: FTIR spectral properties affected by OM-cation interactions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18375, https://doi.org/10.5194/egusphere-egu2020-18375, 2020.

SSS5.7 – Mutual interaction of humic substances with heavy metals, pesticides and PAHs | Posters only

EGU2020-3110 | Displays | SSS5.7

Isolation of the humin fraction from soil: preliminary comments

Jerzy Weber, Elżbieta Jamroz, Andrzej Kocowicz, Magdalena Debicka, Aleksandra Ukalska-Jaruga, Lilla Mielnik, Romualda Bejger, Maria Jerzykiewicz, Jakub Bekier, and Irmina Ćwieląg-Piasecka

The organic matter is the most important component of soil material, which determines most soil properties. Among humic substances, humin fraction has been the least studied to date, although it usually constitutes over half of their composition. This is probably due to the fact, that humin fraction has highly hydrophobic properties and is insoluble at all pH values, which makes its isolation much more difficult, compared to humic (HA) and fulvic (FA) acid fractions. In addition, humin fraction forms very stable humic-clay complexes with mineral part of the soil (Stevenson 1994), which cannot be destructed during humic substances extraction. According to the literature, the methods of humin fraction isolation can be divided into two main groups: (1) extraction by different organic solvents, and (2) isolation by extraction of HA and FA followed by digestion of mineral soil components. Nevertheless, each of these methods has different limitations.

We investigated some modifications of the latter method, obtaining humin fraction from eight mollic horizons of Chernozems and Phaeozems, which differed in their physico-chemical properties.

The first step was to separate HA and FA according to IHSS method described by Swift (1996), however we adopted different shaking procedure. To asses differences, each supernatant obtained was analyzed for the carbon content concentration, which corresponded to HA and FA extracted.

HA and FA free residue was then digested to reduce the content of mineral components. We used several digestion with 10% HF/HCl , as higher concentrations of HF can result in structural alteration of the organic compounds (Hayes et al. 2017). To find the optimal time of the procedure, the ash content was determined following each digestion stage. After the HF/HCl treatment, the residue was rinsed with 10% HCl to eliminate secondary minerals. The residue was washed with distilled water until the neutral pH, then transferred to dialysis membranes and dialyzed with distilled water until a negative Cl test with AgNO3. Afterwards the humin fraction was freeze dried. 

Finally, obtained humin fraction contained various ash content, ranged from 6 to 30%, depending on the soil. The conducted test indicated that: (1) the concentration of carbon in supernatant considerably increased as shaking time was extended to 20 hours, and (2) longer than 4 weeks digestion with HF/HCl did not affect the reduction of the ash content of the humin fraction obtained.    

 

Literature

Hayes M.H.B., Mylotte R., Swift R.S. 2017. Humin: Its Composition and Importance in Soil Organic Matter. In: Sparks D.L. (ed) Advances in Agronomy, Vol. 143, Academic Press, Burlington, 47–138.

Stevenson F.J. 1994. Humus Chemistry; Genesis, Composition, Reaction. 2nd ed. John Wiley & Sons., New York.

Swift R.S. 1996. Organic matter characterization. In: Sparks, D.L., et al. (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods - Soil Science Society of America, Book Series no 5,  1011-1069.

 

Acknowledgements

This work was supported by the National Science Center (NCN) Poland (project No 2018/31/B/ST10/00677 “Chemical and spectroscopic properties of soil humin fraction in relation to their mutual interaction with pesticides").

How to cite: Weber, J., Jamroz, E., Kocowicz, A., Debicka, M., Ukalska-Jaruga, A., Mielnik, L., Bejger, R., Jerzykiewicz, M., Bekier, J., and Ćwieląg-Piasecka, I.: Isolation of the humin fraction from soil: preliminary comments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3110, https://doi.org/10.5194/egusphere-egu2020-3110, 2020.

EGU2020-4609 | Displays | SSS5.7

Interaction of soil humin fraction with pesticides - a review

Aleksandra Ukalska-Jaruga, Romualda Bejger, Irmina Ćwieląg-Piasecka, Jerzy Weber, Elżbieta Jamroz, Magdalena Debicka, Lilla Mielnik, Maria Jerzykiewicz, Jakub Bekier, and Andrzej Kocowicz

The use of pesticides significantly influences the efficiency of agriculture production, but at the same time, their extensive and widespread use, raises serious concerns regarding the release of harmful substances into the environment [1,2]. The fate of pesticides in soil depends on many factors related mainly to the physico-chemical properties of these compounds as well as content and quality of organic matter [3]. Humin as the predominant fraction of organic matter, may significantly determine the behavior and transformations of pesticides in soil [5]. Therefore, the aim of this review was to present the state of the art of humin-pesticides mutual interactions.

Sorption-related studies showed that humin has dissimilar binding strengths with pesticides [4,5]. According to Pignatello [7], the sorption selectivity by humin has a number of potential causes: (1) preference for particular microdomains within fractions that are envisioned to segregate on the basis of functional group identity (aromatic, paraffinic, carbohydrate domains); (2) preference based on strong functional group interactions, such as hydrogen bonding and (3) preference based on the nature of the thermodynamic physical state of humin, namely the configurations and conformations of the molecules and strands at microstructural level.

Moreover, humin exhibits potentially different accumulation capacities for xenobiotics. Wang et al. [9] explained these relations with the limited accessibility to microporous domains of humin matrices for the larger-molecular-weight particles. The authors [9] observed a lower adsorbed mass of spatially developed compounds compared to compounds with small diameters. This process is probably most likely related to the structural rearrangement of the humin matrix under slow diffusion into microporous domains pronounced with the adsorption of large molecular weight compounds. Additionally, Pignatello [7] as well as Schaumann [4,5] indicated that the humin surface is covered with various polar and non-polar functionalities, which may efficiently interact with pesticides by van der Waals forces, hydrophobic attraction, hydrogen bonding, charge transfer or ligand exchange processes. Nevertheless, the chemical properties of pesticides as well as their coexistence with other chemical compounds i.e.: surfactants, coagulants, decomposition inhibitors and others [8] can modify the interactions of pesticides with humin in natural soil environment.

Literature:

[1] FAO, ITPS Global Assessment of the Impact of Plant Protection Products on Soil Functions and Soil Ecosystems. FAO, Rome 2017, 40 pp.

[2] Silva, V.; Mol, H.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissena, V. Sci. Total. Environ.  2019, 653, 1532–1545.

[3] Stolte, J.; Tesfai, M.; Øygarden, L.; Kværnø, S.; Keizer, J.; Verheijen, F.; et al. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem 4 Services, 2016, Report

[4] Stevenson F. 1994, John Wiley & Sons, New York

[5] Schaumann G. 2006a, J Plant Nutr Soil Sci 169:145–156

[6] Schaumann G. 2006b, J Plant Nutr Soil Sci 169:157–167

[7] Pignatello J. 2012,  J Soils Sediments 12:1241–1256

[8] Ehlers, G.; Loibner, A. 2006, Environ. Pollut. 141, 494-512

[9] Wang X, Guo X, Yang Y, Tao S, Xing B. 2011, Environ Sci Technol 45:2124–2130

 

Acknowledgement: The studies were supported from the National Science Centre project no. 2018/31/B/ST10/00677 “Chemical and spectroscopic properties of soil humin fraction in relation to their mutual interaction with pesticides”

How to cite: Ukalska-Jaruga, A., Bejger, R., Ćwieląg-Piasecka, I., Weber, J., Jamroz, E., Debicka, M., Mielnik, L., Jerzykiewicz, M., Bekier, J., and Kocowicz, A.: Interaction of soil humin fraction with pesticides - a review, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4609, https://doi.org/10.5194/egusphere-egu2020-4609, 2020.

EGU2020-6844 | Displays | SSS5.7

The phytoextraction potential of selected vegetable plants on Kosovo contaminated soils

Teodoro Miano, Hana Voca, Lea Piscitelli, Anna Daniela Malerba, Donato Mondelli, and Valeria D'Orazio

Mining activities generate a great deal of particulate emissions and waste slag enriched in heavy metals that contaminate the surrounding, that is soil, water and air. Such effects are particularly serious and pose a severe ecological and human health risk, mainly if smelters are located in the proximity of urban areas. This is the case regarding the Kosovo, where from the 1930s the British company "Seltrust" founded Trepca Mining & Metallurgical Complex, causing a high level of pollution especially in the area of Mitrovicë, northern Kosovo. Two soils, A and B, have been sampled from two different sites in Mitrovicë municipality, showing a total content of Pb and Zn, respectively, of 2153 and 3087 mg kg-1, and 3214 and 4619 mg kg-1. A pot experiment was carried out aiming to understand the phytoremediation potential of two selected non-food crops (Sorghum bicolor L. Moench and Brassica napus cv. Westar) chosen for their economic importance and heavy metal accumulation capacities. Sorghum and canola plants were cultivated in polluted soils A and B. For both plant species, the accumulation of heavy metals proved to be higher in the roots. Indeed, in order to obtain an adequate phytoextraction, it is required that the metals be moved to the epigeal part of the plants, and plants with bioconcentration factor (BCF) and translocation factor (TF) values < 1 are not considered suitable for phytoextraction. The results obtained in this study indicate that, although canola was quite effective in translocating metals from roots to aerial parts, both sorghum and canola are not suitable for phytoextraction since their coefficient values were < 1. Anyway, both plants, especially canola ones, grew up in presence of high level of Pb and Zn pollution, thus they could be used for phytostabilisation process. Actually, the Tolerance Index (TI) values of the sorghum and canola clearly suggest, under the experimental conditions used in this study, a better performance of the canola in tolerating the presence of Pb and Zn in the soil, even if in soil B was not found the same efficiency shown by the same plants grown in soil A. Probably, since soil B has an absolute higher content of Pb and Zn and a lower pH, the availability of both metals is slightly higher, which may have induced in the plants that grow there a more intense condition of stress. This study shows that canola, unlike sorghum, can be an ideal choice for phytostabilization, and its breeding can represent an effective alternative to food crop. 

How to cite: Miano, T., Voca, H., Piscitelli, L., Malerba, A. D., Mondelli, D., and D'Orazio, V.: The phytoextraction potential of selected vegetable plants on Kosovo contaminated soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6844, https://doi.org/10.5194/egusphere-egu2020-6844, 2020.

EGU2020-7044 | Displays | SSS5.7

Olive husks biochar application in microbial remediation of pyrene polluted soil: a possible win-win solution

Lea Piscitelli, Anna Daniela Malerba, Giuseppe Natale Mezzapesa, Stefano Dumontet, Donato Mondelli, Teodoro Miano, and Giovanni Luigi Bruno

Human activities are negatively affecting ecosystems through the erosion and impoverishment of natural resources. Considering soil, global warming and unsustainable agricultural practices are reducing soil organic matter with consequent loss of fertility. An issue of major concern is also the soil pollution by organic and inorganic compounds affecting soil ability to generate ecosystem services. Polycyclic aromatic hydrocarbons are a large group of pollutants, made of two or more aromatic rings, widespread in the environment, soil included, and extremely toxicity for human and environmental health. Polycyclic aromatic hydrocarbons persistence in soil is an issue great concern that could be effectively faced by microbial remediation techniques.

In this work we studied the remediation of pyrene polluted soil through two parallel tests: bioremediation and biostimulatin techniques. The first involves inoculation into soil of exogenous microorganisms, in our case Trichoderma harzianum, whereas the latter was aimed at promoting the degrading ability of endogenous microorganisms. Moreover, in order to sustain microorganisms growth, we incorporated olive husk biochar in the two tested bioremediation systems.

Biochar is currently considered an excellent soil conditioner and its incorporation into soil seems to promote PAHs adsorption and to interact positively with soil microorganisms. Biochar is a carbonaceous matrix produced through thermal processing of organic biomasses at high temperature and at very low oxygen partial pressure. Here we converted olive husks, that is a potentially toxic by-product of olive oil extraction, by slow pyrolysis process with the aim of deprived this waste biomass of its noxious characteristics.

Soil samples were spiked with 50 ppm of pyrene, biochar was incorporated at a concentration of 13 g·kg–1 d.w. of soil and endogenous microbial growth, T. harzianum growth and microbial pyrene-degradation activity were measured weekly up to 28 days.

Pyrene concentration was reduced of approximately 70% in 28 days in both bioaugmentation and biostimulation remediation systems. T. harzianum did not display a distinctive ability in degrading pyrene and partially inhibited the endogenous soil microflora from degrading pyrene. Olive husks biochar application did not limited pyrene bioavailability or neither affected microbial pyrene degrading activity. However, our results underline that olive husks biochar increases T. harzianum growth and stimulates soil endogenous microorganisms.

How to cite: Piscitelli, L., Malerba, A. D., Mezzapesa, G. N., Dumontet, S., Mondelli, D., Miano, T., and Bruno, G. L.: Olive husks biochar application in microbial remediation of pyrene polluted soil: a possible win-win solution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7044, https://doi.org/10.5194/egusphere-egu2020-7044, 2020.

Soil contamination with arsenic in historical mining sites is a matter of considerable environmental concern, as the concentrations of As in those soils are locally as high as thousands mg/kg. Some of soils, particularly those affected in the past by tailings that were released from impoundments, are located in floodplains and used as grasslands. Those lands are periodically flooded, and the frequency and duration of flooding will probably increase in the future with changing climatic conditions. Reducing environment that develops upon soil flooding can cause a release of As from soil solid phase. This is an inherent effect of reductive dissolution of amorphous and crystalline iron hydroxides that are the main hosting components for metalloids. Changing redox conditions affect also the speciation of As in pore water, influencing its toxicity to soil biota. Moreover, soil fertilization with inorganic fertilizers that contain phosphates, or with organic fertilizers such as cattle manure, can accelerate As release from iron hydroxides, mainly via competitive desorption. The effects of all those processes are highly dependent on soil properties and still require a close examination.

Three kinds of soil material, containing up to 8000 mg/kg As, were collected from the tailings-affected floodplain of the Tująca river in Złoty Stok, a historical As mining centre. A laboratory incubation experiment with fertilized and non-fertilized soils was carried out to examine the changes in As concentrations in soil pore water, as well as to assess pore water ecotoxicity, determined in standard bioassays, including Microtox and Phytotox. Soil flooding resulted in a rapid release of As from soil solid phase. As concentrations in soil pore water in all samples exceeded 10 mg/L after a 2-day incubation, and tended to increase slowly with time. In some cases, after the 270-day incubation, As concentrations in pore water reached several hundred mg/L. Those effects resulted in a very high ecotoxicity of pore water, caused lethal effects to bacteria and springtails, and impeded plant germination. Soil amendment with manure was a factor that significantly enhanced those effects. The factors responsible for various effects that were reported from three soils were discussed.

How to cite: Szopka, K., Karczewska, A., Dradrach, A., and Gałka, B.: The effects of waterlogging on the solubility of arsenic and ecotoxicity of soil pore water in non-fertilized and fertilized soils in historical mining sites., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10576, https://doi.org/10.5194/egusphere-egu2020-10576, 2020.

EGU2020-17042 | Displays | SSS5.7

Colloidal Aspects of the Formation of the Interactions between Humic Substances and Surfactants

Michal Kalina, Tomas Duchacek, Jitka Krouska, Petr Sedlacek, and Jiri Smilek

Humic substances (HS) represent fascinating heterogeneous mixture of natural molecules, which possess a high potential to interact with various substances e.g. metals, surfactants, dyes, pesticides. This beneficial property allows their further utilization as the reactive part of sorbents with possible applications in remediation processes of soils and waste waters treatment plants. Surfactants represent a group of substances, which are artificially introduced in the nature by human driven applications causing the undesirable foaming of waters and enhancing the solubility of hydrophobic organic pollutants such as highly toxic polycyclic aromatic hydrocarbons. The present work is focused on the study of colloidal aspects of interactions between selected representatives of surfactants and humic substances, as the example of a promising sorbent and flocculant. For purposes of present work Hexadecyltrimethylammonium bromide, Tetradecyltrimethylammonium bromide, and Carbethoxypendecinium bromide were used as selected cationic surfactants, Sodium dodecyl sulphate as anionic and TWEEN-20 as a non-ionic. The interactions between the individual components were studied by using a combination of dynamic light scattering (determination of the changes in particle size distributions), electrophoretic light scattering (zeta potential – stability investigation) and isothermic titration calorimetry (thermodynamic parameters of interactions) in titration mode of measurement. This set-up provided us the determination of the critical aggregation concentrations of the surfactant-humic system, which corresponded to its phase separation. Moreover, the interactions between the components were confirmed also by routine physico-chemical methods (e.g. thermogravimetry and Fourier transform infrared spectroscopy).  We believe that the outcomes of our work will help to shed a new light on the phenomenon of the formation of the interaction between surfactants and humic substances and will provide the crucial insight in the broader utilization of specific fractions humic substances as the universal sorbent for surfactants mainly from the waste waters.

How to cite: Kalina, M., Duchacek, T., Krouska, J., Sedlacek, P., and Smilek, J.: Colloidal Aspects of the Formation of the Interactions between Humic Substances and Surfactants, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17042, https://doi.org/10.5194/egusphere-egu2020-17042, 2020.

In aquatic environments, Hg(II) is strongly reactive with the dissolved organic matter (DOM) and form complexes with acidic functional groups like carboxylic acids, phenols, ammonia, alcohol, and reduced sulfur ligands (Sred). It has been suggested, however, that both the concentration of Hg(II) and the composition of the DOM influence the potential for the removal of Hg(II) in water treatment.

Jar test experiments were performed at optimum coagulation conditions of pH and alum dose, using unfractionated DOM, humic substances (humic acids and fulvic acids) and different Hg(II) concentrations. Samples used in this work were obtained from the International Humic Substances Society (IHSS) and were selected based on the differences in aromatic carbon, reduced sulfur content, acidic functional groups concentration, geographical location, and commercial availability.

Results showed that good removal of Hg(II) can be achieved by alum coagulation under two circumstances: (1) when the DOM is low in Sred ligands but rich in aromatic content and (2) when the DOM is rich in Sred ligands and low in aromaticity. At low Hg/DOM ratio (0.05 μg Hg/mg DOM), Hg(II) removal can be as high as 95%, while at high Hg/DOM ratio (1.0 μg Hg/mg DOM) Hg removal can be as high as 73%. The aromaticity of the DOM and the presence of Hg(II)-binding ligands in the fraction of carbon that adsorbs to aluminum hydroxide flocs were the key variables that control the removal of mercury. All the same, the character of DOM determines the extent of the removal of carbon and the minimum amount of Hg(II) that can be removed from solution.

How to cite: Diaz, F., Katz, L., and Lawler, D.: Hg(II)-Dissolved Organic Matter (DOM) Interactions in Freshwater and their Removal in Conventional Water Treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20727, https://doi.org/10.5194/egusphere-egu2020-20727, 2020.

EGU2020-21642 | Displays | SSS5.7

The function of carboxyls in the structure of humic acids to binding of organic substances
not presented

Jiri Smilek, Anna Belusova, Michal Kalina, and Petr Sedlacek

The humic substances, the major and the most important part of soil organic matter, are responsible for the immobilization of organic compounds (e.g. heavy metal ions, organic dyes, surface active agents, etc.) in the soil. Unfortunately, there are a lot of gaps in the knowledge in the complex mechanism of binding of organic charged compounds by humic substances.

The unconventional diffusion and dialysis (transport) techniques have been developed for the purpose of study on the interactions between humic substances and organic charged substances.  In our contribution we are focusing on one fraction of humic substances – humic acids. The binding between humic acids with/without selectively blocking of carboxylic functional groups (methylation by –CH3) with organic charged compounds (e.g. organic dyes, surface active agents) has been studied by diffusion and dialysis approach using the spectroscopic techniques as analytical method. The strong impact of methylation on the positive affinity of humic acids towards organic compounds has been expected. These expectations were not confirmed by diffusion and dialysis techniques. The role of carboxyls in the structure of humic acids is not so essential as was expected and mentioned in the literature. The other effects (e.g. hydrophobic interactions, pi-pi stacking, etc.) are more important in the binding of organic compounds as was expected. The positive binding as well as kinetics of this process is also strongly depending on the physico-chemical circumstances of the system (e.g. pH, ionic strength, temperature, etc.).

How to cite: Smilek, J., Belusova, A., Kalina, M., and Sedlacek, P.: The function of carboxyls in the structure of humic acids to binding of organic substances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21642, https://doi.org/10.5194/egusphere-egu2020-21642, 2020.

SSS5.8 – Soils and the Critical Zone: carbon, resilience, and change

EGU2020-12354 | Displays | SSS5.8

The chronosequence in context: Elevation-dependent dynamics of soil biogeochemistry during cloud forest succession

Nathaniel Looker, Andrew Margenot, Karis McFarlane, Ed Nater, Alain Plante, and Randy Kolka

In mountainous landscapes, rates of soil morphological and biogeochemical change during secondary forest succession (SFS) can vary widely with elevation due to gradients in water, energy, and mineral weathering status. Improved understanding of how elevation mediates the response of soils to SFS is critical not only for reducing the uncertainty of soil maps in complex terrain, but also for predicting the edaphic effects of SFS under future climatic conditions. Focusing on volcanic ash soils in Veracruz, Mexico, we sought to 1) quantify how elevation mediates the dynamics of soil organic carbon (SOC) and geochemistry during SFS and 2) disentangle the soil-forming processes responsible for altitudinal trends. We characterized 16 soil profiles (0-100 cm depth) at various stages of SFS after pasture abandonment at the lower and upper altitudinal limits of the cloud forest ecosystem (1350-1550 and 2050-2220 m) using a broad suite of analytical techniques. Elevation strongly affected the depth distributions of all measured inorganic elements and enhanced the rate of accumulation of biocycled elements (e.g., P, K, Ca, S, Mn) during SFS. Notwithstanding altitudinal differences in C inputs (namely, forest floor recovery rates), profile-level SOC composition and dynamics were more sensitive to mineral weathering status than to SFS stage or elevation per se. Differentiation of soil mineralogy and SOC dynamics contributed to variation of physical properties, consistent with local ‘folk’ soil taxonomy. Ongoing work addresses the interplay of climate, geology, and redistribution processes in determining the mineralogical properties and, ultimately, SOC dynamics of volcanic ash soils. Our findings underscore the importance of considering the complex environmental contingency of soil recovery rates during SFS.

How to cite: Looker, N., Margenot, A., McFarlane, K., Nater, E., Plante, A., and Kolka, R.: The chronosequence in context: Elevation-dependent dynamics of soil biogeochemistry during cloud forest succession, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12354, https://doi.org/10.5194/egusphere-egu2020-12354, 2020.

EGU2020-20675 | Displays | SSS5.8

Relationships between aboveground and belowground biomass stock – a case study from mountain area temperate forests in the northern Carpathians

Anna Zielonka, Marek Drewnik, Łukasz Musielok, Dariusz Struzik, Grzegorz Smułek, and Katarzyna Ostapowicz

The content of organic carbon in forest is partitioned between organic carbon accumulated in aboveground biomass (AGB) and belowground biomass (BGB) and is impacted by various natural and human factors. Growing interest in estimates of global biomass (and organic carbon) pools require research on a local scale in the context of potential environmental factors affecting their spatial distribution. Therefore, our aim of the research was to both derive and evaluate the relationship between aboveground biomass consisting mainly of European beech (Fagus sylvatica L.), spruce (Picea abies L. Karst) and fir (Abies alba Mill.) and BGB with particular emphasis on fine root biomass (FRB) as the most dynamic part of the root system and soil organic matter stock (SOM). Data were collected at 32 national forest inventory plots in mountainous temperate forests with different history of forest management located across the Carpathian range in Poland. All study plots were characterized with very similar soil properties (Cambisols). Moreover, numerous environmental factors affecting biomass distribution were taken under consideration. The largest aboveground biomass occurred in beech-dominated stands (~40 Mg ha-1 to over ~ 440 Mg ha-1). In the sampled depth layer (0-40 cm) the highest SOM stock was identified in soils under beech-dominated stands (median ~158 Mg ha-1). FRB was the highest under fir-dominated stands (median ~3.7 Mg ha-1). The amount of SOM and FRB differed also in the analyzed soil depth layers (10 cm interval up to 40 cm) reaching mostly the highest values at soil depths of 0-10 cm. The highest amount of biomass (both aboveground and the belowground) has been identified in beech-dominated forests. We examined relationships between AGB, FRB, and SOM, but were not able to identify clear significant correlations based only on vegetation parameters. Derived results illustrate the complexity of identifying significant relationships between aboveground and belowground biomass stocks. Employing the same models may be an erroneous strategy for different study sites because of local environmental factors that strongly determine aboveground and belowground biomass stock. Accordingly, creating biomass and carbon models at larger scales in northern Carpathians based on forest aboveground data may cause an over- or underestimation due to the significant impact of both abiotic and biotic factors. 

 

This research study was funded by the Polish National Science Centre (RS4FOR Project: Forest change detection and monitoring using passive and active remote sensing data (No. 2015/19/B/ST10/02127) and via Project No. UJ/IGiGP/K/DSC/004779.

How to cite: Zielonka, A., Drewnik, M., Musielok, Ł., Struzik, D., Smułek, G., and Ostapowicz, K.: Relationships between aboveground and belowground biomass stock – a case study from mountain area temperate forests in the northern Carpathians, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20675, https://doi.org/10.5194/egusphere-egu2020-20675, 2020.

EGU2020-3739 | Displays | SSS5.8

Scaling up microbial dynamics for soil carbon cycling models

Stefano Manzoni, Arjun Chakrawal, and Naoise Nunan

Soils are heterogeneous at all scales and so are the biogeochemical reactions driving the cycling of carbon (C) and nutrients in soils. While the microbial processes involved in these reactions occur at the pore scale, what we observe at the soil core or pedon scale depends on how micro-scale processes are integrated in space (and time). This integration step requires accounting for the inherent patchiness of soils, but models used to describe element cycling in soils typically assume that conditions are well-mixed and that kinetics laws developed for laboratory conditions hold. Similarly, the response functions used in models to capture the effects of environmental conditions on C and nutrient fluxes neglect the contribution of spatial heterogeneities, which might alter their shape. There is therefore a need to re-evaluate model structures to test whether they can account for micro-scale heterogeneities. Alternatively, one can ask why some models are clearly successful in capturing observations despite neglecting soil heterogeneities. In this contribution, we present examples of how soil heterogeneities – in particular the spatial placement of soil microorganisms and their substrate – may affect decomposition kinetics and microbial responses to soil drying. We show that the kinetics laws used in current models are different from the kinetics obtained by integrating microbial dynamics at the micro-scale, and that respiration responses to soil drying may vary depending on soil heterogeneity. These results thus highlight structural uncertainties in current models that we propose can be assessed using existing ‘scale-aware’ methods to derive macro-scale model formulations. Model advances will need to be supported by empirical evidence bridging the gap between pore and core (or larger) scales, but can also provide new theory-based hypotheses for novel experiments.

How to cite: Manzoni, S., Chakrawal, A., and Nunan, N.: Scaling up microbial dynamics for soil carbon cycling models, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3739, https://doi.org/10.5194/egusphere-egu2020-3739, 2020.

EGU2020-11724 | Displays | SSS5.8

Controls of rainfall patterns on C and N emissions and stocks in Australian grasslands

Fiona Tang, William Riley, and Federico Maggi

In a warmer climate, regional and global climate models have projected Australia to experience an increase in the intensification of rainfall extremes, which range from heavy monsoon rains to long droughts. Here, we use a coupled carbon and nitrogen cycles mechanistic model (BAMS2) to investigate how the projected rainfall patterns affect carbon and nitrogen emissions, as well as the soil organic stocks in Australian grasslands located in different climatic regions.

                     The BAMS2 model (Tang et al., 2019) considers the depolymerization and mineralization of 11 soil organic matter (SOM) pools (i.e., lignin, cellulose, hemicellulose, peptidoglycans, monosaccharides, amino acids, amino sugars, organic acids, lipids, nucleotides, and phenols) and the transformation of inorganic nitrogen through fixation, nitrification, and denitrification. We explicitly model the growth, mortality, necromass decomposition, and water stress response of five microbial functional groups that mediate the carbon and nitrogen cycles. We include a simplified plant dynamics model to describe plant nutrient uptake, SOM inputs through root exudations and aboveground litter, and plant response to water stress. The BAMS2 reaction network is solved using a general-purpose multi-phase and multi-component bio-reactive transport simulator (BRTSim-v3.1a). We model the water flow along a vertical soil column using the Richards equation and the Brooks-Corey model for the water saturation-tension-permeability relationships, while the transport of dissolved chemicals is modeled using Darcy’s advection velocity and Fick’s diffusion. Aqueous complexation and gas dissolution are described using the mass action law, and SOM protection to soil is modeled using Langmuir’s kinetics.

                     Our multi-decadal simulations suggest a 30% increase in annual CO­2 emissions in tropical grasslands with a 20% decrease in annual rainfall amount, while temperate and semi-arid grasslands have opposite trends. A decreasing annual rainfall amount also results in a decrease in annual N­­2O emissions in the semi-arid grasslands, and a decrease in soil organic stocks in all grasslands. In tropical grasslands, a 20% decrease in annual rainfall results in approximately a 10% decrease in soil organic carbon stock and less than 1% decrease in soil organic nitrogen stock. Less frequent and more intense events in the semi-arid grasslands lead to increased soil moisture at greater depths where evapotranspiration rates are lower, hence reducing water loss to atmosphere and allowing the storage of water for plant growth. Our results show that changes in rainfall regimes alter both the emissions and the total amount of SOM. This study provides a modeling framework suitable for investigating SOM dynamics under various climatic and anthropogenic forcing.

Acknowledgement: This work is supported by SREI2020 EnviroSphere program, the University of Sydney.

Reference:

Tang, F. H.M., Riley, W. J., & Maggi, F. (2019). Hourly and daily rainfall intensification causes opposing effects on C and N emissions, storage, and leaching in dry and wet grasslands. Biogeochemistry, 1-18, https://doi.org/10.1007/s10533-019-00580-7.

How to cite: Tang, F., Riley, W., and Maggi, F.: Controls of rainfall patterns on C and N emissions and stocks in Australian grasslands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11724, https://doi.org/10.5194/egusphere-egu2020-11724, 2020.

EGU2020-244 | Displays | SSS5.8

High resilience of soils to re-grazing in a long-term abandoned alpine pasture

Alix Vidal, Anne Schucknecht, Paul Toechterle, Diana Rocio Andrade Linares, Noelia Garcia-Franco, Andreas von Heßberg, Alexander Krämer, Andrea Sierts, Alfred Fischer, Georg Willibald, Sarah Fuetterer, Jörg Ewald, Vera Baumert, Michael Weiss, Stefanie Schulz, Michael Schloter, Wolfgang Bogacki, Martin Wiesmeier, Carsten W. Mueller, and Michael Dannenmann

Grazed alpine pastures have shaped landscapes of the European Alps for millennia. However, especially steep alpine areas have largely been abandoned since the 1950s, resulting in a fast re-forestation of mountain pastures in the last decades, which is accelerated by climate change. Re-grazing of abandoned pastures could preserve the cultural landscape of the European Alps with its high species diversity, but there is a lack of information on the response of the soil system to re-grazing. We investigated short-term effects of re-grazing of an abandoned pasture in the German Alps on soil organic carbon and nitrogen biochemistry, soil microbial communities, and water quality. In May 2018, we set up a pilot grazing experiment at Brunnenkopfalm (1500-1700 m a.s.l.), abandoned since 1955. Four ha were fenced and a herd of rustic, local and endangered breeds (ca 1/ha) was introduced. Two and five months after the beginning of grazing, we investigated the short-term re-grazing effects, considering grazing-induced heterogeneity, as well as the distribution of vegetation types. In order to gain a functional understanding of soil responses to re-grazing, we used a wide array of techniques to characterize soil biogeochemical properties (salt-extractable and total organic carbon, gross nitrogen turnover rates, soil mineral nitrogen availability), as well as the abundance and characteristics of microbial communities (microbial biomass, phospholipid-derived fatty acids analysis, abundance of nitrogen-related microbial communities). A few months after re-grazing started, extractable organic carbon, gross nitrogen mineralisation rates and inorganic nitrogen concentrations were increased only in intensively grazing-affected areas with bare soil. Bare soils represented a small fraction of the study area (~ 1 %), and the grazing effects on these areas could at least partially also be driven by the initial site heterogeneity (soil and vegetation) rather than solely by recent grazing activities. Re-grazing did not affect the microbial abundance, but induced a community shift towards a smaller proportion of fungi compared to bacteria and an increase of ammonia oxidizers (archaea/bacteria). Concentrations of dissolved organic carbon and nitrate in the draining creek remained very low. Overall, re-grazing of pastures in the first season had very limited effects on microbial communities and associated carbon and nitrogen turnover and concentrations, highlighting the initial resilience of alpine soils to extensive re-grazing. However, a slight increase in nitrifier abundances at bare soil spots, as well as the low organic carbon:nitrogen ratios of soils suggest that a future increase in inorganic nitrogen accumulation is possible at least at bare soil areas. This could possibly endanger some biodiverse grassland biotopes via eutrophication and result in environmental nitrogen losses along hydrological or gaseous pathways. Thus, long-term studies are needed to verify whether soils are also resilient to re-grazing in the long-term. On the short-term, undesired re-grazing effects can be avoided by extensive, guided grazing with adapted cattle breeds targeted to avoid trampling-induced bare soil areas.

How to cite: Vidal, A., Schucknecht, A., Toechterle, P., Andrade Linares, D. R., Garcia-Franco, N., von Heßberg, A., Krämer, A., Sierts, A., Fischer, A., Willibald, G., Fuetterer, S., Ewald, J., Baumert, V., Weiss, M., Schulz, S., Schloter, M., Bogacki, W., Wiesmeier, M., Mueller, C. W., and Dannenmann, M.: High resilience of soils to re-grazing in a long-term abandoned alpine pasture , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-244, https://doi.org/10.5194/egusphere-egu2020-244, 2020.

EGU2020-22308 | Displays | SSS5.8

Linking molecular properties of soil organic carbon to emergent ecosystem functions in a tidally influenced landscape of the Pacific Northwest

Aditi Sengupta, Ben Bond-Lamberty, Albert Rivas-Ubach, Jianqiu Zheng, Pubudu Handakumbura, Steven Yabusaki, Vanessa Bailey, Nicholas Ward, and James Stegen

Coastal landscapes and their terrestrial-aquatic interface (TAI) will be increasingly exposed to short-term tidal inundation due to sea level rise and extreme weather events. These events can generate hot moments of biogeochemical activity and also alter ecosystem structure if occuring frequently. However, such responses of these vulnerable ecosystems to environmental perturbations are poorly understood, limiting our ability to evaluate the contribution of local processes on global scale carbon and nutrient budgets. Here, we evaluated whether and to what degree seawater inundation impacts biogeochemical responses in soils collected along a naturally variable salinity gradient in a first order tidal stream floodplain in the Pacific Northwest. A laboratory incubation experiment simulating episodic inundation was performed to detect the impacts on soil carbon chemistry. We characterized carbon before and after inundation using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS), metabolite signatures via Liquid Chromatography-Mass Spectrometry (LC-MS), and high-frequency carbon dioxide (CO2) and methane (CH4) gas fluxes from intact soil cores. Following three inundation events, we observed significant decreases in the thermodynamic favorability of the remaining organic compounds in soils with high natural salinity as compared to low salinity soils. Low salinity soils showed higher average flux compared to high salinity soils following periodic inundation events. Seawater inundation led to distinct metabolite features in low salinity soils, with surficial soil preferentially getting enriched in phenolic compounds. Biogeochemical transformations inferred from FTICR-MS data showed an increase in total transformations with increasing salinity for soil cores from naturally low salinity exposure sites, likely suggesting higher microbial activity. In conclusion, ecosystem responses in a tidal landscape frequently experiencing seawater inundation preferentially influences terrestrial soils to behave as a carbon source. This response is likely a function of historical salinity gradient-driven molecular-level organic carbon characteristics.

How to cite: Sengupta, A., Bond-Lamberty, B., Rivas-Ubach, A., Zheng, J., Handakumbura, P., Yabusaki, S., Bailey, V., Ward, N., and Stegen, J.: Linking molecular properties of soil organic carbon to emergent ecosystem functions in a tidally influenced landscape of the Pacific Northwest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22308, https://doi.org/10.5194/egusphere-egu2020-22308, 2020.

Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species‐mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil‐fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.

How to cite: Chen, H.: Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1425, https://doi.org/10.5194/egusphere-egu2020-1425, 2020.

EGU2020-20273 | Displays | SSS5.8

Soil systems as critical infrastructure: do we know enough about soil system resilience and vulnerability to secure our soils?

Jessica Davies, Pedro Batista, Victoria Janes-Bassett, Roisin O'Riordan, John Quinton, and Dmitry Yumashev

Soils provide us with multiple essential services, such as food production, water flow regulation, and climate regulation. The loss of soil function endangers provision of these services, in turn endangering the local, regional and global societies and economies that rely on these. Soils, therefore, are in effect a critical infrastructure, which can be defined as an asset, system or process, the loss or compromise of which could result in a major detrimental impact on the availability, integrity or delivery of essential services, with significant economic or social impacts. Conceptualising soil as a critical infrastructure changes the way we as a society need to approach its management. For example, government authorities have a responsibility to reduce the vulnerability of critical infrastructure, and strengthen their security and resilience. To meet this responsibility there is a need to assess infrastructure resilience, identify critical vulnerabilities, and identify and implement strategies for increasing resilience. There has been growing interest and research on soil resilience, particularly drawing on ecological resilience concepts. In this contribution, we will consider our current understanding of soil system resilience from a critical infrastructure perspective and discuss where further science is needed.

How to cite: Davies, J., Batista, P., Janes-Bassett, V., O'Riordan, R., Quinton, J., and Yumashev, D.: Soil systems as critical infrastructure: do we know enough about soil system resilience and vulnerability to secure our soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20273, https://doi.org/10.5194/egusphere-egu2020-20273, 2020.

EGU2020-11818 | Displays | SSS5.8 | Highlight

The impacts of urbanisation on urban soil carbon – a study from Manchester, UK

Roisin ORiordan, Jess Davies, Carly Stevens, John Quinton, and Christopher Boyko

The study of anthropogenic soils is a growing area of interest, and as cities continue to expand, urban soils are heavily influenced by human activities. Urbanisation exhibits a wide range of impacts on soil, from buried horizons, compaction, sealing with impervious surfaces, additions of anthropogenic material to being largely man-made soils, or technosols. The properties of urban soil are further complicated by the addition of fertilisers, management strategies in greenspaces and the treatments of soil, including topsoil removal, during construction projects. Therefore, the properties and functions of anthropogenic soils differ notably to that of natural soils, and as such, there is a need to understand the dynamics of soil carbon in urban areas.

Research on urban soil carbon has been relatively limited, however there is recent growth in this area due to its importance, firstly, as a carbon store contributing to climate regulation, and secondly, in relation to the potential of urban soil to support numerous ecosystem services. Urban soils are highly heterogeneous and anthropogenic carbon additions can come from many current or historical sources, such as charcoal used in old roads, coal ash from power stations, carbon from car tyres, as well as inorganic carbonates in limestone road foundations. Understanding the current stores of carbon, as well as how stable it is, is important to understand likely carbon dynamics and storage potential.

This work presents a field study across Manchester (UK) where soil carbon data has been collected from soils across urban parks, greenspaces and from under sealed surfaces (roads and pavements). It provides carbon data for a variety of urban contexts and with high spatial variability. We will build on previous work from this field study by presenting i) a typology of urban soils according to anthropogenic content, ii) data for physical size fractionation to understand soil physical properties and texture, and iii) the carbon content of the size fractions to provide a proxy for understanding how labile or stable the carbon is. This will allow us to understand the impacts of soil sealing on the carbon content and build a picture of soil carbon stability across a range of urban situations.

This research will contribute to the much-needed understanding on how soil carbon behaves in urban areas, and the implications of this for carbon storage in both sealed and urban greenspace soils. 

How to cite: ORiordan, R., Davies, J., Stevens, C., Quinton, J., and Boyko, C.: The impacts of urbanisation on urban soil carbon – a study from Manchester, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11818, https://doi.org/10.5194/egusphere-egu2020-11818, 2020.

EGU2020-16870 * | Displays | SSS5.8 | Highlight

Impact of antibiotic pollution from wastewater irrigation on soils and agroecosystems

James Stockdale, Brett Sallach, Andrew Zealand, Clare McCann, Ergun Bey, Fin Ring-Hrubesh, David Graham, Alistair Boxall, and Sylvia Toet

Growing global demand of water use, and regional changes in precipitation in many regions, has resulted in increasing long-term irrigation of agricultural soils with post-treatment waste water. Overlaying this trend with the rising use of pharmaceuticals has created a new pathway for these pollutants, including biologically active compounds such as antibiotics, to enter the soil environment. We present results from a new interdisciplinary study of the response of an agroecosystem which was repeatedly contaminated with a typical combination of antibiotics at a representative concentration found in waste water effluent. Results from this experimental manipulation, show the impact of different concentrations of antibiotics in the soil and the unexpected repercussions throughout the agroecosystem. This includes effects on soil microbial communities, microbial function (anti-microbial resistance), abiotic soil condition, antibiotic persistence in the soil, ecosystem function (greenhouse gas exchange) and the effect on the arable crop itself. Implications of this study are relevant to fully understanding the impact of this land management technique on the sustainability of food production.

This study was funded through the UK’s N8AgriFood Programme.

How to cite: Stockdale, J., Sallach, B., Zealand, A., McCann, C., Bey, E., Ring-Hrubesh, F., Graham, D., Boxall, A., and Toet, S.: Impact of antibiotic pollution from wastewater irrigation on soils and agroecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16870, https://doi.org/10.5194/egusphere-egu2020-16870, 2020.

EGU2020-6875 | Displays | SSS5.8

Modeling of soil carbon dynamics, with focus on microbial activity

Elin Ristorp Aas, Terje Koren Berntsen, Alexander Eiler, and Helge Hellevang

The representation of soil carbon dynamics is a major source of uncertainty in Earth System Models (ESMs). The terrestrial carbon pool is more than twice the size of the atmospheric pool. Therefore, the role of soil carbon as a source or a sink of atmospheric carbon, and in feedback loops is important to quantify in a changing climate. Decomposition processes of organic matter in soil have often been represented by first order decay equations, which make comparison and validation against observations difficult. Therefore, quantification of the uncertainties  and validation of improved parameterizations are problematic. An emerging approach to tackle these challenges is to represent microbial soil processes explicitly in the models. Following this approach, we have built a process based module that represent the carbon fluxes during soil decomposition, from aboveground litter to soil organic matter (SOM). The role of saprotrophs and mycorrhizal fungi is explicitly represented with separate carbon pools with associated fluxes. On a site level, we compare initial results from the stand alone module with both existing models and observations of carbon pools and fluxes. The observations are from the Norwegian Dovre Mountains, with data from three different alpine communities. These geographic areas are important, because they are subject to changes due to shrubification. In addition, these ecosystems can store large amounts of carbon. By modeling these sites, we gain more insight in the most important processes in soil decomposition, and how different microbial communities affect the carbon dynamics. We will further refine the module by expanding our study with more sites. The long-term objective is to develop an improved module that can be used to represent soil processes in ESMs, and thereby reduce the uncertainty connected to the exchange of carbon between land and atmosphere.

How to cite: Ristorp Aas, E., Koren Berntsen, T., Eiler, A., and Hellevang, H.: Modeling of soil carbon dynamics, with focus on microbial activity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6875, https://doi.org/10.5194/egusphere-egu2020-6875, 2020.

EGU2020-22627 | Displays | SSS5.8

A model for three-way carbon flux partitioning in calcareous soils using stable isotope measurements

Guy Kirk, Chris McCloskey, Wilfred Otten, and Eric Paterson

In order to understand and model soil carbon (C) dynamics it is essential that we are able to partition net ecosystem C exchange by individual organic and inorganic fluxes under field conditions. Stable isotope methods provide a reliable means to separate fluxes from two sources, such as plant respiration and soil organic matter (SOM) mineralisation. In many soils, however, plant and soil respiration are not the only sources of C efflux, as breakdown of carbonate minerals provide a third, inorganic, C source. We currently lack methods and models to allow us to untangle plant, inorganic soil, and organic soil C fluxes in the field. This limits our ability to gather field-scale plant and soil C flux data to soils without inorganic carbonates, rendering calcareous soils a major gap in our understanding of, and ability to model, soil C dynamics.

To remedy this we have developed a novel three-way partitioning model to account for inorganic carbonate dissolution in a planted soil. Analysis of a mechanistic model of lime (CaCO3) dissolution showed differences in CO2 pressure in the soil, arising from differences in soil respiration as influenced by differences in temperature and moisture, to be a major control on dissolution rates. The thee-way partitioning model we have developed derives the CO2 flux from CaCO3 dissolution from SOM mineralisation and below-ground plant respiration fluxes.

To test this model we used cavity ring-down spectroscopy to measure CO2 fluxes from soil mesocosms containing C3-origin SOM and planted with a C4 grass, both with and without CaCO3, and unplanted soil mesocosms containing CaCO3. As previously field measurements revealed temperature to be the strongest control on soil respiration this was carried out at four temperatures (15, 20, 25, and 30oC). Using the distinct δ13C values for CaCO3 dissolution, C4 grass respiration, and C3 SOM mineralisation, fluxes were partitioned from mesocosms containing two C fluxes to parameterise the model. The model was tested through application to flux data from mesocosms containing C fluxes from CaCO3, SOM, and plants in order to assess its suitability for generating novel field datasets of C fluxes from calcareous soils.

How to cite: Kirk, G., McCloskey, C., Otten, W., and Paterson, E.: A model for three-way carbon flux partitioning in calcareous soils using stable isotope measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22627, https://doi.org/10.5194/egusphere-egu2020-22627, 2020.

In the northern ecosystems’ soils, the carbon stock is preserved in peat soils which includes frozen peat. It is vulnerable to any climate changes. The permafrost degradation can affect both the quantity and the composition of dissolved organic carbon of permafrost-affected soils, especially peat soils.

The main aim of our study was to determine the relationship among peat type, water regime and the quantity and composition of water borne carbon export. The research site was located in the discontinuous permafrost zone (N65º18’, E72º52’). Monoliths of various peat soils were collected in summer 2019 for a laboratory experiment.

The experiments were carried out with 6 types of monoliths (oligotrophic fibric peat; oligotrophic hemic peat with lichen debris; eutrophic hemic peat with reindeer moss debris; eutrophic sapric peat; eutrophic sapric peat with a burnt horizon; oligotrophic fibric peat, underlied with sand). We try to understand how organic matter is leached from peat soils with different constitution and different degree of decomposition. In the model experiment, we simulated 3 types of hydrological conditions. Soil monoliths were watered, and the contents of DOC and POC were determined in the collected soil waters.

  1. Simulation of the moderate rainfall (70 mm) by adding distilled water during the week. DOC in this case ranged from 44,2±3.0 mg/l in oligotrophic peat to 80,6±28,7 mg/l in eutrophic peat.
  2. The simultaneous flow of large quantities of water, simulating prolonged rainfall or spring snowmelt. In this case DOC content leaching from fibric oligotrophic peat didn`t change much while DOC leaching from sapric eutrophic peat decreased in comparison with moderate rainfall.
  3. During modeling short stagnant regimen (spring conditions) we observed increase DOC, especially in sapric eutrophic peat (up to 291,0±11,3 mg/l). The mineral horizon under the peat layer reduced the rate of leaching of organic substances from the soil.

Our results indicate the significant role of both the peat constitution and hydrological regime of soils on the rate and amount of organic matter entering the hydrological basin from peat permafrost-affected soils. The data can be used to simulate the dynamics of permafrost ecosystems with changing climatic parameters or with the activation of anthropogenic load.

This research was supported by the Russian Foundation for Basic Research (Grant 18-04-00952)

How to cite: Timofeeva, M., Goncharova, O., and Matyshak, G.: Hydrological conditions and peat constitution effect on DOC leaching from permafrost-affected soils: model experiment (Western Siberia, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-590, https://doi.org/10.5194/egusphere-egu2020-590, 2020.

Freshwater flux transport large amount of carbon (dissolved and particulate, organic and inorganic) from the continent into the ocean, contributing significantly to the global carbon cycle. The present sources and sinks of natural as well as anthropogenically produced C compounds in the global carbon cycle remain enigmatic. Among the carbon sources in the river ecosystem, the dissolved inorganic carbon (DIC) constitutes a major component of carbon influx from land to ocean. These fluxes are significantly influenced by the terrestrial and estuary processes. The isotopic composition of DIC can be used to understand the sources and cycling of carbon in rivers and estuaries. In this study, δ13C values of DIC in river water of Ganga have been used to understand the sources of dissolved inorganic carbon into the river. The river Ganga (2500 km) is the largest river of the Indian subcontinent which originates from the Gangotri glacier and drains into the Bay of Bengal through its vast delta in the Sunderban. The Ganga river basin (GRB) covers an area of 106 km2 draining the carbon sources of the entire basin into the mainstream of river Ganga. The river transports nearly 0.2% of the global freshwater flux, 1% of global DIC flux and 5% of the global sediment flux into the ocean. Despite its significant importance to the global carbon transport, the understanding of the DIC sources in the complex Ganga river system remains enigmatic. Therefore to elucidate the carbon sources in the river Ganga, the δ13C DIC of river water were measured from source (Gomukh) to sink (Bay of Bengal) of the river Ganga for pre and late-monsoon period. The seasonal variation in the δ13C DIC shows enriched isotopic values in pre-monsoon compared to late-monsoon samples. The upper, middle and lower stretch of the river shows distinct enrichment factors for pre and late-monsoon samples. The variation in the δ13C DIC of river water might be indicating the DIC signature of the source water. The pre-monsoon samples show enrichment in the δ13C DIC values as we move downstream of the river, whereas the late-monsoon samples show a slight depletion trend. The difference between the pre and late- monsoon samples might be indicating the high input of soil CO2 during the late-monsoon season which is characterized by lower δ13C values.

How to cite: Kumar, A. and Sanyal, P.: Decrypting the sources of dissolved inorganic carbon in river water: Isotopic study from river Ganga, India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-724, https://doi.org/10.5194/egusphere-egu2020-724, 2020.

Studying the effects of droughts and heavy rain events on DOC in Scot pine in Belgium

Cristina Ariza-Carricondo(1,2), Marilyn Roland(1), Bert Gielen(1), Eric Struyf(1), Caroline Vincke(2) and Ivan Janssens(1).

(1) PLECO, University of Antwerp, Belgium. (2) Faculty of Bioscience Engineering & Earth and Life Institute, University of Louvain-la-Neuve, Louvain-la-Neuve, Belgium.

Climate extremes, including extreme rain events, are becoming more frequent and more extreme, and affect the carbon cycle of ecosystems. Very little is known about how Dissolved Organic Carbon (DOC) production and leaching are affected by such precipitation extremes while the relation between dissolved and gaseous exports of carbon under different precipitation regimes remains unexplored.

Hydrological conditions are the main driver of DOC leaching and alterations in precipitation patterns may cause large changes in the carbon balance of forests. To test the effects of precipitation extremes on DOC, we designed a manipulation experiment in a Scots pine forest in Belgium.

One of the challenges to estimate DOC export is the quantification of water drainage flow. In this study we used self-designed Zero Tension Lysimeters (ZTL) to capture leaching water and analyze its DOC-concentrations as well as other elements along profiles in the soil (up to 75cm depth), to study how DOC moves under different precipitation regimes. Different manipulation experiments were performed where we modified the precipitation regime simulating heavy rain events after different droughts as well as experiments where we modified the precipitation intensity over time. Leached water was collected at different depths at monthly intervals after natural rain events as well as after irrigations.

Preliminary results showed that drainage water transported DOC differently through the soil when different amounts of water were added. Furthermore, more frequent small rain events appear to favor the production of DOC as compared to less frequent high intensity rain events, while DOC production ceases during droughts.

How to cite: Ariza Carricondo, C.: Studying the effects of droughts and heavy rain events on DOC in Scot pine in Belgium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5329, https://doi.org/10.5194/egusphere-egu2020-5329, 2020.

EGU2020-12470 | Displays | SSS5.8

The relative importance of environmental factors on the interannual variability of carbon fluxes in the boreal forest

Mariam El-Amine, Alexandre Roy, Pierre Legendre, and Oliver Sonnentag

As climate change will cause a more pronounced rise of air temperature in northern high latitudes than in other parts of the world, it is expected that the strength of the boreal forest carbon sink will be altered. To better understand and quantify these changes, we studied the influence of different environmental controls (e.g., air and soil temperatures, soil water content, photosynthetically active radiation, normalized difference vegetation index) on the timing of the start and end of the boreal forest growing season and the net carbon uptake period in Canada. The influence of these factors on the growing season carbon exchanges between the atmosphere and the boreal forest were also evaluated. There is a need to improve the understanding of the role of the length of the growing season and the net carbon uptake period on the strength of the boreal forest carbon sink, as an extension of these periods might not necessarily result in a stronger carbon sink if other environmental factors are not optimal for carbon sequestration or enhance respiration.

Here, we used 31 site-years of observation over three Canadian boreal forest stands: Eastern, Northern and Southern Old Black Spruce in Québec, Manitoba and Saskatchewan, respectively. Redundancy analyses were used to highlight the environmental controls that correlate the most with the annual net ecosystem productivity and the start and end of the growing season and the net carbon uptake period. Preliminary results show that the timing at which the air temperature becomes positive correlates the most strongly with the start of the net carbon uptake period (r = 0.70, p < 0.001) and the start of the growing season (r = 0.55, p < 0.01). Although the increase of the normalized difference vegetation index also correlates with the start of these periods, a thorough examination of this result shows that the latter happens well before the former. No dependency between any environmental control and the end of the net carbon uptake period was identified. Also, the annual net ecosystem productivity is highly correlated with the length of the net carbon uptake period (r = 0.54, p < 0.01). Other environmental controls such as annual precipitations, the mean annual soil temperature or the maximum yearly normalized difference vegetation index have a smaller impact on the annual net ecosystem productivity. By extending the dataset to include forest stands that represent a wider climate and permafrost variability, we will examine the generalizability of these results.

How to cite: El-Amine, M., Roy, A., Legendre, P., and Sonnentag, O.: The relative importance of environmental factors on the interannual variability of carbon fluxes in the boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12470, https://doi.org/10.5194/egusphere-egu2020-12470, 2020.

EGU2020-6099 | Displays | SSS5.8

Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations

Carlos Alberto Quesada, Claudia Paz, Erick Oblitas, Oliver Phillips, Gustavo Saiz, and Jon Lloyd

We investigate the edaphic, mineralogical and climatic controls of soil organic carbon (SOC) concentration utilising data from 147 primary forest soils (0-30 cm depth) sampled in eight different countries across the Amazon Basin. Sampling across 14 different World Reference Base soil groups our data suggest that stabilisation mechanism varies with pedogenetic level. Specifically, although SOC concentrations in Ferralsols and Acrisols were best explained by simple variations in clay content – this presumably being due to their relatively uniform kaolinitic mineralogy – this was not the case for less weathered soils such as Alisols, Cambisols and Plinthosols for which interactions between Al species, soil pH and litter quality are argued to be much more important. Although for more strongly weathered soils the majority of SOC is located within the aggregate fraction, for the less weathered soils most of the SOC is located within the silt and clay fractions. It thus seems that for highly weathered soils SOC storage is mostly influenced by surface area variations arising from clay content, with physical protection inside aggregates rendering an additional level of protection against decomposition. On the other hand, most of SOC in less weathered soils are associated with the precipitation of aluminium-carbon complexes within the fine soil fraction, with this mechanism enhanced by the presence of high levels of aromatic, carboxyl-rich organic matter compounds. Also examined as part of this study were a relatively small number of arenic soils (viz. Arenosols and Podzols) for which there was a small but significant influence of clay and silt content variations on SOM storage and with fractionation studies showing that particulate organic matter may accounting for up to 0.60 of arenic soil SOC. In contrast to what were in all cases strong influences of soil and/or litter quality properties, after accounting for these effects neither wood productivity, above ground biomass nor precipitation/temperature variations were found to exert any significant influence on SOC stocks. These results have important implications for our understanding of how Amazon forest soils are likely to respond to ongoing and future climate changes.

How to cite: Quesada, C. A., Paz, C., Oblitas, E., Phillips, O., Saiz, G., and Lloyd, J.: Variations in soil chemical and physical properties explain basin-wide Amazon forest soil carbon concentrations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6099, https://doi.org/10.5194/egusphere-egu2020-6099, 2020.

EGU2020-7370 | Displays | SSS5.8

A review of the impacts of land use change, climate zone, forest type and age on soil organic carbon and other soil quality indicators following afforestation

Yang Guo, Mohamed Abdalla, Mikk Espenberg, Astley Hastings, Paul Hallett, and Pete Smith

The main aim of this global review and systematic analysis was to investigate the impacts of previous land use system, climate zone and forest type and age on soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP), in the different soil layers (0-20, 20-60 and 60-100 cm), following afforestation. We collected 85 publications on SOC, TN and TP stock changes, covering different countries and climate zones. The data were classified into groups depending on these investigated parameters and analyzed using R version 3.6.1. We found that afforestation significantly increased SOC and TN stocks in the 0-20 and 20-60 soil layers, with values of 45% and 44% for SOC, 30% and 22% for TN, respectively, but had no impact on TP stock. Previous land use systems had the largest influence on SOC, TN and TP stocks, with greater accumulations on barren land compared to cropland and grassland. Climate zone influenced SOC, TN and TP stocks, with significant accumulations in the moist than in the dry climate zone. Afforestation with broadleaf deciduous and broadleaf evergreen forests led to greater SOC, TN and TP accumulations in each soil layer throughout the investigated profile (0-100 cm), compared to coniferous forests. Afforestation for <20 years had significantly increased SOC and TN stocks only at the soil surface (0-20 cm) whilst afforestation for ≥ 20 years had significantly accumulated them up to 100 cm soil depth. TP stock did not change with the forest age, suggesting that it may become a limiting factor for carbon sequestration under the older-age forest. Following afforestation, the change of soil bulk density had inverse relationships with SOC or TN stocks changes but had no effect on TP stock change.

How to cite: Guo, Y., Abdalla, M., Espenberg, M., Hastings, A., Hallett, P., and Smith, P.: A review of the impacts of land use change, climate zone, forest type and age on soil organic carbon and other soil quality indicators following afforestation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7370, https://doi.org/10.5194/egusphere-egu2020-7370, 2020.

EGU2020-22639 | Displays | SSS5.8

Soil thinning and thickening: the fate of soil organic carbon

Andrew Tye and Daniel Evans

The redistribution of soil by humans has been demonstrated to rival that of geologic events. Moreover, the impact of some conventional, agricultural techniques has been shown to redistribute a significant proportion of soil organic carbon. On the more erosive areas of hillslopes, the resulting thinning of soil could make deep soil carbon more accessible and, ultimately, more susceptible to destabilisation. However, downslope colluviation can thicken soil profiles such that subsoil carbon pools become inaccessible to microbial decomposition. The fate of soil thinning and thickening on soil organic carbon has not been studied in the UK until now. In this work, we studied the distribution of organic and inorganic carbon down profiles surveyed at three landscape positions (midslope, backslope, and toeslope) on Mountfield Farm, in Somerset, UK. In this poster, we present the results of thermogravimetric analysis and laser-induced fluorescence spectroscopy, both of which we used to investigate the stability of soil organic carbon down each profile. We explore the relationships between soil depth and the stocks and stability of soil organic carbon fractions at each position, and suggest the implications of continued upslope soil thinning and downslope soil thickening.

How to cite: Tye, A. and Evans, D.: Soil thinning and thickening: the fate of soil organic carbon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22639, https://doi.org/10.5194/egusphere-egu2020-22639, 2020.

EGU2020-21158 | Displays | SSS5.8

Postagrogenic differentiation of the old-arable horizon of different-aged fallow soils

Leysan Fattakhova and Dilyara Kuzina

The study of different-aged fallow soils seems to be interesting from the point of view of changes in their conditions of genesis and functioning because a radical change of pedogenesis nature in time the removal of arable land to fallow leads to soil evolution. If the climax stages of postagrogenic successions are quite achievable, then the process of restoring the original climax vegetation should be associated with a reversible return of the soil to its original state. But pedogenesis is not limited only to the processes of converting organic residues into soil humus, binding it to mineral surfaces, humus, and biophilic elements accumulation. It also includes a slow chemical transformation of the parent rocks, due to the course of a number of reactions that rarely reach chemical equilibrium. And for soils that were once plowed, we can state with confidence that there is no identity between the component and phase compositions of fine mineral phases at the stages of involving virgin soil to cultivation and removing arable soil to fallow. Accordingly, the once homogeneous old-arable layer can be considered as a lithologically homogeneous soil-forming rock for the magnetic subprofile that is formed on it in the process of successional restoration of ecosystems. Therefore, the study of the magnetic properties of the upper part of the profile of different-aged fallow soils is appropriate in the aspect of the kinetic parameters of postagrogenic differentiation of the old-arable horizon. This work is devoted to studying magnetic properties of different-aged light-gray forest (30-35 years), dark grey forest (10-15 years) and sod-podzolic (12-17 years) fallow forest-steppe soils of the Republic of Tatarstan for the diagnosis of postagrogenic signs of differentiation of the old-arable horizon.

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and with the support of the RFBR in the framework of the scientific project No. 19-35-50040.

How to cite: Fattakhova, L. and Kuzina, D.: Postagrogenic differentiation of the old-arable horizon of different-aged fallow soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21158, https://doi.org/10.5194/egusphere-egu2020-21158, 2020.

EGU2020-16387 | Displays | SSS5.8

The Nivolet CZ Ecosystem Observatory reveals rapid soil development in recently deglaciated alpine environments: Biotic weathering is the likely culprit

Ilaria Baneschi, Ashlee Dere, Emma Aronson, Ramona Balint, Sharon Billings, Silvia Giamberini, Marta Magnani, Pietro Mosca, Maddalena Pennisi, Antonello Provenzale, Brunella Raco, Pamela L. Sullivan, and Timothy White

Soils are a critical component of the Earth system in regulating many ecological processes that provide fundamental ecosystem services (Adhikari and Hartemink, 2016). Soil formation factors may be operating at faster timescales than is typically considered in recently deglaciated alpine environments, yielding important implications for critical zone services (e.g., water retention, the preservation of carbon (C) and nutrients, and chemical weathering fluxes). It remains unclear how variation in these properties are linked to soil development and soil organic C pools and fluxes, in part because sites varying in these characteristics also typically vary in vegetation and climate.

Here we leveraged the high-altitude alpine pastures of the Nivolet Critical Zone and Ecosystem Observatory, Gran Paradiso National Park (Italy) to examine biotic and abiotic dynamics and controlling factors of organic C and weathering under different topographic positions and geologic substrates in a small localized mountainous region. Soil profiles were sampled across a range of parent materials deposited after the Last Glacial Maximum, including gneiss glacial till, carbonate and calcschist/gneiss colluvium, and gneiss/carbonate/calcschist alluvium across ridgetop, midslope and footslope topographic positions. Organic C, C stable isotopes, major and trace element content, particle size distribution, and pH reveal how parent material and landscape position govern soil C storage and development. Even under the cold climate, limited season with liquid water, young-age deglaciated context, soils have developed incipient spodic horizons and calcschist clasts appears completely weathered in place.

Alkali and alkaline earth elements exhibit chemical depletion throughout the profiles, whereas in some profiles phosphorus concentrations reflects nutrient uplift processes (i.e., accumulating at the top of the profile and depleted in mid-horizons) likely driven by “biotic” cycling. Phosphorus is relatively high in uppermost horizons at carbonate and glacial sites, but is quite low in gneiss, even though TOC is relatively high, suggesting that plants underlain by gneiss are able to generate organic compounds with lower P availability. Though rooting depth distributions exhibit linear declines with depth, contrary the typically observed exponential decay behavior, our data suggest that roots serve as important biotic weathering agents prompting rapid soil development. All profiles have high organic carbon content at the surface, but

are twice as high in the footslope Gneiss profile as in the midslope Glacier and Carbonate profiles and in the floodplain Alluvial profile.

These data, in conjunction with microbial analysis and geochemical variation, suggest that biota are key agents promoting the observed high degree of soil development in these high altitude ecosystems. We demonstrate how in the early stages of soil development abiotic and biotic factors influence soil weathering and C storage across different parent material and topography.

 

Adhikari, K. and Hartemink, A. E.: Linking soils to ecosystem services – A global review, Geoderma, 262, 101–111, 2016

How to cite: Baneschi, I., Dere, A., Aronson, E., Balint, R., Billings, S., Giamberini, S., Magnani, M., Mosca, P., Pennisi, M., Provenzale, A., Raco, B., Sullivan, P. L., and White, T.: The Nivolet CZ Ecosystem Observatory reveals rapid soil development in recently deglaciated alpine environments: Biotic weathering is the likely culprit, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16387, https://doi.org/10.5194/egusphere-egu2020-16387, 2020.

EGU2020-22591 | Displays | SSS5.8

Detecting soil degradation and restoration through a novel coupled sensor and machine learning framework

John Quinton, Mike James, Jess Davies, Greg Whiting, Christopeher Nemeth, Rebecca Killick, Evan Thomas, Richard Bardgett, and Jason Neff

In this poster we will outline a new  ambitious cross-disciplinary project focused on detecting soil degradation and restoration through a novel multi-functional soil sensing platform that combines conventional and newly created sensors and a machine learning framework. Our work  aims to advance our understanding of dynamic soil processes that operate at different temporal/spatial scales. Through the creation of an innovative new approach to capturing and analyzing high frequency data from in-situ sensors, this project will predict the rate and direction of soil system functions for sites undergoing degradation or restoration. To do this, we will build and train a new mechanistically-informed machine learning system to turn high frequency data on multiple soil functions, such as water infiltration, CO2 production, and surface soil movement, into predictions of longer term changes in soil health including the status of microbial processes, soil organic matter (SOM) content, and other properties and processes. Such an approach could be transformative: a system that will allow short-term sensor data to be used to evaluate longer term soil transformations in key ecosystem functions. We will start our work with a suite of off-the-shelf sensors observing multiple soil functions that can be installed quickly. These data will allow us to rapidly initiate development and training of a novel mechanistically informed machine learning framework. In parallel we will develop two new soil health sensors focused on in-situ real time measurement of decomposition rates and transformation of soil color that reflects the accumulation or loss of SOM. We will then link these new sensors with a suite of conventional sensors in a novel data collection and networking system coupled to the Swarm satellite network to create a low cost sensor array that can be deployed in remote areas and used to support studies of soil degradation or progress toward restoration worldwide.

How to cite: Quinton, J., James, M., Davies, J., Whiting, G., Nemeth, C., Killick, R., Thomas, E., Bardgett, R., and Neff, J.: Detecting soil degradation and restoration through a novel coupled sensor and machine learning framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22591, https://doi.org/10.5194/egusphere-egu2020-22591, 2020.

SSS5.11 – Fate, recycling and functions of organic substances in soil as traced by biomarkers and isotopes

EGU2020-12072 | Displays | SSS5.11

What is respiration - response to glucose addition, presence of plant roots and differences across biomes

Paul Dijkstra, Peter F. Chuckran, Bruce A. Hungate, Egbert Schwartz, Tijana Glavina del Rio, and Emiley Eloe-Fadrosh

Respiration is likely the most often measured process in soil ecology. It is used as a general measurement of soil activity, and physiologically related to microbial maintenance requirements, growth, and soil organic matter production via biochemical efficiency and CUE.

Genomic tools are increasingly used in soil ecology for measurement of community composition, and functional analysis of communities, and when combined with stable isotopes, can be used to infer activities, either of the whole community or of individual taxa. However, relating genomic or gene-expressed functions to whole ecosystem processes, such as respiration, remains a conceptual and practical problem.

We analyzed the biochemical processes related to respiration and determine how, during a short soil incubation experiment in the presence of glucose, these processes change. Furthermore, we will show how gene and transcript abundances of respiratory processes vary across more than 4000 soil and rhizosphere samples in forests and grasslands and other biomes.  

Results illustrate the treasure trove of biochemical information available to us in the form of metagenomes and metatranscriptomes.

How to cite: Dijkstra, P., Chuckran, P. F., Hungate, B. A., Schwartz, E., Glavina del Rio, T., and Eloe-Fadrosh, E.: What is respiration - response to glucose addition, presence of plant roots and differences across biomes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12072, https://doi.org/10.5194/egusphere-egu2020-12072, 2020.

The controlling factors and role of different soil microorganisms in rhizosphere priming effects (PE) are not yet well understood, especially the link between microbial growth and their carbon use efficiency (CUE) and PE remains poorly understood. We hypothesized that the positive PE (enhanced SOM decomposition) results from microbes using the additional C/energy from added labile substrates to decompose recalcitrant materials to release N (“microbial N mining hypothesis”). High CUE could lead to efficient growth of microbes and thus more decomposition of SOM and higher PE.

To test these hypothesis we assessed PE along a boreal forest gradient ranging from Estonia to Northern Finland, with soil C:N ratios and fungal to bacterial ratios increasing towards north. The soils received daily additions of 13C-labelled glucose during one week (dissolved in heavy water, 5 at% D2O). Control soils received D2O only. Respiration of glucose and respiration of SOM were distinguished by continuously measuring 13CO2 using a Picarro analyzer. We also measured microbial incorporation (into PLFAs) of 13C and D to assess to which extent different microbial groups rely on labile C input (13C-labelled) and on SOM. We further used these results to calculate the CUE of glucose and of SOM decomposition.

Glucose additions induced PE (12-52% increase in SOM respiration) in all soils, but there was no linear relationship between PE and soil C:N ratio. Instead, cumulative PE (µg C g-1 SOM) and the relative magnitude of the PE (%) were positively correlated with the average C:N imbalance experienced by the microbes (calculated as soil C:N ratio/microbial biomass C:N ratio). There was a positive relationship between the potential activity of total oxidative enzymes and the cumulative SOM respiration, but the same enzyme concentration resulted in higher SOM respiration in the glucose treatment. We suggest that glucose additions increased the activity of these enzymes rather than their concentrations.

Microbial incorporation of D and 13C into in PLFAs demonstrated that glucose additions stimulated both fungal and bacterial growth. Our results indicate that increased growth of fungi on the added 13C glucose was especially important for the PE, since the magnitude of PE was correlated with the ratio of fungal/bacterial growth on glucose and on SOM. High C:N ratio soils were fungal dominated, and there was a clear positive relationship between glucose CUE and fungal to bacterial ratio, indicating that fungal dominated communities had higher CUE. Bacteria were more affected by low N availability, since total bacteria growth and 13C uptake were lower in the high C:N ratio soils. When fungal growth was high relative to bacterial growth CUE was consistently higher, whether it was the total CUE, CUE of glucose or SOM respiration. Our results indicate that if fungal dominated communities can efficiently grow on the added glucose, they will have excess resources for decomposing N releasing recalcitrant substrates. This releases bioavailable C and N that can also increase bacterial respiration of SOM derived C.

How to cite: Karhu, K., Alaei, S., Li, J., and Bengtson, P.: Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C:N ratios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5775, https://doi.org/10.5194/egusphere-egu2020-5775, 2020.

Fertilization practices can influence the soil nutrients and fertility status, which subsequently induce changes in soil carbon (C):nitrogen (N) ratio and rebuilt C:N stoichiometric balances between microbial biomass and resources. In this study, we investigated how available resource C:N ratio can regulate the priming effect (PE) to maintain microbial C:N stoichiometric balance by adding 13C-labeled glucose to four long-term fertilized paddy soils [Control (no fertilization), NPK (fertilized with mineral NPK fertilizers) , NPKS (NPK combined with straw), NPKM (NPK combined with manure)]. Glucose addition significantly increased SOC mineralization and subsequently induced a positive priming effect at day 2 of incubation, whereas the PE became negative after 20 days. DOC contents were increased by more than 1000% with glucose addition at day 2, whereas they rapidly decreased to -10% to -50% compared with those in soils without glucose addition. With the changes in available and biomass C and N, the microbial C:N imbalance initially increased to 3.3–6.8, and then reduced to the level as that in the soils without glucose addition. At the end of incubation, the microbial C:N imbalance in the glucose-treated soils was ranked as Control < NPK < NPKM < NPKS. This suggested that, without organic fertilization, soils were highly susceptible to labile C and increased SOC mineralization, leading to C limitation. The PE was positively related to DOC and NH4+ ratio, but negatively associated with microbial C:N imbalance, suggesting that the labile C supplied stimulated microbial stoichiometric decomposition of SOM. Glucose addition modified enzyme activities after 20 days, to allow the microorganisms to break up complex C compounds for C source. Our findings suggested that soil microorganisms could regulate extracellular hydrolytic enzyme production and their relative stoichiometric ratios to obtain necessary elements, thereby adjusting the microbial biomass C:N to the resource stoichiometry.

How to cite: Ge, T., Zhu, Z., and Wu, J.: Soil available resource C:N ratio regulates the priming effect by maintaining microbial C:N stoichiometric balance in long-term fertilized paddy soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14449, https://doi.org/10.5194/egusphere-egu2020-14449, 2020.

Rhizosphere is the most biologically active region between the plant and the surrounding soil where plant release their fixed carbon into the soils. Depending on the availability and types of carbon compounds released from the plant, they can directly solubilize nutrient or indirectly influence nutrient cycling by promoting increased microbial activity in the rhizosphere. In this study we applied phosphate oxygen isotope ratios (d18OP) to determine how root exudate influences temporal variation in microbial activities and P cycling in the rhizosphere. Rhizoboxes were filled with soils, watered to 75% water holding capacity and equilibrated for 10 days. After equilibration labeled phosphate isotopes synthesized using 18O labeled water was applied. Then a mixed exudate (i.e., glucose, alanine, and oxalate in the ratio of 1:1:1) was introduced into the soil for 4, 10, and 20 days via an artificial root. We used a sequential extraction technique (i.e., resin-Pi, NaHCO3-P, NaOH-P, and HCl-P) to track the fate of applied P in bulk and rhizosphere soils. The root exudate effects on the rate of P cycling and microbial activity were investigated using phosphate oxygen isotope ratios in the resin-Pi pool. Microbial community structures was determined using phospholipid fatty acids (PLFA) profiles. After supplying root exudate for 4, 10, and 20 days, the results showed that bioavailable P (i.e., resin-Pi) concentration was always higher in the bulk soil compared to rhizosphere soil and originally bioavailable P transformed gradually into unavailable P (i.e., NaOH-P and HCl-P). After supplying exudate compound for 4 days, the applied PO4 was mostly in the resin-Pi pool and its isotopic composition was heavier than the equilibrium isotopic composition suggesting that this Pi pool was not completely cycled by the microorganisms. As we continue supplying exudate compounds, the concentration of resin-Pi gradually decreased and as microbial activities increased, its isotopic composition got closer to the equilibrium isotopic composition. Further the microbial community structure in the rhizosphere soil after supply of root exudate were distinctly different then the bulk soil. Using phosphate oxygen isotopes this study shows the influence of root exudates on the rate of P cycling in rhizosphere soils.

How to cite: Joshi, S. R. and McNear, D. H.: Root exudate induced microbial activities and phosphorus cycling in soil: An application of phosphate oxygen isotopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12719, https://doi.org/10.5194/egusphere-egu2020-12719, 2020.

EGU2020-7121 | Displays | SSS5.11

Stabilization of labile carbon in soil microbial biomass and necromass – A question of nitrogen deficiency?

Nele Meyer, Outi-Maaria Sietiö, Sylwia Adamczyk, Christina Biasi, Per Ambus, Kevin Mganga, Rashmi Shrestha, Subin Kalu, Angela Martin, Bruno Glaser, and Kristiina Karhu

It has been assumed for a long time that stable soil organic carbon (SOC) results from selective preservation of plant residues. Yet, a new paradigm points to a more active role of microorganisms in building SOC storage. In this context, even labile C, such as sugars, may persist in soil for a long time due to their incorporation into microbial biomass and ultimately necromass. The latter is considered as a relatively stable pool. However, little is known about the cycling of labile C through the microbial biomass and the turnover time of its residues. Unraveling the mechanisms and regulating factors would be critical for understanding SOC stabilization in soil.

We assume that the fate of labile C is mainly driven by microbial nitrogen (N) demand and supply. Specifically, we hypothesize that (1) high N demand forces microbes to decompose N-rich substances (“microbial N mining”), such as amino sugars, leading to a rapid turnover of microbial necromass, and that (2) labile C is stabilized in microbial necromass when N demand is met.

To investigate these hypotheses, we set up a greenhouse pot experiment including four treatments: (1) bare soil, (2) bare soil+N, (3) tree, and (4) tree+N. The soil is a sandy and nutrient poor forest soil from southern Finland. Trees are 1 m high pines (Pinus Sylvestris), which are supposed to induce microbial N deficiency by exuding easily degradable C compounds and by competing with microbes for mineral N. In order to follow to fate of labile C, we added trace amounts of 13C labeled glucose to the soil (4 replicates per treatment). As a control to account for background variations in 13C, we added 12C glucose to another set of pots (4 replicates per treatment). Up to now, we sampled the soil 1 day, 3 days, 8 days, 1 month, 3 months, 6 months, 9 months, and 1 year after glucose addition. Measurements of the 13C recovery in soil, microbial biomass, water extractable C, PLFA, amino sugars, and DNA are in progress.

First results indicate that the largest loss of 13C tracer occurred in the unfertilized tree treatment, i.e., where N demand was high but N supply was low. Here, only 22% of the 13C glucose remained after 3 month, whereas 40% remained in the fertilized tree treatment. Only small proportions of the recovered 13C were present in the pool of water extractable C (<1%) and in living microbial biomass (8±3%, 3 days after glucose addition). As protection by clay minerals and aggregates is likely not a relevant process in this sandy soil, we suspect the remaining 13C to be stabilized in microbial residues, but depending on N demand. We assume that microbial necromass accounts for a considerable proportion to total SOC storage, especially under conditions of adequate nitrogen supply.

How to cite: Meyer, N., Sietiö, O.-M., Adamczyk, S., Biasi, C., Ambus, P., Mganga, K., Shrestha, R., Kalu, S., Martin, A., Glaser, B., and Karhu, K.: Stabilization of labile carbon in soil microbial biomass and necromass – A question of nitrogen deficiency?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7121, https://doi.org/10.5194/egusphere-egu2020-7121, 2020.

EGU2020-10528 | Displays | SSS5.11 | Highlight

Soil carbon dynamic after freezing/thawing and drying/wetting in a temperate forest soil: Dual labeling of 13C and 14C

Francisco Nájera, Michaela Dippold, Jens Boy, Oscar Seguel, Moritz Köster, Svenja Stock, Carolina Merino, Yakov Kuzyakov, and Francisco Matus

Temperate forests in Chile have experienced increasing temperatures and extreme climatic events, such as severe drought and short winters in unique Araucaria araucana forest in Nahuelbuta National Park. Therefore, it is relevant to understand the impact of drying and rewetting (D/R) or freezing and thawing (F/T) on SOM turnover in these ecosystems. Particularly important is the destabilization of soil organic matter (SOM) by microbial activity, which is highly heterogeneous and influenced by soil properties and water cycles. Drying and rewetting or F/T cycles accelerate particulate organic matter (POM) decomposition by aggregate disruption, thereby, decreasing carbon (C) availability for soil microorganism. We hypothesized that frequent D/R and F/T cycles release labile organic C locked away in the aggregates for microbial consumption. We assumed that a repeated number of D/R and F/T cycles enhance the preferential C utilization of fresh organic substrate. In the present study an incubation experiment was conducted for 27 days to assess the effect of F/T (-18 ºC to room temperature) and D/R (-500 kPa to 33 kPa, field capacity) cycles on labelled 14C glucose and 13C lignocellulose decomposition, soil aggregates size and POM fractions distributions. CO2 efluxes and priming effect (PE), i.e. the turnover acceleration or retardation of native C mineralization, C use efficiency (CUE) and C allocation in soil aggregate classes as POM-light, POM-occluded and heavy fractions were also determined. Labelled glucose was mainly allocated in macro (> 250 mm) and microaggregates (< 250 mm) as part of the POM-light fraction. In contrast, labelled lignocellulose was allocated in microaggregate in the POM-occluded and heavy fraction. CUE was similar amongst all treatments. The PE was negative in soil with and without cycles and it was much more pronounced (-125 mg C kg-1 soil) for F/T cycles than D/R (-50 mg C kg-1 soil) at the end of incubation. The C:N ratio of soil following mining theory is further discussed. We conclude that D/R cycles clearly retarded the native C mineralization by preferential use of labelled 13C-lignocellulose, while F/T cycles led to preferential use of 14C-glucose.

How to cite: Nájera, F., Dippold, M., Boy, J., Seguel, O., Köster, M., Stock, S., Merino, C., Kuzyakov, Y., and Matus, F.: Soil carbon dynamic after freezing/thawing and drying/wetting in a temperate forest soil: Dual labeling of 13C and 14C, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10528, https://doi.org/10.5194/egusphere-egu2020-10528, 2020.

EGU2020-5530 | Displays | SSS5.11

The origin and fate of organic matter in circum-Arctic subglacial ecosystems

Petra Vinsova, Myrna J. Simpson, Tiange Yuan, Irka Hajdas, Lukas Falteisek, Tyler J. Kohler, Jacob C. Yde, Jakub D. Zarsky, and Marek Stibal

Glacier and ice sheet beds represent important yet underresearched cryospheric ecosystems. Life in the subglacial environment is mostly dependent on organic matter (OM) overridden by ice during times of glacier advance, and the nature of subglacial OM is, therefore, likely to drive the ecosystem functionality. Here we describe the origin, degradation stage and environmental context of OM present underneath glaciers in the circum-Arctic, and their effects on the resident microbial communities.

In total, 19 glaciers from Alaska, Greenland, Iceland, Svalbard, and Norway were sampled for subglacial sediments. Biomarker analysis of the sediment samples was conducted using total solvent extraction, and copper (II) oxide (CuO) oxidation techniques yielding lipids and lignin-derived phenols. The extracts were analyzed by GC-MS to characterize the molecular-level composition of OM present. The biomarker data were then placed in the context of other environmental data, such as radiocarbon age, nutrient contents, and microbial community composition. The majority of OM in the samples was plant-derived, suggested by the dominance of long-chain n-alkanols over the microbial-specific short-chain n-alkanols. The composition of long-chain n-alkanes (≥C20), used as biomarkers for vascular plant waxes, in the solvent extracts suggested grass sources for samples from most Greenland glaciers and conifer sources for some glaciers from Norway, Alaska, and Disko Island (Qeqertarsuaq) in West Greenland. The rest of the OM in the subglacial samples was identified to have more general tree sources. The carbon preference index (CPI) of long-chain n-alkanes suggested a high degradation stage in most samples and was correlated with the radiocarbon age of the sediments’ OC (r = -0.68). Sediments containing older and more degraded OM were found to host less diverse microbial communities compared to those of the younger sites.

In a rapidly warming climate, previously glacier-covered areas are being exposed as a consequence of glacier recession. This new land is standing at the onset of ecological succession and pedogenesis. Our results contribute to the understanding of the potential ecological function of subglacial OM as an important source of carbon and driver of microbial community development after deglaciation in the circum-Arctic region.

How to cite: Vinsova, P., Simpson, M. J., Yuan, T., Hajdas, I., Falteisek, L., Kohler, T. J., Yde, J. C., Zarsky, J. D., and Stibal, M.: The origin and fate of organic matter in circum-Arctic subglacial ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5530, https://doi.org/10.5194/egusphere-egu2020-5530, 2020.

EGU2020-3537 | Displays | SSS5.11

Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration

Marie Spohn, Karolin Müller, Carmen Höschen, Carsten W. Müller, and Sven Marhan

Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils.
However, it is still not known whether dark microbial CO2 fixation substantially contributes
to the C balance of soils and what factors control this process. Therefore,
the objective of this study was to quantitate dark microbial CO2 fixation in temperate
forest soils, to determine the relationship between the soil CO2 concentration and
dark microbial CO2 fixation, and to estimate the relative contribution of different
microbial groups to dark CO2 fixation. For this purpose, we conducted a 13C-CO2 labeling
experiment. We found that the rates of dark microbial CO2 fixation were positively
correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation
amounted to up to 320 μg C kg−1 soil day−1 in the Ah horizon. The fixation rates were
2.8–8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of
dark microbial fixation were small compared to the respiration rate (1.2%–3.9% of the
respiration rate), our findings suggest that organic matter formed by microorganisms
from CO2 contributes to the soil organic matter pool, especially given that microbial
detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses
indicated that CO2 was mostly fixed by gram-positive bacteria, and not by fungi. In
conclusion, our study shows that the dark microbial CO2 fixation rate in temperate
forest soils increases in periods of high CO2 concentrations, that dark microbial CO2
fixation is mostly accomplished by gram-positive bacteria, and that dark microbial
CO2 fixation contributes to the formation of soil organic matter.

Reference

Spohn M, Müller K, Höschen C, Mueller CW, Marhan S. Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration.
Glob Change Biol. 2019;00:1–10. https ://doi.org/10.1111/gcb.14937

How to cite: Spohn, M., Müller, K., Höschen, C., Müller, C. W., and Marhan, S.: Dark microbial CO2 fixation in temperate forest soils increases with CO2 concentration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3537, https://doi.org/10.5194/egusphere-egu2020-3537, 2020.

Grazing is an important human activity affecting grassland ecosystems. Many studies have shown that grazing changed the carbon (C) cycle of grasslands, but it is still not clear how grazing will affect the recent photosynthetic C allocation in the temperate grasslands. To clarify this question, a situ field 13C labeling experiment was carried out in the temperate grasslands of Inner Mongolia, North China, in 2015. In this study. Grazing included 3 intensities of no grazing, medium grazing and heavy grazing. Eighty-one days after the labeling, the plants allocated more recent assimilated 13C (6.52% of recovered 13C) to shoots under medium grazing than that of no grazing (5.60%) and heavy grazing (5.40%). The most 13C was allocated to the belowground (roots, soil and soil respiration) under no grazing (40.68%). However, within the belowground pools, 1.36% and 17.33% of 13C were stored in roots and soil under medium grazing which was twice than that under no grazing and heavy grazing, which could be explained by intermediate disturbance hypothesis. 13C labeling experiment demonstrated medium grazing increased C assimilates by two processes:(Ⅰ) the highest total C input into plants and soil and (Ⅱ)the least C loss by soil microbial respiration (3.20%) than no grazing grassland (5.19%) and heavy grazing grassland (3.47%). The turnover rate of soil assimilates under the no grazing (0.25 ± 0.07 day-1) was higher than that of grazing (medium grazing 0.059 ± 0.01 day-1; heavy grazing 0.064 ± 0.02 day-1). Overall, the no grazing isn’t the best for carbon accumulation and the medium grazing which promotes C input and C sequestration is the most suitable grazing intensity of temperate grassland in China.

How to cite: Zhao, Y. and Tian, Y.: Effect of grazing on photosynthetic carbon allocation in a temperate grassland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6814, https://doi.org/10.5194/egusphere-egu2020-6814, 2020.

Understanding the source partitioning of carbon dioxide (CO2) and nitrous oxide (N2O) fluxes from soil is integral for the characterization of total fluxes and the quantification of potential soil organic matter priming effects. Additionally, we utilized 15N-N2O site preference data to analyze the process priming of microbial nitrification and denitrification on subsequent N2O fluxes. A 32-day laboratory incubation was designed to examine the effects of artificial exudate, nitrogen fertilizer and their potential interactive effects on CO2 and N2O fluxes, soil organic matter source-priming and N2O process-priming. Artificial root exudate (ARE) consisting of a mixture of 99 atom% 13C labelled compounds at three addition rates (0, 6.2, 12.5 mg C kg-1 soil day-1) was applied daily for 21 days to microcosms with or without urea fertilizer, a subset of which was labelled with 5 atom % 15N. Measurements of CO2 and N2O fluxes, isotopic composition and N2O site preference were frequent throughout the duration of the experiment. Source partitioning of CO2 fluxes showed that soil organic carbon (SOM-C) positive priming was significantly altered by additions of artificial exudate and urea (p < 0.001 and 0.001, respectively). When applied concurrently, urea addition had an antagonistic interactive effect on SOM-C sourced CO2 fluxes (p < 0.001).  Source partitioning of N2O flux data revealed that soil organic matter nitrogen (SOM-N) was positively primed for N2O flux by the addition of urea fertilizer (p < 0.001), but positive SOM-N priming was reduced by an antagonistic interaction with artificial exudate application (p < 0.001). Further, examination of 15N-N2O site preference found that the main processes by which N2O is formed (nitrification and denitrification) were differentially process-primed by the addition or absence of ARE. Cumulative denitrification and nitrification contributions to total N2O flux were both positively primed in the soils receiving both ARE and urea inputs relative to a control (50.0 ± 10.1 and 28.2± 8.0 μg N2O-N kg-1, respectively). In soils receiving only ARE application, denitrification-derived N2O was negatively primed relative to a control and thus contributed less to overall N2O flux (-9.5 ± 12.4 μg N2O-N kg-1) but nitrification-derived N2O was positively primed (17.2 ± 9.0 μg N2O-N kg-1).

How to cite: Daly, E. and Hernandez Ramirez, G.: Source-process partitioning of soil N2O and CO2 production: nitrogen and simulated exudate additions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2221, https://doi.org/10.5194/egusphere-egu2020-2221, 2020.

EGU2020-20216 | Displays | SSS5.11

Composition of low molecular weight organic substances affect total soil microbial activity independently of community composition.

Louis J.P. Dufour, Anke. M. Herrmann, Julie Leloup, Cédric Przybylski, Luc Abbadie, and Naoise Nunan

EGU2020-22169 | Displays | SSS5.11

Activation of soil enzymes by addition of artificial root exudate combinations

Diane Hagmann, Jennifer Krumins, Bhagyashree Vaidya, and Nina Goodey

In vegetated soils,plants naturally release root exudates, consisting of sugars, organic acids, and amino acids, into the soil increasing soil enzymatic activity.  Liberty State Park, located in Jersey City, New Jersey, is an industrial brownfield contaminated with heavy metals and organic pollutants.  Some sites have soils that function poorly, as indicated by low soil enzymatic activity, and do not support plant growth.  This study will determine whether different combinations of artificial root exudates increase soil enzymatic activity in these contaminated and low functioning soils. Different combinations of sugars, organic acids, and amino acids and will be added to barren, poorly functioning soil.  Three soil enzymatic activities will be examined at several time points over 120 days to assess the impacts of different combinations of root exudates on soil function. Further, soil microbial community composition will be determined to examine whether different artificial exudate solutions result in changes in soil microbial community.  Preliminary results suggest that the combination of sugars, organic acids, and amino acids greatly increased phosphatase, cellobiohydrolase, and L-leucine amino peptidase activity over time in poorly-functioning, barren soil from Liberty State Park. The other combinations (sugars and organic acids, sugars and amino acids, organic acids and amino acids) also increase the three enzyme activities more than the individual groups. Dormant microbes in barren soil can possibly be revived with the addition of artificial root exudates to mimic the presence of plants in revitalizing the microbial communities and improving soil function. 

How to cite: Hagmann, D., Krumins, J., Vaidya, B., and Goodey, N.: Activation of soil enzymes by addition of artificial root exudate combinations , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22169, https://doi.org/10.5194/egusphere-egu2020-22169, 2020.

EGU2020-10898 | Displays | SSS5.11

Soil texture mediated microbial activity affects the transfer of litter-derived carbon to soil organic matter

Gerrit Angst, Jan Pokorný, Travis Meador, Tomáš Hajek, Jan Frouz, Isabel Prater, Carsten W Mueller, Gerard van Buiten, and Šárka Angst

Knowledge about the nexus between litter decomposition and soil organic matter formation is still scarce, likely because litter decomposition studies are often conducted in the absence of mineral soil. Even if mineral soil is considered, variations in soil texture, which should substantially influence decomposition and soil C sequestration via, e.g., different capacities to store C or host microbial communities, have been neglected. Here, we examined the effect of soil texture on litter decomposition and soil organic matter formation by incubating sand- and clay-rich soils. These soils, taken under C3 vegetation, were amended with C4 litter to trace the fate of organic matter newly entering the soil. While we found only small amounts of litter-derived carbon (C) in the mineral soils after our six-month experiment, the microbial activity and amount of remaining litter between the sand- and clay-rich soils substantially differed. A high microbial activity combined with higher amounts of litter-derived C and a higher remaining litter mass in the clay-rich soil indicate a more effective transformation of litter to soil organic matter as compared to the sand-rich soil. In the sand-rich soil, microbial activity was lower, less soil C was litter-derived, and the litter lost more of its mass. We explain the apparently contradictory results of higher microbial activity and concurrently higher C contents with a more effective microbial pathway of SOM formation in the clay-rich soil. Our results indicate that soil texture does not only play a role in the provision of reactive surfaces for the stabilization of C but will also affect the decomposition of litter via effects on microbial activity, ultimately determining if litter C is transferred to the soil or respired to the atmosphere.

How to cite: Angst, G., Pokorný, J., Meador, T., Hajek, T., Frouz, J., Prater, I., Mueller, C. W., van Buiten, G., and Angst, Š.: Soil texture mediated microbial activity affects the transfer of litter-derived carbon to soil organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10898, https://doi.org/10.5194/egusphere-egu2020-10898, 2020.

EGU2020-11168 | Displays | SSS5.11

Biochemistry of plant litter types drives differentiation into particulate and mineral-associated soil organic matter and determines the magnitude of priming effect

Luís Fernando Januário Almeida, Luis Carlos Colocho Hurtarte, Pedro Paulo Teixeira, Thiago M. Inagaki, Ivan Francisco de Souza, Ivo Ribeiro da Silva, and Carsten W. Mueller

Soil organic matter (SOM) originates predominantly from above and belowground OM inputs derived from plants. Although the formation of SOM is well studied, it still remains unclear how the biochemical composition of litter affects the formation of new SOM as well as the degradation of “native” SOM. In the present study we aimed to disentangle the effect of plant litter composition on C transference from different plant tissues into specific SOM fractions and to determine the magnitude of priming effect on native SOC caused by litter amendments. To this end, we individually incubated 13C enriched Eucalyptus spp. major litter types (bark, leaves, twigs and roots) in soil (0–20 cm) of a sandy-clay loam (Haplic Ferralsol - Brazil). Additionally, a soil sample without plant residue addition was incubated as a control. The samples were incubated at 80% of their water-holding capacity at 25 ºC for 200 days. Soil respiration was assessed along the incubation period through headspace gas sampling and 13C/12C–CO2 analysis in a cavity ring-down spectrometer. After the incubation, soil subsamples were physically fractionated using a combined density-particle size separation method. The total C and the δ 13C of each soil organic matter fraction were measured and the litter-C contribution for each SOM fraction was assessed using a two-end member isotope mixing model. The molecular composition of the incubated plant material and SOM fractions were determined by solid-state 13C-CPMAS-NMR spectroscopy. Interestingly, we found no significant differences for total SOM contents among the different treatments. Conversely, incubation without litter amendment (control treatment) resulted in lower total SOM contents, indicating mineralization of “native” SOM along the incubation period. The partitioning of litter-derived C into SOM fractions indicated that leaves litter were preferentially transferred to mineral associated organic matter (MAOM), while roots contributed more to particulate organic matter (POM). Cumulative C-CO2 evolution from the treatments over the incubation period increased in the following order: twigs > leaves > bark > roots > controls. Incubation with twigs, bark and roots significantly increased “native” SOM respiration, while the treatment with leaves addition did not differ from the control. When tracing the source of “native” SOM-derived CO2, we observed a similar amount of C being respired from MAOM, regardless the treatment, while incubation with twigs, bark and roots resulted in higher respiration of “native” SOM-derived C from POM. Our data demonstrates that the biochemical composition of plant litter determines the fate of newly formed organic matter (MAOM or POM) and controls the degradation of “native” SOM. Therefore, plant residues enriched in more easily degradable compounds (leaves) are preferentially transferred to MAOM and causes less native SOC priming. On the other hand, plant residues enriched in structural compounds (twigs, bark and roots), are preferentially respired or allocated into the POM, also resulting in higher priming effect intensity.

How to cite: Januário Almeida, L. F., Colocho Hurtarte, L. C., Teixeira, P. P., Inagaki, T. M., de Souza, I. F., da Silva, I. R., and Mueller, C. W.: Biochemistry of plant litter types drives differentiation into particulate and mineral-associated soil organic matter and determines the magnitude of priming effect, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11168, https://doi.org/10.5194/egusphere-egu2020-11168, 2020.

EGU2020-22306 | Displays | SSS5.11

C:N stoichiometry of stable and labile organic compounds determine priming patterns

Min Liu, Na Qiao, Xingliang Xu, Huajun Fang, Huimin Wang, and Yakov Kuzyakov

Approximately 50–70% of C stored in soil is derived from the roots or root-associated microorganisms, reflecting their importance for soil organic matter (SOM) formation. Microorganisms are the major driver for SOM decomposition and their activities are modified by the input of labile organics such as root exudates and low molecular weight organic substances derived from litter decomposition. Such short-term changes in the turnover of SOM caused by moderate organic additions into the soil were defined as priming effects (PE). Priming effects can influence global carbon (C) storage in soil and lead to climate feedbacks by accelerating the decomposition of organic matter (OM). In natural ecosystems, input of nitrate (NO3) and ammonium (NH4+) into the soil can be derived from nitrogen (N) deposition and biological N fixation. Although availability N can alter the magnitude and direction of priming, it remains unclear whether additions of NO3 and NH4+ have distinct effects on the decomposition of OM. Thus, the aims of this study were to investigate the responses of OM decomposition along a decay continuum (i.e. decreasing decomposition degree) to labile C and N inputs and determine the PE induced by the two N forms. Leaf litter, wood litter, organic soil horizon, and mineral soil, with a broad range of C:N ratios were collected along a decay continuum in a typical subtropical forest and incubated for 38 days with 13C labeled glucose and N (NO3) additions. Based on the very broad range of C:N ratios in OM in soil and inputs of labile C and N, we demonstrated the OM decomposition within a decay continuum as well as PE intensities and the thresholds for the switch of PE directions. In contrast to NH4+ additions, NO3 generally accelerated the decomposition of all OM. Priming of plant litter was dependent on the C:N ratios of the labile inputs. However, leaf litter decomposition was more controlled by N addition than wood litter. Glucose addition greatly increased the priming of OM decomposition, demonstrating energy limitation for microorganisms. Distinct priming patterns were observed between NO3 and NH4+ additions, both for the individual OM types and for all four types of OM. The PE induced by labile C and N inputs can increase or reduce C sequestration depending on C:N stoichiometric ratios of labile inputs. Net C losses caused by PE can be observed in organic soil and plant litter with low C and N additions, but all four OM substrates increased C sequestration under high C addition. Minor differences in priming along the continuum were observed where the OM C:N ratio was below 30 when NO3 was added and where the labile C:N ratio was less than 55 when NH4+ was added. Thus, changes in the composition of deposited N (atmospheric deposition and fertilization) may induce distinct climate feedbacks. Under future climatic conditions by global warming and elevated CO2, more labile C inputs via root exudates could accelerate litter decomposition. Effects of N however, depend on the N form: NH4+ to NO3 due to the energy necessary for microorganisms for NO3- reduction.

How to cite: Liu, M., Qiao, N., Xu, X., Fang, H., Wang, H., and Kuzyakov, Y.: C:N stoichiometry of stable and labile organic compounds determine priming patterns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22306, https://doi.org/10.5194/egusphere-egu2020-22306, 2020.

EGU2020-11990 | Displays | SSS5.11

Glucose concentration controls priming effects and soil carbon storage under pasture and forest in volcanic ash soils of Hokkaido, Japan

Chie Hayakawa, Taichi Kobayashi, Kazumichi Fujii, Yoshiyuki Inagaki, and Keishi Senoo

Introduction & objectives: Over ten thousand years, soils have been formed through events of volcanic ash deposition in Hokkaido, Japan. The soil organic matter (SOM) in the past surface layer has been buried in the deeper soil. The buried humic horizons serve as a large carbon (C) reservoir. The SOM in the deeper soil horizons is preserved due to lower microbial activities and limited inputs of fresh organic matters. However, when the buried humic horizons are exposed to the surface by deep plowing and bottom plow tillage, decomposition of the exposed SOM may be accelerated through priming effects, due to the increased supply of low-molecular-weight (LMW) substances from fresh plant litter inputs. To test this, we examined glucose concentration dependency of priming effect and the change of SOC balance through priming effect using 13C tracer incubation.

Materials & methods: Soil samples were collected from the volcanic soil profiles in pasture site and adjacent forest sites in Hokkaido, Japan. The moist soils were sieved (< 4 mm) to eliminate plant debris and stones for the incubation study and the other analysis. A 13C-glucose solution (99 atom%; 0 – 3.9 mg glucose g-1) was added to moist soil (equivalent to 10 g oven-dried weight) and incubated at 20ºC in the dark for 30 days. The head space gas sample was periodically taken into the vial, and 13CO2 and 12CO2 concentrations were determined by GC-MS. Priming effect (PE) was calculated by subtraction between the amounts of 12CO2 with and without glucose. The head space gas in the bottle was flush out and replaced to CO2-free-air every sampling time. We also measured soil microbial biomass C (MBC) by chloroform fumigation method, bacterial and fungal biomass by 16S and 18S rRNA genes targeted real-time PCR, SOC concentrations, inorganic N concentrations (ammonium and nitrate) and the other physicochemical properties of the soil profiles.

Results & discussion: Glucose addition induced the positive PEs in the buried humic soil samples of both sites, and the magnitudes of PEs (cumulative primed-CO2 amounts) in the buried humic soil samples were 0.4 to 1.5 times as those in the surface soils. However, the negative PEs were detected in the forest surface soil, probably because of low soil pH and relatively high inorganic N concentration. The magnitudes of PEs were dependent on added glucose concentrations for all the soils, and the threshold between negative and positive PEs corresponded to 3.5 % of glucose-C relative to MBC in the forest surface soil. The positive correlation between evolution rates of primed-CO2 significantly and bacterial or fungal biomass suggests both bacteria and fungi contributes to PE in the soils studied. Even if glucose addition induced PE, total SOC after incubation increased when glucose-C was added more than 0.5 mg C g-1 in the all soils. This implies that the optimized fresh litter input can control priming effects and C sequestration in volcanic soils.

How to cite: Hayakawa, C., Kobayashi, T., Fujii, K., Inagaki, Y., and Senoo, K.: Glucose concentration controls priming effects and soil carbon storage under pasture and forest in volcanic ash soils of Hokkaido, Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11990, https://doi.org/10.5194/egusphere-egu2020-11990, 2020.

EGU2020-4817 | Displays | SSS5.11

How does simulated climate change affect the susceptibility of SOM to priming by LMWOS in the Subarctic?

Meng Na, Mingyue Yuan, Lettice Hicks, and Johannes Rousk

Soil organic matter (SOM) stabilization plays an important role in long-term storage of carbon (C). However, now many ecosystems are experiencing global climate change, which could change soil C balance through affecting the C input via plant community shifts, and C losses via SOM decomposition. In subarctic ecosystems, plant community composition and productivity are shifting because of climate change. This change of above-ground communities will affect rhizosphere input such as low molecular weight organic substances (LMWOS), which can affect microbial decomposer activities and subsequent contribution to SOM mineralization (priming effect). In the present study, we simulated climate change with N fertilization, to represent a warming enhanced nutrient cycling, and litter input, to simulate arctic greening, to evaluate the effect of a changing climate on subarctic ecosystems in Abisko, Sweden. The 6 sampled field treatments included three years of chronic N addition (5 g N m-2 y-1), three years of chronic litter addition (90 g m-2 y-1), three years of chronic N and litter additions, one year of high N addition (15 g N m-2 y-1), one year of high litter addition (270 g m-2 y-1) and a control treatment. All treatments were established in 1×1 m experimental squares and had 6 replicates. We resolved effects on plant community (NDVI), SOM mineralization, microbial composition, bacterial and fungal growth rates, and soil properties.

We found that N treatments changed plant community and stimulated productivity and that the associated increase in belowground LMWOS induced shifts in the soil microbial community. This coincided with a tendency for a shift towards bacterial dominated decomposition (low fungi/bacterial growth ratio) and a microbial community that had shifted from gram-positive bacteria to gram-negative bacteria; a shift often observed when comparing bulk with rhizosphere conditions. However, N treatments had no effect on SOC mineralization, but did increase soil gross N mineralization. This shift in the C/N of mineralisation might be because N treatments accelerated the growth of fast growing plant species with higher nutrient content, whose litter input provided microbes with fresh OM richer in N.

These responses in belowground community and processes driven by rhizosphere input prompted the next question: how did the simulated climate change affect the susceptibility of SOM to priming by LMWOS? To assess this question and explore the microbial mechanisms underpinning priming of SOM mineralization, we added a factorial set of additions including 13C-glucose with and without mineral N, and 13C-alanine semicontinously to simulate the effect of belowground LMWOS input on SOM mineralization and microbial activity, and investigate how the SOM priming was linked to the actively growing microorganisms. Therefore, we incubated these samples for 7 days, treated with 13C LMWOS, and measured SOC and SON mineralization to assess SOM priming, bacterial and fungal growth rates, microbial phospholipid fatty acids (PLFAs) and 13C-PLFA enrichment, as well as the microbial C use efficiencies to assess microbial responses to LMWOS additions.

How to cite: Na, M., Yuan, M., Hicks, L., and Rousk, J.: How does simulated climate change affect the susceptibility of SOM to priming by LMWOS in the Subarctic?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4817, https://doi.org/10.5194/egusphere-egu2020-4817, 2020.

Extreme precipitation events resulting from climate change have strong impact on structure and functions of grassland ecosystems. The extreme climate events may shift plant productivity and nutrient acquisition preferences by roots and microorganisms.We conducted an extreme precipitation simulation experiment and used in-situ 15N labeling of the three N forms to investigate N acquisition (N uptake rate, 15N recovery and preference for N form) by the dominant plant species Stipa grandis and soil microorganisms.Increased rain frequency raised the growth and N acquisition of S. grandis, while microbial N uptake remains unaffected. Microorganisms strongly outcompeted S. grandis for total 15N acquisition, however such superiority decreased in higher extreme precipitation frequency. Plant and microorganisms converged their N demands from distinct to similar preferences for N forms with high precipitation frequency. Such chemical niche partitioning by extreme precipitation effectively reduced root and microbial competition for each N form. Overall, important mechanistical insights into chemical niche differentiation by the effects of extreme climate events and their effects on structure, functions and plant-microbial interactions in temperate grasslands were explained.

How to cite: Tian, Y.: Extreme precipitation increases plant biomass through altering nitrogen acquisition by grasses and soil microorganisms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3243, https://doi.org/10.5194/egusphere-egu2020-3243, 2020.

EGU2020-6271 | Displays | SSS5.11

Uptake of urea by “drunken” trees on permafrost

Kazumichi Fujii, Yojiro Matsuura, Yoshiyuki Inagaki, and Chie Hayakawa

Boreal forest productivity on permafrost is limited by availability of soil nitrogen (N) in the active layer. Low soil temperature and summer flooding limit microbial N mineralization on shallow permafrost table. Uptake of amino acids by plant root-mycorrhizal association is known to mitigate N limitation in boreal forest soils. However, amino acid hypothesis can not fully explain advantage of black spruce trees in drunken forests due to competition of amino acids between plants, bryophytes, and microbes. Based on the observation of urea accumulation in deeper soil, we test another hypothesis that black spruce trees take up intact urea in deeper soil. Mixture solutions (glutamic acid, urea, ammonium, nitrate), with only one N form labeled by 13C and/or 15N, was injected into the organic/mineral soil layers. We compared two black spruce forest sites with/without shallow permafrost table in northern Canada. We found that black spruce trees take up intact urea as well as amino acids in the shallow permafrost sites. Urea accumulation is explained by low microbial activities to mineralize 14C-labeled urea. The other plants or bryophyte compete with black spruce for amino acids, but not for urea. Since the other black spruce trees in the deeper soil sites rely on amino acids and inorganic N, urea uptake strategy is specific to black spruce trees on shallow permafrost table. The root expansion on hummocky microrelief provides opportunity for leaning trees to access urea. The uptake of intact urea could be one of strategy of black spruce trees to mitigate N limitation in permafrost-affected hummocky soils.

How to cite: Fujii, K., Matsuura, Y., Inagaki, Y., and Hayakawa, C.: Uptake of urea by “drunken” trees on permafrost , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6271, https://doi.org/10.5194/egusphere-egu2020-6271, 2020.

EGU2020-8246 | Displays | SSS5.11

Effect of Ph and vegetation cover in soil organic matter structure at a high-mountain ecosystem (Sierra Nevada National Park, Granada, Spain)

José A. González-Pérez, Gael Bárcenas.Moreno, Nicasio T Jiménez-Morillo, María Colchero-Asensio, Layla M. San Emeterio, and José M. de la Rosa

Keywords: Soil reaction, analytical pyrolysis, soil respiration, carbon stabilization

During the last decade, soil organic matter dynamics and its determining factors have received increased attention, mainly due to the evident implication of these parameters in climate change understanding, predictions and possible management. High-mountain soil could be considered as hotspot of climate change dynamic since its high carbon accumulation and low organic matter degradation rates could be seriously altered by slight changes in temperature and rainfall regimes associated to climate change effects. In the particular case of Sierra Nevada National Park, this threat could be even stronger due to its Southern character, although its elevated biodiversity could shed some light on how could we predict and manage climate change in the future.

In this study, a quantitative and qualitative organic matter characterization was performed and soil microbial activity measured to evaluate the implication of pH and vegetation in soil organic matter dynamics.

The sampling areas were selected according to vegetation and soil pH; with distinct soil pH (area A with pH<7 and area B with pH>7) and vegetation (high-mountain shrubs and pine reforested area). Soil samples were collected under the influence of several plant species representatives of each vegetation series. Six samples were finally obtained (five replicates each); three were collected in area A under Juniperus communis ssp. Nana (ENE), Genista versicolor (PIO) and Pinus sylvestris (PSI) and other three were collected in area B under Juniperus Sabina (SAB), Astragalus nevadensis (AST) and Pinus sylvestris (PCA).

Qualitative and quantitative analyses of soil organic matter were made to establish a possible relationship with microbial activity estimated by respiration rate (alkali trap) and fungi-to-bacteria ratio using a plate count method. Soil easily oxidizable organic carbon content was determined by the Walkley-Black method (SOC %) and organic matter amount was estimated by weight loss on ignition (LOI %). Analytical pyrolysis (Py-GC/MS) was used to analyse in detail the soil organic carbon composition.

Our results showed that the microbial and therefore the dynamics of organic matter is influenced by both, soil pH and soil of organic matter. So that the pH in acidic media prevail as a determining factor of microbial growth over soil organic matter composition conditioned by vegetation.

Acknowledgement: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). N.T. Jiménez-Morillo and L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2013-062573 and Ref. BES-2017-07968). Mrs Desiré Monis is acknowledged for technical assistance.

 

How to cite: González-Pérez, J. A., Bárcenas.Moreno, G., Jiménez-Morillo, N. T., Colchero-Asensio, M., San Emeterio, L. M., and de la Rosa, J. M.: Effect of Ph and vegetation cover in soil organic matter structure at a high-mountain ecosystem (Sierra Nevada National Park, Granada, Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8246, https://doi.org/10.5194/egusphere-egu2020-8246, 2020.

EGU2020-19705 | Displays | SSS5.11

Loss of available soil organic carbon from afforestation plots: effect of tree species composition and warming

Zhenhui Jiang, Anna Gunina, Lucas Merz, Yihe Yang, Yakov Kuzyakov, Davey Jones, Andrew R. Smith, and Bernard Ludwig

Afforestation with pure and mixed-species is an important strategy to improve soil organic carbon (SOC) stocks and restore degraded lands. However, what remains unclear is the stability of SOC to microbial degradation after afforestation and the effect of tree species composition. Moreover, it is important to reveal how sensitive the SOC in afforestation lands is to environmental changes, such as warming. To study the combined effects of warming and the tree species composition on decomposition of SOC by microorganisms and enzyme activities, soils were collected from the monocultural and mixtures of Silver birch (Betula Pendula) and European beech (Fagus Silvatica) (BangorDiversity, UK, 12 years since afforestation) and were incubated for 169 days at 0, 10, 20, 30 °C at 60 % of WHC. The field experiment is arranged into a completely randomized design with n=4. The CO2 efflux was measured constantly, whereas activities of β-glucosidase, chitinase and acid phosphatase, and content of microbial biomass C (MBC) were obtained at the end of the incubation. Results showed that soil cumulative CO2 efflux increased by 34.7–107% with the temperature. Potential enzyme activities were dependent on tree species composition. Warming, but not tree species exhibited a significant impact on the temperature sensitivity (Q10) of soil cumulative CO2 efflux and enzyme activities. The greatest temperature sensitivity (Q10) of total CO2 efflux was found at 10–20 °C and was 2.0–2.1, but that of enzyme activities were found as 0.9–1.1 at 0–10 °C. These results suggest that warming has an asynchronous effect on the SOC decomposition and enzyme activity, and enzymes cannot account for the temperature sensitivity of soil respiration. Thus, thermal adaptations of SOC mineralization is independent of the adaptation of the enzyme pool.

How to cite: Jiang, Z., Gunina, A., Merz, L., Yang, Y., Kuzyakov, Y., Jones, D., Smith, A. R., and Ludwig, B.: Loss of available soil organic carbon from afforestation plots: effect of tree species composition and warming, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19705, https://doi.org/10.5194/egusphere-egu2020-19705, 2020.

Soil microbial necromass represents a significant proportion (>50%) of soil organic matter (SOM). Microbial necromass consists mainly of particulate organic residues from fragmented cells walls and other slow turnover cytoplasmic components of dead fungi and bacteria. Some of the key components of microbial cell walls, such as peptides and amino sugar polymers, can remain and accumulate in the soil over prolonged times. Amino sugars have been used as biomarkers to quantify the contribution of microbial necromass to stabilized SOM. The different amino sugars present in polymeric form in soils can be released by acid hydrolysis and allow the estimation of the contribution of both fungal and bacterial necromass to the SOM pool. Among the amino sugars, hexosamine isomers (glucosamine, galactosamine, mannosamine) and muramic acid (the ether of lactic acid and glucosamine) are the most abundant ones. Muramic acid is specific to bacterial peptidoglycan while glucosamine is an abundant cell wall component of both, fungal chitin and bacterial peptidoglycan.

There are several chromatographic methods to measure free and bound amino sugars and amino acids in soil extracts and soil hydrolysates, but none of them allow the combined determination of amino sugar biomarkers and amino acids simultaneously in a single assay for rapid analysis. This is important as a large fraction of soil necromass N (>50%) consists of non-amino sugar-N, such as proteins and nucleic acids. In this study we therefore adopt a method based on 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ.Tag) derivatization of amino compounds and optimized chromatographic (reversed phase) separation to simultaneously measure amino sugars (isomers) and amino acids in soil extracts and soil hydrolysates using ultra-high-performance liquid chromatography coupled to fluorescence or UV detection.

The use of this method allows for fast, robust and highly sensitive quantification of amino acids and amino sugars in environmental samples at sub-micromolar levels. This approach will help to improve our understanding of soil microbial necromass dynamics and their inherent effect on soil C and N sequestration. The AccQ.Tag chemistry also allows compound detection by electrospray ionization (ESI)-mass spectrometry, enabling isotope (13C, 15N) tracing applications.

How to cite: Salas, E., König, A., Kaiser, C., and Wanek, W.: A new method to measure amino sugar isomers and amino acids in soil extracts and soil hydrolysates based on AccQ.Tag-chemistry and reversed phase ultra-high-performance liquid chromatography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8200, https://doi.org/10.5194/egusphere-egu2020-8200, 2020.

EGU2020-9150 | Displays | SSS5.11

A novel fluxomics approach to decipher the flux partitioning between anabolic and catabolic processes in soil microbial communities

Theresa Böckle, Yuntao Hu, Jörg Schnecker, and Wolfgang Wanek

The activities of soil microorganisms drive soil carbon (C) and nutrient cycling and therefore play an important role in local and global terrestrial C dynamics and nutrient cycles. Unfortunately, soil microbial activities have been defined mostly by measurements of heterotrophic respiration, potential enzyme activities, or net N processes. However, soil microbial activities comprise more than just catabolic processes such as respiration and N mineralization. Recently anabolic processes (biosynthesis and growth) and the partitioning between anabolic and catabolic processes in soil microbial metabolism have gained more attention as they control microbial soil organic matter formation. Understanding the controls on these processes allows an improved understanding of the key roles that soil microbes play in organic matter decomposition (catabolic processes) and soil organic matter sequestration (anabolic processes leading to growth, biomass and necromass formation), and their potential feedback to global change.

Generally, there are two approaches to study the metabolism of soil microbial communities: First, position-specific isotope labeling is a tool that allows the tracing of 13C-atoms in organic molecules on their way through the network of metabolic pathways and second, metabolomics and fluxomics approaches can enable disentangling the highly complex metabolic networks of microbial communities, which however have rarely (metabolomics) or never (fluxomics) been applied to soils.

In this study we developed a targeted soil metabolomics approach coupled to 13C isotope tracing (fluxomics), in which we extract, purify and measure a preselected set of key metabolites. Our aim was to cover the wide spectrum of soil microbial metabolic pathways based on the analysis of biomarker metabolites being unique to specific metabolic pathways such as  glycolysis/gluconeogenesis (e.g. fructose 1,6-bisphosphate), the pentose phosphate pathway (ribose-5-phosphate), the citric acid cycle (α-ketoglutaric acid), purine and pyrimidine metabolism (UMP, AMP, allantoin), amino acid biosynthesis and degradation (10proteinogenic amino acids and their intermediates), the urea cycle (ornithine), amino sugar metabolism (N-Acetyl-D-Glucosamine and –muramic acid) and the shikimate pathway (shikimate). The minute concentrations of these primary metabolites are extracted from soils by 1 M KCl including 5 % chloroform, salts are removed by freeze-drying, methanol dissolution and cation-/anion-exchange chromatography and the metabolites and their isotopomers quantified by UPLC-Orbitrap mass spectrometry. To cover the wide range of metabolites, compound separations are performed by  hydrophilic interaction chromatography (HILIC) for metabolites such as amino acids, (poly-)amines, nucleosides and nucleobases and by Ion chromatography (IC), to separate charged molecules like amino sugars, sugar phosphates and organic acids.  Here we will show fluxomics results from a laboratory soil warming experiment where we added 13C-glucose to a temperate forest soil as a proof of concept.

How to cite: Böckle, T., Hu, Y., Schnecker, J., and Wanek, W.: A novel fluxomics approach to decipher the flux partitioning between anabolic and catabolic processes in soil microbial communities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9150, https://doi.org/10.5194/egusphere-egu2020-9150, 2020.

EGU2020-17791 | Displays | SSS5.11

A unified protocol for the high-throughput measurement of PLFA, NLFA, GLFA and sterols from soil

Stefan Gorka, Alberto Canarini, Bruna Imai, Georg Teischinger, Sean Darcy, and Christina Kaiser

Phospholipid fatty acids (PLFA) are widely used as biomarkers for soil microbial biomass. In more recent years, neutral lipid fatty acids (NLFA) have additionally been used as storage biomarkers. Both lipid classes are usually separated via silica solid phase extraction (SPE) after extraction with a mixture of chloroform, methanol and citric acid buffer. However, in recent years several studies reported incomplete or inconsistent separation of lipid classes, depending on minor differences in the polarity of the eluents used during the SPE. Moreover, while PLFA profiles have been tested on microbial pure cultures, the taxonomic specificity of NLFA is only assumed to equal that of PLFA.

Complementary to fatty acid based biomarkers, many studies quantify ergosterol as a reliable indicator for fungal biomass because the fungal-specific PLFA 18:1ω9 and 18:2ω6,9 also occur in plants, which compromises their use for detecting fungal biomass in plant tissue (for example mycorrhizal fungi in plant roots). Measuring ergosterol requires an additional extraction method, but existing protocols include silylation for further gas chromatography analysis and are thus not compatible with determining 13C by IRMS.

Here, we aimed to quantify the recovery of polar and non-polar lipid classes as well as ergosterol following lipid extraction and silica SPE fractionation. We used pure standards of representative phospholipids, glycolipids and neutral lipids with unique fatty acid chain lengths for unambiguous identification of the lipid class after SPE. Lipid fractionation was tested on a 96-well SPE plate with different eluents. Subsequently, we applied the modified method to characterize lipid fractions in microbial pure cultures from bacteria (Proteobacteria, Firmicutes, Actinobacteria), and saprotrophic and ectomycorrhizal fungi (Ascomycota, Basidiomycota).

Separation of lipid classes was achieved by successively eluting NLFA and sterols with a mixture of chloroform and ethanol (v:v = 98:2), glycolipid fatty acids (GLFA) with acetone, and PLFA with a mixture of methanol, chloroform and water (v:v:v = 5:5:1). GLFA were partially recovered in the NLFA or PLFA fraction depending on the nature of the lipid, which should be considered when interpreting PLFA data. Ergosterol recovery was unaffected by subsequent mild alkaline methanolysis of the NLFA fraction in which it was collected, allowing further analysis of both lipid classes in the same mixture. The gas-chromatographic method may be extended to elute both NLFA and (non-silylated) sterols in one run, assuming that the concentration of ergosterol in soil samples is high enough. Therefore, the method can be optimized by using an internal standard added to the NLFA fraction and simultaneously quantify ergosterol. Finally, we show how different lipid classes and attached fatty acid chains distribute in pure cultures of soil micro-organisms.

How to cite: Gorka, S., Canarini, A., Imai, B., Teischinger, G., Darcy, S., and Kaiser, C.: A unified protocol for the high-throughput measurement of PLFA, NLFA, GLFA and sterols from soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17791, https://doi.org/10.5194/egusphere-egu2020-17791, 2020.

EGU2020-18526 | Displays | SSS5.11

Compound-specific isotopic analysis of fatty acids in three soil profiles to estimate organic matter turnover in agricultural soils.

Layla M. San-Emeterio, Ian D. Bull, Jens Holtvoeth, and José Antonio González-Pérez

Soil lipids encompass substances of mainly plant or microbial origin that are insoluble in water and soluble in organic solvents such as ether, hexane, benzene, chloroform or dichloromethane. This soil organic fraction is of great interest because it encompasses biomarkers associated to soil microbial communities, i.e. Gram positive/negative bacteria, mycorrhizae, actinomycetes, etc. and because of its transitory nature that provides insights into soil organic matter (SOM) dynamics and soil carbon turnover. Compound-specific isotope analysis (CSIA) have been used in biomarker studies to investigate the assimilation of carbon from external inputs into SOM. This study determined the distribution and d13C composition of fatty acids as dominant part of the soil lipid fraction to assess turnover times in agricultural practice.

Soil samples were taken from three depth intervals (0-5, 5-20, 20-40 cm) from a Mediterranean agricultural soil at “La Hampa” experimental station used for a crop rotation experiment with wheat (C3 plant) and maize (C4 plant). Using the C4 biosynthetic pathway, maize discriminates less strongly against 13C, i.e. d13C values of fatty acids originating from maize are less negative than those of fatty acids from wheat.

Soil lipids were extracted using a DCM:MeOH (3:1) solvent mixture. Fatty acids were transmethylated with MeOH:acetyl chloride (30:1) to form fatty acid methyl esters (FAMEs) while the hydroxy groups of hydroxy acids, alcohols, sterols and other compounds were silylated using BSTFA prior to analysis by gas-chromatography combustion chamber isotope ratio mass spectrometry (GC-C-IRMS) for carbon isotope ratios. Compounds were identified through their mass spectra by gas-chromatography mass spectrometry (GC-MS) and quantified by gas chromatography with flame ionization detection (GC-FID).

Only two maize harvests after wheat cultivation, a significant 13C enrichment of up to 2 ‰ was found in the saturated C20, C22 and C23 FAMEs and the mono-unsaturated C22 FAME and of up to 5 ‰ in the leaf wax-derived C29 and C31 n-alkanes relative to the control treatments without maize input. No significant differences, however, were found for alcohols and hydroxy acids. These differences may respond to the high specificity of the long-chain n-alkanes from plant origin, whereas the other compounds FAMEs, and mainly alcohols and hydroxyl acids are less specific plant markers and may have a diverse origin.

No significant differences in the isotopic composition were observed at different depths within treatments apart from a slight d13C enrichment of 1.5 ‰ in the upper soil layer (0-5 cm) in the maize plots relative to the deeper layers. It is worth noticing that SOM content remained very low (< 1.3%) over the entire duration of the experiment, with no significant differences despite the high amount of C4 biomass presumably added to the soil during the two growth periods. Together with the d13C enrichment observed in the maize plots, this points to high mineralization rates in these soils and implies both a rapid turnover of plant debris into the SOM.

Acknowledgement: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R). L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2017-07968). Mrs Desiré Monis is acknowledged for technical assistance.

 

How to cite: M. San-Emeterio, L., Bull, I. D., Holtvoeth, J., and González-Pérez, J. A.: Compound-specific isotopic analysis of fatty acids in three soil profiles to estimate organic matter turnover in agricultural soils., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18526, https://doi.org/10.5194/egusphere-egu2020-18526, 2020.

EGU2020-19596 | Displays | SSS5.11

Direct soil organic matter compound specific δ13C analysis using pyrolysis (Py-CSIA): identification of biomarkers in a dehesa from Southern Spain

José A. González-Pérez, Lyla M. San Emeterio, Francisco J. González-Vila, María T. Domínguez-Núñez, and José M. de la Rosa

Dehesa are woodlands typical of southern Mediterranean climate species modified by human to seasonal wood-pastures adapted to the unpredictability of the Mediterranean climate. Changes in climatic and environmental conditions can affect both, plant biomass chemical and isotope composition that will eventually be reflected in soil organic matter (SOM). Nowadays, many ecological studies use bulk isotope values, which represent a weighted mean average of the different necromass compounds. An isotopic characterization of individual compounds is desirable to differentiate the isotopic composition of the main plant components. Soil organic matter is composed mainly of high MW biopolymers i.e. polysaccharides, polypeptides, polypeptides, polyesters, etc. not amenable to most chromatographic techniques without the use of intense extraction and sample preparation steps.

Here, an analytical pyrolysis technique combining Py-GC with a continuous flow isotope ratio mass spectrometer (IRMS) (Py-CSIA) is described and validated for the direct study of compound specific isotope composition in soil samples.

The consistency of the Py-CSIA was tested using a standard n-alkanes mixture (dissolved C16 to C30 series with increasing concentrations along three pentads, Indiana Univ. SIL mix. Type B). The values obtained fitted to a straight line (R2 > 0.999). No induced thermal cracking nor deviations from the acclaimed isotope composition (fractionation) was observed up to high pyrolysis temperature (< 500 °C).

Composite dehesa (Pozoblanco , Córdoba, Spain) surface soil samples were taken under evergreen oak canopy . A detailed SOM study was performed using conventional analytical pyrolysis (Py-GC/MS) and δ13C for specific compounds released after pyrolysis was done using Py-CSIA.

Well-resolved chromatograms were obtained by Py-GC/MS and a total of 40 pyrolysis compounds were detected that represented the chemical variability of soil organic matter and consisted mainly of polysaccharide, lignin-derived compounds (G- and S- units), fatty acids and n-alkanes. When coupling Py with GC-C-IRMS, many c peaks were well resolved and with a sufficient chromatographic separation to give accurate δ13C readings. Nonetheless, there were compounds with high δ13C standard deviations considered not sufficiently resolved for a reliable estimation of their isotope composition due to coelution and were discarded.

The δ13C for specific biomass compounds released by pyrolysis of soil was in line with the expected values for C3 plants i.e. Quercus spp. Polysaccharide derived products (furans, cyclopentanones), showed slightly enriched δ13C values (-26.0 ± 0.47 ‰) in accordance with their naturally 13C enriched composition. Although no statistical differences were found, lignin-derived units showed slightly depleted δ13C ( -27.4 ± 0.78 ‰). Accordingly, depleted δ13C values for lipids (-35.1 ± 2.41 ‰) and alkanes (-35.5 ± 2.20 ‰) were found, the latter with lighter isotope composition with increasing the hydrocarbon length.

Here we show the possibility of using this particular analytical pyrolysis technique (Py-CSIA) for the direct measurement of δ13C in relevant specific soil organic matter components including those from polysaccharides (cellulose/hemicellulose), lignin, lipid/waxes and also peptide/protein-derived compounds.

Acknowledgement: Ministerio de Ciencia Innovación y Universidades (MICIU) for INTERCARBON project (CGL2016-78937-R) DECAFUN (CGL2015-70123-R). L. San Emeterio also thanks MICIU for funding FPI research grants (BES-2017-07968). Mrs Desiré Monis & Mr Eduardo Gutiérrez González are acknowledged for technical assistance.

How to cite: González-Pérez, J. A., San Emeterio, L. M., González-Vila, F. J., Domínguez-Núñez, M. T., and de la Rosa, J. M.: Direct soil organic matter compound specific δ13C analysis using pyrolysis (Py-CSIA): identification of biomarkers in a dehesa from Southern Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19596, https://doi.org/10.5194/egusphere-egu2020-19596, 2020.

EGU2020-19738 | Displays | SSS5.11

Does C accessibility have an effect on the formation of microbial cell membranes?

Ziwei Zhao, Anna Gunina, and Michaela Dippold

It is well known, that phospholipid fatty acids (PLFAs) are very dynamic, and reflect the living microbial community. The vast majority of previous studies limited its turnover determination to the lipid moiety (“the tail”) of the phospholipids. Thus, it remains unclear how dynamic the head groups of phospholipids are, and whether environmental conditions, i.e. amount of available carbon (C) have an effect on the dynamics of parts of the phospholipid molecule. To answer these questions, the double-labeling 14C/33P-was used in the present experiment. 

The soil was collected from a 45-75 cm depth at the Klein-Altendorf experimental research station Bonn, Germany. The site is an agricultural field for more than 100 years. Formation of PLFA was traced for the two conditions: C limited (2.5 mg glucose-C kg-1 soil added, 1% from microbial biomass C) and C rich (250 glucose-C kg-1 soil added, 100% of MBC). For both conditions, 14C labeled glucose and 33P-K2HPO4 (12.5 mg P kg-1 soil) were added with 1 mL of water and supplemented with (NH4)2SO4 (25 mg N kg-1 soil). These ratios of C/P and C/N were chosen relative to a 100% glucose-C application to reach a ratio of C:P=20:1 and C:N=10:1. The soil was incubated for 10 d, and destructive samplings were performed after 5 h, 19 h, 1, 3, 5, 7 and 10 days, and each time four replicates were harvested. Soils were extracted for PLFAs in 2 steps: first PLFAs were obtained following the standard procedure, but both phospholipid tails and head groups were collected for further 14C and 33P counting. The second step included separate extraction and compound-specific PLFA analysis by GC-MS to reveal changes in the community composition induced by C, N, P addition that might explain de-novo formation of phospholipids.

The peak of 33P incorporation into headgroups under high glucose addition was after 19 h, and accounted 0.3% from the applied tracer, whereas it was up to 1% after low glucose addition and peaked in the middle of incubation time. Incorporation of 14C into the head groups and tails after high glucose addition showed an identical temporal dynamic and was 1.5 times higher in heads than in tails. Both, 33P and 14C incorporation into head and tail had a temporal minimum at day 3 and increased afterwards suggesting two different underlying processes: direct incorporation versus C recycling. After low glucose addition, 14C incorporation was maximum on day 5 but was 3 times lower compared to growth conditions. This shows that even under limited C supply microorganisms construct new phospholipids from available glucose. Irrespective of the C supply, the ratio of head to tail incorporation relative to the ratio of head-to-tail C atoms demonstrates a significantly higher turnover of headgroup C than lipid C, suggesting recycling as an important process to cover microbial lipid demand. Thus, for the first time the different dynamics of phospholipid heads and tails was found and suggest recycling as an important process for growth and maintenance lipid formation.

How to cite: Zhao, Z., Gunina, A., and Dippold, M.: Does C accessibility have an effect on the formation of microbial cell membranes?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19738, https://doi.org/10.5194/egusphere-egu2020-19738, 2020.

EGU2020-22358 | Displays | SSS5.11

VOC analysis in soils – Extending SPME to SPME-trap and SPME-trap with enrichment.

Robert Brown, Jan Peter Mayser, Caroline Widdowson, Dave Chadwick, and Davey Jones

The ability of an agricultural soil to function and sustainably provide an increasing food supply for a rapidly increasing global population has become of vital worldwide importance. Traditionally, soil health has been determined on a physico-chemical basis with biological characteristics often being ignored. Although several biological methods have been proposed, to date, none of these methods adequately indicate soil health. One method proposed to correct these circumstances is profiling or fingerprinting the volatile organic compounds (VOCs) from soil. VOCs in soils originate from a large variety of biological sources; microbial, fungal, animal- and plant-derived. These volatilomes are vital to plant/fungi-microbe and animal/human-microbe interactions and therefore offer a potential reactive, functional diagnostic tool to determine soil health by investigating the intra and interspecies interactions.

The standard methodology for VOC profiling has been solid phase microextraction (SPME). This automated VOC extraction method allows the monitoring of the community structure, physiological state, and activity of any microbial community in a soil without the need of manual extraction or cultivation procedures. Other common techniques that could be used to monitor the VOC fingerprints from soils include high capacity sorptive extraction (HCSE) or thermal desorption using sorbent-packed tubes for passive, in-situ sampling of soil gas.

Combining each of these techniques with an innovative cryogen-free focussing and pre-concentration trap has two main advantages:

  1. All extraction techniques can run on a single platform without the need to change the hardware.
  2. Single (SPME-trap) and multiple extractions (SPME-trap with enrichment) can be carried out automatically on a single sample to increase the analytical sensitivity, thus achieving a comprehensive VOC profile.

In this microcosm study, soils were treated in three different ways and their VOC profiles investigated. A ‘good’ soil comprised of brown earth and compost, a ‘medium’ soil of unaltered brown earth and a ‘bad’ soil of brown earth held under eutrophic anaerobic conditions. 2 g of each soil was analysed with SPME-trap, SPME-trap with enrichment, HCSE and sorbent tubes. Both a targeted (phenol, p-cresol, isophorone, indole and trans-β-ionone) and untargeted approach indicates that there are significant differences between the different soil types. By increasing the sensitivity of the untargeted approach with SPME-trap enrichment, this study was able to extend the number of VOCs identified, allowing a much more comprehensive VOC profile and possibility to determine the actual functions of specific VOC produced by the soil microbial community.

How to cite: Brown, R., Mayser, J. P., Widdowson, C., Chadwick, D., and Jones, D.: VOC analysis in soils – Extending SPME to SPME-trap and SPME-trap with enrichment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22358, https://doi.org/10.5194/egusphere-egu2020-22358, 2020.

SSS6.4 – Soil water Infiltration: Measurements, assessment and modeling

EGU2020-20212 | Displays | SSS6.4

Infiltration experiments with ultra-high spatial and temporal resolution of saturation measurements

Greg Siemens, Chris Oldroyd, and Ryley Beddoe

Near surface hydrological processes whereby moisture exchange occurs between the vadose zone and above-ground weather systems occur on daily, seasonal, and long-term cycles. Well-controlled laboratory studies of near surface moisture migration are often limited due to number of measurement points of moisture content and pore pressure. This presentation will describe experimental and digital image analysis techniques incorporating a refractive index matched soil-pore fluid combination that increase spatial resolution of saturation measurements by over 6 orders of magnitude. The refractive index matched material changes color from black (Saturation=1) to white (Saturation=0) allowing for saturation measurements at the digital pixel scale. This visualization technique allows for direct observation of flow effects which affect boundary measurements and local flow mechanisms. The capabilities of unsaturated transparent soil are incorporated in a 2D infiltration apparatus to examine the influence of confined air on infiltration. 2D experiments agree with previous column infiltration results showing air confinement decreases infiltration rate by more than one half. The 2D apparatus allows a clear unstable wetting front to develop, visualization of dynamic moisture migration within the transmission zone. In addition, the high spatial resolution saturation measurements show detectable influence of thin heterogeneities on wetting front migration and the influence of flow direction on saturation distribution. The high-resolution saturation measurements will allow for calibration of computational models multi-phase flow and open up new insight into near surface processes to improve water balance calculations and soil-structure-climate interactions.

How to cite: Siemens, G., Oldroyd, C., and Beddoe, R.: Infiltration experiments with ultra-high spatial and temporal resolution of saturation measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20212, https://doi.org/10.5194/egusphere-egu2020-20212, 2020.

Classic soil physics relies heavily on the concept of representative elementary volume (REV), which is necessary to perform upscaling from the studied soil samples and parameterize continuum scale hydrological models (e.g., based on Richards equation). In this paper we explore the boundaries of the classic REV concept and conventional representativity studies that claim REV for a given physical property if its values converge to a steady value with increasing sample’s volume. We chose two conventional undisturbed soil samples from Ah and B horizons and performed pore-scale flow simulations based on their X-ray microtomography scans. The volumes of the simulation domains were 729 million of voxels with a physical volume within the order of magnitude of the whole soil core. Based on 3D pore geometry images and resulting flow velocity and pressure fields we performed REV analysis for saturated hydraulic conductivity and porosity. To further facilitate the REV analysis, we also evaluated the stationarity of pore structures by computing directional correlation functions for studied images. We concluded that neither of the studied samples can be considered to be representative due to its structural non-stationarity, which reflects on the behavior of Ksat values within the subcubes of different volume within the samples. In this contribution we extensively discuss the implications of such results. While it was possible to show that studied soil samples are not REVs for saturated hydraulic conductivity, we were unable to establish any relevant domain length scale. The latter may require tensorial flow property analysis with correct boundary conditions (Gerke et al., 2019), multi-scale soil structure imaging (Gerke et al., 2015; Karsanina et al., 2018; Karsanina and Gerke, 2018) and pore-scale simulations on fused multi-scale images (Miao et al., 2017; Gerke et al., 2018).

This work was supported by Russian Foundation for Basic Research grant 20-54-12030 ННИО_а and 18-34-20131 мол_а_вед.

References:

Karsanina, M. V., Gerke, K. M., Skvortsova, E. B., Ivanov, A. L., & Mallants, D. (2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 314, 138-145.

Gerke, K. M., Karsanina, M. V., & Mallants, D. (2015). Universal stochastic multiscale image fusion: an example application for shale rock. Scientific reports, 5, 15880.

Gerke, K. M., Vasilyev, R. V., Khirevich, S., Collins, D., Karsanina, M. V., Sizonenko, T. O., Korost D.V., Lamontagne S., & Mallants, D. (2018). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, 41-58

Karsanina, M. V., & Gerke, K. M. (2018). Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. Physical Review Letters, 121(26), 265501.

Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017). A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications. Advances in Water Resources, 105, 162-172.

Gerke, K. M., Karsanina, M. V., & Katsman, R. (2019). Calculation of tensorial flow properties on pore level: Exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions. Physical Review E, 100(5), 053312.

How to cite: Gerke, K. and Karsanina, M.: How representative is the conventional undisturbed soil core sample in terms of fllow properties?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10841, https://doi.org/10.5194/egusphere-egu2020-10841, 2020.

Increase in impermeable area and frequency of intense rainfall cause flooding damages in urban areas. Permeable Interlocking Concrete Paver (PICP) system, which is a composite system comprised of soils and blocks, is considered as one of the solutions to improve the urban water environment, and its applications are increasing rapidly worldwide. It is important to evaluate the initial permeability and its reduction due to clogging. In this study, the permeability and effect of clogging were evaluated based on experimental methods developed. The equivalent permeability and its degradation of PICP systems were successfully evaluated using the prodecure developed, and the equation for equivalent permeability presented quite a good agreement with the experimental results.

ACKNOWLEDGEMENT : The authors would like to thank the Ministry of Land, Infrastructure, and Transport of Korean government for the grant from Technology Advancement Research Program (grant no. 20CTAP-C152124-02) and Basic Science Research Program (grant no. 2017R1D1A3B03034563) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

How to cite: Ahn, J. and Lee, Y.: Experimental Evaluation of Equivalent Permeability for Permeable Interlocking Concrete Paver (Soil-Block) Composite System, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7434, https://doi.org/10.5194/egusphere-egu2020-7434, 2020.

EGU2020-14653 | Displays | SSS6.4

Numerical assessment of chemical species infiltration in the Prosecco area

Leonardo Costa, Stefano Mazzega Ciamp, Alessandra Cardinali, Laura Carretta, Nicola Dal Ferro, Marta Mencaroni, Francesco Morari, Giuseppe Zanin, and Paolo Salandin

The multidisciplinary research project SWAT - Subsurface Water quality and Agricultural pracTices monitoring - has been set up to assess pesticides contamination risks for groundwater in the hills of Prosecco in the north-east of Italy. The unconfined aquifer underneath the typical Glera grape-variety vineyards of Valdobbiadene and Conegliano is used as water supply resource for human consumption. The principal aim of the project SWAT is to obtain a thorough information on the impact of contaminants coming from agricultural practices and infiltrating in the soil of well protection areas. Based on specifically designed field experiments, a study on water and solutes infiltration process is developed to understand the movement and evolution of chemical species in the vadose zone. A one-dimensional transport model for unsaturated media (BRTSim - Maggi, 2015) is used to simulate solute infiltration and estimate the soil hydraulic parameters. Monitoring activities started in November 2018 in two experimental sites (the Settolo site in Valdobbiadene and the Colnù site in Conegliano) near supply wells surrounded by vineyards. A mixture of Bromide and Glyphosate was identically applied on two parcels of 25 m2 for each experimental site to obtain information about spatial heterogeneity and to collect independently water and soil quality measurements. Porous cups, for the collection of infiltrating water, and capacitive sensors, to gauge temperature and Volumetric Water Content (VWC), were installed beneath the sectors at three depths (-0.1, -0.3, -0.7 m). In each site meteorological station provides hydrological data. At first, laboratory analysis on soil samples collected at the same depths gave a vertical distribution of the sector-specific soil texture that was used as input for Rosetta to obtain initial estimations of retention curve behaviour and the saturated hydraulic conductivity. These data allowed us to develop an open-loop simulation using the early meteorological observations as hydrological forcing. As the laboratory analysis on soil and water samples proceed and the number of in-situ measurements increases, different data windows are tested to improve the performances of the calibration procedure performed using PEST. In all tests a spin-up procedure is applied to mitigate the dependency of the results on the imposed initial data by repeating the first month of hydrological forcing three times. The results of the transport model using Rosetta parameters are already satisfactory in terms of VWC trends even if they are considerably shifted respect to the measured values. The calibration reduces the gap between model results and observations, but the behaviour seems to get worse in dry conditions. Improvements are achieved in the upper layer (-0.3 m) applying evapotranspiration along the root zone. The Bromide simulations agree with the infiltration behaviour: its movement is well represented up to -0.3 m, while at -0.7 m the observed values are overestimated. Ongoing investigations on the glyphosate dispersion process show limited infiltrating mass in the water collected samples.

How to cite: Costa, L., Mazzega Ciamp, S., Cardinali, A., Carretta, L., Dal Ferro, N., Mencaroni, M., Morari, F., Zanin, G., and Salandin, P.: Numerical assessment of chemical species infiltration in the Prosecco area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14653, https://doi.org/10.5194/egusphere-egu2020-14653, 2020.

EGU2020-765 | Displays | SSS6.4

Water Shedding Properties of Oil Impregnated Hydrophobic Soils

Rebecca McCerery, John Woodward, Glen McHale, and Kate Winter

Hydrophobic soils and sediments have gained significant interest in soil science due to negatively influencing biomass production and as drivers of landslides and enhanced erosion. Whilst natural and fire-induced soil water repellency have been studied, little work has considered how the sediment-water interaction with naturally occurring hydrophobic sediments might change in the presence of oil. Recent advances in materials physics have shown bio-inspired slippery liquid infused porous surfaces (SLIPS) and lubricant impregnated surfaces (LIS) can produce super slippery surfaces with excellent water shedding properties. Here we apply this new understanding to the physics of soil water repellency and address how the presence of oil, whether from contamination or otherwise, might influence water infiltration. We hypothesise that oil impregnating a hydrophobic soil may create stable oil coatings and/or layers that create soil surfaces resistant to water infiltration and with enhanced run-off of water. Using monolayers of sand, silt and clay particles treated with a commercial hydrophobising agent and silicone oil, we created model (oil-free) hydrophobic and oil impregnated hydrophobic soils. Static water contact angles and droplet sliding angles were used to classify their degree of hydrophobicity and ability to shed water. Our results show that in the absence of oil, model hydrophobic soil surfaces with particle sizes below 63μm are superhydrophobic with water droplet contact angles above 150 degrees. In the presence of oil, we observed a sediment-based SLIP/LI surface on particle sizes below 63μm with water contact angles of 90 degrees and droplet sliding angles of below 5 degrees. We also achieved reduced sliding angles compared to the oil-free surfaces, and a conformal layer of oil on all particle sizes. These results support our hypothesis that SLIPS/LIS may occur in natural soil systems. These results have implications for soil water repellency, oil clean up from soil and for processes occurring in other sedimentary environments caused by both naturally occurring and anthropogenic contamination of oils.

How to cite: McCerery, R., Woodward, J., McHale, G., and Winter, K.: Water Shedding Properties of Oil Impregnated Hydrophobic Soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-765, https://doi.org/10.5194/egusphere-egu2020-765, 2020.

Quantitative and Qualitative description of infiltration into soils in general and initially dry soils in particular those in which the hydraulic properties vary spatial and temporal have been challenging soil physicists and hydrologists. Water repellent soils, whose contact angle is higher than 40° and can even reach values that are greater than 90° (noted as hydrophobic soils) are an example of such challenge cases. Infiltration in these soils takes usually place along preferential flow pathways (noted as gravity-induced fingering), rather than in a laterally uniform moving wetting front. The water content and capillary pressure distributions along these fingers are non-monotonic with water accumulation behind the moving wetting front (noted as saturation overshoot) and a decreasing water content toward the soil surface. Being a parabolic-type partial differential equation, the Richards equation that is commonly used to model flow in soils can't handle such water content/pressure distributions. Many attempts have been made to modify the Richards equation to enable it to model the non-monotonic water content profiles. These attempts that are not based on the measurable soil properties that can highlight the physics that induces the formation of such non-monotonic distribution.  

A new conceptual modelling approach, noted as the moving-boundary approach, will be presented. This approach overcomes the existing theoretical gaps in the quantitative descriptions that have been suggested for the non-monotonic water content distribution in the gravity-induced fingers. The moving-boundary approach is based on the presumption that non-monotonicity in water content is formed by an intrinsic higher-than-zero contact angle. Note that non-zero contact angle have been rarely incorporated in models used for quantifying infiltration into field soils, in spite of the findings that most soils feature some degree of repellency. The verified moving-boundary solution will be used to demonstrate the synergistic effect of contact angle and incoming flux on the stability of 2D flow and its associated plume shapes. The physically-based moving-boundary approach fulfils several criteria raised by researchers to adequately describe gravity-driven unstable flow.

 

How to cite: Wallach, R. and Brindt, N.: Modelling gravity-driven fingering in soils having an intrinsic non-zero contact angle (water repellent soils) using the innovative moving-boundary approach , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2647, https://doi.org/10.5194/egusphere-egu2020-2647, 2020.

EGU2020-14585 | Displays | SSS6.4

A field study of depletion-replenish water storage mechanism in tree stems in semi-arid region

Yiben Cheng, Yunqi Wang, and Qunou Jiang

Trees in arid and semi-arid regions are faced with water shortages at most times, and the use of water storage in tree stem is an important mechanism and pathway for adaptation to drought. In this research, we have explored the tree saplings in semi-arid areas by continuous monitoring and analysis of the sap flux at stem top and stem breast, in the main growth season. A primary objective is to find out when and how trees use stem water storage as a reservoir, and more specifically if there is a difference in stem flow start time between stem top and stem breast. Our study shows that in sunny day of the growing season, the sap flow at stem top start time is later than the sap flow at stem breast, with the maximum of time lag about 60 mins, and the daily sap flow peak time of stem top is later than that of the stem breast by 1-2 hrs. The maximum daily flux at stem top is about 1.4-2.1 times greater than that at stem breast. Stem water storage increases the drought tolerance of trees. The depletion stage of stem water storage mainly occurs in early morning, and then enters the replenishing phase in the afternoon. In a sunny day, with the increase of soil water deficit with relative extractable water (REW) (or the relative effective soil water index) less than 0.43, demand for water storage of stem is more significant, and its role is mainly based on the depletion process. When the soil moisture condition is improved, the process is dominated by replenishing. From the results of continuous observations throughout the growing season, the depleting and replenishing processes can achieve equilibrium in a short period of time (like a few days). This research has advanced our understanding of the utilization mechanism of tree stem storage water in semi-arid areas.

How to cite: Cheng, Y., Wang, Y., and Jiang, Q.: A field study of depletion-replenish water storage mechanism in tree stems in semi-arid region , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14585, https://doi.org/10.5194/egusphere-egu2020-14585, 2020.

EGU2020-22632 | Displays | SSS6.4

Testing an infiltrometer methodology to investigate water impact effects on both soil sealing and hydraulic properties of a loam soil under conventional tillage and no-tillage

Mirko Castellini, Simone Di Prima, Anna Maria Stellacci, Massimo Iovino, and Vincenzo Bagarello

Testing new experimental procedures to assess the effects of the drops impact on the soil sealing formation is a main topic in soil hydrology.

In this field investigation, the methodological approach proposed first by Bagarello et al. (2014) was extended to account for a greater soil infiltration surface (i.e., about 3.5 times higher), a higher range and number of heights of water pouring and to evaluate the different impact on soil management. For this purpose, the effects of three water pouring heights (low, L=3 cm; medium, M=100 cm; high, H=200 cm) on both no-tilled (NT) and conventionally tilled (CT) loam soil were investigated by Beerkan infiltration runs and using the BEST-procedure of data analysis to estimate the soil hydraulic properties.

Final infiltration rate decreased when perturbing runs (i.e., M and H) were carried out as compared with the non-perturbing (L) ones (by a factor of 1.5-3.1 under NT and 3.4-4.4 under CT). Similarly, the water retention scale parameter, hg, increased (i.e., higher in absolute terms) by a factor 1.6-1.8 under NT and by a factor 1.7 under CT. Saturated hydraulic conductivity, Ks, changed significantly as a function of the increase of water pouring height; regardless of the soil management, perturbing runs caused a reduction in soil permeability by a factor 5 or 6. Effects on hydraulic functions (i.e., soil water retention curve and hydraulic conductivity function), obtained with the BEST-Steady algorithm, were also highlighted. For instance, differences in water retention curve at fixed soil pressure head values (i.e., field capacity, FC, and permanent wilting point, PWP) due to perturbing and non-perturbing runs, were estimated as higher under NT (3.8%) than CT (3.4%) for FC, and equal to 2.1% or 1.6% for PWP.

Main results of this investigation confirm that a recently tilled loamy soil, without vegetation cover, can be less resilient as compared to a no-tilled one, and that tested water pouring heights methodology looks promising to mimic effects of high energy rainfall events and to quantify the soil sealing effects under alternative management of the soil.

Acknowledgments

The work was supported by the project “STRATEGA, Sperimentazione e TRAsferimento di TEcniche innovative di aGricoltura conservativA”, funded by Regione Puglia–Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale, CUP: B36J14001230007.

 References

Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. https://doi.org/10.1016/j.geoderma.2013.08.032

How to cite: Castellini, M., Di Prima, S., Stellacci, A. M., Iovino, M., and Bagarello, V.: Testing an infiltrometer methodology to investigate water impact effects on both soil sealing and hydraulic properties of a loam soil under conventional tillage and no-tillage, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22632, https://doi.org/10.5194/egusphere-egu2020-22632, 2020.

EGU2020-1056 | Displays | SSS6.4

Evaluation of the retention capacity of Pb and Cu in technosoils of Sustainable Urban Drainage Systems (SUDs) in Bogota, Colombia

Karel Aldrin Sanchez Hernandez, Germán Ricardo Santos Granados, Rafael Angulo-Jaramillo, Carlos Alberto González Murillo, and Catalina Lozada Lopez

Recently, cities growth has enhanced economic development but also generates different problems that affect the population such as stormwater drainage. It is known that the area available for water infiltration decrease in these urban centers generating scenarios of high vulnerability and risk of flooding associated with extreme weather events of precipitation. Therefore, an alternative is the implementation of Sustainable Urban Drainage systems (SUDs) that allows high efficiency in the control and local infiltration of rainwater. SUDs are often built with technosoils from the recycling of materials from different industries, for which it is necessary to study their hydraulic and solute retention properties. Indeed, one of the functions of SUDs must therefore be the retention of pollutants before they reach the groundwater. Therefore, this research aimed to evaluate the retention capacity of metallic solutes Pb and Cu in technosoils (compacted mixture of sand, loam and rice husk ash) proposed for SUDs in Bogota, Colombia. A research work was conducted by combining adsorption isotherms measurements, unsaturated column breakthrough flow experiments and numerical modeling with RETC, STANMOD and HYDRUS 1D models. Adsorption isotherm can be described satisfactorily using the Freundlich and Langmuir models. Additionally, unsaturated soil column leaching tests (ISO/TS S1268-3) allows estimation of solute diffusion through the soil profile. A multi-reaction model (MRM) and convection dispersion flow model reveal non-linear and non-equilibrium in the movement of solute in soil. Moreover, there is a competition for adsorption of metal ions in the technosoil profile; the order of selectivity of heavy metals in the active sites of the microporal network will be Pb+2> Cu+2, so that these technosoil is a favorable material in heavy metals retention.

 

 

How to cite: Sanchez Hernandez, K. A., Santos Granados, G. R., Angulo-Jaramillo, R., González Murillo, C. A., and Lozada Lopez, C.: Evaluation of the retention capacity of Pb and Cu in technosoils of Sustainable Urban Drainage Systems (SUDs) in Bogota, Colombia , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1056, https://doi.org/10.5194/egusphere-egu2020-1056, 2020.

EGU2020-4097 | Displays | SSS6.4

Estimating the macroscopic capillary length using steady state infiltration

Simone Di Prima, Ryan D. Stewart, Mirko Castellini, Vincenzo Bagarello, Majdi R. Abou Najm, Mario Pirastru, Filippo Giadrossich, Massimo Iovino, Rafael Angulo-Jaramillo, and Laurent Lassabatere

The macroscopic capillary length is a critical parameter for the modeling of infiltration in single-ring experiments. Current methods to quantify this parameter either require multiple infiltration experiments, thus increasing effort and potential for error, or laboratory characterization that does not reflect field condition. We propose a simple field method for the estimation of the macroscopic capillary length, λc, from Beerkan runs (single-ring infiltration experiment with measurements of initial and saturated soil water contents). In the proposed method, we use the final portion of the cumulative infiltration, corresponding to the steady state of the water infiltration, to develop a reliable predictor of λc. The proposed model was validated using analytically generated data along with an experimental database that included 433 Beerkan runs from a wide range of conditions and types of soils. The analytical validation demonstrated the reliability of the proposed λc estimates for different soil textures and initial soil water contents. Altogether, the proposed method constitutes a simple solution for estimating λc, and it can improve our ability to estimate Ks in the field.

How to cite: Di Prima, S., Stewart, R. D., Castellini, M., Bagarello, V., Abou Najm, M. R., Pirastru, M., Giadrossich, F., Iovino, M., Angulo-Jaramillo, R., and Lassabatere, L.: Estimating the macroscopic capillary length using steady state infiltration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4097, https://doi.org/10.5194/egusphere-egu2020-4097, 2020.

EGU2020-5565 | Displays | SSS6.4

Sorptivity and water imbibition into air-dry surfactant-containing soil

Thuc Nguyen and Gilboa Arye

Surfactants have been widely used in agriculture mainly as adjuvants to aid foliar pesticides to stay on target areas and as wetting agents to counteract the deleterious impacts of soil hydrophobicity. The latter has gained increasing attention among scientists over decades. Many natural and urban hydrophobic soil surfaces (i.e post-fire forest land and golf greens with dry patches respectively) after surfactant application has observed to have improved hydrological behaviors such as enhanced infiltration rate, more evenly-distributed water content, thus resulting in higher water use efficiency, better performances of amenity surfaces and higher crop yield. In general, a surfactant can be classified as cationic, anionic or nonionic according to the charge of its polar group. Commonly, with anionic and nonionic surfactants are employed by either directly mixing with the soil or incorporated into the irrigating. Regardless of the application mode, the occurrence of surfactant adsorption onto soil particles after wetting/drying cycles is highly expected, which, in fact, has already shown in some studies to change the hydraulic properties of the soil, oppositely to initial expectation. Capillary rise, for example, was found to decrease in sand treated with laundry derived detergent. In addition, sub-critical hydrophobicity was observed in sands pre-saturated with greywater derived surfactants after some cycles of wetting and drying. Insights from these studies implied that surfactant application to hydrophilic soils may eventually induce temporal hydrophobic nature. In this regard, the main objective of this study was to quantify the sorptivity and imbibition rate of air-dry soil subjected to wetting and drying with surfactants. Specifically, we employed three types of surfactants: (i) anionic (SDS), (ii) cationic (CTAB) and (iii) nonionic (TX-100). Quartz sand was sieved through 0.5mm sieve and wet-packed into columns (I.D.=3.5cm and L=6cm) with surfactant concentrations above and below the CMC (Critical Micelle Concentration) and then oven-dried at 65oC for 24h. We have repeated this procedure to obtain soil samples undergoing 1 to 5 wetting/drying cycles. The soil samples were subjected to imbibition using the capillary rise method with water and ethanol, from which the initial sorptivity, imbibition rate and contact angle (CA) were calculated. The Wilhelmy plate method (WPM) and sessile drop method (SDM) was also used to measure the CA. The results showed that following one application of the three surfactants, the sorptivity was reduced relative to the control. Further reduction observed only for TX-100 and CTAB soil samples. The CA values obtained from the WPM and SDM implied that sub-critical hydrophobicity was induced only for the CTAB-treated, implying that water imbibition in the SDS and TX-100 treated soil in manly governed by the reduced surface tension rather than in the induced hydrophobicity (i.e. CA). Further discussion on the governing mechanism of wetting in surfactant-containing soils will be presented next to the results.           

 

 

How to cite: Nguyen, T. and Arye, G.: Sorptivity and water imbibition into air-dry surfactant-containing soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5565, https://doi.org/10.5194/egusphere-egu2020-5565, 2020.

EGU2020-22664 | Displays | SSS6.4

Finite formulation for the computation of sorptivity

Pierre-Emmanuel Peyneau, Laurent Lassabatere, Joseph Pollacco, Jesús Fernández-Gálvez, Borja Latorre, David Moret-Fernández, Simone Di Prima, and Rafael Angulo-Jaramillo

Soil sorptivity is one of the key hydraulic parameters for modelling water infiltration into soil. It quantifies the capacity of a soil to infiltrate water by capillarity. Several formulations, based on various models, have been proposed to compute it from the water retention and the unsaturated hydraulic conductivity functions. All these formulations use the integration of the product of either the hydraulic conductivity or diffusivity function with the flux concentration function. The integration can be performed either over an interval of water pressure head or water content, yielding two equal values. However, the expression of the integral as a function of water pressure head may involve a huge or even infinite interval, which can be numerically difficult to handle. In opposite, the expression of the integral as a function of water content involves the integration of a diverging function (diffusivity) over a large interval, which is also troublesome from a numerical point of view. In this paper, we provide a new expression for sorptivity by cutting the integral in two parts, in order to involve only the integration of a finite function over a finite interval. The dependency of the integral on the flux concentration function is also investigated.

How to cite: Peyneau, P.-E., Lassabatere, L., Pollacco, J., Fernández-Gálvez, J., Latorre, B., Moret-Fernández, D., Di Prima, S., and Angulo-Jaramillo, R.: Finite formulation for the computation of sorptivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22664, https://doi.org/10.5194/egusphere-egu2020-22664, 2020.

EGU2020-7232 | Displays | SSS6.4

A general BEST method predicting soil hydraulic parameters for any type of water retention and hydraulic conductivity curves

Jesús Fernández-Gálvez, Joseph Pollacco, Laurent Lassabatere, Rafael Angulo-Jaramillo, and Sam Carrick

Soil hydraulic characterization is crucial to describe the retention and transport of water in soil, but current methodologies limit its spatial applicability. This work presents a cost-effective general Beerkan Estimation of Soil Transfer parameters (BEST) methodology using single ring infiltration experiments to derive soil hydraulic parameters for any type of unimodal water retention and hydraulic conductivity functions. The proposed method relies on the BEST approach. The novelty lies in the use of Kosugi hydraulic parameters without need for textural information. Kosugi functions were chosen because they are based on physical principles (log-normal distribution for pore size distributions). A link between the Kosugi parameters (i.e., relationship between σ and hkg) was introduced to reduce the number of parameters estimated and to avoid the need for information on the soil texture. This simplifies the procedures and avoids sources of errors related to the use of pedotransfer functions as for the previous BEST methods. Lastly, the method uses a quasi-exact formulation that is valid for all times, instead of the approximate expansions previously used, avoiding related inaccuracy and allowing the use of any infiltration data encompassing or not both transient and steady states. The new BEST methods were tested against numerically generated data for several contrasting synthetic soils, and the results show that these methods provide consistent hydraulic functions close to the target functions. The new BEST method is accurate and can use any type of water retention and hydraulic conductivity functions (Fernández-Gálvez et al., 2019).

 

 

Reference

Fernández-Gálvez, J., Pollacco, J.A.P., Lassabatere, L., Angulo-Jaramillo, R., Carrick, S., 2019. A general Beerkan Estimation of Soil Transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the Kosugi soil hydraulic model without using particle size distribution data. Adv. Water Resour. 129, 118–130. https://doi.org/10.1016/j.advwatres.2019.05.005

How to cite: Fernández-Gálvez, J., Pollacco, J., Lassabatere, L., Angulo-Jaramillo, R., and Carrick, S.: A general BEST method predicting soil hydraulic parameters for any type of water retention and hydraulic conductivity curves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7232, https://doi.org/10.5194/egusphere-egu2020-7232, 2020.

EGU2020-5080 | Displays | SSS6.4

How different are effects of vinasse biochar on soil erosion in Loess and Marl soils?

Seyed Hamizedra Sadeghi, Mahboobeh Kiani-Harchegani, Zeinab Hazbavi, Habibollah Younesi, Padideh Sadat Sadeghi, Rafael Angulo-Jaramillo, and Laurent Lassabatere

Nowadays soil erosion control using different amendments has grown up worldwide. However, the application of transformed materials like biochar has not been adequately studied. In the same vein, the application of biochars produced from waste materials that harm nature, and impose cost to managers and producers is a valuable approach for optimal utilization of the resources. Towards this, the performance of biochar produced from deleterious raw vinasse as the main by-product of sugarcane industries in controlling soil splash and interrill erosions on two marl and loess soils from Iran was investigated. The study was performed in 0.5 m×0.5 m plots in three replicates installed in the field with a slope steepness of 25% subjected to a simulated rainfall with an intensity of 50 mm h-1 and 0.5 h duration. Analysis of the results obtained from the splash and interrill erosions during the rainfall-runoff process showed that biochar decreased soil loss compared to the control plot on Marl soil but to a small extent (p > 0.05). However, the plot treated with biochar on the loess soil revealed significant (p<0.05) reduction in soil loss in comparison with that of the control plot. That study clearly demonstrates the addition of biochar may promote stability and limit both runoff and soil erosion. However, such effects strongly depend on the type of soils.

How to cite: Sadeghi, S. H., Kiani-Harchegani, M., Hazbavi, Z., Younesi, H., Sadeghi, P. S., Angulo-Jaramillo, R., and Lassabatere, L.: How different are effects of vinasse biochar on soil erosion in Loess and Marl soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5080, https://doi.org/10.5194/egusphere-egu2020-5080, 2020.

EGU2020-8946 | Displays | SSS6.4

Modelling soil physical properties based on XCT scans processed using state-of-the-art local and machine learning based segmentation approaches

Konstantin Romanenko, Efim Lavrukhin, Roman Vasilyev, and Kirill Gerke

With the recent progress in soil structure imaging it is now possible to assess the properties of soil samples using pore-scale modelling. In this contribution we focus on saturated hydraulic conductance which can be easily modelled by solving Stokes equation in 3D pore geometry with the help of FDMSS software (Gerke et al., 2018) or pore-networks (Miao et al., 2017). We chose three soil images as obtained using microtomography device which were sampled in Russian Federation (Karsanina et al., 2018). As these are the gray-scale images representing attenuation of X-rays within the studied sample, before performing any modelling we need to classify all gray-scale voxels into pores and solids. Current state-of-the arts methods are represented by local segmentation methods which has two thresholds: 100% pores and 100% solids, the voxels in between are assigned to either pores or solids based on some considerations such as neighbors or by growing pore/solid phases from these 100% areas until they fill the whole space. We utilized such local binarization converging active contours (CAC) method (Sheppard et al., 2004) to segment soil images with manually chosen thresholds. Next, the same images were segmented using convolutional neural network (CNN) with U-net architecture. We compared the simulated saturated hydraulic conductances for images obtained by two different binarization approaches to show that if CNN is trained based on CAC segmentations the resulting physical properties are close to that of the CAC itself. This means that if the true data for CNN segmentation would be available, the conundrum we believe can be solved using multi-scale structure modelling techniques (Gerke et al., 2015; Karsanina and Gerke, 2018), our flow simulations based on CNN binarization would be of high accuracy and would require no operator input. We discuss critical implications of machine learning based segmentations for soil images and what it means as related to pore-scale modelling.

This research was supported by Russian Science Foundation grant 19-74-10070.

References:

Karsanina, M. V., Gerke, K. M., Skvortsova, E. B., Ivanov, A. L., & Mallants, D. (2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 314, 138-145.

Gerke, K. M., Karsanina, M. V., & Mallants, D. (2015). Universal stochastic multiscale image fusion: an example application for shale rock. Scientific reports, 5, 15880.

Gerke, K. M., Vasilyev, R. V., Khirevich, S., Collins, D., Karsanina, M. V., Sizonenko, T. O., Korost D.V., Lamontagne S., & Mallants, D. (2018). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, 41-58

Sheppard, A. P., Sok, R. M., & Averdunk, H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A: Statistical mechanics and its applications, 339(1-2), 145-151.

Karsanina, M. V., & Gerke, K. M. (2018). Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. Physical Review Letters, 121(26), 265501.

Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017). A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications. Advances in Water Resources, 105, 162-172.

How to cite: Romanenko, K., Lavrukhin, E., Vasilyev, R., and Gerke, K.: Modelling soil physical properties based on XCT scans processed using state-of-the-art local and machine learning based segmentation approaches, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8946, https://doi.org/10.5194/egusphere-egu2020-8946, 2020.

EGU2020-10758 | Displays | SSS6.4

Binarization of soil X-ray tomography images: revisiting Otsu’s method

Konstantin Abrosimov, Konstantin Romanenko, and Kirill Gerke

In numerous applications the most critical step between studying soil structure with the help of X-ray tomography and its quantitative analysis is image segmentation; the simplest type is a division of the gray-scale images into solids and pores – or binarization, is necessary to perform pore-scale simulations (Gerke et al.,2018). This can be performed by either manual or automatic methods. Current state-of-the-art methods mainly include so called local segmentation where for each two phases one needs two confidence thresholds, i.e., 100% pores and 100% solids for binarization. These thresholds are either chosen manually (Karsanina et al.,2018) or automatically, the pixels/voxels in between these thresholds are classified according to some statistical measure or by growing phases from seeds. In case of global methods there is a single threshold that divides the histogram into pores and solids explicitly. There is, however, a class of popular automatic global/local methods based on gray-scale image variance minimization – Otsu’s method and its variations (Hapca et al.,2013), numerous related techniques are available in popular image processing software – ImageJ and SoilJ (Koestel,2018). The aims of our work to test Otsu-based techniques applicability to various soils and imaging resolutions.

In our study, we compared the results of using different variations of Otsu’s method working for 2D and fully 3D images for a number of soil samples of different sizes and taken at different resolutions: 240, 100, 16, 1µm. The largest samples - monoliths with a diameter of 10 cm were taken with the coarsest resolution, mesopores were segmented in micromonoliths with a diameter of 2 cm, with the most detailed resolution the pore space of microaggregates was investigated and segmented (fraction 2-1 mm). All objects of study have individual characteristics.

According to the results of the study, it can be argued that the Otsu method (3D) with a high degree of reliability worked only for detailed images of microaggregates. Its usage for all soils is generally unacceptable, as we observed for all other samples studied here. Moreover, automatic Otsu and related methods do not perform satisfactory on images with histograms resembling highly hierarchical structures (Gerke et al.,2015), which is true for all structured soils (Karsanina et al.,2018).

This research was supported by the RSF grant 19-74-10070.

References:

Karsanina, M.V., Gerke, K.M., Skvortsova, E.B., Ivanov, A.L., & Mallants,D.(2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma,314, 138-145.

Gerke, K.M., Karsanina, M.V., & Mallants, D. (2015). Universal stochastic multiscale image fusion: an example application for shale rock. Scientific reports,5, 15880.

Hapca, S.M., Houston, A.N., Otten, W., & Baveye, P.C. (2013). New local thresholding method for soil images by minimizing grayscale intra-class variance. Vadose Zone Journal,12(3).

Gerke, K.M., Vasilyev, R.V., Khirevich, S., Collins, D., Karsanina, M.V., Sizonenko, T.O., Korost D.V., Lamontagne S., & Mallants, D.(2018). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, 41-58

Koestel, J.(2018). SoilJ: an ImageJ plugin for the semiautomatic processing of three-dimensional X-ray images of soils. Vadose Zone Journal,17(1).

How to cite: Abrosimov, K., Romanenko, K., and Gerke, K.: Binarization of soil X-ray tomography images: revisiting Otsu’s method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10758, https://doi.org/10.5194/egusphere-egu2020-10758, 2020.

EGU2020-13011 | Displays | SSS6.4

Hydro-mechanical Dependent Hydraulic Conductivity within Alluvial Gravelly Soil: An Experimental Study

Chenghao Chen, Shiang Mei, and Shengshui Chen

Abstract:  Seepage process can be extensively observed in rainfall infiltration, natural waterways, artificial hydraulic constructions and other interactive phenomena between water and soil. Recent investigations targeting the deep water circulation as well as shifts of basin patterns induced by massive projects urge the need to enhance the understanding of seepage characteristics under profound depth (high packing state) and great hydraulic pressure. Alluvial gravelly soil is an ordinary weathering product in mountainous area, either exposed to the ground or embedded as a layer. This research focuses on the hydraulic conductivity of such soil. A novel large-scale triaxial seepage apparatus was designed with the capability of replicating densely packed soil specimen and simulating severe hydraulic conditions. Influences of both the packing state and the hydraulic pressures were experimentally studied. It is revealed while most existing permeability models present the rational description that hydraulic conductivity decreases with higher packing state, these formulas for non-plastic soil overestimate the hydraulic conductivity of gravelly soil more than one order of magnitude. The dependence of hydraulic pressure displays the similar trend, as increasing hydraulic gradient diminishes the hydraulic conductivity. Coupled hydro-mechanical permeability models are therefore introduced based on test results. No observation of obvious seepage failure illustrates that high packing state resulting from mechanical loads are favorable to prevention of soil erosion and corresponding countermeasures.

How to cite: Chen, C., Mei, S., and Chen, S.: Hydro-mechanical Dependent Hydraulic Conductivity within Alluvial Gravelly Soil: An Experimental Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13011, https://doi.org/10.5194/egusphere-egu2020-13011, 2020.

EGU2020-19495 | Displays | SSS6.4

Effect of persistent water cover on soil structure, investigated on representative Hungarian soil samples

Viktória Labancz, András Sebők, Imre Czinkota, Tamás Szegi, and András Makó

Today, due to climate change, soil degradation processes related to extreme water supply situations (flood, inland water or drought) are occurring more and more frequently. Soil structure is one of the most important soil characteristics influencing many transport of materials (transport, storage of heat, gas, water and nutrients).Furthermore, it defines and ultimately determines the significant physical, chemical and biological processes involved and also the most important factor in agricultural crop production. Permanent water cover has a significant effect on soil structure, but the dynamics of disaggregation and the role of the soil factors influencing it is not yet fully understood. Our basic research aim is to investigate the effect of permanent water cover on soil structure on representative Hungarian soil samples. In our experiment, we sought to find the answer to the question of how long-term water coverage causes changes and damage to the soil structure under laboratory conditions by artificial water cover. We measured aggregate stability with Mastersizer 3000 Hydro LV laser diffractometry device and some soil chemistry parameters with Agilent 4210 MP-AES at different water cover times (selected in the literature). Based on experiences the effect of persistent water cover from the soil structure side can be most noticeable in the changes of macro- and microaggregate stability, as well as in the change of certain chemical parameters (e.g. calcium and iron content), thus, the aim of our research was to investigate these characteristics also. After compiling our results in a database, we evaluated and deduced statistical data on the long-term degradation effects of water cover. We also made an attempt to describe its disaggregation dynamics for different Hungarian soil types. Based on the results, we have selected the most sensitive soils for permanent water cover, which are also expected to be sensitive to extreme water management related to climate change.

How to cite: Labancz, V., Sebők, A., Czinkota, I., Szegi, T., and Makó, A.: Effect of persistent water cover on soil structure, investigated on representative Hungarian soil samples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19495, https://doi.org/10.5194/egusphere-egu2020-19495, 2020.

EGU2020-20786 | Displays | SSS6.4

Infiltration rate in unsaturated glass beads porous media under various gravity made by parabolic flight.

Naoto Sato, Yuichi Maruo, Kento Nogawa, Natsumi Naganuma, and Kosuke Noborio

The Global Exploration Roadmap targets the realization of Mars manned exploration by the 2030s. It is necessary to understand water movement in porous media under microgravity to establish a plant growth system for crop production for astronauts to produce food in outer space. In previous researches, a decrease in infiltration rate was reported for coarse (1.5 mm diameter) glass beads porous media. On the other hand,  in the case of fine (0.4 mm diameter) glass beads porous media, the amount of reduction in the infiltration rate was small. We wanted knowledge of water movement under partial gravity conditions. We conducted water infiltration experiments under microgravity, 1/6G, and 1/3G conditions made by parabolic flights. The 0.2, 0.4, and 0.6 mm glass beads were used as porous media. The effects of particle size and partial gravity on water infiltration in porous media will be discussed.

How to cite: Sato, N., Maruo, Y., Nogawa, K., Naganuma, N., and Noborio, K.: Infiltration rate in unsaturated glass beads porous media under various gravity made by parabolic flight., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20786, https://doi.org/10.5194/egusphere-egu2020-20786, 2020.

In 2018 the weather in Germany was extreme: The highest temperatures since 1881 (= start of regular weather recording) were observed during the months of April – August (temperature anomaly of +3.6 K) and the second lowest precipitation amounts (anomaly of -150 mm). In that year, we measured the soil conditions (soil water tension, water content, electrical resistivity, temperature, seepage water at suction plates) in a maize field in Northern Germany continuously down to a depth of about 1.5 m using a combined geophysical and soil scientific small-scale instrumentation array.

This unique dataset revealed the heterogeneity of the subsurface water content, changes in soil water conductivity, heterogeneity of the water retention function, indications for preferential flow after the onset of precipitation (and locally increased nitrate concentrations) in seepage water. The electrical resistivity (ERT) data clearly detected the infiltration of local rainfall events by the change of near surface resistivity. The resistivity changes differ spatially reflecting dm-scale variations most probably caused by the dense maize plants. Soil water contents measured by TDR detected the summer rainfall events in some locations, in others, very small-scale preferential flow paths were found overlooked by ERT. The detected changes in pore water conductivity need to be taken into account when recalculating water contents from ERT data. Our data allow for a description of different scale effects on the derivation of flux processes and total flux estimations under extreme weather conditions but also show that cross-scale methods are needed for an adequate assessment of unsaturated flow.

How to cite: Susanne, S., Olga, F., and Ursula, N.: Heterogeneity of unsaturated flow measured in the dry summer of 2018 in Germany recorded by the combination of ERT and soil data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16417, https://doi.org/10.5194/egusphere-egu2020-16417, 2020.

EGU2020-16423 | Displays | SSS6.4

Millimeter scale water movement on convex and concave surfaces of porous media under microgravity.

Yuichi Maruo, Naoto Sato, Natsumi Naganuma, Kento Nogawa, Maho Tsukano, Hayato Mizutani, and Kosuke Noborio

 Human’s sphere of activities is going to expand to Moon and Mars on 2030s. As manned space mission getting longer, the importance of extra-terrestrial agricultural production increase not only for food production, but also for phycological benefit for astronauts. Water movement in porous media must be understood for secured plant growth, previous researches, however, reported that slower capillary flow was observed under microgravity than under Earth gravity (1 G). Air entrapment on pore neck may induce higher tortuosity and made capillary flow slower under microgravity. It was also reported that widening shape on capillary tube restrict water movement in capillary tube under microgravity. The diameter of capillary tube was relatively large (0.8 mm to 2.3 mm in-diameter) in the previous report; therefore, it is unclear that the result is applicable to the smaller pore structure like porous media. The objective of this study is (1) to evaluate capillary flow rate on convex and concave surface on the particle of porous media under microgravity and under 1 G, (2) to evaluate the water movement on widening area made by boundary between 0.8 mm and 1.0 mm glass beads. To make water movement visible, acrylic column of 2 mm thickness was chosen and was filled with 4 cm layer of 0.8 mm diameter glass beads and 3 cm layer of 1.0 mm diameter glass beads. Distilled water dyed with methylene blue solution was infiltrated into the glass beads under 2.4 s microgravity condition induced by 50 m free fall or under 1 G condition. Capillary flow was taken by high speed (960 fps) and closeup camera (DSC-RX100M5A, SONY) and split into image sequences to analyze with software (ImageJ). Both under microgravity and under 1 G, capillary flow stuck on the convex surface and hardly infiltrated into the concave surface, however, once water crossed over the convex surfaces, water moved on concave surfaces very fast. Pore was filled with water and air entrapment on pore neck, predicted on previous research, was not observed. The water front firstly reached on the boundary of 0.8 mm to 1.0 mm glass beads stopped, however, after the surrounding water front catch up, water crossed over the boundary. This result suggested that widening area restricted capillary flow, however it did not shut-off.

How to cite: Maruo, Y., Sato, N., Naganuma, N., Nogawa, K., Tsukano, M., Mizutani, H., and Noborio, K.: Millimeter scale water movement on convex and concave surfaces of porous media under microgravity., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16423, https://doi.org/10.5194/egusphere-egu2020-16423, 2020.

EGU2020-18056 | Displays | SSS6.4

Effect of compaction on soil water holding capacity: Case of Moroccan semi-arid context

Yassine al Masmoudi, Khalid ibno Namr, and Abdellah el Aissaoui

EGU2020-21431 | Displays | SSS6.4

Ponding time, hydraulic conductivity and sorptivity – experimental determination by a single ring infiltrometer with rain simulator

Igor Pelíšek, Jakub Štibinger, Zbyněk Kulhavý, and Luca Melorio

The continuous rain simulator used with very precise dosing enables both simulation of characteristic rainfall as well as accurate determination of infiltration rate and automatic calculation of hydraulic conductivity of soils under natural conditions. As a part of the research of infiltration processes induced by characteristic rainfalls, the effects of stormy rainfalls were verified in the described project stage. Stormy rain with constant intensity was applied by rain simulator in a single ring infiltrometer. Samples were tested in the laboratory (soils and kaolinite) and directly in the field. During rain infiltration was measured ponding time. Theoretical base of the research comes from non-steady state unsuturated vertical infiltration, which process (in one-dimensional flow conditions) can be described by Richard´s equation. Final simplified solution is provided by Philip´s simplified infiltration equtions. Hydraulic conductivity K was approximated from the analysis of time series of the process of vertical non-steady cumulative infiltration, going after ponding time. Sorptivity S was calculated by the numerical experiment with known values of stormy rain intensity, ponding time and hydraulic conductivity. Compared to traditional methods (single or double ring infiltrometer), soil hydro-physical characteristic (K, S) determined by this method is more reliable, informative and verified by ponding time.

How to cite: Pelíšek, I., Štibinger, J., Kulhavý, Z., and Melorio, L.: Ponding time, hydraulic conductivity and sorptivity – experimental determination by a single ring infiltrometer with rain simulator, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21431, https://doi.org/10.5194/egusphere-egu2020-21431, 2020.

SSS6.6 – Preferential flow and mass transfers in heterogeneous soils, porous fractured media and complex geological structures

Preferential fluid flow and chemical transport occur on scales ranging from pores to aquifers and catchments, in both fully and partially water-saturated geological formations. Preferential flows can be considered, in a general sense, manifestations of self-organization that hinders perfect mixing within a system, and leads to faster throughput of water and chemicals. However, unified concepts for the onset, spatiotemporal patterning, and magnitude of such preferential flows are generally difficult to define; and this is compounded by the difficulty – or practical impossibility – of obtaining detailed measurements of the structure and hydraulic functioning of vadose zones, catchments, and aquifers. We propose that conceptualizations and quantitative characterizations of preferential fluid flow and chemical transport in all of these systems can be unified in terms of tools that connect them in a dynamic framework. Here, we discuss key, shared features of fluid flow and chemical transport dynamics in each of these two systems, based on both laboratory and field measurements, and numerical simulations. We show how even well-connected fracture networks can display highly non-uniform preferential paths for fluid and chemicals. We then recognize that this behavior is similar to that of rapid infiltration in soils and the vadose zone, which exhibits strongly localized preferential pathways in root channels, cracks, worm burrows or connected inter-aggregate pore networks. Moreover, both types of domains can display “memory effects”, in terms of the location and functioning of preferential paths even during perturbations in the velocity gradient and/or rates of infiltration. We argue that the ubiquity of unresolved (or uncharacterized) heterogeneity at all spatial and temporal scales necessitates the use of effective medium models that enable an accounting of a wide range of flow and transport behaviors. For chemical transport, we focus on a probabilistic modelling framework that can capture the dynamics in heterogeneous vadose zones and fractured (or otherwise heterogeneous) geological formations. We then demonstrate application of this model to interpret field-scale tracer breakthrough curves (concentration vs. time) in a highly fractured karst formation over length scales of up to more than 7 km.

How to cite: Berkowitz, B.: Preferential fluid flow and chemical transport in saturated fractured porous media and in heterogeneous vadose zones: Two sides of the same coin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3112, https://doi.org/10.5194/egusphere-egu2020-3112, 2020.

EGU2020-17961 | Displays | SSS6.6

Field observations of subsurface flow path evolution over 10 Millennia

Anne Hartmann, Ekaterina Semenova, Markus Weiler, and Theresa Blume

Where water goes when it rains, is to a large part controlled by subsurface storage and subsurface flow paths. While these aspects are essential for basic hydrological process understanding, their large spatial and temporal variability makes both systematic studies and extraction of generalizable results challenging.
We investigate systematically how subsurface storage and flow paths change during the temporal evolution of hillslopes. In order to do so we selected 4 moraines of different ages (30, 160, 3000 and 10.000 years) in a glacial foreland in the Swiss Alps. We then studied both soil physical characteristics as well as flow path evolution across this chronosequence by extensive sampling and soil physical laboratory analyses on the one hand and 36 in-situ dye tracer experiments (Brilliant Blue)  on the other hand.
We find that soil physical characteristics change significantly over the millennia. However, vegetational development seems to have a similarly strong effect on flow path evolution. Flow paths evolve from mainly matrix flow at the youngest moraine to increasingly more dominant preferential flow. At the oldest moraine we furthermore find increased subsurface storage, especially in the now strongly developed organic horizon. At intermediate ages preferential flow is less dominated by flow in macropores but is initiated at the soil surface through spatially variable vegetation and microtopography. With this study we provide a first systematic and detailed study of flow path evolution across the first ten millennia of hillslope evolution.

How to cite: Hartmann, A., Semenova, E., Weiler, M., and Blume, T.: Field observations of subsurface flow path evolution over 10 Millennia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17961, https://doi.org/10.5194/egusphere-egu2020-17961, 2020.

EGU2020-22580 | Displays | SSS6.6

Assessing Water Infiltration and Soil Water Repellency in Brazilian Atlantic Forest Soils

Sergio Esteban Lozano-Baez, Miguel Cooper, Silvio Frosini de Barros Ferraz, Ricardo Ribeiro Rodrigues, Mirko Castellini, and Simone Di Prima

This study presents the results of the soil hydraulic characterization performed under three land covers, namely pasture, 9-year-old restored forest, and remnant forest, in the Brazilian Atlantic Forest. Two types of infiltration tests were performed, namely tension (Mini-Disk Infiltrometer, MDI) and ponding (Beerkan) tests. MDI and Beerkan tests provided a complementary information, highlighting a clear increase of the hydraulic conductivity, especially at the remnant forest plots, when moving from near-saturated to saturated conditions. In addition, measuring the unsaturated soil hydraulic conductivity with different water pressure heads also allowed to estimate the macroscopic capillary length in the field. This approach, in conjunction with Beerkan measurements, allowed to generate better estimates of the saturated soil hydraulic conductivity under challenging field conditions, such as soil water repellency (SWR). This research also reports for the first time evidence of SWR in the Atlantic Forest, which affected the early stage of the infiltration process with more frequency in the remnant forest.

How to cite: Lozano-Baez, S. E., Cooper, M., Frosini de Barros Ferraz, S., Ribeiro Rodrigues, R., Castellini, M., and Di Prima, S.: Assessing Water Infiltration and Soil Water Repellency in Brazilian Atlantic Forest Soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22580, https://doi.org/10.5194/egusphere-egu2020-22580, 2020.

Soil aggregation is a dynamic state involving numerous biophysical interactions that cannot be deduced from snapshots of soil aggregate sizes nor the state of bulk soil organic carbon (SOC) alone. Hydrophysical and  biogeochemical functions of soil aggregation are directly linked with dynamic nature of soil aggregation. At the local scale, aggregates are formed and around particulate organic debris and they evolve as undifferentiated biogeochemical hotspots. The rate of evolution varies with the life-stage of each hotspot (the remaining reserve of C and nutrients within the hotspot) as well as the physical environmental conditions (wetness and temperature). Thus, the macroscopic patterns of hotspot (aggregate) distributions reflect the interplay between the spatial/temporal patterns of C inputs and fluctuations of physical environmental conditions. Here, we show a modeling analysis of how these aggregation patterns vary across ranges of climatic and vegetation (root architecture) conditions. We utilize a model that considers the dynamic lifecycle of ensembles of multigenerational aggregates originating from polydisperse C inputs.

How to cite: Ghezzehei, T. and Or, D.: Root architecture and hydrologic fluctuations explain spatiotemporal soil aggregation patterns, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21957, https://doi.org/10.5194/egusphere-egu2020-21957, 2020.

The WormEx I Experiment was launched on 9 March 2016 to investigate the effects of biopores and earthworms holes on soil-water constitutive laws.
Particularly, changes in the soil hydraulic conductivity, in the soil sorptivity and in the macroscopic capillary length were evaluated in different soil conditions, by means of infiltrometric tests performed in a shallow anthropogenic soil of the Central Italian Alps (Cividate Camuno, Italy).
About 50 field infiltration tests were performed by means of a tension infiltrometer (TI) and by means of a small single ring infiltrometer, in view of applying the simplified BEST method (Beerkan Estimation of Soil Transfer parameters).
The worms presence was accounted for by counting worms' castings in 1 m2 experimental plots, and it was considered a proxy of the biogenic activity.
Various meteorological conditions and various conditions of the presence of worms' castings were sampled during a period of three years.
Obtained results highlight how soil hydrological properties change depending on the biopores presence.

As a result, the hydraulic conductivity greatly increased in presence of soil biopores, both in ponding and in near-saturation conditions.
Conductivity at saturation increased on average by 45% (TI method), between great and small presence of earthworms' holes.
Considering soil conditions that stimulate the biological activity (e.g. the previous days precipitation and the great water content at the beginning of the infiltration tests), the conductivity at saturation increased more, i.e. by 85% (TI) and by 105% (BEST) on average.
The increase is even more relevant passing from adverse conditions (low castings number and small initial soil-water content) to optimal conditions (high castings number and great initial soil-water content).
In these cases average increments are more than 200% (TI).

Also the hydraulic conductivity of the nearly saturated soil, with pressure potential ranging between -5 cm and  0 cm, meaningfully increased in case of biopores presence.
The greatest (relative) increase of the soil hydraulic conductivity was observed in most of the cases at a pressure potential of -2 cm.

Sorptivity meaningfully increased from low to high wormholes number (45% at saturation) and from optimal to adverse conditions (114% at saturation).
As for the hydraulic conductivity, this increase was even greater nearby ponding conditions.
Field-tests results changed greatly depending on time and space: great standard deviations were observed for both hydraulic conductivity and sorptivity at all the values of pressure potential.

The macroscopic capillary length λc, which provides concise information about the soil attitude to diffusion, determined by numerically evaluating the subtended area to the experimental hydraulic-conductivity curve, also evidenced the presence of earthworms' burrows, ranging from 16.9 mm to  11.6 mm in optimal and adverse conditions respectively.

How to cite: Pezzotti, D., Peli, M., Ranzi, R., and Barontini, S.: The WormEx I Experiment: Effects of biopores and earthworm holes on soil hydraulic conductivity, sorptivity and macroscopic capillary length, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19338, https://doi.org/10.5194/egusphere-egu2020-19338, 2020.

In an endeavour to describe quantitatively the water flow and solute transport in soils and other heterogeneous porous media, various different approaches have been introduced in the past decades, including double porosity, double permeability and other multiple-continua approaches. Recently, a promising methodology to identify experimentally the pore structure of porous media has been proposed, where a discrete distribution of effective pore radii is established based on saturated flow experiments with non-Newtonian (shear-thinning) fluids, as described by Abou Najm and Atallah (2016) and in other works. In this particular concept, the porous media is idealised as a bundle of capillaries with only a reasonably small number of distinct values of their radii. This allows to identify the pore radii and the contributions of the corresponding pore groups to the total flow by performing and evaluating a reasonable number of flow experiments.

In an attempt to understand better the relation of the effective discrete pore radii distribution concept (with a given number of distinct pore radii allowed) to the structure of the porous media, we perform numerical experiments with other idealised geometries of the pore space. The saturated flow experiments with shear-thinning fluids are simulated by finite element method and then, based on the resulting flow, the discrete pore radii distributions are established and compared with the original geometry. For simplicity, we stick to one-dimensional models analogous to Poiseuille or Hagen-Poiseuille flow. The idea is to examine pore size distributions that are continuous rather than discrete, while keeping the advantage of a perfectly controlled and comprehensible idealised geometry. This in-silico approach may later serve as a supporting tool for studying various aspects of the addressed experimental methodology, e.g., in taking into account realistic non-Newtonian rheology, proposing an optimal set of experiments, or contemplating links with solute transport models.

How to cite: Lanzendörfer, M.: Numerical experiments with idealised pore space geometries and shear-thinning fluids., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16647, https://doi.org/10.5194/egusphere-egu2020-16647, 2020.

EGU2020-14230 | Displays | SSS6.6

Macropore-matrix mass transfer: reactive solute transport as quantified with Fluorescence imaging

Christoph Haas, Ruth Ellerbrock, and Horst H. Gerke

Preferential flow paths in soils play a major role for transport processes of heat, gas, water, and solutes and are important adsorption sites. For mass-exchange processes and water storage in soils, small-scaled soil properties, like the spatial distribution of adsorption sites and their accessibility, and the permeability are crucial. Interfaces between macropores (i.e., earthworm burrows, cracks, and root channels) and the soil matrix control the mass exchange. Water and solute transfer through the interface between bio-pores, aggregate or crack surfaces and the matrix was traced at the scale of small soil blocks (≤45 mm edge length) with Fluorescein (i.e., a reactive, fluorescent dye). The objectives were to visualize and quantify hydraulic transport, and sorption characteristics of earthworm-, root- and shrinkage-induced interfaces. Batch experiments were performed to calibrate the Na-Fluorescein tracer concentration versus fluorescence-intensity relationship and to derive parameters for two kinetic sorption models (i.e., Freundlich vs. Langmuir). Fluorescence imaging in the laboratory of small soil blocks was applied with a self-constructed spraying device, and with the help of the calibration, small-scaled dye-concentration maps were derived. Time- and interface-dependent positions of the wetting fronts in vertical direction were estimated with the help of the cumulative infiltration. Assuming equilibrated conditions between Na-Fluorescein in solution (calculated by multiplying the locale dye-concentration and the local water content) and Na-Fluorescein sorbed to soil, the total mass transfers as a function of macropore-type and spraying time were determined. The results of the mass transfer for water and reactive solutes were characteristic for the soil structure type and depending on the composition of the macropore-matrix interface. Differences were explained by alterations in soil structure and chemical composition of the coatings. Results suggest relations between mass exchange and observable soil properties. This can be helpful for improving the numerical simulation of macropore-matrix mass transfer and inverse simulations of small-scaled hydraulic, transport, and sorption characteristics of macropore walls.

How to cite: Haas, C., Ellerbrock, R., and Gerke, H. H.: Macropore-matrix mass transfer: reactive solute transport as quantified with Fluorescence imaging, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14230, https://doi.org/10.5194/egusphere-egu2020-14230, 2020.

Recharge estimation in fractured-porous aquifers is an essential tool for proper water management and assessment of vulnerability. As opposed to diffuse infiltration, often encountered in consolidated and unconsolidated porous media, the infiltration dynamics in the unsaturated zone of fractured-porous media and karst aquifers often exhibit a rapid, gravity-driven flow component along preferential flow paths such as fractures, fracture networks, faults and fault zones. The partitioning into two hydraulically contrasting domains commonly leads to a breakdown of classical volume-effective flow equations employed in many FD or FEM modeling approaches which only consider the capillarity of the medium. Even in the presence of a porous matrix, preferential pathways along fractures have been shown to sustain flow percolation under equilibrium and non-equilibrium conditions. In order to properly capture the flow physics, various components have to be considered such as static and dynamic contact angles, surface tension, free-surface (multi-phase) interface dynamics, dynamic switching of flow modes (between droplets, rivulets, films) and associated formation of singularities in the case of merging or snapping flow. Here we study the process of vertical infiltration and partitioning at a single fracture intersection into a horizontal and vertical flow component. Via parallelized Smoothed Particle Hydrodynamics simulations we demonstrate how flow is first channeled into the horizontal fracture and then transitions into a Washburn-type inflow when pressure conditions are met and a connection to the next vertical flow path is established. We further proceed to capture this process with an analytical approach and finally demonstrate how to obtain a process-based transfer function to upscale this process to arbitrary fracture geometries and fracture cascades.

How to cite: Kordilla, J., Dentz, M., and Tartakovsky, A.: Partitioning of preferential flows in fracture networks: Smoothed Particle Dynamics simulations and analytical modeling of infiltration dynamics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22595, https://doi.org/10.5194/egusphere-egu2020-22595, 2020.

Infiltration processes in fractured consolidated aquifer systems often exhibit complex gravity-driven flow features and hence tend to develop preferential flow paths along fracture network which contribute to rapid mass fluxes. This behavior is often difficult to model with classical methods such as the Richards equation, as a variety of interacting flow modes, ranging from free-surface flows over droplet and and rivulet flows, control the mass partitioning processes at fracture intersections and within fractures. Here we demonstrate with two different types of laboratory experiments how the complexity of such flows affects the discharge behavior: (1) In order to isolate the mass partitioning process at fracture intersections we use custom-made acrylic cubes to establish a set of vertical fractures (free-surface, bounded by one side only) intersected by horizontal fractures. In order to control the prevailing flow mode we use a multichannel dispenser and set flowrates to critical thresholds for each regime. We then calculate normalized horizontal fracture inflow rates and delineate classical Washburn-type behavior in order to obtain an analytical transfer function for the given system and extended fracture cascades. (2) In order to study the effect of a porous matrix adjacent to the fractures we carried out quasi-2D laboratory experiments of infiltration into complex fracture networks using Seeberger sandstone slices. The system allows to study both the onset of preferential fracture flow dynamics as well as the porous matrix imbibition under dynamics conditions. To study the effect of geometry on discharge dynamics we modify fracture apertures as well as fracture offsets, i.e., the geometry of the fracture intersections. Results show that, despite the complex internal flow dynamics, clear scaling patterns can be observed and the geometrical characteristics are imprinted into the outflow behavior.

How to cite: Noffz, T., Rüdiger, F., Dentz, M., and Kordilla, J.: Analogue laboratory experiments of preferential flow dynamics in porous fractured media: Importance of fracture intersections and porous matrix imbibition processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22593, https://doi.org/10.5194/egusphere-egu2020-22593, 2020.

EGU2020-10737 | Displays | SSS6.6

Dynamics of solute transport in capillary tubes delineated by dual energy imaging

Nima Shokri, Salomé M.S. Shokri-Kuehni, and Mohammad Javad Shojaei

Saline water evaporation from a single meniscus plays an important role in determining the general dynamics of evaporation from porous media filled with saline water, which is relevant to several processes such as soil salinization, land-atmosphere interaction and soil moisture-precipitation interactions. Fundamental understanding of the mechanisms controlling solute transport and deposition in single capillary tubes is a necessary step to describe saline water evaporation and solute precipitation in complex porous media (Norouzi Rad et al., 2013; Shokri-Kuehni et al., 2017a; Shokri-Kuehni et al., 2017b). Within this context, we utilized dual energy imaging using synchrotron X-ray micro-tomography (Shokri-Kuehni et al., 2018) to investigate solute transport and deposition during evaporation from single capillary tubes of square and circular cross sections with lateral dimension of 1 mm and 3 mm (two sizes per cross section which resulted in four capillary tubes in total). The capillary tubes were filled with CaI2 solution of 5% concentration (by weight) and were placed under similar evaporative conditions. All boundaries were closed except top which was exposed to air for evaporation. The drying capillary tubes were scanned approximately once every hour for nearly 20 hrs. The recorded images enabled us to quantify solute concentration with a high spatial and temporal resolution throughout the capillary tubes with different sizes and cross sections and delineate the key transport mechanisms controlling solute transport and preferential deposition during evaporation. Our findings clearly show the contribution and impact of corner flow observed in square capillary tubes on the spatio-temporal distribution of solute, the evaporative mass losses and the velocity of the receding meniscus. The obtained results extend the fundamental understanding required for describing the transport mechanisms controlling saline water evaporation from porous media.

References

Norouzi Rad, M., N. Shokri, M. Sahimi (2013), Phys. Rev. E, 88, 032404.

Shokri-Kuehni, S.M.S., T. Vetter, C. Webb, N. Shokri (2017a), Geophys. Res. Lett., 44, 5504–5510.

Shokri-Kuehni, S.M.S., M. Norouzirad, C. Webb, N. Shokri (2017b), Adv. Water Resour., 105, 154-161.

Shokri-Kuehni, S.M.S., M. Bergstad, M. Sahimi, C. Webb, N. Shokri (2018b), Sci. Rep., 10, 10731, London: Nature Publishing Group.

How to cite: Shokri, N., Shokri-Kuehni, S. M. S., and Shojaei, M. J.: Dynamics of solute transport in capillary tubes delineated by dual energy imaging , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10737, https://doi.org/10.5194/egusphere-egu2020-10737, 2020.

EGU2020-19695 | Displays | SSS6.6

Numerical modelling based saturation conductivity estimation uncertainty – influence of the quality of the pore space geometry representation based on X-ray CT images

Krzysztof Lamorski, Bartłomiej Gackiewicz, Cezary Sławiński, Shao-Yiu Hsu, and Liang-Cheng Chang

X-ray computational tomography (CT) is becoming more and more popular research tool in geosciences. Estimation of the saturated conductivity of the porous media based on X-ray CT images is an example of its application. In case of simulations for the pore media, which are approximated by the very complicated meshes, problems might arise when mesh does not follow the shape of pore-space ideally, which may happen due to limitations imposed (e.g. due to some technical constraints) on minimum mesh cell size which usually is bigger than CT scan resolution used for determination of the pore space. If this is the case, the mesh can’t be generated properly in the narrow regions of the pore-space.

The work tries to quantify the impact of the limited mesh quality on estimation of the saturated conductivity coefficient. Four mesh generation parameters, resulting in different sizes of the minimum mesh cell size, were compared. For comparison five different pore media (three sandpacks prepared from different sand fractions and two types of sandstones) were used, all of them were used in two repetitions which resulted in 10 studied samples in total. First samples were X-ray CT scanned with resolution 2um. Than images were thresholded to obtain information about pore-space. In the next step, for all of 10 3D images of pore-space, mesh was generated in four repetitions differing with minimum mesh cell size: 2.56, 3.41, 5.12 and 10.25 times greater than voxel size used for CT scanning.

Saturated conductivity was simulated based on prepared meshes using finite volume based solver of the Navier-Stokes equations. Estimated for each sample saturated conductivity differed from 12% for coarse media to 200% for fine grain media for different numerical meshes representing with different accuracy pore space geometry.

Based on samples studied, one may conclude that for optimal results of saturated conductivity numerical estimation, the smallest numerical mesh’s cell size should be of the level of pore media CT scan resolution.  

 

Acknowledgments:

This work was partially supported by a grant from the Polish National Centre for Research and Development within the contract no.: PL-TW/IV/5/2017.

How to cite: Lamorski, K., Gackiewicz, B., Sławiński, C., Hsu, S.-Y., and Chang, L.-C.: Numerical modelling based saturation conductivity estimation uncertainty – influence of the quality of the pore space geometry representation based on X-ray CT images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19695, https://doi.org/10.5194/egusphere-egu2020-19695, 2020.

EGU2020-9693 | Displays | SSS6.6

Evaporation from porous media as influenced by osmotic potential

Adil Salman, Deep Joshi, Mahyar Naseri, and Wolfgang Durner

The measurement of the water potential is important to characterize solute transport in soil and water uptake by plants. Many researchers have characterized the matric potential and its impact on evaporation from porous media. However, only few studies have been carried out to characterize the effect of the osmotic potential. In this study, we investigated the simultaneous influences of the osmotic and matric potentials on the evaporation from soil. Our hypothesis was that both potential components affect the two stages of evaporation and that the osmotic potential in direct vicinity of the soil surface is a controlling variable. To meet our objective, we performed evaporation experiments on columns filled with pure quartz sand and natural soil materials with different textures, under climate-controlled laboratory conditions. The soils were initially saturated with different concentrations of saline solutions and evaporation from each column was measured daily. Our results show that the osmotic potential reduced the amount of evaporated water from the investigated porous media. The amount of reduction due to the osmotic potential is compared with model calculations that consider the total water potential at the soil surface.

How to cite: Salman, A., Joshi, D., Naseri, M., and Durner, W.: Evaporation from porous media as influenced by osmotic potential, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9693, https://doi.org/10.5194/egusphere-egu2020-9693, 2020.

EGU2020-5172 | Displays | SSS6.6

Approximate expansions for water infiltration into dual permeability soils

Laurent Lassabatere, Simone Di prima, Massimo Iovino, Vincenzo Bagarello, and Rafael Angulo-Jaramillo

The understanding of hydrological processes requires the investigation of preferential flows. In particular, the infiltration compartment is strongly affected by preferential flows. Recently, Lassabatere et al. (2014) proposed a model for the analytical modelling of the infiltration impacted by preferential flow. These authors extended the model developed by Haverkamp et al. (1994) for single permeability soils to the case of dual permeability soils. However, this model remains implicit, requiring an inversion procedure for the quantification of the bulk cumulative infiltration. Such an implicit feature prevents from direct computation and may annoy any fellow who wants a direct and simple computation procedure. In this paper, we develop two approximate expansions for both transient and steady states. For that, we use the expansions proposed by Haverkamp et al. (1994) for single permeability systems. These expansions are written for each compartment of the dual permeability soils, i.e. the matrix and the fast-flow regions and are combined for the computation of the bulk infiltration. After formulation of these expansions, these are assessed in terms of their capability to accurately reproduce the complete implicit model. Their validity time intervals are also determined and discussed. The main limitation for the use of these expansions results from the fact that the time intervals that define the transient and steady states are contrasted between the matrix and the fast-flow regions. However, some domain of validity can be defined allowing the use of these approximate expansions.

Haverkamp, R., Ross, P. J., Smettem, K. R. J. and Parlange, J. Y.: 3-Dimensional analysis of infiltration from the disc infiltrometer .2. Physically-based infiltration equation, Water Resour. Res., 30(11), 2931–2935, 1994.

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Simunek, J. and Haverkamp, R.: Numerical evaluation of a set of analytical infiltration equations, Water Resour. Res., 45, W12415, doi:doi:10.1029/2009WR007941, 2009.

How to cite: Lassabatere, L., Di prima, S., Iovino, M., Bagarello, V., and Angulo-Jaramillo, R.: Approximate expansions for water infiltration into dual permeability soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5172, https://doi.org/10.5194/egusphere-egu2020-5172, 2020.

EGU2020-4177 | Displays | SSS6.6

Ground-penetrating radar surveys for the detection of preferential flow into soils

Simone Di Prima, Thierry Winiarski, Rafael Angulo-Jaramillo, Ryan D. Stewart, Mirko Castellini, Majdi R. Abou Najm, Domenico Ventrella, Mario Pirastru, Filippo Giadrossich, and Laurent Lassabatere

Preferential flow is more the rule than the exception, in particular during water infiltration experiments. In this study, we demonstrate the potential of GPR monitoring to detect preferential flows during water infiltration. We monitored time-lapse ground penetrating radar (GPR) surveys in the vicinity of single-ring infiltration experiments and created a three-dimensional (3D) representation of infiltrated water below the devices. For that purpose, radargrams were constructed from GPR transects conducted over two grids (1 m × 1 m) before and after the infiltration tests. The obtained signal was represented in 3D and a threshold was chosen to part the domain into wetted and non-wetted zones, allowing the determination of the infiltration bulb. That methodology was used to detect the infiltration below the devices and clearly pointed at nonuniform flows in correspondence with the heterogeneous soil structures. The protocol presented in this study represents a practical and valuable tool for detecting preferential flows at the scale of a single ring infiltration experiment.

How to cite: Di Prima, S., Winiarski, T., Angulo-Jaramillo, R., Stewart, R. D., Castellini, M., Abou Najm, M. R., Ventrella, D., Pirastru, M., Giadrossich, F., and Lassabatere, L.: Ground-penetrating radar surveys for the detection of preferential flow into soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4177, https://doi.org/10.5194/egusphere-egu2020-4177, 2020.

EGU2020-7919 | Displays | SSS6.6

Assessing the effects of cardoon intercropping with different cover crops on soil physical quality with BEST-2K method and automatic infiltrometers

Vittoria Giannini, Simone Di Prima, Laura Mula, Roberto Marrosu, Mario Pirastru, Laurent Lassabatere, Rafael Angulo-Jaramillo, and Pier Paolo Roggero

Cardoon (Cynara cardunculus L.) is a promising energy crop for marginal areas in Mediterranean environment. Temporary intercropping with cover crops can provide multiple services such as weed suppression, additional and diversified biomass production and soil physical quality (SPQ) improvement.

A number of studies have demonstrated that the Beerkan estimation of soil transfer parameters (BEST) method appears promising for assessing SPQ in agricultural soils, given that it allows the entire determination of the water retention and hydraulic conductivity curves, and the derivation of both static and dynamic SPQ indicators in the field. However, BEST is suitable only for single-permeability (SP) soils. Lassabatere et al. (2019) designed a method for the hydraulic characterization of dual-permeability (DP) soils named BEST-2K to address the case of the soils prone to preferential flow. DP models are increasingly adopted in soil science to take better account of water flow dynamics in heterogeneous soils. Moreover, recent investigations suggested that a comprehensive assessment of SPQ of agricultural soils also involving DP approaches may substantially improve our capacity to evaluate the effect of specific management practices on key “domain-oriented” processes. Indeed, DP models assume that soil encompass two domains, including the matrix and the fast-flow domain that respectively host the smallest and the largest pores. While in the matrix domain the intra-aggregate pores constitutes the primary source of plant-available water and nitrous oxides, in the fast-flow domain the inter-aggregate pores are the primary region for root-essential air, carbon dioxide generation and nutrient leaching losses (Reynolds, 2017).

We investigated the effects of temporary intercropping with cover crops belonging to different functional groups on SPQ. In October 2019, an experimental trial intercropping Cynara cardunculus cv Bianco Avorio with four different cover types (3 cover crops: Vicia villosa Roth. cv Haymaker Plus, Eruca sativa L. cv Nemat and Camelina sativa (L.) Crantz. cv Italia and spontaneous weeds) was set up at the Ottava experimental station of the University of Sassari (Sardinia, IT).

The new BEST-2K method was used for assessing SPQ of the different intercropping systems. At this aim, we carried out multi-tension infiltration experiments in order to selectively activate only the matrix or the whole pore network, and for the characterization of the water retention and hydraulic conductivity functions of matrix and fast-flow domains. Then, we used these functions to determine SPQ indicators for the two domains. A zero-point scenario (1 month after sowing) has been already drawn. The field measurements will be repeated in summer after the harvest of the above-ground biomass of both cardoon and cover crops.

References

Lassabatere, L., Di Prima, S., Bouarafa, S., Iovino, M., Bagarello, V., Angulo-Jaramillo, R., 2019. BEST-2K Method for Characterizing Dual-Permeability Unsaturated Soils with Ponded and Tension Infiltrometers. Vadose Zone Journal 18. https://doi.org/10.2136/vzj2018.06.0124

Reynolds, W.D., 2017. Use of bimodal hydraulic property relationships to characterize soil physical quality. Geoderma 294, 38–49. https://doi.org/10.1016/j.geoderma.2017.01.035

 

How to cite: Giannini, V., Di Prima, S., Mula, L., Marrosu, R., Pirastru, M., Lassabatere, L., Angulo-Jaramillo, R., and Roggero, P. P.: Assessing the effects of cardoon intercropping with different cover crops on soil physical quality with BEST-2K method and automatic infiltrometers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7919, https://doi.org/10.5194/egusphere-egu2020-7919, 2020.

EGU2020-8220 | Displays | SSS6.6

Is breakthrough of solute impacted by the edges of the columns in the case of macropored systems?

Jérôme Raimbault, Laurent Lassabatere, Pierre-Emmanuel Peyneau, Denis Courtier-Murias, and Béatrice Béchet

In natural systems, preferential flow is the rule rather than the exception. Non-uniform and preferential flows significantly impact mass transport, and by this way most of geochemical processes and pollutant dispersion in the environment. Laboratory columns are experimental devices used for the monitoring of solute transfer through porous. In particular, several studies used such experimental devices for characterizing mass transfer through heterogeneous systems and macropored systems. However, the design of these devices and its impacts on the experimental results has never been investigated in depth so far. In particular, the edge effect is rarely questioned and the transfer is always hypothesized to correspond to a fully developed flow (i.e., flow in an equivalent infinite system). In this study, we question this hypothesis both experimentally and numerically for the case of a macropored system. Tracer elutions, magnetic resonance imaging (MRI), and modeling using multiphysics approaches (Comsol) are conducted to demonstrate that flow is affected by edge effects close to the inlet and the outlet of the column, and that the presence of filters (used to prevent particles from exiting the system and clogging the outlet) do impact the flow and transfer breakthrough. Consequently, these edge effects should be considered when analyzing the results and concluding on the involved processes, in particular for the case of soils and systems with macropores.

How to cite: Raimbault, J., Lassabatere, L., Peyneau, P.-E., Courtier-Murias, D., and Béchet, B.: Is breakthrough of solute impacted by the edges of the columns in the case of macropored systems?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8220, https://doi.org/10.5194/egusphere-egu2020-8220, 2020.

EGU2020-17727 | Displays | SSS6.6

Soil macropore-matrix mass exchange tracer experiments that account for sorption at macropore walls

Horst H. Gerke, Jaromir Dusek, Martin Leue, Steffen Beck-Broichsitter, Martina Sobotkova, Michal Dohnal, Tomas Vogel, Michal Snehota, Milena Cislerova, Ruth H. Ellerbrock, and Christoph Haas

The transfer of water and solutes between soil matrix and macropores controls preferential flow. Mass transfer depends on soil structural geometry and on properties of biopore walls and crack coatings that can differ from those of the matrix with respect to texture, organic matter, bulk density, and porosity. Agrochemicals and other solutes can react during transport along macropores, which has yet not been well-considered. The objective of this study was to study the specific effects of sorption on the reduction of mass exchange due to the effects of sorption at the macropore-matrix interface. Field and lab percolation experiments under unsaturated flow conditions were carried out with intact soil columns to simulate movement of bromide as a conservative and Brilliant Blue, iodide, and Na-Fluorescein as a reactive tracer. Sorption properties were determined separately for the biopore walls and crack coatings. The results suggest that preferential transport of reactive solutes depends even more strongly on the geometry and properties at flow paths surface than conservative solutes. If these properties can be determined, mass transfer coefficients in two-domain models can be related to soil structure and management.

How to cite: Gerke, H. H., Dusek, J., Leue, M., Beck-Broichsitter, S., Sobotkova, M., Dohnal, M., Vogel, T., Snehota, M., Cislerova, M., Ellerbrock, R. H., and Haas, C.: Soil macropore-matrix mass exchange tracer experiments that account for sorption at macropore walls, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17727, https://doi.org/10.5194/egusphere-egu2020-17727, 2020.

EGU2020-22395 | Displays | SSS6.6

Inverting stop-flow leaching experiments and detection of physical and chemical non-equilibria

Lian Zhou, Laurent Lassabatere, and Khalil Hanna

Flow heterogeneity strongly impacts mass transport. In particular, the presence of water fractionation into mobile and immobile water fractions may affect pollutant sorption to soil particles. Indeed, before sorbing, the pollutants need to diffuse from mobile water to immobile water fractions. In a previous study, we investigated the possibility of stop-flow experiments for the detection of physical and chemical non-equilibria. A sensitivity analysis proved that it was possible to detect the two types of non-equilibria. The effect of parameters related to physical  (mobile water fraction and solute exchange rate)  and chemical (chemical kinetics) non-equilibria were varied and related impacts on the shape of the breakthrough curves were characterized for stop-flow experiments. However, the feasibility of inverting procedures was not investigated at all. In particular, the estimation of these parameters by fitting the model to real experimental data (with noise) may be feasible but may also bring some uncertainty with biased and non-unique estimates. In this study, using both numerically generated data and experimental data, we characterize the estimate uncertainty and equifinality. This study will help in optimizing the inverting procedure for the design of more robust and less biased estimates and the quantification of physical and chemical non-equilibria parameters.

How to cite: Zhou, L., Lassabatere, L., and Hanna, K.: Inverting stop-flow leaching experiments and detection of physical and chemical non-equilibria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22395, https://doi.org/10.5194/egusphere-egu2020-22395, 2020.

EGU2020-6213 | Displays | SSS6.6

Examining saturated and unsaturated hydraulic parameter changes as a result of geochemical reactions in tailings

Raphael Akesseh, Mansour Edraki, and Thomas Baumgartl

Freshly deposited tailings define finely crushed rock rarely altered by weathering processes. In modelling water flow and solute transport for saturated and unsaturated conditions in deposited tailings, the hydraulic parameters are essential required parameters. It has been proposed that these parameters vary as the materials evolve through weathering processes which transform minerals and hence chemical and physical properties. Several methods, destructive and non-destructive, have been used to determine the change of these parameters. The evaporation method as a non-destructive method, for deriving hydraulic parameters of porous media can be employed to monitor the overall changes in the pores as the properties of the porous matrix changes. In order to test this hypothesis, 25% of pyrite, 25% of dolomite, 35% of quartz and 15% of chlorite, reflecting typical acid producing, acid neutralising and inert minerals were mixed to form artificial tailings. The mineral admixture was mixed at a water content of 10% and allowed to equilibrate for two weeks before the start of the experiment. The mineral admixture was packed to a bulk density of 1.4 g/cm3. The hydraulic parameters for the near saturation state were measured using the simultaneous measurement of water content and water potential as a consequence of evaporation. The mineral admixture was subjected to 9 drying and wetting cycles over a period of 9 months. The hydraulic parameters were estimated using RETC and HYDRUS 1D. After 9 months of drying and wetting, there was a slight change in the bulk density of the material. This change had an overall effect on the subsequent hydraulic parameters. This study implies that feedback effects should be considered in modelling ageing of mine tailings.

How to cite: Akesseh, R., Edraki, M., and Baumgartl, T.: Examining saturated and unsaturated hydraulic parameter changes as a result of geochemical reactions in tailings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6213, https://doi.org/10.5194/egusphere-egu2020-6213, 2020.

Numerical modelling is a tool allowing the prediction of water flow and water balance based on material properties and time dependent input information at defined boundaries. Long time series are often required for a well informed assessment of the performance of a site. It has been shown that covers as a preferred option constructed in semi-arid and arid climates on mine sites to manage water flows and to prevent deep drainage have a characteristic bi-modal pore system largely caused by a large fraction of coarse rocks. Bi-modal water retention curves have been established for such covers which have proven to describe the response to precipitation with higher accuracy. Meteorological data as input information are in many cases only available on a daily basis if time series over decades are used for modelling. For a bi-modal pore system with often very high values for saturated hydraulic conductivity, a daily time-step may be to large to capture numerically the response in water flow. The objective of the presented work is the comparison of modelled deep drainage data for a specific cover design where hourly data are compared with daily input data. The latter were aggregated from the hourly information.

The results from the numerical modelling showed that for environments with high intensity rainfall events the calculated amount of deep drainage was by up to 10% smaller for the aggregated daily input data compared to the hourly data.

The presentation will inform which rainfall events contributed primarily to the difference in the water balance parameters and to which extent a generalisation can be made on the choice or requirement to choose an appropriate time step for specific climatic conditions.

How to cite: Baumgartl, T. and Shaygan, M.: The effect of the choice of time resolution on the prediction of deep drainage rates in rocky covers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20305, https://doi.org/10.5194/egusphere-egu2020-20305, 2020.

A key risk to reclamation covers over oil sands shale overburden is salinization of the cover soil due to salt transport from the underlying shale. The objective of this study was to evaluate controls on salt ingress based on observations and modelling of the transport of a conservative chemical species, chloride (Cl-), and a produced species, sulphate (SO42-) within reclamation profiles at the South Bison Hills overburden dump located north of Fort McMurray, Alberta, Canada.  The SO42- is produced as a result of pyrite oxidation.  Previously developed water dynamics models, including a fully coupled water and heat transfer model (CM) and a modified CM model (CM-EI) to account for enhanced snow melt infiltration, were coupled with an advective-dispersive transport model to simulate the observed Cl- profiles and concomitantly constrain the solute transport parameters.  This transport model was then used to simulate SO42- migration to evaluate the impact of pyrite oxidation (i.e. depth and SO42- production rate) on the evolving SO42- profiles.  It was found that the observed SO42- distributions could be simulated using an initially low rate of SO42- production (0.1 g SO42- m-2 d-1) in the first 5 years while macropore development as a result of freeze/thaw and wet/dry cycling was occurring, followed by a higher rate (0.62 g SO42- m-2 d-1) once this soil structure evolution was complete.  These average rates were applied over a shale depth of 0.75 m, consistent with field observations of oxygen ingress.  Mass balance estimates using measured available pyrite suggest that at these rates oxidation could continue for approximately 93 years.  Inclusion of enhanced snow melt (CM-EI model) results in higher rates of both net percolation and evapotranspiration (ET). The increased net percolation enables more rapid flushing of the produced SO42- deeper into the profile; however, the increased ET also draws produced SO42- into the cover soils. It is therefore likely that short-term soil salinization of the base of the covers is exacerbated by increased snowmelt infiltration, while in the long run salinity levels will drop due to increased net percolation.   

How to cite: Huang, M., Ireson, A., and Barbour, L.: Effects of snow melt infiltration and geochemical oxidation on the distribution of sulphate in reclaimed oil sands shale overburden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1548, https://doi.org/10.5194/egusphere-egu2020-1548, 2020.

Preferential flow pathways (PFPs) are key contributors for the ecological status of the hydrosphere in high mountain environments, as the precipitation will transfer to PFPs with rapid solute transport from soil to groundwater. This particularly refers to nutrient allocation from soils to groundwater and surface waters.

To understand the effects of the pedogenesis and forest types on the soil PFPs, the soil preferential flow was studied by in situ dye tracing image analysis and elemental chemical analysis at the Hailuogou glacier chronosequence, Gongga Mountain on the eastern Tibetan Plateau. A soil chronosequence and a vegetation primary succession following the retreat of the Hailuogou glacier has been forming since ~1890. Three sites representing different exposure age (45, 85 and 125 years) in the Hailuogou glacier retreat area chronosequence and two sites typical forest lands (deciduous broadleaf forest and coniferous forest) were selected to carry out a brilliant blue dyeing experiment to visualize the distribution of water infiltration in soil.

The tracer-infiltration patterns were parameterized by dye coverage (DC), preferential flow fraction (PF), length index (Li) and the variation coefficient of DC in the PFPs (CV). Furthermore, the distribution of PFPs, transported solute of soil PFPs was analyzed including Hailuogou glacier chronosequence and vegetation succession.

According to the comparison of PFPs parameters, soil PFPs at the 125-year-old site extremely more developed than that at the younger site due to the fracture development between rock and soil on the process of soil development. The soil PFPs under broadleaf forest is more pronounced than that in coniferous forest soils, largely depending on the different root system.

In general, PFPs in Gongga Mountain were important contributors to the potential translocation of bioavailable inorganic P (PBPi) and organic P translocation to the hydrosphere. The elements transported with PFPs could be divided into three categories, reactive, conservative, and both reacted and conservative elements for the concentration of the elements remain in the PFPs. The results indicated that Mg and Al are the reactive elements, while Na, K, Ca and Mn are the conservative elements in the PFPs. Iron is both reacted and conservative element in the PFPs. Zn, Na, K, Mg, PBPi, had a significant correlation with the variation coefficient of DC in the PFPs (CV).

The results highlight the effects of the pedogenesis and forest types on the distribution of PFPs and solute transfer. Preferential flow contributes largely to elements flow at the Hailuogou glacier chronosequence and vegetation succession, Gongga Mountain.

The financial support of this work was obtained from National Natural Science Foundation of China (Grant No. 41272220) and Natural Scientifc Foundation for Young Scientists of Guangxi Zhuang Autonomous Region of China (Grant No. 2017GXNSFBA198162). The first author was financially supported by the Sino-German (CSC-DAAD) Postdoc Scholarship Program funded by China Scholarship Council (CSC) and Deutscher Akademischer Austausch Dienst (DAAD).

How to cite: Liang, J.-H., Wu, Y.-H., and Guggenberger, G.: Distribution of preferential flow pathways and solute transfer along the Hailuogou Glacier Chronosequence on the Eastern Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19059, https://doi.org/10.5194/egusphere-egu2020-19059, 2020.

Soil water repellency is a common feature of dry soils under permanent vegetation and drought conditions. Soil-water hydrology is markedly affected by soil-water repellency as it hinders infiltration, leading to enhanced surface runoff and soil erosion. Although this phenomenon was primarily ascribed to sandy soils, it has been observed in loam, clay, and peat soils in dry and humid regions. One detrimental effect of soil water repellency on plants is the reduction of soil water availability that stems from the non-uniform water retention and flow in preferential pathways (gravity-induced fingers) with relatively dry soil volume among these paths. It was recently discovered that prolonged irrigation with treated wastewater, a widely used alternative in Israel and other Mediterranean countries due to the limited freshwater, triggers soil water repellency which invariably resulted in preferential flow development in the field. Due to climate change events, the use of treated wastewater for irrigation as a means of freshwater conservation is expected to widen, including in countries that are not considered dry.

While a vast amount of research has been devoted to characterizing the preferential flow in water repellent soils, the effect of this flow regime on the spatial distribution of salt and fertilizers in the root zone was barely investigated. Results from a commercial citrus orchard irrigated with treated wastewater that includes the spatial and temporal distribution of preferential flow in the soil profile measured by ERT will be demonstrated. The associated spatial distribution of salinity, nitrate, phosphate, and SAR in the soil profile will be shown as well.  We investigated the efficacy of two nonionic surfactants application to remediate hydrophobic sandy soils both in the laboratory and field. The effect of the surfactant application to the water repellent soils in the orchards on the spatial distribution of soil moisture and the associated agrochemicals will be presented and discussed.

How to cite: Ogunmokun, F. A. and Wallach, R.: Induced uneven spatial distribution of agrochemicals due to preferential flow in water repellent soils and its remediation by surfactant , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2974, https://doi.org/10.5194/egusphere-egu2020-2974, 2020.

SSS6.8 – Soil structure dynamics and its relevance to soil functions: feedbacks with soil biology and impacts of climatic conditions and soil management

EGU2020-16470 | Displays | SSS6.8 | Highlight

Temperature and moisture content influences aggregate stability: linking climate induced microbial change to aggregate (de)stabilisation

Emily Dowdeswell-Downey, Robert Grabowski, and Jane Rickson

Soil is a critical resource that delivers numerous ecosystem services, yet this capacity is diminished by soil erosion and further threatened by the impacts of climate change. Soil erodibility is largely overlooked when considering soils’ response to climate change. Aggregate stability is widely recognised as a key indicator of soil erodibility and is influenced by multiple physical, chemical and biological mechanisms operating simultaneously. The microbial community has been reported to respond to changing climatic conditions, yet it remains unclear how microbial change influences microbially mediated aggregation and therefore aggregate stability. The microbial community in terms of composition, activity, and growth, can change over rapid timescales in response to climate conditions. The short timescale of such microbial shifts could rapidly impact microbially-mediated soil (de)stabilisation and aggregate stability.

The aim of this work is to experimentally test whether climatic conditions, in terms of temperature and moisture content, influence the microbial community and microbially-mediated soil (de)stabilisation, in turn influencing aggregate stability and soil erodibility. A series of laboratory-controlled experiments using environmental chambers and rainfall simulation examined the effects of temperature and moisture content in both static and fluctuating treatments on two surface soils (a sandy loam and a clay loam). Treatments were conducted with single layer aggregate microcosms and multi-layered soil trays to explore aggregate-scale mechanisms and the potential upscaling to run-off processes.        

Key findings from this research demonstrate that temperature and moisture content affect aggregate stability and the importance of climate induced microbial shifts influence on microbially mediated soil (de)stabilisation. Static temperature and moisture content conditions significantly affected aggregate stability, however the effects varied dependent on soil texture. Increasing temperature significantly increased aggregate stability in clay loam aggregates, while moisture content significantly decreased aggregate stability in sandy loam aggregates. Multiple regression analysis showed that aggregate stability was best predicted by soil moisture content, microbial biomass carbon, gram-negative bacterial abundance and fungal abundance in the sandy loam. Temperature was the sole significant predictor in the clay loam. Aggregate stability was significantly lower under fluctuating conditions and higher under static conditions. Aggregate stability was not significantly different between fluctuating climate treatments representing summer and winter cycles under future emission scenarios. Although, these treatments did significantly affect the microbial community. Our results have implications for our current understanding of microbial function in terms of soil stabilisation, and the relationship between climate, aggregate stability and soil erodibility.

How to cite: Dowdeswell-Downey, E., Grabowski, R., and Rickson, J.: Temperature and moisture content influences aggregate stability: linking climate induced microbial change to aggregate (de)stabilisation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16470, https://doi.org/10.5194/egusphere-egu2020-16470, 2020.

EGU2020-8507 | Displays | SSS6.8

Determination of aggregate stability using laser diffraction method in soil with varied texture and carbon content

Agnieszka Józefowska, Magdalena Ryżak, Justyna Sokołowska, Karolina Woźnica, Tomasz Zaleski, and Andrzej Bieganowski

Keywords: soil texture, aggregate stability, organic additives, earthworms, microbial activity,

Lubbers et al. (2017) emphasised that earthworm by creating macroaggregates increase the amount of organic carbon in the soil. Such macroaggregates contain particulate organic matter, fungal hyphae, or roots, and afterwards, during the decomposition of macroaggregates, the organic matter becomes more resistant to microbial attack (Pulleman et al. 2005). Earthworms, through feeding and burrowing, are important elements in C cycling (Curry and Schmidt 2007). However, the type of introduced organic matter (Huang et al. 2018) and abiotic factors (Six et al. 2004) are equally important in creating stable organic-mineral components as well as the presence of earthworms.

A six-month experiment was carried out to test how the soil structure (the stability of soil aggregates) behave under the influence of various organic additives. For each soil, except the reference samples, one of the listed additives was introduced, i.e. straw, straw with fulvic acid, peat (garden soil), compost, compost with active bacteria cultures and straw with fulvic acids, humus and active bacteria cultures. The research was carried out on soils with four types of texture, i.e. sandy, loamy, silty and clayey soil. In the project, three different species of earthworms commonly occurred in Polish soils were a structure-forming factor (Apporectodea rosea, Apporectodea calliginosa and Dendrobena rubillus). After the experiment, the amount of organic carbon in the soil, dissolved organic carbon, humus forms and microbiological activity of the soil were evaluated. The stability of the soil aggregates was determined using two methods: the sieve method (Kemper and Rosenau 1986) and laser diffraction method (Bieganowski et al. 2018),

Based on this research it was noted that the aggregate stability is correlated mainly with soil texture. The applied additives had the most significant influence on the transformation of organic carbon in the soil. Soil organic carbon, which may be incorporated into the soil in the form of the organic-mineral colloids, is an essential element in the balance of the carbon in nature. Among the tested additives, organic carbon from compost, peat and compost with active bacteria cultures was in the highest amount associated with fine earth particles (about 36-48%). For comparison, only less than 8.5% of the organic carbon from the straw was incorporated into the mineral part of the soil.

Two methods to measures aggregate stability are not comparable for sandy soils. In the wet-sieving method the sand fraction higher than 0.25 mm pretend to be stable aggregates.

 

The study was financed by The National Science Centre, Poland, grant No. 2017/01/X/ST10/00777, statistical analysis was made based the knowledge and skills achieved during the training: organized as part of the project: Integrated Program of the University of Agriculture in Kraków, which is co-financed by the European Union (POWR.03.05.00-00-z222/17)

How to cite: Józefowska, A., Ryżak, M., Sokołowska, J., Woźnica, K., Zaleski, T., and Bieganowski, A.: Determination of aggregate stability using laser diffraction method in soil with varied texture and carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8507, https://doi.org/10.5194/egusphere-egu2020-8507, 2020.

EGU2020-22068 | Displays | SSS6.8

Evidence of pressure jump signatures linked to fast air-water displacement dynamics in macropores

Jose Eugenio López Periago, Diego Soto Gomez, and Marcos Paradelo

We present a method to identify the characteristics of pressure jumps in repeated pump-driven saturation and drainage cycles in packed sand columns, i.e.,  pore pressure from zero to -80 hPa. This method is based on the registration of pore pressure oscillations using high sensitivity and rapid response tensiometers. The pressure signals were processed to identify and extract the pressure waveforms read by two tensiometers simultaneously.  Then, the waveforms were classified by k-means clustering algorithms and principal component analysis. We obtained a classification of different types of pressure waveforms that are consistent throughout successive cycles of wetting and drainage cycles. This consistency can be associated with patterns of fast capillary displacements in macropores, and ultimately, to hydrodynamic features of the structure.

How to cite: López Periago, J. E., Soto Gomez, D., and Paradelo, M.: Evidence of pressure jump signatures linked to fast air-water displacement dynamics in macropores, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22068, https://doi.org/10.5194/egusphere-egu2020-22068, 2020.

In this study we used oxygen sensitive optodes, or optical sensor devices, to observe oxygen depletion by soil microbes. Depletion served as a reference for microbial activity along three artificially constructed preferential flow paths consisting of coarse sand in the center surrounded fine sand. Following a flow event with glucose addition, images showed that oxygen depletion is greatest along the boundary between preferential flow paths (coarse sand) and the bulk matrix (fine sand). Oxygen gradients as well as nutrient gradients are commonly attributed to shaping soil bacterial communities, however, these mechanisms have not been studied in the specific soil architecture of preferential flow paths. A separate experiment was performed in which the fine sand matrix was replaced with a sandy soil containing its native microbial community. An addition of glucose and DOM was flowed through the columns containing real soil. Oxygen depletion was again monitored using oxygen sensor foils. To assess changes in the microbial community in time 16S rRNA analysis was performed on soil samples taken from different locations within the chambers. By monitoring the levels of oxygen depletion in time, we are able to gain an understanding of how this dynamic process alters microbial community structure. Additionally, zymography was performed to elucidate the locations where enzyme activity was greatest. By studying the microbial community in time along with oxygen depletion and enzyme activity, we are able to gain insight into structure-function relationships that take place within preferential flow paths. Furthering our understanding of processes taking place within preferential flow paths will allow for better estimation of how these entities function biogeochemically.

How to cite: Franklin, S., Jin, Y., and Vasilas, B.: Preferential flow induced nutrient gradients create microbial hotspots and shape bacterial community structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-892, https://doi.org/10.5194/egusphere-egu2020-892, 2020.

Artificial macropores constructed of fibrous material were installed in degraded red-yellowsoils to enhance vertical infiltration of organic matter and nutrients. This can enhance vertical infiltration without cultivation which causes small particle loss from the surface soils.  Macropore and control (no macropore) plots were established and total carbon was measured at 10, 30, 50 cm depths every six months. Infiltrated soil water was sampled using a capillary force soil water sampler to measure total organic carbon and ion concentration. Results showed that soil total carbon increased in the macropore plot in spring and decreased in fall. The control plot showed few fluctuations. Total carbon concentrations in the soil water also increased in the macropore plot, which may be caused by introducing surface water into artificial macropores. In addition, nitrate nitrogen was higher in the summer in the macropore plot, representing a biological decomposition of organic matter and nutrients for plant growth. The plant biomass in the macropore plot was two times larger than that in control plot and the number of plant species also increased relative to the control plot. This vegetation represents a possible organic matter source for future soils. Finally, the carbon increment in low nutrient soils after macropore installation was calculated as 0.0036 g-C·g-soil−1·yr−1 (20.4 t-C·ha−1·yr−1), which was very successful. This study demonstrates that the relatively simple technique of installing artificial fibrous macropores can increase organic matter and recover vegetation in poorly drained soils.

How to cite: Mori, Y.: The Effect of Artificial Macropores on the Amount of Organic Matter in Soils and Plant Biomass., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5525, https://doi.org/10.5194/egusphere-egu2020-5525, 2020.

Earthworms are known as ecosystem engineers, which influence the chemical and physical properties in their own environment and thereby strongly modify soil processes. Soil structure (soil aggregates and macropores) formed by earthworms during burrowing activity may influence the soil moisture retention and water flow, enhancing infiltration into deep soil layers.

We will study the influence of anecic earthworms (Lumbricus terrestris fed on poplar leaves) on the spatial and temporal variability in water outflow and storage through a soil column. Therefore, we established a cylinder (30cm diameter, 50cm high) with silty loamy soil. At the bottom boundary, 15 fiberglass wicks drain the water from the soil column. With these wicks, the water outflow is measured with a spatial and temporal resolution.  After an initial wetting of the soil (), [LvS1] irrigation of the soil cylinder takes place twice per week with a full cone nozzle, with an intensity of 40 mm/h and a duration of 10 minutes. The research design consists of three phases (i) soil-filled column (4 weeks) (ii) transition phase: initial earthworm activity (4 weeks) (iii) soil column with earthworm created structure (4 weeks).

We expect the outflow of water from the soil column to change due to the earthworm activity: on the one hand, the creation of macroaggregates is expected to increase the water retention in the soil and on the other hand, the macropores are expected to create a spatial variability in outflow and a more rapid reaction of outflow to the irrigation events. 

How to cite: Bibi, S. and Van Schaik, L.: Dynamics of spatial and temporal outflow from a soil column influenced by earthworm activity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15232, https://doi.org/10.5194/egusphere-egu2020-15232, 2020.

EGU2020-21422 | Displays | SSS6.8

The Dynamic Effect of Root Exudates on Soil Structure – Characterization by X-ray Tomography

Maoz Dor, John Koestel, Simon Emmanuel, and Yael Mishael

Soil mucilage strongly affects soil structural packing and stability. We characterized the effects of mucilage and the subsequent effect of wetting and drying on the microstructure of three agricultural soils: clayey, sandy-clay-loam, and loamy-sand soils. Soil stability measurement trends, assessed by a laser granulometry based aggregate durability index (ADI), varied between the soils. While aggregates stability of the clayey and loamy-sand soils decreased after subjecting soil samples to wetting and drying, stability increased in the case of the sandy-clay-loam soil. This observation can be explained by the high CaCO3 content in the loamy-sand soils (19.5%) which contributes to the formation of durable aggregates induced by calcite cementation. ADI values of all soils increased following mucilage amendment (0.035 w/w). Mucilage, consisting mainly of polysaccharides and lipids, may affect soil mechanical properties and structure by binding soil particles due to its adhesive properties, thus reinforcing the internal structure of the aggregates. Stability was further analyzed after subjecting the mucilage amended samples to a wetting and drying cycle, and a diverse trend was measured. While stability increased for the clayey and the loamy-sand soils, it decreased for the sandy-clay-loam soil. Mucilage is known to induce surface hydrophobicity, following its dehydration, which may lead to a decrease in the wettability of soil particles and protect aggregates from deterioration by water. However, in the sandy-clay-loam soil, the cumulative effect CaCO3 and mucilage which increases entropy overpowers the mucilage stabilizing effect.

The packing of the microstructure as a function of mucilage amendment and wetting and drying was characterized by quantifying morphological and geometrical changes within the pore-network, extracted by X-ray computed tomography (XCT). Pore volume in all soils decreased upon mucilage amendment, correlating with the observed increase in stability. However, while porosity of the clayey soil increased after wetting and drying, it decreased or remained the same in the Loamy-sand and sandy-clay-loam soil, respectively. To evaluate pore connectivity, we calculated the Euler number (c) in which smaller values (negative) indicate better pore-connectivity. Poor connectivity was assessed in the amended clayey (c=1128) and sandy-clay-loam (c=172085) soils, probably due to soil aggregation which is in correlation with porosity assessment. Following wetting and drying, connectivity improved in the clayey soil
(c=-17281), while in the sandy-clay-loam it remained poor (c=143119). As expected, pore connectivity (c<0) of the loamy-sand soil remained in all treatments. These observations are in agreement with the stability results. As stability increased in all soils following mucilage amendment, pore-volume, and connectivity decreased. Wetting and drying of the stabilized clayey soil increased porosity and connectivity. However, the decreased stability of the sandy-clay-loam soil, due to the cumulative effect of CaCO3 and mucilage, was expressed by poor connectivity and porosity. These results demonstrate the effect of mucilage amendment and wetting and drying cycle on soil structure. Finally, applying X-ray tomography and laser granulometry measurements to characterize soil structure as a function of soil amendments may shed light on how soil structure controls the storage and fluxes of water, nutrients, and gases.

How to cite: Dor, M., Koestel, J., Emmanuel, S., and Mishael, Y.: The Dynamic Effect of Root Exudates on Soil Structure – Characterization by X-ray Tomography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21422, https://doi.org/10.5194/egusphere-egu2020-21422, 2020.

EGU2020-4563 | Displays | SSS6.8

Soil drying and soil structure

John Koestel

Classical soil water retention curves relate tension and water content in soil. Often, the tension is equated with the equivalent diameter of the largest water-filled pores, using the capillary rise equation. This relationship is known to be an approximate one as most soils contain clay minerals that swell and shrink with wetting and drying, respectively. Most notably, cracks are created during drying which may then close again under subsequent wetting. The aim of this study was to investigate how potential soil microbial habitats are influenced under drying. I used three-dimensional X-ray imaging to quantify local volume changes and the associated evolution of the pore-network morphology in 8 undisturbed soil samples (diameter: 67 mm, height 60 mm), sampled at 4 different field sites. In general, cracks formed in all investigated samples. The crack formation corresponded to an increased volume of large pores on the expense of smaller ones. As a result, a larger and better connected macropore network led to an improved aeration of the soil matrix, adding to the increased oxygen supply associated with draining pores. This study demonstrates the large potential of non-invasive imaging methods to advance knowledge on the interaction between soil physics and soil microbiology.

How to cite: Koestel, J.: Soil drying and soil structure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4563, https://doi.org/10.5194/egusphere-egu2020-4563, 2020.

EGU2020-4624 | Displays | SSS6.8

Influence of cropping and fertilization on soil pore characteristics in a long-term field study

David Nimblad Svensson, Jumpei Fukumasu, Gunnar Börjesson, and John Koestel

Soil porosity, pore size distribution and pore characteristics such as connectivity are important for a range of soil processes including ease of root growth and air and water transport. The pore structure is therefore an important part of soil fertility. The pore space is sensitive to management practices such as tillage, fertilization and cropping. Understanding how these practices influence the pore space is important for maintaining a good soil structure that is well aerated and has sufficient drainage. X-ray computed tomography has become a widely used method for studying the pore space as it offers the advantage of enabling soil to be studied in its undisturbed form. In this study it was used to compare the effects of crop growth, tillage and N-fertilizing with Ca(NO3)2 or farm yard manure (FYM). Soil samples were taken just below the surface from the long-term experiment in Ultuna, Sweden which was started in 1956. The bare fallow, FYM and Ca(NO3)2-treatment were sampled with minimum disturbance in two column sizes with inner diameters of 22.2 and 65.5 mm. Differences in pore space morphology were quantified and compared through pore size distribution and a range of connectivity measures, including the Euler number, the critical pore diameter and Gamma connectivity. Biopores were separated from non-biopores and their volume was quantified. Soil organic carbon was determined by dry combustion. Visible porosity and pores in the 150-500 µm class were significantly larger in the FYM and Ca(NO3)2-treatment compared to the bare fallow. The porosity occupied by biopores was not found to significantly differ between treatments but the biopores were found to have the largest diameters in the FYM-treatment. Despite that the organic carbon content was 1.7 times higher in the FYM compared to the Ca(NO3)2-treatment the visible porosity was similar. This may be due to the positive effects calcium has on the soil structure. The connectivity measures indicated that the FYM-treatment had the best connected pore networks. This may be partly due to the larger biopores. Ca(NO3)2 showed to be a promising alternative to increase porosity. However, as all the management practices in the long-term field study are done by hand, future studies will have to investigate if the effect is equally similar to FYM under field conditions which are subject to heavy machineries.  

How to cite: Nimblad Svensson, D., Fukumasu, J., Börjesson, G., and Koestel, J.: Influence of cropping and fertilization on soil pore characteristics in a long-term field study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4624, https://doi.org/10.5194/egusphere-egu2020-4624, 2020.

EGU2020-21373 | Displays | SSS6.8 | Highlight

Soil structure dynamics in seedbeds: Effects of soil texture and organic carbon content

Mats Larsbo, Nargish Parvin, and Maria Sandin

The soil structure near the surface of agricultural soils changes with seasons mainly by land management together with climatic and biological factors. Quantitative analysis of post-tillage changes in soil structure and related hydraulic properties are necessary for evaluating and improving models of soil hydrological and transport processes. The objectives of this study were to quantify changes in soil seedbed structure induced by rainfall and drainage and to estimate the effects of soil texture and SOC on these changes. We collected samples from the harrowed layer of twenty-six fine to coarse textured Swedish mineral soils. Air-dried soil was placed in cylinders (5 cm high, diameter 5 cm) and exposed to simulated rainfall (5 mm h−1 for 4 h) and drainage (-50 cm pressure potential) cycles in the laboratory. We used X-ray tomography to quantify changes in pore networks in a thin surface layer and in the whole cylinder. Infiltration rates at -5 cm pressure potential were measured using a mini disc tension infiltrometer on replicate air-dried samples and on the samples included in the consolidation experiments at the final state. Total imaged specific pore volumes generally decreased from initial to final state and pore size distributions were shifted towards larger proportions of below image resolution pores (< 80 μm). There was a strong positive correlation between clay content and changes in the specific volume of pores<80 μm. Soils with high clay content and soil organic carbon (SOC) content often have strong aggregates that resist change. Nevertheless, both clay and SOC contents were negatively correlated with the changes in specific imaged pore volume. These results highlight the importance of swelling, which is largely controlled by clay content, for seedbed consolidation. In line with previous studies, when excluding coarse textured soil, the changes in surface porosity were negatively correlated with silt content. Changes in infiltration capacity were not significantly correlated to any basic soil properties. Our results suggest that shrinking-swelling should be a central part in any model for seedbed consolidation.

How to cite: Larsbo, M., Parvin, N., and Sandin, M.: Soil structure dynamics in seedbeds: Effects of soil texture and organic carbon content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21373, https://doi.org/10.5194/egusphere-egu2020-21373, 2020.

EGU2020-21898 | Displays | SSS6.8

Effect of secondary succession in abandoned fields on some properties of acidic sandy soils

Peter Surda, Lubomir Lichner, and Viliam Nagy

Abandonment of agricultural lands in recent decades is occurring mainly in Europe, North America and Oceania, and changing the fate of landscapes as the ecosystem recovers during fallow stage. The objective of this study was to find the impact of secondary succession in abandoned fields on some parameters of acidic sandy soils in the Borská nížina lowland (southwestern Slovakia). We investigated soil chemical (pH and soil organic carbon content), hydrophysical (water sorptivity, and hydraulic conductivity), and water repellency (water drop penetration time, water repellency cessation time, repellency index, and modified repellency index) parameters, as well as the ethanol sorptivity of the studied soils. Both the hydrophysical and chemical parameters decreased significantly during abandonment of the three investigated agricultural fields. On the other hand, the water repellency parameters increased significantly, but the ethanol sorptivity did not change during abandonment. As the ethanol sorptivity depends mainly on soil pore size, the last finding could mean that the pore size of acidic sandy soils did not change during succession.

How to cite: Surda, P., Lichner, L., and Nagy, V.: Effect of secondary succession in abandoned fields on some properties of acidic sandy soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21898, https://doi.org/10.5194/egusphere-egu2020-21898, 2020.

EGU2020-14817 | Displays | SSS6.8

Linking soil physical properties to the tea bag index for different land uses

Yuting Fu, Lis de Jonge, Mogens Greve, Emmanuel Arthur, Per Moldrup, Trine Norgaard, and Marcos Paradelo-Perez

Organic matter decomposition is an important process in global carbon cycling and its rate is altered by various factors. Changes in land use can have a significant effect on decomposition rates, with consequences on CO2 emissions. The tea bag index (TBI) method is recognized as a simple and effective approach to investigate decomposition. Despite the fact that TBI has been globally applied, most research mainly focuses on soil microbiological aspects; the role of soil physical properties have earned less attention. Linking the soil physical properties to TBI can give us a broad understanding on how land use affects the soil microhabitat, and in turn influence carbon sequestration. Here, we measured the decomposition of green and rooibos tea in a transect from the east to west coast of Denmark across four land uses categorized into two groups (natural and cultivated). The natural group comprised forest and heath, and the cultivated group was composed of cereal and grass. Decomposition rate (k) and stabilization factor (S) were calculated after three months tea bag incubation. Soil physical properties including volumetric water content (VWC), air permeability and relative gas diffusivity (Dp/D0) were measured at matric potential of –10 and –100 kPa. The cultivated land uses had higher k and S values compared to natural systems. The S was positively correlated with VWC and negatively correlated with Dp/D0 in natural systems while no relationship was found for cultivated land. However, there was a negative correlation of k-VWC and positive correlation of k-Dp/D0 in cultivated land, suggesting an impact of soil management and anthropogenic influence on litter decomposition and carbon sequestration.

How to cite: Fu, Y., de Jonge, L., Greve, M., Arthur, E., Moldrup, P., Norgaard, T., and Paradelo-Perez, M.: Linking soil physical properties to the tea bag index for different land uses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14817, https://doi.org/10.5194/egusphere-egu2020-14817, 2020.

EGU2020-10981 | Displays | SSS6.8

Effects of biotic and abiotic indices on soil water content in a decade-long grassland biodiversity experiment

Christine Fischer, Sophia Leimer, Christiane Roscher, Janneke Ravenek, Hans de Kroon, Yvonne Kreutziger, Jussi Baade, Holger Beßler, Nico Eisenhauer, Alexandra Weigelt, Liesje Mommer, Markus Lange, Gerd Gleixner, Wolfgang Wilcke, Boris Schröder, and Anke Hildebrandt

Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (e.g. belowground- and aboveground biomass). For the characterization of soil moisture, including its variability and the resulting water and matter fluxes, the knowledge of the relative importance of these factors is of major challenge. Because of the spatial heterogeneity of its drivers soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment).

The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 in 0.1, 0.2, 0.3, 0.4, and 0.6 m soil depth using Delta T theta probe.

The analysis showed that both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness per se played no role. Plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008.

Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths.Shortly after establishment, increased topsoil water content was related to higher leaf area index in species‐rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species‐rich plots due to faster drainage of rainwater.

Our decade‐long experiment shows that besides abiotic factors like texture, soil water patterns are consistently affected by biotic factors such as species diversity and plant functional types, but also properties that originate from biotic-abiotic interactions such as soil structure. Especially the effect of plant species richness propagated to deeper soil layers 8 years after the establishment of the experiment, and while originally caused by shading it was later related to altered soil physical characteristics in addition to modification of water uptake depth. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water‐use efficiency. Our results highlight the role of vegetation composition for soil processes and emphasize the need for long-term experiments to discover diversity effects in slow reacting systems like soil.

How to cite: Fischer, C., Leimer, S., Roscher, C., Ravenek, J., de Kroon, H., Kreutziger, Y., Baade, J., Beßler, H., Eisenhauer, N., Weigelt, A., Mommer, L., Lange, M., Gleixner, G., Wilcke, W., Schröder, B., and Hildebrandt, A.: Effects of biotic and abiotic indices on soil water content in a decade-long grassland biodiversity experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10981, https://doi.org/10.5194/egusphere-egu2020-10981, 2020.

The pore structure of soil is known to be dynamics at time scales ranging from seconds (e.g. compaction) to seasons (e.g. root growth, macro-faunal activity) and even decades to centuries (e.g. changes in organic matter content). Nevertheless, soil physical and hydraulic functions are generally treated as static properties in most soil-crop models. Some models account for seasonal variations in soil properties (e.g. bulk density) due to tillage loosening and post-tillage consolidation or soil sealing, but none can account for longer-term changes in soil structure due to biological agents and processes. Here, we present a new concept for modelling soil structure evolution impacted by biological processes such as root growth and earthworm activity. In this preliminary test of the model, we compare simulations against field observations made at the Soil Structure Observatory (SSO) in Zürich, Switzerland, that was designed to provide information on soil structure recovery following a severe compaction event. In this simple application, we modelled changes in the pore size distribution in a bare soil treatment resulting from soil ingestion and egestion by earthworms and the loosening of compacted soil by casting at the soil surface. Following calibration, the model was able to reproduce the observed temporal development of total porosity, soil bulk density and pore size distribution during a four-year period following severe traffic compaction. The modelling approach presented here appears promising and could help support the development of cost-efficient strategies for sustainable soil management and the restoration of degraded soils.

How to cite: Meurer, K., Keller, T., and Jarvis, N.: A new approach to modelling soil structure dynamics and a preliminary application to structure recovery by earthworm bioturbation after heavy compaction , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3377, https://doi.org/10.5194/egusphere-egu2020-3377, 2020.

EGU2020-15243 | Displays | SSS6.8

Systemic modelling of soil functions under the impact of agricultural management

Sara König, Ulrich Weller, Birgit Lang, Mareike Ließ, Stefanie Mayer, Bastian Stößel, Hans-Jörg Vogel, Martin Wiesmeier, and Ute Wollschläger

The increasing demand for food and bio-energy gives need to optimize soil productivity, while securing other soil functions such as nutrient cycling and buffer capacity, carbon storage, biological activity, and water filter and storage. Mechanistic simulation models are an essential tool to fully understand and predict the complex interactions between physical, biological and chemical processes of soil with those functions, as well as the feedbacks between these functions.

We developed a systemic soil model to simulate the impact of different management options and changing climate on the named soil functions by integrating them within a simplified system. The model operates on a 1d soil profile consisting of dynamic nodes, which may represent the different soil horizons, and integrates different processes including dynamic water distribution, soil organic matter turnover, crop growth, nitrogen cycling, and root growth.

We present the main features of our model by simulating crop growth under various climatic scenarios on different soil types including management strategies affecting the soil structure. We show the relevance of soil structure for the main soil functions and discuss different model outcome variables as possible measures for these functions.

Further, we discuss ongoing model extensions, especially regarding the integration of biological processes, and possible applications.

How to cite: König, S., Weller, U., Lang, B., Ließ, M., Mayer, S., Stößel, B., Vogel, H.-J., Wiesmeier, M., and Wollschläger, U.: Systemic modelling of soil functions under the impact of agricultural management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15243, https://doi.org/10.5194/egusphere-egu2020-15243, 2020.

SSS6.10 – Challenges, new measurement techniques and model approaches for soil physical parameterizations in land surface, climate and earth science model

EGU2020-11696 | Displays | SSS6.10 | Highlight

The Role of Soil Properties on Regional Climate Simulations

E. Hugo Berbery and Eli Dennis

The land surface is inextricably linked to the atmospheric circulation as it dictates the location and strength of land surface-atmosphere (LA) coupling mechanisms. In this context, soil hydraulic properties are critical to estimate sub-surface processes and fluxes at the surface.  In most numerical weather and climate models, those properties are assigned through maps of soil texture complemented with look-up tables.  Then, the hydraulic properties are used in a large variety of process parameterizations within the models.  In this study, we investigate the sensitivity of the simulated regional climate to changes in the prescribed soil maps in the WRF/CLM4 modeling suite.  Comparison of two widely used soil texture databases, the USGS State Soil Geographic Database (STATSGO) and Beijing Normal University’s soil texture database (GSDE), over the United States and Central America reveals that only 32% of soil texture classifications are in common. Further, the differences are not random but tend to depict small-to-large spatial patterns with a preponderance of either finer or coarser grains. Over North America, the US Great Plains have finer grains in GSDE than in STATSGO, while the opposite is true over Central Mexico.

 

Seasonal simulations were carried out to assess the changes in the soil-water system that result from changing the soil types (GSDE vs. STATSGO) and their corresponding hydraulic properties. Wherever GSDE has finer grains than STATSGO (e.g., over the US Great Plains), the soil will retain water more strongly as evidenced by smaller latent heat fluxes and larger sensible heat flux. On the other hand, areas of coarser grains in GSDE (e.g., over central Mexico) exhibit an increase in latent heat fluxes and a corresponding decrease in sensible heat flux. Regions with an increase/decrease in latent heat flux have a corresponding increase/decrease in the 2-m moisture content. Similar relations are obtained between sensible heat flux and 2-m temperature. These changes also affect the atmospheric column, which responds with an increase/decrease of temperature and height of the planetary boundary layer. Changes in the vertical structure induce changes in the vertical instability and winds. Interestingly, the chain of modifications resulting from soil texture changes impact the moisture fluxes, and more generally, the atmospheric water budget.

How to cite: Berbery, E. H. and Dennis, E.: The Role of Soil Properties on Regional Climate Simulations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11696, https://doi.org/10.5194/egusphere-egu2020-11696, 2020.

EGU2020-7127 | Displays | SSS6.10 | Highlight

Uncertainty in soil hydraulic properties limits the predictability of global water and carbon dynamics

Athanasios Paschalis, Sara Bonetti, Yiannis Moustakis, and Simone Fatichi

Water transport at the land surface and in the soil – the critical zone - is highly dependent on the soil hydraulic properties. Such properties influence simultaneously the terrestrial water and carbon cycles as they determine the water fluxes in the soil and the soil’s water holding capacity, ultimately affecting runoff production, groundwater recharge, and the amount and temporal variability of plant available water (i.e. plant water stress). Despite their paramount importance, limited global information concerning the spatial distribution of soil hydraulic properties currently exists. Information at the global scale, commonly used in Earth System Models, mostly originates from pedotransfer functions (PTFs). PFTs are empirical relations that express the dependence of soil hydraulic properties on easily measured attributes as soil properties. Several PFTs currently exist, which adopt different formulations, spanning from simple linear regressions to elaborate machine learning, and are trained with different datasets, yielding different soil hydraulic properties for the same soil texture.   

The question we ask in this study is: how does uncertainty in the soil hydraulic parameters propagate in global ecosystem responses? To achieve this, we deploy a numerical experiment covering many different ecosystems. The terrestrial ecosystem model T&C is used to model energy, water, and carbon dynamics at 80 locations worldwide, spanning all climatological regimes, major biomes and soil types. Soil hydraulic properties at each site were estimated using six widely used PTFs starting from local soil textural information. Uncertainty propagation from soil hydraulic properties to modelled ecosystem dynamics was evaluated for all sites and its dependence on soil textural properties and local topography was quantified.

Our results highlight that uncertainty propagation from hydraulic properties to ecosystem dynamics is much stronger for hydrological fluxes (e.g. infiltration, groundwater recharge and runoff production) than carbon dynamics (e.g. gross and net primary productivity and leaf area dynamics) or energy fluxes (net radiation, sensible and latent heat). Uncertainty in hydrological fluxes can be up to 400% using different PTFs, whereas uncertainties in carbon and energy fluxes are typically less than 20%. The largest uncertainties were observed for slow draining soils, containing large fractions of clay, located in regions with intermediate values of wetness (i.e. annual precipitation ≈ annual potential evapotranspiration). Complex topographic features further enhance the role of uncertainty in soil hydraulic properties. Lateral water redistribution affects both runoff production and soil moisture dynamics increasing the effects on both hydrological and carbon dynamics.

How to cite: Paschalis, A., Bonetti, S., Moustakis, Y., and Fatichi, S.: Uncertainty in soil hydraulic properties limits the predictability of global water and carbon dynamics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7127, https://doi.org/10.5194/egusphere-egu2020-7127, 2020.

EGU2020-10807 | Displays | SSS6.10

Compressing soil structural information

Marina Karsanina, Efim Lavrukhin, Dmitry Fomin, Anna Yudina, Konstantin Abrosimov, and Kirill Gerke

The ability of correlation functions to describe structure (Karsanina et al., 2015; Karsanina et al., 2018) and provide means to reconstruct the structure based on correlation functions (Gerke and Karsanina, 2015; Karsanina and Gerke, 2018) alone was proposed as means to effectively compress and store structural information (Gerke et al., 2015). This is especially appealing considering the fact that truly multi-scale digital 3D soil structure model for a single genetic horizon even with the resolution not finer than 1 µm will contain enormous amount (approx., up to 10^15 voxels or even more) of data. Effective management and pore-scale simulations based on such datasets does not seem feasible at the moment. Another approach would be to retrieve only a relevant part of the dataset and operate on it indirectly, in particular based on correlation functions or stochastic reconstructions. The main aim of this work was to investigate the possibility to compress soil structural data, as resulted from X-ray microtomography data and directional correlation functions computation (Gerke et al., 2014), into a very limited number of parameters, potentially with minimal information content loss. We show that with the help of the proposed technique it is possible to compress a 3D image of 900^3-1300^3 voxels into a set of correlation functions, that with the help of fitting of an analytical function in the form of the superposition of three different basis functions may help to map all these correlation functions in a vector of six parameters. We apply the proposed methodology to 16 different soil 3D images and discuss numerous important implications that can help to achieve the ultimate goal of building 3D multi-scale soil structure model from meter to nm. Such model would help in establishing a fully multi-scale hydrological model operating from first principles as opposed to coarse continuum scale models.

This work was supported by Russian Science Foundation grant 19-72-10082 (correlation functions) and Russian Foundation for Basic Research grant 18-34-20131 мол_а_вед (soil data).

References:

Karsanina, M. V., Gerke, K. M., Skvortsova, E. B., Ivanov, A. L., & Mallants, D. (2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 314, 138-145.

Gerke, K. M., Karsanina, M. V., & Mallants, D. (2015). Universal stochastic multiscale image fusion: an example application for shale rock. Scientific reports, 5, 15880.

Karsanina, M. V., & Gerke, K. M. (2018). Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. Physical Review Letters, 121(26), 265501.

Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters), 111(5), 56002.

Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002.

Karsanina, M. V., Gerke, K. M., Skvortsova, E. B., & Mallants, D. (2015). Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE, 10(5), e0126515.

How to cite: Karsanina, M., Lavrukhin, E., Fomin, D., Yudina, A., Abrosimov, K., and Gerke, K.: Compressing soil structural information, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10807, https://doi.org/10.5194/egusphere-egu2020-10807, 2020.

EGU2020-6958 | Displays | SSS6.10

Predicting water retention curves of fine texture soils from particle size distribution

Joseph Pollacco, Jesús Fernández-Gálvez, and Sam Carrick

Indirect methods for estimating soil hydraulic properties from particle size distribution have been developed due to the difficulty in accurately determining soil hydraulic properties, and the fact that particle size distribution is one piece of basic soil physical information normally available. The similarity of the functions describing the cumulative distribution of particle size and pore size in the soil has been the basis for relating particle size distribution and the water retention function in the soil. Empirical and semi-physical models have been proposed, but these are based on strong assumptions that are not always valid. For example, soil particles are normally assumed to be spherical, with constant density regardless of their size; and the soil pore space has been described by an assembly of capillary tubes, or the pore space in the soil matrix is assumed to be arranged in a similar way regardless of particle size. However, in a natural soil the geometry of the pores may vary with the size of the particles, leading to a variable relation between particle radius and pore radius.

 

The current work is based on the hypothesis that the geometry of the pore size and the void ratio depends on the size of the soil particles, and that a physically based model can be generalised to predict the water retention curve from particle size distribution. The rearrangement of the soil particles is considered by introducing a mixing function that modulates the cumulative particle size distribution, while the total porosity is constrained by the saturated water content.

 

The model performance is evaluated by comparing the soil water retention curve derived from laboratory measurements with a mean Nash–Sutcliffe model efficiency a value of 0.92 and a standard deviation of 0.08. The model is valid for all soil types, not just those with a marginal clay fraction.

How to cite: Pollacco, J., Fernández-Gálvez, J., and Carrick, S.: Predicting water retention curves of fine texture soils from particle size distribution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6958, https://doi.org/10.5194/egusphere-egu2020-6958, 2020.

EGU2020-8471 | Displays | SSS6.10

Effects of clay type on soil hydraulic and mechanical properties - a global perspective

Peter Lehmann, Ben Leshchinsky, Ben Mirus, Ning Lu, Surya Gupta, and Dani Or

Clay fraction affects soil hydraulic and mechanical properties and dominates specific surface area. Clay fraction is used for soil classification and in pedotransfer functions (PTFs) to estimate soil hydraulic functions from simpler soil properties (texture). Remarkably, despite large variations in composition and properties of clay minerals, PTFs use this attribute in undifferentiated manner, applied similarly to soils in the tropics dominated by Kaolinite and temperate soils with Montmorillonite. The large specific surface area of Montmorillonite compared to Kaolinite reduces both the soil hydraulic conductivity and the residual friction angle. We develop PTFs informed by clay-type via soil specific surface area effects on saturated hydraulic conductivity and residual friction angle. For friction angle, PTFs were fitted to experimental data using information on clay content and clay type. For hydraulic conductivity, analytical models based on surface area and particle size were adapted to capture conductivity data from different climatic regions. Global distributions of clay types are used to map soil specific surface area and related hydro-mechanical properties to improve land-surface models (especially in the tropics) and refine natural hazard risk assessment (landslides and debris flows).

How to cite: Lehmann, P., Leshchinsky, B., Mirus, B., Lu, N., Gupta, S., and Or, D.: Effects of clay type on soil hydraulic and mechanical properties - a global perspective, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8471, https://doi.org/10.5194/egusphere-egu2020-8471, 2020.

EGU2020-670 | Displays | SSS6.10

Effect of stones on soil hydraulic properties: measurement and modeling

Mahyar Naseri, Sascha C. Iden, and Wolfgang Durner

Stony soils are soils that contain a high amount of stones and are widespread all over the world.  The effective soil hydraulic properties (SHP), i.e. the water retention curve (WRC) and the hydraulic conductivity curve (HCC) are influenced by the presence of stones in the soil. This influence is normally neglected in vadose zone modeling due to the considerable measurement challenges in stony soils. The available data on the effect of stones on SHP is scarce and there is not a systematic modeling approach to obtain the effective SHP in stony soils. Most of the past studies are limited to the effect of stones on the WRC and saturated hydraulic conductivity and low and medium stone contents (up to 40 % v/v). We investigated the effect of stone content on the effective SHP of stony soils through a series of evaporation experiments. Two soil materials a) sandy loam and b) silt loam as background soils were packed with different volumetric contents (0, 10, 30 and 60 %) of medium stones were in containers with a volume of 5060 cm3. Volumetric stone contents were chosen in a way to present stone-free, moderately stony and highly stony soils. All of the experiments were carried out in two replicate packings with an almost identical bulk density. Packed samples were saturated with water from the bottom and subjected to evaporation in a climate-controlled room. During the evaporation experiments, the pressure head and soil temperature were continuously monitored and the water loss from the soil columns was measured with a balance. The dewpoint method provided additional data on the WRC in the dry soil. The resulting data were evaluated by inverse modeling with the Richards equation to identify effective SHP and to analyze the effect of stone content on the evaporation rate, soil temperature, the effective WRC and the effective HCC. The applied methodology was successful in identifying effective SHP with high precision over the full moisture range. The results reveal a quicker transition from stage I to stage II of evaporation in highly stony soils. Evaporation rate reduces with the increase of the volumetric stone content. The existence of a high amount of stone content shorten stage II of evaporation driven by the vapor diffusion through the restricted soil evaporative surface.

How to cite: Naseri, M., C. Iden, S., and Durner, W.: Effect of stones on soil hydraulic properties: measurement and modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-670, https://doi.org/10.5194/egusphere-egu2020-670, 2020.

EGU2020-10906 | Displays | SSS6.10

Testing the improved Integral Suspension Pressure method ISP+ with the PARIO™ device

Wolfgang Durner, Alina Miller, Madita Gisecke, and Sascha C. Iden

The integral suspension pressure method (ISP) uses pressure measurements in a soil suspension to derive the particle size distribution (PSD) in the silt range in high resolution. The sedimentation process is mathematically simulated and the simulated suspension pressure at a fixed depth in the sedimentation cylinder is fitted to an observed time series. The PSD is determined by numerically solving the inverse problem. The methodology is implemented in a commercial apparatus named PARIO that is produced by METER AG, Munich.

Practical experiments with PARIO indicated that the accuracy of the method to determine the clay fraction was not as high as expected from theory, which may partly be caused by the error propagation from the independently determined sand fractions. Durner and Iden (2019) thus proposed an extension of the experimental protocol called ISP+, which makes the inverse problem better-posed and allows shorter experimental time. After a sedimentation time of few hours, a part of the suspension is drained laterally from the sedimentation cylinder through an outlet, collected and oven-dried. The resulting dry mass of the soil particles is integrated into the objective function of the inverse problem. This markedly reduces the uncertainty of the identified PSD towards the finest particles. We present experimental results from PARIO measurements evaluated by the ISP+ method and illustrate the new experimental design and the improvement of accuracy for the clay fraction.

Reference: Durner, W., & Iden, S. C. (2019, January). ISP+: improving the Integral Suspension Pressure method by an independent measurement of clay content. In Geophysical Research Abstracts (Vol. 21).

How to cite: Durner, W., Miller, A., Gisecke, M., and Iden, S. C.: Testing the improved Integral Suspension Pressure method ISP+ with the PARIO™ device, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10906, https://doi.org/10.5194/egusphere-egu2020-10906, 2020.

EGU2020-18547 | Displays | SSS6.10 | Highlight

The International Soil Moisture Network: an open-source data hosting facility in support of hydrological research

Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Angelika Xaver, Wouter Dorigo, Philippe Goryl, and Roberto Sabia

The International Soil Moisture Network (ISMN, ) is an international cooperation to establish and maintain an open-source global data hosting facility, providing in-situ soil moisture data as well as accompanying soil variables. This database is an essential means for validating and improving global satellite soil moisture products as well as land surface -, climate- , and hydrological models.

For hydrological validation, the quality of used in-situ data is essential. The various independent local and regional in situ networks often do not follow standardized measurement techniques or protocols, collect their data in different units, at different depths and at various sampling rates. Besides, quality control is rarely applied and accessing the data is often not easy or feasible.

The ISMN was created to address the above-mentioned issues. Within the ISMN, in situ soil moisture measurements (surface and sub-surface) are collected, harmonized in terms of units and sampling rates, advanced quality control is applied and the data is then stored in a database and made available online, where users can download it for free.

Since its establishment in 2009 and with continuous financial support through the European Space Agency (ESA), the ISMN evolved into a widely used in situ data source growing continuously (in terms of data volume and users). Historic measurements starting in 1952 up to near–real time are available through the ISMN web portal. Currently, the ISMN consists of 60 networks with more than 2500 stations spread all over the globe. With a steadily growing user community more than 3200 registered users strong the value of the ISMN as a well-established and rich source of in situ soil moisture observations is well recognized. In fact, the ISMN is widely used in variety of scientific fields (e.g. climate, water, agriculture, disasters, ecosystems, weather, biodiversity, etc.).

Our partner networks range from networks with a handful of stations to networks that are composed of over 400 sites, are supported with half yearly provider reports on statistical data about their network (e.g.: data download statistic, flagging statistic, etc.).

About 10’000 datasets are available through the web portal. However, the spatial coverage of in situ observations still needs to be improved. For example, in Africa and South America only sparse data are available. Innovative ideas, such as the inclusion of soil moisture data from low cost sensors (GROW observatory ) collected by citizen scientists, holds the potential of closing this gap, thus providing new information and knowledge.

In this session , we want to give an overview of the ISMN, its unique features and its support of data provider, who are willing to openly share their data, as well as hydrological researcher in need of freely available datasets.

How to cite: Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Xaver, A., Dorigo, W., Goryl, P., and Sabia, R.: The International Soil Moisture Network: an open-source data hosting facility in support of hydrological research , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18547, https://doi.org/10.5194/egusphere-egu2020-18547, 2020.

EGU2020-10975 | Displays | SSS6.10

Development and application of a catchment-based mass balance validation tool for land surface schemes
not presented

Daniel Regenass, Linda Schlemmer, Oliver Fuhrer, Jean-Marie Bettems, and Christoph Schär

Land-Atmosphere coupling is a fundamental process of the earth system. From the perspective of atmospheric sciences, a quantitative understanding of the surface energy and mass balances is of vital importance for both numerical weather prediction and climate modeling and needs to be represented adequately in land surface schemes. The partitioning of net radiation into sensible, latent and ground heat fluxes is dependent on the state of the land surface with soil moisture being an important state variable, introducing memory effects of monthly to annual timescales to the coupling. An inadequate representation of the terrestrial water cycle will therefore degrade forecasts and introduce biases in climate simulations. While there exist reasonable estimates for the terrestrial water cycle on subcontinental scales and various observations for evapotranspiration on the point-scale, the validation of land-surface-schemes on the kilometer-scale remains challenging. The fundamental unit on which one can validate all terms of the water balance is the catchment. Here, we present a validation framework based on water balances of mesoscale catchments. The framework incorporates observations of precipitation and streamflow as well as estimates for evapotranspiration from remote sensing data.

The methodology is applied to five mesoscale catchments in Switzerland ranging from 105 km2 to 1713 km2 for the years 2010-2012. Observations include MeteoSwiss operational analyses, hourly discharge measurements provided by the federal office for the environment and the MODIS MOD16A2 evapotranspiration product. While relying on observations, these datasets are subject to substantial uncertainties. We aim to quantify the major part of this observational uncertainty by using data from FLUXNET sites in the Alpine region and a rain-gauge based precipitation dataset from MeteoSwiss (RhiresM).

As a showcase application, the validation framework is used in order to compare and validate two different parameterizations for soil/ groundwater hydrology in TERRA, the land surface scheme of the COSMO numerical weather prediction and regional climate model. While both versions are based on Richard’s equation, one is implemented with a free drainage boundary condition, while the other one is implemented with a simple parameterization for groundwater. Results from TERRA standalone runs forced with COSMO analysis fields suggest that errors in terrestrial storage change are mostly driven by errors in runoff. In turn, runoff is very sensitive to the parameterization of infiltration and to soil hydraulic parameter. We show that despite large uncertainties in the observations at hand, it is possible to identify respective shortcomings of the two different groundwater formulations and to improve the simulated water balance by introducing a mathematically sound formulation for infiltration and by tuning key parameter associated to ground water discharge.

How to cite: Regenass, D., Schlemmer, L., Fuhrer, O., Bettems, J.-M., and Schär, C.: Development and application of a catchment-based mass balance validation tool for land surface schemes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10975, https://doi.org/10.5194/egusphere-egu2020-10975, 2020.

EGU2020-19609 | Displays | SSS6.10

Linking thermal UAS-based imagery and Cosmic-Ray Neutron Sensing data

Veronika Döpper, Tobias Gränzig, Michael Förster, and Birgit Kleinschmit

Soil moisture content (SMC) is of fundamental importance to many hydrological, biological, biochemical and atmospheric processes. Common soil moisture measurements range from local point measurements to global remote sensing-based SMC datasets. Nevertheless, they always compromise between temporal and spatial resolution. Thus, it is still challenging to quantify spatially and temporally distributed SMC at a regional scale which is extremely relevant for hydrological modeling or agricultural management. The innovative technology Cosmic-Ray Neutron Sensing (CRNS) shows significant potential to fill this gap by quantifying the present hydrogen pools within footprints larger than 0.1 ha.

Owing to the difference in scale between the ground resolution of satellites used to retrieve soil moisture and the common point scale of ground-based soil moisture instruments, the large footprint of the CRNS poses a high potential for the validation of SMC remote sensing products. When linking the CRNS measurements with remote sensing data, the vertical and horizontal characteristics of its footprint need to be considered.

To examine the influence of the CRNS footprint characteristics on the linkage of CRNS and remote sensing data, we couple CRNS measurements with high-resolution UAS-based thermal imagery acquired at two sites in Bavaria and Brandenburg (Germany) using a radiometrically calibrated FLIR Tau 2 336 (FLIR Systems, Inc., Wilsonville, OR, USA) with a focal length of 9 mm. Within this context, we evaluate the added value of applying a horizontal weighting function to the spatially distributed thermal data in comparison to an unweighted mean when statistically representing the corrected neutron counting rates.

The project is part of the DFG-funded research group Cosmic Sense, which aims to provide interdisciplinary new representative insights into hydrological changes at the land surface.

How to cite: Döpper, V., Gränzig, T., Förster, M., and Kleinschmit, B.: Linking thermal UAS-based imagery and Cosmic-Ray Neutron Sensing data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19609, https://doi.org/10.5194/egusphere-egu2020-19609, 2020.

EGU2020-21234 | Displays | SSS6.10

Relating soil structure and hydrophysical characteristics to aerobic and anaerobic soil respiration

Teamrat Ghezzehei, Jennifer Alvarez, Yocelyn Villa, and Rebecca Ryals

The dynamics of soil organic matter is strongly controlled by the hydrophysical environmental factors, including motility, aqueous diffusivity of substrates, gaseous diffusivity, and energetic constraints on microbial physiology. The relationships among these physical factors depend on soil moisture and the architecture of the soil pores. In this regard, the soil water retention curve can serve as a macroscopic signature of pore-size distribution. Therefore, the sensitivity of aerobic and anaerobic microbial activity must be closely associated with the shape of the soil water retention curve. The soil water retention curve is, in turn, strongly dependent on soil texture and structure. Here, we present a physically-based model of aerobic and anaerobic microbial respiration rates. We also present a novel experimental technique for the characterization of the soil-moisture sensitivity of soil microbial activity. The proposed experimental and modeling approaches allow direct coupling of the fate soil organic matter with the nature of soil structure.

How to cite: Ghezzehei, T., Alvarez, J., Villa, Y., and Ryals, R.: Relating soil structure and hydrophysical characteristics to aerobic and anaerobic soil respiration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21234, https://doi.org/10.5194/egusphere-egu2020-21234, 2020.

EGU2020-11633 | Displays | SSS6.10

Parameters of infiltration models as affected by the measurement technique and land use

Gülay Karahan, Seongyun Kim, and Yakov Pachepsky

Infiltration is strongly affected by soil structure. The measurement technique and the land use are two soil structure-related attributes that are typically available in descriptions of infiltration experiments. We hypothesized that these attributes may be good predictors of the performance of different infiltration models, and of the parameter values in those models. The international soil infiltration database SWIG assembled in the Institute of Agrosphere in Jülich, Germany, was used as the data source. The database encompasses about 5000 experiments all over the world, Texture, measurement method and land use were known for all experiments, availability of organic carbon content, bulk density, saturated hydraulic conductivity (Ksat), pH, the electrical conductivity of saturated paste, and initial water content varied. Comparison of the performance of eight infiltration models showed that Horton and Mezencev models outperformed all others and that one of these two models could be preferred based on the infiltration measurement method. The machine learning method – regression trees – was applied to find the most influential predictors of parameters of Horton and Mezencev models. The measurement method, the textural class, and the land use were the most influential predictors in 80% of cases for both models. The measurement method was the most influential input in 40% of cases. The accuracy of parameter estimates increased when only the subset of measurements with the same method was used to estimate infiltration parameters. Land use, textural class, and organic carbon content dominated as the most influential predictors for the parameters of the Mezencev model, whereas land use, textural class, Ksat, and bulk density became most important in the case of the Horton model. Overall, estimates of the infiltration equation parameters can be more accurate if they have been developed for the same measurement method as in the task in hand. Land use category and the infiltration measurement method provide useful surrogate information about the soil structure effect on infiltration. 

How to cite: Karahan, G., Kim, S., and Pachepsky, Y.: Parameters of infiltration models as affected by the measurement technique and land use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11633, https://doi.org/10.5194/egusphere-egu2020-11633, 2020.

The near-saturated hydraulic conductivity is an important parameter in relation to the analysis of heterogeneous transport in the soil macropore system. To a high degree, leaching of phosphorus out of the root zone takes place in the macropores either in a dissolved form or as phosphorus bound to colloids. In this work, a newly constructed and improved drip infiltrometer (DIM) is presented being able to measure the unsaturated hydraulic conductivity in the near-saturated range (i.e. in the range of matric potentials between -0.1 and 3 -kPa) on undisturbed soil columns (20 cm by 20 cm). The DIM is a modified version of the classical multistep system establishing gravity flow at decreasing flow rates. The procedure is that the soil column is placed on top of a ceramic plate. Five tensiometers measure the change in the matric potential a different flow rates applied by a drip-irrigation device mounted on the top of the column. By applying a certain inflow at the top and suction at the bottom of the sample, a steady state flow is established based on tensiometer readings showing a constant gradient along the soil sample. This allows the determination of the near-saturated hydraulic conductivity by applying Darcy’s equation. Compared to an earlier version of the infiltrometer, the instrument has been improved in several ways. This involves a high level of automation of the computer program controlling the analysis making it possible to setup a number of settings and constrains in order to optimize the analysis. Examples are given for newly developed pedotransfer functions predicting the saturated and near-saturated hydraulic conductivity. Results were used to model water transport in the vadose zone spatially distributed over Denmark using variation in the hydraulic properties as well as spatially distributed metrological data. Models results ended up with a map pointing out risk areas of macropore transport in relation to the leaching of phosphorus.

How to cite: Iversen, B. V., Koppelgaard, M., and Kotlar, A. M.: An improved drip infiltrometer measuring the near-saturated hydraulic conductivity: Pedotransfer development and macropore transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22667, https://doi.org/10.5194/egusphere-egu2020-22667, 2020.

EGU2020-11827 | Displays | SSS6.10

A complex dielectric sensor for measurement of water content and salinity in porous media

Paolo Castiglione and Gaylon Campbell

EGU2020-19277 | Displays | SSS6.10

Impact of improved land model depth and hydrology on climate change projections

Norman Steinert, Fidel González-Rouco, Stefan Hagemann, Philipp de Vrese, Elena García-Bustamante, Johann Jungclaus, Stephan Lorenz, Camilo Melo-Aguilar, and Jorge Navarro

The representation of the thermal and hydrological state in the land model component of Earth System Models is crucial to have a realistic simulation of subsurface processes and the coupling between the atmo-, lito- and biosphere. There is evidence suggesting an inaccurate simulation of subsurface thermodynamics in current-generation Earth System Models, which have Land Surface Models that are too shallow. In simulations with a bottom boundary too close to the surface, the energy propagation and spatio-temporal variability of subsurface temperatures are affected. This potentially restrains the simulation of land-air interactions and subsurface phenomena, e.g. energy/moisture balance and storage capacity, freeze/thaw cycles and permafrost evolution. We introduce modifications for a deeper soil into the JSBACH soil model component of the MPI-ESM for climate projections of the 21st century. Subsurface layers are added progressively to increase the bottom boundary depth from 10m to 1400m. This leads to near-surface cooling of the soil and encourages regional terrestrial energy uptake by one order of magnitude and more.
The depth-changes in the soil also have implications for the hydrological regime, in which the moisture between the surface and the bedrock is sensitive to variations in the thermal regime. Additionally, we compare two different global soil parameter datasets that have major implications for the vertical distribution and availability of soil moisture and its exchange with the land surface. The implementation of supercool water and water phase changes in the soil creates a coupling between the soil thermal and hydrological regimes. In both cases of bottom boundary and water depth changes, we explore the sensitivity of JSBACH from the perspective of changes in the soil thermodynamics, energy balance and storage, as well as the effect of including freezing and thawing processes and their influence on the simulation of permafrost areas in the Northern Hemisphere high latitudes. The latter is of particular interest due to their vulnerability to long-term climate change.

How to cite: Steinert, N., González-Rouco, F., Hagemann, S., de Vrese, P., García-Bustamante, E., Jungclaus, J., Lorenz, S., Melo-Aguilar, C., and Navarro, J.: Impact of improved land model depth and hydrology on climate change projections , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19277, https://doi.org/10.5194/egusphere-egu2020-19277, 2020.

This study utilises in-situ and reanalysis soil moisture data inputs from various sources to evaluate the effect of soil water stress on Gross Primary Productivity (GPP) of different Plant Functional Types (PFTs) using Terrestrial Ecosystem Model in R (TEMIR), which is under development by Tai Group of Atmosphere-Biosphere Interactions (Tai et al. in prep.). An empirical soil water stress function with reference to Community Land Model (CLM) Version 4.5 is employed to quantify water stress experienced by vegetation which hinders stomatal conductance and thus carboxylation rate. The model results are compared against observations at FLUXNET sites in semi-arid regions across the globe at daily timescale where in-situ GPP data is available and water stress inhibits plant functions to some extent. By dividing the soil into two layers (topsoil and root zone), GPP simulation improves significantly comparing with using single layer bulk soil (Modified Nash-Sutcliffe Model Efficiency Coefficient N increases from -0.686 to -0.586). Such upgrade is particularly substantial for vegetation with shallow roots such as grass PFTs. Despite this improvement, the model is characterised by an overall overestimation of GPP when water stress occurs, and inconsistency of accuracy subject to PFTs and degree of water stress experienced. This study informs responses of various PFTs to soil water stress, capacity of TEMIR in simulating the responses, and possible drawbacks of empirical soil water stress functions, and highlights the importance of topsoil moisture data input for vegetation drought monitoring.

Keywords: Soil water stress, Terrestrial model representation, Photosynthesis, In-situ data, Reanalysis data, FLUXNET

How to cite: Lam, T. and Tai, A. P. K.: Simulating Gross Primary Productivity of vegetation under soil water stress using in-situ and reanalysis soil moisture data inputs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21397, https://doi.org/10.5194/egusphere-egu2020-21397, 2020.

EGU2020-9832 | Displays | SSS6.10

Measurement of soil particle-size distribution by the PARIO measurement system: lessons learned and comparison with two other measurement techniques

Attila Nemes, Anna Angyal, Andras Mako, Jan Erik Jacobsen, and Eszter Herczeg

The PARIO system is a novel technique for the measurement of soil particle-size distribution. It is a computerized sedimentation-based system that will yield a quasi-continuous particle-size distribution curve. Given that it is semi-automated, continuous and sedimentation-based, this system promises to become a good and compatible alternative to the traditional pipette or hydrometer techniques. Through hundreds of measurements we have acquired practical operational knowledge that this poster will share with potential future users. We will also present quantitative information on the technique’s sensitivity to e.g. temperature shift or intermittent vibration during measurement. We also used a set of 45 soil samples of various texture from Norway to compare particle-size distribution measured by the PARIO system, the traditional pipette technique and laser diffractometry. We discuss measurement results as well as related sample-preparation aspects.

How to cite: Nemes, A., Angyal, A., Mako, A., Jacobsen, J. E., and Herczeg, E.: Measurement of soil particle-size distribution by the PARIO measurement system: lessons learned and comparison with two other measurement techniques, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9832, https://doi.org/10.5194/egusphere-egu2020-9832, 2020.

EGU2020-12380 | Displays | SSS6.10

Evaluating the Integral Suspension Pressure method for measuring the particle size distribution in soils with high organic matter content

Cristina Contreras, Sara Acevedo, Sofía Martínez, and Carlos Bonilla

Typical information in soil databases is the soil texture and particle size distribution. These properties are used for soil description or predicting other soil properties such as bulk density or hydraulic conductivity. Measuring particle size distribution with standards methods such as the pipette or hydrometer is time-consuming because of the sample pre-treatment used to remove organic matter or iron and the sample post-treatment. Nowadays, there are new methodologies for determining soil particle size distribution, such as the Integral Suspension Pressure (ISP) method, which measures the silt content in a semi-automatized process. Thus, the main objective of this study was to evaluate the suitability of the ISP method compared to standard techniques used in soil analysis and evaluate the effect of organic matter content in the ISP measurements. The main results showed that the ISP method is equivalent in accuracy to the pipette, especially for soils rich in silt or sand content. Also, the results demonstrate the convenience of removing the soil organic matter when using the ISP for soils with more than 1.5% organic matter.

How to cite: Contreras, C., Acevedo, S., Martínez, S., and Bonilla, C.: Evaluating the Integral Suspension Pressure method for measuring the particle size distribution in soils with high organic matter content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12380, https://doi.org/10.5194/egusphere-egu2020-12380, 2020.

EGU2020-21865 | Displays | SSS6.10

Using the NIRS for analyzes of soil clay content

Clémence Mariage, Gilles Colinet, and Valérie Genot

REQUASUD network (based in Wallonia, Belgium) consists of laboratories working directly with farmers, giving them soil fertility diagnostics and advice for a good management of soils and cultures. Therefore, the laboratories analyze, among others, available nutrients. But they need more information to correctly interpret the results and give fertility advice, like the cationic exchange capacity (CEC) and the clay content. However, analyzing CEC and clay content is expensive, time-consuming and requires the use of chemicals. To overpass this problem, the near-infrared reflectance spectroscopy (NIRS) has been developed and is now used routinely in the laboratories. This method is rapid, non-destructive and allows the simultaneous estimation of soil characteristics. Nowadays, the REQUASUD NIR database performances for clay content are the followings : RPD = 2,22% for cultures and RPD = 1,72% for grasslands. This method of analysis can be used for other purposes than fertility advice.

How to cite: Mariage, C., Colinet, G., and Genot, V.: Using the NIRS for analyzes of soil clay content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21865, https://doi.org/10.5194/egusphere-egu2020-21865, 2020.

EGU2020-20840 | Displays | SSS6.10

Soil aggregate size affects C sequestration and microorganisms inside aggregate under straw addition

Jinjing Lu, Sheng ping Li, Xueping Wu, and Aurore Degre

As the basic unit of soil, aggregates are considered as a stable soil organic ( SOC ) pool. Changes in organic subtract due to straw addition induce variations in soil microbial community or activity, which may effect the C sequestration in aggregates. Most of the previous studies on soil microorganisms assessment was done at large scale i.e. larger quantities of soil, however, few studies on SOC is known in aggregate size fractions. This study investigated the effects of soil aggregate size on the distribution of microorganism and SOC, and the relationship of microorganism and C sequestration inside aggregate size fractions with 13C-labelled straw addition. Soil samples were collected from 0-15 cm and classified into 5 aggregates sizes classes ( >5 mm, 2-5 mm, 1-2 mm, 0.25-1 mm and <0.25 mm ), and the graded aggregates were incubated for 180 days at 20 °C, with or without 13C-labelled straw residue. The incorporation of 13C into the five aggregate size fractions was analyzed.

After incubation, the SOC, DOC and ROC contents were increased more rapidly and significantly in aggregate ( >5 mm ) than that in aggregate ( <5 mm ) under straw addition, with the same trend of new carbon derived from straw. The total PLFAs was increased most significantly in aggregate ( >5 mm ), especially fungi and negative bacteria ( G- ), while the positive bacteria ( G+ ) increased slightly in aggregate ( <0.25 mm ), with no significant change in total PLFAs. The proportion of bacteria in total microorganism increased gradually, as the aggregate size increased in straw treatment. The results imply that aggregate ( >5 mm ) have more space for C sequestration and greater contribution to new carbon turnovering in soil than other small aggregates, and it gradually tended to be bacterial with the enrichment of carbon. In addition, the SOC contents were strongly related to the amount of fungi and G- in aggregate ( <5 mm ), while related to G+ in aggregate ( <0.25 mm ) under straw addition.

How to cite: Lu, J., Li, S. P., Wu, X., and Degre, A.: Soil aggregate size affects C sequestration and microorganisms inside aggregate under straw addition, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20840, https://doi.org/10.5194/egusphere-egu2020-20840, 2020.

Lime and animal manure can have major impacts on soil physical properties, particularly in degraded and highly weathered soils that are naturally acidic. Here we evaluate how treatment of a regular till Acrisol in southeast China with different amounts of lime and/or pig manure, and planted with maize, affects pore scale properties down to micron size using synchrotron microtomography (SR–mCT). Soil macroaggregates (2 - 5 mm) from 4 treatments were measured: 1) Control, no manure amendment; 2) low manure (150 kg N ha-1 y-1); 3) high manure (600 kg N ha-1 y-1); and 4) high manure (600 kg N ha-1 y-1)+ lime (3000 kg Ca(OH)2 ha-1 every 3 years). Pore structure at a resolution of 3.7 µm was reconstructed in 3D and the Multi- Relaxation- Time (MRT) Scheme for Multi- Phase Lattice Boltzmann Method (LBM) was used to simulate water flow and retention. Topological analysis was performed based on the extracted pore network by using the maximal ball-based pore network extraction. A quasi-static pore network solver was applied to compute the capillary pressure based on the extracted pore networks. The application of a high amount of pig manure increased the fraction of macropores (>100 µm) to 38.61% compared to the controlled level (18.15%). A high amount of pig manure also decreased total porosity to 8.08% compared to 11.35% for the control, suggesting less micropores caused by high pig manure treatment. The application of high amount of pig manure and lime also caused more uniform water flow. Control samples had a velocity frequency at around e11 of the normalized velocity (respect to the mean), while the samples from the other treatments had more evenly distributed peaks. Water flows most quickly due to least impediment by pores in the samples with high manure amendment. The slope between permeability and porosity increased from 8.10 Darcy (controlled) to 174.47 Darcy (high amount of manure treatment). The amendment of 600 kg N ha-1 y-1 pig manure increased water retention ability calculated by the simulations. For the capillary pressure > -50 kPa, control samples had the greatest water saturation level compared with the samples from the other treatments, while there were no significant differences of water saturation of samples from all the treatments for the capillary pressure < -1000 kPa . The simulated water retention results had the same trend with the measured results.

How to cite: Qu, R., Zhou, H., and Hallet, P.: Quantification of micron-scale structural and hydraulic properties of long-term pig manure and lime amended red soil aggregates using the lattice Boltzmann method and pore network modelling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19170, https://doi.org/10.5194/egusphere-egu2020-19170, 2020.

EGU2020-11566 | Displays | SSS6.10

Improving estimates of UK soil moisture using the JULES land surface model with COSMOS-UK measurements in the LaVEnDAR data assimilation framework

Elizabeth Cooper, Ewan Pinnington, Richard Ellis, Eleanor Blyth, Simon Dadson, and Hollie Cooper

Soil moisture predictions are increasingly important in hydrological, ecological and agricultural applications. In recent years the availability of wide-area assessments of current and future soil-moisture states has grown, yet few studies have combined model-based assessments with observations beyond the point scale. Here we use the JULES land surface model together with COSMOS-UK data to evaluate the extent to which data assimilation can improve predictions of soil moisture across the United Kingdom.

COSMOS-UK is a network of soil moisture sensors run by UKCEH. The network provides soil moisture measurements at around 50 sites throughout the UK using innovative Cosmic Ray Neutron Sensors (CRNS). Half hourly measurements of the meteorological variables that the Joint UK Land Environment Simulator (JULES) requires as driving data are also recorded at COSMOS-UK sites, allowing us to run JULES at observation locations. This provides a unique opportunity to compare soil moisture outputs from JULES with CRNS observations; these measurements have a footprint of up to 12 ha (approx 30 acres) and are therefore better scale matched with JULES outputs than those from point sensors.

We have used the Land Variational Ensemble Data Assimilation Framework (LaVEnDAR) to combine soil moisture estimates from JULES with daily CRNS observations from one year at a number of COSMOS-UK sites. We show that this results in improved soil moisture predictions from JULES over several years. This has been achieved by optimising parameters in the pedo-transfer function used to derive JULES soil physics parameters from soil texture information. Using data assimilation with LaVEnDAR in this way allows us to explore the relationships between soil moisture estimates, soil physics parameters and soil texture, as well as improving the agreement between JULES model outputs and observations.

How to cite: Cooper, E., Pinnington, E., Ellis, R., Blyth, E., Dadson, S., and Cooper, H.: Improving estimates of UK soil moisture using the JULES land surface model with COSMOS-UK measurements in the LaVEnDAR data assimilation framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11566, https://doi.org/10.5194/egusphere-egu2020-11566, 2020.

EGU2020-4507 | Displays | SSS6.10

A wireless system for volumetric water content measurement by TDR

Antonio Villoro, Borja Latorre, JuanJosé Jiménez, María Victoria López, José Manuel Nicolau, Jaume Tormo, and David Moret-Fernández

Time Domain Reflectometry (TDR) is an accurate and widely used technique for real time estimation of soil volumetric water content (θ), and the bulk electrical conductivity (σ). Although there are multiple software that allow monitoring θ and σ by connecting the TDR device to a PC, this system used under field conditions can be in many cases awkward. This paper presents a wireless, portable, unexpansive, simple, and versatile system to measure θ and the σ by connecting the TDR device to a smart phone. The system consists on a M5Stack processing unit that integrates a Wifi connectivity. The UART port of the M5Stack is connected to the TDR device through RS232-ttl adapter. The hardware is programmed in micropython language that allows the M5Stack acts as a server between the user and the TDR device through a web page read with a smart phone. The software, which is compatible with Campbell TDR100 and 1502C Tektronix devices, allows creating different project where the TDR waveforms are stored. A simple θ and the σ measurement is also allowed. Since the objective of the portable system is to ease and makes θ and σ samplings faster, a complementary web page for subsequent and more accurate estimates of θ and σ was also developed.

How to cite: Villoro, A., Latorre, B., Jiménez, J., López, M. V., Nicolau, J. M., Tormo, J., and Moret-Fernández, D.: A wireless system for volumetric water content measurement by TDR, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4507, https://doi.org/10.5194/egusphere-egu2020-4507, 2020.

EGU2020-19015 | Displays | SSS6.10

Study of accuracy and sensing volume of a wide range of established and low-cost soil water content probes

Miguel A. Campo-Bescós, Iban Iturria, Unai Gomez, Rafael Gimenez, Javier Casali, and Rafael Muñoz-Carpena

Continuous soil moisture content monitoring is key to understand the soil and water flow and transport processes and their impact on a wide range of environmental change and quality processes. Nowadays, there are a wide variety of electromagnetic sensors for estimating soil volumetric content. These include those from established manufacturers (>50€) and low-cost (<50€) amateur electronics enthusiasts with open-source projects. For each sensor, the manufacturer typically provides both a calibration function and an estimation of the sensing volume of the device. The objective of this work is to evaluate the performance –regarding the accuracy and effective sensing volume– of a wide variety of soil water sensors and to compare these results with those provided originally by the respective manufacturer. Twenty-five different electromagnetic sensors representative of the current best-known commercial (19) and the low-cost brands (6) were tested in the laboratory using 3 soils of contrasting texture. Benchmark values for comparison were obtained by the gravimetric method. The sensing volume for each probe was characterized by recording readings while the probes approached a water surface. The Root Mean Square Errors of the sensors ranged from 0.02 to 0.10 cm3/cm3, and the sensing volume of the different probes exhibited a large variability, ranging from 0.5 to 1500 cm3. Importantly, the probes evaluated in laboratory conditions showed different errors for each soil type. The loamy soil readings presented the smallest errors, followed by sandy and clayey soils. No statistically significant differences were found in measurement accuracy between low-cost and higher-priced probes. From the study of the sensing volume explored, with the exception of one case, it can be concluded that the low-cost probes generally explore a smaller volume than the established probes. The selection of the appropriate probe based on its sensing value could be important for different types of risk analysis and management applications.

How to cite: Campo-Bescós, M. A., Iturria, I., Gomez, U., Gimenez, R., Casali, J., and Muñoz-Carpena, R.: Study of accuracy and sensing volume of a wide range of established and low-cost soil water content probes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19015, https://doi.org/10.5194/egusphere-egu2020-19015, 2020.

Soil water repellency (SWR) has significant consequences for crop yield, carbon sequestration, aggregate stability, soil erosion, and water movement. It is known to be linked to hydrophobic substances and pore structure. Conservation agriculture could affect SWR through both aspects. However, most of the studies have only focused on hydrophobic substances due to the complexity of soil pore structure measurement and quantification. In this study, X-ray computed tomography at a resolution of 27.27 μm was used to calculate the shape, porosity, and connectivity of the pore network and reveal the impact of hydrophobic substances and pore structure on SWR. All samples were collected from two long-term experimental fields. The treatments were conventional tillage with residue removal (CT), reduced tillage with residue incorporated (RT), and no-tillage with residue mulch (NT) in both of the fields. The water repellency index was determined using the intrinsic sorptivity method by measuring the water and ethanol sorptivity. The results showed that RT and NT treatment increased the porosity of pores of 55-165 μm in diameter that had a positive relationship with ethanol sorptivity and water repellency index, respectively. However, the total porosity and the porosity of >165 μm in diameter had no significant link with SWR properties. RT and NT treatments could enhance ethanol sorptivity by increasing pore connectivity. However, pore connectivity had no effect on water sorptivity because of the hydrophobic substances. NT treatment also reduced water sorptivity by increasing pore surface area and hydrophobic substances. Soil organic carbon and microbial biomass carbon, both of them as hydrophobic substances, were higher under RT and NT treatment than CT. Microbial biomass carbon was more positively correlated to SWR than soil organic carbon, which indicates that microbial biomass carbon is a better indicator explaining tillage effects on SWR. Overall, RT and NT treatment could increase the water repellency index, which was a result of the interactions between pore structure and hydrophobic substances. In order to unravel the mechanisms underlying conservation tillage impacts on SWR more accurately, it is essential to determine both pore structure and hydrophobic substances at the same time.

How to cite: Li, S., Lu, J., and Degré, A.: Factors governing soil water repellency under tillage management: the role of pore structure and hydrophobic substances, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20719, https://doi.org/10.5194/egusphere-egu2020-20719, 2020.

EGU2020-13852 | Displays | SSS6.10

Estimating in-situ soil moisture dynamics from soil thermal dependencies

Svenja Hoffmeister, Sibylle Haßler, Mirko Mälicke, and Erwin Zehe

Soil moisture plays an important role for the understanding of hydrological processes due to its influence on water and energy fluxes between the soil surface and the atmosphere. Knowledge of soil water dynamics is especially critical in water-scarce areas. In agroforestry systems, for instance, excessive competition for water between the trees and crops might outweigh the benefits of the system, thus preventing a successful implementation.
Several techniques exist for measuring soil moisture and commercial devices vary widely in cost, reliability and efficiency. An alternative approach could be to estimate soil moisture dynamics from soil thermal dependencies. Similar approaches are already being used in remote sensing, as soil moisture influences the soil thermal properties and thus the surface energy balance and soil heat transfer. However, few studies have tested the feasibility of estimating in-situ soil moisture dynamics from soil temperature dynamics within a soil profile. Temperature sensors are cheaper, smaller and technically robust and could thus provide an interesting alternative to available commercial soil moisture sensors.
In this study, we quantify the effect of soil moisture on phase shift and amplitude attenuation of soil temperature to estimate soil moisture content. We investigate these relationships from two different angles. Firstly, we use virtual measurements in coupled model simulations of soil water and soil heat dynamics to infer the general feasibility and precision of the method in an idealized error-free world. A sensitivity analysis can give insights on how the parametrization of the thermal diffusivity affects the precision and feasibility. Secondly, we compare findings from these simulations to results from analyzing time series of both soil moisture and soil temperature measured in an agroforestry field site in South Africa. A tentative analysis of these time series reveals that the amplitude attenuation and phase shift in the daily temperature signal is clearly sensitivity to changes in soil moisture. Finally, we aim to setup a coupled model for the study site based on the available soil hydraulic and textural data and compare simulated with observed phase shifts and attenuations at different depths.

How to cite: Hoffmeister, S., Haßler, S., Mälicke, M., and Zehe, E.: Estimating in-situ soil moisture dynamics from soil thermal dependencies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13852, https://doi.org/10.5194/egusphere-egu2020-13852, 2020.

EGU2020-1052 | Displays | SSS6.10

Modelling thermal diffusivity of sandy soils

Artem Lebedev, Tatiana Arkhangelskaya, and Victoria Milichenkova

 

Thermal diffusivity (κ) of soils is highly dependent on soil moisture (θ), and so it is a common practice to measure the thermal diffusivity across a range of water contents. Thermal diffusivity of sandy soils, which occupy about 10% of land surface, was investigated. The results of this research may be used in various studies for sandy soils energy and water balance calculation.This study aims at the regression model of the sandy soils κ(θ) curves introduction. To achieve this goal, 9 more samples of sandy soils of the East European Plain were taken. Undisturbed soil cores were sampled from the 0–1.75 m layer with thin-walled steel cylinders 70 mm in height and 50 mm in diameter and were studied using the unsteady-state method. Additional sampling was carried out to provide soil material necessary to investigate basic properties of soils. Statistic analysis was performed for the dataset of 23 samples including the newly studied Lammelic Arenosols from Voronezh region and earlier investigated Anthrosols, Brunic Arenosols, and Albic Retisols from Moscow region. The ranges of sand, silt, and clay within the data set were 87–97, 0–8, and 1–6%; organic carbon content ranged from 0.1 to 0.9%; bulk density was rather high: from 1510 to 1660 kg m-3. Thermal diffusivity of capillary moistened soils was (6.2–7.6)×10-7 m2s-1; that of air-dry soils was about 2×10-7 m2s-1, and the peak values were almost 10×10-7 m2s-1 for soils with organic carbon content less than 0.3%, and did not exceed 8.5×10-7 m2s-1 for soils with organic carbon content from 0.5 to 0.9%. To compare different κ(θ) curves, we used a four-parameter approximation:

where κ0 is the thermal diffusivity of dry soil, а is the difference between the highest thermal diffusivity and the thermal diffusivity of dry soil, θ0 and b are shape parameters. The Willmott index of agreement between the model-predicted and observed values (dr), which approaches 1.0 when the predictions approach the observations, was used for evaluating the approximation quality. The efficiency of grouping soils was confirmed. The average curves for two groups differing in organic carbon ranges (C ≥ 0.5%, dr = 0.877; C < 0.5%, dr = 0.819) turned out to be more precise than the average curve obtained for the whole dataset (dr = 0.796). The linear correlation analysis of soil properties and the parameters of κ(θ) curves revealed a correlation between organic carbon content and а (-0.623) and between bulk density and κ0 (0.574). Curve parameters and basic soil properties of samples were used in order to carry out the forward stepwise multiple regression. The quality of obtained regression functions was evaluated using the R2 coefficient. The higher R2 values of κ0 and a were 0.776 and 0.637, respectively; the lower R2 values of θ0and b were 0.485 and 0.451, respectively. The obtained regression functions allow estimating apparent thermal diffusivity of sandy soils basing on available data on basic soil properties and soil water contents.

How to cite: Lebedev, A., Arkhangelskaya, T., and Milichenkova, V.: Modelling thermal diffusivity of sandy soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1052, https://doi.org/10.5194/egusphere-egu2020-1052, 2020.

EGU2020-1753 | Displays | SSS6.10

Modelling of frozen soil thermal conductivity

Hailong He, Dong He, Yuki Kojima, Gerald Flerchinger, and Miles Dyck

Frozen soil thermal conductivity (FSTC), which describes frozen soils’ ability to conduct heat under a unit temperature gradient, is a critical parameter of the partial differential heat conduction equation required for numerical studies of coupled heat and mass transport processes and engineering applications in cold and arid regions. FSTC is complicated because it is affected by factors such as temperature, unfrozen water and ice content, and soil texture. Although many FSTC models are available in literature, many of these models were developed using steady-state method that are subject to errors associated with phase change and water redistribution or not even tested with experiments. In addition, no studies have assessed their applicability and reliability. We conducted an extensive literature review and collated over 30 FSTC models. Their performance was evaluated with a large compiled dataset measured with transient method (e.g., heat pulse method), which is less likely to be affected by phase change and water redistribution at unfrozen or low subfreezing temperatures. In addition, a new FSTC model that is capable of accurately estimating FSTC at both unfrozen and frozen conditions is proposed.

How to cite: He, H., He, D., Kojima, Y., Flerchinger, G., and Dyck, M.: Modelling of frozen soil thermal conductivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1753, https://doi.org/10.5194/egusphere-egu2020-1753, 2020.

EGU2020-2058 | Displays | SSS6.10

The Impact of Corner- and Thick-Film flow on Evaporation: A Micromodel Study

Yi Ding and Helmut Geistlinger

Evaporation from real soils is a rather complex process, where atmospheric processes and internal water-transport and phase-transfer processes interfere each other, often nonlinearly. Coupled surface flow and diffusion from interfering neighboring pores through viscous or turbulent boundary layer determine the upper (atmospheric) boundary condition for the capillary and viscous water flow through the pore network of the porous media.

Recent research studied the influence of corner flow and thin-film flow on the evaporation or drying process. At pore scale these studies use microfluidic setups (Eijkel et al., 2005; Zhao et al., 2016) or micro-models (Zhang et al., 2011; Prat, 2011; Vorhauer et al., 2015; Geistlinger et al., 2019). At REV-scale the studies are based on packed glass beads and sands (Hoogland et al., 2016). Parametrizations of the soil hydraulic functions for the very dry region include corner- and film flow contributions (e.g. Peters et al., 2015).

To the best of our knowledge there is no study of the impact of thick-film flow caused by the roughness of the pore-solid interface on the evaporation (drying) process.

The objective of this paper is to present a comparative study of the two relevant water transport mechanisms corner- and thick-film flow at pore scale using micro-model experiments. The micro-models exhibit the same pore structure, but are different in their surface roughness. This is achieved by producing them based on silicon (smooth surface) and glass ceramics (rough surface). This allows to reduce the complexity of the evaporation process and control the relevant process parameter.

 

[1] Geistlinger, H., Ding, Y., Apelt, B., Schlüter, S., Küchler, M., Reuter, D., et al. (2019). Evaporation study based on micromodel experiments: Comparison of theory and experiment. Water Resources Research, 55, 6653–6672. https://doi.org/10.1029/2018WR024647

[2] Geistlinger, H., & Leuther, F. (2018). Evaporation study for real soils based on HYPROP‐hydraulic functions and micro‐CT‐measured pore‐ size distribution. Vadose Zone Journal, 17(1). https://doi.org/10.2136/vzj2018.02.0041 180041

How to cite: Ding, Y. and Geistlinger, H.: The Impact of Corner- and Thick-Film flow on Evaporation: A Micromodel Study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2058, https://doi.org/10.5194/egusphere-egu2020-2058, 2020.

EGU2020-15082 | Displays | SSS6.10

Estimating the unimodal and bimodal van Genuchten model parameters using the simplified evaporation and dewpoint methods

Sara Acevedo, Cristina Contreras, Sofia Martinez, and Carlos Bonilla

The pressure plate method has been widely used for describing the soil water retention curve (SWRC). However, the simplified evaporation method (SEM) appears as an alternative because of its high resolution and automatization. On the other hand, the unimodal and bimodal van Genuchten models (VGM) have been used for describing the SWRC by computing the shape parameters. However, parametric pedotransfer functions (PTFs) have been developed based on the pressure plates method, focusing on the unimodal VGM. Therefore, the objectives of this study were: (1) to measure the SWRC with the simplified evaporation method (SEM) coupled to the dewpoint potentiometer (DP) in soils with different land use and soil texture, (2) to adjust and compare the VG unimodal and bimodal parameters, and (3) to estimate the VG unimodal and bimodal parameters through regression techniques including a linear approach and random forest. Thirty topsoils (disturbed and undisturbed cores) were sampled across a climate gradient and measured by duplicated. Preliminary results showed that the high resolution of the SWRC data obtained with the SEM + DP leads to a better fit when using the bimodal VGM.

How to cite: Acevedo, S., Contreras, C., Martinez, S., and Bonilla, C.: Estimating the unimodal and bimodal van Genuchten model parameters using the simplified evaporation and dewpoint methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15082, https://doi.org/10.5194/egusphere-egu2020-15082, 2020.

Crack formation and development have been a general concern in agricultural science. Cracks contribute to soil aeration, aggregate formation, and easy root penetration. However, cracks facilitated water evaporation, accelerated soil desiccation, allowed deep infiltration of pesticides/pollutants through preferential flow, and polluted the shallow water-table in Belgium.  From many years, farmers reported the presence of cracks in their field; however, few studies investigated cracks formation from agricultural soil under different cultural practices. This research investigated the effect of cultural practices (conventional and reduced tillage) on crack formation and on soil hydraulic properties.

 

Soils were collected right from the agricultural field and processed (in laboratory) under evaporation experiment on a small drying chamber. Ceramic-IR-emitter heated the chamber while sensors (PT1000, DHT22) measured the temperature and relative humidity. Digital camera took photos of the soil surface at 30min interval. Balance and tensiometer commanded by a datalogger (CR800), recorded the soil hydraulic properties (water suction, water retention, evaporation rate etc.). Cracks were monitored and extracted using image analysis performed by ImageJ and PCAS software. The soil water retention curve (SWRC) was fitted with the bimodal models of Durner (1994) and Seki (2007). The output data were analysed statistically using appropriate software. Three treatments were considered including: disturbed soil, conventional tillage and reduced tillage.  

 

The results showed higher cracks formation on disturbed soil > reduced-tillage > conventional-tillage due to loose of soil cohesion, soil organic content, soil aggregation, biological activities, and soil porosity. Crack formed at low matrix suction for reduce tillage, but higher tension for conventional tillage and disturbed soil. The soil evaporation rate was also greater in reduced-tillage > conventional tillage > disturbed soil. The effect of cracks affected the SWRC for reduced tillage and disturbed soil. The result suspected the presence of pre-installing (or micro)cracks in the reduced-tillage samples. Future study is needed to assess the presence of pre-(micro)-cracks in soil using X-ray microtomography. 

How to cite: Ralaizafisoloarivony, N. A.: Assessing the effect of soil crack dynamics on hydraulic properties of agricultural soil from reduced tillage and conventional tillage fields, Wallonia-Belgium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20194, https://doi.org/10.5194/egusphere-egu2020-20194, 2020.

EGU2020-11917 | Displays | SSS6.10

Estimating the depth of the restrictive layer of soil in a cranberry field based on CT scan images

Elnaz Shahriarinia, Silvio Jose Gumiere, and Christian Dupuis

Estimating the depth of the restrictive layer of soil in a cranberry field based on CT scan images

 

Cranberry production is a dominant culture in Québec, Canada. In cranberry production, there is a substantial need for water whether for irrigation, harvesting, or frost control. Some farms are implementing subirrigation procedures in order to reduce water use and increase fruit yields. However, this irrigation method may impose hydraulic stresses on soil particles which results in the movement of fine particles. The accumulation of the soil particles in narrow pore throats leads to the formation of restrictive layers in soil.  In this respect, we are going to study the changes in soil media and its porosity based on X-ray computed tomography (CT) which is a non-destructive imaging method. Consequently, X-ray CT has become a great asset to analyze soil physical properties. With the analysis of the images captured by the use of X-ray computed tomography, it is possible to visualize and analyze the pore network structure in the soil media.

 

This study reports the results of subirrigation experiments for four different sandy soils. These column experiments aimed to reproduce the effects of subirrigation in cranberry fields for 40 years. Seven different time steps were taken with a medical CT scanner SOMATOM Definition AS+ 128 (Siemens, Germany). The 2-D horizontal 16-bit gray-scale images were captured by an X-ray energy level of 140 KeV. For each column, we got 1677 images of 512  512 pixels with a voxel size of 0.1 × 0.1 × 0.6 mm (x, y, z). Studying our images for further analysis, we used several global and local methods to find the most reliable and efficient one to binarize our images. Results show that the methods and the image analysis neighborhood have a great impact on the accuracy of the image segmentation. We were able to reconstruct a 3-D visualization of the soil pore network for each column. We used this reconstruction to demonstrate that the variation of porosity and soil pore characteristics can be studied over time. We find that the transport of soil particles tends to be highest when there are fine sandy soil particles on top of a layer of coarse soil. These finer particles have sufficient energy to be remobilized within the pore network while coarser particles remain in place. Our results show that soil particle transport can be assessed using time-lapse imagery and thus makes it possible to approximate the depth and amount of time that will be required for these restrictive layers to form in different soil profiles. Finally, it would be possible to find the best structure of soil in construction of a cranberry field in the future.

 

 

 

 

 

 

How to cite: Shahriarinia, E., Gumiere, S. J., and Dupuis, C.: Estimating the depth of the restrictive layer of soil in a cranberry field based on CT scan images, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11917, https://doi.org/10.5194/egusphere-egu2020-11917, 2020.

EGU2020-6852 | Displays | SSS6.10

Sensor for measuring the average of a spatial distribution of the relative air humidity

Detlef Lazik, Gerrit H. de Rooij, Walter Lazik, and Ralph Meissner

Due to the current expansion of arid regions, the pressure on available water resources is increasing. A suitable measure for water availability and dynamics in dry soil is the relative humidity (RH) of the soil air as shown in Goss and Madliger (2007). Due to the heterogeneity of soil, water inputs, and root water uptake, the humidity of soil air will vary in space. Therefore, area-representative measurement methods are needed to find a representative measure of the soil water status. Existing sensors for the direct determination of relative humidity only represent a single location with a spatial extent of up to several cm.

We introduce a new measuring principle that averages over a spatially heterogeneously distributed relative humidity (Lazik et al., 2019). It is based on the selective steady-state diffusion of water vapor through closed semipermeable membrane tubes. The resulting pressure changes within the tubes are sensitive to the respective vapor pressures. One tube is exposed to the environment while two further tubes enable observing reference states of vapor pressure for same (p,T)-conditions. The relative humidity of interest follows immediately from the comparison of the measured pressure changes.

We show that the new type of membrane-based relative humidity sensor (MHS) is able to work without any external calibration. An important conclusion from our theory is that RH measurement using an MHS does not depend on temperature. This independence could be confirmed experimentally for laboratory conditions (temperature 22 to 28 °C, air pressure 993 to 1015 hPa). The comparison of our first laboratory prototype with calibrated RH reference sensors in a range of 4 to 100% RH proves the linearity of the measuring method and its accuracy.

A potential application is the improvement of water use efficiency in irrigated agriculture. As demonstrated in Goss and Madliger (2007) the RH readings can be converted to a water potential. If the sensor is buried in/above the root zone of an irrigated agricultural field, it can help schedule irrigation to maintain the water potential in the root zone within a range that maximizes the crop yield per volume of irrigation water. If the sensor is buried in dry soils, it may contribute to improved estimates of vapor-based water transport and groundwater recharge. In case large-scale data are needed that can realistically only be acquired by remote sensing, such data will probably require calibration with ground-truth data. Our technology can deliver such data with a much larger footprint than typical mm to cm -scale humidity sensors that measure the humidity within a measurement chamber with a volume below 1 cm3 that is in contact with a poorly defined but tiny soil volume.

 

Goss, K.-U., Madliger, M. (2007) Water Resources Research 43(5): W05433. doi: 10.1029/2006WR005197

Lazik, D., de Rooij, G.H., Lazik, D., Meissner, R. (2019) Sensors 19(23): 5073. doi: 10.3390/s19235073

How to cite: Lazik, D., de Rooij, G. H., Lazik, W., and Meissner, R.: Sensor for measuring the average of a spatial distribution of the relative air humidity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6852, https://doi.org/10.5194/egusphere-egu2020-6852, 2020.

EGU2020-13879 | Displays | SSS6.10

Trial of continuous measurement of micro-nano bubbles in water

Shinsuke Aoki, Masahiko Tamaki, and Kosuke Noborio

Micro-nano-bubbles (MNBs) are tiny bubbles with diameters ranging from tens of nanometers to several tens of micrometers. Owing to their small diameter, MNBs have some characteristics. Compared with normal bubbles, MNBs have lower rising velocity and persist for long periods in the liquid phase. MNBs technology is proposed to use for various areas such as groundwater remediation, aquaculture, mass transfer. Although MNB generation methods and applied to problems are attracted, the continuous in-situ measurement technique has not researched well. An easy, continuous, and inexpensive method is desired for more efficiently using MNBs. In previous research, the dielectric constant of MNBs water was different from that of water. Therefore we hypothesized that continuous measurement of dielectric constant could be used to estimate MNBs in the water. The purpose of this study is to investigate the attempt to continuous measurement for MNBs. To measure dielectric constant, we used time domain reflectometry (TDR). A TDR probe (0.15 m long) was used with a cable tester (Model 1502C, Tektronix Inc.) in this study. We also used GS3 sensor (METER Group, Inc.) for water temperature measurement because the dielectric constant changed with temperature. Dielectric constant and water temperature were measured every 1 min during before and after MNBs generation. We conducted experiments with several MNBs generators. Measured dielectric constant changed before and after MNBs generation. Although estimated dielectric constant from water temperature differed from measured dielectric constant, both agreed about half day. It was suggested that simultaneous measurement of temperature and dielectric constant can estimate the amount of MNB in water.

How to cite: Aoki, S., Tamaki, M., and Noborio, K.: Trial of continuous measurement of micro-nano bubbles in water, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13879, https://doi.org/10.5194/egusphere-egu2020-13879, 2020.

EGU2020-3212 | Displays | SSS6.10

Seeing Macro-dispersivity from Hydraulic Conductivity Field with Convolutional Neural Network

Zhengkun Zhou, Liangsheng Shi, and Yuanyuan Zha
Building a quantitative relation between the spatial heterogeneity of the hydraulic conductivity fields and the macroscale behavior of solute transport is fundamental for groundwater environment problem. In this work, the deep learning technique is explored to build the functional mapping between the hydraulic conductivity field and the longitudinal macro-dispersivity. We examine the capability of the deep neural network in estimating macro-dispersivities of conductivity fields with different variances. The universality of the trained deep neural network is investigated. Comparisons of the neural network results and the reference values (macro-dispersivities from transport simulation) suggest the promising potential of deep learning technique in porous media with moderate heterogeneity. For a given size of training datasets, the deep neural network produces better macro-dispersivity estimation for the conductivity field with smaller variance. The trained neural network by conductivity fields with larger variance has stronger universality for macro-dispersivity estimation. This study demonstrates that deep neural network can be an effective alternative for predicting macroscale behavior of solute transport by directly interpreting hydraulic conductivity fields.

How to cite: Zhou, Z., Shi, L., and Zha, Y.: Seeing Macro-dispersivity from Hydraulic Conductivity Field with Convolutional Neural Network, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3212, https://doi.org/10.5194/egusphere-egu2020-3212, 2020.

EGU2020-21173 | Displays | SSS6.10

A physical based model to describe effective hydraulic conductivity of the soil mixtures

Deep Chandra Joshi, Mahyar Naseri, and Wolfgang Durner

There is a long-lasting interest in obtaining the effective hydraulic conductivity functions of soil mixtures. The few available models to obtain hydraulic conductivity of mixtures are mostly empirical and applicable for saturated conditions. We propose a simple physical model based on the effective medium theory to calculate the effective hydraulic conductivity of soil mixtures with two or more components. The model incorporates the volumetric content of each mixture component and their hydraulic conductivity to calculate the effective conductivity of the mixture. The results of the model were compared with the measured hydraulic conductivity data obtained from the simplified evaporation method using the Hyprop device. Samples were prepared by packing homogeneous mixtures of different soil textures in cylinders with a volume of 250 cm3. Packed soil mixtures were saturated and exposed to evaporation in a climate controlled laboratory with constant air temperature and humidity. The results show an acceptable match between the measured and modeled hydraulic conductivity of the tested soil mixtures. The model can be used as a physical way to describe the effective hydraulic conductivity of mixtures in a wide range of moisture.

How to cite: Joshi, D. C., Naseri, M., and Durner, W.: A physical based model to describe effective hydraulic conductivity of the soil mixtures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21173, https://doi.org/10.5194/egusphere-egu2020-21173, 2020.

EGU2020-20742 | Displays | SSS6.10

Particle displacement due to splash - analysis based on glass bead deposits

Rafał Mazur, Magdalena Ryżak, Agata Sochan, Karolina Marciszuk, Michał Beczek, Krzysztof Lamorski, and Andrzej Bieganowski

Splash, which is the first stage of the water erosion, is a dynamic and complex phenomenon. The ejection of soil particles occurs within fractions of a second after the impact of a drop. The diameter of the deformation formed on the surface can be measured in millimeters. The complicated nature of the phenomenon necessitates the use of advanced equipment (high-speed cameras or surface scanners) and models for simplification of the subject of the study to analyze selected aspects of the splash.

The work presents the results of research in which glass beads were used as a soil model. The aim of the experiments was to determine the influence of the initial position of the deposit elements on their displacement as a result of a droplet impact.

A water drop with a diameter of 4.2 mm falling freely from a height of 1.5 m was used in the study. The beds were placed in aluminum rings with a diameter of 40 mm. The measurements were based on the initial and final position of the beads used as markers; these beads differed in color from the rest of the deposit. The source of data included pictures taken with a digital camera before and after the impact and control recordings made with high-speed cameras to correct possible errors. Additionally, some of the samples were scanned with a microtomograph, which allowed characterizing the surface deformation. Taking into account their structure, the beds used in the measurements were divided into two groups. The first one was used to analyze the influence of drops on individual elements - symmetrical patterns from colored beads were prepared on the sample surface; the second group was used to analyze the influence of drops on groups of elements - layers of beads with the same color were prepared on the surface of these samples.

Based on the experiment results, the movement of the deposit elements was divided into three types: displacement inside the area wetted by a drop, ejection, and placement on the crater rim. The initial location of the beads displaced over the greatest distances was a narrow ring covering the area from 4 to 8 mm from the point of the drop impact. It is worth noting that this area was associated with strong surface deformation. The use of "monolayers" helped to indicate that 97% of the beads ejected outside the ring with the deposit originated from the bed surface layer.

References

Mazur R., Ryżak M., Sochan A., Marciszuk K., Beczek M., Lamorski K., Bieganowski A., 2020. Surface deformation and displacement of bed elements during splash – Model tests. Catena 185, 104277

The study was partially funded from the National Science Centre, Poland in the frame of project no. 2014/14/E/ST10/00851.

How to cite: Mazur, R., Ryżak, M., Sochan, A., Marciszuk, K., Beczek, M., Lamorski, K., and Bieganowski, A.: Particle displacement due to splash - analysis based on glass bead deposits, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20742, https://doi.org/10.5194/egusphere-egu2020-20742, 2020.

EGU2020-12699 | Displays | SSS6.10

From Pedo to Pedon: Towards the next generation of transfer functions to estimate saturated hydraulic conductivity

Alejandro Cueva, Daniel R. Hirmas, Attila Nemes, and Pamela L. Sullivan

Pedotransfer functions (PTFs) are widely used tools to predict soil properties across different spatial scales and are commonly built using regression-based techniques (e.g., multiple linear regression or regression trees) and, more recently, machine learning methods (e.g., artificial neural networks). In these techniques, soil material arising from different soil horizons are treated as independent samples despite the depth dependency that exists for horizons within individual pedons. Here we propose a new approach to build PTFs that takes into account the depth dependency of saturated hydraulic conductivity (Ksat) and refer to this type of depth-dependent PTFs as a “pedontranfer” function (PnTF). Slope (β1) and intercept (β0) parameters describing the relationship of log-scale Ksat with soil horizon depth were fit to pedons selected from the Pedogenic and Environmental DataSet (PEDS). The intercept parameter can be interpreted as the Ksat at a 0 cm depth (i.e., Ksat at the soil surface) and β1 as the rate of change of Ksat with respect to depth. In order to build the PnTF, we used field-based pedon information from PEDS, encompassing approximately 2,000 pedons and >13,000 soil horizons across the United States and estimated Ksat using a generalized Kozeny-Carman equation. Our results show a strong negative linear relationship between β1 and β0 (r2 = 0.80; P < 0.01). When we predicted the fitted line of the linear relationship between β1 and β0 using a multiple linear regression with different soil and climatological variables we found a significant (P < 0.01) and direct relationship, with relatively good agreement (R2 = 0.38). Our results suggest that the PnTF approach represents a step forward in the development of the next generation of PTFs, although further research is needed to improve its precision and accuracy. We believe that PnTFs, in principle, have significant advantages over PTFs that should be of interest to the community of developers and users of Earth system and community land models. For example, soil Ksat at depth may be predicted from knowledge only of the surface Ksat since β1 can be predicted from β0. Future work should incorporate other soil databases in order to account for systematic biases of the different methods to measure or estimate Ksat.

How to cite: Cueva, A., Hirmas, D. R., Nemes, A., and Sullivan, P. L.: From Pedo to Pedon: Towards the next generation of transfer functions to estimate saturated hydraulic conductivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12699, https://doi.org/10.5194/egusphere-egu2020-12699, 2020.

EGU2020-9463 | Displays | SSS6.10

Test of possible standard samples for soil physical analyses

Aurore Degré, Alexandre Pomes-Bordedebat, and Imène Belazereg

As they mostly deal with undisturbed samples, soil hydrophysics analyses often present variability in their results. No one can deny that soil, and particularly structured soil, is a very complex and challenging media to describe. But it remains that the lab measurements themselves deserve attention. To what extent are they reproducible? To what extent different labs following the same protocol do they provide the same results for a given soil sample? Is this uncertainty quantifiable? Is there a way to standardize or harmonize the analyses? And of course, to what extent does it really matter when it comes to produce reliable information about i.e. drought consequences?

When most of the labs related to chemical analyses can rely on ring tests to improve their capacity, soil physics labs can’t. Building reference samples that could fit into classical measurement devices is one of the options that could allow to run ring tests in soil physics measurements.

The poster will present an attempt to develop reference samples in view to measure the wet end of the retention curve.

How to cite: Degré, A., Pomes-Bordedebat, A., and Belazereg, I.: Test of possible standard samples for soil physical analyses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9463, https://doi.org/10.5194/egusphere-egu2020-9463, 2020.

EGU2020-2964 | Displays | SSS6.10

Extension of the regional climate model REMO by a 5-layer soil scheme

Daniel Abel, Felix Pollinger, Katrin Ziegler, and Heiko Paeth

The EFRE-Project BigData@Geo, founded by the European Union, aims to create highly resolved climate projections for the model region of Lower Franconia in Bavaria, Germany. These projections are analyzed and made available to local stakeholders of agriculture, forestry, and viniculture as well as the public. As recent regional climate models are not dealing with the necessary spatiotemporal resolution the model REMO will be developed in the project‘s frame in cooperation with the Climate Service Center Germany (GERICS).

For these very high resolutions, besides improvements like the non-hydrostatic atmosphere, higher resolved static land surface parameters, and land use land cover changes, etc., realistic modeling of the soil hydrology becomes absolutely necessary. Therefore, REMO is extended by a 5-layer soil scheme which is a first step to overcome restrictions of the recently used soil hydrology scheme due to the included vertical water flow. Furthermore, the current work also aims to implement lateral water flows between grid cells because this is the only way to model the soil hydrology appropriate to the project‘s question.

The current model version of REMO includes a bucket scheme that treats the soil hydrology as a single layer. The soil depth is equal to the rooting depth and, thus, depends on the overlying vegetation class. Consequently, the whole soil moisture of the soil is available for transpiration. Evaporation only occurs if the soil moisture reaches at least 90 % of the field capacity.

The 5-layer scheme has 5 layers with increasing thicknesses for deeper layers. The maximum depth of the soil is at approximately 10 m or the depth of the bedrock. Due to the existence of water below the rooting zone and the processes of capillary rise and percolation more water becomes available for transpiration compared to the bucket scheme. Furthermore, evaporation only occurs if the uppermost layer contains soil moisture which is a more realistic process representation as well.

First results of the comparison of the two schemes and with observation data in the EURO-CORDEX region and a german subregion are presented. We also show some sensitivity studies of the current improvements to the parameterizations of the 5-layer scheme which are necessary for the goal of incorporation of the lateral flow.

How to cite: Abel, D., Pollinger, F., Ziegler, K., and Paeth, H.: Extension of the regional climate model REMO by a 5-layer soil scheme, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2964, https://doi.org/10.5194/egusphere-egu2020-2964, 2020.

EGU2020-7663 | Displays | SSS6.10

A robust solution to Richards' equation for complex soil hydraulic models using the Method Of Lines

Robert Mietrach, Thomas Wöhling, and Niels Schütze

A robust solution to Richards' equation for complex soil hydraulic models using the Method Of Lines

Robust numerical solutions are required for automatic parameter estimation, uncertainty analysis of soil hydraulic models, but also to quantify and legitimate model complexity.
The Method Of Lines approach to solve Richards' equation has already be shown to be an efficient and stable alternative to established methods, namely low-order finite difference and finite element methods applied to the mixed form of Richards' equation. Besides its beneficial properties in numerical challenging scenarios, the Method Of Lines approach allows for easier integration of additional differential equations which proves advantageous where further processes should be included in the modeling.

In this work a slightly modified Method Of Lines approach is used to solve the pressure based Richards' equation. A finite differencing scheme is applied to the spatial derivative and the resulting system of ordinary differential equations is reformulated as differential-algebraic system of equations (DAE). The open-source code IDAS from the Sundials suite is used to solve the DAE system. This solution has been extended to include hydraulic models that can account for hysteresis, dual-permeability and non-equilibrium effects. The different hydraulic model implementations have been verified against results from the software Hydrus and show good agreement with those.
Bayesian model selection techniques and the concept of the model confusion matrix can be used to examine the legitimacy of a given model's complexity with regards to available input data.
To generate the necessary data a Monte Carlo Sampling over a range of soil parameters was carried out for the models of different complexity. The computations were performed at the high-performance computing facilities at TU Dresden using the developed code.

The results of the analysis show the identifiability of the models, i.e. how well a model recognizes itself through Bayesian model selection when it was the one that has generated the data. This is a useful technique when building model ensembles for diagnostic or predictive purposes.

How to cite: Mietrach, R., Wöhling, T., and Schütze, N.: A robust solution to Richards' equation for complex soil hydraulic models using the Method Of Lines, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7663, https://doi.org/10.5194/egusphere-egu2020-7663, 2020.

     Understanding the rules of soil water movement under drip irrigation can provide data support and theoretical basis for developing precise drip irrigation strategies. In this study, a two-years-old Populus tomentosa plantation under surface drip irrigation on sandy loam soil was selected to measure the dynamics of soil water potential (ψs), wetting front and soil water content (θ) during irrigation and water redistribution periods were investigated in field experiments. Then, the observed data in the field were used to evaluate the accuracy and feasibility of the HYDRUS-2D/3D model for simulating the short-term soil water movement. Besides, the validated model was used to simulate the dynamics of wetting front under different initial soil water content (θi). During irrigation, the variation of ψs, horizontal and vertical movement distances of the wetting front, and θ within the wetting volume with irrigation duration could be described by the logistic function (R2 = 0.99), the logarithm function (R2 = 0.99), the power function (R2 = 0.82), and the polynomial function (R2 = 0.99), respectively. At the end of irrigation, the horizontal and vertical movement distances of the wetting front reached 22.9 cm and 37.3 cm, respectively. The ψs and θ within the soil wetting volume were 61.6% and 30.9% higher than those at the start of the irrigation, respectively, but the ψs decreased to its initial level about 120 hours later after the stop of irrigation. The average deviations of the horizontal and vertical wetting radius between the simulated and measured values were 1.3 and 4.5 cm, respectively. The mean RMSE and RMAE of HYDRUS-2D/3D for simulating θ at the end of irrigation and during water redistribution were 0.021 cm3∙cm-3 and 9.7%, respectively. The movement distances of wetting front in the experimental plantation under various soil drought degrees (soil water availabilities were 40%, 60%, 73% and 80%) were obtained through scenarios simulations using HYDRUS-2D/3D. And it was found that the wetting front could move further under higher θi, and the movement distance of the wetting front was always smaller in the horizontal direction than in the vertical direction under different θi conditions. Consequently, HYDRUS-2D/3D can be used to well simulate the short-term soil water movement in drip-irrigated young P. tomentosa plantations on sandy loam soil. In addition, the constructed figure (describes the variations of the horizontal and vertical soil wetting distances with the irrigation duration) can be used to determine the reasonable irrigation duration for the plantations of P. tomentosa and other tree species on sandy loam soil.

How to cite: Li, D., Xi, B., and Jia, L.: Using HYDRUS 2D/3D to Evaluate Soil Water Movement in Drip-irrigated Young Populus tomentosa Plantations on Sandy Loam Soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11286, https://doi.org/10.5194/egusphere-egu2020-11286, 2020.

SSS7.2 – Management, restoration and rehabilitation of terrestrial ecosystems in a global change context: geomorphological, hydrological and ecological issues

Land use change is a global issue with tremendous social, economic and environmental implications. Currently, many countries display high rates of deforestation and forest conversion from native forest to industrial tree plantations which have a direct impact on soil C and N stocks. Even though, there is a significant number of studies that highlighted the effects of forest substitution on C sequestration, the impact on ecological stoichiometry and biogeochemical cycling has not been well assessed. The soils considered in this study encompass the main forest soil types found in south central Chile representing a range of soil properties and mineralogy (crystalline to amorphous ash derived soils). To reduce confounding factors due to site history, we exclusively selected pair sampling sites (native versus plantation) that shared a similar land-use history and had close to identical soil and geomorphic conditions in which two independent 625m2 plots were established at adjacent Native Forests (NF) and Pine Plantations (PL).To determine C:N:P inventories alongside N and P available pools, the plot was divided into four sub-quadrants where bulk soil samples were collected at 6 depth intervals in the central soil pit and in four augers at each quadrant up to a depth of 240 cm. The C and N total pools were significantly different between soil types but not between forest types (p=0.02). The highest average C stock across all soils was found in NF (202.22 ± 82.77 Mg ha-1) compared to PL (172.55 ± 87.73 Mg ha-1). When comparing each soil type individually, disregarding forest type, the Young Ash soil displayed significantly higher C and N than all the other studied soils. On the contrary, the Recent Ash soil displays changes in the C:N:P stoichiometry. Available Phosphorus was significantly different among sites, but not for forest types across sites. Overall, native forest exhibits higher stocks of available NO3- and we did not find a significant effect of forest type in NH4+ stocks. Our result indicates the differential capacity that contrasting soils have to resist this major soil biogeochemical pools alteration.

How to cite: Crovo, O., Aburto, F., Albornoz, M., and Southard, R.: Differential responses of soil Carbon,Nitrogen and Phosphorus stocks and available pools to conversion from native forest to exotic plant plantation in soils of contrasting origin., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20760, https://doi.org/10.5194/egusphere-egu2020-20760, 2020.

EGU2020-21689 | Displays | SSS7.2 | Highlight

A co-evolutionary modelling framework for water-soil-vegetation interactions in Turkish semiarid landscapes for sustainable natural resources under climate change

Ömer Yetemen, Aydoğan Avcıoğlu, Ferat Çağlar, Bikem Ekberzade, Uğurcan Çetiner, Ömer Lütfi Şen, Tolga Görüm, Oğuz Hakan Göğüş, In-Young Yeo, Shin-Chan Han, and Kwok Pan Chun

This multidisciplinary project investigates the implications of aridification induced by climate change and human-induced land-cover land-use change in semiarid landscapes of Turkey on erosion dynamics and landscapes patterns and morphology. Deviations from climate mean states will result in loss of vegetation productivity and soil fertility in these water-limited ecosystems and exacerbate the natural conditions in terms of natural land‑cover and soil protection for natural resources sustainability. Here, we offer a comprehensive modelling framework to explore the water-soil-vegetation interactions under climate change for the following decades.

Remotely‑sensed vegetation indices and maps will be used to identify the regions where are prone to land‑cover change under climate change. Hence, the climate projections for the 21st century taken from CMIP6 model experiments will be used for anticipating the potential changes in ecosystem dynamics and boundaries in these water-limited ecosystems. Moreover, these climate projections will be used as forcing data in a vegetation-coupled landscape evolution model to understand how the landscape morphology and erosion dynamics interact with changing climate in Turkish arid lands. Besides erosion dynamics, the future of the unique geomorphic landscape feature of these regions, the Turkish badlands, will be investigated based on climate projections.

The outcomes of this project will enhance the comprehension of the effects of geomorphic, hydrological, and ecological processes on natural resources under climate change in semiarid Turkish landscapes.



How to cite: Yetemen, Ö., Avcıoğlu, A., Çağlar, F., Ekberzade, B., Çetiner, U., Şen, Ö. L., Görüm, T., Göğüş, O. H., Yeo, I.-Y., Han, S.-C., and Chun, K. P.: A co-evolutionary modelling framework for water-soil-vegetation interactions in Turkish semiarid landscapes for sustainable natural resources under climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21689, https://doi.org/10.5194/egusphere-egu2020-21689, 2020.

EGU2020-2240 | Displays | SSS7.2 | Highlight

Sensitivity analysis of gully sidewall expansion to topography and rainfall factors

Ma Yulei and Xu Xiangzhou

Gully sidewall expansion is an essential process of gully development, and its trigger condition and dynamic process are subject to multifactor effects. This study consisted of 10 sets of experiments, and three factors were considered: three rainfalls (60 mm, 48mm and 24mm), two initial slope gradients (70° and 80°) and two slope heights (1 m and 1.5 m). Then the increase-rate-analysis method was used to evaluate the variations in the changes of slope gradients of sidewall and retreat rates of gully shoulder-line with respect to changes in other causal parameters of rainfall and topography. The results are shown as follows: (1) The area of land loss of the upper gentle slope was positively correlated with the volume of gravity erosion. The correlation coefficient between the volume of gravity erosion and the area of land loss of the upper gentle slope, r1, is 0.91. The correlation coefficient between the volume of water erosion and the area of land loss of the upper gentle slope, r2, is 0.59. This shows that mass failure was the main cause to induce the land loss of the upper gentle slope in the process of sidewall expansion. (2) The rainfall duration and initial slope gradient had significant influences on the change of slope gradient of landform in the experiments. The sensitivity coefficients of rainfall intensity, rainfall duration, initial slope gradient and slope height for the change of slope gradient of the sidewall were 0.3, 2.2, 1.3 and -0.2, respectively. The increased initial slope gradient and rainfall duration may have caused the increases of the volume and number of gravity erosion, ultimately resulting in a remarkable change of slope gradient of the sidewall. (3) The most significant factor affecting the retreat rate of gully shoulder-line were rainfall intensity and initial slope gradient. The sensitivity coefficients of the rainfall intensity, rainfall duration, initial slope gradient and slope height for the retreat rate of gully shoulder-line were 3.0, 1.5, 3.0 and -0.1. As a result, the retaining wall construction was preferable to control the gully sidewall erosion. The results of this study may be referred for analyzing the mechanism of sidewall expansion and controlling the loess sidewall expansion.

How to cite: Yulei, M. and Xiangzhou, X.: Sensitivity analysis of gully sidewall expansion to topography and rainfall factors, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2240, https://doi.org/10.5194/egusphere-egu2020-2240, 2020.

EGU2020-7177 | Displays | SSS7.2 | Highlight

The impact of land use change, climate change and reservoir construction on ecosystem services in a Mediterranean catchment

Joris Eekhout, Carolina Boix-Fayos, Pedro Pérez-Cutillas, and Joris de Vente

The Mediterranean region has been identified as one of the most affected global hot-spots for climate change. Recent climate change in the Mediterranean can be characterized by faster increasing temperatures than the global mean and significant decreases in annual precipitation. Besides, important land cover changes have occurred, such as reforestation, agricultural intensification, urban expansion and the construction of many reservoirs, mainly with the purpose to store water for irrigation. Here we study the impacts of these changes on several ecosystem services in the Segura River catchment, a typical large Mediterranean catchment where many of the before mentioned changes have occurred in the last half century. We applied a hydrological model, coupled with a soil erosion and sediment transport model, to study the impact of climate and land cover change and reservoir construction on ecosystem services for the period 1971-2010. Eight ecosystem services indicators were defined, which include runoff, plant water stress, hillslope erosion, reservoir sediment yield, sediment concentration, reservoir storage, flood discharge and low flow. To assess larger land use changes, we also applied the model for an extended period (1952-2018) to the Taibilla subcatchment, a typical Mediterranean mountainous subcatchment, which plays an important role in the provision of water within the Segura River catchment. As main results we observed that climate change in the evaluated period is characterized by a decrease in precipitation and an increase in temperature. Detected land use change over the past 50 years is typical for many Mediterranean catchments. Natural vegetation in the headwaters increased due to agricultural land abandonment. Agriculture expanded in the central part of the catchment, which most likely is related to the construction of reservoirs in the same area. The downstream part of the catchment is characterized by urban expansion. While land use changed in more than 30% of the catchment, most impact on ecosystem services can be attributed to climate change and reservoir construction. All these changes have had positive and negative impacts on ecosystem services. The positive impacts include a decrease in hillslope erosion, sediment yield, sediment concentration and flood discharge (-21%, -18%, -82% and -41%, respectively). The negative impacts include an increase in plant water stress (+5%) and a decrease in reservoir storage (-5%). The decrease in low flow caused by land use change was counteracted by an increase in low flow due to reservoir construction. The results of our study highlight how relatively small climate and land use changes compared to the changes foreseen for the coming decades, have had an important impact on ecosystem services over the past 50 years.

How to cite: Eekhout, J., Boix-Fayos, C., Pérez-Cutillas, P., and de Vente, J.: The impact of land use change, climate change and reservoir construction on ecosystem services in a Mediterranean catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7177, https://doi.org/10.5194/egusphere-egu2020-7177, 2020.

EGU2020-12705 | Displays | SSS7.2 | Highlight

Land-atmosphere feedbacks reduce positive albedo forcing of afforestation

Sara Cerasoli, Jun Yin, and Amilcare Porporato

Thanks to their carbon uptake potential, which produces a negative radiative forcing, forests are considered a major natural mitigation strategy for global warming. Because of their relatively low albedo, however, previous assessments have shown that the effectiveness of afforestation rapidly decreases with latitude. Here, we revisit the problem by taking land-atmosphere feedbacks into account and especially the impact of vegetation on the timing of cloud formation and the probability of convective precipitation. Using a soil-plant-atmosphere continuum model coupled to a mixed layer model of the atmospheric boundary layer (ABL), we explore variations in the local surface energy balance and diurnal evolution as a function of biomes and latitude. We show that the increased evapotranspiration from forests causes an anticipation in the crossing between the ABL and the lifting condensation level a phenomenon that can lead to earlier cloud formation. This provides an extra cooling effect, which counterbalances the positive forcing of land-surface albedo. As a result, the negative effects of albedo changes appear less limiting, making afforestation a more viable strategy in a wider range of latitudes.  

How to cite: Cerasoli, S., Yin, J., and Porporato, A.: Land-atmosphere feedbacks reduce positive albedo forcing of afforestation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12705, https://doi.org/10.5194/egusphere-egu2020-12705, 2020.

EGU2020-14674 | Displays | SSS7.2

Hydrogeochemical evidence of seawater intrusion: a case study in Venice farmland

Ester Zancanaro, Pietro Teatini, Elia Scudiero, and Francesco Morari

Saltwater contamination seriously affects groundwater quality and land productivity of coastal farmland along the Venice lagoon, Italy. Characterizing seawater intrusion dynamics represents a fundamental step to better understand its effect on soil and groundwater quality and in turn, conceive mitigation strategies. To this end, a three-year study was conducted in an experimental field bounding the southern Venice Lagoon. Volumetric water content, soil matric potential and apparent electrical conductivity (ECa) were monitored by five automatic monitoring stations at four depths (0.1, 0.3, 0.5 and 0.7 m). Groundwater electrical conductivity (EC) and depth to the water table were measured at the five stations. In addition, soil pore water at the four depths and borehole groundwater samples were collected periodically and analyzed for chemical composition. Physical and chemical analyses of the soil profiles were also carried out. Relationships between Cl-, Na+, Mg2+, Ca2+, K+, SO42-, Br- ionic concentrations, EC and soil characteristics (e.g. texture, EC1:2, exchangeable cations) were calculated by Pearson and Spearman correlation. Kruskal Wallis test was performed to test the five monitoring stations. Moreover, specific molar ratios (Cl/Br, Br/Cl, Na/Cl and K/Cl) were calculated in order to identify the main drivers affecting salinity in the field. EC and ionic concentrations showed high variability across the monitoring stations and between the different sampling dates (e.g. groundwater EC ranged between 0.33 and 17.46 dS/m). Higher EC and ionic concentration values were observed during upward soil water movement, while values were lower during percolation events (e.g. maximum Cl- concentrations were 9227.3 mg/l and 3436.1 mg/l, respectively). An high correlation resulted between Na+ and Cl- ionic concentrations and EC data in four out of the five monitoring stations (r values between 0.82 and 0.92). In addition, Kruskal Wallis test showed a significant difference between EC and chemical data sampled at the five monitoring stations and different soil depths. These results allow to conclude that soil and water salinity originated from different processes such as seawater intrusion and deep brines upcoming. Understanding salinization sources would enable the definition of a mitigation strategy able to enhance land productivity and water quality.

How to cite: Zancanaro, E., Teatini, P., Scudiero, E., and Morari, F.: Hydrogeochemical evidence of seawater intrusion: a case study in Venice farmland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14674, https://doi.org/10.5194/egusphere-egu2020-14674, 2020.

EGU2020-22443 | Displays | SSS7.2

The Brownfield Ground Risk Calculator: A new spatial decision support tool for estimating ground risk and remediation costs for site located in Greater Manchester, UK

Andrew P. Marchant, Darren Beriro, Constantine P. Nathanail, Severine Cornillon, Katy Freeborough, Douglas G. Smith, Stephanie H. Bricker, Murray Carr, Mat Hoad, and Andrew Kingdon

The Greater Manchester Brownfield Ground Risk Calculator (BGR_calc) is a Geographical Information System (GIS) spatial decision support tool designed to provide an early indication of potentially abnormal ground conditions and the indicative costs of mitigating them. This is important because abnormal ground conditions can affect the viability of the constructing of new homes on post-industrial brownfield sites. Multi-criteria decision analysis methods were used process and utilise over 30 input dataets. BGR_calc comprises four primary outputs, each represents a different set of ground risk or cost mitigation characteristics that occur within the Greater Manchester area, presented alongside their associated input data. Each output comprises risk scores (scored between 0 to 1) or risk mitigation cost estimates (£) presented as 50 m grid cells and site based summaries for over 2000 individual sites. BGR_calc makes the assumption that all brownfield land evaluated will be used to develop two storey residential housing at a density of 30 houses per hectare. Ground risk scores reflect the nominal risk that soil and groundwater contamination and soil and rock hazards might pose to human health, controlled waters and the structural integrity of new homes. The scores are derived from data on sources of contamination or ground conditions resulting from previous land-uses and/or natural processes, the presence of exposure pathways and sensitive receptors (residents, water resources and homes). For there to be a risk, the source, pathway and receptor components must be linked. Risk mitigation cost estimates represent the amount that might need to be paid to develop a brownfield site over and above ‘normal’ development costs.  No allowance is made in BGR_calc for the financial benefits of pre-existing infrastructure, proximity to services and employment that brownfield land usually have but these ought to be considered within the overall economic evaluation of individual sites.

How to cite: Marchant, A. P., Beriro, D., Nathanail, C. P., Cornillon, S., Freeborough, K., Smith, D. G., Bricker, S. H., Carr, M., Hoad, M., and Kingdon, A.: The Brownfield Ground Risk Calculator: A new spatial decision support tool for estimating ground risk and remediation costs for site located in Greater Manchester, UK, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22443, https://doi.org/10.5194/egusphere-egu2020-22443, 2020.

EGU2020-17725 | Displays | SSS7.2 | Highlight

Evaluation of mining decommissioning strategies on catchment hydrology

Marco Lompi, Tommaso Pacetti, and Enrica Caporali

Sediment management can represent a key point for the water resources conservation, as the land use control can limit soil erodibility, ensuring a reduction of the silting volume in the reservoir. This study is focused on the nexus between coal mining activity and the hydrological cycle at the catchment scale, analysing how environmental interventions can be an excellent strategy against the impacts of former mining areas. Lake San Cipriano represents an excellent case study to explore the effects of mining activity on water storage because it is downstream of a river basin in which one of the most important lignite mine in central Italy has worked for years. A hydrological model is implemented on the Soil Water Assessment Tool (SWAT) to choose which decommissioning strategies brings the best results in terms of water resource conservation. Since no flow data are available, the model is calibrated in the solid transport equations, pointing to the convergence of the silting volume in the lake, which has been estimated thanks to multiple bathymetric campaigns carried out over the years. Two environmental restoration scenarios have been analysed: the first is only focused in the land use change with the afforestation of native plants; the second is a wider landscape restoration project that include also river bodies rehabilitation. The results show the quantitative effects of the proposed decommissioning strategies, showing the strong reduction of solid transport and reservoir silting in the two proposed scenarios.

How to cite: Lompi, M., Pacetti, T., and Caporali, E.: Evaluation of mining decommissioning strategies on catchment hydrology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17725, https://doi.org/10.5194/egusphere-egu2020-17725, 2020.

EGU2020-12569 | Displays | SSS7.2 | Highlight

SWAT-based sediment yield simulation with mining land-use change scenario in Lanuza Bay, Philippines

Peter Jeffrey Maloles, Adonis Gallentes, and Cesar Villanoy

The Philippines is known for its rich marine biodiversity and is deemed as the apex of the world’s coral triangle. However, sediment yield studies and river discharge measurements in the country are sparse if not non-existent. High sediment rates have detrimental effects on water quality and consequently to coral reef health and marine biodiversity. Thus, modeling of runoff and sediment yield at a watershed level is important in assessing coral community environments.

In this study, a Soil and Water Assessment Tool (SWAT) based sediment yield simulation was done for Lanuza Bay-- a site with high productivity but increasing mining activity. Two simulations were conducted. The first utilized a land-use map before January 2011 and was made to run from January 1998 to August 2018 in order to simulate a scenario in which mining operations did not occur in the area. The second simulation utilized an updated land-use map that incorporated mining sites from January 2011 to August 2018.

SWAT model results indicate that slope class was the primary determinant of erosion rates (slope band > 20%). The study suggests that consecutive precipitation occurrences affected soil erodability and induced a time lag between precipitation and sediment yield peaks. The highest contributors to sediment yield at a sub-basin level were identified to be areas adjacent to or coinciding in mining or excavation sites. Comparing the scenarios with and without mining, mining contributed to 4% of the increase in the watershed’s total annual sediment yield.

Qualitative and historical validation shows reasonable agreement between simulated values and satellite images. The output of this study can be used as a science-based reference in crafting laws and policies for land-use management and Marine Protected Area (MPA) planning.

How to cite: Maloles, P. J., Gallentes, A., and Villanoy, C.: SWAT-based sediment yield simulation with mining land-use change scenario in Lanuza Bay, Philippines, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12569, https://doi.org/10.5194/egusphere-egu2020-12569, 2020.

Gully erosion is recognised as a significant environmental issue. It affects grazing, croplands as well as rangelands. Of particular interest here are mining landscapes which are comprised of unconsolidated waste material that has little or no economic value. These landscapes are new systems with little nutrients and plant growth potential and the materials are often highly erodible and prone to gullying. Many empirical and physical models have been developed to understand gully initiation, growth and stabilisation. Here we demonstrate the use of computer based landscape evolution models to quantify the gully process. These models use a digital elevation model to represent the landform and allow the landform to evolve through time. The models can operate at sub-hourly through to millennial time scales. The landform (and resultant gully) can be visualised and rates of movement quantified and erosion rates calculated.  Different land surface properties such as vegetation cover, armour as well as climate variability can be investigated at the hillslope, catchment and landscape scale. These models offer a huge advance in visualisation and quantification of gully evolution. The models have been used across a wide range of materials and climates and will be demonstrated using several mining case studies. Of particular interest for the mining industry is how surface properties change through time as armouring and weathering occurs and vegetation establishes. Model strengths will be highlighted and areas where advances, particularly field data needs will be discussed.

How to cite: Hancock, G., Willgoose, G., and Welivitiya, D.: Gully erosion – the use of computer based landscape evolution models to predict initiation, growth and stabilisation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3734, https://doi.org/10.5194/egusphere-egu2020-3734, 2020.

EGU2020-3479 | Displays | SSS7.2 | Highlight

Testing the rehabilitation potential of post-mining soils: soil organic matter, microbial biomass and aggregate formation

Franziska Bucka, Evelin Pihlap, Jara Kaiser, Thomas Baumgartl, and Ingrid Kögel-Knabner

In the course of brown coal mining, large amounts of soil, interseam and overburden material are moved and translocated. Ceasing mining activities, the disturbed landscape needs to be restored and a rapid development of functional soils is of utter importance for the rehabilitation of those areas. Simple backfilling of the overburden material is not sufficient, above all in areas with semi-arid or arid climate due to the lack of water driving the formation of structure and rebuilding of organic carbon (OC) and nutrient pool. In order to accelerate soil development and rehabilitation, new approaches using mixtures of different substrates and OC sources are tested. Testing such rehabilitation mixtures in field scale is time and resource consuming. We present a rapid and easy to perform laboratory approach to evaluate the performance of artificial soil mixtures for rehabilitation regarding the development of chemical, biological and structural features. We tested six different mixtures used for a rehabilitation program at a coal mine in southern Australia composed with increasing complexity using overburden material, fly ash, paper mulch and brown coal. In addition, we investigated the effect of a fresh plant litter addition.  

We performed a short-term laboratory incubation in microcosms for forty days at constant water tension. During the incubation, we monitored water content and microbial activity. After the incubation period, we evaluated soil structure formation by isolating water-stable aggregates and estimated pore sizes by calculating water-filled pore space. We investigated OC allocation in bulk soil, soil solution, aggregates and microbial biomass and calculated the microbial carbon use efficiency (CUE).

Our results showed that the more complex mixtures had a higher OC content and a wider CN ratio. Available nutrients in the soil solution were mainly provided by the additional components, because the overburden material alone showed very low element concentrations in the soil solution. The formation of water-stable aggregates was mainly driven by the addition of fresh plant litter and there was a predominant formation of large macroaggregates (0.63-30 mm), that stored >80% of the total OC. Microbial activity, as measured by CO2 release, was high in all mixtures with fresh plant litter addition, but the highest microbial CUE was observed in the full rehabilitation mixture. Thus, the full rehabilitation mixture is considered to support sustainable microbial growth and has the potential for a rapid soil development. Also, we identified the OC input to be the main driver of early soil development in artificial soil mixtures influencing nutrient supply, microbial development and structure formation.

The study suggests that the presented experimental design is a functional and efficient test system for assessing the rehabilitation potential of different substrates and rehabilitation mixtures in a short-term lab approach.

How to cite: Bucka, F., Pihlap, E., Kaiser, J., Baumgartl, T., and Kögel-Knabner, I.: Testing the rehabilitation potential of post-mining soils: soil organic matter, microbial biomass and aggregate formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3479, https://doi.org/10.5194/egusphere-egu2020-3479, 2020.

EGU2020-13644 | Displays | SSS7.2

The role of SOM and CaCO3 on soil aggregate development in reclaimed soils

Evelin Pihlap, Markus Steffens, and Ingrid Kögel-Knabner

Soil organic matter (SOM) and extracellular polymeric substances (EPS) from biological processes are considered to be major contributors in aggregate formation. But there is limited knowledge on soil structural formation after reclamation – the step when SOM content is low and soil properties are mostly controlled by the parent material. In our study we used a chronosequence approach in the reclaimed open-cast mining area near Cologne, Germany to elucidate the development of soil structure and soil organic matter during initial soil formation in a loess material. We selected six plots with different ages of agricultural management after reclamation (0, 1, 3, 6, 12, and 24 years after first seeding). In each reclaimed field 12 spatially independent locations were sampled with stainless steel cylinders (100 cm3) at two depths in the topsoil (1-5 cm and 16-20 cm). Samples were wet sieved into four aggregate size classes of <63 µm, 63-200 µm, 200-630 µm and 630-2000 µm. Each aggregate size class was characterized by organic carbon (OC), total nitrogen (TN) and CaCO3 concentration. The chemical composition of the SOM of selected samples was characterized using solid-state 13C NMR spectroscopy.

Wet sieving into aggregate size classes showed different trends along the chronosequence. Contradicting relation between CaCO3 and OC contribution to aggregate size classes display two different mechanisms on soil aggregate formation in young loess derived soils. CaCO3 influenced aggregation predominantly in finer aggregate size classes, where the highest concentration and contribution was measured. SOM, on the other hand, played an important role on formation of large macro-aggregates after organic manure application in year 4. Furthermore, the loss of total OC after year 12 was connected with the loss of OC contributing to the largest aggregate size class. Our findings reveal that SOM and CaCO3 role on stabilizing aggregates is not equally distributed and is aggregate size class dependent.

How to cite: Pihlap, E., Steffens, M., and Kögel-Knabner, I.: The role of SOM and CaCO3 on soil aggregate development in reclaimed soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13644, https://doi.org/10.5194/egusphere-egu2020-13644, 2020.

EGU2020-20221 | Displays | SSS7.2

The choice of grass species to combat desertification in semi‐arid Kenyan rangelands is greatly influenced by their forage value for livestock

Dickson Nyariki, Nashon Musimba, Moses Nyangito, Agnes Mwang'ombe, and Kevin Mganga

Livestock production is the main source of livelihood in the arid and semi‐arid lands in Africa. However, desertification characterized by vegetation degradation and soil erosion is a major threat to the sustainability of land‐based production systems. Native rangeland forage species Cenchrus ciliaris L. (Buffel grass/African foxtail grass), Eragrostis superba Peyr. (Maasai love grass) and Enteropogon macrostachyus (Hochst. Ex A. Rich.) Monro ex Benth. (Bush rye grass) have been used to combat desertification. The objectives of the study were to identify the best‐suited native grass species to combat desertification in a semi‐arid environment in Kenya and to identify the preferred grass species among the agropastoralists in the area. Percentage basal cover, plant densities and frequencies of the three grasses in pure stands and mixtures were estimated. Grass species preferences were through household survey and focus group discussion. Results showed a significant difference (P < 0·05) in plant densities and cover estimates: E. macrostachyus was ranked first; C. ciliaris and E. superba were ranked second and third respectively. The agropastoral farmers, however, preferred E. superba followed by C. ciliaris and E. macrostachyus, a reverse trend. These results suggest that the choice of grass species to combat desertification is influenced more by its contribution as a source of forage for livestock than its contribution for rehabilitation purposes.

How to cite: Nyariki, D., Musimba, N., Nyangito, M., Mwang'ombe, A., and Mganga, K.: The choice of grass species to combat desertification in semi‐arid Kenyan rangelands is greatly influenced by their forage value for livestock, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20221, https://doi.org/10.5194/egusphere-egu2020-20221, 2020.

EGU2020-4360 | Displays | SSS7.2

Using waste soil to rehabilitate degraded agricultural lands: environmental burden as resource

Eli Argaman, Nir Becker, Smadar Tanner, Meni Ben-Hur, Jose Gruenzweig, Ayal Kimhi, Ilan Stavi, and Itzhak Katra

The global expansion of infrastructures is generating vast amounts of waste soil (soil excavated from construction sites that cannot be used on-site); the amount of waste soil accumulated in the European Union in 2014 was estimated at 463 x 106 tons. The regulation and management of waste soil disposal are currently limited to: (1) local use for various engineering projects; (2) stockpiling on-site for future use; (3) transferal to landfills, which are currently overfilled, as padding material or for disposal. Despite a number of permitted actions for handling waste soil, a significant portion of it is disposed of in the area surrounding the construction site, thus raising the risk of pollution and landscape spoilage. Waste soils are commonly excavated from deep layers, and are therefore saline, sodic, and lack organic matter, preventing their use without pre-treatment. Moreover, due to the intensification of crop production, one-third of the global agricultural land area is susceptible to soil loss by erosion, constituting ~50% of total estimated soil erosion. Here we show a new approach for environmentally, agronomically and economically sustainable use of reclaimed waste soil to rehabilitate degraded agricultural land. In a 3-year field experiment under rain-fed conditions in a semi-arid region of Israel, we found that waste soil ploughed into agricultural soil had low erodibility, similar to that of the original agricultural soil, despite its high sodicity. Waste soil application tended to decrease the soil organic carbon concentration but had no detrimental effect on wheat hay yield or wheat grain yield or quality in the second and third year, respectively. The economic analysis suggested an average reduction of 8.7 million USD in waste soil disposal costs if 50% of the waste soil produced in Israel annually were to be utilized in agricultural fields. Thus, waste soil can be utilized successfully in degraded agricultural lands; this opens a new route to land reclamation and provides land managers and stakeholders with a sustainable way to reduce costs while transforming an environmental burden into a resource.

How to cite: Argaman, E., Becker, N., Tanner, S., Ben-Hur, M., Gruenzweig, J., Kimhi, A., Stavi, I., and Katra, I.: Using waste soil to rehabilitate degraded agricultural lands: environmental burden as resource, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4360, https://doi.org/10.5194/egusphere-egu2020-4360, 2020.

EGU2020-4586 | Displays | SSS7.2

Impacts of land use change and climatic effects on streamflow in the Chinese Loess Plateau: a meta-analysis

Hao Chen, Luuk Fleskens, Jantiene Baartman, Fei Wang, Simon Moolenaar, and Coen Ritsema

Abstract: Land use and climate change are recognized as two major drivers affecting surface streamflow. On the Chinese Loess Plateau, implementation of several land restoration projects has changed land cover in recent decades. The main objectives of this study were to understand how streamflow evolved on the Loess Plateau and how land use and climate change have contributed to this change. In this study, we selected 22 hydrological modelling studies covering 25 different watersheds in the Loess Plateau and we performed a meta-analysis by using the hydrological and metrological data collected from these studies. The results indicate a streamflow decrease in 41 of a total of 52 case studies whereas precipitation change was found to be non-significant in the majority of the cases. Streamflow reduction was estimated to be -0.46mm/year by meta-analysis across all case studies. Land use change was estimated to have 63.52% impact on the streamflow reduction whereas climate change accounted for 36.48% of the impact. Using meta-regression, an increasing soil and water conservation area was found to be positively correlated to streamflow reduction. We conclude that in the Chinese Loess Plateau, streamflow shows a decreasing trend and land restoration is the major cause of this reduction. To the knowledge of the authors, this is the first study that estimates streamflow dynamics across many watersheds on the entire Loess Plateau.

How to cite: Chen, H., Fleskens, L., Baartman, J., Wang, F., Moolenaar, S., and Ritsema, C.: Impacts of land use change and climatic effects on streamflow in the Chinese Loess Plateau: a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4586, https://doi.org/10.5194/egusphere-egu2020-4586, 2020.

EGU2020-8114 | Displays | SSS7.2 | Highlight

Descriptors for soil development in a water limited environment of a rehabilitated open-cast mine site in south-east Australia

Evelin Pihlap, Franziska Bucka, Tiia Haberstok, Emily Scholes, Tabea Klör, Thomas Baumgartl, and Ingrid Kögel-Knabner

Soil structure and soil organic matter (SOM) are closely linked characteristics describing the status of development of a soil. Their interactions affect various physical, chemical and biological soil properties and functions like water holding capacity, water infiltration, composition of the carbon pool and microbial activity. Rehabilitated soils from post mining fields are considered to have poor soil structure, low nutrient content and microbial activity. Besides disturbed soil properties, in Australia soil rehabilitation success is also influenced by climatic conditions like high evaporation rate which affects rebuilding of soil system functions. Although there are several studies looking into the development of soil properties post rehabilitation in temperate climates, the intertwined development of soil structure and quality and quantity of SOM during soil formation under water stressed environment is not clear until now.

In this study we used a space-for-time chronosequence approach in the rehabilitated open-cast mines at Yallourn Mine (Victoria, Australia) to elucidate the development of soil structure and soil organic matter after rehabilitation in a water limited environment. We selected five different fields with different rehabilitation ages (40, 22, 11, 4 and 3 years) and two mature soils that are used as grazing land. In each field we sampled 6 independent locations with stainless steel cylinders (100 cm3) at two depths of 0-4 cm and 10-14 cm.  All samples were analysed for bulk density, organic carbon (OC) and total nitrogen (TN) concentration. Selected samples were wet sieved into four aggregate size classes of <63 µm, 63-200 µm, 200-630 µm and >630 µm. For detecting OC contribution to aggregate formation, OC and TN was measured from each aggregate size fraction. This system is temporarily highly dynamic and shows different developments for bulk density and SOM stocks, which had an effect on the structure of the microbial communities. Along the space-for-time chronosequence we can observe soil structure formation with ageing and a build-up of a OM, which has a positive effect on recovering soil functionality.

How to cite: Pihlap, E., Bucka, F., Haberstok, T., Scholes, E., Klör, T., Baumgartl, T., and Kögel-Knabner, I.: Descriptors for soil development in a water limited environment of a rehabilitated open-cast mine site in south-east Australia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8114, https://doi.org/10.5194/egusphere-egu2020-8114, 2020.

EGU2020-10951 | Displays | SSS7.2

Root distribution as function of litter layer management in eucalypt stands

Ana Paula Mendes Teixeira, Pedro Paulo de C. Teixeira, Luís Fernando J. Almeida, Letícia C. F. Silva, Danilo H. S. Silva, James Stahl, Haroldo N. de Paiva, Leonardus Vergütz, and Ivo R. da Silva

The distribution of root system in the soil profile is an important factor for water and nutrient acquisition in planted forests. Harvest residue and litter layer management can alter nutrient availability to the plants, reflecting in shifts of root system distribution in the soil profile. In the present study, we aimed to evaluate the effect of litter layer management in root density and its correlation with depth, soil organic matter (SOM), and soil macro and micronutrients in fast-growing eucalypt plantations. We hypothesized that the presence of litter layer increases root density in the first soil layers while its absence results in higher root density in deeper soil layers. To this end we carried out an experiment in a eucalypt stand (Eucalyptus urophylla x Eucalyptus grandis; 3.3 x 1.82 m spacing; one-year-old trees) in the region of Telêmaco Borba, Paraná – Brazil. The Köppen climate classification is Cfb and the soil is classified as dystrophic Red Latosol. The treatments consisted of presence (+R) or absence (-R) of litter layer. The residue was composed by the previous rotation litter layer that remained in the forest after harvest. The experiment followed a randomized block design, with four replications. Root density (g dm-3) was evaluated in one representative tree per plot at each treatment and replication. We used a 5.3 cm diameter auger to collect root samples from 0-10, 10-20, 20-40 and 40-60 cm depths in seven predefined points in the planting row and interrow. For each sampling point and depth, roots were manually separated, washed to remove soil and other impurities, and subsequently oven dried at 65 °C to determine total dry mass. Additionally, SOM, soil macro and micronutrient contents were analyzed in each soil layer. Pearson’s correlation (α=5%) was performed between root density, depth, SOM, soil macro and micronutrients. Contrary to our hypothesis, the results showed that the presence of litter layer did not impacted root density in the superficial layer (0-20 cm), but resulted in a substantial increase of this trait in deeper soil layers (20-40 cm and 40-60 cm). The increase in root density observed for deeper soil layers was possibly a consequence of the higher nutrient availability favored by the presence of litter layer. The increase of root density in subsurface is important not only to increase tree water and nutrient use efficiency, but also to promote C sequestration in deeper soil layers. Our results highlight the importance of maintaining the litter layer in the field as reasonable strategy for a more sustainable management of fast-growing eucalypt forests.

How to cite: Mendes Teixeira, A. P., Teixeira, P. P. D. C., Almeida, L. F. J., Silva, L. C. F., Silva, D. H. S., Stahl, J., Paiva, H. N. D., Vergütz, L., and Silva, I. R. D.: Root distribution as function of litter layer management in eucalypt stands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10951, https://doi.org/10.5194/egusphere-egu2020-10951, 2020.

EGU2020-11750 | Displays | SSS7.2

Soil native microbes and multi-species planting for restoring soil function in dryland rehabilitation

Miriam Muñoz-Rojas, Todd E. Erickson, Amber Bateman, Angela M. Chilton, and David J. Merritt

Global environmental changes and other anthropogenic impacts are rapidly transforming the structure and functioning of ecosystems worldwide. These changes are leading to soil degradation with an estimated 25 % of the global land surface being affected. The need to develop cost-effective large-scale solutions to restore disturbed landscapes becomes imperative to preserve biodiversity and achieve ecosystem functionality and sustainability. As part of a large-scale industry-academia partnership, we have developed a soil research program that aims to build knowledge and design strategies to restore degraded landscapes in Western Australia and other dryland regions worldwide. Within this program, a series of laboratory experiments, glasshouse studies, and field trials, have been conducted over the past six years to advance our knowledge on soil limitations and to provide solutions to enhance soil carbon levels and restore above and belowground biodiversity in restoration programs. These studies include (i) the analysis of the influence of multi-species planting on soil organic carbon and microbial activity and diversity (ii) the evaluation of soil physicochemical and microbiological indicators to assess functionality of restored soils in degraded semiarid ecosystems and (ii) the development of nature-based strategies based on bio-tools (e.g. inoculation of soil biocrust cyanobacteria) to increase soil carbon and enhance overall soil function. In this presentation we will highlight some key findings of these studies that include the benefits of combining diverse plant species and using native microbes and organic amendments for increasing soil carbon and promote soil function in reconstructed soil substrates. We will also discuss the potential applicability of these bio-technological approaches in landscape-scale restoration programs.

How to cite: Muñoz-Rojas, M., Erickson, T. E., Bateman, A., Chilton, A. M., and Merritt, D. J.: Soil native microbes and multi-species planting for restoring soil function in dryland rehabilitation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11750, https://doi.org/10.5194/egusphere-egu2020-11750, 2020.

Soil is an essential and non-renewable resource in natural and agricultural ecosystems with extremely slow formation and regeneration potential. In dryland areas, many ecosystems are being seriously affected by degradation processes because of an excessive use of agro-chemicals, deep tillage and intensive irrigation, among many other factors. The decline in soil organic matter is also becoming a major cause of soil degradation, particularly in dryland regions where low soil fertility cannot always maintain a sustainable production. The use of organic amendments in ecosystem restoration programs can be an effective technique for promoting soil restoration processes in degraded drylands and several studies have shown their benefits for improving soil physical, chemical and biological properties. This recovery is a result of the rapid increment of organic matter and clay contents in the soil in the short term. In the long-term, soil structure becomes more stable and water holding capacity, permeability and infiltration are improved, whereas surface runoff and erosion are reduced. Nevertheless, there are many research gaps in the knowledge of the effects of climatic conditions on their application, as well as the adequate types of amendment and doses and decomposition rates. In this presentation, we evaluate the role of organic amendments as an effective strategy in dryland restoration, highlighting the effects of different amendment types, doses and application rates. We will specifically address: (1) type of amendments and benefits arising from their use, (2) application methods and more appropriate doses and, (3) potential risk derivates for their application. We also showcase some recent case studies using organic amendments in degraded dryland areas from Spain and Australia.

How to cite: Hueso-Gonzalez, P. and Muñoz-Rojas, M.: Soil organic amendments for restoring degraded drylands: strategies, recommendations and challenges for large-scale application, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11867, https://doi.org/10.5194/egusphere-egu2020-11867, 2020.

EGU2020-11907 | Displays | SSS7.2 | Highlight

Development of cyanobacterial application methods for soil protection and restoration: case studies in Australian drylands

Marco A. Jiménez-González, Jose Raul Roman, Yolanda Canton, Gonzalo Almendros, Angela M. Chilton, and Miriam Muñoz-Rojas

Land degradation, as a result of increased soil erosion and loss of fertility among other factors, is currently one of the most serious environmental problems. In recent years, the role of cyanobacteria from soil biocrusts in re-establishing soil function of degraded areas is gaining interest due to the potential of these organisms for soil stabilization and increase of soil fertility. In order to fully exploit the use of cyanobacteria in large-scale restoration of degraded lands, new approaches that facilitate their application must be explored in order to face with the harsh abiotic conditions of these environments. In this presentation, we showcase two different methods for the inoculation of cyanobacteria from soil biocrust in degraded soils of Australian dryland ecosystems: i) direct inoculation of cyanobacteria cultures and ii) incorporation of cyanobacteria within extruded pellets. Three soil native cyanobacterial strains from two representative N-fixing genera (Nostoc and Scytonema) and a non-heterocystous filamentous genus (Leptolyngbya) previously collected from the Pilbara region (north-west Western Australia), were used as inoculum. Then, in a multifactorial microcosm experiment under laboratory conditions, we evaluated the survival and establishment of the cyanobacteria for both methods. For the direct inoculation, cultures of isolated cyanobacteria and a mixture of them were applied as a liquid inoculum directly into a degraded soil from the Pilbara. In the case of application using extruded pellets, fresh cultures of each strain alone and an equal mixed of them were added into a substrate composed of commercial bentonite powder and sand (1:10 weight ratio). The composed solution was extruded through a jerky gun with an extruder nozzle into pellets (1 cm diameter x 2 cm length) and dried at 30oC for 24h. Pellets were then placed on the surface of three different degraded soils representative of Australian drylands: a mine waste from an active mine site in the Pilbara, a degraded soil from the Cobar Peneplain (New South Wales), and a soil from the Simpson Strzelecki Dunefields (South Australia). In both experiments, cyanobacteria growth and establishment were monitored. Our results showed that in both treatments cyanobacteria colonize almost the entire Petri dish surface in all treatments. Furthermore, the levels of chlorophyll a (a proxy for cyanobacterial biomass) remained constant on inoculated samples during the study period, suggesting that cyanobacteria survived the pelleting process. In the case of direct inoculation, a decrease of chlorophyll a was observed in the beginning but then it stabilized and started to increase at the final stage of the experiment. This process may be due to the adaptation period of the cyanobacteria in the new environment, which is most progressive in the case of pellets application. Overall, our results showed that cyanobacteria can be successfully applied as a liquid inoculum and incorporated into extruded pellets, quickly colonizing degraded soi substrates. These technologies are ready for further testing and refining through field trials, opening a wide range of opportunities to face with large scale restoration programs.

How to cite: Jiménez-González, M. A., Roman, J. R., Canton, Y., Almendros, G., Chilton, A. M., and Muñoz-Rojas, M.: Development of cyanobacterial application methods for soil protection and restoration: case studies in Australian drylands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11907, https://doi.org/10.5194/egusphere-egu2020-11907, 2020.

EGU2020-12132 | Displays | SSS7.2

Investigating land use and land cover changes in Dublin, Ireland using Satellite Imagery: A comparative analysis

Bidroha Basu, Arunima Sarkar Basu, Srikanta Sannigrahi, and Francesco Pilla

Over the past few decades, there has been over increasing pressure on land due to population growth, urbanization, agriculture expansion and industrialization. The change in land use and land cover (LULC) pattern are highly dependent on human intervention. Deforestation pattern has started due to growth of suburbs, cities, and industrial land. The alarming rate in change of LULC pattern was on a rising trend since 1990s and has been increasing over time. This study focuses on analyzing the changes in LULC pattern in Dublin, Ireland over the past two decades using remotely sensed LANDSAT satellite imagery data, and quantify the effect of LULC change in streamflow simulation in watershed at Dublin by using rainfall-runoff model. Benefit of using remotely sensed image to investigate LULC changes include availability of high-resolution spatial data at free of cost, images captured at high temporal resolution to monitor the changes in LULC during both seasonal and yearly timescale and readily availability of data. The potential classification of landforms has been done by performing both supervised as well as unsupervised classification. The results obtained from the classified images have been compared to google earth images to understand the accuracy of the image classification. The change in LULC can be characterized by changes in building density and urban/artificial area (build up areas increase due to population growth), changes in vegetation area as well as vegetation health, changes in waterbodies and barren land. Furthermore, a set of indices such as vegetation index, building index, water index and drought index were estimated, and their changes were monitored over time. Results of this analysis can be used to understand the driving factors affecting the changes in LULC and to develop mathematical models to predict future changes in landforms. Soil Water Assessment Tool (SWAT) based rainfall-runoff model were used to simulate the changes in runoff due to the LULC changes in watershed over two decades. The developed framework is highly replicable because of the used LANDSAT data and can be applied to generate essential information for conservation and management of green/forest lands, as well as changes in water availability and water stress in the assessed area.

How to cite: Basu, B., Sarkar Basu, A., Sannigrahi, S., and Pilla, F.: Investigating land use and land cover changes in Dublin, Ireland using Satellite Imagery: A comparative analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12132, https://doi.org/10.5194/egusphere-egu2020-12132, 2020.

EGU2020-13204 | Displays | SSS7.2

Indigenous soil bacteria as bioinoculants for promoting seedling growth of native plants in arid land rehabilitation

Nathali Mahado de Lima, James Charlesworth, Jana Stewart, and Miriam Muñoz-Rojas

The depletion and degradation of native plant communities is a major threat to the long-term health and functionality of many ecosystems worldwide. Some of the current challenges in mine rehabilitation programs are poor recruitment and establishment of native plants. Indigenous soil bacteria, including cyanobacteria from soil biocrusts, have shown promise as bio-fertilizers as they may promote germination and enhance seedling growth of native plants in reconstructed soil profiles. In this research, we assessed the potential of bioinoculants composed by locally sourced soil bacteria from the rhizosphere and cyanobacteria from biocrusts, to promote germination and growth of native arid plants from Western Australia and New South Wales (Australia). Individual cyanobacteria species (e.g. Leptolyngbya sp, Nostoc sp. and Microcoleus sp), a cyanobacteria mix of these three species, and enrichments of soil bacteria from the rhizosphere were considered as inoculum for seed bio-priming. Overall, our results showed that lower concentrations of cyanobacteria inoculants (1 g l-1) are more effective for promoting seedling growth than highly concentrated inoculum (5 g l-1). The effects of the cyanobacterial/bacterial inoculants were specific to each plant species. However, biopriming seeds with soil bacteria and the cyanobacteria mix resulted in three times larger roots in hummock grasses (e.g. Triodia epactia) compared to the control treatment. We also identified the bio-active components or metabolites produced by targeted cyanobacteria species through GC/MS analyses. Our results showed that some of the cyanobacterial inoculants produced substances chemically like plant hormones such as auxins, i.e. indole-3-acetic acid. The positive effects of the native soil bacteria and cyanobacteria inoculants on native plants could be related to their ability of promoting nutrient bioavailability, improving stress resistance, protection against other microbes, and production of substances that may act as hormones. The findings of this research can allow selecting the most effective bio-active inoculants for application in seed-based land rehabilitation programs.

How to cite: Mahado de Lima, N., Charlesworth, J., Stewart, J., and Muñoz-Rojas, M.: Indigenous soil bacteria as bioinoculants for promoting seedling growth of native plants in arid land rehabilitation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13204, https://doi.org/10.5194/egusphere-egu2020-13204, 2020.

EGU2020-18962 | Displays | SSS7.2

Disentangling the impact of global change on freshwater biodiversity decline

Jens Kiesel, Tinh Vu, Karan Kakouei, Domisch Sami, Fengzhi He, Björn Guse, Nicola Fohrer, and Sonja Jähnig

Freshwater ecosystems have higher proportions of extinct and threatened species than terrestrial and marine ecosystems, with populations of vertebrates declined by 83% between 1970 and 2018. The pressing question is: what are the main drivers for this decline? Here we investigate the reasons for the loss of freshwater biodiversity using globally available gridded datasets at 0.5° spatial resolution on precipitation and temperature, land cover and land use, water use and dams as well as daily hydrological streamflow simulations from the ISIMIP initiative.

Across the past 50 years, we constructed annual change maps of the environmental variables along the global river networks and calculated time-variant indicators of hydrologic alteration (IHA) to depict hydrological change. We then calculated normalized indicators (e.g. proportion of threatened species) describing the current freshwater biodiversity status through species data aggregation of the International Union for Conservation of Nature's Red List of Threatened Species (IUCN Red List) categories.

By applying classification and regression trees (CART), we highlight the importance of environmental- and hydrological change on the freshwater biodiversity status based on IUCN Red List assessments on each grid cell globally. Our results reveal a large-scale spatial classification of the environmental variables and their potential impact on the ongoing freshwater biodiversity crisis.

How to cite: Kiesel, J., Vu, T., Kakouei, K., Sami, D., He, F., Guse, B., Fohrer, N., and Jähnig, S.: Disentangling the impact of global change on freshwater biodiversity decline, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18962, https://doi.org/10.5194/egusphere-egu2020-18962, 2020.

EGU2020-1479 | Displays | SSS7.2

Land use/Land cover Changes and Associated Impacts on Water Yield Availability and Variation, Mereb-Gash River Basin in Horn of Africa

Simon Measho, Baozhang Chen, Petri Pellikka, Lifeng Guo, and Huifang Zhang

Climate variability, drought, and deforestation are increasing in the Horn of Africa (HOA). Evaluating land use/land cover (LULC) changes and their impacts on water availability and variation are vital actions for regional land-use planning and water resources management. LULC changes during 2000-2015 were estimated using high resolution Landsat images and Google Earth Engine cloud platform, and land-use dynamics index (K). The impact of LULC change on water yield was evaluated using the InVEST model. The results at regional scale show that there were rapid decreases in the area of forests and barren lands (-K) while there was a drastic increase in built-up area (+K values). The transition was found to decrease from forested land to low biomass with highest and lowest values of 51.13% and 16.7%, respectively. There were similar LULC changes in the Mereb-Gash river basin. The total annual water yield increased for all the catchments during 2000-2015, and reached the peak in 2010. The highest annual water yield decreased in the forested lands from 43.18 million m3 in 2000 to 4.1 million m3 in 2015. There was a strong positive correlation between areal changes (%) and the annual water yield variations (%) in all the LULC types except for the water body, and the correlation was significantly positive for the forested areas (p<0.01). The study demonstrates that the decrease in forested areas and expansion in the built-up areas had large impact on water yield. The impacts may further increase pressure on the ecosystem services, exacerbate water scarcity, and food insecurity unless basic measures are planned and implemented.

Key words: LULC; climate variability; InVEST; annual water yield; K-index

 

How to cite: Measho, S., Chen, B., Pellikka, P., Guo, L., and Zhang, H.: Land use/Land cover Changes and Associated Impacts on Water Yield Availability and Variation, Mereb-Gash River Basin in Horn of Africa , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1479, https://doi.org/10.5194/egusphere-egu2020-1479, 2020.

The toxicity and persistence of chromium in soils challenge the ecosystem and human health. Various remediation strategies have been developed to eliminate soil Cr contamination, and the most popular one is chemical stabilization. However, chemical stabilization only changes the form of Cr and does not change the concentration of Cr, so the long-term stability of Cr has been controversial. On the other hand, some researches found that the concentration of Cr(VI) in the stabilized soil after remediation has increased. We collected Cr-contaminated soils and one-year-stabilized soils from four research sites in northern, central, and southwestern China, trying to understand the difference of Cr species and structure in soils with various soil properties. Results showed despite the different clay content and mineral composition, all contaminated and stabilized soils are alkaline (pH 7.36 ~ 10.5). In addition, there are differences in the pollution levels of Cr and Cr (VI) in soils. In northern China, Cr(VI) was the main state of Cr-contaminated soils; however, Cr is mainly present in Cr-contaminated soil in the form of Cr(III) in southern China. For chemical stabilized soils, Cr concentrations remained similar to Cr-contaminated soils (1500~9000 mg/kg), but the concentration of Cr(VI) (5~55 mg/kg) was reduced through commercial remediation materials. The speciation of Cr in Cr-contaminated soils transformed from exchangeable Cr and Cr bound to carbonates into Cr bound to Fe-oxides and residuals in stabilized soils. SEM-EDS, XAFS and μ-XRF results revealed the main forms and structure of Cr, and showed Cr unevenly distributed on the surface or edge of the mineral. The acid leaching test revealed that Cr(VI) could be released from Cr-contaminated soils by acid, and soils can release Cr(VI) under different acidity conditions. Cr(VI) from soils collected from northern and southern China was released from acidity of [H+]=0.1M and [H+]=0.5M, respectively. This was due to erosion of coating minerals or Cr(VI)-bearing minerals. Our study suggested that stabilization technology not only reduces the toxicity of chromium, improves the stability of chromium, but also partially recovers the physical and chemical properties of soil. Meanwhile, in future remediation projects, it is necessary to consider the existing forms of chromium in different soils to develop remediation strategies.

How to cite: Li, D., Li, G., and Zhang, D.: The key forms of Chromium influencing the long-term stability of Cr in Cr-contaminated soils and chemical stabilized soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4007, https://doi.org/10.5194/egusphere-egu2020-4007, 2020.

Ecological restoration (ER) has strong consequences on hydrological responses. The China’s Loess Plateau (LP) contributed nearly 90% of sediment load in the Yellow River, which was once the world’s largest carrier of fluvial sediment. ER efforts including the soil and water conservation measures (SWCMs, especially terracing and construction of check dams) since 1950s and large-scale ecological restoration campaigns such as Grain-for-Green project (i.e., returning sloping cropland to afforestation and pasture reestablishment) in 1999, has resulted in extensive land use/cover change, leading to considerable decreases of streamflow (Q), suspended sediment yield (SSY) and sediment concentration (C) in the LP over the past 60 years. However, it remains challenging to quantify the impacts of ER and climate variability on declines of Q and especially SSY. In this study, we formulate the notion of elasticity of sediment discharge, by associating SSY change to climate variability and ER over the period 1950s to 2014. Our results strongly support the hypothesis that changes to both streamflow volumes and to the suspended sediment concentration versus water discharge (C-Q) relationships result in reduced SSY, so that streamflow is reduced but runs clearer. We find that two of the ER strategies resulted in weaker relative impacts of climate variability, largely by reducing streamflow (by 55% to 75%). Meanwhile, ER predominantly decreased SSY (by 63% to 81%). Regarding ER practices, (i) the predominant measure acting to reduce SSY changed, over time, from engineering to reforestation; (ii) check-dams preferentially act to regulate the C-Q relationships whereas reforestation preferentially acts to moderate streamflow. Overall, our results suggest that a combination of engineering and vegetation measures is critical to achieving high-efficiency ER. While change to the ER strategy increased the efficiency of streamflow for SSY control, the lost water discharge per unit SSY reduction increased from 5.2 to 6.4 m3·t-1. Conflicting demands for water necessitate that further ER should target precision management by revegetation of targeted areas in the Loess Plateau.

How to cite: Gao, G.: Formulating an elasticity approach to quantify the effects of ecological restoration and climate variability on streamflow and sediment discharge changes in the Loess Plateau of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4482, https://doi.org/10.5194/egusphere-egu2020-4482, 2020.

EGU2020-8021 | Displays | SSS7.2

Biogeosystem Technique as a methodology for overcoming the outdated theory and management principles of semiarid silviculture

Valery Kalinichenko, Alexey Glinushkin, Peter Mukovoz, Abdulmalik Batukaev, Tatiana Minkina, Svetlana Sushkova, Saglara Mandzieva, Vladimir Zinchenko, Lyudmila Iljina, George Larin, and Tatiana Bauer

Forests and artificial forest lines at the climax stage are the source of greenhouse gases. Artificial forests, forest lines, recreational forest plantations can help to reduce the greenhouse emission, increase oxygen production, enlarge the soil carbon biological capacity, and improve silviculture land protective and recreational function. 

Artificial forest systems on the Chernozem and Kastanozem have the obvious signs of the climatic suppression. The adverse influence of climate on artificial forests via summer droughts is aggravated by poor soil conditions for silviculture. The lifespan of artificial forests reduces from typical for most tree species of 200-800 years to short 30-60 years. In dry steppe, the habitus and dimensions of trees are worse in comparison to natural analogue in good conditions of development. Now the artificial forests in semiarid and arid areas do not suit the task of carbon sequestration, oxygen producing and climate correction. It aggravates the current uncertainty of biosphere. Standard outdated agronomy and soil reclamation technologies fail to prepare the soil for the long-term successful forest growth. The known silviculture technology fails to provide the forest soil watering, because standard irrigation is linked to enormous water consumption, soil and landscape degradation.

We propose the Biogeosystem Technique (BGT*) for the semiarid and arid forestry improvement. The BGT* is a transcendental (non-imitating natural processes) approach to improve soil management including pre-planting soil processing, soil watering and fertigation (chemisation) for proper long-term artificial forestry. The BGT* provide regulation of the fluxes of energy, matter (including organic carbon), water and higher biological productivity of artificial forestry: intra-soil machining provides productive fine aggregate system of the 20-50 cm soil layer for root development; waste intra-soil dispersed recycling while intra-soil machining of the 20-50 cm soil layer provides better soil reclamation, remediation, plant nutrition, macro- and micro elements (including heavy metals), matter organic matter  transfer and turnover in the soil continuum; intra-soil pulse continuous-discrete plant watering reduces the transpiration rate, water consumption of trees is less for 5-20 times, and at the same time provides increased biological productivity of forest plantation, reversible biological sequestration of carbon. The BGT* methods reduce the loss of organic matter from soil into vadoze zone and atmosphere; reduce greenhouse emission from soil and forest, and improve the agro-ecological environment. Apply of the BGT* methods to the dry steppe Chernozem and Kastanozem artificial forest systems will increase the artificial forests oxygen and biomas production, prolong forest lifespan, improve the silviculture land protection function, and mitigate climate change.

BGT* robotic systems will be of low energy and material consumption, will improve forestry, agriculture, reduce the biosphere and climate uncertainty, insure the recreational appearance of forest, make the life attractive.

Objectives of the study: to show the long-term results of Russian steppe terrain silviculture system on Chernozem and Kastanozem; using BGT* methodology, to justify intra-soil 20-50 cm milling, waste intra-soil dispersed recycling while intra-soil 20-50 cm machining, intra-soil pulse continuous-discrete plant watering to provide higher artificial forest biological productivity, reversible carbon biological sequestration, soil fertility, the human and soil health.

How to cite: Kalinichenko, V., Glinushkin, A., Mukovoz, P., Batukaev, A., Minkina, T., Sushkova, S., Mandzieva, S., Zinchenko, V., Iljina, L., Larin, G., and Bauer, T.: Biogeosystem Technique as a methodology for overcoming the outdated theory and management principles of semiarid silviculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8021, https://doi.org/10.5194/egusphere-egu2020-8021, 2020.

EGU2020-9359 | Displays | SSS7.2

Spatial heterogeneity and environmental controllers of soil organic carbon stocks in a boreal forest

Udaya Vitharana, Nora Casson, Darshani Kumaragamage, Geoff Gunn, Scott Higgins, and Umakant Mishra

The knowledge of spatial heterogeneity and environmental controllers of soil organic carbon (SOC) stocks is essential for upscaling and predicting SOC dynamics under changing land use and climatic conditions.  This study investigated the spatial variability and intrinsic and extrinsic controllers of SOC stocks in a boreal forest catchment (320 ha) at the International Institute for Sustainable Development Experimental Lakes Area in Ontario, Canada. Forty-seven surface soil (0-30 cm) samples, representative of the spatial variability of topography, surface water flow patterns and vegetation distribution, were obtained within the catchment. Air dried soil samples were sieved to separate gravel (>2 mm) and fine-earth (<2 mm) fractions and were analyzed for SOC concentration using the loss-on-ignition method. Core sample method was used to determine the soil bulk density. SOC concentrations in surface soils showed a large spatial variability (1.2% to 50.4%, CV= 111.3%). Thick organic soil layers in the wetlands of the sub-catchment showed the highest SOC concentrations. The surface soil SOC stocks ranged between 14.5 to 240.5 Mg ha-1 with an average stock of 101.5 Mg ha-1. Spatial autocorrelations of SOC stocks were modelled by calculating relevant variograms. The variability of SOC stocks (sill = 834) was dominated by the random variability (nugget=275) whereas the variability of SOC concentration (sill = 2.5) was dominated by the spatially structured variability (nugget = 0). We found a strong spatial autocorrelation of the SOC concentrations within the catchment, but the SOC stocks were less spatially correlated. This was largely due to the heterogeneity in the thickness of the surface soil layer (10 cm - 30 cm) and in the gravel content (0-28.9%). We found that a large over-estimation of SOC stocks (52.5%) could result if these intrinsic factors are not considered. Extrinsic controllers were generally not significantly related to the SOC stock; Spearman’s rank correlation analysis on the entire dataset showed non-significant relationships between the SOC stock and extrinsic controllers, namely NDVI (r = 0.04) elevation (r = 0.2), slope (r = -0.1) and topographic indices, stream power index (r = -0.1), relative position index (r=-0.2) and plan curvature (r = -0.1). However, regression tree analysis revealed local-scale effects of aspect, NDVI, elevation, and distance to ridge on the SOC stocks. Many forest soil databases lack information of gravel content and soil depth. Thus, upscaling boreal forest SOC stocks without these two key intrinsic controllers can lead to higher uncertainties in  SOC stock estimates. Further, the impacts of extrinsic controllers may vary across heterogenous landscapes. Machine learning-based digital soil mapping techniques such as Random Forest models are more appropriate for incorporating local-scale impacts of extrinsic controllers when upscaling SOC stocks of boreal forest soils. 

How to cite: Vitharana, U., Casson, N., Kumaragamage, D., Gunn, G., Higgins, S., and Mishra, U.: Spatial heterogeneity and environmental controllers of soil organic carbon stocks in a boreal forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9359, https://doi.org/10.5194/egusphere-egu2020-9359, 2020.

Introduction. Natural reforestation is the widespread trend in the modern land-use changes in the southern taiga zone at the European territory of Russia after 1990s. Its total area is more than 10 million ha. At the same time forest natural regeneration is mutual usual process in the long-term land-use changes in this part of Russia with complex history of its development during millennium. It plays crucial role in soil successions, their fertility and environmental function dynamics including bio productivity support and carbon sequestration, which is given special attention against the background of global climate change challenges in the twenty-first century. This paper presents the results of a round-the-year monitoring of soil CO2 emission in comparable sites of the fallow lands chrono sequences in conditions of a representative area of the Central Forest Reserve with background wood-sorrel spruce forests which are typical for the southern taiga zone of Central Russia.

Objects and methods. The dominant soil type is sandy-loam Albeluvisols (by WRB, or Orthopodzolic soil by Russia Taxonomy, or Alfisols by Soil Taxonomy, or Podzoluvisols by FAO). The studies have been done in the representative 5 sites at different age of natural reforestation: (1) Fallow meadow grassland – “0-moment”; (2) Forest-fallow birch domination stage of 10-15 year; (3) Birch domination stage of 20-30 year with young spruce participation; (4) Birch-forest stage of 50-60 year with spruce participation; (5) Spruce-forest after fallow stage of more than 100 year with birch participation. CO2 fluxes seasonal and diurnal dynamics measuring were carried out in situ using a mobile gas analyzer Li-820 and soil exposure chambers with parallel measurements of air temperature, soil temperature and moisture. Also, biomass, soil organic carbon and bulk density were analyzed in their topsoil and subsoil horizons with C stock calculation.

Results and discussion. Analysis of the successional dynamics of the topsoil organic carbon stock showed the maximum rate of their increasing in the first stages of natural reforestation by a thick undergrowth of birch (more than 30 g m-2∙year-1) that agrees well with the maximum intensity of the woody biomass growth in case of dominant birch forest up to 50-60 years (more than 100 g m-2∙year-1). Research revealed the maximum intensity of soil CO2 emission (up to 11-12 g C-CO2 m-2∙day-1) in the meadow fallow land and its gradual decreasing in process of reforestation down to values close to background ecosystems in 4-5 g C-CO2 m-2∙day-1 in the last investigated succession study with wood-sorrel spruce older than 100 years, which is in good correlation with the gradual humus accumulation in topsoil due to reduced mineralization of organic compounds from dying vegetation. The seasonal and daily dynamics of soil CO2 emissions are determined by soil temperature (KTS 0.77 - 0.99), air temperature (KTA 0.42 - 0.99), and soil moisture in spring and fall (KWS -0.55 - -0.98).

Conclusions. Investigation of forest natural regeneration impacts on the level of soil organic carbon accumulation and CO2 fluxes in the representative southern taiga ecosystems is important element of their soil environmental monitoring and management.

How to cite: Vasenev, I., Komarova, T., and Melese, S.: Natural reforestation effect on soil organic carbon and СО2 flux dynamics in southern taiga ecosystems with Albeluvisols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13507, https://doi.org/10.5194/egusphere-egu2020-13507, 2020.

EGU2020-13844 | Displays | SSS7.2

Seawater intrusion dynamic at the Casetta farmland (Venice). Characterization using HYDRUS-1D

Greta Finco, Ester Zancanaro, Pietro Teatini, and Francesco Morari

Soil and groundwater salinization due to seawater intrusion is among the most important problems in coastal farmlands. Inverse estimation of unsaturated soil hydraulic and solute transport properties represents a fundamental step to understand saltwater intrusion dynamics. A three-year study was conducted in a maize field bounding the southern Venice Lagoon. Volumetric water content θ, soil matric potential ψ, and apparent electrical conductivity (ECa) were monitored hourly by five automatic monitoring stations at four depths (0.1, 0.3, 0.5 and 0.7 m). Groundwater electrical conductivity (EC) and depth to the water table were measured in five wells. In addition, soil water and groundwater samples were collected and analyzed to determine the chemical composition. Soil hydraulic parameters for the van Genuchten-Mualen equations were determined using the inverse method in Hydrus-1D. The water flow was modelled based on the daily averages of θ at the four depths and the θ values measured in the lab at selected ψ on undisturbed soil cores extracted from the five monitoring stations. Precipitation, crop transpiration, soil evaporation and depth to the water table were used as time-variable boundary conditions. Root water uptake was estimated by using Feddes model. Finally, the major ion chemistry module of HYDRUS-1D was used to model solute transport and root water uptake reduction due to osmotic stress. The use of HYDRUS-1D to understand saltwater dynamics would enable the developing of mitigation strategies to limit its detrimental effect on farmland productivity and groundwater quality.

How to cite: Finco, G., Zancanaro, E., Teatini, P., and Morari, F.: Seawater intrusion dynamic at the Casetta farmland (Venice). Characterization using HYDRUS-1D, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13844, https://doi.org/10.5194/egusphere-egu2020-13844, 2020.

EGU2020-17973 | Displays | SSS7.2 | Highlight

Impact of ageing on the leaching behavior of a calcareous sample excavated from Grand Paris Express construction sites and naturally contaminated in Molybdenum and Selenium

Maxime Brandely, Samuel Coussy, Denise Blanc-Biscarat, Rémy Gourdon, and Tangi Le Borgne

One of the main consequences of digging works for the Grand Paris Express (GPE) project will be the excavation of a huge amount of earths, representing a 20% increase of the total wastes produced in the area over ten years. These earths are known to be naturally contaminated in Trace Elements (TE) such as Molybdenum (Mo) or Selenium (Se). Even though only small levels of TE are involved, earths leaching behavior often prevent public works companies from storing them in Inert Wastes Landfill. Indeed, results obtained according to the standardized leaching test NF EN 12457-2 with a liquid/solid ratio of 10 L.kg-1 are likely to overpass acceptation criteria fixed by European regulations (Council Decision 2003/33/EC).

To avoid extra charges linked with earth’s evacuation, a chemical stabilization process may be efficient and industrially applicable (Geng et al., 2013 ; Manning and Burau, 1995), even for TE like Mo and Se known to be highly mobile in alkaline matrices such as GPE excavated earths (Rashid et al., 2002). However, the current French regulation does not allow stabilized materials to be considered as inert wastes, mainly because of the lack of guarantee on the long-term efficiency of such treatments (Coussy et al, 2014).

We present here the long-term impact of minerals amendments (3%wt maximum) on the leaching behavior of a calcareous sample coming from a GPE construction site. Standardized leaching tests (NF EN 12457-2) have been carried out before, after stabilization, and after specific ageing experiments. Leachate concentrations have also been followed during ageing experiments carried out on raw and stabilized samples. The ageing protocol was based on soxhlet extraction principle (Benzaazoua et al., 2004) consisting in multiplying humectation/desiccation cycles at approximatively 70°C for 10 days in a closed environment. Standardized leaching tests have shown that Mo and Se concentrations sharply decrease after stabilization in every case, showing concentrations below Inert Wastes landfill criteria (0.1 ppm and 0.5 ppm for Se and Mo respectively). On the other hand, variable impacts of ageing have been observed depending on the TE considered. For Mo, the best results have been obtained with a zero-valent iron amendment, leading to the retention of almost 90% of the total Mo in a calcareous sample after ageing. For Se, all scenarii studied have permitted a retention of at least 90% of total Se or more. The promising results presented here will have to be confirm by attesting the nature of bonding between stabilizing agent and TE.

How to cite: Brandely, M., Coussy, S., Blanc-Biscarat, D., Gourdon, R., and Le Borgne, T.: Impact of ageing on the leaching behavior of a calcareous sample excavated from Grand Paris Express construction sites and naturally contaminated in Molybdenum and Selenium, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17973, https://doi.org/10.5194/egusphere-egu2020-17973, 2020.

Forests face considerable pressure from climate change, while demand of provided ecosystem services is high. Managing and planting forests need well informed decisions by practitioners, to fulfill the goal of sustainability. In Germany, informed decisions are derived from forest site evaluation maps, integrating biogeoecolocigal conditions (climate, soil water, nutrients). Here, we focus on mapping of nutrients in the federal state Hesse, Germany. For Hesse, a forest site map exists, which indicates a soil nutrient regime (SNR) index (classes very poor, poor, medium, rich, very rich). Site mapping was done in the field by experts, considering ground vegetation and soil morphology. Guidelines exist for choosing management options (i.e. suitable species composition, harvest restrictions, etc.), but if spatial information is not accurate, management decisions will be misguided.

Three major challenges regarding the currently available site information exist: (1) the spatial proportion of “medium” sites is exceptionally high (65% of mapped forest area) and while there is differentiation between parent materials, topography is neglected. (2) Whereas 80% of Hesse’s forests were mapped, there is need to fill the gaps. (3) The existing SNR index does not take analytical measurements of soil nutrients into account. Objectives were (1) to refine and expand the existing map of SNR by (2) including soil chemical properties from the second National Forest Soil Inventory (NFSI), (3) which have to be regionalised beforehand.

Stocks of Ca, Mg and K, base saturation, effective cation exchange capacity (90cm depth and organic layer), and C/N ratio (organic layer or 0-5 cm) of 380 profiles from the NFSI were chosen to characterise the SNR. Regionalisation was performed with generalised additive models (GAM) by using environmental relationships of the target variables with variables of climate, vegetation, parent material and soil properties (soil map 1:50,000). Ten-fold cross validation revealed R² values from 0.54 to 0.79, with low relative root mean square deviation (5 to 17%) and slopes not significantly different from 1. From the six successfully modelled target variables, we inferred a single SNR for each soil map polygon. This was challenging, because variables provided contrasting information regarding the SNR. We addressed this by using the Soil Inference Engine (SIE), which bases on fuzzy logic. Each variable received an optimality value for each SNR class. Using an expert-driven weighting system a SNR membership was inferred, whereas highest membership defined the SNR class. The result was highly sensitive towards parent material and topography. For instance, acidic parent material had lower SNR classes compared to base rich parent material. Within a given parent material, ridges where judged less nutrient rich compared to planes and topographic positions, where material is accumulated.

The results provide a much more differentiated and complete map for SNR, which mirror actual expectations of nutrient distribution across Hesse’s landscape units. The approach is transparent and inter-subjectively reproducible. The new map will be used to guide reforestation activities in Hesse after the severe forest disturbances by recent climatic extremes (e.g. drought, storms) and the approach can be transferred to other regions.

How to cite: Heitkamp, F., Ahrends, B., Evers, J., and Meesenburg, H.: A soil nutrient regime index for forest practitioner decisions in Hesse, Germany: spatial explicit modelling of soil chemistry and integration by fuzzy-logic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21641, https://doi.org/10.5194/egusphere-egu2020-21641, 2020.

EGU2020-11497 | Displays | SSS7.2

Forging the path to achieving land degradation neutrality: Global patterns and drivers of land degradation at global scales

Alex Zvoleff, Monica Noon, Gabriel Daldegan, and Mariano Gonzalez-Roglich

Land degradation – the reduction or loss of the productive potential of land – is a global challenge. More than 20% of the Earth’s vegetated surface is estimated to be degraded, affecting over 1.3 billion people, with an economic impact of up to US$10.6 trillion. Land degradation reduces agricultural productivity and increases the vulnerability of those areas already at risk of impacts from climate variability and change. Addressing land degradation, Sustainable Development Goal (SDG) target 15.3, is essential to improve the livelihoods of those most affected, and to build resilience to safeguard against the most extreme effects of climate change. Drivers of land degradation include natural processes and human activities, and understanding such drivers is key for deploying effective interventions for addressing it. The parties to the United Nations Convention to Combat Desertification (UNCCD) have adopted a framework for assessing and monitoring land degradation at national scale, by measuring three sub-indicators: Changes in land cover, changes in soil organic carbon, and changes in primary productivity. In this study, we use the framework developed by the UNCCD and Trends.Earth, the most widely tool used for producing such indicators, to assess land condition globally for the period 2001-2015, the SDG 15.3.1 baseline period. Using a Bayesian hierarchical model, we then assessed the contribution of 12 drivers of land degradation, including key biophysical and anthropogenic variables, to the observed patterns to provide insight into the main drivers of land degradation at global, regional, and national scales. These results are critical for designing locally relevant plans for assessing land degradation contributing to the global goal of achieving a land degradation neutral world by 2030. The results of this analysis allow identification of not only the significant drivers in a given region, but also of those areas where unexpected trends (either improvement or degradation) are indicative of potential policy successes or failures.

How to cite: Zvoleff, A., Noon, M., Daldegan, G., and Gonzalez-Roglich, M.: Forging the path to achieving land degradation neutrality: Global patterns and drivers of land degradation at global scales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11497, https://doi.org/10.5194/egusphere-egu2020-11497, 2020.

SSS7.3 – Progress in assessment of soils and plants contamination on the global, regional and local scales and approaches to remediation of the polluted mining, urban and rural areas

EGU2020-526 | Displays | SSS7.3

Serpentine-reached mining wastes as a geochemical barrier for the soil remediation under the ongoing Cu-Ni pollution in the Russian Arctic

Marina Slukovskaya, Irina Kremenetskaya, Svetlana Drogobuzhskaya, Liubov Ivanova, Andrey Novikov, and Irina Mosendz

The main factors for the degradation of the ecosystems in the metal-polluted territories are soil toxicity, organic matter degradation and violation of macro-element cycles. Heavily contaminated soils lose their ability to maintain sustainable vegetation, which leads to the formation of industrial barrens as the final stage of plant cover digression, where the vegetation cover is less than 10%. The deposition of metal mobile compounds into an insoluble form by alkaline sorbents is one of the most effective remediation techniques in situ. Technosol engineering is a trigger for the beginning of plant and soil cover development and the recovery succession under high pollution with metals compounds.

Field experiment of remediation using three types of serpentine mining wastes, expanded vermiculite and grass seeds mixture was laid down in 2010-2013 in the impact zone of the copper-nickel ore processing enterprise on the Kola peninsula (northern Europe) beyond the Arctic Circle at two sites with podzol and peat soil. The results obtained in 2019 showed that the immobilization effect was strengthened by high pH inherited from the alkaline wastes making Technosols a geochemical barrier. For the first 5-8 years of the experiment, the Technosol upper layers primary consisted of serpentine minerals, accumulated more than 1 g·kg-1 Ni and 0.1 g·kg-1 Cu which are constantly deposited from the atmosphere as a result of the Cu-Ni enterprise activity. They also affected the underlying soil and neutralized the most toxic water-soluble and exchangeable fractions of Cu and Ni. Grass growing and litter deposition (in total 4.5-6 kg·m-2) during the experiment term led to the accumulation of organic carbon by serpentine minerals about 1.5%. Organic matter accumulation also played a significant role in metal binding by upper Technosol layers. Summarily, the remediation technology through the use of serpentine-reached mining wastes bound metals emitted by smelter into insoluble forms, reduced the toxicity of water-soluble and exchangeable fractions of heavy metals and promoted the sustainable development of plant cover.

Research was carried out with the support of the Russian Science Foundation grant 19-77-00077.

 

How to cite: Slukovskaya, M., Kremenetskaya, I., Drogobuzhskaya, S., Ivanova, L., Novikov, A., and Mosendz, I.: Serpentine-reached mining wastes as a geochemical barrier for the soil remediation under the ongoing Cu-Ni pollution in the Russian Arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-526, https://doi.org/10.5194/egusphere-egu2020-526, 2020.

Source identification and apportionment of heavy metals (HMs) has been a vital issue of soil contamination restoration. In this study, qualitive approaches (Finite mixture distribution model (FMDM) and raster based principal components analysis (RB-PCA)) as well as quantitative approach (positive matrix factorization (PMF)) were composed to identify and apportion sources of five HMs (Cd, Hg, As, Pb, Cr) with the help of several crucial auxiliary variables in Wenzhou City, China. The result of FMDM showed Cd, and Pb fitted for single log-normal distribution, while Hg fitted for double log-normal mixed distribution, and As, Cr presented triple log-normal distribution. Each element was identified and separated from natural or anthropogenic sources. An improved score interpolation map of PCA attached with corresponded auxiliary variables analysis suggested three main contribution sources including parental materials, mines exploiting and industrial emissions contributes most in the whole study area. Each element was further discussed for quantitative contributions through PMF model. Parental materials contributed to all elements (Cd, Hg, As, Pb, Cr) as 89.22%, 84.81%, 7.31%, 35.84%, 27.42%. Industrial emissions had a contribution as 2.94%, 80.77%, 15.93%, 4.79%, 25.63% for each element respectively. While Mine exploiting mixed with fertilizers inputs has dedicated for such five HMs as 7.84%,11.92%, 48.23%, 10.40% and 46.95%. Such results could efficiently be devoted to scientific decisions and strategies making regarding HMs pollution regulation in soils.

How to cite: Shao, S., Hu, B., Zhou, Y., and Shi, Z.: Comprehensive Source Identification and Apportionment Analysis of five Heavy Metals in Soils in Wenzhou City, China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2514, https://doi.org/10.5194/egusphere-egu2020-2514, 2020.

In megacities, the environment experiences a high anthropogenic press caused by emissions from vehicles and industrial enterprises. Soils are an important component of urban landscapes: they not only accumulate pollutants, but also can be a source of secondary pollution of atmosphere and groundwater. The aim of this work is to analyze the long-term dynamics of soil contamination with potentially toxic elements (PTEs) in Moscow, as Moscow is one of the most polluted cities of Russia.

The basis for assessing the pollution of soils with As, Cd, Pb, Zn, Hg, Cu, Ni, Mn was the annual monitoring data for 2007-2016, which is obtained by the «Mosecomonitoring» institution and include more than 2000 points of observation. The accumulation of PTEs was characterized by a technogenic concentration factor Kc=Curb/Cb relative to the background Cb, which differed by three physiographic provinces. The total geochemical load on soils was estimated as Zc=∑Kc–(n–1), where n is the number of elements with Kc>1.

An analysis of the changes in the pollutant content in the soils of Moscow over the decade showed a twofold increase in the accumulation of Cu, Cd, As in the Central District and Cd in the Western and Northwest ones, as well as As in the northeastern part of the city by 1.4–2.3 times. In all districts, a tendency toward a decrease in pollution with Zn, Pb, and Hg was revealed. Compared with 2007, in 2016, the average content of all PTEs in the soils of the city decreased or remained unchanged, except for As.

The spatial distribution of PTEs in Moscow soils is controlled by the intensity and geochemical specialization of pollution sources, and varies due to soil properties. Central, Eastern, South-Eastern Districts are leading in terms of Cu and Pb pollution. Central and South-Eastern Districts are distinguished by Hg pollution. Central, North-Eastern, South-Eastern, and Southern Districts are most polluted with Zn and Cd. Soils in the southern part of Moscow are most enriched in Ni. High concentrations of As are characterized by soils of light grain-size composition with a high content of organic matter.

The highest values of the total soil pollution index Zc are characteristic for the Central and South-Eastern Districts, the lowest ones – for the Western and North-Western Districts. Analysis of Zc maps for 2007-2016 showed a decrease in soil pollution. In 2007, uncontaminated soils occupied 35.3% of the city’s area; slightly medium, and heavily polluted – 33%, 22.8% and 9.4% respectively. In 2016, this sequence was as follows: 65%, 22.7%, 11%, and 1.3%. This trend is associated with a decrease in industrial production in Moscow, the removal of harmful industries outside the city and the renovation of enterprises remaining in the capital, as well as with a reduction in emissions from vehicles. Changes in the location of man-made geochemical anomalies in soils reflect leveling in the pollution from vehicles due to the construction of new housing and the large-scale transformation of Moscow regions with a decrease in traffic in the center (Bityukova, Mozgunov, 2019).

How to cite: Kosheleva, N. and Tsykhman, A.: Pollution of Moscow soils with potentially toxic elements: analysis of long-term monitoring data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4207, https://doi.org/10.5194/egusphere-egu2020-4207, 2020.

EGU2020-3848 | Displays | SSS7.3

X-ray absorption analysis of Zn and Cu speciation in soils around the sediment ponds of chemical plants

Tatiana Minkina, Dina Nevidomskaya, Victoria Shuvaeva, Tatiana Bauer, and Marina Burachevskaya

Study of Zn and Cu accumulation and transformation in highly contaminated technogenically transformed soils near the sediment pond of a chemical plant using a combination of direct nondestructive physical methods, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) based on synchrotron radiation. The object of the study was technogenic soils (Technosol) subjected to long-term anthropogenic load. The object of research was a territory of sludge collectors region of the Atamanskoe Lake natural basin, the city of Kamensk-Shakhtinskii, Southern Russia. The contents of Zn and Cu were determined by the X-ray fluorescence method. The EXAFS and XANES experimental data were obtained at the Structural Material Science Station at the 1.3b beamline of the Kurchatov Center of Synchrotron Radiation ''Kurchatov Institute''. Soil samples were analysed with the sequential extraction procedure recommended by BCR. This procedure can be described as follows: first step (exchangeable fraction), second step (reducible fraction) and third step (oxidisable fraction). The studied Technosols are characterized by exceeding of the lithosphere clark for Zn in hundreds of times (26 000-66 000 mg/kg) and for Cu in tens of times (376-577 mg/kg). It has been found that in the oxidisable fraction of Zn is coordinated by four O atoms and only two Zn atoms. The Zn-Zn distance is 3.36 Å, and there are two different short Zn-O bonds (1.95 and 2.04 Å). In the reducible and exchangeable fractions, the main peaks of the EXAFS Fourier transform are shifted to the region of large values, which indicates the possible presence of Zn-S bonds of 2.34 Å. The simulation results have shown a high content of ZnS in the reducible fraction; ZnS with an admixture of ZnSO4 and ZnO dominates in the exchangeable fraction. The oxidisable fraction is characterized by a high content of ZnSO4 with the addition of ZnO. The significant difference in the position of the absorption edge and the values of the main features of the spectrum with Cu–S and Cu–O bonds has made it possible to reliably diagnose these types of Cu environments in Technosol. Peaks of the EXAFS Fourier transforms of Cu spectra indicate the predominance of Cu–O bonds in the oxidisable fraction and Cu–S bonds in the reducible and exchangeable fractions. The results of fitting Cu spectra by a linear combination indicate that the spectra of the reducible fraction coincide with high accuracy with the spectra of Cu2S. In the exchangeable fraction, the content of Cu2S is also high, although there are CuSO4 impurities. The oxidisable fraction is characterized by a high content of CuCO3 and the presence of Cu2S and CuSO4 as impurities as trace amounts. Thus, sequential chemical selective fractionation and subsequent X-ray spectral diagnostics based on synchrotron radiation and molecular calculations have made it possible to identify and evaluate the Zn and Cu phases in Technosol.

The reported study was funded by RFBR, projects no. 19-34-60041 and 19-05-50097.

How to cite: Minkina, T., Nevidomskaya, D., Shuvaeva, V., Bauer, T., and Burachevskaya, M.: X-ray absorption analysis of Zn and Cu speciation in soils around the sediment ponds of chemical plants, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3848, https://doi.org/10.5194/egusphere-egu2020-3848, 2020.

EGU2020-9195 | Displays | SSS7.3

Remediation and hydrological implications of oil-induced soil hydrophobicity in the Evrona nature reserve, Israel

Ravid Rosenzweig, Zheng Li, Faina Gelman, Onn Crouvi, Gilboa Arye, and Zeev Ronen

Soil hydrophobicity was extensively investigated in the context of fire-induced, naturally-occurring and wastewater related hydrophobicity. Oil-induced soil hydrophobicity, however, received much less attention and was not yet investigated under regions characterized by hyper-arid climate. In this study, we investigate the hydrological effects and the persistence of oil-induced soil hydrophobicity in Evrona nature reserve located in the hyper-arid region of southern Israel. The Evrona nature reserve has experienced two oil spills that occurred in 1975 and 2014, providing a unique opportunity to study the hydrophobicity of oil-polluted soils over time. In this study, we 1) apply field monitoring to investigate how the severe hydrophobicity affects water flow in the polluted soils, and 2) conduct laboratory incubation experiments to assess the natural attenuation of hydrophobicity and its relation with the content and composition of hydrocarbons.

We set up two monitoring stations in two adjacent streams, of which one is polluted and the other is clean. In each section, an array of water content sensors was installed. Analyses of data measured during two years reveal that during rain and runoff events infiltration in the oil-contaminated soil was much lower relative to the clean soil. Furthermore, infiltration in the oil-contaminated stream showed highly preferential patterns, typical of hydrophobic soils. The reduced infiltration and the establishment of preferential flow paths may lead to negative consequences including increased runoff and erosion, reduction in the water available to native plants, and the generation of fast conduits for contaminant transport.

In the second part of the research, incubation experiments were conducted with contaminated soils from the 2014 and 1975 sites. Soils were treated with the addition of either water alone or different combinations of water, nutrients and surfactant. Treated soils were sampled periodically to assess soil hydrophobicity and hydrocarbon content. The results show a concomitant decrease in the hydrophobicity and hydrocarbon content in soils to which water or water and nutrient and/ or surfactants were added. The fastest hydrophobicity reduction was observed in soil to which both nutrients and surfactants were added, while when only water was added to 50% saturation, degradation and hydrophobicity reduction were very slow. Overall, during the one year and a half incubation, the total petroleum hydrocarbon of the treated soils decreased by 40% in the 2014 soil and by up to 80% in the 1975 soil. However, although hydrophobicity was reduced during incubation, the soils still remained severely hydrophobic. This suggests that considering the concentration of hydrocarbons as the sole criterion for the endpoint of soil remediation is not sufficient and the degree of soil hydrophobicity should be evaluated as well. 

How to cite: Rosenzweig, R., Li, Z., Gelman, F., Crouvi, O., Arye, G., and Ronen, Z.: Remediation and hydrological implications of oil-induced soil hydrophobicity in the Evrona nature reserve, Israel, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9195, https://doi.org/10.5194/egusphere-egu2020-9195, 2020.

EGU2020-10198 | Displays | SSS7.3

The soil loss by water erosion at the European part of Russia

Kirill Maltsev and Oleg Yermolaev

A quantitative assessment of the potential soil erosion on arable land in the European part of Russia (EPR) was carried out. The total area of arable land of the EPR is about 650,000 km2. The majority of the population of Russia lives here - about 95 million people. The level of generalization of work is regional and corresponds to a scale of 1: 500,000.

As a research method, mathematical modeling based on modified for Russia’s natural conditions USLE equation for calculating potential soil loss from erosion. Another leading method for assessing soil erosion and presenting results is GIS. A raster model of data presentation was used in the calculations, including a model of slope angles, slope lengths, soil erodibility, erosive rainfall potential, water reserves in snow, intra-annual redistribution of rainfall, and land use types.

New data have been obtained on the value of soil erosion losses during melt and storm runoff periods and total annual losses. An electronic map of soil erosion losses on arable lands of the European part of Russia has been compiled, which allows determining spatial features of soil erosion rates.

The average soil erosion losses, taking into account the soil-protective coefficients of agricultural crops for the study area, are 4.04 t / ha per year. In annual soil losses due to erosion, storm 3.78 prevails, soil loss from melt water is almost an order of magnitude less - t / ha 0.26. About half of the territory is located in conditions under which the soil loss does not exceed 0.5 t / ha per year.

The rate of potential soil erosion on arable land in the European part of Russia naturally decreases in the direction from the taiga-forest to the steppe landscape zone. The band of maximum potential soil erosion of the west-east sub-latitudinal strike is clearly distinguished, confined to the subzone of mixed and broad-leaved forests with very high plowing. A comparative analysis of our data and data obtained in the mid-1980s showed a reduction in soil loss from water erosion in all landscape zones. In addition, a comparative analysis of the data obtained by us and the data for the European Union was carried out, which showed that the soil losses on the EPR are slightly higher.

How to cite: Maltsev, K. and Yermolaev, O.: The soil loss by water erosion at the European part of Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10198, https://doi.org/10.5194/egusphere-egu2020-10198, 2020.

EGU2020-11013 | Displays | SSS7.3

Accumulation of arsenic by various grass species growing in strongly contaminated sites affected by historical As mining and processing

Anna Karczewska, Katarzyna Szopka, Agnieszka Dradrach, and Bernard Gałka

Historical ore mining and processing has considerably affected soil properties, causing the changes in local landscapes and soil enrichment in potentially toxic elements. Złoty Stok (formerly: Reichenstein), in SW Poland, was over many decades the largest European centre of arsenic mining and processing. Numerous mine and processing dumps have remained in that area. Waste material was in several sites intentionally spread on the land surface. Moreover, large floodplain areas were flooded by tailings released from disposal impoundments during stormy rains. The soils in all those sites contain high concentrations of arsenic, in extreme cases over 1%, while the permissible soil concentrations, considered environmentally safe, remain in the range 10-100 mg/kg, depending on land usage and soil properties. Remediation should be undertaken in all the sites with higher As concentrations, in order to reduce potential environmental risk and prevent As from entering the food chain. Because of relatively low As solubility and bioavailability, phytostabilization seems to be the best option of remediation. Grasses are particularly suitable for this purpose because of their quick growth, relatively large biomass, efficient coverage of the surface, and thick root systems. Major grass species are known as eliminators of heavy metals, highly resistant to their high concentrations. We examined the suitability of three grass species: Festuca rubra, Agrostis capillaris and Holcus lanatus for phytostabilization of As rich soils. As concentrations in their shoots were examined in the field and in a pot experiment. The latter was performed in order to examine the effects of various soil treatment, including fertilization, on plant growth and As uptake by plants. Soil treatment with manure increased strongly As extractability in soils but did not increase As uptake by grasses. The concentrations of As in plant shoots were in the pot experiment by manifold higher than those in the field. The maximum concentrations of As reported from the field for F. rubra, A. capillaris and H. lanatus were: 51, 9.3 and 62 mg/kg, while the corresponding maximum As concentrations from the pot experiments were: 390, 1020 and 570 mg/kg, respectively. Large differences between the field and pot data indicate that the populations growing in highly contaminated sites have probably developed a specific tolerance to soil As. Its possible mechanisms are discussed. One of the conclusions is that further pot experiments should be carried out with the seed material collected from enriched sites rather than with commercial cultivars. The data from the field indicate that all the three species of grass examined in this study are As excluders and relatively good candidates for phytostabilization of As-rich soils. However, the concentrations of As in the shoots of grasses growing in the most strongly enriched sites exceeded 4 mg/kg, the value set as a safe As content in fodder, posing therefore a risk to potential animal consumers.

How to cite: Karczewska, A., Szopka, K., Dradrach, A., and Gałka, B.: Accumulation of arsenic by various grass species growing in strongly contaminated sites affected by historical As mining and processing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11013, https://doi.org/10.5194/egusphere-egu2020-11013, 2020.

EGU2020-13413 | Displays | SSS7.3

Wolf spiders as biomonitors of mining derived contamination in Arctic ecosystems

Sophia V. Hansson, Floris M. van Beest, Niels Martin Schmidt, Toke T. Høye, and Jens Søndergaard

The emission and spread of global contaminants such as Pb, Cd, Hg, U and rare earth elements (REE) are of high global concern as they pose a serious health risk to humans and wildlife alike. Although the Arctic is a known hot-spot for deposition of globally transported organic and inorganic contaminants, Greenland is often viewed as pristine with little influence of local emission sources. This perception is, however, flawed as Greenland hosts numerous former, active and prospected mining activities, many of which have a profound adverse impact on the surrounding environment. Detailed monitoring before, during, and after mining activities is thus essential to evaluate the environmental health status of a mining area and to minimize the potential spread of mining derived contaminants.

Arthropods constitute the majority of the terrestrial Arctic species diversity, which facilitates sampling for environmental assessment. With documented abilities to accumulate contaminant metals (e.g. Cd, Ag, Hg), we show that spiders play a key role in bioaccumulation and biomagnification processes. Acting as both predator and prey, and by linking food webs in the aquatic to the terrestrial environment, spiders can enable a continued transfer of contaminants up the food chain. Moreover, and because arthropods are an important food source for migrating birds, there is a strong potential for a further geographical spread of contaminants. However, the extent to which contaminant bioaccumulation occurs in Arctic spiders, and their role in global contaminant cycles, remain unclear.

The aim of this project and presentation is to examine the use of wolf spiders (e.g. P. glacialis, P. furcifera and P. hyperborea) as biomonitors of metal and radiogenic contamination near Arctic mine sites. Particular focus will be given to the globally prioritized elements Pb and Hg (incl. isotopic signatures), as well as contaminants of local concern such as U (incl. decay series) and REEs. Further, we discuss the role of spiders in local- to global contaminant cycles by linking the contamination transfer through onsite food webs to location data from migrating birds (e.g. GPS-trackers). Combining contamination- and location-data will allow us to model movement of biota, and inherent mining derived contamination, to and from arctic ecosystems on an annual basis.

How to cite: Hansson, S. V., van Beest, F. M., Schmidt, N. M., Høye, T. T., and Søndergaard, J.: Wolf spiders as biomonitors of mining derived contamination in Arctic ecosystems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13413, https://doi.org/10.5194/egusphere-egu2020-13413, 2020.

EGU2020-20768 | Displays | SSS7.3

Measure soil resilience after reclamation of open pit dump in semi-arid area

Huping Hou and Chen Wang

The main work of soil reclamation in coal mine area is to recover the structure and function of soil, which is the key factor for the restoration of mine damaged ecosystem. The calculation of soil resilience is an index to measure the stability of ecosystem, which provides guidance for the sustainability of soil management. As the case of Heidaigou open pit mine in Mongolia, the soil restoration of waste dump in 1995, 2000, 2008 and 2015 is taken as the research objects. The field investigation and soil quality experiment data are used to compare and analyze between the reclamation soil and original soil. The soil resilience of waste dump of open pit mine is measured by principal component analysis and structural equation model. The results showed:  (1) The volume density of reclaimed soil was larger, and the soil particle size did not show obvious vertical layered distribution. The degradation of soil nutrients, the low level of soil fertility, the accumulation of soil alkaline hydrolysis nitrogen content and organic matter, and the utilization of plant roots to nutrients were low. The biodiversity and activity of soil decreased. (2) Quantitative evaluation of soil resilience was divided into four dimensions: soil structure stability, soil water retention capacity, soil fertilizer retention capacity, and soil biological activity. Soil clay particles, silt particles, median diameter, and sand particles contributed 81.609% to main component for soil structure stability. Surface water content, deep water content, bulk density, calcium carbonate contributed 82.379% to main component for soil water retention capacity. Soil organic, alkaline nitrogen, total nitrogen, pH, total potassium, total phosphorus, available phosphorus contributed 85.39% to main component for soil fertilizer retention capacity. Soil urease, alkaline phosphatase, invertase activity, microbial diversity Simpson index, richness Chao index, litter quality, pH contributed 87.373% to main component for soil biological activity. (3) Soil resilience was measured by four aspects: soil structure stability, soil water holding capacity, soil fertilizer holding capacity and soil biological activity. The average soil resilience value was 0.37, 0.33, 0.26, 0.18 in 1995, 2000, 2008, 2015, respectively. The average soil resilience was 0.75 in original soil. Soil biological activity had the positive impact on soil resilience, with an influence coefficient of 0.66. The water retention capacity and fertilizer retention capacity had coefficient of 0.44 and 0.37 on soil resilience.

How to cite: Hou, H. and Wang, C.: Measure soil resilience after reclamation of open pit dump in semi-arid area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20768, https://doi.org/10.5194/egusphere-egu2020-20768, 2020.

EGU2020-18789 | Displays | SSS7.3

Ability of Cistus salviifolius L. to phytostabilize gossan mine wastes amended with ash and organic residues

Luísa C. Carvalho, Erika Santos, Jorge A. Saraiva, and Maria Manuela Abreu

The São Domingos mine is within the Iberian Pyrite Belt, one of the oldest mining districts in Europe, with one of the largest concentrations of polymetallic massive sulfide deposits. Mine waste heaps are considered extreme environments, since they possess high concentrations of potentially hazardous elements (PHE). When the presence of PHE is combined with adverse physical characteristics and low contents of organic matter and nutrients, the development of most plants is inhibited and the biodiversity of the area is drastically reduced. The transfer of chemical elements among the different solid phases contributes to control their behaviour, mobility and availability. Autochthonous plant species, such as Cistus salvifoliius L., which are well adapted to extreme environments and are able to grow naturally in degraded environments may contribute to minimize the negative chemical impacts and improve the landscape quality. However, the environmental rehabilitation processes associated to the development of these plants (phytostabilization) are very slow and the combined use of materials/wastes that improve some physico-chemical characteristics of the matrix is necessary. This work studied the effectiveness of the phytostabilization with C. salvifoliius of gossan mine wastes from the mine of São Domingos amended with organic/inorganic wastes. The amendments used were (g/kg of gossan): biomass ash (BA, 2.5), a mixture of organic residues (OR, 120) and a mixture of both (BA+OR).

The mine wastes have very acid pH, between 3.44 and 3.54, high total concentrations of PHE, such as As, Cu and Pb, and low concentrations of organic C and nutrients. The available fraction of Al, Ca, Fe, K, Mg and V in the mine wastes was, in general, less than 8% of their total concentration while for As, Cu, Mo, Pb and Zn it was less than 4.3% of the total. Nonetheless Mn availability lay between 21.2 and 24.8%.

The best vegetative development, that occurred without visible signs of toxicity, was obtained in the two treatments with organic wastes (OR and BA+OR). Independently of the treatment, this species does not behave as accumulator of PHE. High levels of Catalase activity were quantified in the soluble fraction of the roots from OR treatment and in the ionically bound fraction of roots from BA+OR treatment. As for Peroxidase, the activity quantified in the soluble fraction was slightly higher in roots than in shoots, while in the ionically bound fraction high values were measured both in shoots and roots.

The application of amendments, especially with organic matter (mixture or single application), together with the phytostabilization allowed the improvement of the plant-soil system namely at level of a better plant cover and improvement of several chemical characteristics of mine wastes (e.g. decrease of the majority of PHE in the available fraction, increase of fertility and water-holding capacity), leading to speed up the environmental rehabilitation.

How to cite: Carvalho, L. C., Santos, E., Saraiva, J. A., and Abreu, M. M.: Ability of Cistus salviifolius L. to phytostabilize gossan mine wastes amended with ash and organic residues, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18789, https://doi.org/10.5194/egusphere-egu2020-18789, 2020.

EGU2020-6019 | Displays | SSS7.3

Can heavy metal pollution induce bacterial tolerance to antibiotics in soils from ancient land-mines?

Qinmei Zhong, Carla Cruz Paredes, and Johannes Rousk

Soil microbial communities play vital roles in the biogeochemical processes, and they are sensitive to environmental pressure induced by environmental pollutants, including heavy metal or antibiotic contaminants. It is well known that exposure to heavy metals can increase microbial tolerance in contaminated soil. Recently it was also discovered that heavy metal exposure in agricultural soils could induce microbial tolerance to antibiotics, thus yielding human health concerns. To date, it remains unknown how wide-spread this co-tolerance is in the environment. The aim of this study was to determine the microbial tolerance under different heavy metal concentration levels, and to investigate whether increasing tolerance to metals will co-select for tolerance to antibiotic. We hypothesized that microbial tolerance to both heavy metals and antibiotics would increase with metal pollutant concentrations. The tolerance to pollutants was determined by the pollution induced community tolerance (PICT) approach and the concentration for 50% inhibition (IC50) values.

To address our hypothesis, we collected soil samples from an ancient open cast land-mine in North Wales, UK, called Parys Mountain, known as the ‘Copper Kingdom’, where the soils cover a very wide span concentrations (c. 50 µg – 4000 µg g-1 soil) of copper (Cu), lead (Pb) and zinc (Zn) alone or in combination. The soils were very acidic with pH range from 3.49 to 4.96, and soil organic matter contents very variable, from 5 to 46 %, yielding a wide range of water holding capacities, from 0.45 to 3.47 g water g-1 dry soil. We determined basal soil respiration, SIR-biomass, microbial growth and community composition, and bacterial tolerance to Cu, Pb, Zn, tetracycline and vancomycin.

We found that bacterial growth rates significantly decreased with increasing available Cu (R² = 0.26) and decreasing pH (R² = 0.39), but did not show any regressions against with total metal concentrations, and total microbial biomass and respiration showed similar patterns. It was possible to reliably establish accurate dose-response relationships for bacterial tolerance to metals with average R2 values of 0.96 for Cu, 0.93 for Pb, and 0.92 for Zn with logistic curve fits. Based on these, we estimated that bacterial tolerance to heavy metals varied substantially across the sites, with average log(IC50) value was c. 4 log-unit Cu, 3.4 log-unit Pb, and 3.8 log-unit Zn. Metal tolerance was weakly linked to soil metal concentrations, as shown by limited linear relationship built between tolerance and soil concentrations (R2= 0.25, 0.44, 0.20 for Cu, Pb and Zn, respectively). The substantial variance in heavy metal tolerance among the sampled mining soils provided a high power to assess if metal tolerance could induce tolerance also to antibiotics. To assess this, we established dose response relationships between bacterial growth and a common and widely used antibiotic (tetracycline) as well as an antibiotic held in reserve for human therapy (vancomycin). The toxicity estimates are still awaiting analyses, but we hypothesize a strong link between bacterial tolerance to tetracycline and that for Cu, Zn, and Pb, while a weaker or non-existent pattern is expected for vancomycin, due to its limited environmental presence.

 

How to cite: Zhong, Q., Paredes, C. C., and Rousk, J.: Can heavy metal pollution induce bacterial tolerance to antibiotics in soils from ancient land-mines? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6019, https://doi.org/10.5194/egusphere-egu2020-6019, 2020.

EGU2020-339 | Displays | SSS7.3

Detailed study of 137Cs distribution in soil-litter-moss cover within the undisturbed woodland test site in the Chernobyl abandoned zone, Russia

Denis Dolgushin, Elena Korobova, Vladimir Baranchukov, and Nikolay Dogadkin

Cs-137 distribution was studied in the regular grid and in landscape cross-sections characterizing the ELGS system (top-slope-closing depression) in the “Vyshkov-2” test site located in the Chernobyl abandoned zone, the Bryansk region, Russia. The test site (70×100 m) located on the Iput’ river terrace in a pine forest formed on sod-podzolic soils is characterized by a pronounced elevation gradient (ca 4.5 m). In 1986 the level of 137Cs contamination of the area varied from 1480 kBq/m2 to 1850 kBq/m2. The distribution of 137Cs was studied in the topsoil, soil, moss and litter cover in a grid manner with a step of 10 m and along cross-sections with 1 m step. To assess the influence of water regime on radiocaesium migration moisture content was also determined in the studied objects. The data showed that the major part of 137Cs is now fixed in the soil layer 2-10 cm thick while the highest activity of radiocaesium is found at a depth of 2-8 cm that can be explained mainly by the burial of the initially contaminated layer under the annual leaf fall. In the ELGS system the content of 137Cs in the top soil layer (0-2 cm) determined in laboratory conditions by Canberra gamma-spectrometer with HPGe detector correlated with the surface Cs-137 activity measured by field gamma-spectrometer Violinist III (r=0.643, n=15). Cs-137 activity in the green part of moss samples correlated with the radionuclide activity in soil layer samples 4-6 cm deep (r=0.627, n=15). In the moss samples the highest correlation was observed between the green and rhizoid moss parts (r0.01=0.718, n=60, along cross-sections), (r0.05=0.858, n=20, in regular grid). Correlation between radiocesium activity of the green part of mosses and the underlain litter samples was lower, but also significant (r0.01=0.617, n=60, along cross-sections), (r0.05=0.481, n=20, in regular grid). Cs-137 activity in the rhizoid part of moss and in litter were also positively linked, but to a lower degree (r0.01=0.402, n=60). Studies performed in 2015-2019 confirmed our earlier finding that radiocaesium had not moved in unidirectional manner down the slope to the closing depression, but formed a more complex polycentric structure in ELGS.

The study was financially supported by the Russian Foundation for Basic Research (grant # 19-05-00816).

How to cite: Dolgushin, D., Korobova, E., Baranchukov, V., and Dogadkin, N.: Detailed study of 137Cs distribution in soil-litter-moss cover within the undisturbed woodland test site in the Chernobyl abandoned zone, Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-339, https://doi.org/10.5194/egusphere-egu2020-339, 2020.

The collapse of a tailings dam of a Pb-Zn mine, caused by a storm in 1978, resulted in severe heavy metals contamination in the valley downstream the mine, located in the Guangxi Province, southwest of China. The metals still pose a risk to the adjacent fragile karst environment. Especially, the potential for leaching of the heavy metals to the adjacent environment is of concern due to the high average annual precipitation of >1500 mm in the subtropical climate. Previous studies have classified areas of the valley as slightly (SP), moderately (MP) or heavily polluted (HP) based on heavy metals content (Pb, Cd, As, Cu, Zn) of the upper 20 cm of the soils. We analysed soil and sediment profiles up to 2 m deep, obtained in areas of the three pollutions levels, for basic chemical and physical parameters including pH, total organic carbon (TOC), soil moisture, particle size, total metals concentrations (Pb, Zn, Cd, and Cu), and δ18O and δ2H of soil moisture. Further, we measured the δ34S of soil extractable sulphate, and the content of chromium-reducible sulphur (CRS) and soluble sulphates (SS), to investigate the link between sulphur cycling and heavy metals mobilization. Today, four decades after the dam collapse, heavy metal concentrations are still highly elevated in the valley. In the HP profile concentrations of Pb, Cd, Cu and Zn range between 800–8120, 8–132, 156–616, and 2647–12250 mg/kg, respectively, between surface and 2 m depth. Concentrations of CRS in the HP profile of 287–5530 mg/kg were observed, while no CRS could be extracted from the SP and MP soil profiles. The δ34S-SO42- of the HP profile (0.4‰–16.0‰) matches values previously measured in the original tailing. The matching δ34S-SO42- and elevated CRS values of the HP profile indicate that the valley contains thick deposits (up to at least a 2 meters) of resettled tailings sediments of the original upstream tailings dam. However, these sediments are clayey, with >50%wt being <0.002 mm in particle size, allowing only a slow advective water and solute movement to or from (leaching) the sediment. A currently low, yet possibly significant(!), heavy metals leaching is further indicated by the only slightly acidic pH (6-6.5) which indicate a lack of oxygen intrusion into the sediments and reaction with the CRS content. Also, the HP profile had soluble sulphate concentrations of 532–1156 mg S/kg which were reasonably comparable to the values measured in the less polluted areas, implying a history without large amounts of CRS oxidation. Further, Pb and Cu concentration in the HP profile shows a continuous (high) distribution vs. depth which also suggests a history without extremely low pH. Finally, deuterium-excess values can be interpreted as showing diffusive, rather than advective, water and solute movement. While, accordingly, the heavy metals currently appear relatively well stabilized towards leaching, any management that increases oxygen intrusion or water exchange will impose a high risk of immediate and severe environmental pollution to the adjacent aqueous environment.

How to cite: Qin, W., Han, D., Song, X., and Jessen, S.: Controls on mobility of heavy metals of mine tailings in a karst area as shown by multi-stable isotopes tracing: δ18O/δ2H in soil water and δ34S of soil soluble SO42-, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21762, https://doi.org/10.5194/egusphere-egu2020-21762, 2020.

EGU2020-22201 | Displays | SSS7.3

Wind Erosion Contribution to Pesticide Transport

Katalin Csányi, Károly Barta, József Szatmári, and Andrea Farsang

Although 40% of Hungary's territory is very sensitive to deflation, few studies have been conducted on wind-eroded sediment as an environmental pathway for pesticide transport.

Three experiment were conducted on loam soil and an other in sandy soil near Szeged (Hungarian Great Plain) in 2017, 2018, 2019, to examine wind-eroded sediment as a transport mechanism for two surface-applied pesticides [chlorpyrifos and pendimethalin].

For the experiments we used a portable 12 m long wind tunnel and a Wet Active Sediment Trap (WAST). WAST is a horizontal, isokinetic active wet trap that is patterned at different heights to collect the suspended soil fractions. Trap inlets are 5-10 cm, 20-25 cm, 50-55 cm high. Rolling soil samples (sediments) were also collected in a recessed tray at the end of the wind tunnel with a clean brush.

Before the experiment, a part of the sample area was treated with chlorpyrifos (2l/ha) and pendimethalin (5l/ha). A control area was also selected. Samples were taken before and after the wind event at 3 different places in the wind tunnel.

In the laboratory we analyzed the topsoil samples (pH (H2O), CaCO3 (%), Arany yarn test, OM %, total salt content (%), humidity (%), pesticide contents) and the collected sediments (chlorpyrifos, pendimethalin concentrations) according to hungarian standard procedures.

We calculated the enrichment ratios (ER) of concentrations in the rolling and suspended samples.

Our measurements showed that the enrichment of chlorpyrifos and pendimethalin can be clearly indicated in the sediments. The mean value of chlorpyrifos ER in 2017 is 3,4. In 2018 the mean value of chlorpyrifos ER is 2,9 and of pendimethalin ER is 13,7. Pendimethalin ER is much higher in the rolled fraction than chlorpyrifos. Measurements of 2019 showed us that the analyzed pesticides were enriched in the rolling soil fraction. There were no pesticides enrichment in the suspended fraction.

 

The research was funded by the ‘Thematic Network for the Sustainable Use of Resources – RING2017’ project (program code: EFOP-3.6.2-16-201700010) and by the support of OTKA 1K 116981, "In situ wind channel experimentation based on in situ wind channel experiments on different soil types, on site and off site effects" and supported by the ÚNKP-19-3 New National Excellence Program of the Ministry for Innovation and Technology”.

How to cite: Csányi, K., Barta, K., Szatmári, J., and Farsang, A.: Wind Erosion Contribution to Pesticide Transport, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22201, https://doi.org/10.5194/egusphere-egu2020-22201, 2020.

EGU2020-3887 | Displays | SSS7.3

Trace metals concentrations in schoolyard and playground soils in Coronel city, Chile

Pedro Tume, Viviana Acevedoa, Núria Roca, and Jaume Bech

An urban world population of 0.75 billion in 1950 and expected 6 billion in 2050 shows the tremendous potential growth of urban areas. The urban soil fulfills the role of the reactor for the physical, chemical and biological transformations of matter but also covers such functions as reduction of air pollution, regulation of climate elements in cities, source of biodiversity and formation of areas for ornamental and recreation purposes. As a usual part of urban ecosystems, urban soils in general have high concentrations of trace elements derive from human activities. The objectives of this work were (1) to quantify the concentrations and establish background levels of Ba, Co, Cr, Cu, Mn, Pb, Ni, V and Zn in soils of Coronel city; (2) to assess the degree of pollution and identify local sources of pollution and (3) to assess the health risks of TE in soils of Coronel city. From Coronel city were collected 129 samples from 43 sites located in schoolyards and playground areas. At each sampling point were taken three samples: topsoil sample (TS) (0-10 cm), subsoil sample (SS) (10-20 cm) and deep soil sample (DS) (150 cm). Multivariate statistical analysis and depth ratios were used to distinguish the source. Ecological indices were implemented to evaluate the degree of contamination. The median and (range) of the trace elements (TE) in TS were Ba 38 mg kg-1 (12-147 mg kg-1), 38 mg kg-1; Co 4-40 mg kg-1; 15 mg kg-1; Cr 10-35 mg kg-1, 18 mg kg-1; Cu 12-70 mg kg-1, 22 mg kg-1; Mn 167-950 mg kg-1, 536 mg kg-1; Ni 11-115 mg kg-1, 35.5 mg kg-1; Pb 1.5-115 mg kg-1, 6 mg kg-1; V 52-528 mg kg-1, 94 mg kg-1; Zn 42-373 mg kg-1, 65 mg kg-1. Depth ratios and multivariate statistical analysis suggested that Co, Ni and Mn have principal contribution of geogenic sources and Ba, Cr, Cu, Pb, V and Zn anthropogenic sources. The upper limit of background values estimated with median absolute deviation (MAD) method and DS samples were Ba 30 mg kg-1,  Co 24 mg kg-1,  Cr 22 mg kg-1,  Cu 24 mg kg-1,  Mn 662 mg kg-1,  Ni 66 mg kg-1,  Pb 1.5 mg kg-1,  V 108 mg kg-1,  and Zn 52 mg kg-1. Contamination factor showed that some soil sample were categorized as considerable contamination to very high contamination for Pb, Zn and V. Both Hazard index and cancer risk indicated no adverse health effects.

Keywords: Heavy metals, urban soils, ecological indices, health risk assessment

How to cite: Tume, P., Acevedoa, V., Roca, N., and Bech, J.: Trace metals concentrations in schoolyard and playground soils in Coronel city, Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3887, https://doi.org/10.5194/egusphere-egu2020-3887, 2020.

EGU2020-2838 | Displays | SSS7.3

Cd, Cr and Ni in drainage water from agricultural soils. Case study of South Alicante.

José Navarro-Pedreño, María Belén Almendro-Candel, Ignacio Meléndez-Pastor, Ignacio Gómez-Lucas, Manuel M. Jordán, Ernesto García-Sánchez, Jaume Bech, and Antonis A. Zorpas

Mediterranean coastal areas have been cultivated for long time. Wetlands areas situated near to the coast have been drainaged by using drainage channels. Heavy metals can be transferred from soils to the channels under agricultural management practices, especially under flood and furrow irrigation (the most important in the area studied). Anthropogenic inputs, including excessive use of agrochemicals and manure, in agricultural soils contribute to an increase of the content of some toxic heavy metals [1].

The agricultural area situated in the South of the province of Alicante has an important drainage system (avoiding to be a coastal wetland), which more than a thousand kilometers that allow the cultivation on calcareous soils (mainly Fluvisols). However, land uses have been changing and an important transformation of rural areas to residential areas have been occurred in the recent decades.

Under this situation, the presence of Cd, Cr and Ni in drainaged waters derived from infiltration from agricultural soils, and runoff from some urban areas, have been checked in the main drainage system (13 drainage channels) in order to detect possible influences of soil management in metal pollution. Water samples were taking along the channels in three to ten points of each channel, depending on the length, and metals were analyzed following standard methods [2]. At the same time, the land cover has been analyzed by using the last data from National Aerial Orthophotography Plan (available from the National Center of Geographical Information, Spain).

The most important result obtained was that the presence of Cd in the waters was under the limit of detection of 0.1 μg/L. This result reflected the absence of pollution sources of this metal from soils to these drainage channels.

Moreover, in the case of Cr, the values obtained were even below the reference values ​​for drinking water [3]. However, the major concentrations of this metal were between 6 to μg/L in only 4 channels. Ni, whose concentrations were lower than those for Cr, has values under 7 μg/L. Heavy metal pollution, at least in the elements analyzed, does not seem to be a serious problem in terms of the quality of these waters.

Although many land cover changes have occurred, most of the soils are dedicated to agriculture. On the other hand, no clear effects related to the proximity of urban areas to the drainage channels have been observed.

 

Keywords

Heavy metals; irrigation; land cover changes, pollution, wetlands.

 

References

[1] Navarro-Pedreño, J.; Almendro-Candel, M.B.; Gómez, I.; Jordan, MM; Bech, J.; Zorpas, A.A. (2018). Trace metal content and availability of essential metals in agricultural soils of Alicante (Spain). Sustainability 10, 4534.

 [2] APHA, AWWA, WEF (2012). Standard Methods for the examination of water and wastewater. Ed. American Public Health Association, Washington.

[3] Real Decreto 314/2016, de 29 de julio, por el que se modifican el Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano.

How to cite: Navarro-Pedreño, J., Almendro-Candel, M. B., Meléndez-Pastor, I., Gómez-Lucas, I., Jordán, M. M., García-Sánchez, E., Bech, J., and Zorpas, A. A.: Cd, Cr and Ni in drainage water from agricultural soils. Case study of South Alicante., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2838, https://doi.org/10.5194/egusphere-egu2020-2838, 2020.

EGU2020-6154 | Displays | SSS7.3

Transfer of heavy metals to plants in technosols remediated with calcareous residues.

Carmen Pérez-Sirvent, Maria Jose Martinez-Sanchez, Salvadora Martinez-Lopez, Ines Agudo, and Jaime Bech

When dealing with restoration and remediation projects of zones contaminated by waste and activities derived from mining operations, all the aspects that affect the neighbouring areas dedicated to the cultivation of vegetables are especially relevant, and should be carefully considered. According to previous studies carried out, the areas of mining influence affect to a very different extent the bordering areas depending not only of the characteristics of the soil but also of the type of mining activity that was developed, and so of the primary mineralogy involved, and even of the particular type of vegetable that is being cultivated. The diversity and complexity of these factors suggest the convenient of studying the process by clarifying the mechanisms of transfer of potentially toxic elements from the soil to the biotic environment, with the soil-plant-biotic chain sequence.

In this work an experimental study was carried out with this purpose making use of experiments carried out at the greenhouse scale in order to find a model that could clarify the processes that could take place in restored soils.

 

Construction and demolition residues (CDRs) as well as other residues containing high concentrations in limestone filler were used to prepare technosols, and the transfer factors (TF) and bioconcentration factors (BCF) of potentially toxic elements were measured for the selected plant species (chard and broccoli). In this way, in addition to the soil remediation, benefit can be obtained of the re-valorization of such type of  easily available, low cost residues. For the realization of the tests in the greenhouse, four technosols were prepared and experiments were planned in duplicate, which constituted eight experimental units, each one containing 21 large pots disposed in such a way that leachates were poured in the same storing tank.  

The technosols were prepared as follows:

  • Vegetable soil or reference soil. (T1)
  • Contaminated soil: 50% reference soil + 50% mine residue (T2).
  • Amended Land 1: 75% contaminated soil + 25% CDR (T3).
  • Amended soil 2: 75% contaminated soil + 25% Limestone filler (T4).

 

A statistical study was carried out to evaluate the relationships between the levels of potentially toxic elements (Pb and Cd) found in rhizospheres and root contents and the levels present in the technosols prepared. Conclusions could be obtained as regards  the mobility of  these elements, the characteristics of the technosols and the type of cultivation. The data allows a model to be outlined that could be translated at a higher scale for an effective remediation of large zones.

 

 

How to cite: Pérez-Sirvent, C., Martinez-Sanchez, M. J., Martinez-Lopez, S., Agudo, I., and Bech, J.: Transfer of heavy metals to plants in technosols remediated with calcareous residues., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6154, https://doi.org/10.5194/egusphere-egu2020-6154, 2020.

EGU2020-12527 | Displays | SSS7.3

Risk assessment of the land recovery to pastures on sulfide tailings closed with different systems: Conventional Vs Technosol

Erika Santos, Melitza Cornejo, Diego Arán, and Alfredo Gallardo

A promising planning for recovery and closure of mining tailings, from both active and abandoned mines, must include environmental and socioeconomic approaches. Buenaventura group and La Zanja mine are evaluating, in different closure systems of tailings composed of mine wastes rich-in sulfides, the integrated rehabilitation of the ecosystem (mine wastes, percolated leachates, runoff water and plants cover) and its recovery to other secure land uses which promote the regional socio-economic valorisation. In adjacent areas to La Zanja mine (Cajamarca, Peru), the milk production is the main economic activity although with low profitability. Therefore, herbaceous and shrubs intake by domestic animals could be one important food chain route for human exposure to toxic elements. Although it is essential the evaluation of the potential animal feed risk, until what is known these studies are not usual in mine closure planning.

This work aims to evaluate, at long term, the chemical and microbiological characteristics of the soil, and development and environmental potential risk of the herbaceous strata growing in mine tailings closed with two conventional closure systems and innovative system with a Technosol designed specifically for environmental problems of the mining tailing. The studied conventional systems are characterized by superficial coverage with local soil or local soil under materials with low permeability. Before planting native plant species and different fast-growing herbaceous, amendments were applied to the soil, such as lime and/or chicken manure. In other mine tailing with similar chemical and mineralogical characteristics was applied a superficial layer of a designed Technosol with andic, eutrophic and reductor properties. An adjacent area without influence of mining activity was used as control.

Composite samples of soils as well as herbaceous plants and dominant shrub growing on these soils were collected. Soil characteristics (pH, fertility, overall activity and biomass of microbial community) and multielemental concentration in soils (pseudototal and available fractions) and plants were determined. The accumulation behaviour of potentially hazardous elements in shoots was studied as well as their relation with the chemical soil characteristics.

The chemical and biological quality of the soils depended on closure system. Soils from conventional system presented significant degradation at chemical and biological level and smaller plant development, compared to system with Technosol. The chemical characteristics of the Tecnosol still remained being, in many cases, better than those in control soil.

In conventional systems, the alteration of the chemical characteristics of the soils and/or presence of the layer of low permeability material limited the plant development biomass production contributing to a higher risk of erosion. Herbaceous species growing on the soils from all studied closure systems of mine tailings do not seem to represent an environmental risk for domestic animals that exist in the areas adjacent.

This study is included in a strategy environmental management and sustainable development for the recovery of non-productive areas for other land uses.

Financial support grated by: InnóvatePerú–FINCyT 2 (PITEI-4-P-015-091-16) to Compañía de Minas Buenaventura and Minera La Zanja; Fundação para a Ciência e Tecnologia to LEAF (UID/AGR/04129/2013).

How to cite: Santos, E., Cornejo, M., Arán, D., and Gallardo, A.: Risk assessment of the land recovery to pastures on sulfide tailings closed with different systems: Conventional Vs Technosol, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12527, https://doi.org/10.5194/egusphere-egu2020-12527, 2020.

Sorption parameters of natural zeolite-containing tripolite from the Khotynetsky deposit (Russia, Oryol region) were studied in a series of experiments to evaluate possibility of its usage as a geochemical barrier for teсhnogenic Ni2+ and Zn2+ contaminating soils and ground waters. 
Firstly, the tripolite total ion-exchange capacity was established by its saturation with ammonium ion and evaluating its content in the initial and ammonium forms with the help of X-ray fluorescence method. Secondly, the kinetic characteristics, namely the time necessary to reach the equilibrium state of the rock-water system containing Ni2+ and Zn2+ ions were determined in batch experiments using the method of "limited volume". The latter experiment was conducted using 0.5 g tripolite with 250 ml model solutions simulating natural river water (0.003 н CaCl2) and filtration water from solid domestic waste landfill (0.06 н CaCl2) and containing  2 mg/l Ni2+ and  Zn2+. The time of contact between the sorbent and the model solution varied from 2 hours to 21 days. Thirdly, basing on reference data on the real content of heavy metals in the filtrates of various landfills, an experiment on determination of the tripolite equilibrium exchange (and adsorption) capacity was carried out. The prepared model solutions in the latter experiment contained 2, 5, 7 and 10 mg/l of Ni2+ and Zn2+. The amount of Ni2+ and Zn2+  in solutions was determined by the ICP-AES.
According to the obtained results, the total ion-exchange capacity of the natural tripolite equaled to 1.18 mg-eq/g. The sorption isotherms based on kinetic experiments showed that equilibrium in the studied rock-solution system took place after 200 to 500 hours of interaction. Despite natural scattering of experimental points in the range of the used Ni2+ and Zn2+ concentrations in the third experiment which lasted 21 days, the sorption of the studied ions by the natural tripolite can be approximated by a linear isotherm, zinc being sorbed much better than nickel. The average values of distribution coefficients (Kd) obtained for 0.003 n CaCl2 aquatic solution equaled to 2.7*103 ml/g for Ni2+ and 6.7*103 ml/g for Zn2+.
Therefore, natural tripolite of the Khotinetsky deposit may well be used as a natural geochemical barrier for extraction of technogenic Ni2+ and Zn2+ from natural waters draining landfills and contaminated by these ions.

 

How to cite: Kolmykova, L., Nikashina, V., and Korobova, E.: An experimental study of sorption properties of natural zeolite-containing rocks and their ability for purification of aquatic solutions contaminated with Ni and Zn, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2224, https://doi.org/10.5194/egusphere-egu2020-2224, 2020.

EGU2020-471 | Displays | SSS7.3

The adsorption mechanisms of heavy metal ions by meadow soil

Tatiana Bauer, Tatiana Minkina, and David Pinskii

Soil is one of the key elements for all terrestric ecosystems. The ability of soils to adsorb metal ions from aqueous solution is of special interest and has consequences for agricultural issues as remediation of polluted soils. The aim of this work was to study the mechanisms of copper and zinc adsorption by meadow soil in the Rostov region (Russia). To study the ion-exchange adsorption of the Cu2+ and Zn2+ cations, the soil in the natural ionic form was disaggregated using a pestle with a rubber head and sieved through a 1mm sieve. The soil samples were treated with solutions of Cu2+ and Zn2+ nitrates at the separate presence of metals. The concentrations of the initial solutions were 0.05, 0.08, 0.1, 0.3, 0.5, 0.8 and 1.0 mM L–1. The soil:solution ratio was 1:10. The suspensions were shaken for 1 h, left to stand for 24 h, and then filtered. The contents of the metals in the filtrates were determined by atomic absorption spectrometry. The contents of adsorbed cations were calculated from the difference between the metal concentrations in the initial and equilibrium solutions.  The isotherm of Cu2+ and Zn2+ adsorption by meadow soil from nitrate solutions is described by the Langmuir equation:

Cad = CKlCe / (1 + KlCe),                        (1)

where Cad is the amount of adsorbed cations, C is the maximum adsorption, mM kg–1, Ce is the concentration of the metal in the equilibrium solution, mM L1 and Kl is the Langmuir constant, L mM–1.

According to the binding strength (constant value Кl) to the meadow soil, the studied cations form the series Cu2+ (103.7±6.3) >> Zn2+ (3.9±0.4). The specific interaction with the soil exchangeable complex could be more typical for the adsorption of Cu2+ by the soil than for the adsorption of Zn2+. The obtained regularity also coincides with the order of the change in the electronegativity of the metals. The higher the electronegativity of a metal, the stronger its interaction with the surface of the soil particles, which results in the formation of stronger bonds with the surface functional groups. The values of the maximum adsorption (С) for Cu2+ and Zn2+ decrease in the same order as the constants, but not so significantly: Cu2+ (13.2±0.4) > Zn2+ (3.9±0.4). Thus, the maximum adsorption, an extensive characteristic of the adsorption, is a less sensitive parameter than the equilibrium constant of adsorption Kl, an intensive characteristic of the process.

The reported study was funded by RFBR, project number 19-34-60041.

How to cite: Bauer, T., Minkina, T., and Pinskii, D.: The adsorption mechanisms of heavy metal ions by meadow soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-471, https://doi.org/10.5194/egusphere-egu2020-471, 2020.

EGU2020-684 | Displays | SSS7.3

The effect of different level and type of pollution on the heavy metals accumulation and distribution in soil-plant system

Victor Chaplygin, Saglara Mandzhieva, Tatiana Minkina, Natalia Chernikova, Aleksey Fedorenko, Anatolii Barahov, and Ilia Lobzenko

Chemical pollution of the environment is one of the most serious problems for mankind in the modern time. The main sources of pollutants entering the environment are atmospheric emissions of industrial enterprises, ore dumps and wastes released by the chemical industry. However, regardless of the source of the pollutants, the main function in reducing environmental risk is performed by the soil. With the increasing anthropogenic load on natural landscapes and agricultural lands, reliable data on the toxicity of heavy metals (HM) as well as the mechanisms of their entry into the plants are needed to carry out environmental monitoring and quality control of grown products.

The accumulation and transformation of Ni, Mn, Zn, Cu, Cr, Cd, and Pb in soils of steppe zone of southern Russia were studied under different sources of pollution: aerotechnogenic emissions by Novocherkassk power station and industrial effluents of the chemical plant near Kamensk-Shakhtinskii city. The author’s method for determining the HM compounds composition in the soil (Minkina et al., 2008) was used to assess the ecological situation of the impacted territory. It was found that the total content of HM in the soils of the impacted territories exceeded Clarke value, especially for Zn (up to 796 times).

The patterns of accumulation and distribution of Ni, Mn, Zn, Cu, Cr, Cd, and Pb were determined for the most common species of wild-growing and agricultural herbaceous plants of the Poaceae (Triticum aestivum, Hordeum sativum, Poa pratensis L.), and Asteraceae (Ambrosia artemisiifolia, Achillea nobilis, Tanacetum vulgare) that grew in the impacted territory. Agricultural and wild herbaceous plants growing 1.5–2.2 km from the power station are polluted with Pb, Zn, Ni and Cd.

It was shown that even in conditions of extreme soil pollution by industrial effluents, the root system of the plants successfully performed its protective function: the HM content in roots significantly exceeded it in above-ground part. At the same time, the pollutants concentration ratio in the above-ground part and in the roots was higher under aerotechnogenic pollution due to the additional receipt of the HM through the surface of the leaves. The dependence between HM accumulation and distribution in plants and the content of mobile metal compounds in the soil was established (correlation coefficient=0.79).

The extreme HM contamination effect on the anatomical and morphological characteristics and ultrastructure of the cultivated and wild plants was studied by transmission electron microscopy. The differences in adaptation of the plants to the effects of a stressful environmental factor were manifested not only in the external structure but also at the anatomical and intracellular levels of organization. In the samples contaminated with HM, parenchyma cell vacuoles contained electron-dense inclusions grouped in the center of the vacuole which were probably the deposits of metal compounds. Cultivated herbaceous plants of Poaceae family were found to be more susceptible to anthropogenic pollution with HMs compared to the wild plants of the same family.

Research was supported by the Grant of the President of the Russian Federation, project no. MK-2818.2019.5, RFBR, project no. 19-29-05265.

How to cite: Chaplygin, V., Mandzhieva, S., Minkina, T., Chernikova, N., Fedorenko, A., Barahov, A., and Lobzenko, I.: The effect of different level and type of pollution on the heavy metals accumulation and distribution in soil-plant system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-684, https://doi.org/10.5194/egusphere-egu2020-684, 2020.

The level of contamination with the natural (K-40, Th-232, Ra-226) and induced (Cs-137) radioactive nuclides of the following forest soils(pine- trees, fir-trees, birch-trees) and of the long fallow ecological systems at the polluted (southern part) and not polluted (northern part) territories of Kaluga region of the Russian Federation, was evaluated in 2017. The analysis showed that the specific activity of the natural radioactive nuclides Ra-226 and Th-232 is low and it changes insignificantly in the soils' profile of the studied ecological systems. Higher levels of K-40 are registered, reaching the maximum in the long fallow soils, which arises from a heavier granulometric composition of the differences that were formed here. In general the density of soil contamination with the natural radioactive nuclides in various ecological systems varies: 3,14-11,70 for Ra-226, 0,33-3,22 for Th-232 and 3,52-94,19 kBq/m2 for K-40, which corresponds to the background indexes  and complies with the regional lithological features of the territory. The density of the soils contamination with Cs-137 varies from 60.8 to 273,8 kBq/m2 at the polluted territories(it does not exceed 3 kBq/m2 at the background territories). Among the studied ecological systems the forest ones (especially coniferous) are the most contaminated with Cs-137, the long fallow ecological systems are the least contaminated with Cs-137. In comparison with the initial period starting with the precipitation in 1986, the density of soils' contamination with Cs-137 has presently decreased by more than 3 times in average. However this index still significantly exceeds the admissible level of 37kBq/m2. Cs-137contributes most significantly into the summary specific activity of the soils and gives the power of the  equivalent absorbed dose for the  ecological systems of the polluted territories. K-40 provides this effect for the background territories.

How to cite: Kononets, O., Shcheglov, A., and Tsvetnova, O.: Natural and induced radioactive nuclides in the soils of forest and long fallow lands of the background and polluted territories of Kaluga region of the Russian Federation. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-721, https://doi.org/10.5194/egusphere-egu2020-721, 2020.

EGU2020-3424 | Displays | SSS7.3

Reclaimed wastewater to irrigate olive groves and vineyards: effects on soil properties

Pilar Mañas Ramírez, Jorge De las Heras Ibañez, and Esther Peña Molina

Having drinking water is one of the sustainable development goals (SDG no. 6) that is not always easy to ensure, especially in countries like Spain or arid regions marked by water deficit. The reuse of treated water should be considered when planning water resources, but it is necessary to conduct experiments to verify that this effectiveness is applicable to real situations. Our field trial was carried out in several study areas distributed in agricultural parcels of SE Spain. Three olive grove and vineyard plantations were monitored for 3 years. Two irrigation water types were considered: freshwater from conventional wells (controls) and treated wastewater (TW). The treated wastewater came from three different wastewater treatment plants (WWTP) that employ a biological secondary treatment without disinfection and different numbers of Inhabitants Equivalent (IE) as a measure of pollutant load. They were located in Valdeganga (3,000 IE), Fuenteálamo (5,600 IE) and Ontur (1,500 IE). All the study plots were watered by drip irrigation using 16 mm-diameter polyethylene pipelines.

Several soil and water parameters were analysed to determine the main differences among them. Increasing of soil salinity is a real risk after irrigating with wastewater as is reflected in higher electrical conductivity values. However, this fact was compensated by the greater contribution of organic matter and nutrients, which allowed crops to adequately develop. Moreover, no microbiological, metal content, toxicity or organic compounds in the studied water samples were detected and reclaimed municipal wastewater was comparable in quality to the conventional sources at all the demonstration sites. Hence adopting this water type for irrigation for grapes and olives could help save primary water resources. The future of water resources management policies involves sustainable wastewater reuse within a circular economy frame because this is the only way to guarantee everyone solidarity access to water.

Fundings provided by the ERA-NET WaterWorks2014 Cofunded Call. This ERA-NET is an integral part of the 2015 Joint Activities developed by the Water Challenges for a Changing World Joint Programme Initiative (Water JPI).

How to cite: Mañas Ramírez, P., De las Heras Ibañez, J., and Peña Molina, E.: Reclaimed wastewater to irrigate olive groves and vineyards: effects on soil properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3424, https://doi.org/10.5194/egusphere-egu2020-3424, 2020.

EGU2020-5139 | Displays | SSS7.3

Effects of elevated CO2 on nitrogen cycling in soil and alfalfa leaves

Yuhan Zong, Jing Hu, Zhi Zhuang, Yuliang Li, and Weiguo Liu

Increased atmospheric CO2 concentration will have an significant impact on the nitrogen cycle of terrestrial ecosystems. The elevation of atmospheric CO2 has become an inevitable trend, and nitrogen is the most important factor affecting plant growth. But it is rare to explore the effect of CO2 on nitrogen cycle by measuring the value of δ15N. The δ15N value as a comprehensive indicator of the nitrogen cycle of the ecosystem, which can not only clarify the migration and transformation of nitrogen, but also effectively indicate the nitrogen limit and nitrogen open level of the ecosystem. Our experiment selected alfalfa (C3 plant) as the research object, then investigated the response of nitrate nitrogen, ammonia nitrogen and absorbable nitrogen to the elevated CO2 concentration in soil and alfalfa leaves under ambient and elevated atmospheric CO2 (500 and 700ppm) in open top chambers. The 15N isotope value was determined by bacterial denitrification , and 15N-gas chromatography (GC-MS) were applied to further analyze the effect of elevated CO2 concentration on nitrogen cycling in soil and plant leaves. The increase of CO2 concentration led to the decline of various inorganic nitrogen levels in soil, and the δ15N in the soil also showed a certain downward trend, but always maintained a positive value. The nitrogen level and δ15N values in alfalfa leaves did not change significantly, showing a small increase. It indicates that there are different degrees of nitrogen loss in the leaves under the influence of different concentrations of CO2. These results are closely related to the fractional distillation of nitrogen isotopes caused by microorganisms in the process of nitrogen morphologic transformation. We briefly reviewed the changes of nitrogen content in soil and plant leaves under elevated CO2, providing new insights into the nitrogen cycle of soils and plants under high CO2 concentrations. It also provides a scientific basis for the protection of soil and plants under the greenhouse effect.

How to cite: Zong, Y., Hu, J., Zhuang, Z., Li, Y., and Liu, W.: Effects of elevated CO2 on nitrogen cycling in soil and alfalfa leaves, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5139, https://doi.org/10.5194/egusphere-egu2020-5139, 2020.

EGU2020-5637 | Displays | SSS7.3

A green solution for the rehabilitation marginal lands: the case of Lablab purpureus (L.) Sweet

Maria Manuela Abreu, Fernando Monteiro, and Patrícia Vidigal

With the increasing population growth rate, and in order to attain the goals set by the 2030 Agenda for Sustainable Development, it is necessary to find solutions that can ensure food security and food safety. Population growth implies not only increasing food demand, but also land use for housing, which ultimately results in the need to claim more land. However, with only 30% land available in the world, it is crucial to find strategies to answer the demands for the near future. A potential strategy could be the reclaiming/recovery of marginal lands, such as salt and drought prone lands, or even abandoned mining areas, that are not suitable for farming. The latter is still a controversial approach, because of the knowledge void, as to determining pollution level, environmental and health risk assessment protocols, contaminated sites identification, all factors that can diminish the success of sustainably recover abandoned mining areas. Mining activities result in land degradation, environmental contamination and thus ecosystem disruption. Soils/wastes from mining areas are rich in potentially hazardous elements (PHE) that cannot be degraded, thus there has been recent efforts to create sustainable ecotechnologies that could rehabilitate these areas, creating conditions for agriculture activities while assuring food safety. Phytostabilization is a prospective rehabilitation strategy that uses adapted/tolerant plants towards PHE immobilization in the rhizosphere and most especially with low PHE translocation factors from soil/roots to shoots. Allying with this, one can improve soil properties (e.g. fertility, water-holding capacity, structure) to promote plant growth and PHE availability decrease, by engineering a soil (Technosol) using organic and/or inorganic amendments together with soils/wastes from the contaminated site. The combination of phytostabilization with geotechnologies can minimize the risk to both human health and the environment, while promoting solutions for waste management and circular economy. Although the combination of these strategies seems ideal, it is not without issues that have to be addressed, such as the highly important task of identifying the nature/amount of PHE, soil proprieties, climatic conditions and the PHE translocation factor of the species that could be stablished in a specific mining site for rehabilitation. In other words, for each contaminated site it is necessary to design a specific phytotechnology tailor-made for each situation. In the present study, it was evaluated the response of a highly drought tolerant legume, Lablab purpureus (L.) Sweet, which due to its multifunctionality (forage, food, ornamental and medicinal), can offer a wide range of revenue to areas that otherwise would be neglected for agricultural activities as is the case of São Domingos abandoned mine area, our study area. After Lablab growing in Technosols made with high contaminated soils (e.g. As, Pb, Cu, Zn) and organic/inorganic wastes, our findings show that Lablab accumulates PHE in the roots and the concentrations present in the shoots are safe for animal consumption, thus presenting a potential plant to rehabilitate highly contaminated sites using Technosols.

How to cite: Abreu, M. M., Monteiro, F., and Vidigal, P.: A green solution for the rehabilitation marginal lands: the case of Lablab purpureus (L.) Sweet, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5637, https://doi.org/10.5194/egusphere-egu2020-5637, 2020.

EGU2020-6130 | Displays | SSS7.3

Modern approaches for the analytical speciation of chromium at very low concentration in waters and leachates

Manuel Hernandez Cordoba, Ignacio Lopez-Garcia, Juan Jose Marín-Hernández, Maria Jose Muñoz-Sandoval, and Carmen Perez-Sirvent

The speciation of chromium in waters and leachates obtained from soils and sediments has aroused interest in the last years. The element may be present in two oxidation degrees that have quite different toxicity. While chromium (III) is even essential for human beings due to its role in the metabolism of glucose and lipids, Cr(VI) is toxic due to its oxidant properties. The concentration of chromium in waters is usually of a few micrograms per liter, and the difficulty of carrying out the measurement at such low levels is further increased due to the distribution of the total element in the two mentioned forms. The technique commonly used nowadays for the purpose is inductively coupled plasma mass spectrometry (ICP-MS), a powerful analytical tool, but expensive both in acquisition and maintenance. Speciation, in addition, requires some type of previous separation or suitable strategy since the signal obtained by ICP-MS depends on the total amount of the metal present.

Recent advances in microextraction techniques have demonstrated that the determination and speciation is also possible by using electrothermal atomization atomic absorption spectrometry (ETAAS), an analytical technique which is of lesser cost than ICP-MS and is present in most laboratories worldwide. This communication summarizes some recent studies carried out in our laboratory based on the use of dispersive solid-phase microextraction to concentrate chromium. The small volume of liquid extract finally obtained can be injected into the electrothermal atomizer, and a very sensitive chromium determination is achieved. The extreme sensitivity in this way obtained is the consequence of combining the efficient preconcentration step with the sensitivity inherent to ETAAS measurement. Selectivity is also guaranteed by the characteristics of ETAAS. Speciation can be carried out by means of simple previous redox treatments without the need for a chromatographic separation. Three procedures are compared, one of them using graphene oxide as the active micro-solid phase, other based in the use of cellulose, an inexpensive reagent. Both procedures require a centrifugation step to separate the micro-solid phase from the supernatant. The third procedure uses freshly prepared ferrite particles and avoids the centrifugation step since the magnetic characteristics of the solid material permit an easy separation of phases with an external magnet. In all cases, chromium is measured after desorption from the micro-solid phase by a small volume of a suitable reagent. The limits of detection are close to 0.01 micrograms/L. The reliability of the three procedures is checked by using several reference samples with a certified chromium content. Data for the speciation of the metal are also given, a point that may be of practical interest for those involved in risk assessment or toxicity studies, since the dealers of the reference materials only provide the total chromium content.

How to cite: Hernandez Cordoba, M., Lopez-Garcia, I., Marín-Hernández, J. J., Muñoz-Sandoval, M. J., and Perez-Sirvent, C.: Modern approaches for the analytical speciation of chromium at very low concentration in waters and leachates , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6130, https://doi.org/10.5194/egusphere-egu2020-6130, 2020.

EGU2020-7439 | Displays | SSS7.3

Improvement of soil characteristics making use of logical, good agricultural practices: purpose and results obtained in the LIFE AMDRYC4 Project

Maria Jose Martinez-Sanchez, Salvadora Martinez-Lopez, Lucia Belen Martinez-Martinez, Maria Ortega, Manuel Hernandez-Cordoba, and Carmen Perez-Sirvent

The modification of environmental conditions and the subsequent evolution of the ecosystems results in soil degradation or desertification, which is also caused by the abandonment of the countryside, poor agricultural practices and the socio-economic dynamics that nowadays presents the rural environment. Land degradation leads to loss of fertility, nutrients and vegetation cover and increased erosion, pollution, salinization and alkalinization. The effects derived from this situation aggravate, in turn, climate change, in a strongly intertwined dynamics that feeds back.

Degraded soils are recoverable through various strategies, among them good agricultural practices being especially relevant.  In this paper, the degree of desertification of several plots of soil that have undergone treatments for the incorporation of organic matter (sewage sludge, manure from different animals, composted plant remains) and their untreated counterparts (blank) is evaluated. To this end, desertification indicators (salinization, organic matter, phosphorus content) included in the LIFE AMDRYC4 Project have been used to monitor soil neutrality, as a measure of the global desertification suffered by a plot.

The results obtained clearly show an improvement in the soil characteristics following the application of the mentioned strategy for soil treatment. It is therefore concluded that soil degradation is mitigated by good agricultural practices, which leads to a decrease in erosion and salinization and an increase in organic matter, nutrient content, plant cover and the ability to sequester dioxide carbon.  Soils are not affected by polluting processes both in terms of potentially toxic elements and other emerging pollutants. The experimental data obtained indicate that soils in this way remediated can be used to reduce the concentration of greenhouse gases in the atmosphere and represent a good tool to fight against climate change.

 

How to cite: Martinez-Sanchez, M. J., Martinez-Lopez, S., Martinez-Martinez, L. B., Ortega, M., Hernandez-Cordoba, M., and Perez-Sirvent, C.: Improvement of soil characteristics making use of logical, good agricultural practices: purpose and results obtained in the LIFE AMDRYC4 Project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7439, https://doi.org/10.5194/egusphere-egu2020-7439, 2020.

EGU2020-12378 | Displays | SSS7.3

Feasibility of using environmental covariates and machine learning to predict the spatial variability of selected heavy metals in soils

Mojtaba Zeraatpisheh, Rouhollah Mirzaei, Younes Garosi, Ming Xu, Gerard B.M. Heuvelink, Thomas Scholten, and Ruhollah Taghizadeh-Mehrjardi

Heavy metal contamination in soil is a major environmental issue intensified by rapid industrial and population growth. Understanding the spatial distribution of soil contamination by heavy metals in the ecosystem is a necessary precondition to monitor soil health and to assess the ecological risks. The main sources of heavy metals in soil are natural and anthropogenic sources. Natural sources are typically released of heavy metals from rock by weathering and atmospheric precipitation. Anthropogenic sources are related to industrialization, rapid urbanization, agricultural practices, and military activities. We analyzed a total of 358 topsoil samples (0–30 cm) collected in Golestan province in the northeast of Iran based on a regular square grid networks with 1,700 squares each sized 2.5 km²(random sampling within the grid). From these samples, we determined the spatial distribution of Cd, Cu, Ni, Zn, and Pb using random forest (RF). A multi-spectral image (Landsat 8), and environmental derivatives calculated from terrain attributes, climatic parameters, parent material, land use maps, distances to mine sectors, main roads, industrial sites, and rivers were used as covariates to predict the spatial distribution of concentrations of heavy metals. The multi-collinearity of the predictors was examined by the variance inflation factor (VIF), and a feature selection process (genetic algorithm) was applied to avoid noise and optimize the selected input variables for the final model. The predictive accuracy of RF model was assessed by the mean prediction error (ME), root mean squared error (RMSE), and coefficient of determination (R2) using 5-fold cross-validation technique. The results showed that the concentration levels (mg kg-1) of Cd, Cu, Pb, Ni, and Zn varied from 0.02 to 2.75, 9.70 to 93.70, 6.80 to 114.20, 9.50 to 93.20, and 25.10 to 417.4, respectively. The best prediction performance was for Ni (RMSE=9.9 mg kg-1 and R2=56.6%), and the lowest prediction performance for Cd (RMSE=0.4 mg kg-1 and R2=28.0%). Environmental covariates that control soil moisture and water flow along with climatic factors were the most important variables to define the spatial distribution of soil heavy metals. We conclude that the RF model using easily accessible environmental covariates is a promising, cost-effective and fast approach to monitor the spatial distribution of heavy metal contamination in soils.

Keywords: Heavy metals; digital soil mapping; machine learning; random forest; spatial variation; soil pollution.

How to cite: Zeraatpisheh, M., Mirzaei, R., Garosi, Y., Xu, M., Heuvelink, G. B. M., Scholten, T., and Taghizadeh-Mehrjardi, R.: Feasibility of using environmental covariates and machine learning to predict the spatial variability of selected heavy metals in soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12378, https://doi.org/10.5194/egusphere-egu2020-12378, 2020.

EGU2020-12598 | Displays | SSS7.3

Pasture species behaviour on sulfide mine tailings rehabilitated with a designed Technosol

Diego Arán, Erika Santos, Maria Manuela Abreu, Juan Antelo, and Felipe Macías

The uranium mineralization from Fé mining area (Spain) contains sulfides, resulting mine wastes generators of acid mine drainage rich in potentially hazardous elements (PHE). The improvement of the physicochemical characteristics and biogeochemical processes of sulfide mine tailings as well as their socioeconomic valorisation can be achieved by the application of a green technology based on circular economy: Technosol. The efficiency of the application of a superficial layer of a designed Technosol with specific properties to the rehabilitation of the sulfide tailings from Fé mining area was tested. Also, the risk assessment of the land recovery by this technology to pasture was evaluated through a microcosm experiment.

After 20 months of the Technosol application in the field, composite samples of Technosol, recovered tailing (bottom of the Technosol) and tailings without recuperation (control tailing) were collected. These samples were used for microcosm assay and characterized for pH, electric conductivity, fertility, PHEs concentration in total fraction and available fraction extracted with rhizosphere-based method. The substrate effect on development of Lollium perenne and Trifolium pratense (visual signs of phytotoxity, percentage of plant cover and dry shoots biomass) and multielemental composition in their of shoots was evaluated in microcosm assay under greenhouse conditions.

Mine wastes from control tailing had pH ≈4 and high total concentrations of several PHEs (g/kg; Al: 46.2; As, Co and Pb: 0.02-0.03; Cu: 0.04; Fe: 63.2 Mn: 1.3; Ni and Zn: 0.1-0.2). Potentially toxic concentrations of Co, Mn and Ni were identified in the available fraction pointing out the serious environmental risk posed by the control tailing. These chemical characteristics together lack of structure iin mine wastes from control tailing contributed to total inhibition of Trifolium germination and a significant diminution of Lollium growth. Both species growing in Technosol and recovered tailing produced significant plant cover and quite similar amounts of shoot biomass.

The improvement of the overall physicochemical properties in the recovered tailing materials (e.g. the decrease of the hazardous element concentrations in available fraction, and the improvement of the fertility and structure) allowed a quick and secure plant cover with pasture species. The results evidenced the efficiency of the designed Technosol in the sulfide mine tailing rehabilitation and potential land recovery to pastures.

The authors thank ENUSA for technical cooperation and providing the study area and soil samples.

How to cite: Arán, D., Santos, E., Abreu, M. M., Antelo, J., and Macías, F.: Pasture species behaviour on sulfide mine tailings rehabilitated with a designed Technosol, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12598, https://doi.org/10.5194/egusphere-egu2020-12598, 2020.

EGU2020-13346 | Displays | SSS7.3

Leaching and plant uptake of toxic metals in abandoned mine tailings in the Cave del Predil (I) mining site and Rio del Lago valley

Marco Contin, Guido Fellet, Daniel Lizzi, Barbara Piani, Maria De Nobili, and Luca Marchiol

Mining of Zn and Pb metal ores, mainly blende (ZnS) and galena (PbS), in Cave del Predil (I) valley from 1800 to 1991 produced a huge amount of tailings (estimated about 20 •106 m3). Such tailings had been prevalently accumulated close to the Rio del Lago creek or used to reshape the excavation area. These tailings are rich in toxic metals (i.e. Pb, Zn, Tl) under different chemical and mineralogical forms (sulphide, sulphate, carbonate, etc.), representing a potential health risk to the local ecosystem. The gradual oxidation of sulfide minerals tend to mobilize these toxic metals, that in part are retained due to the calcareous nature of rock, but they are partially leached to the trans-boundary Slizza/Gailitz creek.

Phytocapping represents a promising strategy to reduce the dispersion of contaminants into the air as dust particles and to groundwater, but the establishment of a permanent vegetation is strongly unpaired by the toxicity of this substrate. Immobilization techniques, using abundant, rather inexpensive, natural and/or industrial by-products, may offer an effective alternative to conventional methods to reduce the metals mobility and bio-availability.

The aims of this study are to assess: (i) the effect of metal immobilization treatments on mine tailings and (ii) the uptake and translocation of Pb, Zn and Tl in the metalliferous plant species Biscutella laevigata (L.) and Silene vulgaris (L.).

The mobility of toxic metals has been evaluated either in batch extractions (synthetic rain, TCLP) or by leaching columns in the native mine tailings and in tailings treated by different amendments (zero-valent Fe, Fe(II)+digestate, biochar).

The plants were collected respectively upstream (2 stations) and downstream (5 stations) the mining site in the sediment banks of Slizza/Gailitz creek. In each stations, six specimens were sampled for each species. In addition, at each plant collection point, a composite bulk soil and rhizospheric soil sample was excavated along the 0–20 cm profile. Plant specimens were divided into two fractions: root apparatus and aboveground biomass. The soil and plant samples were oven-dried and acid-digested in a microwave oven. Total Cu, Fe, Ni, Pb, Tl and Zn contents in the extracts were determined by ICP-MS. The bioavailable metal fraction of Cd, Pb, Tl and Zn was determined by selective extractants.

Addition of Zero-valent Fe showed the strongest decrease of leached metals trough the soil columns, whereas the addition of Fe(II)+digestate strongly increased the concentration of metals in leachates, probably because of the acidification caused by Fe oxidation/precipitation.

Biscutella laevigata and Silene vulgaris are metal tolerant species. Pb concentration in B. laevigata ranged between 0.01-669 and 0.01-234 mg kg-1, respectively in roots and shoots. In the same fractions of S. vulgaris Pb ranged between 0.01-891 and 0.01-208 mg kg-1. As for Zn, root and shoot concentration in B. laevigata were 13.4-1461 and 20.6-3390 mg kg-1 respectively, whereas in S. vulgaris 2.36-1829 and 17.2-1590 mg kg-1. The response of metal uptake and accumulation in plant species grown in treated mine tailings are currently under observation.

How to cite: Contin, M., Fellet, G., Lizzi, D., Piani, B., De Nobili, M., and Marchiol, L.: Leaching and plant uptake of toxic metals in abandoned mine tailings in the Cave del Predil (I) mining site and Rio del Lago valley, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13346, https://doi.org/10.5194/egusphere-egu2020-13346, 2020.

Dibenzothiophene (DBT) is a sulfur-containing PAH typically used as a model chemical to study biodegradation of PAHs and bioremediation. The effects of using different carbon sources (sodium gluconate, glucose, sodium pyruvate, sodium acetate and glycerol) as a co-substrates were investigated during DBT biodegradation by Burkholderia sp. C3 with respect to (i) bacterial (Burkholderia sp. C3) growth, (ii) DBT biodegradation kinetics, (iii) secretion of the biosurfactant rhamnolipids (RLs) and (iv) RLs characterization. This is the first study showing a direct association between RLs biosynthesis and DBT biodegradation induced by different carbon sources in Burkholderia species. The results indicated that bacterial growth supported by gluconate, glucose, pyruvate and glycerol, and the maximal OD600 achieved in presence of gluconate and glycerol. Glycerol and pyruvate significantly enhanced DBT biodegradation after 7 days, while glucose inhibited DBT biodegradation. RL is a glycolipid biosurfactant extensively studied in Pseudomonas species and its potential in the bioremediation field. Glycerol can induce C3 produce at least four RLs by HPLC separation and MALDI-TOF/TOF identification. Glycerol stimulated a dual function in C3 as a RL producer and a DBT degrader. The increase of RL biosynthesis and secretion facilitated biodegradation of DBT in C3. Additionally, RLs reduced the surface tension of cultures with glycerol which increased the bioavailability of DBT for Burkholderia sp. C3 to utilize it. The direct utilization of crude glycerol for bacteria to degrade pollutants must be cost-effective and environmentally friendly.

How to cite: Cao, J., Ni, J., and Li, Q. X.: Effect of different carbon sources on Dibenzothiophene degradation and Rhamnolipids production by Burkholderia sp. C3, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14938, https://doi.org/10.5194/egusphere-egu2020-14938, 2020.

EGU2020-17954 | Displays | SSS7.3

Changes in soils of Central Russian forest-steppe under the impact of sulfur coal mining (the Moscow basin)

Alexander Kostin, Pavel Krechetov, Olga Chernitsova, and Elena Terskaya

In mining areas of the Moscow brown coal basin, soils are impacted by acid mine drainage (AMD), solid sulfide-bearing mine wastes and carbonaceous particles. Spoil heaps of overburden rocks and subsidence areas over the mined space are formed at abandoned mine fields. Most of the spoil heaps have not been remediated and erode intensively due to physical and chemical properties of waste rocks. AMD of sulfuric acid, Al and Fe sulfates as well as pyritized material, entering from the eroded spoil heaps, results in morphological changes in soil properties. Other environmental concern is the formation of subsidence areas over the mined space due to the dewatering of abandoned сoal mines. It results in alteration of the soil water regime. On deluvial and proluvial dump tailings around spoil heaps technogenically transformed soils are common.

The aim of the study was to examine the post-mining evolution of natural soils under the impact of supply of tecnhogenic material from the spoil heaps and changes of the terrain in abandoned sulfur coal mining areas.

We investigated two key sites within abandoned coal mine fields in the central part of the Moscow basin (the Tula region, Russia). Prevailing natural soils are Greyic Phaeozems and Haplic Chernozems (WRB 2014) (Grey forest and Leached Chernozems in Russian classification).

Soil samples and soil solutions were analysed for (acid-base properties, content and composition of readily soluble salts, content of Fe2+ and Fe3+, H+ and Al3+, carbonates, composition of exchangeable cations, particle size content, total content of S, Al, Fe and organic carbon). Soil solutions were displaced by ethanol (Ishcherekov-Komarova method, Russia) (Snakin et al. 2001). The level of saturation of soil solutions by gypsum, iron and aluminum hydroxides was evaluated.

Properties of newly formed soils differ significantly from natural soils. We identified the transformation of the composition of soil solutions. Key geochemical processes at mine sites in soils were:  (1) acidification and Fe-Al-SO4 salinization of soil profile along with the increment in H+ and Al3+ ions content; (2) cation exchange, leading to displacement of Cа2+ and Mg2+ ions by Al3+, H+, Fe2+ and, perhaps, by Fe3+ in soil ion-exchange complex; (3) alteration of radial differentiation of organic carbon and carbonates in soils; (4) mineral transformations.

  Semi-hydromorphic soils with signs of gleying and peat accumulation were formed in subsidence areas. In Greyic Phaeozems the intensification of podzolization process could be noted. In Haplic Chernozems gypsum neoformations (neogypsans) were observed. Post-technogenic soils have no analogues in natural forest-steppe landscapes of the Russian Plain.

 

 

How to cite: Kostin, A., Krechetov, P., Chernitsova, O., and Terskaya, E.: Changes in soils of Central Russian forest-steppe under the impact of sulfur coal mining (the Moscow basin), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17954, https://doi.org/10.5194/egusphere-egu2020-17954, 2020.

SSS7.4 – Advances in bioremediation and biomining research: plants, soil and the rhizosphere

Polycyclic Aromatic Hydrocarbons (PAHs) are a group of compounds with multiple rings that form part of the petroleum crude oil and are considered harmful to human health. The United State Environmental Protection Agency (US EPA) have classified 16 PAHs as priority pollutants that can potentially cause cancer in human beings. These compounds normally enter the environment through oil spills that can negatively affect human health and the environment. The traditional methods used for soil remediation such as the engineering, thermal and chemical methods that involves excavation, heating and application of toxic chemicals often end up causing more harm to the environment. Thus, scientists are exploring the use of plants for the removal of pollutants from the soil known as phytoremediation in order to develop a cost effective, environmentally friendly and sustainable technique for soil remediation. This helps to overcome the issues identified in the traditional methods mentioned above as the treatment of pollutants occurs in situ without excavation and destruction of soil nor thermal heating or application of strong oxidising and reducing chemicals. This paper explains the results obtained from a study conducted on the phytoremediation of crude oil contaminated soil using Chrysopogon zizanioides under the influence of fertilizer and biosurfactants. In this research 70kg of soil was artificially spiked with 1kg of crude oil and allowed to weather for 100 days. Following this, the weathered soil was transferred into different terracotta pots for the purpose of greenhouse experiment. Thereafter, the seedlings of C. zizanioides were transplanted into the terracotta pots where some of the vegetated samples were treated with fertilizer and biosurfactants to promote the growth of the plant and solubilize the organic contaminants for easy absorption by the plants respectively. The result showed high reduction of 70% of the concentration of PAHs in samples treated with doses of both fertilizer and biosurfactants after a period of 8 months. The application of fertilizer and biosurfactants also promoted the growth of plants which resulted in high bioaccumulation of PAHs from the soil as compared to the control samples. However, the greatest yield in plant growth occurred in samples treated with fertilizer only which also resulted in the bioaccumulation of PAHs from the soil.  In conclusion the use of fertilizer and biosurfactants is highly recommended to improve the process of phytoremediation by promoting the growth of plants and enhancing the bioaccumulation and potential dissipation of organic pollutants from the soil. The benefits of this research include the creation of a cost saving, environmentally friendly and sustainable technology for soil remediation. In addition, the bye-products of the harvested plants used for the phytoremediation of crude oil contaminated soils can potentially be used as raw materials for the production of Biogas.

 

 

 

How to cite: Suleiman, S., Batty, L., and Lynch, I.: Biosurfactant enhanced phytoremediation of crude oil contaminated soil using vetiver grass (chrypsopogon zizanioides), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1326, https://doi.org/10.5194/egusphere-egu2020-1326, 2020.

EGU2020-16398 | Displays | SSS7.4

Specific composition, microstructure, and grass vegetation support natural attenuation in aged tar contaminated soil

Pavel Ivanov, Karin Eusterhues, Thomas Ritschel, Thilo Rennert, Lisa Mahler, Karin Martin, Santiago Boto, Miriam Rosenbaum, and Kai Uwe Totsche

The development of effective remediation strategies for soils contaminated by aged non-aqueous phase liquids like tars requires detailed investigation of composition, microstructure and microbial communities. We studied an aged tar spill with an overgrowing grass vegetation at a former manufactured gas plant site in Germany. The soil contained 10-120 g kg-1 petroleum hydrocarbons, up to 26 g kg-1 potentially toxic metals, and up to 100 mg kg-1 polycyclic aromatic hydrocarbons. Although these substances are considered toxic and recalcitrant, the microbial biomass was up to twice as much in contaminated layers than in uncontaminated layers of the control soil. We assume the high content of vital elements, such as C (up to 500 g kg-1), S (5 g kg-1), P (4.8 g kg-1), Fe (65 g kg-1), and N in plant residues, compensates possible toxicity.

Investigation of the 2D soil microstructure on thin sections with digital light and scanning electron microscopy showed increased total porosity (2-3 times more than in control) and the share of coarse wide pores (> 50 µm, root channels and large cracks) in contaminated layers. Within the root channels aerobic conditions persist, with free inflow of soil solution and supply of root exudates.

Tar dominated particles between the coarse pores had small isolated pores, and the average distance to the next pore within the particles (assessed by Euclidian distance) was about 3 times higher than for the control soil. This highlights anaerobic conditions within the pores, where tar borne compounds are the source of nutrition and energy.

FTIR microspectroscopy showed oxidized tar on root coatings and near some isolated pores. Natural attenuation of the contaminant proceeds both under aerobic and anaerobic conditions.

Positive matrix factorization analysis of EDX spectra allowed us to map the spatial distribution of different components (quartz, feldspars, secondary minerals, metal-rich particles, tar and the embedding resin). We found presumably authigenic Fe minerals within small isolated pores and along root channels. Based on XANES spectroscopy and the difference between total Fe and Fe in Fe oxides (FeDCB), they contained Fe2+ and Fe3+ in different proportions, which suggests Fe reduction to be an accompanying process during tar attenuation.

The 16S rRNA analysis showed similar microbial communities on the rooted rim of the spill and the control soil. The community in the centre of the spill was less diverse and remarkably different. The contaminated profiles contained specific functional groups of bacteria (e.g. Fe-reducing Geobacteraceae or N-fixing Rhizobiales). Microfluidic droplet cultivation facilitated abundant microbial growth from tar layers under both aerobic and anaerobic conditions.

We conclude that aged tar is used as a substrate by the microbial communities, especially in the presence of grass vegetation. Natural attenuation of tar occurs in hotspots under either oxic (root channels and large connected voids) and anoxic (small isolated pores) conditions and is coupled with reduction of Fe.

How to cite: Ivanov, P., Eusterhues, K., Ritschel, T., Rennert, T., Mahler, L., Martin, K., Boto, S., Rosenbaum, M., and Totsche, K. U.: Specific composition, microstructure, and grass vegetation support natural attenuation in aged tar contaminated soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16398, https://doi.org/10.5194/egusphere-egu2020-16398, 2020.

EGU2020-18435 | Displays | SSS7.4

PAH natural attenuation in Mediterranean forest soils

Enrica Picariello, Erland Bååth, Daniela Baldantoni, and Flavia De Nicola

Polycyclic aromatic hydrocarbons (PAHs) are worldwide contaminants and, due to their long-range transport, they can accumulate far from the emission sources, in carbon-rich forest soils; thus new exploration in the indigenous microbial response to PAH exposure is important to deeper understanding of PAH natural degradation process. Since most of the studies are limited to aged PAH contaminated soils, we aimed to fill the gap in our knowledge on recent contamination. 
In order to investigate indigenous microbial community involvement in soil PAH degradation, a mesocosm trial was established. Soils from two forest systems (holm oak and black pine) were spiked with 3 PAHs (phenanthrene, pyrene and benzo[a]pyrene) and incubated under controlled conditions (T: 22 °C, R.H.: 88%). Along 360 days, structural and functional changes in soil microbial community were monitored analyzing bacterial and fungal biomass (by phospholipid fatty acid and ergosterol content) and enzyme activities (hydrolase, laccase and peroxidase).
Both soil types indicated a capability of indigenous native microbial community to degrade almost completely PAHs yet after one year, with phenanthrene and pyrene faster degrading than benzo[a]pyrene, according to their molecular weight. In pine soil, the PAH degradation proceeds with a minor extent likely in relation to the sequestration of PAHs in soil richer in organic matter. In both forest soils fungi are mainly involved in the degradation of PAHs, as highlighted by the increase of both content of the fungal marker and enzyme activity mainly carried out by fungi, e.g. laccase in holm oak soil. 
Regarding the community structure, PAH contamination influences the relative abundance of several soil microbial groups yet after 4 days from contamination, when the microbial community composition shifts towards Gram+ bacteria in holm oak soil, whereas in pine soil pyrene and phenanthrene stimulate fungi and actinomycetes. In the long-term, after one year from contamination, a variation in microbial community was more evident in the holm oak soil, with an increase of fungi in the treatment with benzo[a]pyrene, and an increase of Gram+ in the treatment with phenanthrene. All the enzymes activities, after some fluctuations in the early stages of incubation, decreased after one year. During the quick and strong PAH degradation, hydrolytic activity showed high and constant values, exhibiting a stability in the long-term after the contamination. 
The obtained findings show the role of several microbial groups in PAH natural attenuation in different forest soils. Different PAH degradation rates between systems can be attributable to soil microbiome dominated by different populations in the two investigated forest soils. The use of indigenous microorganisms in bioremediation processes can reduce the risks associated with PAH contaminated soils, and a better understanding of the effects of PAH contaminants on soil microbial community is very critical for understanding microbial activity during bioremediation. The findings highlight the importance of fungi in the potential recovery of a soil polluted by organic contaminants.

How to cite: Picariello, E., Bååth, E., Baldantoni, D., and De Nicola, F.: PAH natural attenuation in Mediterranean forest soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18435, https://doi.org/10.5194/egusphere-egu2020-18435, 2020.

With recent policy developments under the German Renewable Energies Law (Erneuerbare‐Energien‐Gesetz, EEG) and the German Waste and Recycling Law (Kreislaufwirtschaftsgesetz, KrWG) increase in organic waste utilization is expected, which can be utilized for the waste sites restoration. We present a novel application of organic amendments to reduce the mobility of iron‐cyanide (Fe‐CN) complexes and simultaneously promote vegetation. Two batches of digestates from anaerobic treatment of separately collected municipal organic waste in a two-stage semi scale biogas plant have been conditioned by a) drying, b) composting and c) pelletisation. To evaluate the influence of post-treatment of digestates on nutrient and carbon release and contaminants sorption, two batch experiments were conducted, using I) deionized water and II) potassium hexacyanoferrate (II) solution. Batch experiment I resulted in a considerably higher nutrient and carbon elution from dried digestates. Batch experiment II revealed the highest significant tot. CN conc. reduction using not composted, air dried (100%) and oven dried (82%) biowaste digestates. The FTIR analysis of dried and mortared digestate materials indicated Fe-CN complexation on inorganic (K2Mn[FeII(CN)6], NH4Fe[FeII(CN)6]) and organic constituents, and possibly formation of nitriles. In terms of rapid soil fertility enhancement and feasibility to decrease Fe-CN complexes mobility, air and oven dried fresh biowaste digestates revealed the highest efficiency.

How to cite: Sut-Lohmann, M., Knoop, C., and Raab, T.: Effect of drying, composing and pelletizing of biowaste-based digestates on providing water soluble nutrients and stabilizing iron-cyanide (Fe-CN) complexes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8013, https://doi.org/10.5194/egusphere-egu2020-8013, 2020.

EGU2020-2740 | Displays | SSS7.4

Accumulation and distribution of toxic and potentially toxic elements in potato on different types of soil

Jelena Popović-Djordjević, Zoran Broćić, Mirjana Kresović, and Jelena Mutić

Potato is currently the third most significant crop culture in the world, with the production of over 388 million tons in 2016. This crop is present on the tables of Serbian consumers throughout the year because of the tradition and its affordable price. Serbia has relatively good climatic conditions for potato production, which are defined by the temperature regime and the amount and frequency of precipitation. The nutritive value of the potato is mainly attributed to the chemical composition of the tuber. The element composition of tubers depends on many factors, such as: genotype, developmental phase of the plant, agroecological conditions, chemical properties of soil, fertilization and irrigation. On the other hand, geochemical origin of trace elements in the soil, the intensive agriculture production, use of contaminated soil and irrigation water may increase their toxic levels in tubers.

 Potato tubers of five varieties were produced on commercial farms at two locations in Western Serbia (Guča and Sjenica), with favorable agroecological conditions for potato production. Tuber samples of studied varieties from each location were collected at the end of growing seasons at the stage of physiological maturity. Soil samples were collected from several sites at each production location at the depth of 0–30 cm. Basic agrochemical properties of the soil samples were determined. Content of toxic (As, Cd, Pb) and potentially toxic (Al, Ba, Ni, V) elements in fresh tubers (peel and core) and soil samples was established by inductively coupled plasma–optical emission spectrometry (ICP–OES). Bioaccumulation factor (BAF) of each studied element, as the ratio between its content in the peel and in the core of the tuber and the soil, was calculated.

 According to pH values, 4.77 and 6.80, soils were clasified as very acidic (Guča location) and slightly acidic (Sjenica location), respectively. Content of studied trace elements in soils, with the exception of Ni, was within the allowable limits. Tuber peel of all studied varieties grown on both soil types was characterized with the higher content of Cd, Al, Ba and Ni, compared to the relevant core. Consenquently, the higher values of BAF were observed in the peel of tubers. Average values of BAF for the studied elements in the peel for both soil pH values 4.77 and 6.80 (Guča and Sjenica, respectively) were in the following order: Cd>Ba>Pb>As>Ni>Al=V. On the other hand, average BAF values for the core of the tuber samples were in a slightly different order, depending on the soil pH; Cd>Pb>As>Ba>Ni>Al=V (pH 4.77) and Cd>Pb>As>Ba=Ni>V (pH 6.80). The highest/lowest BAFs were calculated for Cd (0.339) in the peel and Al (0.0002) in the core, respectively. Content of As and Cd did not exeed the maximum allowed concentrations set by the national and European Union regulations, but it should be pointed out that Cd content was close to the upper limit. Also, it was noticed that the content of Pb exceeded the safe limit set for these elements according to both regulations.

Keywords: potato tuber, soil, toxic elements, ICP

Acknowledgement: This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Research grant No. 46009).

How to cite: Popović-Djordjević, J., Broćić, Z., Kresović, M., and Mutić, J.: Accumulation and distribution of toxic and potentially toxic elements in potato on different types of soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2740, https://doi.org/10.5194/egusphere-egu2020-2740, 2020.

EGU2020-18996 | Displays | SSS7.4

Assessing the impact of fluvial dynamics on floodplain soil contamination and microbiota in the transboundary Drava River Floodplain

Péter Szabó, Gyozo Jordan, Tamás Kocsis, Robert Šajn, and Jasminka Alijagić

Floodplains have received significant attention recently because they are densely populated areas, covered by fertile agricultural lands and act as diverse riverine habitats. At the same time, these important areas are sensitive receptors of PTE (Potentially Toxic Elements) contamination originating from upstream mining and industrial areas endangering food safety and the ecosystems. The large Drava River catchment has been impacted by industrial activities since historic times. Previous studies have shown that the alluvial sediments record the contamination from upstream mines and smelters (e.g. Bleiberg-Kreuth in Austria, Cave del Predil in Italy and Mežica in Slovenia).

Floodplain topsoil (depth: 0-10cm) and subsoil (depth: 50-60cm) samples in the actively flooded alluvial plains and river terraces were collected along 10 cross-sections all along the Hungarian-Croatian border river Drava. In order to study the impact of contamination on soil microbiota, the samples were analysed with ICP-MS for chemical composition, FDA (Fluorescein Diacetate) tests were made for the bulk microbial activity assessment, β-glucosidase content was measured for the rate of catabolic activities, furthermore Docosahexaenoic acid (DHA) content for describing the anabolic processes, and phosphatase enzyme for assessing the mobility of phosphorus. Total cell number was counted on Tryptone Glucose Yeast Extract and the number of fungi on Rose Bengal Agar with Chloramphenicol.

Data was modelled with data analysis methods including descriptive statistics, regression models and homogeneity tests, complemented by spatial visualisation with GIS based softwares. Results show that there is a significant difference between alluvial plain and river terrace sediment contamination, while soil depth (topsoil vs subsoil) seems to be an important factor for soil microbiological parameters.

This research contributes to a Slovenian-Hungarian OTKA project (SNN OTKA 118101). The project was co-funded by European Union Fund, ERDF, IPA, ENI (DTP2-093-2.1 SIMONA).

How to cite: Szabó, P., Jordan, G., Kocsis, T., Šajn, R., and Alijagić, J.: Assessing the impact of fluvial dynamics on floodplain soil contamination and microbiota in the transboundary Drava River Floodplain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18996, https://doi.org/10.5194/egusphere-egu2020-18996, 2020.

EGU2020-2469 | Displays | SSS7.4

Accumulation of germanium (Ge) in plant tissues of grasses is not solely driven by its incorporation in phytoliths

Sabine Kaiser, Christin Moschner, and Oliver Wiche

Until recently it has been generally assumed that Ge taken up by plants is stored in phytoliths together with Si. This assumption is mostly based on the geochemical similarities between Ge and Si, while a scientific proof was lacking. The aim of the present study is to i) compare the uptake of Si and Ge in three grass species, ii) localize Ge and Si stored in above-ground plant parts and iii) evaluate the amounts of Ge and Si sequestrated in phytoliths and plant tissues. Mays (Zea mays), oat (Avana sativa) and reed canary grass (Phalaris arundinacea) were cultivated in the greenhouse on soil and sand to control element supply. Leaf phytoliths were extracted by dry ashing. Total elemental composition of leaves, phytoliths, stems and roots were measured by ICP-MS. For the localization of phytoliths and the determination of Ge and Si within leaf tissues and phytoliths scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and laser ablation ICP-MS (LA-ICP-MS) was used. The amounts of Si and Ge taken up by the species corresponded with biomass formation and decreased in the order Z. mays >P. arundinacea, A. sativa. Results from LA-ICP-MS revealed that Si was mostly localizedin phytoliths, while Ge was disorderly distributed within the leaf tissue. In fact, from the total amounts of Ge accumulated in leaves only 10% was present in phytoliths highlighting the role of organic Ge species in plant tissues and the necessity for using bulk Ge/Si instead of Ge/Si in phytoliths to trace biogeochemical cycling of Si. Moreover, our results represent important background data for the optimization of a phytomining of Ge.

How to cite: Kaiser, S., Moschner, C., and Wiche, O.: Accumulation of germanium (Ge) in plant tissues of grasses is not solely driven by its incorporation in phytoliths, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2469, https://doi.org/10.5194/egusphere-egu2020-2469, 2020.

EGU2020-476 | Displays | SSS7.4 | Highlight

Does slow and steady win the race? Using the model species Arabidopsis halleri to remediate industrially polluted soils

Charlotte Dietrich, Kamil Bilnicki, Urszula Korzeniak, Christoph Briese, Kerstin A. Nagel, and Alicja Babst-Kostecka

Hyperaccumulating plants possess complex physiological traits, which allow them to thrive in soils contaminated with trace metal elements (TME). In this study, we address an important but severly understudied aspect of plant responses to TME contamination in industrially polluted soils: root system development. In this context, we present the most detailed spatiotemporal analysis of root systems in a pseudometallophyte species to date. We exposed two contrasting ecotypes of the TME hyperaccumulating model species A. halleri to various treatments of their native and foreign soils. To overcome methodological challenges that have so far prevented an in-depth understanding of root-soil interactions under TME excess, we combined rhizoboxes and multitemporal digital imaging in a novel phenotyping approach. This allowed us to assess root architectural changes as a valuable indicator of plant performance in non-metalliferous (NM) and metalliferous (M) environments, as well as under horizontal layer applications of M and NM soils. We show that environment rather than ecotype determines root growth in A. halleri and that soil properties can cause a cost of tolerance in M soil or induce TME-foraging in NM soil. Importantly, root propagation into M soil was promoted by a non-contaminated “capping” layer that facilitated initial plant development. Growing on this capping layer in the early stage provides plants with a robust and optimal root system that facilitates seedling establishment and subsequent development under TME excess. These findings are relevant for practical applications related to phytoremediation. This matter is urgent, considering that industrial pollution is spreading and hyperaccumulating species are threatened by habitat loss.

How to cite: Dietrich, C., Bilnicki, K., Korzeniak, U., Briese, C., Nagel, K. A., and Babst-Kostecka, A.: Does slow and steady win the race? Using the model species Arabidopsis halleri to remediate industrially polluted soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-476, https://doi.org/10.5194/egusphere-egu2020-476, 2020.

In short-term incubation experiment (90 days with additional preincubation) in conditions, simulating summer season in Kola Peninsula, Russia, we implemented different organic amendments — humic subtances, peat-gel, biochar — for remediation of highly contaminated soils of technogenic barrens, situated in 2 and 5 km from active nickel processing industry. Unamended soils used in experiment are characterised by ablation of upper fertile soil layer, high acidity, high content of Ni, Cu, Fe, Zn, depletion of nutrients and organic matter, and, as consequence, by the absence of natural vegetation. To predict potential influence of amendments on contaminated soils and their capacity to immobilise HM bioavailable forms and improve soil health we provide data of structural characteristics with and without additional preparations evaluated by Fourier-transformed infrared (FTIR) spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Our data support the idea of high importance of organic amendment structural characteristics and link these characteristics with observed soil physical, chemical and ecotoxicological properties.

This study was funded by Russian Foundation for Basic Research according to research project No. 18-04-01028, high-resolution mass spectrometry was supported by Russian Science Foundation grant No. 19-75-00092.

How to cite: Tregubova, P., Koptsik, G., Zherebker, A., and Stepanov, A.: Remediation of Kola Subarctic heavy metal contaminated soils via carbon pool regulation: link between structural characteristics of organic treatments with potential influence on soil properties and living organisms , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19837, https://doi.org/10.5194/egusphere-egu2020-19837, 2020.

Wastewater treatment always produces a large amount of sludge. The different uses of sludge disposal have negative consequences for the environment. Agricultural use may appear in some situations as an alternative to current solutions, both to optimize the degradation and recycling of organic and mineral elements. During this work, on the one hand, we investigated  the effect of sludge on the growth of turnip (Brassica rapa), a plant that tolerates metallic trace elements, especially lead (Liu et al., 2000) and which is considered a model plant in eco-toxicology (Sun et al., 2010), and on the other hand to determine if it has the potential to be included in phytoremediation systems.

The seeds were put in different substrates that contained three sludge doses: 20%, 40% and 60%, mixed with agricultural soil  which contained high levels  of metallic trace elements  exceeding the standard eligible concentration  by AFNOR. compared to  the soil, concentrations of potentiall toxic trace elements in sludge were lower than in soil. Morphological measurements were carried out during two months of planting, showing the positive effect of the sludge on the growth of the plant. The recorded biometric values (height, number of leaves, weight, rotation and height of the bulb) for all doses, far exceed those of control plants (100% soil), with high values recorded in the mixture of soil with  60% sludge.

The concentration of metallic trace elements in the different substrates and also in the leaves and the turnip bulb after two months of planting shows that the plant  accumulates and tolerates hight concentrations of elements  and can therefore be used as a phytoremediator for polluted soils. The highest levels of metal accumulation were observed on the substrate in the  soil mixture  with  60% sludge.

 

How to cite: Soudani, L., Maamar, B., Chafaa, M., Nouar, B., and Wiche, O.: The effect of sludge from the wastewater treatment plant of TIARET (ALGERIA) on the growth of turnip "Brassica rapa"; Morphological responses and potential efficacy of phytoremediation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-815, https://doi.org/10.5194/egusphere-egu2020-815, 2020.

EGU2020-16117 | Displays | SSS7.4

Selective Removal of selenium by phytoremediation from post mining coal wastes: practicality and implications

Nthati Monei, Sanoop Kumar Puthiya Veetil, Michael Hitch, and Jeffrey Gao

Selenium (Se), a metalloid typically natural in origin, is also present in coal washery by-products such as fly-ash stockpiles. The removal of Se in coal washery by-products can be achieved through various bio-physico-chemical processes. In the attempt to find more environmentally friendly and cost effective methods phytoremediation has been selected as a remediation option. This study was a small scale, screening test that investigated the phytoremediation of Se from post coal process wastes using Brassica juncea species. Therefore, the aim of this study was to assess the concentration of Se, and target elements (As, Cd, Cu, Pb). The selected plant species was grown in coal process wastes enriched with a growth soil mix. The concentrations of the elements were determined by ICP-MS. 48% Se extraction was achieved. Low percentages of As, Cd, Cu, Pb were accumulated in the biomass, (in the order Cd>Cu>As>Pb). The results overall indicate that a minimal amount of Se can be accumulated within the plant biomass of Brassica juncea. Therefore, this study provides only as an initial step towards continued studies on phytoremediation of the coal washery by-products.

Keywords: phytoremediation; phytoextraction; selenium; Brassica juncea

 

How to cite: Monei, N., Veetil, S. K. P., Hitch, M., and Gao, J.: Selective Removal of selenium by phytoremediation from post mining coal wastes: practicality and implications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16117, https://doi.org/10.5194/egusphere-egu2020-16117, 2020.

EGU2020-5091 | Displays | SSS7.4

Silicon alleviated manganese toxicity in cucumber by cell wall compartmentation

Jelena Dragisic Maksimovic and Vuk Maksimovic

As a consequence of normal root growth and development, a considerable range of organic and inorganic substances are exchanged between the root and soil, which causes changes in the biochemical and physical properties of the rhizosphere. Plants modify their rhizosphere in response to various environmental signals and stresses. Low-molecular-weight metabolites are commonly detected in this region and their exudation from plant roots has been associated with abiotic stress, such as inorganic form of manganese (Mn). In this study we investigated the root exudate constituents (phenolics and enzymes) of cucumber (Cucumis sativus L.) plants grown in Mn-free and Mn-contaminated nutrient solutions (0.5 and 100 μM, respectively) with (+Si) or without silicon (–Si) supplied as 1.5 mM silicic acid. High external Mn supply induced both growth inhibition of the whole plant and the appearance of Mn-toxicity symptoms in the leaves, while the simultaneous application of Si alleviated toxicity symptoms. At high Mn supply, concentration of phenolic compounds, as plant-borne substrates for peroxidase (POD) and polyphenol oxidases (PPO), depended on Si application. The increased concentrations of phenolic compounds (e.g., coniferyl alcohol, p-coumaric and isoferulic acid) in –Si plants were in agreement with enhanced POD and PPO activities. The activities of both enzymes were kept at a lower level in +Si plants grown at higher Mn concentrations. These results suggest that Si nutrition modulates the metabolism and utilization of phenolic compounds most probably as a consequence of the formation of Si-polyphenol complexes and their subsequent cross-linking with cell wall polymers. In –Si plants increased activity of the PPO and POD/H2O2 systems lead to the formation of highly reactive compounds, while in +Si plants, lignin biosynthesis is favored. H2O2 in the presence of elevated Mn concentrations produced potentially toxic •OH and Mn3+ in the Fenton reaction, which was efficiently suppressed by Si application. Silicon thus prevented the formation of toxic intermediates (•OH and Mn3+) and accumulation/oxidation of free phenolics leading to oxidative browning, the initial indicator of Mn-toxicity symptoms. In summary, we presented the knowledge about how cucumber can overcome hyperaccumulation of Mn by means of Si-complexation suggesting ways of improving future phytoremediation strategies.

How to cite: Dragisic Maksimovic, J. and Maksimovic, V.: Silicon alleviated manganese toxicity in cucumber by cell wall compartmentation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5091, https://doi.org/10.5194/egusphere-egu2020-5091, 2020.

To significantly contribute to the available information on potentials of different plants species for use in phytomining of  Rare Earth Elements(REEs) , a screening experiment was conducted to directly compare at once 8 plant species belonging to two functional groups (herbs and grasses), grown on a soil with high  REEs concentrations. The plants were grown for 10 weeks on potted soils, each containing 2kg of soil.  The plants evaluated are Fagopyrum esculentum, Cannabis sativa, Brassica napus and Sinapis alba for the herbaceous species and Sorghum bicolor, Zea mays, Avena sativa and Festuca arundinacea for the grass species. Concentrations of the four REEs namely Cerium (Ce), Lanthanum (La), Neodymium (Nd) and Yttrium (Y) and amount/content of each REE contained in the species investigated were determined and the data obtained were subjected to the statistical analysis Multivariate Analysis of Variance to identify differences that exist between species, within and between functional groups. Results show that the differences observed in amount of each of the REEs phytomined by the different grass species are statistically insignificant. Contrastingly, significant differences exist between the concentrations and content of each of the REEs between the herbaceous species, with F. esculentum significantly showing higher potential for use in phytomining compared to the rest of the herbaceous species. Results from statistical comparison of all species shows that F. esculentum is the candidate that showed more potential for use in phytomining , with C. sativa also being the next  specie with high potential for phytomining aside from F.esculentum  when compared to the rest of the species investigated. Functional groups were compared, and results showed that the herbaceous specie have a significantly higher potential for use in phytomining of REEs compared to grass species. Results from this experiment contributes to existing knowledge on potentials of different plant species for use in phytomining and suggest possible candidates in comparison to others, for use in experiments that seek to improve the chances of using plants as an eco-friendly alternative to conventional mining of rare earth elements in commercial quantities.

How to cite: Okoroafor, P. and Wiche, O.: Screening of plants of different species and functional groups for phytomining of rare earth elements in soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1021, https://doi.org/10.5194/egusphere-egu2020-1021, 2020.

Chemical fractionation of germanium (Ge) and rare earth elements (REEs) in biogas residue by a two-step sequential extraction procedure

Nazia Zaffar (1), Erik Ferchau (2), Hermann Heilmeier (1), and Oliver Wiche (1)

(1) Technical University of Bergakademie, Freiberg, Institute for Biosciences, Biology/Ecology Group, Germany (naziazaffarqau@gmail.com), (2) Technical University of Bergakademie, Institute for Thermal Engineering and Thermodynamics

 

Ge and REEs are of increasing interest in phytoremediation and phytomining research. These elements are present in almost all soils and soil-grown plants contain considerable concentrations of these elements in their biomass. The process chain of phytomining involves i) the accumulation of target elements in harvestable plant biomass (phytoextraction), ii) production of bioenergy by burning or biogas production, and iii) the recovery of the elements from bioenergy residues.

Although literature on bulk concentrations of elements in fermentation residues is extensive until today there is only a little information on how the elements are bound/distributed in the solid/liquid phases of the fermentation residues, particularly for target elements in phytoremediation research such as Ge and REEs. Therefore, we conducted a laboratory experiment in which residues from anaerobic fermentation were separated into liquid/solid by microfiltration. Subsequently the solids were extracted by a two-step sequential extraction procedure. This procedure involved the extraction of solids with ammonium acetate (pH 7) and ammonium acetate (pH 5) to determine exchangeable as well as acid-soluble elements. As a result, we found that total concentrations in the residues were 0.5 µg/g for (Ge) and 8.7 µg/g for (REEs i.e sum of all lanthanides). In the liquid phase concentrations of Ge and REEs were very low ranging from 0.0001 µg/g Ge and 0.003 µg/g REEs respectively. Concentrations of elements in the liquid phase represented 0.01% Ge and 0.04% REEs of the total element concentrations of the material, indicating that most of the elements were bound to solids. Results from the sequential extraction revealed that percentage distribution of elements were 1.2% (exchangeable Ge) 0.5% (exchangeable REEs) and 0.8% (acid-soluble Ge) 3.8%  (acid-soluble REEs) from the total elements of the material. However, we found 99% Ge 98% REEs in residue fractions. We can conclude that most of the Ge and REEs in digestates are most probably bound into organic structures which were not attracted by extraction solutions. This has major implications for the development of methods for the recovery of the target elements were strong acids/or oxidation of organics prior to application of separation.

 

How to cite: Zaffar, N., Ferchau, E., Heilmeier, H., and Wiche, O.: Chemical fractionation of germanium (Ge) and rare earth elements (REEs) in biogas residue by a two-step sequential extraction procedure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-727, https://doi.org/10.5194/egusphere-egu2020-727, 2020.

Rare Earth Elements (elements from 57 to 71; REEs) are present in almost all soils at quantities similar to some plant nutrients such as copper and zinc and, therefore, are of increasing interest in phytomining research. In soilREEs interact with nutrient-bearing soil phases (phosphates, Fe-oxyhydroxides, soil organic matter) which ultimately lowers their mobility in soil solution and availability to plants. The availability of nutrients in the rhizosphere (especially that of phosphorous) is dependent on the activity of rootsand associated microbes, particularly their ability to acidify the surrounding soil and release chelating compounds such as carboxylates. There is a general consensus that root exudates released under P/Fe deficiency (protons and chelating compounds) can mobilize REEs in soil. However, until today information on effects of below-ground functional traits in nutrient acquisition on the mobility of REEs in the rhizosphere and uptake in soil-grown plants is very scarce.Preliminary results from greenhouse and large-scale field experiments indicate that P-inefficient species show different REE-concentrations in their leaves than P-efficient species, and that the pattern of REEs is related to the composition of root exudates.These findings highlight the role of rhizosphere processes on the availability of REEs representing important background information for the optimization of phytoextraction techniques. Moreover, we hypothesize that concentrations and fractionation pattern of REEs in plant material could potentially be used as an “easily-measurable” tool to evaluate the nutrient-acquisition strategy in plants. In ongoing experiments,this hypothesis will be rigorously tested by coupling a field sampling campaign of plant material from species with contrasting nutrient-acquisition strategies along soils with changing nutrient availability (e.g. Western Australian chronosequences) as well as controlled greenhouse experiments for mechanistic elucidation of processes involved.

How to cite: Wiche, O., Heilmeier, H., and Pourret, O.: Below-ground functional traits during nutrient-acquisition affect the availability of rare earth elements to plants , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5831, https://doi.org/10.5194/egusphere-egu2020-5831, 2020.

EGU2020-18757 | Displays | SSS7.4

Dismantling of Printed Circuit Boards by Bioleaching Solution

Benjamin Monneron and Michael Schlömann

Electronic waste is a very complex matrix containing valuables and toxic metals. Some very specific metals like Gallium are mainly used for electronic components while also considered a “critical raw element” by the European Commission. Since those metals are used in small quantities, recovery after grinding is impossible. Consequently, those metals must be recovered by separating the components before the milling process. This separation is called dismantling and is usually done pyrometallurgically.  Here we present dismantling by means of bioleaching for the very first time.

Dismantling by bioleaching was compared with solutions containing either ferric or ferrous iron for 20 days. Although bioleaching resulted in a separation of approximately 70 %, the ferric solution reached 100 %; separation by ferrous iron was negligible.

After dismantling, the concentration of critical metals increased by a factor of 3, which can be further increased by discriminating between different components e.g. Integrated circuits resistors, capacitors.

How to cite: Monneron, B. and Schlömann, M.: Dismantling of Printed Circuit Boards by Bioleaching Solution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18757, https://doi.org/10.5194/egusphere-egu2020-18757, 2020.

Because the abundances of rare earth elements are strongly intercorrelated, lacking data can be estimated from adjacent element concentrations. Because Ce can be oxidized to Ce(IV) and Eu can be reduced to Eu(II), deviations from the calculated values have been defined as positive or negative anomalies. The anomalies permit conclusions of mineral weathering, transportation and adsorption.

Anomalies detected in soils did not cause respective anomalies in apple leaves, blossom leaves nor fruits, which prevents conclusions of geographical origin. In the apple plants, Ce showed negative anomalies throughout, particularly in the blossom leaves. To the contrary, Eu showed positive anomalies throughout, particularly in the green leaves, which suggests uptake similar to Ca.

In green leaves (apples) growing in the temperate climatic zone, concentrations of rare earth elements increase with age, like for other elements of low physiological interaction also, whereas nutritional and essential trace elements remain constant or decrease.

 

How to cite: Sager, M.: Rare Earth Elements – Environmental occurrence and mobilities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5209, https://doi.org/10.5194/egusphere-egu2020-5209, 2020.

EGU2020-4619 | Displays | SSS7.4

Spatial analysis of total content of microelements in the agricultural soils of southern Serbia - GIS study

Jovan Cakić, Ivan Aleksić, Jelena Popović-Djordjević, Jelena Bogosavljević, and Aleksandar Djordjević

The occurrence and availability of microelements in agricultural soils is of great importance for the environment, the quality of food and water, as well as for human health. United States Environmental Protection Agency (USEPA) has been specified elements such as As, Cd, Cr, Cu, Hg, Ni, Pb and Zn as key contaminants. The Geographic Information System (GIS), together with the technologies of the Global Navigation Satellite System (GNSS), made possible for the agricultural fields, parcels, not to be seen in their entirety anymore, but now, greater attention can be paid to optimizing the accuracy and reliability of the location for collecting soil samples, which provides reliable data for obtaining soil and special purpose maps. The data about the content of microelements in agricultural soils in the area of Southern Serbia are scarce.

The aim of this research was to determine the total content of eleven microelements (As, B, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb and Zn) in the agricultural soils of southern Serbia and to create a database using GIS technology with spatial analysis. A total of 150 soil samples at a depth of             0-30 cm were examined. Spatial positioning of soil sampling points was done with a handheld, professional PDA/GNSS Trimble TDC 100 4G (Android 6) device. The database was created in ArcMap 10.1. Concentrations of microelements in the soil were determined by inductively coupled plasma with optical emission spectrometry (ICP-OES).

The obtained results of analyses showed that in the agricultural soils of southern Serbia (Jablanica and Pčinja District), the content of B and Pb was slightly increased at a depth of 0-30 cm, compared to the maximum allowable concentrations set by the national regulations. Among the studied elements, the lowest total content was measured for Mo and Pb (< 1mg/kg) whereas Mn had the highest total content (> 2000 mg/kg). This can be seen clearly on the special purpose maps provided using GIS technology.

Keywords: soils, agriculture, microelements, GIS, southern Serbia

How to cite: Cakić, J., Aleksić, I., Popović-Djordjević, J., Bogosavljević, J., and Djordjević, A.: Spatial analysis of total content of microelements in the agricultural soils of southern Serbia - GIS study, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4619, https://doi.org/10.5194/egusphere-egu2020-4619, 2020.

EGU2020-5952 | Displays | SSS7.4

Germination potential of Sesbania cannabina in 2 Chromium (Cr) spiked growth media

Abdul Kadir Ibne Kamal, Lesley Batty, Rebecca Bartlett, Suleiman Suleiman, and Joanna Chustecki

Sediments of the banks of the Buriganga River, Bangladesh, are contaminated with heavy metals from industrial activity, especially Chromium (Cr). These carcinogens pose a serious risk to human and environmental health (Nargis et al., 2018). Sesbania cannabina, a leguminous fodder crop with rapid growth and high biomass production, is found to be naturally growing in these areas (Sarwar et al., 2015) and may have phytoremediation potential (Varun et al., 2017). This study aims to determine whether Sesbania cannabina can be grown from seed under chromium stressed conditions to establish this species as a possible phyto-extractor.

In this experiment toxicity testing of Chromium (K2Cr2O7) on seed germination was carried out using two growth media: Murashige and Skoog basal medium (MS0); and filter paper (Whatman Grad 1), by top of media or top of paper method respectively. In all cases, seeds were germinated under controlled conditions; 12 h full spectrum light at temperature 28°C ± 1°C and relative humidity of ~ 75% for 5 days. Seeds were pre-treated with H2O2 (6% v/v) for 5 minutes and primed with 65°C water for 5 minutes, before the addition of Cr. Under low Cr concentrations (0 to 50 ppm) there was no significant effect observed in germination or root length. Under high Cr concentrations 98-100% of seeds germinated in both growth media, but root length decreased to almost half that of controls in ≥ 500 ppm Cr, and root elongation was negligible or stopped in ≥ 1000 ppm Cr. Confocal micrographs (stained with propidium iodide) indicate that damage to the cell wall of lateral root tips of germinated seeds increased with the concentration of Cr. There was no significant difference observed between the two growth media.

Thus it can be concluded that Sesbenia cannabina can tolerate Cr contamination, and is able to germinate and grow in up to 500 ppm Cr. Given the ability of SC to grow in semi-arid to sub-humid climates, and a range of environmental conditions including seasonally submerged soils, there is great potential for SC to be adopted as a tool for phytoremediation of Cr contaminated soils in Bangladesh and elsewhere.

How to cite: Ibne Kamal, A. K., Batty, L., Bartlett, R., Suleiman, S., and Chustecki, J.: Germination potential of Sesbania cannabina in 2 Chromium (Cr) spiked growth media, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5952, https://doi.org/10.5194/egusphere-egu2020-5952, 2020.

Phytomining is a phytoassisted technique for the extraction of economically valuable elements from soils and offers a promising chance to improve the supply of critical raw materials such as germanium (Ge) and rare earth elements (REEs). The efficiency of phytoextraction depends on numerous soil-associated and plant-associated factors (e.g. concentrations of target elements in potentially plant available soil fractions, rhizosphere processes and uptake mechanisms of plants). The aim of this study was to evaluate the effect of different soil properties (pH, compost amendment) on the mobility of selected target elements for phytoremediation (As, Pb, Cd, Zn) and phytomining (Ge, REEs) in soil and accumulation in shoots of different genotypes and populations of Phalaris arundinacea. In a field experiment we cultivated 10 different genotypes and populations of Phalaris arundinacea on four different substrates with similar element concentrations but different pH-values (pH 6.6 – 7.8) and levels of compost amendment (5l /m2 compost or without compost). On each of the substrates, we cultivated Phalaris arundinacea (genotypes) with two replicates on plots 4 m2 each and installed suction cups to collect soil solution. After harvest concentrations of Ge, REEs, P, Fe, Mn, Zn, Pb, As and Cd in shoots and soil solution were determined with ICP-MS. Compared to the slight alkaline soil, acidic soil conditions significantly increased shoot concentrations of Fe, Mn, As, Cd, Pb and REEs. Under acidic soil conditions addition of compost further increased the concentrations of all investigated target elements in shoots of P. arundinacea except of As. In soil solution only concentrations of Fe and Mn significantly increased due to the compost amendment, while concentrations of P, Ge, REEs, Cd and Pb decreased. Shoot concentrations of all investigated elements, particularly REEs, showed remarkable differences among the genotypes and population and this responds of the plants was in turn influenced by substrate properties suggesting phenotypic plasticity during element acquisition in the rhizosphere. In future experiments the heritability of these traits will be rigorously tested in order to establish optimized seed material. We conclude that amendment of soil with compost seems to be a sustainable approach to enhance the uptake of plant nutrients and REEs into shoots of Phalaris arundinacea. However, the role of plant genetics and consequently processes during element acquisition in the rhizosphere and uptake remain field of further research but if proven this would have major implications for the optimization of phytoextraction techniques.

How to cite: Moschner, C., Schwabe, R., and Wiche, O.: Effect of soil pH, compost amendment and plant genotype on the accumulation of target elements in phytoremediation and phytomining research in shoots of Phalaris arundinacea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4199, https://doi.org/10.5194/egusphere-egu2020-4199, 2020.

SSS7.5 – Novel sorbent materials for environmental remediation

EGU2020-3924 | Displays | SSS7.5

Surface-modified apricot pits as biochar feedstock and phosphate sorbent

Gerhard Soja, Stefan Wyhlidal, Wolfgang Friesl-Hanl, Kathrin Zwölfer, Julia Edlinger, Christina Reis, and Heinz Gattringer

Pits from fruit like apricots, peaches and cherries are an under-utilized resource. If there is any use at all, they may be extracted for special vegetable oils. Mostly the pits are combusted or left to rot. However, they are also an appropriate feedstock for pyrolytic carbonization. This study investigated the biochar produced from apricot pits for its potential to sorb phosphate from liquid media and from artificial wastewater.

Shredded apricot pits were pyrolyzed at 450 °C in a lab-scale screw reactor (Pyreka 3.0). Additionally, the impregnation of the feedstock with Mg(OH)2 before pyrolysis was studied to test the hypothesis that phosphate sorption to biochar takes advantage of metal bridges on the biochar surface.

The results of isotherm sorption experiments showed that the pre-pyrolysis Mg-surface modification of the pits improved the sorption capacity of the biochar up to 42 mg PO4-P/g whereas the unmodified biochar adsorbed only about one tenth. When KH2PO4 was used as the only sorbate, EDX-mapping showed the formation of K-struvite-crystals in the pores of the biochar. Desorption experiments showed a major release of the adsorbed phosphate within a few hours. Sorption competition experiments with phosphate and nitrate showed no negative effect of nitrate on phosphate sorption. Feedstock impregnation with Ca(OH)2 resulted in more variable sorption dynamics.

The results could be confirmed by deploying the surface-modified apricot pit biochar for the reduction of the phosphate load in artificial wastewater.

How to cite: Soja, G., Wyhlidal, S., Friesl-Hanl, W., Zwölfer, K., Edlinger, J., Reis, C., and Gattringer, H.: Surface-modified apricot pits as biochar feedstock and phosphate sorbent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3924, https://doi.org/10.5194/egusphere-egu2020-3924, 2020.

EGU2020-858 | Displays | SSS7.5 | Highlight

A parallel optimisation of adsorption and regeneration properties of activated biochars for wastewater treatment

Christian Wurzer, Pierre Oesterle, Stina Jansson, and Ondrej Masek

The emergence of micropollutants, such as pharmaceuticals in wastewater, presents a potential risk for human health as well as the aquatic environment. Current wastewater treatment plants are generally not capable of removing these pollutants without additional treatment steps. Adsorption on activated carbon is an effective way to remove these contaminants, however, the use of non-renewable feedstocks as well as low regeneration efficiencies increase the environmental costs of this method1. Biochar as a renewable carbon platform material can be specifically designed to overcome these drawbacks2.

This study is aimed at designing activated mineral biochar composites with enhanced adsorption capacity for pharmaceuticals while simultaneously optimising their regeneration performance. Two standard biochars from the UK Biochar Research Centre produced at 550°C from softwood and wheat straw were activated in CO2 at 800°C. Additionally, activated mineral biochar composites were produced by the addition of ochre – a Fe-rich mining waste – prior to pyrolysis and activation.

The activated biochars and activated mineral biochar composites were analysed for their maximum adsorption capacity for two micropollutants - caffeine and fluconazole - and compared to a commercial activated carbon as a reference material. While the activated carbon outperformed all biochar samples, the addition of ochre increased the performance of the activated biochar samples. The regeneration performance was tested in a subsequent experiment. The materials were first loaded with a mix of 10 pharmaceuticals covering antibiotics, fungicides and antidepressants. The loaded biochars were then subjected to a novel regeneration method directly utilising wet adsorbents in contrast to common methods requiring prior drying. Similar to a powerful pressure cooker, solvolytic conversion conditions of water at temperatures ranging from 160 to 320°C and elevated pressures of 15 to 120 bar were used to regenerate the biochars. Hydrothermal treatment at 320°C was found to successfully degrade the adsorbed micropollutants across all biochars. The mineral biochar composites showed increased pollutant degradation most likely due to the catalytic effects of Fe in hydrothermal conditions, lowering the necessary treatment temperature to 280°C.

The results show that while designing biochar for certain applications, a simultaneous focus on both the application as well as the regeneration of the material can give a more comprehensive picture of the overall requirements for further optimisation of biochar adsorbents.

 

  1. Thompson, K. A. et al. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environ. Sci. Technol. (2016). doi:10.1021/acs.est.6b03239
  2. Liu, W. J., Jiang, H. & Yu, H. Q. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chem. Rev. 115, 12251–12285 (2015).

How to cite: Wurzer, C., Oesterle, P., Jansson, S., and Masek, O.: A parallel optimisation of adsorption and regeneration properties of activated biochars for wastewater treatment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-858, https://doi.org/10.5194/egusphere-egu2020-858, 2020.

EGU2020-3897 | Displays | SSS7.5

Factors influencing the sorption of polycyclic aromatic hydrocarbons, cadmium and mercury to biochars – a surface response methodology approach

Sampriti Chaudhuri, Gabriel Sigmund, Hary von Rautenkranz, Thorsten Hueffer, and Thilo Hofmann

Biochar is a versatile soil additive and CO2 neutral or negative “green” sorbent. Biochar can improve the soil quality, water retention capacity, and is effective in binding contaminants. Previous studies showed that biochar is a suitable remediation option at sites with residual contamination and that it is particularly favorable in immobilizing organic polycyclic aromatic hydrocarbons (PAHs) and cadmium. To achieve remediation goals, however, careful assessment of the soil geochemistry (pH, background ions, organic carbon content), the nature of the contaminant, and the application rate need to be carried out. We have screened the sorption affinity of 11 different types of biochars and 2 activated carbons for selected heavy metals and ionizable and non-ionizable PAHs. The biochars differed in the starting feedstock material (rice husk, wheat straw pellets, mixed softwood pellets, oil seed rape straw, miscanthus straw pellets), temperature of production (550°C, 700°C), and elemental composition. The target contaminants included acenaphthene, dibenzofuran, carbazole, dibenzothiophene, 2-hydroxybiphenyl, cadmium, and mercury. The sorption of the organic contaminants was driven by the carbon content, specific surface area, and aromatic nature of the biochars. Sorption of cadmium was higher onto biochars with greater inorganic fractions, whereas for mercury no specific trends could be observed. Based on the results of the initial screening, a novel approach to statistically design experiments using the Box-Behnken model was employed for selected biochars. Using this method, experiments were conducted to systematically investigate the influence of four factors (pH, dissolved organic carbon, ionic strength and contaminant concentration) on sorption at three different levels (-1, 0, +1). The results from the surface response modeling approach provides fundamental new insight into the applicability of these biochars at contaminated sites and can help identify scenarios favorable for remediation with biochar. Our results will help in the development of a remediation strategy with an overall low environmental footprint for contaminated soils.

How to cite: Chaudhuri, S., Sigmund, G., von Rautenkranz, H., Hueffer, T., and Hofmann, T.: Factors influencing the sorption of polycyclic aromatic hydrocarbons, cadmium and mercury to biochars – a surface response methodology approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3897, https://doi.org/10.5194/egusphere-egu2020-3897, 2020.

EGU2020-3937 | Displays | SSS7.5

Removal of caffeine by oxidized biochar

Ioannis Anastopoulos, Ioannis Pashalidis, and Artis Robalds

Oxidized biochar from plant biomass (OBPM) was used to remove caffeine (CF) from aqueous solutions. Among examined parameters that affect adsorption, pH was found to play the most important role. By increasing the initial pH from 2 to 4, the adsorption capacity of CF was increased, whereas for pH above 4, a decline of the adsorption efficiency was noticed. The effect of contact time was also investigated in the range of 1 – 150 minutes and results indicated that the adsorption process consists of two steps. The initial step was relatively fast most probably, because a large number of adsorption surface sites was available, and with proceeding contact time the adsorption rate declined. The latter could be attributed to the decreasing number of vacant sites and to the development of repulsive forces between the free CF molecules and the occupied OBPM surface. The experimental data were best fitted by the pseudo-second order kinetic, compared to pseudo-first order kinetic model and the Freundlich isotherm model better fitted the data. The raise of temperature from 25 to 50 °C affected negatively the CF removal, indicating the exothermicity of the adsorption. Finally, FTIR spectroscopic data and investigations on the effect of ionic strength indicated that the adsorption mechanism is mainly based on electrostatic interactions and the formation of outer sphere surface complexes.

 

How to cite: Anastopoulos, I., Pashalidis, I., and Robalds, A.: Removal of caffeine by oxidized biochar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3937, https://doi.org/10.5194/egusphere-egu2020-3937, 2020.

EGU2020-13598 | Displays | SSS7.5

Column experiment for purification of clear-cut forest runoff using biochar

Elham Kakaei Lafdani, Taija Saarela, Ari Laurén, Jukka Pumpanen, and Marjo Palviainen

In drained boreal peatlands, forest regeneration is typically done using a sequence of clear-cutting, ditch network maintenance, site preparation and planting. Following the forest regeneration, export of nutrients to water courses is increased. This results in degradation of water quality, eutrophication, and enhances the formation of harmful algal blooms. The aim of current research was to test a biochar reactor in forest runoff water purification, especially nitrogen recovery from runoff water. The biochar reactor was tested using a meso-scale laboratory experiment by circulating forest runoff water through biochar-filled columns and by monitoring water nutrient concentrations in the inlet and outlet of the columns. Adsorption rate (Kad) and maximum adsorption capacity (Qmax) were quantified by fitting pseudo-first and second order as kinetic models to the experimental data. The results demonstrated that concentration of total nitrogen (TN) decreased by 58% during the 8 weeks experiment, and the majority of TN adsorption has occurred already within the first 3 days. In addition, NO3-N and NH4-N concentrations decreased below the detection limit in 5 days after the beginning of the experiment. The results demonstrated that the biochar reactor was not able to adsorb TN in low concentrations. The results suggest that biochar reactor can be a useful and effective method for runoff water purification in clear-cut forests and deserves further development and testing. This makes biochar reactor a promising water protection tool to be tested in sites where there is a risk for high rate of nutrient export after forest regeneration.

Keywords: adsorption, biochar reactor, column experiment, inorganic nitrogen, total nitrogen.

How to cite: Kakaei Lafdani, E., Saarela, T., Laurén, A., Pumpanen, J., and Palviainen, M.: Column experiment for purification of clear-cut forest runoff using biochar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13598, https://doi.org/10.5194/egusphere-egu2020-13598, 2020.

EGU2020-13728 | Displays | SSS7.5

Adsorption of six organic micro-pollutants from water and wastewater using Graphene Oxide-coated biochars

Panagiotis Regkouzas and Evan Diamadopoulos

The objective of this study was to produce regular and Graphene Oxide (GO) coated biochar adsorbents, using two types of biomass as feedstock, i.e. Rice Husks (RH) and Sewage Sludge (SS), in two pyrolytic temperatures (400°C and 600°C). The produced adsorbents were thoroughly characterized in terms of physicochemical properties, where biochars produced from RH at 600°C showed the most favourable results. Specifically, the SBET values of these samples were up to four times higher compared to biochars produced at 400°C and up to thirteen times higher, compared to the respective SS biochars. Moreover, the metal content of the samples was determined, in order to assess their safety, where all values were under the limits set by the European Union. Finally, biochars were tested as adsorbents for the removal of six organic micro-pollutants, i.e. 2,4-Dichlorophenol (2,4D), Bisphenol A (BPA), Androsterone (ADT), Norethindrone (NOR), Estrone (E1) and Ethinyl Estradiol (EE2), from table water and wastewater, in low (realistic) initial concentrations. The pollutants were successfully adsorbed by biochar, in rates of 40%-97.5% for the RH biochars and 10%-97.5% for the RH biochars, in 1h. GO-enriched RH biochars produced at 600°C were the most effective adsorbents, removing the pollutants in rates higher than 70%, in just 10min of adsorption time.

How to cite: Regkouzas, P. and Diamadopoulos, E.: Adsorption of six organic micro-pollutants from water and wastewater using Graphene Oxide-coated biochars, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13728, https://doi.org/10.5194/egusphere-egu2020-13728, 2020.

EGU2020-7011 | Displays | SSS7.5

Studying hydraulic characteristics of three soils amended with superabsorbent hydrogels

Carlo Camarotto, Sara Pozza, Ilaria Piccoli, Giacomo Guerrini, and Francesco Morari

Superabsorbent hydrogels (SAHs) are three-dimensional cross-linked polymeric network, with the ability to absorb large quantities of water (or other fluids), keep their network stable even in the swollen state and  release the water in response to specific environmental stimuli. In last decades, several SAHs have been developed and studied for their potential to improve soil physical properties for agricultural purposes, e. g. by increasing their ability to retain water, increasing the efficiency of water use, increasing the absorption capacity or promoting the uptake of nutrients by the plant. Although various studies have shown that SAHs can contribute to soil microstructural stability and improve soil-water interactions in general, the specific impact of water content on the hydrogel effect in soil remains largely unclear. Specifically, the SAH effects needs to be inquired in dynamic water content conditions.

The aim of this study was to evaluate how the water content affects soil-water-hydrogel interactions in different soils (i.e. sandy, loamy and silty soils). Two different SAHs were studied, a polyacrylamide and a self-made cellulose-based SAH added with humic acids. Untreated and SAH-treated (4 mg g−1) samples were analysed for soil water retention and unsaturated hydraulic conductivity coupling the Wind method (−1 to −80 kPa) with WP4-T dew point (-3000 to 15000 kPa). SAH deswelling dynamic was evaluated measuring the sample volume change from −1 to −7 kPa potential. Volume was measured reconstructing the 3D shape of the soil sample employing a 3D Point Cloud Reconstruction software.

Soil-SAH mixtures changed the water retention characteristics if compared to the controls. SAHs significantly increased the water entrapment and altered the pore-size distribution according to the soil types. It can be hypothesized that in the soil-SAH mixtures there was a texture-dependent rearrangement of soil particles, depending on the various interactions between hydrogel structures and soil constituents as a function of water content. These findings demonstrated the potential of SAHs to advantageously modify the soil hydraulic characteristics, but also showed that further studies are needed to better comprehend the behaviour of hydrogels in dynamic water content conditions in different soils.

How to cite: Camarotto, C., Pozza, S., Piccoli, I., Guerrini, G., and Morari, F.: Studying hydraulic characteristics of three soils amended with superabsorbent hydrogels, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7011, https://doi.org/10.5194/egusphere-egu2020-7011, 2020.

Higher Education in England targets to reduce by an average 34% carbon dioxide emissions until 2020 based on the level in 1990. This project not only requires various departments of universities to improve their energy system by utilizing low carbon techniques but also challenges the academics and researchers to examine multiple approaches to sequester carbon as much as possible in the limited area. Land owned by universities contains a lot of carbon. The group SUCCESS (Sustainable Urban Carbon Capture Engineering Soils for Climate Change) in Newcastle University has observed that 10 ha of urban soil near Newcastle Science Central removed almost 80 T CO2 per hectare every month.

The project has set up two lysimeters in June 2018 to investigate the addition of wheat straw pellets (WP) versus biochar (BC) produced from this biomas as carbon sequestration strategies. Sensors were set up at different depths to collect information about the internal soil environment. The wheat straw biochar has 69.04% C content, and it was applied to the soil at a rate of 2% (w/w); the application rate of wheat straw pellets is based on the carbon weight of wheat straw biochar. Therefore, the amount of carbon added as wheat straw pellets, or as wheat straw biochar was 29.8±0.57 Kg in each lysimeter.

Cumulatively, 704.23±0.14 g and 697.17±0.1 g of total carbon were leached from the lysimeter BC and lysimeter WP, respectively, till the end of November 2019. Meanwhile, the total amount of CO2 carbon released via respiration of soil carbon was 9.65±0.35 Kg and 6.17±0.19 Kg for lysimeter BC and lysimeter WP, respectively, from August 2018 to November 2019. Moreover, the carbon mass fixed, measure as dried grass biomass in the two systems was 1.57 Kg for lysimeter BC and 1.75 Kg for lysimeter WP. The net C mass stored according to the mass balance for the lysimeter BC is 21.02 ±0.67 Kg from the topsoil during the experiment period, and 24.68±0.6 Kg in lysimeter WP. Whereas, by measurement, the amount of carbon in the topsoil has shown an increase of 37.09±13.58 Kg and 19.51±3.36 Kg in lysimeter BC and lysimeter WP, respectively. Currently, the data obtained in this study indicate that the mixture of biochar and biomass amendment promotes carbon sequestration potential in the urban soil environment and further application details on land owned by the university can be explored.

How to cite: Wang, J., Werner, D., and Manning, D.: Assessing the potential of urban soil for carbon sequestration by adding wheat straw pellets or wheat straw biochar, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18735, https://doi.org/10.5194/egusphere-egu2020-18735, 2020.

The former sewage field south of Berlin are contaminated with heavy metals due to decades of wastewater irrigation. Since the abandonment of irrigation, the pH values have decreased and the accumulated organic substance mineralized, so that the mobility of the heavy metals increased and the plant-available zinc and copper contents reach concentrations critical for plant growth.

In 2011, biochar was added to immobilize the heavy metals as part of a field trial. On samples aged in the field with 0 and 5% biochar, we examined the change in the binding form of copper and zinc using the sequential extraction procedure according to Zeien and Brümmer (slightly changed) after eight years of field exposure.

As to copper, the plots with 5% biochar addition tended to have lower concentrations as a percentages of the total contents in fractions I-III (I mobile, II easy to supply, III bound to Mn oxides) compared to the plots without biochar addition. In fractions IV and V (IV organically bound, V bound to poorly crystalline Fe oxides) no clear differences could be found. In fractions VI and VII (VI bound to crystalline Fe oxides and VII residual), the plots with 5% biochar showed significantly higher percentages of copper. In samples with biochar addition from 2011, changes in the copper binding form were not clearly ascertainable. For zinc, only fractions I and II decreased significantly after 8 years of field exposure in the plots exposed to biochar. No clear changes could be seen in all other fractions. These effects were also present directly after biochar addition. Therefore, biochar appears to be a suitable additive to immobilize zinc and, in the long run, especially copper.

Further studies on the remobilization of copper and zinc on biochar particles separated from the aged field samples are currently running and can probably also be presented.

How to cite: Wagner, A., Müller, A., and Kaupenjohann, M.: Change in the binding form of copper and zinc in sewage field soil by addition of biochar after eight years of field exposure, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21764, https://doi.org/10.5194/egusphere-egu2020-21764, 2020.

EGU2020-1091 | Displays | SSS7.5

Removal cadmium ions from aqueous solution by biosorbent - immobilized aquatic weed M. spicatum

Jelena Milojković, Zorica Lopičić, Marija Kojić, and Marija Petrović

The lack of clean water and waste generation are problems that exist in many parts all over the world. Different industries: electroplating, smelting and alloying could discharge cadmium pollutants into water body. Cadmium as toxic metal must be properly removed from wastewaters because it may lead to: kidney damage, respiratory insufficiency, hypertension, cancer, gastrointestinal disorder and osteoporosis.

Globally depletion of natural and nonrenewable resources has induced need for application of renewable sources in environment protection practices; such as renewable biomass. Biosorption has emerged as an economically feasible alternative for the environment cleanup using naturally occurring, abundant, waste biomass. Application of biosorbents in the form of powder have difficulties associated with their powder properties, indicating need for suitable form with adequate mechanical strength (e.g. beads) for easily manipulation and further use in flow systems.

The waste biomass which is tested as biosorbent of cadmium is cosmopolitan invasive aquatic weed - waste Myriophyllum spicatum immobilized as beads in natural polymer matrix-alginate – (MsA-B). M.spicatum grows on five continents and based on its widely negative effects on the environment in the whole world, this weed has been categorized as Category 1 Weed. M.spicatum used for preparation of beads originates from Sava Lake (Belgrade, Serbia) where it is regularly harvested by public company "Ada Ciganlija”. Ratio M. spicatum and alginate in beads is 2:1.

This biosorbent (MsA-B) was characterized by Scanning-Electron-Microscopy-EnergyDispersive-X-Ray-Spectroscopy (SEM-EDX). EDX spectra showed: Ca, Mg, Na, K and Cl. Large amount of calcium originate from the water environment in which this aquatic weed lives. The surface of (MsA-B) is different from the surface of aquatic weed because the alginate covered the characteristic rectangular openings. The beads are not spherical, but more ovoid shape. The surface is wrinkled and clearly layered. After Cd(II) sorption, reduced peaks of Ca as well as a new peak of Cd(II) are observed

The effect of the Cd(II) concentration on adsorption was studied at pH 5.0 in the concentration range from 20 to 750 mg/L as batch biosorption tests with 2 g/L MsA-B. Experimental results were fitted by six isotherm models: Langmuir, Freundlich, Sips, Redlich and Peterson, Toth, Temkin. After biosorption experiments, beads didn’t change its shape, size or colour. They have been easily separated from the solution by decanting. Comparison of models was made on the basis of the coefficients of determination R2 and comparison value of biosorption capacities experimented and calculated by models. Order of best fit isotherm models: RP>L>S>Th>T>F. MsA-B showed high capacity for Cd(II) removal q=82,5 mg/g which is 33% higher capacity then capacity of dry biomass M.spicatum. During the biosorption experiments with MsA-B, changes of pH were insignificant. That is very important because there is no need to control pH, no demand for chemicals which greatly simplifies the process and makes it cheaper. Easy application and manipulation, much easier than other biosorbents simplify further investigations and applications of this aquatic weed beads – MsA-B in industrial wastewaters and also in the next step of the biosorption processes: flow systems and reactors.

Acknowledgement
These results are part of the projects supported by the Ministry of Education and Science of the Republic of Serbia, TR 31003. Jelena Milojković is grateful to the public company "Ada Ciganlija" (Belgrade, Serbia) for providing samples of aquatic weed M. spicatum. 

 

How to cite: Milojković, J., Lopičić, Z., Kojić, M., and Petrović, M.: Removal cadmium ions from aqueous solution by biosorbent - immobilized aquatic weed M. spicatum, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1091, https://doi.org/10.5194/egusphere-egu2020-1091, 2020.

EGU2020-8556 | Displays | SSS7.5

Rice husk biochar activation and its effects on the characteristics of the final products to be used as sorbents or catalysts support

Nikolaos Mourgkogiannis, Ioannis Nikolopoulos, Eleana Kordouli, Christos Kordulis, Alexis Lycourghiotis, and Hrissi K. Karapanagioti

Annually, large amounts of rice husk (>80 million tonnes) are produced around the world and high quantities of them are produced by developing countries. Determination of chemical and physical properties of new materials produced from the activation of rice husk biochars such as density, ash, surface area, surface topography, surface functional groups and suspension pH could affect sorption capacity and catalyst properties. In this study, biochars (RH), produced from raw rice husk (RAW-RH) at 850oC through pyrolysis process, were activated with H2O (W-RH), H2SO4 (RH-S), H3PO4 (RH-P), and NaOH (RH-ALK) and their physicochemical parameters were analysed.  This study aims to characterize the surface area and the porosity, the suspension pH, and the functional groups observed on the surface of RAW-RH, RH, W-RH, RH-S, RH-P, and RH-ALK. The determination of the surface area, the pore volume and the average pore size was performed by using gas (N2) adsorption−desorption with the Micromeritics TriStar 3000 Analyzer system using the Brunauer, Emmett, and Teller (BET) equation. Before analysis, the RAW-RH was degassed at 60oC under mild nitrogen flow for 1 h and RHs were degassed at 300oC under mild nitrogen flow for 1 h. The results were recorded by Micromeritics TriStar 3000 software. The t-plot for the RHs disclosed that the activation with NaOH leads to high specific surface (938 m2/g) and micropore area (588 m2/g) compared to other RH samples (367-386 m2/g). Simultaneously, the activation of RH increases the pore size of biochar and the highest pore size was observed for the RH-ALK (51 Å) compared to activated RH-S and RH-P (48 Å). This can be attributed to the silica removal from RAW-RH by alkaline solution that creates a mesoporous material which is more suitable as a catalyst support for bulky reactants. RAW-RH presents various peaks on its surface corresponding to different functional groups. During the high pyrolysis temperature (850oC) most of these peaks either disappear or begin to diminish and only few new peaks appear. Furthermore, RAW-RH has more acidic behavior than the other samples (pH 6.0). For the activated RH, RH-S and RH-P are slightly acidic materials (pH~6.2) and RH-ALK and W-RH are both slightly alkaline (pH~8.5). To conclude, activation with alkali solution creates a more desirable sorbent material since it increases the surface area by 260% compared to activation with acidic solutions which increases the surface area by ~5%.

 

Acknowledgment

We acknowledge support of this work by the project “Research Infrastructure on Food Bioprocessing Development and Innovation Exploitation – Food Innovation RI” (MIS 5027222), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

How to cite: Mourgkogiannis, N., Nikolopoulos, I., Kordouli, E., Kordulis, C., Lycourghiotis, A., and Karapanagioti, H. K.: Rice husk biochar activation and its effects on the characteristics of the final products to be used as sorbents or catalysts support, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8556, https://doi.org/10.5194/egusphere-egu2020-8556, 2020.

EGU2020-19912 | Displays | SSS7.5 | Highlight

Biochar from different feedstocks as catalysts for the conversion of algal lipid into biodiesel

Vasiliki D. Tsavatopoulou, Andriana Aravantinou, John Vakros, and Ioannis D. Manariotis

Microalgae are a group of microorganisms capable to accumulate up to 80% triacylglycerol w/w, making them as one of the most promising renewable sources for biofuels. Biodiesel derived from algal oil is produced via transesterification process, where the oil is mixed with alcohol and a suitable catalyst at an elevated temperature. Recently, research has been focused on catalysts from renewable sources, like biomass and residues generated in households, in the form of biochar. Biochar is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. The aim of this work is to investigate the use of biochar as a heterogeneous catalyst for the conversion of algal lipid into biodiesel. Selected algal strains were cultivated and lipids were extracted. The effect of feedstock and pyrolysis temperature were investigated.  More specifically, biochar was produced from malt spent rootlets, coffee spent grains and olive kernels at pyrolysis temperatures ranging from 300 to 850oC. The materials produced were fully characterized for their surface characteristics such as BET surface area, pore and micropore volume, thermogravimetric analysis and point of zero charge. The preliminary results showed that biochar from malt spent rootlets achieved about 50% conversion of lipids to fatty acid methyl esters during transesterification.

How to cite: Tsavatopoulou, V. D., Aravantinou, A., Vakros, J., and Manariotis, I. D.: Biochar from different feedstocks as catalysts for the conversion of algal lipid into biodiesel , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19912, https://doi.org/10.5194/egusphere-egu2020-19912, 2020.

EGU2020-8296 | Displays | SSS7.5

Spent coffee grains biochar activation and its effects on the characteristics of the final products to be used as sorbents or catalysts support

Nikolaos Mourgkogiannis, Ioannis Nikolopoulos, Eleana Kordouli, Christos Kordulis, Alexis Lycourghiotis, and Hrissi K. Karapanagioti

Coffee is considered the most widely spread beverage and annually, approximately, 11 billion tons are produced all around the world. Raw spent coffee residue (Raw-SCG), biochar coffee residue (SCG), and the activated biochar with distilled H2O (W-SCG), H2SO4 (SCG-S), H3PO4 (SCG-P), and NaOH (SCG-ALK) were fully characterized for their surface area, density, ash, surface topography, surface functional groups and suspension pH. These are parameters that could affect sorption capacity and catalyst properties. In this study, Raw-SCG, obtained from a coffee shop in the campus of Patras University, was pyrolyzed at 850oC in a custom-made ceramic saggar box. BET surface area of biochar consists a basic characteristic that controls its nutrient and pollutant sorption capacity. SCGs produced at 850oC have high specific surface and micropore area and at the same time, low external surface area. The t-plot for the SCG disclosed that the activation with H3PO4 leads to high specific surface (921 m2/g) and micropore (626 m2/g) area compared to other SCG samples. Simultaneously, the activation of SCG increases the pore size of biochar and the highest pore size was observed for the SCG-ALK (37 Å) compared to activated SCG-S (34 Å) and SCG-P (34 Å). The Raw-SCG has slightly acidic nature (pH 5.5) than the biochar SCG (pH 10.6) which has the most alkaline nature. For the activated SCG biochars, SCG-S (pH 4.6) is more acidic than SCG-P (pH 5.2). Furthermore, W-SCG biochar (pH 9.1) is more alkaline than SCG-ALK (pH 8.8). A plethora of possible explanations can be given for the alkaline nature of biochar, such as the removal of acidic groups, but this is still under investigation. Moreover, the five samples present a peak at 1050 cm-1 that corresponds to (C-O) bond and a weak peak at 3450 cm-1 that reveals O-H groups. For the Raw-SCG, a carboxyl stretching mode (C=O) demonstrate a weak peak at 1740 cm-1; the sharp peaks at 2830 and 2950 cm-1 are related to aliphatic C-H2 bending. The presence of a shallow peak at 2450 cm-1 corresponds to CO2 bond for the SCG and W-SCG. It is very important to mention that the peaks of W-SCG and SCG-ALK are similar. The results indicates that biochars SCG produced at 850oC are acidic in nature, they are highly porous materials with micropores corresponding to the majority of pore volume and the activated SCG-P shows a rapid increase of micropore area compared to other activated and washed biochars (SCG-S, SCG-ALK, W-SCG). 

 

 

 

Acknowledgment

We acknowledge support of this work by the project “Research Infrastructure on Food Bioprocessing Development and Innovation Exploitation – Food Innovation RI” (MIS 5027222), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).


 

 

 

 

How to cite: Mourgkogiannis, N., Nikolopoulos, I., Kordouli, E., Kordulis, C., Lycourghiotis, A., and Karapanagioti, H. K.: Spent coffee grains biochar activation and its effects on the characteristics of the final products to be used as sorbents or catalysts support, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8296, https://doi.org/10.5194/egusphere-egu2020-8296, 2020.

EGU2020-3429 | Displays | SSS7.5

Concentration affects significantly the capacity of biochar to adsorb nitrogen from forest runoff water

Marjo Palviainen, Elham Kakaei Lafdani, Jovana Cvetkovic, Taija Saarela, Jukka Pumpanen, and Ari Laurén

In boreal peatland forests, drainage and harvesting increase nitrogen (N) export to watercourses and the highest N concentration in runoff water occurs outside the growing season when traditional water protection methods based on biological activity are inefficient. In these conditions, water purification based on adsorption could offer a solution. Biochar can be an effective sorbent material for removal of nutrients from water due to its high specific surface area, porous structure and high cation and anion exchange capacity. We tested adsorption capacity for total N (TN) of spruce and birch biochar using water collected from ditch drains of boreal harvested peatland. The water was collected outside the growing season when TN concentration was 4.6 mg L-1. During the growing season, TN concentration varies from 0.5 to 2 mg L-1. To study the effect of TN concentration on adsorption capacity, we diluted water samples to concentrations 1, 2, 3 and 4 mg L-1. We added 5 g of biochar to 1 L of water and shook the samples for 180 h. TN adsorption capacity increased monotonously from the smallest to the highest concentration. Adsorption capacity was 2.6 and 3.7 times greater in the highest concentration compared to the lowest concentration in spruce and birch, respectively. This indicates that concentration affects significantly the capacity of biochar to adsorb N from forest runoff water. Therefore, biochar can be an effective water protection tool in areas, which have high TN concentration, and it can be a complementary method supporting water purification outside the growing season.

How to cite: Palviainen, M., Kakaei Lafdani, E., Cvetkovic, J., Saarela, T., Pumpanen, J., and Laurén, A.: Concentration affects significantly the capacity of biochar to adsorb nitrogen from forest runoff water, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3429, https://doi.org/10.5194/egusphere-egu2020-3429, 2020.

EGU2020-3488 | Displays | SSS7.5

A case study investigating the effects of EDTA washing and amendments on trace metal-contaminated soil

Wolfgang Friesl-Hanl, Christoph Sebastian Noller, Rebecca Hood-Nowotny, and Andrea Watzinger

Trace metals emissions show a sustaining decrease in western Europe since several decades. Sources like leaded fuels have been banned and the use of efficient flue gas cleaning systems have reduced industrial emissions significantly. But trace metal additions are cumulative, and the contamination is permanent. Immobilizing trace metals can be an efficient and cost effective way to prevent groundwater contamination and uptake in the food chain but cannot account for all exposure pathways (e.g. ingestion), while guideline values are only concerned about total concentrations. Soil washing techniques comprise an enormous potential for the efficient and sustainable extraction of trace metals from contaminated soils. The Garden Soil Project is a case study investigating the effect of soil amendments applied after a new ex-situ soil washing procedure (Ethylenediaminetetraacetic acid) from a Cd-, Pb-, Zn-contaminated Cambisol from Arnoldstein, located at a former lead mining and smelting region in Austria.

To investigate the success of the EDTA soil washing and amendment application, an experimental garden was set up at the University Research Center (UFT) in Tulln an der Donau. It encompasses twelve raised beds of 1 m3, filled with three soil variants in four replicates: The contaminated, unwashed soil (U) and two washed variants (W), one amended with 2 %wt biochar and 2 %wt compost (A). The amendments aim to restore soil conditions after the invasive procedure. The success of the trace metal extraction and restoration of the original soil properties is investigated by analyzing vegetable cultivars grown on the soil variants, the physicochemical and microbiological characteristics of the soil in the course of 2 years. First results show a significant reduction in trace metal uptake by different vegetables after washing and an increase in biomass for both washed soil variants W and A. The continuing analysis of trace metals in soil leachates and multiple extractable fractions in soil will allow a more detailed assessment. Furthermore, an ongoing investigation of the carbon and nitrogen cycle, using stable isotopes, will be applied as an indicator for soil functions.

How to cite: Friesl-Hanl, W., Noller, C. S., Hood-Nowotny, R., and Watzinger, A.: A case study investigating the effects of EDTA washing and amendments on trace metal-contaminated soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3488, https://doi.org/10.5194/egusphere-egu2020-3488, 2020.

EGU2020-7890 | Displays | SSS7.5

Effect of surfactants adsorption on the structure of bentonite-based sorbents

Magdalena Andrunik and Tomasz Bajda

In the present study, we investigated the effect of the adsorption of cationic and nonionic surfactants on the structure of bentonite. Although there is a large amount of data on the modification of bentonite with different surfactants, information regarding the effect of a nonionic surfactant on the properties of bentonite is limited. Nonionic surfactant-based organo-bentonites are less toxic and more environmental‐friendly, thus their application as sorbents should be evaluated. 

For modification of bentonite two surfactants were used: t-octylphenoxypolyethoxyethanol (Triton X-100; TX100) and hexadecyltrimethylammonium bromide (HDTMA). The samples of bentonite were stirred with 2000 g of HDTMA or TX100 solutions at concentrations of 48 mmol/100 g at 40 °C. After 24 h of stirring, the samples were centrifuged for 10 min at 14,000 rpm and dried at 40 °C for 24 h.

XRD results show that the main peak (001) from montmorillonite was observed to shift towards higher interlayer distances only in case of modification with HDTMA. This indicates that TX100 molecules are too big and cannot intercalate into interlayer space of montmorillonite; therefore, the modification of bentonite with TX100 was seen mostly on the surface. The FTIR spectrum of HDTMA-modified bentonite shows bands which correspond to the anti-symmetric and symmetric tensile vibrations of methylene groups (–CH2) of the hydrocarbon tails of the surfactants and bandsis ascribed to the bending vibrations of C–H originated from surfactant molecules. The effectiveness of the modification of bentonite with TX100 is confirmed by the presence of the absorption bands, which represent methylene groups (–CH2), CH stretching and bending vibrations, CO and OH bending vibrations and a band from C–C bonds of phenyl rings. DTA curves of HDTMA-bentonite indicate the occurrence of several endothermic and exothermic effects. Exothermic effects in the temperature range of 303–383 °C are attributed to the combustion and loss of the surfactant molecules from the surface and from the interlayer space. For bentonite modified with TX100 exothermic effects related to the decomposition or combustion of TX100 are strong and shift to high temperatures (approximately 250 °C and 400 °C). The interaction of surfactant molecules with the structure of the mineral minimizes the disintegration of the surfactant, which occurs at a temperature higher than what is required to disintegrate pure TX100. The morphology of the sample after the modification with HDTMA did not change significantly with respect to natural bentonite; thus, the typical tissue-like morphology of montmorillonite is evident. It is caused by the modification type—HDTMA is mostly intercalated into the interlayer space of smectite. Modification with TX100 takes place mostly on the surface of the sample; thus, the surface is coated with surfactant.

In conclusion, this work demonstrates the changes in bentonite due to adsorption of the cationic and nonionic surfactants. Intercalation of surfactants increases the structural and thermal stability of the system. The results achieved by this study can contribute to the further exploration of the utilization of nonionic surfactants in clay and clay mineral modification.

 

This research was funded by AGH-UST, grant number 16.16.140.315.

How to cite: Andrunik, M. and Bajda, T.: Effect of surfactants adsorption on the structure of bentonite-based sorbents, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7890, https://doi.org/10.5194/egusphere-egu2020-7890, 2020.

EGU2020-9985 | Displays | SSS7.5

Investigating hydrogel potentialities for improving soil pore network by using X-ray computed microtomography

Ilaria Piccoli, Pozza Sara, Carlo Camarotto, Andrea Squartini, Giacomo Guerrini, and Francesco Morari

Hydrogels (HGs) are conventionally defined as a natural or synthetic polymeric 3D networks with high hygroscopicity and water-swelling properties. Over the decades, HGs have been widely utilized in various fields of cosmetics, food additives, tissue engineering, drug delivery, and pharmaceuticals. Only recently HGs have been studied also for agronomic purpose. Indeed, their unique physical properties, including their porosity and swellability, make them ideal platforms for water and nutrient delivering. The aim of this study was to investigate the potentialities of two HGs, one formed by polyacrylamide and one by cellulose added with clay and humic acids, for improving soil porosity of three soil types (sandy “SD”, silty “SL” and clay “CL”). Soil pore network was characterized with X-ray computed microtomography (µCT) at 50 µm resolution and subsequent image analysis measuring  total porosity (TP), pore size distribution (PSD), mean diameter (MD), connectivity density and degree of anisotropy. Soil samples were at first saturated and then dried trough freezing and drying cycles with acetone at -80°c.

Preliminary results showed that at water saturation HG increased TP of four- and two-fold, respectively for SL and CL soil, MD of 40 (SD), 519 (SL) and 164 µm (CL) while no effects were found on other pore architecture indices (e.g., connectivity or anisotropy). The PSD analysis highlighted that HG increased the macroporosity fraction (e.g., pore > 0.8 mm) only in SL (+36%) and CL (+11%) while the other pore classes were not affected. Present study demonstrated that in fine-textured soils at high water content, HG might be a valuable tool to increase not simply the TP but, in particular, the macroporosity fraction which may play a key role in soil functioning and ecosystem services. Future research will investigate the HG performances under dynamic soil moisture conditions on water holding capacity and hydraulic conductivity (Research supported by Fondazione CARIPARO, InnoGel, Progetti Eccellenza 2017).

How to cite: Piccoli, I., Sara, P., Camarotto, C., Squartini, A., Guerrini, G., and Morari, F.: Investigating hydrogel potentialities for improving soil pore network by using X-ray computed microtomography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9985, https://doi.org/10.5194/egusphere-egu2020-9985, 2020.

EGU2020-10278 | Displays | SSS7.5

Treatment of municipal landfill leachate by using different sorbent materials

Hrissi K. Karapanagioti, Konstantina P. Athanasopoulou, Chara Evangelidou, and Chloe Theodosiou

Landfill leachate is a type of wastewater generated in a landfill and may lead to serious environmental pollution due to its complex composition. The main aim of the present research is to investigate the interaction of sanitary landfill leachate with sorbent materials, and the comparison among leachates of different origin. A better understanding of the process can lead to a cost-effective choice with the appropriate combination of the adsorption stage with other treatments. Various sorbent materials such as a commercial activated carbon (granular and powder), and two agro-industrial by-product biomaterials; grape seeds and rice husks (granular) were used. Two different samples of landfill leachates were examined. Initial samples were characterized by high COD (22 and 29 g/L), and high concentrations of nitrogen, in the form of NH4+-N (2,500 and 1,100 mg/L). Since raw leachates used were characterized by high organic COD load, a dilution (1:5) of all samples was necessary. Duplicates of each sorbent (3 g) were mixed with duplicates of each leachate sample (30 mL). Experiments were carried out in glass vials sealed with Teflon caps. The kinetics of the leachates sorption on sorbent materials was investigated over a time of two months. Chemical Oxygen Demand (COD) was determined with the Standard Dichromate Reflux Method, while ammonium nitrogen determination was based on the colorimetric Koroleff method. COD reduction was more significant for the sample with the lowest initial COD value, for each sorbent material used. At the beginning (3 days) of the experiment, for the samples with the lowest initial COD value, a significant reduction of COD (~45%) by activated carbon (powder and granular) sorption was observed, while for the same sorbents but samples with the highest initial COD value, the reduction of COD reached up to ~15% and up to ~93% after 120 days. Grape seeds and rice husks showed a lower reduction of COD for both samples. COD reduction increased over time with different rates for various samples.  In addition to the reduction of the organic load, nitrogen, in the form of NH4+-N, and color removal was also observed for all leachate samples. The different kinetic behavior for the two leachate samples suggests that the organic molecules present in each leachate demonstrate various sorptive behaviors with different affinity for each sorbent.

 

Acknowledgment

We acknowledge support of this work by the project “Research Infrastructure on Food Bioprocessing Development and Innovation Exploitation – Food Innovation RI” (MIS 5027222), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”, funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

 

How to cite: Karapanagioti, H. K., Athanasopoulou, K. P., Evangelidou, C., and Theodosiou, C.: Treatment of municipal landfill leachate by using different sorbent materials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10278, https://doi.org/10.5194/egusphere-egu2020-10278, 2020.

EGU2020-11678 | Displays | SSS7.5

Copper(II) removal by natural siderite (FeCO3) from surface and groundwaters

Lisa C. Füllenbach, Jeffrey Paolo H. Perez, Helen M. Freeman, Andrew N. Thomas, Liane G. Benning, and Eric H. Oelkers

Anthropological use of land and resources releases vast amounts of waste into surface waters and aquifers. Copper(II) is one of the most widely occurring heavy metal contaminants, introduced into the environment from industrial discharge, landfill leakage, agricultural and mining sources. Common remediation strategies for redox-sensitive Cu(II) are based on adsorption or phytoremediation methods. To experimentally test the efficiency of Cu(II) retention by inorganic redox reaction processes suitable for in situ surface- and groundwater remediation applications, we used siderite (FeCO3), which is abundant in anoxic sediments and soils and as a carbonate highly soluble in acidic environments. Its dissolution increases alkalinity and releases highly reactive, redox sensitive Fe(II). This aqueous ferrous iron can act as 1) a precursor for Fe(III) (hydr)oxides in oxic conditions, which are effective sorbents of heavy metals, and 2) a reducing agent under reducing conditions, where it can form a strong redox couple with Cu(II). We investigated the long term (1008 h) removal of aqueous Cu(II) through siderite dissolution batch experiments under oxic and anoxic conditions and monitored changes in the aqueous concentrations of Cu and Fe, pH and the reacted solids morphology over time. Cu adsorption and speciation on the reaction products was determined by X-ray absorption and photoelectron spectroscopies.

Under oxic conditions, increasing alkalinity led to a rapid increase in solution pH and the precipitation of nanoparticulate goethite and hematite from the released ferrous iron. After 1008 h of reaction, 80 % of the dissolved Cu(II) were removed from solution by sorption, whereby up to >30 % of this sorbed Cu(II) was reduced to Cu(I). Under anoxic conditions, the solution pH increased abruptly and copper uptake occurred more than twice as fast as under oxic conditions. Notably, the released Fe(II) was oxidized by Cu(II) leading to the precipitation of lepidocrocite, while all copper was removed from solution with >70 % of Cu(II) being reduced to Cu(0).

Our results suggest that 1) redox reactions between aqueous Cu(II) and Fe(II) promote coupled dissolution-precipitation and adsorption mechanisms responsible for Cu(II) removal, and that 2) siderite is a low-cost and effective material that is potentially useful for in situ remediation in either oxygenated or reduced environments.

How to cite: Füllenbach, L. C., Perez, J. P. H., Freeman, H. M., Thomas, A. N., Benning, L. G., and Oelkers, E. H.: Copper(II) removal by natural siderite (FeCO3) from surface and groundwaters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11678, https://doi.org/10.5194/egusphere-egu2020-11678, 2020.

EGU2020-13496 | Displays | SSS7.5

Composting winery wastes with clinoptilolite. Suitability for land application.

Chronis Kolovos, Maria Doula, Stamatios Kavasilis, Georgios Zagklis, Gerasimos Tsitselis, and Panagiotis Kostopoulos

Soil application of raw winery wastes is a procedure of doubtful appropriateness, mainly because of waste properties, i.e. very acidic pH; high electrical conductivity; and high content of polyphenols. The disposal of winery waste on soils may cause various environmental and health hazards as for example soil overloading with polyphenols and salts, phytotoxicity to plants, odor nuisance etc. Pathogens, which may still be present in the decomposed material could spread plants and soil diseases, while waste piles attract insects, pests, domestic rodents and wildlife which may threaten public and animal health. Despite these facts, many wine producers discharge winery waste to the nearby agricultural or forest ecosystems, without treatment although this type of agricultural waste could be a significant source of organic matter and nutrients.

 

In general, degradation of winery waste is a slow procedure which becomes even slower under the xerothermic climatic conditions in Greece, which may slow down the microbially mediated decomposition of organic matter and nutrients cycling; degradation of winery waste piles takes more than 5 years to be completed naturally. However, the final products are of doubtful appropriateness for fertilization use, mainly because of low quality organic matter and low nutrients content (lost mainly due to the exposure of piles to uncontrolled environmental conditions for years).

 

This study aims to highlight the advantages of composting winery wastes by using also other agricultural wastes and additives as feedstock to produce a safe and environment friendly compost, appropriate for application to agricultural ecosystems. For this a 41 hectares vineyard in North Greece of about 400 tn grapes yield annually and generation of approximately 100 tn of waste was selected. Winery waste was collected after harvesting and wine-making period of 2018 and composted with cow manure, wheat straw and clinoptilolite up to 5%.

 

Composting phase lasted 5 months, and during this period the pile was monitored as regard temperature, moisture and oxygen content. After composting completion, the final product was fully characterized in terms of its physical and chemical properties, considering national legislation organic materials reuse on soils. The outcomes of this study show a great potential for managing such waste types by composting using clinoptilolite in the feedstock materials since the final product has suitable physical and chemical properties for many crops, i.e. slight alkaline pH, low electrical conductivity, low polyphenol content and high content of available nutrient, therefore can be used as soil amendment or organic fertilizer.

How to cite: Kolovos, C., Doula, M., Kavasilis, S., Zagklis, G., Tsitselis, G., and Kostopoulos, P.: Composting winery wastes with clinoptilolite. Suitability for land application., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13496, https://doi.org/10.5194/egusphere-egu2020-13496, 2020.

The use of biosorbents (adsorbents of natural origin, such as, plant derived material) has been regarded as an alternative to traditional wastewater treatment methods (such as chemical precipitation or ion exchange), as it is environmentally friendly and cost-effective process. Literally hundreds of different biosorbents have been tested in laboratory scale sorption experiments, however, the traditional research of biosorbents (i.e., the use of biosorbents in the treatment of polluted waters) seems to be a dead-end direction, with technological problems that are difficult to overcome, and process has found no application on industrial scale until now. For example, biosorbents are short-lived, as the biomass decomposes in the solution, and as a result, it is fragile to technological operations such as mixing or pumping. There are also problems with regeneration and reuse of biosorbents. It explains why this process has not been implemented in industrial scale so far. In addition, the focus in biosorption studies has always been more on the “removal” (i.e., concentration of pollutants into a biosorbent, however this material will become a waste after the biosorption), but not so much on the “recovery”. Therefore, there is an opportunity, as well as challenge to apply biosorption principles in unconventional manner. A new concept will be proposed, with shift away from adsorption of toxic elements to adsorption of essential elements. 

How to cite: Robalds, A.: Saturated biosorbents: shift from waste to new class of materials , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13776, https://doi.org/10.5194/egusphere-egu2020-13776, 2020.

EGU2020-13944 | Displays | SSS7.5

The low-cost hybrid sorbents for immoblization of dyes: sorbents features characterization

Agnieszka Solińska and Tomasz Bajda

The occurrence of dyes in wastewater is a threat for environment and living organisms. Therefore many studies have focused on investigation of diverse sorption materials to develop effective adsorption methods of removing these organic compounds (Yagub et al., 2014). Among the wide range of materials, the low-cost sorbents such as clay minerals, fly ash or lignite have received unflagging interest. However, the novel approach is to mix low-cost sorbents, clay minerals with fly ash or lignite, which could promote efficiency of removing chemically varied dyes and impact the modification of sorbent mixtures properties. Thus, the aim of this study is to investigate and compare features of hybrid sorbents: halloysite-fly ash, palygorskite-lignite before and after sorption reactions of selected dyes and evaluate influence of modified properties on their sorption mechanism. The obtained reactions’ products, as well as hybrid and selected raw sorbents after reactions, were studied by Fourier-transform infrared spectroscopy (FTIR), thermal analysis (DTA/TG) coupled with the measurement of evolved gases composition by mass spectrometer (QMS). The morphology of raw sorbents was analyzed by scanning electron microscopy (SEM) equipped with an energy dispersive spectrometer (EDS) for elemental microanalysis. The results show that sorbents features, especially the presence of organic functional groups, negative surface charges, have distinct impact on their sorption behaviour. Each componnent of hybrid sorbents affects the efficiency of dyes sorption. The obtained results revealed that mixing of various low-cost sorption materials may present unexpected properties.

 

Acknowledgments.

The studies results have been presented with the partial financial support from the EU project of POWR.03.02.00-00-I038/16-00.

Literature:

Yagub M. T., Kanti Sen T., Afroze S., Ang H.M. (2014) Dye and its removal from aqueous solution by adsorption: A review, Advances in Colloid and Interface Science, 209, p. 172-184.

How to cite: Solińska, A. and Bajda, T.: The low-cost hybrid sorbents for immoblization of dyes: sorbents features characterization, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13944, https://doi.org/10.5194/egusphere-egu2020-13944, 2020.

Lead contaminated soils occurred at lead-acid battery manufacturing and recycling sites are of great concern. Bench-scale batch experiments of stabilization treatment were conducted using twelve materials and three phosphorus-based materials, KH2PO4(KP), KH2PO4:oyster shell power = 1:1 (by mass ratio; KSP), and KH2PO4:sintered magnesia = 1:1(by mass ratio; KPM), were screened out for lead contaminated soil in an abandoned lead-acid battery factory site. The three materials had higher remediation efficiencies that led to a 92% reduction in leachable Pb and 12% reduction in bioaccessible Pb with the addition of 5% material, while the acid soluble fraction of lead decreased by 41–46%. The lead activity in the soil solution sharply decreased treated by three materials. Pb5(PO4)3Cl was the primary mineral controlling lead solubility in soil treated by KP and KSP and lead activity was related to Pb5(PO4)3OH and Pb5(PO4)3Cl in soil amended with KPM.

How to cite: Zhang, Z., Guo, G., and Li, F.: Efficiency and mechanism of lead stabilization in soil of lead-acid battery contaminated site with phosphorus-based materials, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21195, https://doi.org/10.5194/egusphere-egu2020-21195, 2020.

EGU2020-22214 | Displays | SSS7.5

Moringa oleifera seeds for single and simultaneous removal of Pb2+ and Cd2+ from aqueous solutions

Mohamed Abatal, Yaneth Stephanie Durán Avendaño, M. Teresa Olguin, and Joel Vargas

In this study, we report the effectiveness of natural and NaOH treated Moringa oleifera seeds for single and simultaneous Pb2+ and Cd2+ from aqueous solutions. The biosorbent was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. The pH of point zero charge (pHpzc) was determined. Effects of contact time (15-1440 min), pH of solutions (2-10), mass of biosorbent (0.1-0.5 g) and initial metal ion concentration (10-1000 mg/L) were investigated using batch tests. The results show the pretreatment of biosorbent by NaOH improve significantly uptake capacity (mg/g) of the metal ions (q (Pb2+) = 38.45 and q (Cd2+) = 17.32 ˃ q (Pb2+) = 31.45 and q (Cd2+)= 14.67). Kinetic studies shown that the more than 90 % uptake of ion metals occurring within 120-180 min and the experimental data were better describe by a pseudo-second-order model. The sorption data for non-treated and NaOH treated Moringa oleifera seeds were evaluated by the Freundlich isotherm models to describe the adsorption equilibrium.

How to cite: Abatal, M., Durán Avendaño, Y. S., Olguin, M. T., and Vargas, J.: Moringa oleifera seeds for single and simultaneous removal of Pb2+ and Cd2+ from aqueous solutions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22214, https://doi.org/10.5194/egusphere-egu2020-22214, 2020.

EGU2020-13786 | Displays | SSS7.5

Activation of persulfate by different biochars for the degradation of sulfamethoxazole

Ioannis D. Manariotis, Liana Kemmou, Elena Magioglou, Zacharias Frontistis, John Vakros, and Dionissios Mantzavinos

Advanced oxidation processes (AOPs) based on persulfates have become very popular for in-situ water/wastewater treatment since persulfates are more stable and less costly than other oxidants such as hydrogen peroxide. The conversion of persulfates to sulfate radicals requires an activation agent, including transition metals, high temperature, ultraviolet irradiation, ultrasound irradiation, and microwaves. Recently, there have been several reports concerning the use of carbonaceous materials such as graphene, graphene oxide, carbon nanotubes, and activated carbons as persulfate activators. Biochars, the solid residue produced from biomass thermal decomposition with no or little oxygen at moderate temperatures, are low-cost materials with high surface area and desirable physicochemical properties in terms of pore size distribution, the number of functional groups, and minerals that can be employed as catalytic supports.

The aim of this work is to test whether biochar produced from malt spent rootlets (MSR) and olive kernels are suitable activators of persulfates for the degradation of sulfamethoxazole (SMX) under various operating conditions and aqueous matrices.  Olive kernels and MSR were pyrolyzed at 850 and 900oC, respectively.  The actual matrix effect on degradation was minor and so was the effect of radical scavengers. Persulfate activation seems to occur on the biochar surface through interactions with the surface functional groups, generating radicals that are not released in the solution.

How to cite: Manariotis, I. D., Kemmou, L., Magioglou, E., Frontistis, Z., Vakros, J., and Mantzavinos, D.: Activation of persulfate by different biochars for the degradation of sulfamethoxazole , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13786, https://doi.org/10.5194/egusphere-egu2020-13786, 2020.

SSS8.2 – Urban and Peri-urban Soils for sustainable development: properties, degradation status and management challenges

EGU2020-11269 | Displays | SSS8.2

INFILTRON package for assessing infiltration & filtration functions of urban soils

Laurent Lassabatere, Anne-Cécile De Giacomoni, Rafael Angulo-Jaramillo, Gislain Lipeme Kouyi, Matteo Martini, Cédric Louis, Pierre-Emmanuel Peyneau, Veronica Rodriguez-Nava, Benoit Cournoyer, Axel Aigle, Emmanuelle Bergeron, Jérémie Bonneau, Sofia Bouarafa, Yannick Colin, Paola Concialdi, Simone Di Prima, Wessam Galia, Thanh Huong Lai, Arthur Marais, and Marjolet Laurence and the following co-authors

The extension of urban and peri-urban areas and the related artificialization of soils drastically impacts the water cycle as well as biogeochemical cycles. In particular, the sealing of soils with impervious surfaces such as roads increases runoff and decreases concomitant infiltration. At the catchment scale, more significant amounts of stormwater must be collected and managed to prevent from flooding urban areas and mitigate discharge to the environment. Sustainable Urban Drainage Systems (SUDS) were developed to alleviate these problems. These systems allow the restoration of one of the main functions of urban and peri-urban soils, i.e., infiltrating stormwater. They simultaneously reduce the risk of flooding and increase groundwater recharge. Another essential service must be ensured and optimized: the removal of pollutants from infiltrating water by the soil, to avoid the degradation of the quality of the groundwater.

The INFILTRON project aims to design a methodology for the assessment of infiltration and filtration of pollutants by SUDS. The project is a collaboration of many partners, with expertise in soil physics, urban hydrology, nanoparticle engineering, and modeling, to engineer a specific device for the simultaneous monitoring of water infiltration and pollutant filtration. This infiltration device both infiltrates water and injects nanoparticles (NPs) into the soil. It was sized to account for preferential flow, which is known to have a significant impact on infiltration and pollutant transfer. The engineered NPs were designed to be detectable in the ground using ground-penetrating radar (GPR) and to mimic the transfer of nano-pollutants (emerging pollutants, bacteria, etc.) commonly found in real stormwater. An infiltration-filtration model was developed to interpret the experimental data and to quantify two indicators for the assessment of water infiltration and pollutant filtration. INFILTRON will provide a very interesting toolbox for practitioners and stakeholders for the evaluation of the infiltration and filtration functions of not only SUDS within the framework of stormwater management, but also anthropized soils within the management of urban and peri-urban areas.

How to cite: Lassabatere, L., De Giacomoni, A.-C., Angulo-Jaramillo, R., Lipeme Kouyi, G., Martini, M., Louis, C., Peyneau, P.-E., Rodriguez-Nava, V., Cournoyer, B., Aigle, A., Bergeron, E., Bonneau, J., Bouarafa, S., Colin, Y., Concialdi, P., Di Prima, S., Galia, W., Lai, T. H., Marais, A., and Laurence, M. and the following co-authors: INFILTRON package for assessing infiltration & filtration functions of urban soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11269, https://doi.org/10.5194/egusphere-egu2020-11269, 2020.

EGU2020-441 | Displays | SSS8.2 | Highlight

Effectiveness of green areas and impact of the spatial pattern on water infiltration within cities

Carla Ferreira, Barbara Frigione, Milan Gazdic, Michelle Pezzagno, and António Ferreira

Soil is a non-renewable resource subject to increasing degradation favoured by human activities, such as the creation of impervious surfaces. Driven by increasing global population, soil sealing became a major challenge due to growing expansion and its impact on decreasing ability of soil to provide ecosystem services. In order to mitigate the environmental and social impacts of sealing, a worldwide interest in greening the cities have been noticed among politicians and stakeholders. Urban green areas provide benefits for the urban water cycle, namely through reducing stormwater runoff and flood hazard. The effectiveness of green areas inside the cities on runoff reduction, is still not well understood. This is partially due to the role of complex landscapes, including distinct urban types (e.g. residential vs commercial) and spatial patterns, on rainfall-runoff processes. This study aims to investigate the impact of different spatial patterns of sealing and green areas on surface runoff. Inspired on the spatial patterns of green areas observed in several Portuguese city centres crossed by rivers, three spatial patterns were investigated: dispersed gardens with a narrow green strip along the stream (SS); small gardens along contours, with a large green strip downslope (HD); linear gardens along the slope, with a large green strip downslope (VD). The impact of these three patterns was assessed through lysimeter experiments, using concrete blocks to simulate sealed surfaces and turfgrass to mimic gardens. All the configurations included 60% sealing and 40% greening, which is the maximum allowed in several Portuguese municipalities for urban areas. The lysimeters have an area of 1.24 m2 and a depth of 0.15 m, filled with sandy loam soil (1.4 kg/m3) bellow the pavement and the turfgrass, and are placed with a 13º-16º slope. The lysimeters were installed in October 2019 and are subject to natural rainfall. After each storm, runoff and leachate measurements have been performed. Three soil moisture sensors were installed per lysimeter, at 10 cm depth, and provide continuous records with 5 min intervals. Rainfall data is collected with a rain gauge installed nearby, with a 5 min resolution. Results show that 40% turfgrass is able to cope with the majority of rainfall and runoff from upslope paved surfaces. Runoff coefficient is typically less than 2% and attained a maximum of 4% during the largest (40 mm) and more intensive storm (9.4 mm/h). Although increasing soil moisture slightly enhances runoff generation, the spatial patterns investigated at small scale did not show significant impacts on rainfall-runoff processes. Turfgrass revealed effective to retain and infiltrate rainfall and runoff from paved surfaces. It may provide an adequate solution to mitigate the impact of urbanization on the water cycle and flood hazard within cities.

How to cite: Ferreira, C., Frigione, B., Gazdic, M., Pezzagno, M., and Ferreira, A.: Effectiveness of green areas and impact of the spatial pattern on water infiltration within cities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-441, https://doi.org/10.5194/egusphere-egu2020-441, 2020.

EGU2020-21200 | Displays | SSS8.2

An Analysis of Soils in Various Type of Urban Green Spaces Based on the Soil Organic Matter Quality

Hanmin Choi, Youjin Kim, Inhye Seo, and Gayoung Yoo

Urban soil is the foundation of ecosystem functioning in urban green spaces, which plays an important role in sustainable urbanization. To maintain the ecosystem services provided by urban green space, it is important to manage and monitor the urban soil using appropriate evaluation parameters. Given that the urban soil is under direct and indirect influence of anthropogenic factors, the characteristics of urban ecosystem should be considered when assessing the soil quality. My research group already suggested a new soil quality parameter set for urban roadside soils, which is composed of soil penetration resistance (PR), pH, the C/H ratio of particulate organic matter (POM-C/H), POM-N, and soil microbial respiration (RES). This parameter set indicated that the urban soil has very unique quality of soil organic matter (SOM) and it should be considered as well as SOM quantity when assessing the urban soil status. In this study, we aimed at assessing the SOM quality in various types of urban green space using the C/H ratio and N of POM and analyzing the relationship between SOM quality and soil RES. Soil RES was regarded as a representative parameter for overall soil health and used as a dependent variable. The study was conducted in three different types of urban green spaces, which are roadside, urban park, and riverside green in Seoul, Korea. In each type of green space, three sites were selected varing in the degree of human disturbance. Soil samples were collected from the 0-15 cm depth, passed through 2mm sieve and dried before analysis. The POM was separated after wet sieving using 53 um screen and the C, N, and H contents of POM were measured using combustion analysis using the Carlo Erba NS Analyzer Carlo Erba, Milan, Italy). We calculated the POM-C/H as a proxy for aromaticity, which increases with high non-degradable OM. To trace the source of SOM, we measured the N stable isotope ratio of POM (POM-δ15N). On the same day of soil sampling, soil RES was measured on-site using the EGM CO2 Gas Analyzer PP Systems, MA, USA). We performed multiple regression to analyze the relationship between SOM quality and soil RES. The POM C/H was higher in roadside soil than urban park, which means the urban roadside soil has a significantly higher amount of non-biodegradable compounds such as PAH. This further implies that OM quality is significantly different among types of urban green spaces. Using the POM delta N value, we found that OM in the roadside soils was originated from sewage sludge, animal urine/feces as well as atmospheric deposition. Analysis of OM source tracing in the urban park and riverside soil will be conducted. There was a negative correlation between POM C/H ratio and soil RES, which indicates the poor soil health condition partly due to low OM quality. In conclusion, this study clarifies the importance of OM quality for assessing the soil in urban green spaces affected by anthropogenic factors and indicates that the SOM quality management needs to be established.

How to cite: Choi, H., Kim, Y., Seo, I., and Yoo, G.: An Analysis of Soils in Various Type of Urban Green Spaces Based on the Soil Organic Matter Quality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21200, https://doi.org/10.5194/egusphere-egu2020-21200, 2020.

Urban green spaces regulate city air temperatures, particularly mediating the urban heat island effect. Urban below ground temperature regulation is less studied, but known to have a significant effect on urban heating by regulating temperature through heat transfer and thermal conductivity. The impacts of climate change, such as the increased frequency and intensity of heatwaves, will exacerbate urban heating effects, having significant impact on urban citizens. We installed low cost temperature sensors in topsoils across a gradient of urban green spaces (parking lots, rewilded areas, managed grassland, biodiversity plots, woodland) in the Cranfield Urban Observatory (UK). The soil temperture sensors measured continously during June and July 2019 and included two periods of record breaking heatwaves in Europe in late June and July.  As expected, the results showed significant variations in soil temperature between the urban green space types, where parking lot soils showed higher and flasher temperature regimes compared with all other green spaces.  Urban woodland had significant dampening effects on soil temperatures. The managed green spaces responsed differently to the heatwave events and grassland soils retained heat for longer compared with areas planted with wildflower mixes (biodiversity plots).  Therefore, urban planning should prioritise the type of green spaces within urban developments to take into account the different regulatory effects of heat, particulaly under the projected effects of a changing climate.

How to cite: Hannam, J. and Nandozi, C.: Using low cost sensors to assess soil temperature response to summer heatwaves in urban greenspaces. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18007, https://doi.org/10.5194/egusphere-egu2020-18007, 2020.

EGU2020-20260 | Displays | SSS8.2

Urban soil ecosystem services: contributing to sustainable urban development

Jessica Davies, Roisin O'Riordan, Carly Stevens, John Quinton, and Chris Boyko

Soil in urban areas has largely been left out of traditional soil research, however, there is now a growing interest in its importance due to the key role that cities will play in a more sustainable future. Soil provides vital ecosystem services, and these are becoming more pertinent for cities as the population of urban areas continues to grow. Services such as flood regulation, urban food growing, urban heat island mitigation and carbon storage, as well as cultural and recreational services, are unpinned by the healthy functioning of soils.

The role of urban soil in providing ecosystem services in urban areas is understudied, and the complexities of understanding and quantifying soil ecosystem services has yet to be translated to the varied and highly heterogeneous context of cities. In this work, we will review the literature on soil ecosystem services in cities and present a state-of-the-art picture of current knowledge.

We will discuss the variation of urban soils, their treatment and management in urban areas, and the associated difficulty in investigating and classifying them. The trends of urban soil ecosystem services research will be presented, considering which services have been most commonly studied across supporting, provisioning, regulating and cultural categories; and in which countries. A co-occurrence analysis of key terms in the literature will also be presented, highlighting further patterns and gaps in knowledge. This will also lead to a discussion on the key drivers behind the soil threats in urban areas, such as soil compaction, sealing with impervious surfaces and contamination.

The most studied services will be investigated further to allow a more detailed discussion into what we know about these services, and the impacts of urbanisation on their provision. This presentation will bring together the growing body of work on this relatively new research area, will identify gaps in our knowledge, and will highlight the impacts of urbanisation for urban soils. This will inform the way we treat and manage soil in urban areas, helping to optimise the provision of urban soil ecosystem services and contributing to more sustainable urban development for the future.

How to cite: Davies, J., O'Riordan, R., Stevens, C., Quinton, J., and Boyko, C.: Urban soil ecosystem services: contributing to sustainable urban development , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20260, https://doi.org/10.5194/egusphere-egu2020-20260, 2020.

EGU2020-5963 | Displays | SSS8.2 | Highlight

Nature-based solutions for urban resilience

Zahra Kalantari, Andrea Gadnert, and Carla Sofia Santos Ferreira

Nature-based solutions have the potential to provide a wide range of essential ecosystem services as well as water management goals. As the majority of the global population lives in cities, NBS for addressing water management in urban areas is of great importance. Despite the recent advances and growing experiences with the implementation of NBS, there is still below 1% of the total investment in water resource management infrastructure that is dedicated to NBS in urban areas? One of the current obstacles for implementation is the lack of knowledge, data and information about the design and implementation of NBS for water management. Although there has been a growing interest in NBS in recent years, there are still a large need for a comprehensive evidence based on the effectiveness of NBS. Therefore, there is also a need for monitoring both the process of implementing NBS as well as the outcomes, including the final benefits of the NBS, how the NBS is perceived and how it responds to the challenge for which it was implemented.  The aim of this study is to assess the effectiveness of nature-based solutions (NBS) for urban resilience in particular for water management in different climate zones, focusing on cities that have worked or are planning to work extensively with NBS. This study explores which opportunities and barriers current regulatory frameworks and management practices imply and how the former can be reaped and the latter overcome, for implementation of effective NBS. The study focuses on the analysis of available data bases of NBS in different cities This study also creates an inventory of indicators used to assess the NBS effectiveness, covering a range of social, economic and technical aspects.

How to cite: Kalantari, Z., Gadnert, A., and Ferreira, C. S. S.: Nature-based solutions for urban resilience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5963, https://doi.org/10.5194/egusphere-egu2020-5963, 2020.

EGU2020-11491 | Displays | SSS8.2

Mapping soil multifunctionality for urban planning: how to deal with limited knowledge on soils?

Tom Leroi, Cécile Le Guern, Béatrice Béchet, Christophe Ducommun, Joël Moulin, Bertrand Laroche, Clémentine Duvigneau, Catherine Keller, Catherine Néel, Fabienne Marseille, and Philippe Branchu

Urban planning historically considers soils as a support for infrastructures. Hopefully, awareness is increasing on the fact that soils offer many more services than just this one, thanks to their various functions. It is therefore necessary to develop methodologies and tools that allow the urban planners to take into account the opportunities and constraints associated to soils. Considering the existing quality indexes already developed by the researchers, we faced within the MUSE project various difficulties and in particular the lack of knowledge on urban soils in France. We therefore developed a methodology to deal with limited knowledge on urban soils and tested it first on the Nantes metropolis territory (France). Our aim was to map each soil function as well as a soil multifunctionality in such a way that urban planning documents may refer to them.

The aim of the multifunction map is to help protecting soils that show various functions, including patrimonial functions. We therefore considered the following functions: carbon storage, water storage and infiltration, storage and filtration of contaminants, agronomic potential, biodiversity reservoir. We did not consider the support and natural resources provision functions. According to the level of knowledge on soils (local/regional/national scales, direct/indirect), we considered three mapping approaches (statistical, global, and calculation) to build function maps, and interpreted them in terms of soil function index (SFI) map. To build the soil multifunctionality quality index (SMQI) map, we crossed the various function index maps using a ponderation according to the territorial issues. These issues derive from discussions with the urban planners of the local authority and the number of functions assessed on each part of the territory (some functions not mapped in the city center). We carried out discussions with the urban planners all along the methodological development process to ensure applicability of the index map produced.

The results obtained are very satisfying considering the level of knowledge on soils. The urban planners of the local authority clearly imagine how to use both the soil function maps as well as the soil multifunctionality quality index map. We are nevertheless aware of the limits due to the use of data with different scales of validity (eg. 1 / 250 000 for pedological map; 1/10 000 for soil land-use model; statistical data on C and biodiversity at pedoclimatic scale vs national scale). The comparison with local punctual data helps verifying the degree of confidence of the maps. The methodological development is currently being adjusted and tested on other cities (in particular Marseilles and Châteauroux, France) and further discussed with urban planners at national scale. Efforts are necessary to build a wider and more precise knowledge on urban soils by gathering and sharing existing data. This implies building reference knowledge and by defining the most useful properties to acquire in a systematic way to characterize soils so as to optimise urban planning and development.

How to cite: Leroi, T., Le Guern, C., Béchet, B., Ducommun, C., Moulin, J., Laroche, B., Duvigneau, C., Keller, C., Néel, C., Marseille, F., and Branchu, P.: Mapping soil multifunctionality for urban planning: how to deal with limited knowledge on soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11491, https://doi.org/10.5194/egusphere-egu2020-11491, 2020.

EGU2020-4025 | Displays | SSS8.2

Mapping groundwater recharge in Vilnius urban and peri-urban area (Lithuania)

Katazyna Miksa, Miguel Inacio, Marius Kalinauskas, Eduardo Gomes, and Paulo Pereira

Urban sprawl is decreasing the groundwater recharge by sealing the soils. In several cases, this expansion occurs were soils have the highest quality and infiltration capacity.  Soil sealing destroys the soil functions and reduces drastically the capacity to store water and regulate floods. The objective of this work is to map groundwater recharge capacity in Vilnius urban and peri-urban areas (urban atlas). To model groundwater recharge capacity, we used several variables such as lithology, geomorphology, slope, topographic wetness index, river network, tectonic faults, topographic position index, soil sand content and depth, precipitation, and land use. The model was validated using soil clay content. Drainage and tectonic faults density were calculated using the line density tool. Data was reclassified and overlaid applying the fuzzy overlay method. The results showed that the areas most urbanized and located in steeper slopes have the lowest values of groundwater recharge capacity. On the other hand, flat areas in sandy soil areas had the highest capacity. The model had an acceptable validation performance (r2=0.52).

This work was funded by the European Social Fund project LINESAM No. 09.3.3-LMT-K-712-01-0104 under grant agreement with the Research Council of Lithuania (LMTLT).

How to cite: Miksa, K., Inacio, M., Kalinauskas, M., Gomes, E., and Pereira, P.: Mapping groundwater recharge in Vilnius urban and peri-urban area (Lithuania), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4025, https://doi.org/10.5194/egusphere-egu2020-4025, 2020.

EGU2020-13838 | Displays | SSS8.2

Mapping former industrial and service activities to anticipate contamination issues for urban planning and redevelopment

Blandine Clozel - Leloup, Cécile Le Guern, and Vivien Baudouin

Anticipating soil contamination problems is a key issue for urban redevelopment and planning. Indeed, it is important to avoid unexpected delays and costs as well as bad image in case of unexpected pollution problem. It is also useful in order to optimize soil functions and services. In this frame, we show the interest of mapping historical (potential) sources of contamination, based on the example of (former) industrial and service activities (eg. gas station) that are a main source of contamination in the urban environment of (former) industrial countries. In particular, we present a detailed geographical information system developed in France and its several possible options.

The methodology uses the public existing inventories on (potentially) contaminated sites (basic site knowledge and point localization), completed by deeper archives searches. In this frame, we gather administrative details such as the nature of activities, their date of beginning and duration, the nature of the chemical products/materials used/created by the activities, their address and maps that are collected with great care. We then use a GIS to contour the geographical area of each site after maps adjustment and fill in the associated database. We then adapt the interpretation and visualization options according to the needs of the operating partner (urban developer, planners, city…) and the size of the studied territory. One option for instance consists in digitalizing all the known potentially contaminated sources within each site. Another option proposes an interpretation of the potentially contaminated surfaces in terms of potential contaminants.

The results consists in interactive maps synthetizing information spread in various archives since the 1800s about industrial and service activities. The territorial historic synthesis allows a gain of knowledge compared to the site-to-site approaches usually applied. We will show how this information, easily available thanks to GIS application, is already applied to set up in situ investigations programs preliminary to large redevelopment projects (eg. at district scale) or to anticipate contamination issues during street work (eg. buried infrastructure) and how it begins to be also applied for management of excavated soils.

Although it is impossible to map 100% of the former sites, the knowledge is very useful to limit contamination problems in the way it helps localizing precisely potential point-source contamination sources linked to (former) industrial and service activities. It is complementary to other knowledge on source contamination such as anthropogenic deposits that are another main source of urban soil contamination.

How to cite: Clozel - Leloup, B., Le Guern, C., and Baudouin, V.: Mapping former industrial and service activities to anticipate contamination issues for urban planning and redevelopment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13838, https://doi.org/10.5194/egusphere-egu2020-13838, 2020.

Abstract: The increasing atmospheric carbon dioxide (CO2) and nitrogen (N) deposition along with human activities had important effects on soil properties and influenced ecosystem service (ES) delivery. Since GFGP (Grain for Green Project) implementation in China, dominant ES in Loess Plateau such as soil conservation and carbon storage increased substantially. However, there are few researches on ecological mechanism to explain provision of multiple ES, which may result in weak theoretical foundation to support policy and management. Here, we assess the impact of different land uses (forest, shrubland, grassland, cropland and orchard) on soil properties (texture, moisture, SOC, TN, TK, TP, C:N ratio) at different depths (0-100 cm) in Yanhe watershed (China). The results showed that soil texture sand and silt content were significantly higher in shrubland than in orchard and cropland, while clay content was significantly higher in forest. No differences were observed in soil moisture. Similar results were identified in TP and TK. SOC was significantly higher in forest soils compared to other land uses while TN had the lowest values among land uses, which cause carbon storage ES increased after transforming cropland to forest and grassland. Though there were significant differences in SOC and TN, the C:N ratio was significantly consistent in different depths and land use types. In addition, Redundancy analysis revealed that altitude and precipitation were the factors that influenced more soil properties.

 

 

 

How to cite: Yang, S., Zhao, W., and Pereira, P.: Effects of depth and land use on vertical soil properties and their contributions to ecosystem services in Yanhe watershed, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-954, https://doi.org/10.5194/egusphere-egu2020-954, 2020.

EGU2020-1109 | Displays | SSS8.2

Catchment land use and river morphological changes effect on flow and pollution load of Halda River: implication in integrated river management

Shyamal Karmakar, Md. Enamul Hoque, M M Abdullah Al Mamun, Mohammad Ayub Parvez, Srijon Datta, Md. Nazrul Islam, Mir Enamul Karim, and Mohammad Shafiul Alam

Halda River originated and ends inside Bangladesh, is a unique natural carp spawning habitat that underwent a massive channel modification, intensive land use and land cover changes across its basin both in the upstream and downstream area over the decades. The carp fish breeding habited is heavily disturbed that marked by a significant reduction in fish spawning in recent years. The fish habitat of this river is reported as critically endangered in many studies. However, these problems are not studied in a hydrological perspective apart from fish spawning characterization and water quality nexus. We have studied the flow regime of the catchment for different seasons and its effects on water quality, siltation, and erosion of this river at 12 cross-sections at the upper course and middle course. Water level and discharge data that are available from the regulatory authority, Bangladesh Water Development Board for the last 40 years at an upstream cross-section and rainfall data at 4 stations of the catchment were studied and integrated to understand nutrient load using QSWAT. The upstream-downstream linkage is heavily regulated followed by the construction of an earthen dam and rubber dam on its major tributaries at upstream for irrigation to the agricultural land that was revealed from this study and field visits. Moreover, basin land-use and land-cover change would have a significant contribution to sediment dynamics eventually causing siltation and erosion in downstream cross-section. The increase in agricultural land that altered forest vegetation would affect runoff characteristics and water quality. We have reported that the change in sediment load and siltation in its downstream and at different hydraulic structure points (here sluice gate, irrigation canals, and embankments) would be attributed to land-use change and flow regulation. This study reports the relationship to the hydraulic response viz. discharge, the water level of this river system to the catchment land use and siltation. Floods are more likely to occur in the downstream region compared to the upstream region in the same hydro-meteorological regime in this basin as it revealed from the river section changes over time.

How to cite: Karmakar, S., Hoque, Md. E., Mamun, M. M. A. A., Parvez, M. A., Datta, S., Islam, Md. N., Karim, M. E., and Alam, M. S.: Catchment land use and river morphological changes effect on flow and pollution load of Halda River: implication in integrated river management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1109, https://doi.org/10.5194/egusphere-egu2020-1109, 2020.

EGU2020-18003 | Displays | SSS8.2

Exploring the potential for using hierarchical sediment fingerprinting as an urban management tool in monitoring changing sediment sources

Rory Walsh, Carla Ferreira, William Blake, Sam Higton, and Antonio Ferreira

An ability to identify and quantify changes in sediment sources and erosion within catchments would be of great use for landscape managers and planners. This is particularly the case in peri-urban catchments, which are characterized by complex and dynamically changing land-use mosaics – and where today’s planning decisions may be crucial as regards avoiding or exacerbating erosional, water quality and flooding problems. This study explores the potential for a sediment fingerprinting approach to provide a cost-effective way of assessing changes in sediment sources within a small peri-urban catchment. The study focuses on the Ribeira dos Covões catchment (6.2 km2), on the outskirts of Coimbra in central Portugal. The climate is humid Mediterranean and the geology is 56% sandstone, 41% marly limestone and 3% alluvium. Current land-use is 56% woodland, 4% agricultural and 40% urban (mainly residential, but also a recently constructed enterprise park (5%) and major highway (1%)). Recent urbanization has largely occupied former agricultural land. The study adopts a multi-proxy sediment fingerprinting approach, based on geochemical (elemental) characterization of fluvial fine bed-sediment and soil samples, using a Niton x-ray fluorescence elemental analyser. Sampling of fluvial sediment was carried out at 33 sites within the stream network (including all significant tributaries, downstream sites and the catchment outlet). Samples were collected in July 2018 and November 2018 following contrasting ‘late wet season’ and ‘end of dry season’ events. In addition, in July 2018 composite samples of potential sediment sources were collected, including (i) soil surface (0-2cm) samples at 64 representative locations, (ii) 17 samples from eroding channel margin sites, and (iii) 15 samples of road sediment. All samples were sieved to obtain <63µm, 63-125µm, 125-250 µm and 250-2000µm fractions, where the <63µm fraction was taken to represent suspended sediment. The elemental geochemistry of each sample fraction was derived using the XRF analyser. Differences (and similarities) in geochemical signatures between the various tributaries and the various potential sources were assessed using a range of statistical techniques. Bayesian unmixing models were used in a hierarchical (confluence-based) fashion to assess the contributions of different sub-catchments to downstream sites including the catchment outlet. Modelling results were then compared with relative contributions for three previously analysed storm events of 2012-2015, at which time construction activities had been more active. Modelling results for the two 2018 events were also validated by comparing them with independent suspended sediment records collected at five locations on the principal tributaries and at the catchment outlet. Overall, the modelling was successful in indicating and quantifying significant changes in sediment sources through time within the catchment. Reasons as to why sediment fingerprinting was successful in this case are then examined and discussed, in part drawing comparisons with the findings from a parallel sediment fingerprinting study of changing sources in the dynamically changing partly logged rainforest, partly oil palm Brantian catchment in Sabah, Malaysian Borneo. The potential for a simple sediment fingerprinting methodology to be developed for more widespread use by urban/environmental managers and planners is then explored.  

How to cite: Walsh, R., Ferreira, C., Blake, W., Higton, S., and Ferreira, A.: Exploring the potential for using hierarchical sediment fingerprinting as an urban management tool in monitoring changing sediment sources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18003, https://doi.org/10.5194/egusphere-egu2020-18003, 2020.

EGU2020-20417 | Displays | SSS8.2

Analyzing social media photo posts distribution as a potential indicator for UGBI user preferences: the case of Coimbra, Portugal

Luis Pinto, Carla Ferreira, Paulo Pereira, and António Ferreira

The Ecosystem Services provided by Urban Green and Blue Infrastructures (UGBI) are considered fundamental to improve the resilience of urban areas against the growing challenges of global warming. Indicators regarding the relevance and efficiency of UGBI are abundant, but they have been mainly focused on environmental related aspects, while the socio-cultural aspects of UGBI are still under represented. Considering the socio-cultural and recreational aspects, studies show that UGBI can significantly contribute for quality of life, sense of place, social interactions, physical wellbeing, learning, and other intangibles. A major and growing portion of recreation is indeed “nature-based", involving interactions with the natural environment. 
For these types of activities, different characteristics of the environment influence people’s decisions about where, when, and how to recreate. But fine-scale data collection regarding these aspects are usually site specific, and time and labour intensive. Wood et al. (2013) showed that the number of users who visit a location annually is related to the number of photographs taken in the same area and uploaded to the flickr database. 
Using the InVEST recreation model, this work aims to (1) test social media photo posts on Flickr as an indicator for the use of UGBI, and to (2) analyze its potential correlation with a set of cultural and recreational equipment in and around UGBI units. 
Two different periods are analyzed, with the intention to identify and evaluate the differences introduced with the implementation of a major city park near the river Mondego. 
The results show that the presence of the river and the proximity to the city center - with its old town - are major factors in the recreational use of the UGBI. They also show that the implementation of new UGBI units - under the form of a city park - can change the usage pattern of an area.

How to cite: Pinto, L., Ferreira, C., Pereira, P., and Ferreira, A.: Analyzing social media photo posts distribution as a potential indicator for UGBI user preferences: the case of Coimbra, Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20417, https://doi.org/10.5194/egusphere-egu2020-20417, 2020.

SSS8.8 – Ecosystem development and critical zone research: Experimental ecosystem development research and coevolution of soils, landforms and vegetation

Opencast mining has altered large areas in many countries, generating major environmental impacts, whose restoration is an urgent need. The effective restoration of opencast mines is a complex process, hampered primarily by the total elimination of vegetation and soil. In the absence of plant cover, these areas may be subject to wind and water erosion, or leaching, polluting rivers, streams, aquifers, and arable lands, as well as being unsightly. Although revegetation of mine wastes can occur naturally, if given time, the process could be extremely slow due to the toxicity, and physical and nutritional shortcomings that wastes often present. Several revegetation approaches have been undertaken worldwide to promote faster vegetation development. However, the results have often been discouraging by a lack of knowledge of the ecological principles involved; the soil is one of the most important limiting factors for vegetation establishment in mine lands.

Topsoil addition over coal-mine wastes in northern Spain favours the establishment of native vegetation by improving physico-chemical and biological soil properties. Without topsoil, vegetation establishment is extremely slow resulting in very unstable plant communities even 40 years after the stop of mining. The addition of herbaceous plant seeds by hydroseeding is frequently used to compensate for the seeds scarcity in the added topsoil. However, hydroseeding is not always successful because of the use of commercial mixtures of non-native seeds. In any case, the installed grassland is being colonized by woody species from the surrounding forest. The structure of the new plant community varies not only in time (succession) but also in space (distance to the seed source), and the process is strongly determined by interactions between the forest edge and the initial grassland patch. The colonization pattern of woody species is affected by fine-scale variations in abiotic factors, including soil properties, which change from the forest to the mine. The native shrubs that colonize the mines (Genista florida and Cytisus scoparius) facilitate the establishment of native oaks (Quercus pyrenaica and Q. petraea) and thus the natural forest expansion. One of the mechanisms driving this facilitation shrub-tree process is the soil improvement mediated by native shrubs. Also, hillside topography, common in mines located in the mountains, has certain peculiarities regarding revegetation in flat areas since there is a segregation of vegetation along the slope with grasslands occupying the upper parts and shrublands of legumes the lower parts.

In order to improve the decision-making during restoration management, it is necessary to be based on the knowledge of the mechanisms that condition the establishment of vegetation and the underlying succession processes. The long-term monitoring of existing experimental devices and their extension to other areas and restoration objectives are essential to establish a protocol of performance to adjust decisions to the particular circumstances of each area to be restored and thus reconcile environmental restoration with the economic activity of the area.

How to cite: Martínez-Ruiz, C.: Dynamics and patterns of plant development in restored mining areas. Practical examples, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4209, https://doi.org/10.5194/egusphere-egu2020-4209, 2020.

EGU2020-12770 | Displays | SSS8.8

Advancements from Long-Term Research on Woody Plant Encroachment in the Western United States: the Hydrology Component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP)

C. Jason Williams, Frederick B. Pierson, Patrick R. Kormos, Osama Z. Al-Hamdan, Sayjro K. Nouwakpo, Viktor O. Polyakov, and Justin C. Johnson

Mitigating and reversing negative ecohydrologic impacts of woody plant encroachment is of global concern. Current knowledge on the ramifications of woody plant encroachment and landscape responses to management is largely based on short-term or point-in-time field studies. The limited longevity of these studies is often dictated by the short-term nature of funding sources and associated infrastructure. Short-term studies advance process-based ecohydrologic knowledge of natural systems and yield valuable insight on treatment effects for various practices to mitigate woody plant encroachment. However, scientists, public and private land owners, and policy makers require knowledge of long-term effectiveness of treatment practices and associated conceptual and quantitative tools to successfully target land management expenditures and actions. This presentation highlights science-based knowledge and ecohydrologic model advancements in management of woody plant encroachment over a nearly 15 yr study period associated with ecohydrologic research at multiple sites in the sagebrush biome within the Great Basin Region of the western United States (the SageSTEP study, www.sagestep.org). The sagebrush biome is considered one of the most ecologically important and imperiled rangeland domains in the United States. A primary driver of degradation to the sagebrush biome is encroachment by pinyon and juniper conifers. These encroaching trees can outcompete sagebrush vegetation for soil and water resources and ultimately propagate and perpetuate pinyon and juniper woodland conditions with extensive bare ground and amplified runoff and soil loss. This study evaluated the ecohydrologic impacts of pinyon and juniper encroachment on sagebrush steppe and the long-term effectiveness of various tree-removal practices to restore sagebrush steppe vegetation and associated ecohydrologic function. Experiments in the study include assessment of vegetation, ground cover, soils, and infiltration, runoff, and erosion processes spanning point to hillslope spatial scales prior to tree removal treatments and at time periods 1 yr, 2 yr, 9 yr, and 13 yr after tree removal. Research products include: 1) advances in conceptual and quantitative understanding of linkages in vegetation and hydrology and erosion processes for the sagebrush steppe ecosystem, 2) enhancements to various conceptual ecological models and the Rangeland Hydrology and Erosion Model (RHEM) tool, 3) advanced understanding of the effectiveness of various tree-removal practices across diverse conditions in the sagebrush biome, and 4) delivery of an extensive publicly-available dataset for developing, enhancing, and/or evaluating other conceptual and quantitative ecohydrologic and erosion models. Lastly, the collective advances in science-based knowledge and modeling tools from the study demonstrate the utility and value of funding and conducting long-term ecohydrological research, particularly for ecologically important biomes around the world.   

 

How to cite: Williams, C. J., Pierson, F. B., Kormos, P. R., Al-Hamdan, O. Z., Nouwakpo, S. K., Polyakov, V. O., and Johnson, J. C.: Advancements from Long-Term Research on Woody Plant Encroachment in the Western United States: the Hydrology Component of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12770, https://doi.org/10.5194/egusphere-egu2020-12770, 2020.

EGU2020-13190 | Displays | SSS8.8

Deciphering the pedogenic and sedimentary archives and long-term landform dynamics to reconstruct complex landscape evolution within a lowland gully catchment over the Holocene

Vladimir Belyaev, Ilya Shorkunov, Ekaterina Garankina, Evgeniy Konstantinov, Alexey Rusakov, Yulia Shishkina, Pavel Andreev, and Tatiana Verlova

For the landscape and climatic conditions of the Eastern European Plain fluvial processes are considered to be the leading geomorphic force during the Holocene. Different hierarchical levels of fluvial landforms from individual hillslopes through gully network to river systems are characterized by various degrees of resilience and relaxation times in response to external impacts of different duration, magnitude and frequency. These characteristics of fluvial systems largely depend on their spatial scale, effective discharges and morphodynamics. Particularly important is understanding of hydrological and geomorphic connectivity at various scales, rates and patterns of hydrological and sedimentary signals propagation and variable sources-pathways-sinks structure of geomorphic cascades under changing climate and land use conditions. It is generally accepted that landscapes of the European plains have experienced alternating periods of relative stability and significant shifts in climate, soil and geomorphological development over the Holocene. A number of studies has been devoted to the Holocene soil and gully erosion processes in Russia and other European countries. Available sources of information on the past erosion and deposition cycles in small catchments include truncated soils, completely or partially infilled gullies, colluvial deposits and lake or reservoir sediments. The highest temporal resolution may be derived from lacustrine sediments. Such geoarchives are characterized by continuous records and often store signals of landscape changes, surface dynamics and vegetation variability (including land use patterns for the historical period) in decadal to seasonal resolution. However, because of the problem of variable fluvial connectivity and associated limited sediment delivery in cascade fluvial systems, quantification of small catchment sediment budget can be a very difficult task requiring thorough consideration of colluvial deposits storages and remobilization.
This study presents the new results of multidisciplinary reconstruction of interaction of geomorphic and soil-forming processes, landscape changes and stabilization phases during the Holocene for the Puzbol gully catchment (about 7.95 km2) draining the Borisoglebsk Upland northeastern slope towards the Nero Lake (Yaroslavl Region, central European Russia). The study is based on complex geomorphic, lithostratigraphic and soil surveys by means of detailed field description, photo-fixation, sampling and laboratory analysis of materials from >40 natural or artificial exposures, cores and soil sections. Observed absence of the early Holocene deposits can be explained by generally negative sediment budget of the catchment. It was more likely caused by high-magnitude low-frequency runoff events associated with climatic extremes rather than by dominance of continuous moderate erosion. A series of the middle Holocene 14C dates obtained by analyzing total organic carbon from humic layers of buried soils, lake gyttja and peats provides strong evidence of the synchronous phase of landscape stabilization in both upper and lower parts of the Puzhbol catchment accompanied by active infilling of smaller tributary gullies along its banks at middle part. The upper part of the Puzhbol Gully fan sediment shows clear evidence of synchronous accumulation of agrogenic colluvium and gully alluvium since XIIth Century on top of the Nero Lake terrace deposits.
The study is supported by the Russian Science Foundation (Project No. 19-77-10061).

How to cite: Belyaev, V., Shorkunov, I., Garankina, E., Konstantinov, E., Rusakov, A., Shishkina, Y., Andreev, P., and Verlova, T.: Deciphering the pedogenic and sedimentary archives and long-term landform dynamics to reconstruct complex landscape evolution within a lowland gully catchment over the Holocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13190, https://doi.org/10.5194/egusphere-egu2020-13190, 2020.

Soil formation is a complex process that depends on topography, biota, bedrock, climate, and time. Despite of the great effort dedicated to explore soil evolution, little is known about the role of stochastic phenomena such as soil disturbance in spatial pedocomplexity formation in old-growth temperate forests. Within this study we aim to (i) reveal spatial pattern of chemical soil properties, (ii) explain differences in spatial pedocomplexity formation in A and B soil horizons.

The issue was studied in Zofinsky Primeval Forest Reserve (hereinafter Zofin) in SW Czech Republic. The Zofin has been strictly protected since 1838 and it represented the 4th oldest forest reserve in Europe. Zofin belongs to the global network of forest research plots ForestGeo (www.forestgeo.si.edu/) as the first site in continental Europe. We sampled 309 soil profiles on an area of 74 ha. In total 34 chemical soil properties were analysed in A and B horizons, particularly those, which affect soil evolution and tree growth. We analysed concentrations of Al, Fe, Mn, Ca, Na, Sr, Si fractions, characteristics of sorption complex (CEC, EA, base content), pH etc. 

We used descriptive statistics and geostatistics to spatial pedocomplexity study. The experimental variograms were modelled to fit them to the best theoretical distribution. From the theoretical distribution we calculated the spatial properties in each soil elements as the range, sill and nugget. Then, using AIC estimator, we selected the same best model for both horizons to compare the spatial parameters through parametric or not parametric statistical test depending on the normalization of the data.

The results indicate, for the first time, significantly longer ranges of spatial autocorrelation of soil properties in A horizon with comparison to B horizon, which is not common in geostatistical studies. It is most likely associated with rejuvenation of soil after tree uprooting. Neoformation of A horizon after soil disturbance proceeds quite rapidly and therefore some formerly disturbed A horizons are matured above immature B horizons. The range in both horizons for all chemical soil properties is independent (p-value <0.05), indicating that the driving factors for disturbance in horizon A and B are different. However, for rather biogenic soil properties as Mg, Ca, Na, EA, K there is dependence for horizon A and B (p-value>0.05), indicating similar effect of these elements in both horizons.

How to cite: Román-Sánchez, A. and Samonil, P.: Spatial pedocomplexity in old-growth temperate forest driven by tree-uprooting: its formation and role in forest dynamics , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15168, https://doi.org/10.5194/egusphere-egu2020-15168, 2020.

EGU2020-4952 | Displays | SSS8.8

Soil and sediment microbial structure and function in intermittent stream corridors after a decade of catchment succession

Jose Schreckinger, Aline Frossard, Linda Gerull, Mark O. Gessner, and Michael Mutz

Large-scale resource exploitation by open-cast mining severely alters landscapes and impairs key ecosystem properties such as soil and sediment structure and function. Understanding the ecological recovery processes starting from an initially bare landscape generated by destructive land-use is extremely limited. Here we took advantage of a 6-ha experimental catchment to assess microbial community structure and function in soils and stream sediments after 3 and 13 years of catchment succession. The catchment (Chicken Creek) was created in 2005 by depositing quaternary sands from a lignite mine forefield in northeastern Germany and has since been left to develop under undisturbed conditions. In the initial stage, 3 years after catchment construction, rills and small streams had formed and the sparse vegetation cover mainly consisted of forbs. Over the next 10 years, the geomorphology, hydrology, and vegetation structure underwent a major transformation. A nearly full vegetation cover established, including various tree, shrub and grass species. Increased evaporation lowered the shallow groundwater table and led to stream intermittency. These changes were accompanied by large modifications in the structure and function of the microbial communities in sediments and soils. Initially, microbial structure and function were strikingly disconnected, whereas linkages had established 10 years later, although some functions still remained disconnected. Potential enzymatic activities increased vastly over the course of 10 years and also became much less variable across seasons. Cyanobacteria, predominant in soils and sediments during the early successional stage, declined to become a minor component of the microbial community. Moreover, despite distinct flow intermittency of the streams, microbial structure and function distinctly differed between sediments and adjacent soils. These results demonstrate a rapid succession of microbial communities during a decade of ecosystem development, suggesting that undisturbed succession is a feasible catchment restoration strategy.

How to cite: Schreckinger, J., Frossard, A., Gerull, L., Gessner, M. O., and Mutz, M.: Soil and sediment microbial structure and function in intermittent stream corridors after a decade of catchment succession , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4952, https://doi.org/10.5194/egusphere-egu2020-4952, 2020.

EGU2020-8650 | Displays | SSS8.8

The European Ecotron of Montpellier: experimental platforms to study ecosystem response to climate change

Joana Sauze, Jacques Roy, Clément Piel, Damien Landais, Emmanuel S Gritti, Olivier Ravel, Hélène Lemoine, Abdelaziz Faez, Sébastien Devidal, and Alexandru Milcu

The sustainability of agricultural, forested and other managed or natural ecosystems is critical for the future of mankind. However, the services provided by these ecosystems are under threat due to climate change, loss of biodiversity, and land use changes. In order to face the challenges of preserving or improving ecosystems services and securing food supply we need to understand and forecast how ecosystems will respond to current and future changes. To help answer those questions Ecotrons facilities are born. Such infrastructures provide sets of confinement units for the manipulation of environmental conditions and real-time measurement of ecological processes under controlled and reproduceable conditions, bridging the gap between the complexity of in natura studies and the simplicity of laboratory experiments.

The European Ecotron of Montpellier (www.ecotron.cnrs.fr) is an experimental research infrastructure for the study of the impact of climate change on ecosystem functioning and biodiversity. This infrastructure offers, through calls open to the international community, three experimental platforms at different scales. The Macrocosms platform is composed of twelve 40 m3 units, each able to host 2-12 t lysimeters, with a 2-5 m² canopy area and a soil depth of up to 2 m. The Mesocosms one has eighteen 2-4 m3 units, each able to host lysimeters of 0.4-1 m depth and 0.4-1 m² area. The Microcosms platform consists of growth chambers (1 m height, 1 m² area) in which smaller units (with photosynthetic plants, soils, insects, etc.) can be installed. Each experimental unit of each platform allows to confine terrestrial ecosystems. This way, environmental parameters such as temperature (-10 to +50 °C), relative humidity (20-80 %), precipitation (sprinkler or drip) and atmospheric CO2 concentration (200-1000 ppm) are strictly and continuously controlled and recorded. But the uniqueness of the European Ecotron of Montpellier lies on its ability to also continuously measure, in each unit, net gas exchange (evapotranspiration, CO2 / CH4 / N2O net fluxes) that occur in between the ecosystem studied and the atmosphere, as well as CO2, H2O, N2O and O2 isotopologues. Those tools are powerful and remarkable to access additional information about processus involved in ecosystem functioning.

The aim of this presentation is to describe the Macrocosms and the Mesocosms platforms through examples of international projects recently run in these platforms.

How to cite: Sauze, J., Roy, J., Piel, C., Landais, D., Gritti, E. S., Ravel, O., Lemoine, H., Faez, A., Devidal, S., and Milcu, A.: The European Ecotron of Montpellier: experimental platforms to study ecosystem response to climate change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8650, https://doi.org/10.5194/egusphere-egu2020-8650, 2020.

EGU2020-10460 | Displays | SSS8.8

AnaEE: a European infrastructure for future-oriented experimental ecosystem research

Hans De Boeck, Simon Reynaert, Ivan Nijs, Karel Klem, Klaus Steenberg Larsen, Marcelo Sternberg, and Michel Boer

Human activities are directly and indirectly generating major environmental pressures on ecosystems worldwide through climate change, pollution and other global changes. Altogether, these changes result in a rapid erosion of biodiversity and a perturbation of ecological and agricultural systems and services, prompting urgent societal questions on how to retain or promote sustainable ecosystem services in a global change context. Understanding the responses of ecosystems to such pressures and perturbations, and developing adaptation strategies critically requires state-of-the-art experimental facilities that are able to simulate multiple global change factors. AnaEE (Analysis and Experimentation on Ecosystems) brings together such facilities in a European-wide infrastructure for experimental research on managed and unmanaged terrestrial and aquatic ecosystems. It assists and integrates four types of national platforms (Open-air, Enclosed, Analytical, and Modelling) and provides support to scientists who wish to engage in research projects using these platforms or the data they generate. These services are organised through the Central Hub and three Service Centres (Technology, Data and Modelling, Interface and Synthesis). This integrated approach improves the quality and availability of data and projections on ecosystem responses to global changes, enabling policy makers and stakeholders to make fact-based  decisions on how to sustainably manage ecosystem services. As an example, we shortly discuss the new open air FATI-platform (UAntwerp) in which ecosystems can be exposed to various combinations of precipitation change and warming, and present first results of a study on the impacts of precipitation regime changes on temperate grassland.

How to cite: De Boeck, H., Reynaert, S., Nijs, I., Klem, K., Steenberg Larsen, K., Sternberg, M., and Boer, M.: AnaEE: a European infrastructure for future-oriented experimental ecosystem research, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10460, https://doi.org/10.5194/egusphere-egu2020-10460, 2020.

EGU2020-1415 | Displays | SSS8.8

The role of geodiversity in ecosystem development

Wolfgang Schaaf

Besides biodiversity, geodiversity is an important constituent of complex ecosystems. We define geodiversity here mainly as substrate and surface properties and topography.

Especially during initial stages of young ecosystems, the geodiversity of a site or landscape may have a lasting impact on dominating abiotic feedback mechanisms that set the stage for further ecological development.

The Chicken Creek catchment was constructed in the Lusatian mining area as a research platform to study initial ecosystem development at the landscape scale. The 6 ha site was formed as a hillslope with 2 to 3.5 % inclination. Up to 3.5 m of Pleistocene sands were dumped as an aquifer on top of a 1-2 m clay layer. The construction process using large-scale mining machinery resulted in slight differences in substrate properties in different parts of the catchment reflecting the natural variation in overburden material that was used for aquifer construction.

After completion of the construction in 2005, a cross-disciplinary long-term monitoring program was initiated to record major environmental parameters adapted to the development of the site. No amelioration, fertilization or planting was carried out to allow for primary succession.

Time series of environmental data recorded since 2005 revealed that the geodiversity of the initial site affected a number of both abiotic and biotic processes (e.g. surface runoff and erosion intensity, top soil development, colonization by plant functional traits, soil moisture and groundwater patterns, formation of biological soil crusts).

During its first 15 years, the Chicken Creek experimental catchment showed a very dynamic development. Whereas the abiotic geosystem of the first 2-3 years was characterized by heavy erosion and sediment transport, primary succession by invading vegetation and the unexpected formation of soil crusts within only a few years resulted in biotic-abiotic feedbacks that controlled catchment hydrology.

Our data indicate that even minor variations in initial substrate characteristics (e.g. texture) and stochastic single events like thunderstorms can have lasting impacts on the geomorphological, hydrological and biological development of the catchment.

How to cite: Schaaf, W.: The role of geodiversity in ecosystem development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1415, https://doi.org/10.5194/egusphere-egu2020-1415, 2020.

15 years of initial ecosystem development have been observed in the artificial Chicken Creek Catchment in Eastern Germany (State of Brandenburg). The 6 ha site was constructed in 2004/05 as a watershed within a post-mining landscape and was left for an unmanaged primary succession. The number of plant species increased quickly during the first years parallel to an increasing groundwater table within the catchment. In 2014 a total of about 180 vascular plants were identified in this young ecosystem.

During its development vegetation differentiated according to morphological and soil related conditions. The semiaquatic part around a small pond developed differently compared to the upper, terrestrial part. In this terrestrial part Robinia pseudoacacia L. early occurred as a pioneer tree species. Large surface areas, however, remained open land areas without tree or shrub vegetation. Robinia as a N-fixing tree species accumulates nitrogen in its litter layer at the soil surface which influences the further vegetation development in these parts of the catchment.

Furthermore, Robinia together with other tree species contributed obviously to a significant groundwater lowering in the constructed catchment area. This decrease of the groundwater tables in the study area was intensified by two extremely dry summer seasons (2018 and 2019). As a result, the overall composition of the vegetation in the terrestrial part of the catchment changed slightly indicating dryer conditions particularly for herbaceous plants.

Initial abiotic site conditions (geomorphology and soil conditions) in combination with external abiotic drivers (amount of precipitation) shaped the development of plant communities. Vice versa, the occurrence of plant species with specific functionality (N-fixation and high water consumption) contributes to a further spatial differentiation of the vegetation composition. The constructed Chicken Creek catchment as an artificial landscape unit allows for detailed insights into these ecological differentiation processes of the initial developmental ecosystem phase.

How to cite: Gerwin, W. and Schaaf, W.: Abiotic and biotic drivers of ecosystem development – results from Chicken Creek Catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7216, https://doi.org/10.5194/egusphere-egu2020-7216, 2020.

EGU2020-13522 | Displays | SSS8.8

Semi-automatic image analysis of spatiotemporal vegetation evolution in the Hühnerwasser catchment

Pedro Rojas, Daniel Caviedes-Voullième, and Christoph Hinz

The artificial Hühnerwasser catchment was built in a post-mining landscape (Brandenburg, Germany) as a field experiment to observe and monitor early-development ecosystems at first catchment scale. Given that the spatial distribution and temporal dynamics of vegetation affects water redistribution across scales, quantifying changes in vegetation distributions is an obvious indicator for state transitions, especially in the context of early ecosystem development.

 

In this work, we present a semi-automatic image analysis algorithm designed to identify vegetation patches during the early ecosystem development of the Hühnerwasser catchment (throughout 10 years) from aerial photography. Furthermore, the algorithm also allows to characterise vegetation cover, describe spatial structures and their temporal evolution. The earliest stages are especially of interest. The structure is therefore characterized by the area of the catchment covered by vegetation, the number of vegetation patches, the mean and maximum patch size and a form factor (area of patch divided by its perimeter). Base data are aerial images with a resolution at the centimeter scale. Because the imagery was obtained under very different lighting conditions and under different stages of plant growth, a luminance correction was applied in order to normalise colors, and thus be able of consistently binarise the images into vegetated-non vegetated maps. Binary maps were generated by setting thresholds for red, green and blue channels to differentiate between vegetation cover and bare soil. Additionally, bare soil areas were also identified using a similar procedure. To evaluate the consistency of the binary images of each channel these images were stacked and compared. For validation, the binary maps were compared to manually digitised vegetation patches for a subset of the data. The performance of the method was tested by using a set of combinations of thresholds and a comparison with manual mapping of vegetation cover at an image subset was made.

 

The blue channel seems to be very sensitive to detect vegetation and a better differentiation of vegetation and dark/wet soil can be achieved by setting the thresholds of the channels in a specific order. The structures derived by the classification into vegetated and bare soil are more important in the early years of ecosystem development. In those years (2007 to 2011) the largest changes took place. As time advances vegetation became less patchy, and a mix of different vegetation spawns. By comparing the areas identified as (green) vegetation and those areas identified as bare soil, it is also possible to discriminate non-green vegetation, such as dry grasses, and thus achieve a minimal level of decomposition of the imagery into plant functional types.

 

How to cite: Rojas, P., Caviedes-Voullième, D., and Hinz, C.: Semi-automatic image analysis of spatiotemporal vegetation evolution in the Hühnerwasser catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13522, https://doi.org/10.5194/egusphere-egu2020-13522, 2020.

The Chicken Creek catchment (Brandenburg, Germany) was built 2005 in a post-mining landscape in Eastern Germany and was left for an unmanaged primary ecosystem succession. During the following years this artificially created system was subject to a series of fast changes with regard to morphology, hydrology or vegetation cover. Soil water content plays a major role since it mediates the water and energy exchange between the surface and atmosphere. In this respect, time‐lapse electrical resistivity tomography measurements were carried out along a transect in the Chicken Creek catchment.

Electrical and electromagnetic geophysical techniques have been widely used to estimate soil electrical conductivity (σ) and soil moisture (θ). However, obtaining the relationship is not straightforward due to the non‐linearity and also dependency on many different soil and environmental properties. To ensure proper retrieval of the σ and θ, reference values were measured near the beginning of the transect via an excavated pit using 5TE capacitance sensors installed at different depths.

The purpose of this contribution is to determine if artificial neural network is an appropriate machine learning technique for relating electrical conductivity to soil water content. We explored robustness and pertinence of the artificial neural network approach in comparison with Rhoades model (as a commonly used petrophysical relationship) to convert the inversely estimated σ from electrical resistivity tomography to the θ. The proposed approach was successfully validated and benchmarked by comparing the estimated values with the reference data. This study showed the superiority of the artificial neural network approach to the Rhoades model to obtain relationship. In particular, artificial neural network allowed for more accurate estimation of the temporal wetting front than the petrophysical model. The proposed methodology thus offers a great promise for deriving spatiotemporal soil moisture patterns from geophysical data and obtaining the in situ relationship, taking into account the non‐linear variations of the soil moisture.

How to cite: Badorreck, A. and Moghadas, D.: Soil Moisture Patterns in an artificial water catchment – A machine learning approach from geophysical measurements, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2652, https://doi.org/10.5194/egusphere-egu2020-2652, 2020.

Exploring hydrological and ecological processes plays a key role in understanding ecosystem developments. In this respect, the constructed catchment, Chicken Creek (Brandenburg, Germany), has been established for fundamental and interdisciplinary scientific research. The main components of the site include a base soil which is followed by a Tertiary clay layer (aquiclude) and sand layer (aquifer) on the top of the domain. In general, the soil mediates many of the processes that govern water resources and quality, such as the partition of precipitation into infiltration and runoff, groundwater recharge, contaminant transport, plant growth, evaporation and energy exchanges between the Earth’s surface and its atmosphere. In this respect, characterization of the soil electrical conductivity (EC) is important, since it is highly correlated with different chemical and physical soil properties.

Low frequency loop-loop electromagnetic induction (EMI) techniques have found widespread application for non-invasive delineation of the subsurface EC structures at different spatial scales. However, successful inversion of EMI data has been a major challenge for decades, due to the non-linearity, non-uniqueness and dimensionality of the inverse problem. Here, a novel approach based on deep learning inversion via convolutional neural networks is proposed to instantaneously estimate subsurface EC layering from EMI data. In this respect, a fully convolutional network was trained on a large synthetic data set generated based on one-dimensional EMI forward model. The trained network was used to find subsurface electromagnetic conductivity images from EMI data measured along two transect from Chicken Creek catchment. Dipole-dipole electrical resistivity tomography data were measured as well to obtain reference subsurface EC distributions down to a 6 m depth. The inversely estimated models were juxtaposed and compared with their counterparts obtained from a spatially constrained deterministic algorithm as a standard code. Application of the deep learning inversion for subsurface imaging from Chicken Creek catchment manifested the accuracy and robustness of the proposed approach for EMI inversion. This approach returns subsurface EC distribution directly from EMI data in a single step without any iterations. The proposed strategy simplifies considerably EMI inversion and allows for rapid and accurate estimation of subsurface electromagnetic conductivity images from multi-configuration EMI data.

How to cite: Moghadas, D. and Badorreck, A.: Characterization of soil electrical conductivity from Chicken Creek Catchment using deep learning inversion of geophysical data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2664, https://doi.org/10.5194/egusphere-egu2020-2664, 2020.

Subsurface processes are often omitted in catchment studies here we presented artificial catchment as a new tool to study and budget these processes on catchment level.

Falcon is and artificial  catchment that build in Sokolov post mining sites Catchment consist from four separate micro catchments (pools) each ) 0.25ha in area and 2m in depth which are hydrologically isolated  and filled by post mining overburden. Two fields were levelled while in two was wave like surface was produced to mimic situation after heaping.  Leveled micro catchments were planted by alder (Alnus glutinosa).

Catchment allow to study meteorological variables, surface and subsurface runoff,  and other key ecosystem parameters (water table depth chemical composition of pore water, soil respiration, gas exchange between ecosystem and surrounding atmosphere using eddy tower etc.). First result show large erosion on waves then on levelled sites however large proportion of material eroded from flat site leave the site while in wave like surface most of it is trapped in depression between waves. Subsurface runoff form large proportion of total runoff in wavy sites than in flat sites. Stable water table established quickly in both types of catchments} few months after catchment establishment. Flat sites show higher initial diversity of plants.

How to cite: Bartiška, M. and Frouz, J.: Falcon constructed artificial catchment for whole ecosystem manipulation how we build it and what are the first results, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18217, https://doi.org/10.5194/egusphere-egu2020-18217, 2020.

EGU2020-1947 | Displays | SSS8.8

High-resolution hydrologic dynamics of the Nadadish experimental catchment in Chuzhou Hydrology Laboratory, China

Aimin Liao, Jiufu Liu, Hongwei Liu, Haixia Zhang, Niu Wang, and Weizu Gu

To obtain new hydrologic data and reveal new hydrologic mechanisms, it is key to perform high-resolution observation of hydrologic dynamics in experimental catchments. Supported by Chuzhou Hydrology Laboratory, this study conducted experimental investigation of hydrologic dynamics in Nandadish experimental catchment during 2015-2019. Nandadish with an area of 7897 m2 is a natural experimental catchment covered by forest whose dominant tree species are B. papyrifera and Q. acutissima. The surface surrounding boundary was sealed by concrete so that Nadadish forms an excellent critical zone experimental block (CZEB). Four rain gauges were installed over the towers to measure the rain over the trees (inferred as P); 144 rain gauges were used to measure the rain under the trees (i.e. throughfall); and 31 trees were equipped to collect stem flow. A separate runoff observation system was constructed to measure the runoffs in different layers: the uppermost trough collects throughfall; the next lower trough collects surface runoff (RS); the two lower troughs collect subsurface flow from soil layers with the depths of 0–50, and 50–100 cm (inferred as R50 and R100). Soil moisture was observed by 31 profile-type sensors with 9, 12 or 15 sensor points with a depth spacing of 10 cm. An array of 30 galvanized tube wells intersected through the soil till the bed rock. Water table measurement was performed with pressure-type sensors at the bottom of each well. According experimental results, conclusions are determined as following: (1) Throughfall variability during the leafed period was slightly higher than that during the leafless period inferred from the coefficient of variation of throughfall amounts, with 13.2-40.9% and 18.7-31.9%, respectively. The multiple regression model analysis suggested that the controlling factors of throughfall variability were significant differently in different periods. (2) B. papyrifera required less precipitation amount (4.3 to 5.8 mm) to initially trigger stemflow than Q. acutissima (5.4 to 6.0 mm). (3) Under the condition of P≥25 mm, the proportion of RS, R50 and R100 was 46.3%, 15.2% and 38.5%, and thus the subsurface runoff dominated the runoff. The synthetic runoff coefficient of total runoff was 0.33; the synthetic runoff coefficients of Rs, R50 and R100 were 0.15, 0.05 and 0.13, respectively. (4) The depths of soil distinction layers were located at the range of 80-90 cm based on the data of profile soil moisture. (5) Saturated overland flow occurred in the area where the gentle slope with soil depth of less than 1 m was located at the mid-downstream through analyzing the water table dynamics. This investigation can enhance the in-depth understanding of hydrologic dynamics in the small forest headwater catchments.

How to cite: Liao, A., Liu, J., Liu, H., Zhang, H., Wang, N., and Gu, W.: High-resolution hydrologic dynamics of the Nadadish experimental catchment in Chuzhou Hydrology Laboratory, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1947, https://doi.org/10.5194/egusphere-egu2020-1947, 2020.

EGU2020-4048 | Displays | SSS8.8

Geochemical and Isotope Tracers Reveal the Runoff Components Characteristics and the Ecohydrologic Influences at the Qinghai-Tibet Plateau

Hongwei Liu, Jiufu Liu, Jin Lin, Wenzhong Wang, Xing Min, Hao Zheng, and Niu Wang

The glacier recession and the runoff variation on the Qinghai-Tibet plateau conducted by the global warming is changing the regional hydrological and ecological processes. Although there is great need for the knowledge of the runoff evolution and biogenic substances migration and transformation for developing strategies for adaptive utilization of runoff, progress in study on these hydrological questions lags behind because of lack of observation dataset under harsh plateau cold conditions.

In order to understand the critical zone ecohydrological dynamics and evaluate the runoff components in the Qinghai-Tibet Plateau, a series of observation and research were carried out in the Niyang River watershed, a tributary of the Yarlung Zangbo River. Four basins embed in a larger basin (1500 km2) were monitored and sampled at altitudes between 3667 to 6140 m. More than 500 samples from rain, snow, river water, spring water, glacier ice, vegetation stem, and soil were collected, with which theδ2H, δ18O, K, Ca, Na, Mg, Sr, Si, F, Cl, N, and S in the water are examined. 5 automatic hydrometric stations were established, and the water level data was sent back by Beidou satellite. The 3D laser scanning and RTK technologies were used to obtain detailed geomorphological information near the 5 current measurement section, based on which a hydrodynamic model is able to be calibrated for the discharge estimation.

The δ2H and δ18O of the precipitation proposed a local meteoric water isotope line, which is parallel to the WMWL but higher in the δD~δ18O graph. The river water isotopes suggest its source is the precipitation, which are similar to the spring ground water (but the geochemical elements are quite different between the surface and ground water). The vegetation stems water and soil water (by cryogenic vacuum extraction) isotope values suggest the attribute of the river/precipitation sources, but a few observation data appear different implying using water formed by the multiple precipitation events or supplied by the higher place under a significant evaporation influence.

The time series of the runoff and the snow cover and glacier variation results show that the base flow is varied obviously relate to the temperature which influence the melting processes of the glacier and frozen earth from March to August, and the rain runoff events control the flood peek. It suggests that the concentration time should be less than 10 days in the interested watershed.

The tempo-spatial variation characteristics of the geochemical elements are analyzed and mapped in the interested area, which suggested relative steady water components signals contributing to the runoff. Based on which, a set of overdetermined equations are established to evaluate the quantities of different runoff components.

This study could help to evaluate runoff components quantitively in Tibet where lack of data. Monitoring and studing is still going on, which is included in the 2nd comprehensive scientific investigation into Qinghai-Tibet Plateau since 2019.

Funded by the NSFC project 91647111 and 91647203 included in the Runoff Change and its Adaptive Management in the Major Rivers in Southwestern China Major Research Plan.

How to cite: Liu, H., Liu, J., Lin, J., Wang, W., Min, X., Zheng, H., and Wang, N.: Geochemical and Isotope Tracers Reveal the Runoff Components Characteristics and the Ecohydrologic Influences at the Qinghai-Tibet Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4048, https://doi.org/10.5194/egusphere-egu2020-4048, 2020.

EGU2020-12330 | Displays | SSS8.8

Application of tracer materials in the study of hydrological cycle mechanism

Tao Ma, Hongwei Liu, Hao Zheng, Xing Min, Aimin Liao, and Wenzhong Wang

In this study, the characteristics of hydrogen and oxygen isotopes as well as four kind of ions(K+、Na+、Ca2+、Mg2+ )in rainfall-runoff processes are analyzed through designing an extensible soil water sampler. It is a kind of multipoint sampling installation with the characteristics of synchronous, in-situ and long-term in sampling. The sampling schemes were summarized, including site layout ways, capacities and materials selection, sample pretreatment and storage methods, and valid date. A series of experiments were carried out such as hydrogen and oxygen isotopes memory effects tests, repeatability test and dilution errors analysis. After recognizing the possible error sources in hydrogen and oxygen isotopes as well as the four kind of ions test, the solution on how to improve accuracy and precision were proposed. Moreover, the spatial-temporal evolution laws of the isotopes and cations was discussed by drawing the contour maps of hydrogen and oxygen isotopes as well as the four kind of ions in soil water and underground water. At last, the possibility and applicability of these substances as tracers in hydrological cycles were explored. These work were quite important for researches on coupling mechanism of hydrological and solute transport processes in critical zone.

How to cite: Ma, T., Liu, H., Zheng, H., Min, X., Liao, A., and Wang, W.: Application of tracer materials in the study of hydrological cycle mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12330, https://doi.org/10.5194/egusphere-egu2020-12330, 2020.

EGU2020-6290 | Displays | SSS8.8

Investigation on the function of double tipping bucket for improvement of rainfall measurement

Cai Zhao, Liu Jiufu, Liu Hongwei, Liao Aimin, and Liao Minhan

The double-tipping bucket rain gauge (SL3-1) is widely used in meteorological stations to minimize the systematic errors by the influence of rainfall intensity on TBRs in China. With two tipping buckets, the upper tipping bucket turns over and injects rainwater into the converging funnel, and the lower tipping bucket can record the rainfall. In this study, CFD (computational fluid dynamic) simulations and experiments were performed to investigate the function of the double tipping bucket for TBRs in different rainfall intensity. In simulation, the volume-of-fluid model and Reynolds-averaged Navier–Stokes realizable k-ε model and dynamic mesh method were used. In experiments, electric balances, with accuracy of 0.001 g, were used to determine the water volume of the upper tipping bucket outflow. It shows that, with a converging funnel, natural precipitation is uniformed at a certain intensity around 1.9mm/min to control the rainwater outflow into blow tipping bucket to measure rainfall and reduce systematic errors caused by different precipitation intensities. Experimental results demonstrate that the outflow curve of the upper tipping bucket has high correspond with simulation results in tipping process. These results can provide knowledge of advantages of double tipping bucket rain gauge in rainfall measurement and improve the structure designs of double tipping bucket for TBRs and obtain more accurate rainfall data.

How to cite: Zhao, C., Jiufu, L., Hongwei, L., Aimin, L., and Minhan, L.: Investigation on the function of double tipping bucket for improvement of rainfall measurement, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6290, https://doi.org/10.5194/egusphere-egu2020-6290, 2020.

EGU2020-6509 | Displays | SSS8.8

Evaluation of Measurement Errors of Tipping Bucket Rain Gauges

Guangxu Jiang, Jiufu Liu, Xuegang Li, Hongwei Liu, and Aimin Liao

The observation accuracy of rainfall processes affects every aspects of the meteorological and hydrological affairs, which is widely monitored by various types of tipping bucket rain gauges(TBRs)because of the simple structure and reliable performance. The study of the measurement errors of TBRs is quite valuable and necessary for improving the rainfall data quality and evaluating the uncertainty of the research based on the dataset.

In this study, an artificial rainfall and monitor experiment system is designed with peristaltic pump, balances, recorder and controller for the accurate rainfall and the TBRs instrumental values record, based on which the error distribution and instrument stability were analyzed. Eight types of TBRs are chose for the error evaluation experiment, including five single-layer TBRs, three double-layer TBRs. For each TBRs, we observe its performance under 6 rain intensity (0.1-4mm/min) in turn. With regard to each rain intensity, when the simulated total rainfall reaches 10 mm, the experiment stops and records the data, then repeats the same experiment 6 times.

The result shows that the single-layer TBRs have a good linear relationship between the rainfall and the measurement error, and the double-layer TBRs has a significant regulating effect on the continuous heavy rain intensity, which can make the rain flow steadily down to the lower tipping bucket (metering tipping bucket) with a stable rain intensity to avoid the rain intensity variation influence on the measurement error. However, due to its high resolution of 0.1mm, it is greatly affected by the residual water volume of the tipper bucket.

According to the results, the single-layer TBRs can correct the actual rainfall measurement process according to the error ~ rainfall intensity curve. The double-layer TBRs can play an important role in the rainy day record, but the randomness of the residual in the tipping bucket needs to be further estimated. Because the proportion of the light rainfall intensity in most of the rainfall events are quite high according to the statistics, it is necessary to have lower measurement error under the light rainfall in the TBRs chosen and calibration process. It's a good idea to choose a combination of rain gauges(0.1mm&0.5mm) to improve the accuracy of rainfall and rainy day.

How to cite: Jiang, G., Liu, J., Li, X., Liu, H., and Liao, A.: Evaluation of Measurement Errors of Tipping Bucket Rain Gauges, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6509, https://doi.org/10.5194/egusphere-egu2020-6509, 2020.

EGU2020-619 | Displays | SSS8.8

Assessment of morphodynamic evolution and changes in a mangrove wetland under current and future climate change scenarios

Eliana Jorquera, Angelo Breda, Steven Sandi Rojas, Jose Fernando Rodriguez, and Patricia Saco

Pacific Islands are one of the regions in the world most vulnerable to climate change, mainly due to sea level rise (SLR) and tropical cyclones (TC). Coastal wetlands play a crucial role as a buffer between the ocean and the inland areas. Recent research has shown that accretion and adaptation capacity to SLR of coastal wetlands is intrinsically related to the sediment supply from the upstream catchments and the tidal regime, which is also affected by the hydrodynamic and the vegetation of the system. Modelling the feedback among these systems and their evolution is still challenging.

In this work, we present the case of a coastal wetland at the mouth of Dreketi River catchment, located in Vanua Levu, Fiji. This area belongs to the Great Sea Reef, and it was declared as Ramsar site in 2018. The framework proposed includes the modelling of hydro-sedimentological behaviour of the upstream catchment and its validation using remotely sensed images; and the hydrodynamic-sediment transport model of the tides. These outputs are linked with an ecogeomorphological model (EGM) of the mangrove wetlands used to predict wetland evolution. We have evaluated the catchment response under current scenarios assessing the impact of TC in the last 45 years; and under future scenarios of land use, TC and SLR. We have analysed the same scenarios on the tidal system to then run the EGM incorporating the changes in sediment supply from both the catchments and the tides due to SLR and TC projected by the end of the century.  Our approach combining modelling and remote sensing can be extended to other coastal areas in the region and has enormous potential to assess the evolution of wetlands under climate change throughout the Pacific islands.

How to cite: Jorquera, E., Breda, A., Sandi Rojas, S., Rodriguez, J. F., and Saco, P.: Assessment of morphodynamic evolution and changes in a mangrove wetland under current and future climate change scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-619, https://doi.org/10.5194/egusphere-egu2020-619, 2020.

EGU2020-1843 | Displays | SSS8.8

Effects of large macropores on soil evaporation in salt marshes

Tingzhang Zhou, Pei Xin, and Jirka Jirka Šimůnek

The occurrence of macropores in salt marsh sediments is a natural and ubiquitous phenomenon. Although they are widely assumed to significantly affect water flow in salt marshes, the effects are not well understood. We conducted physical laboratory experiments and numerical simulations to examine the impact of macropores on soil evaporation. Soil columns packed with either sand or clay and with or without macropores were set up with water tables in the columns set at different levels. A high potential evaporation rate was induced by infrared light and a fan. The results showed that in the soil with a low saturated hydraulic conductivity (and thus a low transport capacity), macropores behaved as preferential flow paths, delivering water from the groundwater towards the soil surface and maintaining a high evaporation rate in comparison with the soil without macropores. This effect was more pronounced for sediments with lower hydraulic conductivities and shallower groundwater tables. These results not only improve our understanding of water flow and soil conditions in salt marshes but also shed light on soil evaporation in other hydrological systems.

How to cite: Zhou, T., Xin, P., and Jirka Šimůnek, J.: Effects of large macropores on soil evaporation in salt marshes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1843, https://doi.org/10.5194/egusphere-egu2020-1843, 2020.

EGU2020-5398 | Displays | SSS8.8

Observations and Modelling Results Help to Understand Global Hillslope Asymmetry

Nikul Kumari, Omer Yetemen, Ankur Srivastava, Jose F. Rodriguez, and Patricia M. Saco

Aspect-controlled vegetation over opposing hillslopes are driven by non-uniform distribution of incoming solar radiation in semi-arid ecosystems. This leads to variation in soil and vegetation characteristics. In mid- to high-latitudes where available soil moisture is a limiting factor for vegetation growth, poleward-facing slopes develop denser vegetation cover providing greater erosion protection than the equatorward-facing hillslopes. The variation in erosion rates across opposing hillslopes leads to the development of topographic asymmetry of hillslopes over long timescales. This asymmetry is quantified by the hillslope asymmetry index (HAI), a metric given as the ratio of the median slope angles of opposite hillslopes. We present a combined approach of modelling and observed data analysis to investigate the relationships of HAI with climatological, geomorphic, and ecologic variables at a global scale. We analysed these relationships using digital elevation topographic data to compute observed HAI for 80 different catchments across the world, where aspect-controlled vegetation has been reported in the literature. Further, we used the CHILD landscape evolution model (LEM), which uses the continuity equation for water, sediment, and biomass, to investigate the control of climatological, geomorphic, and ecologic variables on the development of hillslope asymmetry through a modelling approach,. The outcomes of the study highlights that latitude and mean topographic gradient are the two dominant factors affecting hillslope asymmetry due to their vital role in controlling vegetation density through the modulation of incoming solar radiation. These results improve our understanding on how different climatic variables and geographic properties affect the magnitude of hillslope asymmetry and their implications on landform evolution modelling.

How to cite: Kumari, N., Yetemen, O., Srivastava, A., Rodriguez, J. F., and Saco, P. M.: Observations and Modelling Results Help to Understand Global Hillslope Asymmetry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5398, https://doi.org/10.5194/egusphere-egu2020-5398, 2020.

EGU2020-5280 | Displays | SSS8.8

Influence of orographic precipitation on the co-evolution of landforms and vegetation

Ankur Srivastava, Omer Yetemen, Nikul Kumari, and Patricia M. Saco

Topography plays an important role in controlling the amount and the spatial distribution of precipitation due to orographic lift mechanisms. Thus, it affects the existing climate and vegetation distribution. Recent landscape modelling efforts show how the orographic effects on precipitation result in the development of asymmetric topography. However, these modelling efforts do not include vegetation dynamics that inhibits sediment transport. Here, we use the CHILD landscape evolution model (LEM) coupled with a vegetation dynamics component that explicitly tracks above- and below-ground biomass. We ran the model under three scenarios. A spatially‑uniform precipitation scenario, a scenario with increasing rainfall as a function of elevation, and another one that includes rain shadow effects in which leeward hillslopes receive less rainfall than windward ones. Preliminary results of the model show that competition between increased shear stress due to increased runoff and vegetation protection affects the shape of the catchment. Hillslope asymmetry between polar- and equator-facing hillslopes is enhanced (diminished) when rainfall coincides with a windward (leeward) side of the mountain range. It acts to push the divide (i.e., the boundary between leeward and windward flanks) and leads to basin reorganization through reach capture. Our findings suggest that there exists a strong coupling between climate and landform evolution processes, and that orographic precipitation can imprint its influence on landforms in semi-arid ecosystems.  

How to cite: Srivastava, A., Yetemen, O., Kumari, N., and Saco, P. M.: Influence of orographic precipitation on the co-evolution of landforms and vegetation , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5280, https://doi.org/10.5194/egusphere-egu2020-5280, 2020.

EGU2020-13238 | Displays | SSS8.8

Exploring the effects of rainfall variability on banded vegetation

Claudia Schütt, Daniel Caviedes-Voullième, and Christoph Hinz

Vegetation self-organisation in water-limited ecosystems in semi-arid climates has been studied by means of numerical simulation using a set of reaction-diffusion-equations. The predominant approach in such studies, in particular relating to banded vegetation on slopes, has been to study the long-term steady ecohydrological tates on periodic domains forced by steady rainfall. This default modelling setup does not account for the fact that on a hillslope a net runoff loss may exist at the outlet. Moreover, such runoff loss is modulated by rainfall intensity, i.e., increasing rainfall intensity is likely to favour runoff over infiltration, and therefore affect the banded vegetation formation. Additionally, different inter-storm dry periods prompt different responses from the vegetation. One of the properties of semi-arid climates is a highly intermittent and variable precipitation regime, quite often with a few intense events and a larger number of very mild events. Additionally ecohydrological theory recognises that dryland ecosystems are in a quasi-permanent transient condition, exhibiting non-linear and far-from equilibrium responses to boundary conditions and forcings. The mismatch between the default modelling approach and the properties of rainfall in such systems calls for further complexity in the models and in the forcing.

 

We explore the possible effects that particular rainfall properties can have in banded vegetation dynamics. We solve the well-known Rietkerk model together with a zero-inertia approximation of the shallow-water equations for surface flow. A non-periodic domain with an outlet, i.e., a 2D hillslope with a constant slope is used. We perform simulations forced by a set of variations of idealised temporal distributions of rainfall throughout a year. The reference distribution is a periodic signal of constant intensity storms of a single day, separated by dryspells of equal duration. The total annual rainfall was selected as 270 mm, in the range of semi-arid climates. This annual signal is repeated during the entire simulation. Non-periodic rainfall signals were generated by randomising a single rainfall property but ensuring the same annual rainfall. Randomisations of the inter-storm dryspell duration, the storm duration, and the storm intensity were explored. Although this results also in idealised rainfall signals, it allows for systematic analysis of each property.

 

The banded patterns are assessed both in terms of global signatures (biomass, vegetation cover), spatial properties (number of bands, wavelength and bandwidth), and dynamics (migration velocity of the bands). Our results clearly show qualitatively and quantitatively that the simulated banded vegetation has a strong response to rainfall variability. Moreover, the results also show a high sensitivity to the particular succession of events, e.g., a succession of longer than average dryspells can throw the system away from equilibrium. High sensitivity is also observed to the timing of certain individual events. The system responds differently to events which happen early on in the development, or later, when the system is near equilibrium. The simulated response of the system are arguably too volatile, suggesting that improvements in the vegetation model parametrisation and formulation are warranted to better represent dynamics and allow for stability and resilience studies.

How to cite: Schütt, C., Caviedes-Voullième, D., and Hinz, C.: Exploring the effects of rainfall variability on banded vegetation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13238, https://doi.org/10.5194/egusphere-egu2020-13238, 2020.

EGU2020-1209 | Displays | SSS8.8

Soil carbon and soil moisture dynamic redistribution in a banded ecosystem

Juan Pablo Quijano Baron, Patricia Saco, Dominik Jaskierniak, and Jose Rodriguez

Arid and semiarid environments accounts approximately 30% of the Earth’s continental surface and are especially sensitive to degradation or loss of their ecosystem functionality. In these ecosystems, vegetation patterns (e.g. banded vegetation) can be found as the adaptive response of the system to resource redistribution (runoff and sediments) and limitation (soil moisture and nutrients). The patterns consist on alternating densely vegetated bands (or ‘groves’) and bare areas (or ‘intergroves’), and can be found in large regions of Africa, Asia, Australia and North America. Understanding the mechanism that regulate banded vegetation ecosystems is critical in order to identify the dynamic behaviour and maintain their functionality. In this work, we model the spatial distribution of soil moisture and soil organic carbon, in order to analyse how differences on the availability of resources can explain the functionality of the banded vegetation systems. We are studying a catchment in Bond Springs, 25 km north of Alice Springs, characterized by the presence of Acacia Aneura trees (Mulga) aligned in bands along the terrain. We use a new model: COPLAS, a tool that couples a Landform Evolution Model with dynamic vegetation and carbon pools modules. It tracks the carbon from the photosynthesis until it becomes soil carbon and the mobilization/redistribution due soil erosion. Results of the model were compared with fieldwork conducted in fifty-three soil samples and terrain surveying with unmanned aerial vehicle. Our results indicate good agreement between the model and the measurements. We found that soil moisture uphill the bands is around 33% more than downhill, and close to 120% more than in bare soil. This result could be explained because a portion of the runoff, generated from bare intercanopy patches, is redistributed downslope and infiltrated uphill the vegetated areas. Moreover, soil carbon is 20% more downhill than uphill the bands because of deposited alluvium and litter downhill and possible less microbial respiration and decomposition due smaller soil moisture content. Additionally, we found a tendency of higher soil carbon concentrations going downhill the catchment. Overall, these findings show the heterogeneous distribution of resources in the area that could explain the ecosystem functionality and highlight the importance of modelling and measuring arid and semiarid ecosystems in order to understand their dynamic behaviour.

How to cite: Quijano Baron, J. P., Saco, P., Jaskierniak, D., and Rodriguez, J.: Soil carbon and soil moisture dynamic redistribution in a banded ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1209, https://doi.org/10.5194/egusphere-egu2020-1209, 2020.

EGU2020-21331 | Displays | SSS8.8

Plant community evolution in a glacier foreland of the Central European Alps

Katharina Ramskogler, Svenja Müller, Bettina Knoflach, Johann Stötter, Clemens Geitner, and Brigitta Erschbamer

Glacier forelands are perfect for analysing the development of plant communities from zero onward. According to Matthews (1992), the chronosequence can act as a spatial representation of the temporal sequence. Therefore, it is ideal to analyse changes in landscape and land cover in time slices. Development of plant communities does not only depend on the age of the deposits, but also on topography, microclimate, soil development, and geomorphological processes as well as on biotic interactions. In the long term, permanent plots represent an adequate method to follow the colonisation on differently aged terrain throughout time.

The main research question of the study is: Do cryospheric changes influence plant community development in time and space? During the first study year we were focused on the following questions: i) How fast does a plant community evolve? ii) How many species do occur on different moraine stages? iii) How do soil parameters correlate with primary succession stages?

The study site is located in the southern part of the Central European Alps, Martell Valley (South Tyrol, Italy). We established 12 permanent plot clusters of 2 x 5 m on areas deglaciated between 1985 and 2018, two per retreat area. In each square meter of these clusters, species composition, cover, and number of individuals were sampled. On the ground moraines of the glacier stages 1911 and approximately 1850 we recorded species composition and cover on 10 x 10 m plots (four plots in total). In all plot clusters and plots on the old moraines, soil temperature and soil water potential as well as relevant soil parameters were measured.

We found up to two vascular plant species per square meter on areas ice free for one year and up to 16 vascular plant species per square meter on areas ice free since 1985.

On the moraines of 1911 were up to 39 vascular plant species per plot with a mean cover of 52.5 %. On the moraines of 1850 we found up to 43 vascular plant species with a mean cover of 40 %.

In the next step we will analyse the effects of pioneer, early and late successional species on morphodynamic processes and their response to these processes using functional traits.

Matthews, J.A. (1992): The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge.

How to cite: Ramskogler, K., Müller, S., Knoflach, B., Stötter, J., Geitner, C., and Erschbamer, B.: Plant community evolution in a glacier foreland of the Central European Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21331, https://doi.org/10.5194/egusphere-egu2020-21331, 2020.

EGU2020-9838 | Displays | SSS8.8

Weed infestation during the transition phase from conventional to conservation agriculture

Felice Sartori, Donato Loddo, Ilaria Piccoli, and Antonio Berti

Despite conservation agriculture and, overall, the reduction of soil disturbance are considered soil improving cropping systems, these practices could conflict with weed control. Indeed, reduced tillage is usually linked to increased weed species richness and abundance and, thus, it could increase the dependence on chemical treatments. Weed management is one of the reasons behind the distrust of European farmers in the conservation agriculture, that is still not widespread, despites European subsidies. In fact, conservation agriculture is implemented only in the 2.8% of European cropland.

The aim of this study is to evaluate the effect of different tillage intensities on spring-summer weeds richness and abundance in a maize monoculture, during the transition phase from conventional to conservation agriculture.

The weed survey was conducted in June 2019 on an experiment comparing three levels of tillage management: conventional agriculture (CT), which represents the most common choice in Veneto region, involving deep ploughing and harrowing in spring; minimum tillage (MT), consisting only in harrowing at 20 cm; and no tillage (NT), namely sod seeding. The experiment started in 2018, at Padova University experimental farm, in a sub-humid area, with a silty clay loam soil. The survey was conducted with a set of random throws of a 30×30 cm square frame in each plot (ca. 3300 m2).  Weed plants found within the frame were classified and counted. Subsequently, data analysis assessed which botanical families were promoted by each treatment.

The NT resulted the treatment with the highest weed density (915 plant/m2): 6% higher than MT (823 plant/m2) and four-fold more than CT (209 plant/m2). The latter showed to be the treatment with higher diversity, according to both Shannon and Simpson indices. The survey evidenced higher weed species richness in MT, where both annual and perennial species were identified, while the lowest number of species were detected in NT. Plantago major and Chenopodium album were the species with the highest density in CT (>32 plant/m2) while they are negligible in NT and MT (7 plant/m2, on average). Digitaria sanguinalis was instead the dominant species in MT and NT (>600 plant/m2) while a lower density was observed in CT (11 plant/m2). Low levels of Asteraceae weeds were measured in all treatments. These results shows that the actual flora rapidly changes depending on tillage intensity, with an increase of both dominance and number of species in MT. Differently, only a limited number of adapted species germinated in NT, despite higher infestations if compared with the other treatments.

It should be expected that other species more adapted to conservation agriculture (namely Asteraceae), still marginally present in the seed bank, will spread in the next years. This stresses the importance of a continuous monitoring and effective control of weeds to avoid uncontrolled evolutions of the weed flora and increase of seed bank in the transition phase from conventional to conservation agriculture.

How to cite: Sartori, F., Loddo, D., Piccoli, I., and Berti, A.: Weed infestation during the transition phase from conventional to conservation agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9838, https://doi.org/10.5194/egusphere-egu2020-9838, 2020.

EGU2020-12021 | Displays | SSS8.8

Testing sudden shifts in drylands through manipulative mesocosm experiments

Susana Bautista, Francisco Fornieles, David Fuentes, Anna M Urgeghe, Diana Turrión, and Angeles G Mayor

A variety of theoretical and observational works indicate that drylands may experience sudden shifts from functional to degraded states in response to gradual increases in human and climatic pressures. However, there is little experimental testing of the factors and processes that control sudden shifts in drylands. Adopting a combination of mesocosms and manipulative experimental approach, we assessed the occurrence of sudden transitions towards degraded states in response to increasing pressure, and investigated the mechanisms underlying the observed dynamics. We mimicked a gradually increasing pressure of grazing and wood gathering by removing increasing amounts of vegetation on a series of experimental plots and mesocosms. We then monitored the impact of such gradient of pressure on runoff and sediment yield, vegetation dynamics, bare-soil connectivity and soil-surface condition over a 7-year period.  Overall, our results support that decreasing plant cover nonlinearly increases the loss of resources from the system and may trigger a change to a degraded state. Within the range from 40% to 30 % vegetation cover, a small change in the cover percentage resulted in a turning point in both the vegetation and the hydrological dynamics, driving the system to a new state that exhibited lower capacity for resource conservation all over the study period.

How to cite: Bautista, S., Fornieles, F., Fuentes, D., Urgeghe, A. M., Turrión, D., and Mayor, A. G.: Testing sudden shifts in drylands through manipulative mesocosm experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12021, https://doi.org/10.5194/egusphere-egu2020-12021, 2020.

EGU2020-20715 | Displays | SSS8.8

Hydro-physical properties of temperate hardwood floodplain forest soils in a dry summer season

Lizeth Karina Vásconez Navas, Alexander Gröngröft, Joscha N. Becker, and Annette Eschenbach

Understanding the influence of habitat properties on the dynamics of terrestrial ecosystems is a fundamental part of ecosystem research under climate change, especially in areas of high environmental heterogeneity, such as floodplains. The present research is part of the collaborative and interdisciplinary MediAN project (Mechanisms of ecosystem services in hardwood floodplain forests: Scientific analysis and optimization of conservation management), where topics regarding carbon storage of soils and tree biomass, as well as tree vitality and the diversity of herbaceous vegetation are investigated. Thus, in this study we aim to understand and characterize the causes and effects of biotic interactions in relation to the edaphic site properties - in particular between the soil water balance and hardwood forests.

In this context, we identified the spatiotemporal variability of soil hydro-physical properties in six active and former hardwood floodplain forest sites in the Middle Elbe River, Germany. The study sites represent the floodplain geomorphology, therefore varying in elevation (high and low sites), soil texture and hydrological properties, as well as in forest age. We opened three soil profiles per site and installed soil sensors to monitor the variation of volumetric water content (VWC), and water tension at 10 cm, 30 cm, 60 cm, 100 cm and 160 cm depth. Additionally, we installed one groundwater diver and one meteorological station per site. Undisturbed samples were taken per horizon to define the grain size distribution, bulk density and to evaluate soil moisture retention curves.

Preliminary results, from the year 2019 with an unusual dry summer season, show a clear interrelation of soil moisture retention and soil water tension with groundwater level and soil texture. For instance, a predominantly sandy site, located in the high active floodplain, displayed VWC values below 8% throughout the vegetation period and at all depths. Water tension showed higher variation at 10 and 30 cm (2-3.25 pF) compared to deeper soil, which is directly related to precipitation events. These initial observations imply local water stress for the floodplain vegetation; therefore, physiological stress on woody species is expected. In a next step, the dynamics of soil drying will be related to xylem sap flow velocity to estimate effects on the vitality of typical hardwood forest species, such as oaks (Quercus robur L.) and elms (Ulmus laevis) at the representative study sites.

How to cite: Vásconez Navas, L. K., Gröngröft, A., Becker, J. N., and Eschenbach, A.: Hydro-physical properties of temperate hardwood floodplain forest soils in a dry summer season, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20715, https://doi.org/10.5194/egusphere-egu2020-20715, 2020.

The East African Serengeti ecosystem hosts a great range of mammals and one of the world’s largest seasonal ungulate movements, with over 1.3 wildebeest and several hundreds of thousands of zebras and antelopes migrating through the region in a regular pattern. While climatic and biological drivers for this migration have been studied in great detail, the role of rock chemistry, weathering and resulting soil diversity as a source for nutrient provision has so far been largely neglected and needs detailed and systematic study.

Geological processes provide important controls on long-term ecosystem dynamics. Volcanic eruptions, earthquakes, and rock weathering influence soil edaphic properties, which represent the ability of soils to provide vital plant-available nutrients, which therefore control grazing patterns of herbivores, particularly during birthing and lactating seasons. Studying the geological role in providing and distributing essential nutrients is critical to understand long-term drivers and stability of animal migrations in dynamic ecosystems. We have carried out a field reconnaissance study in the Serengeti National Park, with the aim to study variations in nutrient variability in soils and vegetation in relation to the chemical composition of soil parent material, i.e. volcanic or metamorphic rocks and sediments derived from those rock units, and under consideration of climatic variations. First results show that the Serengeti ecosystem can be subdivided into three geo-edaphic subregions that correlate with seasonal wildebeest grazing habitats.

(1) The southeastern Serengeti (wet-season grazing), is characterized by soils developed on volcanic ash derived from recent eruptions of the Ol Doinjo Lengai carbonatite volcano. Here, we have identified deeper organic-rich soils with andic and vitric properties and varying amounts of carbonate concretions or near-surface calcrete horizons. High Na, K, and Ca levels of volcanic ashes suggest high levels of those elements in soils and vegetation in this region, also because the precipitation is lowest in this area.

(2) In the central Serengeti (short-term transitional grazing), soils develop on Archean basement rocks including granitic gneisses, phyllites and banded iron formations. Geochemical signatures of these rock types suggest that soils in this region have lower levels in Ca, Mg, and plant available P, compared to the SE Serengeti, which is supported by the transitional nature of this grazing habitat.

(3) Soils in the Northern Serengeti (dry-season grazing) develop on a diverse patchwork of Archean basement rocks as well as basaltic lavas and thick fluvial deposits. North of Mara river, the Insuria fault – a large normal fault of the East African Rift  - creates a wide sedimentary basin dominated by soils developed on basaltic sediments. Here, higher precipitation leads to stronger weathering and leaching of nutrient elements.

Our preliminary results suggests that geochemical variations together with continuous (syngenetic) pedogenesis through active volcanism or tectonic faulting and related fault scarp erosion created regions of high edaphic quality in the north and southeast of the Serengeti ecosystem, and that the patchy nature of soil edaphics is important to understand the underlying drivers of large scale migration of grazing animals in this region. 

How to cite: Eckmeier, E., Kübler, S., Meya, A., and Mathai Rucina, S.: The role of geology and climate in soil nutrient variability - potential drivers for large ungulate migrations in the Serengeti ecosystem (Northern Tanzania, East Africa), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13969, https://doi.org/10.5194/egusphere-egu2020-13969, 2020.

SSS8.10 – Interactions between Geology, Biology and Climate at the Earth's surface

Soil is a hyper-heterogeneous environment, and how plants respond to changes in belowground variations in microclimate, soil properties and biota is extremely difficult to disentangle. Environmental gradients have been proposed as useful to help understand how root traits mediate plant responses to soil hyper-heterogeneity, and if in turn, there is a feedback mechanism that then impacts soil processes.

We present data from studies of forests and prairies situated along temperate elevational gradients. We measured functional traits from individual plant species and also in species mixtures at the community level. Distinct patterns in aboveground traits were found with increasing altitude. However, even though there were changes in soil biota, physical and chemical properties along gradients, we show that at the species level, several plant root traits were more sensitive to variations in local soil properties, compared to global variations along the elevation gradient. At the community level however, patterns of trait variation in individual species were often masked. Earthworm populations were also mostly driven by local soil properties, and elevation and plant species composition had only an indirect effect on population size. We also demonstrate that increased diversity in soil microbial communities was linked to the species composition of vegetation at a local level, rather than broad scale soil or climate characteristics.

Results will be discussed with regard to their impact on shaping soil processes such as carbon stockage, aggregation and hydraulic conductivity. Integrating these data into conceptual models of mountain ecosystem functioning is a challenging next step.

How to cite: Stokes, A. and the Co-authors: Thinking globally or acting locally? Belowground biotic responses to local- and broad- scale variations in mountain soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13922, https://doi.org/10.5194/egusphere-egu2020-13922, 2020.

EGU2020-13822 | Displays | SSS8.10 | Highlight

Grass development in the Amazon drainage basin, evidence from the fossil and phytochemical record

Carina Hoorn, Judith Kirschner, Maxine Beer, Caixia Wei, Tyler Kukla, and Phil Jardine

The Poaceae (the grass family) includes over 11000 species and covers large part of the Earth land surfaces. Their history is rooted in the Cretaceous, but this group only expanded fully over the globe during the late Miocene. In the Amazon drainage basin (ADB) grasses were at the core of a heated debate, in which it was hypothesized that during the Pleistocene glacial periods grasses replaced vast extents of the Amazon rainforest. Although this hypothesis is now rejected, the history of grasses in the ADB still remains to be resolved. In this paper we propose a 3-staged model for grass development in the ADB: (1) from c. 23 to 9 Ma western Amazonia was dominated by a megawetland (the ‘Pebas system’) that harboured large amounts of (aquatic?) grasses; (2) from c. 9 Ma Andean uplift prompted megafan and fluvial environments on the Andean slopes and in the Amazon lowlands respectively, these environments created new settings for grass colonization; (3) from c. 5 Ma grasses were firmly established in the tropical alpine vegetation (páramo), the tropical lowland floodplains (várzeas), and savannas (cerrado). To test these scenarios we analysed Neogene and extant Andes-Amazonian grasses by means of Fourier Transform Infrared spectroscopy, we performed a Light- and Scanning Electron Microscopy analysis, and compared the results with existing biomarker data from the Neogene sediments. Here we report on the preliminary results that, among others, suggest that in the middle Miocene aquatic (C3) taxa were comon in the Amazon lowlands. Although further study will have to confirm the precise nature of the ADB grass history, we anticipate that abiotic processes during the Neogene and Quaternary left a strong imprint in the grass phytogeography of northern South America.

 

How to cite: Hoorn, C., Kirschner, J., Beer, M., Wei, C., Kukla, T., and Jardine, P.: Grass development in the Amazon drainage basin, evidence from the fossil and phytochemical record, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13822, https://doi.org/10.5194/egusphere-egu2020-13822, 2020.

EGU2020-17996 | Displays | SSS8.10 | Highlight

High Andean Soil Landscapes Shaped by Interactions between Geomorphology, Vegetation, and Hydrology

Veerle Vanacker, Armando Molina, Santiago Zhiminaicela, Marife Corre, and Edzo Veldkamp

Physical and chemical weathering processes fulfil a crucial function in the biogeochemistry of terrestrial ecosystems. Rock‐derived weathering products provide essential plant nutrients, and regulate the chemical composition of soil, surface, and groundwater. The rate and extent of chemical weathering are influenced by the combined effects of climate, parent material, topography, and vegetation, and ultimately determine the mineral composition and element ratios of soil material. Understanding the spatial variation of rock‐derived weathering products across heterogeneous landscapes not only relies on knowledge of the environmental controls but also of their interactions.

High Andean tropical ecosystems provide a good opportunity to study the association between chemical weathering, local topography and vegetation patterns: the climate, parent material and soil age can be held constant at the landscape scale, while the vegetation and slope morphology can vary greatly from the hilltops to the valley bottoms. In this study, we selected 10 soil toposequences on andesitic flows: 5 under tussock grasses, 3 under cushion forming plants and 2 under native forest. A marginally significant increase in base cation depletion is observed along topographic gradients that can be associated with physical transport of weathered soil particles downslope or subsurface water fluxes. Beyond the hillslope-scale topographic control on chemical weathering extent, we observed highly significant differences in chemical weathering extent between vegetation communities with total mass losses in forest soils being respectively 19% and 22% higher than in grasslands and cushion forming plants. Although biotic factors can play a role in creating the observed patterns in soil development, the vegetation communities can also hint to the existence of hillslope micro-topography and subsurface hydrological patterns that are challenging to map in the field.

How to cite: Vanacker, V., Molina, A., Zhiminaicela, S., Corre, M., and Veldkamp, E.: High Andean Soil Landscapes Shaped by Interactions between Geomorphology, Vegetation, and Hydrology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17996, https://doi.org/10.5194/egusphere-egu2020-17996, 2020.

EGU2020-15999 | Displays | SSS8.10

Tree death as a crucial geomorphic agent in temperate forests: effects of weak and severe disturbances from local to continental scale

Pavel Šamonil, Pavel Daněk, James A. Lutz, Jakub Jaroš, Anna Rousová, Kristina J. Anderson-Teixeira, and Dušan Adam

Hillslope processes in terrestrial ecosystems are significantly modified by changes in climate and land use. At the same time they strongly influence ecosystem retention capacity, pedocomplexity and biodiversity. This undoubtedly makes hillslope processes one of the crucial components of terrestrial ecosystem dynamics. In this study we focus on the long overlooked biogeomorphological impact of tree death in forested landscapes. Tree uprooting caused by strong storms affects soil and regolith formation and movement quite differently from the decomposition of intact root systems of standing trees that died due to e.g. fire or bark beetle infestation. We quantify the biogeomorphic processes associated with tree death in various terrestrial forest ecosystems and specifically assess (i) the significance of these processes in hillslope dynamics (e.g. slope denudation) of forested landscapes and (ii) the extent to which infrequent severe disturbances can shape these dynamics.

We used data from repeated tree censuses carried out in ten permanent forest plots (13–74 ha in area) located in Central Europe and North America, differing in a range of characteristics such as tree species composition, climate and disturbance regime. In total, life history of more than 134,000 trees was recorded over periods of up to 47 years, during which about one third of these trees died. Using this information together with empirical models and allometric equations we were able to quantify the average areas and volumes of soil annually affected by dying trees. These quantities differed markedly between sites with different disturbance regimes. Tree uprooting-related volumes accounted annually for 0.01–13.5 m3ha−1 reaching maximum values on sites with occurrence of infrequent strong windstorms (Zofin and Boubin primeval forests, Czech Republic). Volumes related to trees that died standing ranged anually between 0.17 and 20.7 m3ha−1 and were highest in the presence of stand-replacing fires (Yosemite National Park, U.S.). Comparison of these quantities with long-term erosion rates derived using cosmogenic nuclides (10Be) suggests that on certain sites, over the last few millennia, tree uprooting can be the main driver of soil erosion.

How to cite: Šamonil, P., Daněk, P., Lutz, J. A., Jaroš, J., Rousová, A., Anderson-Teixeira, K. J., and Adam, D.: Tree death as a crucial geomorphic agent in temperate forests: effects of weak and severe disturbances from local to continental scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15999, https://doi.org/10.5194/egusphere-egu2020-15999, 2020.

EGU2020-9952 | Displays | SSS8.10

Connecting the Deep Earth and the Atmosphere

Trond H. Torsvik, Henrik H. Svensen, Bernhard Steinberger, Dana L. Royer, Dougal A. Jerram, Morgan T. Jones, and Mathew Domeier

The connections between the Earth’s interior and its surface are manifold, and defined by processes of material transfer: from the deep Earth to lithosphere, through the crust and into the interconnected systems of the atmosphere-hydrosphere-biosphere, and back again. One of the most spectacular surface expressions of such a process, with origins extending into the deep mantle, is the emplacement of large igneous provinces (LIPs), which have led to rapid climate changes and mass extinctions, but also to moments of transformation with respect to Earth’s evolving paleogeography. But equally critical are those process which involve material fluxes going the other way—as best exemplified by subduction, a key driving force behind plate tectonics, but also a key driver for long-term climate evolution through arc volcanism and degassing of CO2.

Most hotspots, kimberlites, LIPs are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have likely been quasi-stable for hundreds of millions, perhaps billions of years, and plume heads rise through the mantle in about 30 Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating and modifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown (cooling), but we find no clear relationship between LIPs and post-emplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time-scales. Hotspot and kimberlite volcanoes generally have relatively small climate effects compared with that of LIPs (because of volumetric and flux differences), but the eruption of large kimberlite clusters, notably in the Cretaceous, could be capable of delivering enough CO2 to the atmosphere to trigger sudden global warming events.

Subduction is a key driving force behind plate tectonics but also a key driver for the long-term climate evolution through arc volcanism and degassing of CO2. Subduction fluxes derived from full-plate models provide a powerful way of estimating plate tectonic CO2 degassing (sourcing). These correlate well with zircon age frequency distributions and zircon age peaks clearly correspond to intervals of high subduction flux associated with greenhouse conditions. Lows in zircon age frequency are more variable with links to both icehouse and greenhouse conditions, and only the Permo-Carboniferous (~330-275 Ma) icehouse is clearly related to the zircon and subduction flux record. A key challenge is to develop reliable full-plate models before the Devonian in order to consider the subduction flux during the end-Ordovician Hirnantian (~445 Ma) glaciations, but we also expect refinements in subduction fluxes for Mesozoic-Cenozoic times as more advanced ocean-basin models with intra-oceanic subduction are being developed and implemented in full-plate models.

How to cite: Torsvik, T. H., Svensen, H. H., Steinberger, B., Royer, D. L., Jerram, D. A., Jones, M. T., and Domeier, M.: Connecting the Deep Earth and the Atmosphere, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9952, https://doi.org/10.5194/egusphere-egu2020-9952, 2020.

EGU2020-8675 | Displays | SSS8.10

Rift-basin compartmentalization and changing environments: tectono-climatic forcing of environmental conditions and species dispersal in the East African Rift System (EARS)

Manfred R Strecker, René Dommain, Yannick Garcin, Lydia A Olaka, Richard Potts, and Simon Riedl

In the EARS orographic forcing of rainfall, pronounced relief contrasts between shoulder areas and the axial rift sectors results in steep environmental and surface-process gradients, severed fluvial networks, and diverse vegetation types. Due to sustained Quaternary tectono-volcanic activity and the effects of a superposed, highly variable climate these basins have been further differentiated into distinct environments that are either isolated or fluvially connected on time scales of several 103 to 106 years. The EARS thus comprises important physical corridors, but also barriers with spatially varying topographic conditions and resource distribution. Varying paleo-environmental settings and the present-day distribution of some mammal groups in the EARS' Kenya Rift highlight the importance of rift corridors for the migration of species and the interchange of now geographically isolated lineages.

For example, the presently disjunct distribution of the Bat-eared fox (Otocyon megalotis), the Black-backed jackal (Canis mesomelas) and the Oryx sister taxa (Oryx beisa and O. gazella) in northeastern vs. southern Africa, or of various rainforest antelopes such as Bongo (Tragelaphus euryceros) in the Congo basin and beyond the EARS in central Kenya, suggests that variability in connectivity along and across the rift has influenced species dispersal. Protracted rifting dictates the overall geomorphic character of the migration corridors, but fluvial connectivity varies significantly as a response to orbitally driven climatic conditions. These factors were responsible for lateral change in vegetation cover, such as the distribution of wet forests that enabled dispersal in the equatorial sectors of the rift. Such conditions ultimately determined whether the meridionally oriented rift segments acted as gateways or barriers.

How to cite: Strecker, M. R., Dommain, R., Garcin, Y., Olaka, L. A., Potts, R., and Riedl, S.: Rift-basin compartmentalization and changing environments: tectono-climatic forcing of environmental conditions and species dispersal in the East African Rift System (EARS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8675, https://doi.org/10.5194/egusphere-egu2020-8675, 2020.

EGU2020-20627 | Displays | SSS8.10

GEN3SIS: An engine for simulating eco-evolutionary processes in the context of plate tectonics and deep-time climate variations

Oskar Hagen, Renske E. Onstein, Benjamin Flück, Fabian Fopp, Florian Hartig, Mikael Pontarp, Camille Albouy, Ao Luo, Lydian Boschman, Juliano S. Cabral, Yaowu Xing, Zhiheng Wang, Thiago F. Rangel, Christopher Scotese, and Loïc Pellissier

Explaining the origin of large-scale biodiversity gradients has been a key aspiration of early naturalists such as Wegener, Darwin and Humboldt; who looked at natural processes in an integrated way. Early on, these naturalists acknowledged the role of plate tectonics and climate variations in shaping modern day biodiversity patterns. 

As science advanced, the complexity of ecological, evolutionary, geological and climatological processes became evident while research became increasingly fragmented across different disciplines. Nevertheless, recent development in mechanistic modeling approaches now enable bringing disciplines back together, opening a new interdisciplinary scientific pathway.

Here, we present GEN3SIS, the GENeral Engine for Eco-Evolutionary SImulationS. It is the first spatially explicit eco-evolutionary model that incorporates deep-time Earth history, including plate tectonics, as well as climate variations in a modular way. The modular design allows exploring the consequences of user-defined biological processes that act across “real world” spatio-temporal landscapes. Emerging from the model are specie’s ranges, alpha and beta diversity patterns, ecological traits as well as phylogenies. Subsequently, these patterns can be compared to empirical data. Furthermore, GEN3SIS allows assessing paleoclimatic and paleogeographic hypotheses by using different Earth history scenarios and comparing simulation outputs with empirical biological data.

As a case study, we explore the cold-adapted plant biodiversity dynamics throughout the Earth’s Cenozoic history, based on a deep-time tectonic and climate reconstruction. The Cenozoic India-Asia collision formed the Himalayan mountain range. In this highly elevated region, the first cold niches of the Cenozoic appeared, demanding adaptation from the local living flora. We hindcast diversification of cold-adapted species with GEN3SIS, for which we use a topo-climatic reconstruction for the last 55 Myr. The model predicts the emergence of current cold-species richness patterns. Moreover, simulations indicate that cold-adapted flora emerged in the Oligocene, first in the Himalayas, followed by a spread to the Arctic. This agrees with observed low species richness and high nestedness of Arctic assemblages compared to those of the Himalayan mountain ranges. Under ongoing climate change a major loss of cold-adapted plant diversity is expected by the end of the century, particularly in lower latitude mountain ranges. Hindcasting and forecasting dynamics of cold-adapted lineages highlights the transient fate of cold organisms in a warming world.

GEN3SIS is made available as an R package, which allows customizing (i) the simulated landscape including environmental variables and (ii) all the processes interacting under different spatial and temporal scales. Consequently, GEN3SIS fosters collaborations between different natural disciplines and therefore contributes to an interdisciplinary understanding of the processes that shaped Earth’s history.

How to cite: Hagen, O., E. Onstein, R., Flück, B., Fopp, F., Hartig, F., Pontarp, M., Albouy, C., Luo, A., Boschman, L., S. Cabral, J., Xing, Y., Wang, Z., F. Rangel, T., Scotese, C., and Pellissier, L.: GEN3SIS: An engine for simulating eco-evolutionary processes in the context of plate tectonics and deep-time climate variations, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20627, https://doi.org/10.5194/egusphere-egu2020-20627, 2020.

Erosion and sediment transport in river catchments depend significantly on tectonics, climate and associated vegetation-cover. In this study, we used a numerical modelling approach to quantify the effects of temporal variations in precipitation rates and vegetation-cover over different uplift rates (0.05 mm a-1, 0.1 mm a-1, 0.2 mm a-1) and periodicities (23 kyr, 41 kyr and 100 kyr) of climate and associated vegetation-cover oscillations on erosion, sediment transport and deposition at catchment scale. Landlab, a landscape evolution modelling toolkit was modified to incorporate surface vegetation-cover dependent hillslope and coupled detachment-transport limited fluvial processes, weathering and soil production. The model was applied to (two) sites in the Coastal Chilean Cordillera namely Pan de Acuzar (~26), and La Campana (~33). These sites show a steep gradient in climate and vegetation density from arid climate and sparse vegetation density in northern latitudes to wetter temperate climate and abundant vegetation in the south, with granitic bedrock. The model simulations were run for 15 Myr to create steady-state topographies for both model domains. The sensitivity of these landscapes to changing climate and surface vegetation-cover was analyzed for 3 Myr for five transient model scenarios: (1) oscillating precipitation and constant vegetation cover, (2) constant precipitation and oscillating vegetation cover, (3) coupled oscillations in precipitation and vegetation cover, (4) coupled oscillations in precipitation and vegetation cover with variable periodicities, (5) coupled oscillations in precipitation and vegetation cover with variable rock uplift rates. The results suggest that erosion and sediment transport in densely vegetated landscapes are dominated by changes in precipitation, rather than vegetation-cover change in the southern study area (La Campana), as a result of higher amplitude of precipitation change i.e., 460 mm. Arid (northern) and sparsely vegetated landscapes are dominated by changes in vegetation density rather than precipitation, explained by higher erosion rates in periods with no surface vegetation-cover. Coupled oscillations in climate and vegetation cover suggested dampened influence of transient forcing on climate or vegetation-cover. The influence of periodicity of climate oscillations is significantly pronounced for shorter period (23 kyr oscillations) in terms of erosion rates. Results from different uplift rates suggested a positive linear relationship of topographic elevation and slope, erosion and sediment transport. However, sediment thickness decreases with increasing uplift rates, attributed to higher sediment flux on hillslopes due to linear dependence of slope on rock uplift rates.  These results broadly demonstrate the implications of long term climate change with associated vegetation density on geomorphic processes shaping the topography.

How to cite: Sharma, H., Ehlers, T. A., and Schmid, M.: Influence of oscillating vegetation cover, precipitation, and sediment transport on topography: Insights from a landscape evolution model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3412, https://doi.org/10.5194/egusphere-egu2020-3412, 2020.

Chemical weathering and physical erosion are important processes shaping topography, producing soils, and providing nutrients for life.  The rates of these processes are influenced not only by tectonics, but also by climate and biota.  The Chilean Coastal Cordillera from 26° to 38°S is a natural laboratory to investigate chemical weathering and physical erosion rates over different climatic settings.  From North to South, climate changes from arid (Pan de Azúcar), semi-arid (Santa Gracia), Mediterranean (La Campana) to temperate humid (Nahuelbuta).  Here we present chemical weathering and physical erosion rates based on published and new in situ-produced cosmogenic nuclides and immobile elements published from soil pedon depth profiles in the four study areas.

Calculated chemical weathering rates range from zero in Pan de Azúcar to an high value of 211 t/(km2 yr) in La Campana.  Chemical weathering rates are comparable in Santa Gracia and Nahuelbuta (~20 t/(km2 yr).  Physical erosion rates are low in Pan de Azúcar (~11 t/(km2 yr)) and increase towards the South (~ 40 t/(km2 yr)).  Combined chemical weathering and physical erosion rates indicate that denudation rates are lowest in Pan de Azúcar and highest in La Campana.  The contribution of chemical weathering to total denudation rates is increasing and then decreasing with increasing mean annual precipitation from North to South.  The observation that the calculated chemical weathering rates in the southernmost location with the highest mean annual precipitation and the highest chemical index of alteration are not the highest of all four study areas is evaluated and discussed.   We investigate possible influence of precipitation and vegetation on chemical weathering and physical erosion rates.

How to cite: Schaller, M. and Ehlers, T. A.: Chemical weathering and physical erosion rates along a vegetation and climate gradient, Chilean Coastal Cordillera (26° – 38°S), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3442, https://doi.org/10.5194/egusphere-egu2020-3442, 2020.

The Cretaceous angiosperm radiation was a major event for terrestrial plant evolution, and flowering plants represent more than 94 % of present-day plant diversity. The fossil record shows that angiosperm leaf vein densities reached particularly high values (> 12 mm/mm2) between the Albian and the Cenomanian (108–94 Ma) compared to gymnosperms (~ 2.5 mm/mm2). Empirical models also suggest that stomatal conductance to water vapour increases as a response to higher leaf vein densities. How much do this shift to higher values of stomatal conductance have modified the continental transpiration budget, and ultimately global hydrological cycle ? To address this question we used the IPSL coupled atmosphere-vegetation model forced by Cretaceous boundary conditions, and built plant functional types including stomatal conductance values consistent with the fossil record. We quantify the transpiration fluxes through different sensitivity experiments and explore the vegetation-atmosphere feedbacks and their impact on the Cretaceous climate.

How to cite: Bres, J., Sepulchre, P., Vuichard, N., and Viovy, N.: Did the rise of highly-transpiring angiosperms influenced Cretaceous climate ? A modelling approach with the IPSL atmosphere-land surface model., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9293, https://doi.org/10.5194/egusphere-egu2020-9293, 2020.

EGU2020-3575 | Displays | SSS8.10

Sundaland's subsidence requires revisiting its biogeography

Laurent Husson, Florian Boucher, Anta-Clarisse Sarr, Pierre Sepulchre, and Sri Yudawati Cahyarini

It is widely accepted that sea level changes intermittently inun- dated the Sunda Shelf throughout the Pleistocene, separating Java, Sumatra and Borneo from the Malay Peninsula and from each other. On this basis, the dynamics of the biodiversity hotspot of Sundaland is consistently regarded as solely contingent on glacial sea level os- cillations, with interglacial highstands creating intermittent dispersal barriers between disjunct landmasses. However, recent findings on the geomorphology of the currently submerged Sunda shelf sug- gest that it subsided during the Pleistocene and that, over the Late Pliocene and Quaternary, is was never submerged prior to Marine Isotope Stage 11 (MIS 11, 400 ka). This would have enabled the dispersal of terrestrial organisms regardless of sea level variations until 400 ka and hampered movements thereafter, at least during interglacial periods. Existing phylogeographic data for terrestrial organisms conform to this scenario: available divergence time esti- mates reveal an 8‐ to 9‐fold increase in the rate of vicariance be- tween landmasses of Sundaland after 400 ka, corresponding to the onset of episodic flooding of the Sunda shelf. These results highlight how reconsidering the paleogeographic setting of Sundaland chal- lenges understanding the mechanisms generating Southeast Asian biodiversity.

How to cite: Husson, L., Boucher, F., Sarr, A.-C., Sepulchre, P., and Cahyarini, S. Y.: Sundaland's subsidence requires revisiting its biogeography, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3575, https://doi.org/10.5194/egusphere-egu2020-3575, 2020.

EGU2020-10817 | Displays | SSS8.10

Soil erosion controlled by biota along a climate gradient in Chile

Nicolás Riveras, Kristina Witzgall, Victoria Rodríguez, Peter Kühn, Carsten W. Mueller, Rómulo Oses, Oscar Seguel, Steffen Seitz, Yasna Tapia, Osvaldo Salazar, Dirk Wagner, and Thomas Scholten

Soil erosion is one of the main problems in soil degradation nowadays and is widely distributed in many landscapes worldwide. Particularly water erosion is widespread and determined by rain erosivity, soil erodibility, topographic factors and the management carried out to mitigate this phenomenon. Although this process is mostly known as a consequence of human management such as agriculture or forestry, it is a process that also occurs naturally, being one of the factors that regulate the shape of the landscape.

One of the main agents that stabilize the soil surface is biota and its activity, either in the form of plants, microorganisms or as an assemblage in the form of a biological soil crust (biocrusts). However, there are limited studies about how and what extent biota drives soil-stabilizing processes. With particular view on the impact of biocrusts on soil erosion, most studies have been carried out in arid and semi-arid regions, so its influence under other climates is largely unknown.

This study focuses on the influence of biota on soil erosion in a temperature and rainfall gradient, covering four climate zones (arid, semi-arid, mediterranean and humid) with very limited human intervention. Other variables such as the origin of the geological formation, geographical longitude and glacial influence were kept constant for all study sites. The effect of vegetation (biocrusts) and its abundance, microbiology and terrain parameters are investigated using rainfall simulation experiments under controlled conditions and by a physico-chemical evaluation of the soil, surface runoff, percolation and sediment discharge, in order to determine the different environmental filtering effects that the soil develops under different climatic conditions.

It is expected that as vegetation vigor and cover increase, soil erodibility will decrease. The biocrust is the protagonist of this stabilization in conditions of low pedological development and will become secondary as edaphoclimatic conditions favor the colonization of plants.

The results of this study will help to achieve a better understanding of the role of biota in soil erosion control and will clarify its influence on soil losses under different climate and slope conditions. Analyses are currently ongoing and first results of our work will be presented at the EGU 2020.

How to cite: Riveras, N., Witzgall, K., Rodríguez, V., Kühn, P., Mueller, C. W., Oses, R., Seguel, O., Seitz, S., Tapia, Y., Salazar, O., Wagner, D., and Scholten, T.: Soil erosion controlled by biota along a climate gradient in Chile, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10817, https://doi.org/10.5194/egusphere-egu2020-10817, 2020.

EGU2020-17376 | Displays | SSS8.10

How vegetation drives initial soil development together with soil organic matter accrual in maritime Antarctica

Isabel Prater, Filip Hrbacek, Lars Arne Meier, Christina Braun, Daniel Nyvlt, and Carsten W. Mueller

Antarctica with its unique conditions for soil development offers the opportunity to disclose basic soil biogeochemical processes in an environment with a low degree of ecosystem interactions. The region’s climate is divided by the mountain ridge of the Antarctic Peninsula: on the South Shetland Islands (King George Island (KGI)) in the west a maritime cold climate prevails, while James Ross Island (JRI) in the east faces the continental cold climate of a polar desert with less precipitation and distinctly more pronounced temperature variations throughout the year. In addition, the autochthonous vegetation differs; while it solely consists of cryptogams on JRI, on KGI two vascular plants (Dechampsia antarctica, Colobanthus quitensis) are endemic. This scarce vegetation patterns together with land surfaces ice-free for several millenia allows studying the complex interaction between soil organic matter (SOM) sequestration and soil structure development with respect to the varying presence and growth of vegetation.  

The main aim of our study is to decode the mechanisms determining the fate of SOM in maritime Antarctica and to understand how the scarce vegetation drives the chemical composition and distribution of SOM within specific physical SOM fractions. Therefore, we sampled transects ranging from vegetated patches to plant-free soil surfaces. The distance to these vegetation patches was reflected in clear variations in the distribution of carbon and nitrogen and in a decrease in labile SOM constituents as revealed by 13C-CPMAS NMR spectroscopy, while clay-sized mineral-associated SOM dominated the carbon storage throughout all sites. The ongoing climate change is assumed to significantly alter the vegetation distribution and thus drive the storage and composition of SOM. In the future, this will also strongly affect soil microbial activity and land-ocean transitions in Antarctica.

How to cite: Prater, I., Hrbacek, F., Meier, L. A., Braun, C., Nyvlt, D., and Mueller, C. W.: How vegetation drives initial soil development together with soil organic matter accrual in maritime Antarctica, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17376, https://doi.org/10.5194/egusphere-egu2020-17376, 2020.

EGU2020-8213 | Displays | SSS8.10

Soil formation and biological soil crust development in glacier forelands of Svalbard (High Arctic)

Philipp Gries, Karsten Schmidt, Peter Kühn, Joachim Eberle, Steffen Seitz, Thomas Scholten, Michał Węgrzyn, and Paulina Wietrzyk-Pełka

Over the last decades, a progressive glacier melting has been detected induced by climate change which cause a rapid enlargement of ice-free areas in glacier forelands in Arctic, Antarctic and Alpine regions. These recently deglaciated areas represent highly dynamic environments in terms of vegetation development and soil formation. Tundra plant communities of glacier forelands mainly consist of cryptogamic species forming biological soil crusts (BSCs) on the surface. These BSCs are known to promote the accumulation of aeolian particles and organic material being relevant to soil formation. It is important to understand both BSC development and soil formation in glacier forelands as fundamental to future development of mature tundra which contributes to an increase in soil organic carbon (SOC) and nitrogen (N) stocks in soil. The heterogeneous terrain of glacier forelands affects the spatial variation in both soil and vegetation characteristics which are additionally influenced by the distance to the glacier terminus. This study focuses on the spatial variation in soil and BSC characteristics in Arctic glacier forelands of Svalbard using multi-scale contextual soil mapping (CSM) and Euclidean distance fields (EDF). The data set comprises of soil (SOC, N, texture) and BSC characteristics (species composition, percent cover) from 168 sampling locations as well as terrain covariates (elevation, slope, aspect, curvature) at several scales using CSM and spatial covariates (EDF). Random forests (RF) are used to analyse the relationships between the covariates and soil and BSC characteristics, respectively.

Preliminary results show a good quality of the RF models (R²/RMSE) which is similar for SOC (0.41/6.19) and N (0.44/0.22). Elevation, curvature and slope at large scales are the most important covariates to explain the spatial variation in SOC and N. On large scales, these covariates represent the distance to the glacier terminus and generally explain the increase in SOC and N with increasing distance from the glacier terminus.  Additionally, elevation at small scales represents relevant issues of predominant geomorphologic features signature (e.g. moraine topography) to soil formation and BSC development. Analyses of the spatial variation and interrelationships of soil and BSC characteristics are still ongoing and further results will be presented at EGU 2020.

How to cite: Gries, P., Schmidt, K., Kühn, P., Eberle, J., Seitz, S., Scholten, T., Węgrzyn, M., and Wietrzyk-Pełka, P.: Soil formation and biological soil crust development in glacier forelands of Svalbard (High Arctic), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8213, https://doi.org/10.5194/egusphere-egu2020-8213, 2020.

EGU2020-19107 | Displays | SSS8.10

How the recently discovered grit crust shapes the Atacama Desert – Combining environmental studies on cryptogams and remote sensing

Patrick Jung, Lukas Lehnert, Michael Lakatos, Michael Schermer, Karen Baumann, Luise Wraase, Kai-Uwe Eckhardt, Maaike Bader, Peter Leinweber, Jörg Bendix, and Burkhard Büdel

The Atacama Desert is the driest non-polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet-dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocoenosis dominated by lichens, fungi and algae attached to grit-sized quartz- and granitoid stones (grit crust). In contrast to previously known CGC from arid environments to which frequent cyclic wetting events are lethal, here every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert’s breath. Photosynthesis of the new CGC-type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocoenosis to fulfill a variety of ecosystem services such as protection against soil erosion and contributions to accumulation of soil carbon and nitrogen and soil formation through bio-weathering. Using state-of-the-art remote sensing technology, we estimate the total cover of the grit crust and show that the newly discovered organisms cover large areas along the coastal belt of the Atacama Desert.

How to cite: Jung, P., Lehnert, L., Lakatos, M., Schermer, M., Baumann, K., Wraase, L., Eckhardt, K.-U., Bader, M., Leinweber, P., Bendix, J., and Büdel, B.: How the recently discovered grit crust shapes the Atacama Desert – Combining environmental studies on cryptogams and remote sensing, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19107, https://doi.org/10.5194/egusphere-egu2020-19107, 2020.

EGU2020-18826 | Displays | SSS8.10

Development of soil in heterogeneous landscapes of a high alpine catchment in the Central European Alps

Svenja Müller, Katharina Ramskogler, Bettina Knoflach, Johann Stötter, Brigitta Erschbamer, Paul Illmer, and Clemens Geitner

In high mountain environments with harsh weather conditions, soil development and its limitations strongly depend on topography and morphodynamics, both leading to heterogeneous landscape patterns of different geological substrate, vegetation, (micro)relief, and (micro)climate. In addition, as glaciers currently are retreating disproportionately strong, a large area is exposed to initial soil development, enabling to study time related issues of soil formation.

These mosaic-like patterns are particularly intensified within the high-alpine and nival zone, due to the dominating influence of cryospheric elements, such as ice (e.g. retreating glaciers), snow (e.g. snowbeds; shallow self-deepening sinks with snow accumulation at altitudes above 2500 m a.s.l.), and frost (e.g. causing solifluction, controlling physical weathering, changing permafrost dynamics, increasing the probability mass movements and sediment transport). The high-alpine environment with its site diversity therefore represents a perfect study area to analyze soil-vegetation-interactions at various microsites within a single catchment.

To study the influence of time, the glacier foreland of Zufall- and Fürkeleferner (Martelltal, South Tyrol) was found to be excellent for an interdisciplinary chronosequence study. Large amounts of historical maps, aerial orthophotos, and remote sensing data are available, enabling reconstructed glacier retreat with a high spatial and temporal accuracy. Study sites of different soil age were chosen for the analysis of various soil and vegetation parameters. The influence of temperature and soil water availability were determined by installing temperature and soil matric potential data loggers.

Furthermore, to study soil development as a function of geological substrate, microrelief, altitude, slope, and microclimate, an additional transect along an altitudinal gradient (Martelltal, South Tyrol, within the maximum extent of Egesen) was sampled and analyzed regarding central soil properties, vegetation, and microclimate. Directly bordering to those sites, heterogeneous and morphodynamically active microsites were investigated. These special sites were characterized by different morphological features, in particularly: soil sinks of different genesis, hilltops, and scree-dominated sites with initial soil development after primary plant succession.

As expected, we found clear trends of soil development with changing altitude and/or time. However, the small-scaled special sites differed distinctly from the reference sites regarding basic soil properties such as soil pH or soil organic matter content, and also remarkably in plant-available NH4-N, microbial activity, and microbial biomass. This was especially true where the water regime was strongly affected by the microrelief.

The observed distinct changes in soil properties within small scales of sometimes only several meters help to better understand and predict soil formation and diversity as well as soil-plant-interactions in high alpine environments of the European Alps.

How to cite: Müller, S., Ramskogler, K., Knoflach, B., Stötter, J., Erschbamer, B., Illmer, P., and Geitner, C.: Development of soil in heterogeneous landscapes of a high alpine catchment in the Central European Alps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18826, https://doi.org/10.5194/egusphere-egu2020-18826, 2020.

EGU2020-10618 | Displays | SSS8.10

Area-wide detection and spatial modeling of signs of bioturbation activity along a climate and elevation gradient in Chile using UAV and their dependence on vegetation and soil characteristics

Paulina Grigusova, Diana Kraus, Annegret Larsen, Alexander Klug, Robin Fischer, Sebastian Achilles, Peter Chifflard, Nina Farwig, and Jörg Bendix

The impact of soil dwelling animals on the terrain shaping is assumed to be largely coupled with vegetation and soil characteristics, particularly in arid and semi-arid regions. The vegetation determines the habitat availability by providing necessary resources such as food and shelter while the burrowing activities of soil dwelling animals impacts at the same time soil properties and nutrient fluxes needed for plant growth. This important relationship and feedbacks between bioturbators, vegetation, climate, soil conditions and landscape shaping is to date completely understudied, particularly the dependencies between soil animals and the vegetation cover. Thus, comprehensive studies to gain a detailed understanding are urgently required. Here, we modeled the presence of all signs of bioturbation (burrows, holes and mounds) within a study area of 1 km2 with an elevation gradient of 100m height difference in a semi-arid (Santa Gracia, Chile) and Mediterranean (NP La Campana, Chile) zone of coastal Chile using UAV (unmanned aerial vehicle) images. We then compared their relationship between the two climate zones in regard to the vegetation, elevation and soil characteristics. The images were obtained at a flight altitude of 15-60 meters above one study area per each climate zone by means of a Solo quadropter drone equipped with a RGB GoPro camera. Ancillary in-situ data were measured within 10 plots per study area with a size of 10m x 10m. Within the plots, the amount and size of the burrows and mounds as well as the vegetation cover was quantified. In addition, the GPS coordinates of several holes and mounds with a diameter of 10cm and above were measured. Twenty representative soil samples in regard to the land cover, vegetation type and presence of bioturbation activity were taken along the elevation gradient and analyzed for skeleton fraction, soil texture, bulk density and water content. The RGB images obtained by the drone system were firstly used for a supervised land-use classification and to calculate the vegetation density across the study area. The surface roughness was estimated by creating the point cloud of the area and calculating the standard deviation of the point cloud and original images using moving window of 5x5 pixels/points. The presence of soil animal activity was modeled using random forest where drone images, digital elevation model, surface roughness and land cover characteristics (land use, vegetation density and type) were used as predictors. The results showed modeled spatial distribution of burrows and mounds within the study areas, and a dependence of the predicted bioturbation activity on vegetation density and type as well as on elevation and soil conditions along the elevation gradient at both sites. The dependencies are finally compared between the two climate zones.

How to cite: Grigusova, P., Kraus, D., Larsen, A., Klug, A., Fischer, R., Achilles, S., Chifflard, P., Farwig, N., and Bendix, J.: Area-wide detection and spatial modeling of signs of bioturbation activity along a climate and elevation gradient in Chile using UAV and their dependence on vegetation and soil characteristics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10618, https://doi.org/10.5194/egusphere-egu2020-10618, 2020.

Earthworms are ecosystem engineers, capable of modifying the soil environment they inhabit. Recent evidence indicates that they increase the mobility and availability of potentially toxic elements in soils, but the systematic synthesis of the evidence required to understand mechanisms and identify soils most susceptible to earthworm-induced potentially toxic element mobilisation is lacking. We undertook a meta-analysis of 43 peer reviewed journal articles, comprising 1185 pairwise comparisons to quantify the impact of earthworms on potentially toxic element mobility in bulk earthworm-inhabited soil and earthworm casts and on plant uptake and concentration. We find that earthworms mobilise potentially toxic elements primarily due to the passage of soil through the earthworm gut and that this results in an increase in the concentration and uptake by plants. Earthworms mobilise potentially toxic elements in uncontaminated soils to a greater extent than contaminated soils. Soils with either very low (<2%) or very high (>10%) soil organic matter content are most susceptible to earthworm-induced potentially toxic element mobilisation. These findings have important implications for exotic earthworms burdening plants with toxic metals, but also offer a promising phenomenon that, if harnessed, may help to alleviate micronutrient deficiencies in degraded soils.

How to cite: Sizmur, T. and Richardson, J.: Earthworms accelerate the biogeochemical cycling of potentially toxic elements: Results of a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1873, https://doi.org/10.5194/egusphere-egu2020-1873, 2020.

EGU2020-4084 | Displays | SSS8.10

From rock-eating to vegetarian ecosystems — plant phosphorus acquisition strategies along a Chilean precipitation gradient

Sandra Spielvogel, Moritz Köster, Svenja Stock, Francisco Nájera, Khaled Abdallah, Anna Gorbushina, Jörg Prietzel, Francisco Matus, Wantana Klysubun, Jens Boy, Yakov Kuzyakov, and Michaela Dippold

Besides nitrogen, phosphorus (P) is the major limiting nutrient of terrestrial primary productivity, with major P stocks being bound in soils. Stocks, speciation, and bioavailability of soil P differ among ecosystem types and with rock weathering status, which are both driven by climatic conditions. Microorganisms and plants have developed a range of strategies to mobilize P from organic and inorganic sources, e.g. expression of extracellular phosphatases and excretion of low-molecular-weight organic acids (LMWOA). However, the impact of precipitation, vegetation type, and soil P speciation on plant P acquisition strategies is not well understood, yet.

A semi-desert-to-humid-temperate-rainforest ecosystem sequence was investigated. Soil samples were taken from three sampling sites, all developed on granodiorite, comprising a precipitation gradient (66 mm a-1 to 1469 mm a-1) along the Chilean Coastal Cordillera. Small-scale gradients (mm) from single roots to bulk soil in three depths were sampled to examine changes in P speciation, enabling the identification of local P depletion by plant roots and differences in P-speciation between rhizosphere and non-rhizosphere soil. Phosphorus speciation was examined by X-ray absorption near edge structure analysis. LMWOA as biotic weathering agents, and acid phosphatase kinetics as proxy for organic P recycling, were quantified. The aim was to disentangle the impact and functions of roots and associated microorganisms on driving agents of P-cycling.

Rhizosphere P speciation in soil changed considerably along the precipitation gradient from mainly primary P minerals in the semi-desert ecosystem to a dominance of organic P species in the humid-temperate rainforest. Contents of organically bound P were higher in root proximity compared to bulk soil in the humid-temperate rainforest soils (320 mg kg-1 and 70 mg kg-1, respectively) and in the topsoil of the Mediterranean woodland ecosystem (134 mg kg-1  and 62 mg kg-1, respectively).  In contrast, the rhizosphere soil was depleted in sesquioxide-adsorbed P in comparison to root-free bulk soil.

The content of LMWOA was correlated with inorganic P in soils of the semi-desert ecosystem, indicating intensive LMWOA exudation for biogenic P weathering of primary and secondary minerals. Under temperate rainforest LMWOA content, phosphatase activity, and microbial biomass carbon exhibited a negative correlation with secondary inorganic P forms but were positively linked to organic P species. We therefore conclude that P nutrition in this ecosystem relies less on weathering of P bearing minerals by LMWOA but is mainly based on organic P sources.

In terms of process understanding, these findings clearly show that LMWOA fundamentally change their role in the rhizosphere depending on the nutrient acquisition strategy of the respective ecosystem, which is affected by mean annual precipitation. While LMWOA facilitate biogenic weathering of P bearing minerals in the semi-desert, they mainly contribute to P recycling in the humid-temperate rainforest by preventing its precipitation and sorption. We conclude that P acquisition and cycling depends on the nutritional constrains of the given ecosystem: from biological weathering of inorganic P forms in the semi-desert driven by LMWOA and plant uptake to intensive P recycling from organic forms in the humid-temperate rainforest.

How to cite: Spielvogel, S., Köster, M., Stock, S., Nájera, F., Abdallah, K., Gorbushina, A., Prietzel, J., Matus, F., Klysubun, W., Boy, J., Kuzyakov, Y., and Dippold, M.: From rock-eating to vegetarian ecosystems — plant phosphorus acquisition strategies along a Chilean precipitation gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4084, https://doi.org/10.5194/egusphere-egu2020-4084, 2020.

Water flow as well as the presence and growth rate of land plants are commonly thought to present drivers of rock weathering. While plants are indeed key players in weathering, the quantitative evaluation of biota on total abiotic and biotic weathering processes remains vague.

Here, we report on weathering rates and nutrient uptake along the “EarthShape” climate and vegetation gradient in the Chilean Coastal Cordillera. The hypothesis we evaluated is whether weathering rate and degree does increase from north to south along the EarthShape climate gradient and whether the increase in biomass growth rate along this gradient is accommodated by additional nutrient-supply induced through weathering. We quantified the bio-available fraction of nutritive elements in regolith and we measured 87Sr/86Sr isotope ratios in the different compartments of the Earth’s Critical Zone (bedrock, regolith, bio-available fraction in saprolite and soil, and vegetation) to identify the sources of mineral nutrients to plants. We were thus quantified gains and losses of nutritive elements in and out of these ecosystems and to quantify nutrient recycling.

We find that despite the increase in biomass growth the weathering rate is relatively uniform along the gradient. Instead of accelerating biogenic weathering ecosystems with high productivity rely on efficient recycling between plants and soil to sustain their nutrition. Thus, the organic nutrient pathway (between plants and litter on the foerst floor) intensifies, whereas the geogenic nutrient pathway (from minerals to plant) remains steady despite increasing precipitation and primary productivity. We further speculate that the presence of plants might compensate weathering downward by regulating the hydrological cycle, fostering secondary-mineral formation, and a microbial community specializing on nutrient-recycling rather than nutrient-acquisition through weathering.

How to cite: Oeser, R. and von Blanckenburg, F.: Decoupling primary productivity from silicate weathering – how ecosystems regulate nutrient uptake along a climate and vegetation gradient, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8801, https://doi.org/10.5194/egusphere-egu2020-8801, 2020.

Christopher Schwerdhelm1, Ferdinand Hampl2, Carolina Merino3,4, Francisco Matus4,5, Thomas Neumann2, Andreas Kappler1, Casey Bryce1

 

1 Geomicrobiology, Center for Applied Geoscience (ZAG), Eberhard-Karls-University Tuebingen, Sigwartstrasse 10, 72076 Tuebingen, Germany

2 Technische Universität Berlin, Institute of Applied Geosciences, Department of Applied Geochemistry, Office BH 9-3, Ernst-Reuter-Platz 1, 10587 Berlin, Germany

3 Center of Plant, Soil Interaction and Natural Resources Biotechnology Scientific and Technological Bioresource Nucleus (BIOREN), Temuco, Chile

4 Network for Extreme Environmental Research, Universidad de la Frontera, Temuco, Chile

5 Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Avenida Francisco Salazar, 01145 Temuco, Chile

 

Mineral weathering shapes Earth’s surface by transforming bedrock to soil in the ‘critical zone’. Among these transformation processes, microbial weathering plays an important role, as it contributes to all stages of rock-soil transformation such as primary rock colonization, rock breakdown, saprolite formation, and element cycling. Fe-metabolizing microorganisms, i.e. Fe(II)-oxidizing and Fe(III)-reducing microorganisms, are key players in weathering as they can directly attack minerals via their metabolism. However, most direct evidence for the role of these microbes in critical zone processes comes from shallow and humid tropical soils and saprolite, or from transects across corestones. Much less is understood about the direct role of these microorganisms in critical zone processes in more arid climates.  

In this study we have obtained drill cores from the critical zone of a semi-arid region of the Chilean Coastal Cordillera (Santa Gracia Reserve). Despite receiving only 66 mm of rain per year, the weathering profile is very deep (>80 m). The rock material of the drill core is a Cretaceous quartz monzodiorite rich in hornblende, biotite and chlorite with ca. 1-2 wt.-% Fe(III) oxyhydroxides and very low TOC content. Using cultivation-based methods we found microaerophilic Fe(II)-oxidizing bacteria in zones of weathered saprolite (up to ca. 25 m depth) and at the weathering front (70-76 m), while Fe(III)-reducing bacteria, grown either with dihydrogen or organic carbon, were successfully enriched from samples across the whole 87 m profile. A robust contamination control confirmed that cultivated microbes were from the in-situ community and not related to drill fluid contamination.  

These findings suggest there is potential for Fe-metabolizing microbes to contribute to mineral-weathering processes even in deep weathering profiles in semi-arid environments. The occurrence of cultivatable Fe(II)-oxidizing bacteria is controlled by the presence of highly fractured zones functioning as fluid and oxygen transport pathways. It is notable that despite the fact that much of the silicate minerals contain Fe(II), Fe(III)-reducing bacteria are more common. The co-occurrence of Fe(II)-oxidizing and Fe(III)-reducing bacteria in some isolated parts of the profile could represent a self-sustaining cycle of iron redox reactions.

How to cite: Schwerdhelm, C.: Could Fe-metabolizing microbes weather sub-surface minerals in a semi-arid climate?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6037, https://doi.org/10.5194/egusphere-egu2020-6037, 2020.

EGU2020-2402 | Displays | SSS8.10

Towards a quantitative paleogeography calculator

Thomas van der Linden, Guillaume Dupont-Nivet, and Douwe van Hinsbergen

Studies of paleoclimatology, paleoceanography, paleobiology, and other studies of paleoenvironment require paleogeographic reconstructions that display the past distribution of land and sea, and of bathymetry and altimetry. Quantitative reconstructions of past positions of continents and oceans have been available for decades, and have become easy to access and develop with the advance of GPlates software. Quantitative estimates of bathymetry and especially altimetry and topography, however, are considerably more challenging to develop. First attempts towards a global, quantitative approach towards paleotopography reconstruction were made in recent years. However these models are largely based on present day topography and require extensive manual adjustment for local modification that is subjective and precludes reproducibility. In this project, we attempt to overcome this subjectivity, and develop a quantitative methodology to calculate paleogeography based on kinematic input parameters.

Our aim is to develop ‘Paleogeography.org’, a free, online paleogeography calculator. This project calculates oceanic bathymetry and continental altitude and topography from plate tectonic reconstructions for various geodynamic settings. The algorithms are based on simple and straightforward dynamic principles: bathymetry of the ocean floor is at first order inferred from its age, and altimetry is based on computing crustal thickness based on shortening or extension reconstructions, assuming isostacy. Distinctions are made between undisturbed ocean floor, oceanic plateaus, trenches, continental rifts and back-arc basins, oceanic and continental volcanic arcs, upper plate orogens (e.g., Andes, Tibet) vs accretionary orogens (Zagros, Himalaya, Apennines, Alps), etc. This allows to calculate a global geography for any given time slice for which underlying kinematic reconstructions are available. These reconstructions are subsequently tested against independent quantitative estimates of e.g., altimetry and bathymetry and iterated where necessary. This approach provides a reproducible, global estimate of paleogeography without input from paleobiological or paleoclimatic indicators, enabling an independent platform for paleo-environmental study. The iteration between prediction and observation, moreover, will provide novel constraints on 4D geodynamic processes.

Code is written mainly in Python, especially using pyGPlates. The calculator will be available as open source code for scientists and other professionals. They can use it to make reproducible paleogeographic reconstructions based on their own plate tectonic reconstructions or on specific moments in time. In addition the output makes appealing pictures of plate tectonic reconstructions for both scientists and a wider audience.

How to cite: van der Linden, T., Dupont-Nivet, G., and van Hinsbergen, D.: Towards a quantitative paleogeography calculator, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2402, https://doi.org/10.5194/egusphere-egu2020-2402, 2020.

EGU2020-11908 | Displays | SSS8.10

Interaction among biogenic, climate and tectonic processes influences tufa precipitation, Araripe Basin, Brazil

Jaqueline Lopes Diniz, Francisco Manoel Wohnrath Tognoli, Tiago Siqueira de Miranda, Alcides Nóbrega Sial, Laís Vieira de Souza, Leonardo Campos Inocêncio, Juliano Bonato, Caroline Modica Custódio, and Aline Fernanda Spaniol

Tufas are continental freshwater carbonates common in epi-karst zones. They are composed of micrite and microsparitic crystals of calcite with variable primary moldic and fenestral porosity and with the frequent presence of biogenic content. By definition, tufa petrogenesis depends on climate processes and usually has precipitation induced by biological activity. Our examples include two morphotypes resulting from weathering of limestone of the Crato Formation, Araripe Basin, NE Brazil, and precipitated along vugular fractures. To understand how the climate and the biological activity act on precipitation of these rocks, we integrate structural data, petrography, and δ18O and δ13C values. Tufas are always associated with joints and faults in the northern boundary of the basin. The block where tufas occur has a dip angle between 5º and 30º, which differs from the regional average of 0° to 3º. The tufas fill vugular steep fractures with preferential planes oriented N50E and N30W and have a pipe-shaped growth pattern with top-down and center-out growth direction. The presence of organic filaments and mollusk shells are recurrent in all samples. Isotopic values measured on 32 samples indicate δ18O VPDB between -11,4‰ and -1,7‰ and δ13C VPDB between -12,1‰ and -5,1‰. The enrichment of 16O reveals the composition of meteoric water, responsible by the limestone dissolution and tufa precipitation. Organic fractioning induced by photosynthesis of the C4 plants result in 12C enrichment in the tufas. Macro and microscopic analysis revealed bryophyte filaments. Moreover, the porosity pattern strongly evidences the presence of these plants in tufa diagenesis. The close association of these rocks with the boundary faults suggests a relationship with climate denudation processes. The Araripe Basin is part of a set of continental rift basins in the Brazilian Northeast affected by uplifting. Thus, there are two stages recognized; the first one corresponds to the exhumation and reworking of the basement, probably in the early Cenozoic; and in the second stage a more intense weathering under semi-arid climate during Oligocene, or later.

How to cite: Lopes Diniz, J., Wohnrath Tognoli, F. M., Siqueira de Miranda, T., Nóbrega Sial, A., Vieira de Souza, L., Campos Inocêncio, L., Bonato, J., Modica Custódio, C., and Spaniol, A. F.: Interaction among biogenic, climate and tectonic processes influences tufa precipitation, Araripe Basin, Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11908, https://doi.org/10.5194/egusphere-egu2020-11908, 2020.

EGU2020-6020 | Displays | SSS8.10

Conundrum of the iron isotopic fractionation: banded iron formation from Urucum district, West Brazil

Gabriella Fazio, Elder Yokoyama, Lucieth Cruz, and Guilherme Trigilio

The iron biogeochemical cycle is redox-sensitive and, therefore, can be linked to the major variations on the atmospheric and ocean compositions over the Earth’s evolution. Regarding the two main increases in the oxygen levels during the Precambrian, the Great and the Neoproterozoic Oxidation Events, both are related to paleogeographic, paleoenvironmetal and biochemical changes, linked also to global glaciations. These paleoclimatic variations caused disturbances in the iron cycle, which reacted by depositing paleoclimatic archives as banded iron formations (BIF). Investigations on the iron cycle can shed a light on the responses of the ocean redox state and the iron reservoir through these atmospheric variations. Thus, the analyses of the iron isotopic composition in the BIFs are a fundamental tool for these studies. It is essential to considerate the associated isotopic fractionation processes and uncertainties during the interpretation of these data. To this extend, many authors address the possibility of the impact of post-depositional processes in the primary signature of iron isotopic values, such as diagenesis, metamorphism and weathering. In all these scenarios and along the depositional process, the metabolic activity of planktonic bacteria must be considered as an active mechanism of isotopic fractioning. Therefore, the biologic enrolment in Fe (II) oxidation in a poor-O2 atmosphere environment can help the understanding of BIF genesis during the major paleoclimatic events and its connection to life evolutionary leaps. In this study, we have performed a statistic evaluation of a bulk iron isotopic compilation from BIFs of different localities through the Precambrian, highlighting the Archean, the Paleoproterozoic and the Neoproterozoic. This evaluation was applied to ensure an iron isotopic anomaly, pointing towards an intense fractionation, found in the Neoproterozoic BIF of Banda Alta Formation (Jacadigo Group), located at Urucum district, West Brazil, bordering Bolivia. This formation is mainly composed of banded iron formations, interbedded with manganese facies, granular iron formation, diamictite and pelitic siliciclastic units. Its age constrains is in current debate, often linked to the Marinoan glaciation, whereas a recent biostratigraphic study indicates connection to the Sturtian glaciation. One of the main goals of this research is the evaluation of the uncertainty of primary isotopic signature regarding the impacts of post-depositional processes. To this extent, we have performed a detailed diagenetic characterization using clay mineralogy on stratigraphic cores establishing the diagenetic-low metamorphic stage in which these BIFs where submitted to. Moreover, in order to interpret the iron isotopic anomalous values, this research aimed the recognition of biogenic contribution in the BIF genesis. For this purpose, magnetic measures, such as low temperature magnetic measurements and standard bulk rock magnetism analyses, were performed to understand the minerology of the iron oxide phases and their genesis, in particular the attempt to identify biogenic magnetite proxies. In conclusion, a multiproxy approach was used targeting the understanding of the observed iron isotopic anomaly in the BIF of Urucum district.

How to cite: Fazio, G., Yokoyama, E., Cruz, L., and Trigilio, G.: Conundrum of the iron isotopic fractionation: banded iron formation from Urucum district, West Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6020, https://doi.org/10.5194/egusphere-egu2020-6020, 2020.

The Andes are the longest continental mountain range on Earth, stretching from tropical Colombia and Venezuela in the north to temperate to sub-polar Patagonia in the south along the western margin of the South American continent. Biological diversity is extraordinarily high, especially in the northern tropical Andes, which are considered to be the richest biodiversity hotspot in the world. The Andes are relatively young; a large part of the modern topography is the result of surface uplift that occurred during and since the Miocene. However, large differences exist in the timing of shortening, exhumation, and surface uplift between the northern, central, and southern Andes, as well as between the various parallel Cordilleras. Mountain building directly links to climate dynamics, the development of drainage patterns, and the evolution of biomes and biodiversity. Therefore, determining the timing of surface uplift for each of the different Andean regions is of crucial importance for our understanding of continental-scale moisture transport and atmospheric circulation, the origin and evolution of the Amazon River and Rainforest, and ultimately, the origin and evolution of species in South America.

Determining surface elevations through geological time is not straightforward because the geological record does not contain a direct measure of topography. Commonly used methods to indirectly estimate paleo-elevation include low temperature thermochronology, palynology/paleobotany, the identification and dating of paleosurfaces, and analyzing the stratigraphic record of foreland basins that quantitatively record the topographic and erosional history of an adjacent mountain range. Additionally, paleo-elevation can be estimated more directly by stable isotope paleo-altimetry: atmospheric δ18O and δD vary with elevation as precipitation from ascending air parcels along an orographic barrier removes the heavy isotopes. The δ18O and δD values in authigenic/pedogenic materials (paleosols or lakes), biogenic archives (e.g. fossil teeth), volcanic glass, or organic biomarkers (e.g. leaf-wax n-alkanes preserved in soils or sediments) may thus record paleo-elevation.

In this study, we present a compilation of (direct and indirect) estimates of paleo-elevation of the Andes. We generate a reconstruction of surface uplift, per latitudinal sector of the Andes and per Cordillera or range, containing elevation values per 1x1 degree cell and per Myr. We discuss the areas and/or times where this reconstruction is uncertain as a result of either a lack of data, or a discrepancy between different data sets. Next, we present a compilation of low temperature thermochronology data, and compare the paleo-elevation history of the Andes with its exhumation history. We analyze spatial and temporal variations in erosion rates during Andean mountain building. Last, we use the paleo-elevation reconstruction to analyze the role of Andean mountain building in the rates of species diversification for hummingbirds (clade of Brilliants and Coquettes), iguanians (Liolaemus), tree frogs (two families), and flowering plants (centropogonids and orchids). We use a model‐testing approach that compares various diversification scenarios including a series of biologically realistic models to estimate speciation and extinction rates using a phylogeny, while assessing the relationship between diversification and environmental variables.

How to cite: Boschman, L., Bermúdez, M., and Condamine, F.: Mountain building and species radiations in the Andes: a reconstruction of surface uplift and species diversification since the Late Cretaceous from a compilation of paleo-elevation estimates, thermochronology, and phylogenetic data., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7941, https://doi.org/10.5194/egusphere-egu2020-7941, 2020.

EGU2020-12458 | Displays | SSS8.10

Shale and carbonate geochemistry of the Proterozoic greater McArthur Basin, Australia.

Darwinaji Subarkah, Morgan Blades, Alan Collins, Juraj Farkas, Bo Yang, Grant Cox, Amber Jarrett, Eilidh Cassidy, April Shannon, Savannah Liebelt, Gareth McFazdean, and Tim Munson

The greater McArthur Basin is a regionally extensive Palaeo-to-Mesoproterozic, intra-cratonic, super basin system overlying the North Australian craton. Deposition initiated after the Pine Creek Orogeny whereby the basin extends from Western Australia to northwestern Queensland. Lithostratigraphic units are divided into five coherent packages of similar age, stratigraphic position and facies association. Successions of the basin system are dominated by an assemblage of sedimentary siliciclastics, evaporitic carbonates and organic-rich mudstones with minor intersections of volcanic rocks and records nearly a billion years of Earth’s history from ca. 1.82 Ga to the Tonian. This period has generally been considered a time of stability within the Earth system and is therefore unfortunately titled ‘the boring billion’. However, compilation of new and existing water chemistry proxies shown in this study reflected the contrary. Notably, shales and carbonates from the greater McArthur Basin chronicled a critical time in Earth’s history; where the oxygenation of the ocean and atmosphere began and multi-cellular eukaryotes started to thrive within the ecosystem, demonstrating that this interval in the geological record is anything but boring.

This study applied a multi-proxy approach based on observations of isotopic tracers and elemental variations from an extensive archive of carbonate-rich units throughout the greater McArthur Basin to reconstruct its palaeoenvironment, determine the tectonic setting and establish regional or global correlations. Elucidating the evolution of the basin is essential for understanding the controls of its petroleum and mineral resources as well as how Earth system processes developed during the Proterozoic. Radiogenic and stable isotopes are used to infer palaeo-depositional constraints such as biological productivity, weathering fluxes and provenance sources. Redox-sensitive elemental concentrations can also be used to reflect the changes in water-column chemistry between oxic, anoxic and euxinic conditions.

Consequently, results from this study illustrate the relationship between the precipitation of metal compounds, production of organic matter and preservation of both systems with large-scale biogeochemical processes. Furthermore, this study also highlights the spatial and temporal variations of water chemistry within the basin. Enrichment in Mo concentrations in the Wollogorang Formation within the Tawallah Group indicated spells of widespread euxinia. Base metal concentrations within the unit showed lithogeochemical, halo-like distribution that is strongly correlated with changes in water column redox conditions. A shift to more radiogenic 87Sr/86Sr values up to ∼0.722 in the Fraynes Formation of the Limbunya Group reflected an increase in relative contribution of strontium from old continental crust in contrast to hydrothermal input which is consistent with a transient basin restriction from the open ocean. Rare earth and yttrium (REY) plots of the Dook Creek Formation inferred parts of the basin may have been lacustrine at ca. 1.5 Ga. Further up stratigraphy, the Middle Velkerri showed a shift towards more positive εNd(t) values, representing a change to more juvenile source regions. These mafic provenances are richer in essential nutrients for biological activity such as phosphorus. More juvenile εNd(t) data within the Velkerri Formation coincide with an increase in P concentrations and total organic carbon content (>8 wt. %).

How to cite: Subarkah, D., Blades, M., Collins, A., Farkas, J., Yang, B., Cox, G., Jarrett, A., Cassidy, E., Shannon, A., Liebelt, S., McFazdean, G., and Munson, T.: Shale and carbonate geochemistry of the Proterozoic greater McArthur Basin, Australia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12458, https://doi.org/10.5194/egusphere-egu2020-12458, 2020.

As a result of sustained tectonic and magmatic processes throughout the latter half of the Cenozoic, the eastern branch of the EARS exhibits an extensional tectonic system with pronounced relief contrasts, constituting both corridors and barriers for species dispersal. The tectono-magmatic history has generated a region of highly variable topography that results in widely varying amounts of rainfall and vegetation cover. Today, the generally dry eastern branch of the EARS hosts numerous sub-basins and adjacent local high-relief areas that are hydrologically isolated, with unique microclimates, vegetation types, faunas and superposed surface processes. However, during episodes of climate change with a trend toward more humid conditions, many of these basins hosted freshwater lakes that were hydrologically connected. These areas have repeatedly exhibited freshwater conditions and likely served as gateways and migration corridors mainly for aquatic organisms, in particular fish, facilitating population expansion, dispersal and gene flow.

Here, we analyze the manifold manifestations of the AHP in Kenya and adjacent sectors of the EARS to establish the timing and spatial extent of a paleo-drainage system documented by lake shorelines, deltas, overflow channels and sediments. These vestiges of fluvial connectivity in the rift have emerged as analogs for recurrent Pleistocene episodes with high lake levels and inter-basin linkage that repeatedly connected equatorial basins with regions to the north and south, respectively. For example, fossil evidence for the Pleistocene occurrence of the Nile crocodile (Crocodylus niloticus) as far south as equatorial Lake Bogoria (Kenya) and its present occurrence in the now closed Lake Baringo basin indicate fluvial connectivity over several degrees of latitude during more humid episodes in the past. Similarly, the occurrence of more than a dozen of the same fish species in the presently unconnected Lakes Albert and Turkana is likely due to a mutual connection during the AHP when Lake Turkana was overflowing into the White Nile.

Taken together, the divergent fossil and modern faunal evidence and geomorphic and sedimentological evidence of contrasting hydrological conditions between the wet AHP and the present, suggest that the conditions during the AHP provides a template of fluvial connectivity and potential dispersal patterns for earlier humid phases during the Plio-Pleistocene.

How to cite: Dommain, R., Riedl, S., Olaka, L., deMenocal, P., Deino, A., Potts, R., and Strecker, M.: Hydrological basin connectivity in a low-latitude rift: the impact of the Holocene African Humid Period (AHP) on fluvial activity and species dispersal in the Kenya Rift, East African Rift System (EARS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9323, https://doi.org/10.5194/egusphere-egu2020-9323, 2020.

EGU2020-20291 | Displays | SSS8.10

The interplay between geodynamics and flooding drives the dynamics of the inner Okavango Delta (North Botswana)

Olivier Dauteuil, Marc Jolivet, Mike Murray-Hudson, laurie Barrier, Aziliz Audran, and Aëla Radenac

The southwestward propagation of the East African Rift System inside the southern African plateau generated the Okavango basin in a strike-slip context. This setup generates one of the largest endoreic ecosystem in Africa: the Okavango Delta alluvial fan. The sedimentary and topography dynamics of that system are driven by both annual flooding and strike-slip geodynamics. To evaluate the impact of ground deformation on the long-term evolution of the Okavango ecosystem, we estimated the 3D strain field from the deformation of a geodetic network composed of 7 dual-frequency GPS semi-permanent stations measured during 4 years. The Okavango basin is a half-graben: its SE edge being limited by a set of normal faults, while the NW limit is bounded by a right-lateral fault. This fault pattern generates strain partitioning with a stretching direction that changes from oblique to parallel to the graben trend and with the highest dilation to the NE and shortening to the SW. Integrating geophysical data, we propose a crustal model describing a strike-slip basin with a normal detachment zone connected to a steep strike-slip shear zone in the lower crust. We show that strain partitioning lead to dilating and shortening domains, which favors water flow toward the NE and progressively restricts water discharge into Lake Ngami, SW of the Delta.

At regional scale, the vertical component of the ground deformation recorded over 10 years reveals annual variations generated by the cyclic flooding, this process acting in addition to the ground deformation induced by the regional geodynamics. A preliminary numerical modeling of the ground flexure induced by the floods constrains the rheological properties of the crust. It highlights two domains with high subsidence limiting a domain with lower subsidence allowing differential water storage.

We conclude that the geodynamic deformation linked to the propagation of the East African Rift into the Okavango half-graben is a key factor controlling the hydrodynamics and ecosystem evolution of the Okavango Delta fan. This control is super-imposed to the effects of variations in sediment and water supply linked to regional climate change. More generally, we show that intra-continental endoreic systems can be highly sensible to low amplitude tectonic deformation.

 

How to cite: Dauteuil, O., Jolivet, M., Murray-Hudson, M., Barrier, L., Audran, A., and Radenac, A.: The interplay between geodynamics and flooding drives the dynamics of the inner Okavango Delta (North Botswana), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20291, https://doi.org/10.5194/egusphere-egu2020-20291, 2020.

EGU2020-7321 | Displays | SSS8.10

“The Skin of the Earth – Where Life meets Rocks” – A Science Movie

Kirstin Übernickel, Friedhelm von Blanckenburg, and Todd A. Ehlers

What forms the landscapes of the Earth with their mountains, rivers, soils - the places we live in? Earth’s surface is shaped when rocks are uplifted by geologic forces, and are then destroyed by rain, ice, and wind that carve landscapes by erosion and weathering. But there is the green layer of life between rocks below and climate above. Do plants with their roots, animals that dig into soil, and the vast number of microorganisms shape the landscapes? Or do minerals, soil, and water provide the environment for life? Or are they both interdependent? Can they together resist the massive climate change imposed by humans today?

Showcasing these complex interactions in an audiovisual format provides a fantastic opportunity for science dissemination, but making a movie is a formidable challenge that scientists are not experienced in. Based on the the German National Science Foundation (DFG)- funded research network “EarthShape – Earth Surface Shaping by Biota”, we produced a movie intended as public outreach for scientists as well as classrooms and a general public audience.

Watch the scientists of the German-Chilean “EarthShape” project study the shaping of the Earth along a climate gradient in Chile, in the National Parks Pan de Azúcar, La Campana, and Nahuelbuta. Take a tour through fascinating landscapes and see the young scientists study the interactions between geology and biology, from the dry Atacama desert to dense forests, and in their sophisticated home laboratories. See how feedbacks control Earths’ climate. The movie is available online in Youtube, including separate process animations, and as Open-Access MP4 resource.

Playlist on Youtube: https://go.daf.li/EarthShape; DOI of the English movie version: https://doi.org/10.2312/gfz.3.3.2019.005

How to cite: Übernickel, K., von Blanckenburg, F., and Ehlers, T. A.: “The Skin of the Earth – Where Life meets Rocks” – A Science Movie, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7321, https://doi.org/10.5194/egusphere-egu2020-7321, 2020.

SSS8.11 – Soil function and ecosystem services in a changing global environment

EGU2020-13525 | Displays | SSS8.11

“Sponge land(scape)”: An interdisciplinary approach for the transition to resilient communities

Filippo Carlo Pavesi, Stefano Barontini, and Michele Pezzagno

Data on natural disasters shows that cities worldwide are increasingly exposed to the risk of negative consequences. Storms and floods are among the main causes of casualties and economic losses. Moreover climatic and anthropogenic changes, urbanization and other land use transformation may contribute to increase hydrogeological hazard and risk, both in mountain valleys and in floodplain areas. On the other hand well managed soil may offer many water—regulating ecosystem services. Given that the hydrological and hydraulic dynamics commonly involve a great area, which is also upstream and surrounding the city, therefore a paradigm shift both in urban and land planning is needed, in order to integrate hazard perception and risk culture in plans. This integration also requires practices of soil conservation.

Literature underlines that, in order to achieve the transition to resilient communities, it is necessary (a) to reduce soil sealing, (b) to improve the benefits of ecosystem services as part of the plan strategies, (c) to enhance the key role that landscape planning can play in environmental protection. However, in most of the current urban and spatial plans in Italy these strategic guidelines are still ignored.

In order to address these critical issues we propose a method to classify rural areas which considers both landscape and hydrological peculiarities, in order to identify, at the regional scale, the most suitable areas to plan and design the landscape. We therefore propose to identify such a kind of landscape with the definition of a “sponge land(scape)”, which aims at extending the affirmed concept of “sponge cities” to rural areas. This approach to land management may contribute to the mitigation of hydrogeological hazard and risk, by means of preserving the regulating soil ecosystem services. At the same time it will improve both the resilience level of urban areas and the ecosystems living conditions.

The method is tested in Italy, where, according to the “Report on hazard and risk indicators about landslides and floods in Italy” (ISPRA, 2018) more than ninety percent of Italian municipalities are exposed to the hydrogeological risk. The collaboration between researchers belonging to the disciplines of spatial planning (i.e. town and regional planning) and soil hydrology was considered strategic. In particular, it allows to take advantage of specialized hydrology geo-datasets into spatial planning, which are usually not taken into account. As a first step, Hydrological Soil Groups were considered in the planning procedure. Data integration in GIS made it possible to create new maps which allow priority area to emerge for ”sponge landscaping actions”, such as the adoption of Nature Based Solution or Natural Water Retention Measures. These contribute both to the mitigation of hydraulic risk and to the maximization of other complementary ecosystem services (e.g. biodiversity preservation, climate change adaptation and mitigation, erosion/sediment control).

How to cite: Pavesi, F. C., Barontini, S., and Pezzagno, M.: “Sponge land(scape)”: An interdisciplinary approach for the transition to resilient communities, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13525, https://doi.org/10.5194/egusphere-egu2020-13525, 2020.

Understanding the spatial distribution and controlling factors of soil organic carbon (SOC) at different scales is essential for an accurate estimation of soil organic carbon stocks. Furthermore, this understanding is vital for evaluating the impact of soil management on both soil quality and climate change. This study was conducted in a Loess revegetated small watershed and the effects of the topography and vegetation factors on the content and distribution of SOC at different soil depths were evaluated. Soil profiles (0-200 cm; n = 122) were sampled that represent six vegetation types (i.e., natural mixed forests, artificial mixed forests, artificial forests with a single tree species, shrubbery, and grassland) and four topographic factors (i.e., elevation, slope gradient, slope position, and slope aspect). The following results were obtained: (1) The mean SOC of the 200 cm soil profile ranged from 2.34 g kg-1 to 5.70 g kg-1, decreasing with increasing soil depth. (2) The interactions between vegetation type and topography and soil depth significantly impacted SOC (P < 0.05). Significant differences in the SOC content (P < 0.05) were also found for slope gradient, slope position, slope aspect, and elevation for 0-200cm, 0-160cm, 0-120 cm and 0-200 cm, respectively. (3) The relative contribution of topographic factors to the SOC content exceeded that of vegetation type in entire soil profile. Topography was the dominant factor controlling the spatial distribution of SOC in the studied small watershed. Therefore, topographic factors should be considered more than vegetation types for an accurate estimation of SOC storage in a revegetated small watershed. This is particularly important for the complicated topography of the loess-gully region.

How to cite: Zha, T., Yu, H., Zhang, X., and yu, Y.: Spatial distribution of soil organic carbon may be predominantly regulated by topography in a small revegetated watershed, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2376, https://doi.org/10.5194/egusphere-egu2020-2376, 2020.

EGU2020-18408 | Displays | SSS8.11

Uncertainties in estimating the soil carbon sequestration service

Pilar Durante, Mario Guevara, Rodrigo Vargas, Nur Algeet, and Cecilio Oyonarte

Carbon storage is as a key function of soils, and several studies underpinned its capacity as a critical ecosystem service to contribute mitigating climate changes. Scientists have focused on estimating soil organic carbon stock (SOCs, in kg C/ha), associated with the services regulation of carbon sequestration. SOCs relies on estimates of SOC concentration (SOCc, in g/kg), bulk density (BD) and coarse fragment content (CRF) of the target soil depth. SOCc is usually measured with precision in elemental analysers; however, BD and CRF are often missing. In the available databases, CRF is frequently estimated visually or even ignored (being the greatest uncertainty in SOCs estimates). The general absence of these parameters leads to unrealistic predictions with systematic errors propagation in the calculation of the SOCs. Therefore, the accuracy of its prediction will depend on the availability and quality of the data as well as the calculation approaches. The aim of this study was to evaluate the accuracy of SOCs and SOCc predictions on different available soil mapping products and analyse their uncertainty.

A Mediterranean area was selected in southern Iberia Peninsula (The Region of Murcia) being particularly vulnerable to global environmental change and land degradation. We evaluate six available soil carbon products including global, European, national and local SOC estimates. We compare descriptive statistics and exploratory data analysis tool (such as boxplot and Tukey test at 95% confidence interval) for SOCs and SOCc, respectively. An external local database (255 soil profiles) was used to perform independent validation, using the R2 and RMSE as information criteria. For this validation, the SOCs was calculated in each horizon of the local database using SOCc, BD and CRF data. The gaps in BD were estimated throughout pedo-transfer function locally adapted. We convert each soil profile of this database to a 0-30 cm standard depth. This standardization was carried out using the equal-area spline. Subsequently, we generated a local map of SOCs and SOCc, and their associated uncertainties, based on tree-based machine learning. To generate the map the point values of SOCc and SOCs were spatially predicted using soil environmental covariates.

The results showed a high diversity of estimates among stock maps ranging from 73,364 GgC to 27,763 GgC, and the Tukey test depicted significant differences among all cases, not being the case for SOCc estimation. The external validation revealed a poorer fit in the carbon stock (R2= 0.03 and RMSE= 22.82) than the carbon concentration, with the best-fit values of R2= 0.53 and RMSE=14.74. Furthermore, all the SOCs products showed overestimated values ranging from 44% to 164% over the estimates of generated maps.

Despite the global interest of a detailed and quantitative information of carbon stock, the poor quality of their parameters can leads to inaccuracy and overestimation prediction. It is due to a high propagation of parameter uncertainty, hence it is essential the uncertainty assessment in SOCS modelling to evaluate the soil carbon sequestration services.

How to cite: Durante, P., Guevara, M., Vargas, R., Algeet, N., and Oyonarte, C.: Uncertainties in estimating the soil carbon sequestration service, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18408, https://doi.org/10.5194/egusphere-egu2020-18408, 2020.

The soil loss tolerance (T value) is the ultimate criterion for determining whether a soil has potential erosion risks. While the existing T value criteria are mainly on national scale, and lack of consideration of the differences in soil erosion, soil properties and soil productivity between different types of land use. We calculated the global T value by using the productivity index method. The global T values ranged from 0.84 to 4.99 Mg ha-1 yr-1, with an average of 1.49 Mg ha-1 yr-1. The distribution of T values in global scale demonstrated significant spatial differences, and the range of T values in most regions of the land (98.23%) was between 1.0 and 2.0 Mg ha-1 yr-1. The mean T values varied from c ontinent to continent, with Africa and Oceania having higher mean T values than other continents. The T values between different land use types varied widely, and the T values of five land use types were as follows: cropland (1.67 Mg ha-1 yr-1) > shrubland (1.61 Mg ha-1 yr-1) > grassland (1.59 Mg ha-1 yr-1) > forestland (1.38 Mg ha-1 yr-1) > wetland (1.28 Mg ha-1 yr-1).

How to cite: Jia, L. and Zhao, W.: Assessment of the spatial distribution of global soil loss tolerance by using the productivity index method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4538, https://doi.org/10.5194/egusphere-egu2020-4538, 2020.

Soil conservation is one of the most important ecosystem services, as it has a positive impact on soil fertility and land productivity. Soil conservation has multiple facets, while the current research on soil conservation has rarely considered combining the soil displacement conservation ability and river sediment transport conservation. On the basis of the Revised Universal Soil Loss Equation (RUSLE) and the Sediment Delivery Ratio (SDR) module of Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), this study developed an indicator, named soil conservation risk, by introducing the soil displacement risk and the river sediment transport risk. The natural growth scenario and reforestation scenario of land use change in the Nile River Basin from 2010 to 2100 were estimated as the input parameters. Three main results were obtained. (1) From 2000 to 2010, the grassland increased by 4.34%, and the forest decreased by 4.91%. (2) From 2000 to 2100, the soil conservation presents a declining tendency in the two scenarios, and the soil conservation amounts based on soil displacement conservation and river sediment transport conservation were 1550.48±177.12 and 100.93±6.24 (t ha-1 y-1) in a natural growth scenario, respectively, and 1576.78±63.21 and 104.41±0.30 (t ha-1 y-1) in a reforestation scenario, respectively. (3) We compared the soil displacement risk and river sediment transport risk, and the reforestation scenario can effectively relieve the soil displacement risk in the first fifty years, while the river sediment transport risk can be relieved from 2010 to 2100. Overall, when reducing the conversion rate of the forest by 0.5 times and increasing the rate of conversion to forest by 0.5 times, the effect of land use changes to the river sediment transport risk has a longer-term effect than do changes to the soil displacement risk.

How to cite: Liu, Y. and Liu, H.: Soil conservation risk assessment based on land use scenarios in the Nile River Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2513, https://doi.org/10.5194/egusphere-egu2020-2513, 2020.

Abstract: A comprehensive study on the dynamics of ecosystem services and their driving factors is the key prerequisite for enhancing local ecological sustainability. Based on relevant sets of big data, including spatial land data, soil data, DEM, climatic data and social-economic data, using InVEST model and multivariate logistic regression model, the study firstly assessed the spatiotemporal variation of ecosystem services for China’s Beijing-Tianjin-Hebei (Jing-Jin-Ji) region from 1990 to 2015. The study then analyzed the natural and socioeconomic factors affecting the ecosystem services. The results show that large spatial and quantitative differences exist in the supply of multiple ecosystem services, and the changes of different types of ecosystem services are driven by different factors. For water yield, the areas of arable land, wetland and built-up land and precipitation are the most influential factors; The areas of arable land, precipitation, temperature, altitude, urbanization rate and amount of nutrient applied per unit area are determinants of changes in nutrient retention; The areas of grassland and forest, temperature, altitude, GDP per capita and urbanization rate affect the soil retention to great extent; for carbon storage, its key influential factors are the areas of different land use types and urbanization rate. The study can facilitate identification of where and how to enhance multiple ecosystem services.

Keywords: dynamics of ecosystem services, driving factors, InVEST, multivariate logistic regression model

How to cite: Li, S., Lei, G., and Yu, X.: Dynamics of ecosystem services and their driving factors in China’s Beijing-Tianjin-Hebei regional development, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8235, https://doi.org/10.5194/egusphere-egu2020-8235, 2020.

EGU2020-2201 | Displays | SSS8.11

Soil copper contamination effect on carbon mineralisation: evidence of a soil CO2 emission decrease from literature review

Sereni Laura, Guenet Bertrand, Crouzet Olivier, and Lamy Isabelle

Among all pollutants, copper (Cu) is of major environmental and toxicological concern with contamination from various origins. Moreover as a cation, Cu is easily complexed by the negatively charged soil organic matter (OM) inducing high concentrations in upper layers of soils where OM dominates. Due to its biotic and abiotic interactions with soil constituents Cu is expected to affect several soil processes among them the soil respiration, but studies provided contrasting results as soil respiration have been shown to decrease or increase with soil contamination depending on the studies.

In this study, we aimed at assessing how soil respiration is affected by Cu contamination in order to quantifying as a first approach the GHG emissions for a contaminated soil. We performed a quantitative review of literature focusing on soil heterotrophic respiration (thus excluding autotrophic respiration from plants) which aimed at 1) assessing the impact of a copper contamination on soil carbon (C) mineralisation and thus CO2 emissions, and 2) hierarchizing the determinants of such an impact on C mineralisation compare to the influence of pedo-climatic soil parameters such as pH, clay percentage or the type of climate.

On the basis of a selection of roughly 390 literature data, global main results showed a decrease in soil CO2 emission with an increase in soil Cu contamination. Data from ex situ spiking experiments could be easily differentiated from the ones originated from in situ natural contamination due to their sharper decrease in soil organic carbon mineralisation. Interestingly, ex situ spikes data on the short term provided a threshold: an increase in soil CO2 emissions was noticed for data below total soil Cu content of 180 mg kg-1 while a decrease was observed above this concentration. On the contrary, long-term in situ contamination due to anthropogenic activities (urbanisation, agriculture …) did not significantly impact soil carbon mineralisation except when we focused on the high inputs of industrial contamination (smelter, composted plant…). Soil pH was found as a variable of interest as acidic soils were more sensitive to Cu contamination for C mineralisation than neutral or alkaline soils, while the % of clay and the type of climate did not add explanation to the variation in C mineralisation. These results are discussed and the collected data allowed us to propose a general equation quantifying how soil respiration can be affected by a Cu contamination.

How to cite: Laura, S., Bertrand, G., Olivier, C., and Isabelle, L.: Soil copper contamination effect on carbon mineralisation: evidence of a soil CO2 emission decrease from literature review, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2201, https://doi.org/10.5194/egusphere-egu2020-2201, 2020.

EGU2020-130 | Displays | SSS8.11

How to promote Geography for Sustainability

Wenwu Zhao, Bojie Fu, and Yanxu Liu

Human interactions with Earth systems have accelerated dramatically in recent decades. Human activities are altering the Earth system and exerting significant impacts on the environment, and undermining improvements in human wellbeing and poverty alleviation. In order to secure global prosperity and transform to global sustainability, United Nations launched the 17 Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development in 2015. The goals include efforts to eradicate extreme poverty and to consolidate efforts to slow climate change and preserve our world environment. The process of implementing the SDGs has created new challenges for policy makers and for the scientific community. Half of the Sustainable Development Goals are related to environment and natural resources. Geographical Science is one of the most important KEY for sustainable development. Geographers have been conducting various experiments and modelling at multi-scales, and tried to identify the relationships between human activities and various earth surface processes, dwell on ecosystem processes and ecosystem services trade off at multi-scale, model the effects of human activity and earth systems, and try to figure out the possible sustainable solutions for regional, national and global developments. It’s time to launch a new journal focus on Geography and Sustainability for the world. That’s why, Faculty of Geographical Science (Beijing Normal University) start to publish the new journal: Geography and Sustainability. The new journal focus on: Geographical processes, Human-Environmental Systems, Ecosystem services and human being, Sustainable development, Geo-data and model for Sustainability. The new journal is also the office journal for IGU Commission on Geography for Future Earth: Coupled Human-Earth Systems for Sustainability.

How to cite: Zhao, W., Fu, B., and Liu, Y.: How to promote Geography for Sustainability, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-130, https://doi.org/10.5194/egusphere-egu2020-130, 2020.

EGU2020-3925 | Displays | SSS8.11

Mapping soil formation in Lithuania. A national-scale analysis.

Paulo Pereira, Eric Brevik, Miguel Inacio, Marius Kalinauskas, Katarzyna Miksa, and Eduardo Gomes

Soil formation is vital for the existence of life. Soil provides a wide range of direct and indirect ecosystem services (ES) such as carbon sequestration, water and flood regulation, food provisioning, raw material culture, and heritage. Soil formation is complex and depends on the parent material, climate, topography, biological activity, and time. This intricate process is strongly affected by human activities (e.g., agriculture, urbanization) that generally result in a degradation process. Mapping soil formation is challenging due to a large number of variables involved and the complexity of their interaction. The objective of this work is to map soil formation in Lithuania. Several variables were selected to assess soil formation such as lithology, time (glacial retreat), slope, topographic wetness index, roughness, slope length, soil mineralogy, depth, texture, available water capacity, pH, organic carbon, nitrogen, potassium, phosphorous, January average temperature, June average temperature, annual average precipitation, and land use. To validate the model, we used soil cation exchange capacity. The variables were ranked according to the least to the most favorable conditions. The weight of the variables was assessed using the Analytic Hierarchical Process and ranked by 20 international experts on the soil. The results of the model are acceptable (r2=0.48), owing to the complexity involved in soil formation.

This work was funded from the European Social Fund project LINESAM No. 09.3.3-LMT-K-712-01-0104 under grant agreement with the Research Council of Lithuania (LMTLT).

How to cite: Pereira, P., Brevik, E., Inacio, M., Kalinauskas, M., Miksa, K., and Gomes, E.: Mapping soil formation in Lithuania. A national-scale analysis., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3925, https://doi.org/10.5194/egusphere-egu2020-3925, 2020.

Alpine deserts are noteworthy habitats in high mountain systems such as the Caucasus. However, very little is known on the soil properties in these habitats. Another unexplored question is the transition between subnival (lower part of alpine desert) and nival (upper part of alpine desert) belts. We studied soils and vegetation in an alpine desert along its practically entire elevation range (3000-4000 m a.s.l.) on two contrasting slope aspects (north vs south) of Mt. Kazbegi, the Central Great Caucasus, Georgia. Vegetation with standardized stratified-random design and collected soil samples for measuring pH, soil organic content (SOM) and available nutrients (N, P, K) were sampled; the collected data were analyzed with direct gradient methods as well as multivariate ordination. 63 species were recorded and, as expected, strong dependence of species distribution on elevation and between slopes was documented. We found that soil pH increased monotonically with altitude on both N and S slopes and reached alkaline values with bare bedrock. The changes were steeper on the northern slope than on the southern slope, and, remarkably, many relatively abundant species changed their preference to slope aspect from N to S in parallel with the increasing difference in soil pH.  We suspect that the pH  observed shift in slope preference, at least in part, can be explained by the effect of different soil pH. As for SOM, it decreased from very low values to zero at the higher altitudes, whilst available nutrients dropped dramatically and predominantly multispecific vegetation patches characteristic for subnival belt changed abruptly to monospecific patches or solitary plants typical for nival belt. These abrupt changes occurred at 3400-3500m a.s.l., and most probably indicate a vegetation switch between the mentioned belts on Mt. Kazbegi.

Overall, our results show two characteristics of alpine desert vegetation and soils, which have not been documented to date: (1) an unexpected change of slope preference of many relatively abundance plants which probably is associated with different soil pH profiles on N and S slopes, and (2) a vegetation switch between subnival and nival belts that occurs at relatively lower elevations than expected from the concept of alpine-nival ecotone.

How to cite: Jolokhava, T. and Kikvidze, Z.: Altitudinal soil and vegetation transitions in alpine desert, the Central Great Caucasus, Georgia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-421, https://doi.org/10.5194/egusphere-egu2020-421, 2020.

EGU2020-11848 | Displays | SSS8.11

Fire in the environment: effects on soil functions and ecosystem services in a changing world

Miriam Muñoz-Rojas and Paulo Pereira

Fire is an essential element of the environment and a vital force for shaping landscapes all around the world. It has a critical role as driver of natural ecosystem processes and many plant communities are fire dependent aros the globe. However, although fire is a natural and regular component of some biomes in the Earth’s systems, it can become a destructive force when natural ecosystems are disturbed, fire is introduced at a rate not previously experienced, and recovery to a pre-fire state is not possible. Thus, assesing the potentially harmful environmental impacts of fire and building the underlying knowledge required to successfully manage fire makes are crucial in order to understand the role of fire in all its different dimensions. Over the past year, fires in California in the United States and in the Amazon rainforest in Brazil have grabbed the world’s attention. The increased rates of fire events in some of these areas, mostly attributed to land degradation processes, have led to international concern. More recently, several bushfires all around Australia have had dramatic impacts in the environment with 10 million hectares burned so far, including large portions of the natural environment. These unprecedented fires are predicted to affect to a large extent the soil characteristics, processes and function in several ecosystems. In this presentation, we highlight some of the most recent research published during the last year on the effects of fire on soil functions and the provision of soil ecosystem services. We also showcase some of the possible approaches to protect and conserve soil ecosystems affected by extreme fires and propose available strategies for post-fire management.

How to cite: Muñoz-Rojas, M. and Pereira, P.: Fire in the environment: effects on soil functions and ecosystem services in a changing world, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11848, https://doi.org/10.5194/egusphere-egu2020-11848, 2020.

EGU2020-731 | Displays | SSS8.11

What are the relationships among ecosystem services in Qinghai-Tibetan Plateau of China

Yanzhen Hou, Wenwu Zhao Zhao, Yanxu Liu, and Ting Hua

The Qinghai-Tibetan Plateau (QTP) is a “sensor” and “sensitive area” for climate change in Asia and even the northern hemisphere, and its soil ecosystem services are vital components to all aspects of life in the region and support ecosystem functions and services. Understanding the distribution of regional ecosystem services, the relationship among ecosystem services and the influencing factors is an important prerequisite for the protection and optimization of the ecosystem on the QTP. This study quantitatively analyzed the spatio-temporal distribution and interrelationship of multiple ecosystem services such as soil retention (SR) service, water yield (WY) service, habitat quality (HQ) service, crop supply (CS) and livestock supply (LS) services in the Qinghai-Tibet Plateau (QTP) based on InVEST model, statistical and NPP data. Besides, we explored the influences of temperature, elevation, population density, land use and land cover on the relationship of ecosystem services and put forward the corresponding optimization strategy based on ecosystem services perspective. We found that SR, WY and HQ decreased from the southeast to the northwest, regulating services-supporting services are mainly identified as synergies and CS-HQ and CS-LS are manifested as trade-offs. In addition, natural factors (temperature, elevation) influence the distribution of CS and the level of significance of LS, natural factors and the land-use/land-cove affect the shift in the trade-offs and synergies between regulating services and supporting services, and population density mainly affects the relationship between supporting services and other types of services. Providing that the scale effect of ecosystem service relationships in the QTP, we divided the livestock supply collaborative promotion area, the crop-livestock tradeoff optimization area and the multi-ecosystem service optimization area, then put forward specific suggestions at the city scale. This study could be a step forward to optimizing the balance between provisioning services and supporting services or regulating services in the QTP and implementing ecosystem protection policies effectively.

How to cite: Hou, Y., Zhao, W. Z., Liu, Y., and Hua, T.: What are the relationships among ecosystem services in Qinghai-Tibetan Plateau of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-731, https://doi.org/10.5194/egusphere-egu2020-731, 2020.

EGU2020-1151 | Displays | SSS8.11

Management-induced soil water erosion and nutrient losses in different land use in Mediterranean environment

Igor Bogunovic, Leon Josip Telak, and Paulo Pereira

Soil erosion by water is one of the most important degradation processes. Land use has important effects on soil properties, therefore it is key to identify the type of management that have more impacts and find solutions to mitigate it. In order to understand the effects of land use management on soil and soil erosion in the Istria region (Croatia), we studied the impacts of different agriculture practices (vineyard, cropland, and olive orchard) on soil properties and runoff. The simulated rainfall was carried out at 58 mm h−1 in the summer of 2018 (30% soil water content) for 30 min on 0.785 m2 circular plots. The results showed that bulk density was significantly higher in cropland plots than in the vineyard and olive orchard. Soil organic matter, mean weight diameter, and aggregate stability were significantly higher in olive orchard plots than in the vineyard and cropland. Runoff and sediment losses were higher in olive orchard compared to vineyard plots. Carbon, nitrogen, and phosphorus losses were highest in olive orchard plots with 3.9 kg ha-1, 405.2 g ha-1 and 73.6 g ha-1, respectively, while lower values were measured in the vineyard plots, where nutrients losses were lower with 0.9 kg ha-1, 73.8 g ha-1 and 6.5 g ha-1, respectively. No runoff was observed in cropland plots. Even with the highest measured values of runoff and erosion in the herbicide treated olive orchard, results indicate that both herbicide application and tillage represent a threat to the sustainability of Istrian soils. Vegetation cover on cropland reduces the runoff generation indicating the need for adoption of conservation strategies. In current management, vegetation removal should be avoided since it contributes to practice to reduce nutrient losses and increase the sustainability of the soils.

 

Keywords: Soil water erosion, Soil tillage, Rainfall simulation, Agriculture land management, Mediterranean

 

Acknowledgements

 

This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).

How to cite: Bogunovic, I., Telak, L. J., and Pereira, P.: Management-induced soil water erosion and nutrient losses in different land use in Mediterranean environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1151, https://doi.org/10.5194/egusphere-egu2020-1151, 2020.

EGU2020-1746 | Displays | SSS8.11

Grain size of deposits in different plantation dunes on the eastern shore of Qinghai Lake

Lihui Tian, Dengshan Zhang, and Yang Yu

Soil particles are related to vegetation growth and source of depositsc in arid and semi-arid desert. It is worth mentioning that plantation is the one the most effective ways improving desert soil conditions. The sandy land on the eastern shore of Qinghai Lake is the biggest area in the desertified land of Qinghai Lake Basin. Some measures have been taken to prevent and control desertification in Kutu district since 2008. We chose the dunes that planted Salix cheilophila、Hippophae rhamnoides、Pinus sylvestris、Populus simonii and Hedysarum scoparium as study sites, then collected deposits from topsoil to the depth of 60 cm to probe into the change of grain size features. The results show that: (1) All study dunes primarily are made up of medium materials for mean particle size (M) is medium sand widely distributed from 0.27mm to 0.31mm which are presented uniform. (2) The sorting coefficient of sediments is concentrated between 0.5 and 0.9 with better performance. The skewness value is between 0 and 1, which shows nearly symmetrical and positive skewness. The kurtosis is between wide and medium. (3) The vertical change of particle size composition at different depths of 60 cm indicates that plantation significantly changed the distribution of the surface sediments in the dunes, whereas particle compositions at different depths did not have obvious rules of different plants. (4) The vegetation recovery time in study area was short, therefore, interactions between wind sorting, terrain fluctuations and vegetation growth might affect the grain size features of surface sediments in study area.

How to cite: Tian, L., Zhang, D., and Yu, Y.: Grain size of deposits in different plantation dunes on the eastern shore of Qinghai Lake, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1746, https://doi.org/10.5194/egusphere-egu2020-1746, 2020.

Drought is the most recurrent and destructive hazard in arid and semi-arid regions, and will only become more complex under climate change. It is vital to characterize the various types of drought, to investigate the potential factors affecting different types of drought, and to assess the relationship between drought types. In this study, the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI) were used to characterize meteorological and hydrological drought, respectively, and used to investigate drought characteristics and mechanisms in 17 catchments on the Loess Plateau from 1961–2013. Furthermore, the propagation time from meteorological to hydrological drought was explored and the potential factors influencing drought propagation time were investigated. The results indicate that the Loess Plateau has experienced an increased tendency towards both meteorological and hydrological droughts over the period 1961−2013, with hydrological drought more serious than meteorological drought at various drought assessment time scales. Moreover, average drought duration and severity were greater for hydrological drought than meteorological drought. Maximum 5-day precipitation (Rx5day) was the dominant extreme climate index for explaining variance in meteorological drought at the annual time scale. Owing to the greater complexity underlying hydrological drought, Rx5day, the number of warm days (Tx90p), and the number of warm nights (Tn90p) all contribute to the variance in hydrological drought. Furthermore, the percentage of forested land had a significant positive association (p<0.001) with propagation time, whereas the percentage of land given over to pasture had a significant negative association (p<0.001) with propagation time.

How to cite: Wu, J. and Miao, C.: Propagation from meteorological drought to hydrological drought on the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2913, https://doi.org/10.5194/egusphere-egu2020-2913, 2020.

EGU2020-3827 | Displays | SSS8.11

Distribution and cause and cause analysis of typical soil microorganisms in alpine region

Jianwei Wang, Tianling Qin, Fang Liu, Hanjiang Nie, and Zhenyu Lv

Abstract:

Soil microorganisms play an important role in the material cycle, especially in the alpine region where the ecological environment is fragile. Therefore, we selected a typical soil on slop for sampling in a sub-watershed upstream of the Yellow River Basin. Microbial species were detected by High-throughput sequencing. At the same time, the relevant physical ang chemical properties of the soil were also tested, such as mechanical composition, soil type, moisture content, TN, TP, pH, organic matter et al. Species and abundance of microorganism were calculated and analyzed by significance test regression analysis. The results showed that Nitrospira and Gaiella were the main microorganism. There was no obvious relationship between soil type and microorganism species. But soil moisture content had a significant effect on diversity of microorganism. There was a significant negative correlation between Bradyrhizobium and soil TN, and a negative correlation between Nitrospira and Nocardioides species abundance. This study provides a data basis for microbiological research in alpine regions, and also actively explores the characteristics of microbial distribution.

How to cite: Wang, J., Qin, T., Liu, F., Nie, H., and Lv, Z.: Distribution and cause and cause analysis of typical soil microorganisms in alpine region, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3827, https://doi.org/10.5194/egusphere-egu2020-3827, 2020.


The plant density and spatial distribution in artificial vegetation is obviously initialized at the planting stage. Plants dynamics and spatial pattern may change over time as the result of interactions between individual plants and habitats, but whether this is the case for desert shrubs in artificial sand-fixing regions is largely unknown. Here we examined changes in plant density and distribution patterns of three shrubs (Artemisia ordosica Krasch., Caragana korshinskii Kom., and Hedysarum scoparium Fisch.) in different regions restored for 27, 32 and 50 years (R27, R32, R50), respectively. The vegetation analysis showed that A. ordosica were the dominated species across the 3 restoration regions. The density of A. ordosica and H. scoparium showed a significant increase from R27 to R32, then decreased in R50. However, there was no C. korshinskii survive in R27. The density of C. korshinskii was also low in R32 and R50. The variance-to-mean ratio (VMR) was used to characterize the spatial distribution patterns to fit the observed frequency distributions of densities of the three shrubs. A. ordosica and C. korshinskii all showed significantly clumped distribution in three restoration regions. For H. scoparium, it showed uniform distribution in R27 and R50, however showed clumped distribution in R32. We also quantified changes in soil physio-chemical properties in different restoration regions. The proportion of sand-sized particles in the topsoil was reduced sharply; the proportion of silt and clay increased greatly from 17.3 and 4.6 to 21.4 and 10.4%, respectively. N and K contents were not significant different among R27 (0.52 and 0.93 g/kg, respectively) and R32 (0.59 and 0.98 g/kg, respectively), but has significant differences with R50 (0.78 and 1.06 g/kg, respectively). P content and soil organic matter content gradually increased with successional age. The results showed that compared to C. korshinskii and H. scoparium, A. ordosica seems to be more suitable in revegetated desert areas. Pattern analysis suggested a successive replacement of C. korshinskii, which had low proportions of survived shrubs, by the dominant A. ordosica. The soil properties were also significantly improved after restoration. This study contributes to understanding of the distribution patterns of shrubs plants and their effects to soil property in revegetation projects in arid desert area.

How to cite: Liu, M.: Distribution patterns of planted-shrubs of different restoration ages in artificial sand-fixing regions and effects on soil property in the southeastern Tengger desert, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7900, https://doi.org/10.5194/egusphere-egu2020-7900, 2020.

Abstract:Rwanda is located in the plateau of the central-eastern Africa nearby the equator of the Earth, known as ’The Land of a Thousand Hills’, and covers the part of the region of the Upper Nile. The sloping lands are ubiquitous across Rwanda, and the sloping farmlands account for more than 70 per cent of the sloping land resources. The soil and water losses are very severe on the sloping lands, especially on the sloping farmlands due to the farming activities and soil water erosion induced by the erosive rainfall events. Therefore, the soil erosion and soil organic carbon (SOC) and nutrient losses and the resultant soil deterioration and crop yield decline on the sloping farmlands in this country have attracted the widespread concerns. It is necessary to understand severity of the SOC and nutrient losses on the sloping farmland due soil erosion in term of launching the countermeasure to control the losses. The investigation on the SOC and nutrient losses in the sloping farmlands and the rainfall was carried out on the runoff plot with 20m long, 5m wide and gradient of 12°in Rubona, Huye District, south province of Rwanda. The cropping rotation of soybean-maize-groundnut was practiced on the plot during the monitor on soil losses from the plot. The contents of constituents of soils lost from the plot decreased in the order: SOC> total potassium (TK)>total nitrogen (TN)>total phosphorus (TP). The loss intensities of SOC from the plot varied from 383.0 kg/hm2 to 1680.9 kg/hm2 in the period from 2011 to 2013, 259.4 kg/hm2 to 1138.5 kg/hm2 for TK, 41.2 kg/hm2 to 180.8 kg/hm2 for TN, 9.2 kg/hm2 to 40.2 kg/hm2 for TP. The loss intensities of SOC, TK, TN and TP were 1262.3 kg/hm2, 99.0 kg/hm2, 99.4 kg/hm2, 35.4 kg/hm2 in 2017, and 3786.8 kg/hm2, 2970.0 kg/hm2, 298.1 kg/hm2 and 106.3 kg/hm2 in 2018, respectively. The loss intensities of SOC and nutrients varied significantly over the years. It can be seen that the amounts of erosive rainfall have the crucial impacts on loss intensities of SOC and nutrients through analyzing the relation between loss intensities and erosive rainfall. The relations between loss intensities of SOC and nutrients and mounts of erosive rainfall can be described by exponential function. Compared with the loss intensities of SOC and nutrients on the runoff plot, the loss intensities were much less on the plots with the corresponding soil and water conservation measures such as terracing and plant hedges. Therefore, the measures of anti-erosion should be adopted on the sloping farmlands in an effort to reduce SOC and nutrient losses and keep the sustainable soil productivity in Rwanda. 

Keywords: SOC; nutrient; sloping farmland, Rwanda

How to cite: Wang, B., Li, C., and Li, Z.: Soil organic carbon and nutrients losses form the sloping land in the scenario of water erosion in the south of Rwanda, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21057, https://doi.org/10.5194/egusphere-egu2020-21057, 2020.

EGU2020-17750 | Displays | SSS8.11

Interrelations of six soil-related ecosystem services within a small agricultural headwater catchment

Celine Bustany, Chantal Gascuel-Odoux, Christian Walter, Denis Michot, Maxime Fossey, Yosra Ellili, and Anne Jaffrezic

Re-vegetation has been widely carried out to prevent land degradation, reduce soil erosion, and improve soil quality. In order to investigate the characteristics of soil nutrients content in different land use types of karst gabin basin, soil organic matter, soil total nitrogen, soil total phosphorus, soil total potassium, soil pH, and soil texture in woodland, agricultural land, orchard, and grassland were surveyed in Mengzi Gabin Basin, Southwest of China. The difference of soil indicators between vegetation types was analyzed, and soil fertility quality of four land use types was comprehensively evaluated by the soil quality index (SQI). The results showed that land use significantly affected soil organic matter content. Soil organic matter content was the highest in grassland, followed by agricultural land and forest land, while orchard was lowest. There was a significant difference in soil total nitrogen content between different land uses. The total nitrogen content in farmland soil was the highest, followed by grassland and woodland, and the lowest in the orchard. Woodand had the highest total potassium content and the lowest total phosphorus content. The grassland soil had the highest total phosphorus content and the lowest total potassium content. pH value in the four land use types was acidic, ranged from 5.82 to 6.67. The soil quality index showed that woodland had the highest soil fertility quality. The results of the study could provide the basis of soil nutrients variation and status in Gabin basin, and also provides support for evaluating the soil improvements during vegetation restoration in fragile Karst ecosystems.

How to cite: Tang, L., Shan, Z., and Yu, Y.: Evaluation of soil quality in different land uses in the Mengzi Gabin Basin, Southwest of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10259, https://doi.org/10.5194/egusphere-egu2020-10259, 2020.

Intensification of returning farmland to forest has led to success in ecological construction and improvement. Returning farmland to forest project has been implemented at the Three Gorges Reservoir Area (TGRA) since 2000. We aimed to access the soil conservation service variation in the Lanlingxi watershed of TGRA using land cover change as a proxy indicator. Lanlingxi watershed is a representative pilot of TGRA, which included specialized in the national demonstration of returning farmland to forest project. The multi-stage methodology included; (i) land cover analysis in phased process using and GIS (ii) assessing soil conservation service values using InVEST model. The results showed that during 1999-2017, significant land cover transformations occurred in the study area, increase of economic forests land, tea, citrus in exchange of cultivated land. Langlingxi watershed covered an area of 1527.43 hm2, cultivated land occupied 32.58% of the 497.65 hm2 in 1999, and reduced to 4.16% in 2017. Tea land occupied 19.41% of the total land in 2017, which was under 1% in 1999. Land cover conversion was from cultivated land to tea, citrus and bush. Land cover change happened within at lower altitude of protection and economic forest, no significant change at ecological welfare forest. The value of soil conversation was 415.08 t/hm2 in 1999, while the land was cover by tea, citrus and bush in 2017, the value of soil conversation was higher than 490 t/hm2. Total soil conversation increased 28.56% at lowest attitude and 19.82% at intermediate altitude area in 2017 as a result of land cover change. The ability and capacity of soil conversation were higher by returning farmland to forest. Such changes contributed to the increase of soil conservation service, mainly as a result of a better capacity in soil and water conservation by forests. The results of this study emphasized the importance of land management and forests restored for better ecosystem services and conservation.

How to cite: Huang, Y., Huang, Z., and Ma, L.: Interactions between soil conversation service and land cover changes in the Three Gorges Reservoir Area after returning farmland to forest, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7714, https://doi.org/10.5194/egusphere-egu2020-7714, 2020.

Ecosystem services (ES) are defined as material and non-material benefits that people derive directly or indirectly from nature, normally divided in provisioning, regulating and cultural. Previous works have made great progress in mapping and assessing ecosystem services (ES) that are directed toward exploring various aspects of ecological changes and economic values. These preferences, however, may neglect the important role of people who are the direct beneficiaries in this ecosystem. Therefore, including these stakeholders in ecosystem services assessment identifies their relations and perceptions between ecosystem services and society. In order to quantify and map these relations and perceptions, we designed and implemented an analytical framework based on the Public Participatory Geographic Information System (PPGIS) method to explore local stakeholders’ (Farmers, Government managers/Experts, and Company employees) similarities and differences in recognition of preferences and social values for ecosystem services in a typical Karst basin. Our results showed that remarkable differences appeared in preferences for ecosystem services across three groups. Farmers gave more preferences to provisioning services, Government managers/Experts to regulating and cultural services, and Company employees’ preferences were individualized. The spatial distributions and relations of social values for ecosystem services also showed great differentials. Provisioning services were always related to specific natural conditions, regulating services to forests, and cultural services to specific locations around tourism localities, forest, and wetland parks. The three stakeholder groups perceived more synergies than tradeoffs between the different ecosystem services. Landscape beauty was the most influential service in Farmers’ and Company employees’ perceptions, while Local climate change regulation was the most influential service in those of Government managers/Experts. The local stakeholders’ surveys can improve the enthusiasm of the local people to participate in environmental management and provide more socio-ecological information to help the managers alleviate the conflicts among different stakeholders.

How to cite: Wu, X., Zhang, W., Yu, Y., and Pereira, P.: Integrating preferences and social values for ecosystem services in local ecological management: A framework applied in Xiaojiang Basin, Southwest of China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10363, https://doi.org/10.5194/egusphere-egu2020-10363, 2020.

An accurate assessment of soil water balance components (SWBCs) is necessary for improving irrigation strategies in any water-limited environment. However, quantitative information of SWBCs is usually challenging to obtain, because none of the components (i.e., irrigation, drainage, and evapotranspiration) can be easily measured under actual conditions. Soil moisture is a variable that integrates the water balance components of land surface hydrology, and the evolution of soil moisture is assumed to contain the memory of antecedent hydrologic fluxes, and thus can be used to determine SWBCs from a hydrologic balance. A database of soil moisture measurements from six experimental plots with different treatments in the middle Heihe River Basin of China was used to test the potential of a soil moisture database in estimating the SWBCs. We first compared the hydrophysical properties of the soils in these plots, such as vertical saturated hydraulic conductivity (Ks) and soil water retention features, for supporting the SWBC estimations. Then we determined evapotranspiration and other SWBCs through a method that combined the soil water balance method and the inverse Richards equation (a model of unsaturated soil water flow based on the Richards equation). To test the accuracy of our estimation, we used both indirect methods (such as power consumption of the pumping irrigation well, and published SWBCs values at nearby sites), and the water balance equation technique to verify the estimated SWBCs values, all of which showed a good reliability of our estimation method. Finally, the uncertainties of the proposed methods were analyzed to evaluate the systematic error of the SWBC estimation and any restrictions on its application. The results showed significant variances among the film-mulched plots in both the cumulative irrigation volumes (652.1~ 867.3 mm) and deep drainages (170.7~364.7 mm). Moreover, the unmulched plot had remarkably higher values in both cumulative irrigation volumes (1186.5 mm) and deep drainages (651.8 mm) compared with the mulched plots. Obvious correlation existed between the volume of irrigation and that of drained water. However, the ET demands for all the plots behaved pretty much the same, with the cumulative ET values ranging between 489.1 and 561.9 mm for the different treatments in 2016, suggesting that the superfluous irrigation amounts had limited influence on the accumulated ET throughout the growing season because of the poor water-holding capacity of the sandy soil. This work confirmed that relatively reasonable estimations of the SWBCs in coarse-textured sandy soils can be derived by using soil moisture measurements; the proposed methods provided a reliable solution over the entire growing season and showed a great potential for identifying appropriate irrigation amounts and frequencies, and thus a move toward sustainable water resources management, even under traditional surface irrigation conditions.

How to cite: Liu, H., Yu, Y., Li, Z., Zhao, W., Yang, Q., Yang, R., and Liu, J.: Estimation of Soil Water Balance Components Based on Continuous Soil Moisture Measurement and Inversed Richards Method in an Irrigated Agricultural Field of a Desert Oasis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6274, https://doi.org/10.5194/egusphere-egu2020-6274, 2020.

The soil available water content (AWC) has a strong ability to indicate the soil water conditions under different land cover types. Although the AWC has long been calculated, soil water characteristic curve estimation models and the distribution of AWC, as well as the impact factors, have rarely been evaluated in the Loess Plateau of China. In this study, four typical land cover types were selected: introduced shrubland, introduced grassland, natural restored shrubland and natural restored grassland. Four widely used models were compared with the van Genuchten (VG) model, including the Arya and Paris (AP) model, Mohammadi and Vanclooster (MV) model, Tyler and Wheatcraft (TW) model, and linear fitting (LF) model to estimate the wilting point. The distribution of AWC and the relationships with environmental factors were measured and analyzed. The results showed the following: (1) the MV model was the most suitable model to estimate the soil water characteristic curve in the Loess Plateau; (2) the factors impacting the AWC varied under different precipitation gradients, and the area with a mean annual precipitation of 440-510 mm was the most sensitive zone to environmental and vegetation factors; and (3) the soil water deficit was more severe when considering AWC than when considering soil water content (SWC), and the water deficits were different under introduced grassland and introduced shrubland. Consequently, the construction of vegetation restoration should be more cautious and consider the trade-off between soil conservation and water conservation. During restoration, policy makers should focus on the AWC in addition to the SWC to better assess the soil moisture status.

How to cite: Zhang, X., Zhao, W., and Pereira, P.: Aggravated water deficit in the Loess Plateau of China as indicated by the soil available water content, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8619, https://doi.org/10.5194/egusphere-egu2020-8619, 2020.

EGU2020-8746 | Displays | SSS8.11

Comparison of bioaccumulation potential of eleven pine species in low polluted ecosystem

Jerzy Jonczak, Magdalena Sut-Lohmann, Nora Polláková, Agnieszka Parzych, Vladimír Šimanský, Sally Donovan, and Tetiana Medinski

Forests play a pivotal role in sustaining ecosystem services. Continuous human modification of the biogeochemical cycling of potentially toxic metals, together with constant growing release, often lead to mutagenic or directly lethal health effects. Bioindicating organisms are commonly used to assess metal contamination in soil. However, there is a big gap in knowledge regarding reference stands (low polluted ecosystems), which is crucial to determine relationships between mineralogy and spatial distribution of potentially toxic metals in soil and forest stands. We evaluated bioaccumulation intensity of Cr, Cu, Mn, Ni and Zn in the 1 and 2-year old needles of eleven pine species growing in the Arboretum Mlyňany, located in an uncontaminated area of south-western Slovakia. The results were evaluated using Ward method, Euclidean distance and Kruskal-Wallis test. The results presented in our study point to a specific bioaccumulation behavior of 11 pine species under low soil pollution levels.

How to cite: Jonczak, J., Sut-Lohmann, M., Polláková, N., Parzych, A., Šimanský, V., Donovan, S., and Medinski, T.: Comparison of bioaccumulation potential of eleven pine species in low polluted ecosystem, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8746, https://doi.org/10.5194/egusphere-egu2020-8746, 2020.

EGU2020-12781 | Displays | SSS8.11

Development of a big data system to assess ecosystem services of surface soil

Kyoung Jae Lim, Dongjun Lee, Jonggun Kim, Jae E Yang, and Minhwan Shin

A big data system plays a significant role in various fields. This technology has also been applied to environment fields because it can discover hidden patterns between environmental factors. As the massive data set was constructed for several decades, big data analysis has widely been using for extracting useful information by analyzing different types of big data sets. In this study, we developed a big data system frame to assess the ecosystem service provided from surface soil. Among big data platforms, we used the Amazon Web Service (AWS) due to their cost-efficiency and hardware flexibility. There are five stages of the big data system (i.e. data acquisition– data storage – data processing – data analysis – visualization). In the data acquisition step, the soil sensor and Internet of Things (IoT) system were used, and we collected existing soil properties data provided by national institutes such as Rural Development Administration (RDA), Ministry of Environment (MOE), and Ministry of Land, Infrastructure, and Transport (MOLIT). AWS S3 platform, which is an object storage service and provides easy-to-use management features to users, was accepted as the data storage platform of the big data system. Amazon EMR, Amazon SageMaker, and Amazon QuickSight were used for the step of data processing, data analysis, and visualization of the big data system respectively. We tested that the developed system could predict soil bulk density and able to replace a typical environmental model by using models based on machine learning and deep learning. The results of the two tests showed positive results that the developed models could predict soil properties and simulate natural phenomena as much as the typical environmental model could.  However, since the system is at an early development stage, it needs repetitive tests in the future considering various soil properties. If this system becomes fully functional, the system will be helpful to improve soil environments.

How to cite: Lim, K. J., Lee, D., Kim, J., Yang, J. E., and Shin, M.: Development of a big data system to assess ecosystem services of surface soil , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12781, https://doi.org/10.5194/egusphere-egu2020-12781, 2020.

SSS8.12 – Biogeochemical element cycling and mineral weathering in soils

EGU2020-3050 | Displays | SSS8.12

Do oscillating redox conditions affect long-term Si release from phytoliths?

Nicolai Koebernick, Klaus Kaiser, Anika Klotzbücher, Robert Mikutta, Doris Vetterlein, and Thimo Klotzbücher

Phytoliths are a major source of plant-available Si in weathered soils, particularly for crops with high Si demand, such as rice. Yet, not much is known about the evolution of Si release from phytoliths under real soil conditions. The extraction of phytoliths from soil is difficult and usually leads to changes in phytolith surface chemistry. Paddy rice cultivation induces oscillations in redox potential by alternating submergence and drainage. These oscillations may have a major impact on the evolution of phytolith Si release. For instance, reduced Fe2+, abundantly in solution under low redox potential may sorb onto negatively charged phytolith surfaces and form iron oxide coatings when redox potential rises after drainage. We thus hypothesise that phytolith Si release decreases with time in soil as phytolith surfaces are increasingly coated with oxides and organic matter. To test the effect of oscillating redox potential on phytolith surface chemistry and implicit changes in Si release we conduct experiments with phytoliths extracted from rice straw by dry ashing. Extracted phytoliths are sequentially exposed to soil solutions with contrasting redox potentials (anoxic vs. oxic), using either alternating anoxic-oxic solutions or exclusively oxic solutions. Anoxic exposure is conducted in Ar atmosphere (< 1% O2 partial pressure). After each exposure events the filtrate is analysed for pH and redox potential, Fe2+ with the Ferrozine method, and total Fe, Al and Si with inductive-coupled plasma-optical emission spectrometry. Filter residues are sampled and analysed after 1, 2, 4, and 8 exposure steps (each lasting 2 hours), respectively. Surface chemical composition is analysed with X-ray photoelectron spectroscopy. Specific surface area is determined with N2 gas adsorption at 77 K and surface charge is measured by determining electrophoretic mobility using dynamic light scattering. Batch dissolution experiments in mini-reactors are carried out for assessing the Si release of untreated and treated phytoliths. The experimental results will provide important information on the changes of phytolith surface chemistry and Si release from phytoliths in systems with alternating redox potentials such as rice paddies.

How to cite: Koebernick, N., Kaiser, K., Klotzbücher, A., Mikutta, R., Vetterlein, D., and Klotzbücher, T.: Do oscillating redox conditions affect long-term Si release from phytoliths?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3050, https://doi.org/10.5194/egusphere-egu2020-3050, 2020.

EGU2020-9979 | Displays | SSS8.12

Formation and properties of inorganic Si-contaminant compounds

Mathias Stein, Anna Georgiadis, Dietrich Gudat, and Thilo Rennert

Soil contamination with inorganic contaminants such as lead (Pb), copper (Cu) and cadmium (Cd) is a major environmental issue, especially concerning food and groundwater security. Various studies demonstrated positive effects of Si regarding resilience of some crops towards these inorganic contaminants. One reason could be a complexation reaction of Si and the metal cations. However, this process has not been systematically investigated yet. Thus, our research contributes to reducing the mobility of Cd, Cu and Pb in contaminated soils and to decreasing their transfer into aquifers or plants.

The main goal of this study is to elucidate the extent and the mechanisms of the interactions between Pb2+, Cd2+ and Cu2+ and silicic acid, including the long-term kinetics, and to investigate whether the metals are bound by silicic acid. We carried out a series of precipitation experiments in aqueous solution at room temperature to understand these processes.

We used Tetraethoxysilane (TEOS) as Si source and Pb(NO3)2, Cd(NO3)2 and Cu(NO3)2 with an initial concentration of 10 mmol l-1 for synthesis. Selectivity of Si towards the metals was tested in an equimolar solution of all three salts and TEOS. Time-dependency of particle growth was examined at sixteen different dates using dynamic light scattering (DLS) and transmission electron microscopy (TEM). We measured the Si and metal concentrations in the dialyzed aliquots using microwave plasma-atomic emission spectrometry (MP-AES). Spectroscopic analysis of the dialyzed and freeze dried solid phase, was performed using FTIR and 29Si-NMR spectroscopy.

DLS and TEM analyses showed that the metals had an accelerating effect on the polymerization reaction of silicic acid [Cu2+ > (Cu2+, Pb2+, Cd2+) > Cd2+ > Pb2+]. Particle growth followed initial formation of nanoparticles through homogenous nucleation. Particle growth in the control synthesis (TEOS in aqueous solution) stopped after 124 days at a size of 34 nm (Z-Average). Particles in the syntheses with the metals kept growing until the experiment was completed after 211 days. The final particle sizes depended on the metal present, reaching a final size of 260 nm (Cu), 96 nm (Pb) and 196 nm (Cd). Final concentrations of up to 15, 10 and 13 µmol l-1 of Cu, Pb and Cd, respectively, remained in the dialyzed aliquots. The Si concentrations in these aliquots increased continuously until an equilibrium was reached after 112 days at different concentrations (Cu, 7.3 mmol l-1; Pb, 6.9 mmol l-1; Cd, 4.8 mmol l-1). The FTIR spectra showed a shift of the Si-O stretching vibration by 10 to 32 cm-1 towards lower wavenumbers, which could indicate an incorporation of the metals in the polymeric network of the silicic acid. 29Si-NMR relaxation experiments showed a shortening effect of Cu2+-ions on the relaxation time of the Si nuclei. It appears that the proportion of the rapidly relaxing components decreases for the Si-atoms deep inside the silicate matrix. This indicates that the Cu centres are located predominantly at the huge surfaces (up to 667 m2 g-1) of the Si matrix. Future extraction experiments will show how strong the metals are bound to the Si polymeric network.

How to cite: Stein, M., Georgiadis, A., Gudat, D., and Rennert, T.: Formation and properties of inorganic Si-contaminant compounds, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9979, https://doi.org/10.5194/egusphere-egu2020-9979, 2020.

EGU2020-13788 | Displays | SSS8.12

Impact of rainforest transformation into oil-palm plantations on Si pools in soils

Britta Greenshields, Barbara von der Lühe, Harold J. Hughes, Aiyen B. Tjoa, and Daniela Sauer

As oil-palm plantations are expanding rapidly in SE Asia, it is essential to ensure that soil functions are sustained after land-use transformation. This includes the maintenance of well-balanced soil nutrient levels to prevent soil degradation as well as understanding soil silicon (Si) dynamics to optimize oil-palm management. However, studies on the influence of oil-palm cultivation on soil Si pools have not yet been undertaken, although it is known that oil palms accumulate Si in their biomass and should thus affect Si pools and cycling. We hypothesized that under oil-palm monocultures, Si losses may exceed Si input into soils, due to (1) erosion of phytolith-enriched topsoils, (2) increased Si uptake by oil palms, (3) harvest and palm-frond management. The aim of this study is to compare Si pools in Acrisols of Sumatra (Indonesia) under rainforest and oil-palm plantations to assess whether these soil Si pools are significantly depleted under oil-palm plantations. We included both well-drained and riparian sites, hypothesizing that riparian sites are less prone to net Si depletion, as they receive additional Si through regular flooding and slope water from higher areas. Soil samples (1 g) from soil profiles (≤ 1 m, n = 4 for each land-use type and topographic position) were subjected to sequential Si extraction to determine mobile Si, adsorbed Si, Si in soil organic matter, Si occluded in pedogenic oxides and hydroxides, and biogenic Si.

Si in soil organic matter (SOM) and biogenic Si represent the largest Si pools in the Acrisols. Our preliminary results suggest that these pools are controlled by land use rather than by topographic position (riparian versus well-drained). Ah horizons under oil-palm plantations have lower contents of Si in SOM (0.052-1.04 mg g-1) than those under rainforest (0.59-1.5 mg g-1). There is no significant difference between well-drained and riparian sites, as Si input by slope water and flooding does not affect Si in SOM. Besides, the concentrations of biogenic Si are lower in soils under oil-palm plantations than under rainforest. The contents of both mobile and adsorbed Si in soils are similar to marginally higher in riparian soils (5-30 µg g-1), compared to well-drained soils (5-20 µg g-1), with no clear difference between land-use types. These Si fractions unlike Si in SOM are most directly influenced by Si input through slope water and flooding.

How to cite: Greenshields, B., von der Lühe, B., Hughes, H. J., Tjoa, A. B., and Sauer, D.: Impact of rainforest transformation into oil-palm plantations on Si pools in soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13788, https://doi.org/10.5194/egusphere-egu2020-13788, 2020.

EGU2020-20657 | Displays | SSS8.12

Plant available silicon in bare fallow soils after 90 years of annual supplies of manure, lime and fertilizers

Zimin Li, Jean-Dominique Meunier, Folkert Van-Oort, Catherine Keller, and Bruno Delvaux

Silicon (Si), non-essential but beneficial to plants, plays a crucial role in maintaining plant functions by alleviating a number of biotic and abiotic stresses. Applying manure, lime and chemical fertilizers to soils may impact the pool of plant available Si, but their impact over decades to century is unknown.

Here, we determined the evolution of the content of plant available Si in a silty soil derived from Quaternary loess (Haplic Luvisol), submitted to a long-term bare fallow experiment initiated in 1928 in Versailles (INRA, France). On this bare fallow soil, different treatments were applied annually since 1929, among which, manure, lime (CaCO3), NaNO3 and (NH4)2SO4) and compared to control soil. Archived soil samples were already characterized for their basic properties (pH, CEC, OC, N, oxalate-extractable Al, Fe and Si, DCB extractable Fe, particle size distribution, elemental analysis). Here, we computed the total reserve in bases (TRB), and we determined the content of plant available Si (CaCl2-Si) through a kinetical extraction using 0.01 M CaCl2.

TRB was 110 cmol (+) kg-1 in 1929. During the 90 years period, TRB (cmol (+) kg-1) remained constant in manured plots, decreased to 96 in control/NaNO3 plots and to 84 in the (NH4)2SO4 plot whereas it increased to 160 in the CaCO3 plot. The initial CaCl2-Si content did not differ between the treatments, as it ranged between 25 and 30 mg kg-1 in 1929. Annual manure supply resulted in the progressive increase of CaCl2-Si up to 60 mg kg-1. In this treatment, CaCl2-Si (30 to 60 mg kg-1) and OC (18 to 40 g kg-1) contents were strongly and positively correlated, suggesting the continuous silicon through manure supply (probably phytoliths), and their dissolution at pH 6.6-7.6. In the four other treatments, OC content regularly decreased from 18 to 5 g kg-1 from 1929 to 2019, but CaCl2-Si largely differed between them. Our data suggest a strong impact of pH on CaCl2-Si as well as the occurrence of two sources of bioavailable Si: phytoliths in limed plots (pH 6.6 to 8.8) and clay minerals in acidified plots submitted to annual (NH4)2SO4 application (pH from 6 to 3.5).

Our preliminary results show that, in a given soil type, the pool of bioavailable silicon is strongly affected by soil properties, especially soil pH, OC content and weathering stage.

How to cite: Li, Z., Meunier, J.-D., Van-Oort, F., Keller, C., and Delvaux, B.: Plant available silicon in bare fallow soils after 90 years of annual supplies of manure, lime and fertilizers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20657, https://doi.org/10.5194/egusphere-egu2020-20657, 2020.

EGU2020-21873 | Displays | SSS8.12

Assessing seasonal controls in silicon cycle and isotopic signatures of groundwater under anthropogenic stress in tropical watershed

Sarath Pullyottum Kavil, Damien Cardinal, Jean Riotte, Arnaud Dapoigny, Laurent Ruiz, Benjamin Baud, Sarma Vedula VSS, Busala Siva Kiran Kumar, Véronique Vaury, and Ramananda Chakrabarti

Intense irrigation along with extensive use of fertilizers significantly effects the hydrological and biogeochemical cycles in shallow aquifers. Land use changes associated with human activities are known to be a major controlling factor of the terrestrial silicon cycle, altering silicon fluxes to surface and groundwater. In the present study we determined dissolved silicon concentration (DSi) and δ30Si of shallow groundwater samples collected from bore wells and piezometers of two watersheds in Southern India under contrasting land use: one intensely cultivated (Berambadi) and one forested (Mule Hole).

Intense groundwater irrigation in the Berambadi region leads to water table depletion, progressive salinization and occurrence of nitrate hotspots in groundwater. We collected groundwater samples during two periods, during the summer (dry) season in March and during the South-West monsoon season in August from both watersheds. DSi values ranged from  410 µM to 1487 µM, with a lower value during August sampling indicating dilution effects caused by monsoon precipitation. Mule Hole and Berambadi aquifer recharge mostly occurs through surface water percolation or from lateral flow. Groundwater composition thus exhibits seasonal variation depending on precipitation which can be traced using water isotopes (δ18O and δ2H). The depleted values in Berambadi groundwater (average δ18O of -2.99 ‰ and δ2H of -15.86 ‰) compared to forested watershed in Mule Hole indicate higher contribution from meteoric water likely due to quicker turnover resulting from continuous irrigation.

Silicon isotope fractionation in natural waters is majorly controlled by soil-water interaction consisting in dissolution of primary minerals and formation of secondary minerals and also from biogenic sources and uptake.  Preliminary results show no significant differences in δ30Si signatures in groundwater from the two watersheds (1.1 ± 0.3 ‰) in dry season despite higher and more variable DSi concentration in cultivated watershed (1100 ± 260 µM vs. 790 ± 120 µM for the forest). Assuming similar discharge, higher DSi concentration in Berambadi during both seasons indicates increased export/mobilization of Si into aquifer when compared to forested landscape.

We will further refine our understanding of Si biogeochemistry in groundwater and the changes associated with land use by comparing the water and silicon isotopes with the germanium/silicon ratio and major element compositions in comparison with surface water data.

How to cite: Pullyottum Kavil, S., Cardinal, D., Riotte, J., Dapoigny, A., Ruiz, L., Baud, B., Vedula VSS, S., Kumar, B. S. K., Vaury, V., and Chakrabarti, R.: Assessing seasonal controls in silicon cycle and isotopic signatures of groundwater under anthropogenic stress in tropical watershed, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21873, https://doi.org/10.5194/egusphere-egu2020-21873, 2020.

Little data currently exist on the chemistry of soils on the island of San Cristóbal, Galápagos, despite the importance of this data in understanding how the island has weathered through time. We sought to resolve this lack of data by surveying soils from different elevations and in different climate zones across the island. We collected soil samples from transects and sites across a precipitation-gradient in order to describe the mineralogy and chemistry of the soils, and to understand how soils have weathered in different precipitation regimes across the island. We used a mass balance approach, coupled with chemical weathering indices, to understand profile-scale to site-scale differences in weathering.

Climate-dependent shifts in soil characteristics are apparent: at the wettest sites, the soils have the lowest pH, the highest percentage of amorphous material, and the highest loss on ignition values. We compared the saprolite, the basal material from the soil pits in which the basalt bedrock’s texture was still apparent but the material was extremely friable, and previously reported unweathered bedrock data, showing that the saprolite was highly weathered relative to the unweathered bedrock. Using the mass balance approach, we show that while base cations have been lost from soils relative to the parent material underlying the profiles, aluminum and iron concentrations have remained the same or have increased.

 We used chemical indices of weathering as evidence for the relationship between weathering intensity and precipitation, with greater weathering intensity observed in the very humid highlands compared to the less intense weathering that has occurred in the arid lowlands. The windward side of the island shows higher intensities of weathering than the leeward side. Our findings conform with other soil chemistry studies on the islands of Santa Cruz and Isabela, also in the Galápagos archipelago, showing that more intense weathering, accompanied by a greater loss of mobile elements, is observed at wetter sites.

How to cite: Percy, M. and Benninger, L.: Mineralogical and chemical variability of soils across a tropical ocean island climate gradient, San Cristóbal, Galápagos, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4266, https://doi.org/10.5194/egusphere-egu2020-4266, 2020.

EGU2020-12993 | Displays | SSS8.12

Soil organic carbon stocks in tropical soil systems under rainforests controlled by geochemistry

Mario Reichenbach, Peter Fiener, Florian Wilken, Johan Six, Laurent Kidinda, Basile Mujinya, and Sebastian Dötterl

Soil mineralogy plays an important role in stabilizing soil organic carbon (SOC) against decomposition by forming organo-mineral complexes with reactive mineral surfaces. However, few studies take the influence of parent material geochemistry on the development of C stabilization mechanisms into account. In addition, studies evaluating C stabilization in soil are often limited to temperate climate zones with young to intermediate aged soils. This is not representative for older, deeply weathered and leached tropical systems and limits our understanding of the relationship between geology, soil formation and their effect on C stabilization.

Here, we study the relationship between soil carbon stabilization and the geochemical properties of soils developed on different parent material along geomorphic transects in pristine tropical forest systems under comparable climate. Our study is located in the eastern part of the Congo basin along the East African Rift Mountain System where we sampled 36 one meter soil cores along nine geomorphic transects on geologies ranging from mafic to felsic geochemistry.

Carbon stocks ranged between 2.67 tC ha-1 to 85.75 tC ha-1 and were on average composed of 4.5% (±5.3% SD) coarse particulate organic matter, 46.0% (±10.3% SD) (micro)aggregates associated C and 49.6% (±11.2% SD) free silt and clay associated C. Our analysis shows that the topographic position of the investigated soils had no effect on SOC stocks and the distribution of soil C fractions. Regression models and partial correlation analysis reveal that strong correlations of SOC stocks exists to geochemical properties of the solid phase of soil but not to the distribution of soil C fractions. SOC decreased strongly with soil depth on soils developed on felsic parent material, but less so on mafic or intermediate parent material. In addition, mafic geochemistry shows significantly higher SOC stocks compared to their felsic counterparts.

We conclude that despite long-lasting weathering, the contrasting geochemistry of the underlying parent material leaves a footprint in soil geochemistry that affects C stocks but less so on stabilization mechanisms. We hypothesis that carbon dynamics in these undisturbed tropical forest systems are more driven by C input and nutrient recycling than by variation in C stabilization potential.  

How to cite: Reichenbach, M., Fiener, P., Wilken, F., Six, J., Kidinda, L., Mujinya, B., and Dötterl, S.: Soil organic carbon stocks in tropical soil systems under rainforests controlled by geochemistry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12993, https://doi.org/10.5194/egusphere-egu2020-12993, 2020.

EGU2020-3445 | Displays | SSS8.12 | Highlight | SSS Division Outstanding ECS Lecture

Soil resource dynamics in a changing world

Sebastian Doetterl

Good time for soil scientists, bad time for soils? Join me at my Soil System Sciences - OECS award lecture where I will highlight how Global Change affects soils across ecosystems and what this means for future plant-soil inter­actions and biogeochemical cycles in a warming, crowded world out of balance.

Global Change from the Arctic to the Tropics has accelerated drastically in recent decades, subsequently effecting ecosystems everywhere. Soils and biogeochemical cycling within are no exception. For example, how carbon and nutrients are stabilized in and released from soil is highly affected by changing land use and climate. Despite these changes, soil in earth system models is not represented mechanistically, but rather given a mostly budgetary “black box” function. No methodological framework is available that accounts for the combined effects of climate, geochemistry and disturbance on soil dynamics at larger scales. In addition, most of our process understanding of biogeochemical cycling in soils is derived from data-rich temperate regions. This data has limited applicability in low latitudinal (tropics) or high latitudinal (boreal/subpolar) climate zones, where soils have different properties and drastically different developmental histories.

In my talk I will illustrate with a few examples how the gaps in our understanding of soil processes across climate zones and dismissing lateral soil fluxes leads to large uncertainties in predicting future trajectories of the global carbon cycle. I will highlight how the interactions of weathering and disturbance can influence and dominate biogeochemical cycles and microbial processes in soils. I will also discuss some directions where geochemical proxies that are available at the global scale can be useful to model the spatial and temporal patterns of soil carbon storage and turnover.

How to cite: Doetterl, S.: Soil resource dynamics in a changing world, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3445, https://doi.org/10.5194/egusphere-egu2020-3445, 2020.

EGU2020-19235 | Displays | SSS8.12

Thick regoliths and the geological history of climate

Yves Godderis, Pierre Maffre, and Yannick Donnadieu

The weathering of continental silicate rocks is a main sink of CO2 at the geological timescale. As it is dependent on the climatic conditions (more weathering in a warmer world), the silicate weathering acts as a negative feedback on the carbon cycle, limiting the amplitude of past climatic changes.

Many contributions have shown that silicate weathering efficiency (the « weatherability ») is strongly correlated to the physical erosion. Because of this tight link, many works have focused on the role of mountain ranges in the climatic evolution, because those areas are characterized by intense physical denudation, thus potentially boosting chemical weathering. Simply speaking, periods of active mountain building are suspected to generate cold conditions.

Conversely, little attention has been paid to the role of large and flat continental areas. Due to the lack of physical erosion in those flat areas, the weathering processes will generate thick regoliths, progressively shielding the bedrock and ultimately decreasing the weatherability. Periods of limited mountain building activity might generate very high CO2 level and warm climatic episodes.

However, this simple scheme, defining two extreme poles for the surficial Earth system (one mountainous and cold, the other flat and warm) raises several questions:

  • the two modes (mountainous and flat) generally co-exist. Their relative role in the control of the climate is probably dependent on the continental configuration, and on the location of tectonically active and non-active areas in latitude and longitude.
  • the dynamics of the thick regolith is not well constrained. How long does it take to generate thick regoliths? What is the response time of thick regoliths to a perturbation?
  • what about the horizontal transfer of sediments? Recent works have shown that sediments are exported from mountain ranges and weathered in plains at the feet of the mountains. How can we incorporate this into numerical models? 

We will explore the role of the regolith thickness with the spatially-resolved GEOCLIM model. We will focus on the consequences of the colonization of the continents by vascular land plants over the course of the Devonian. This event is suspected to have impacted the weatherability of all the continental surfaces in the same direction (increase in weatherability). We will show that the way atmospheric CO2 is responding is depending on the initial state of the weathering system, prior to the colonization event. We will also explore the response time of the regolith cover to the global environmental change. We show that short glacial events can be generated in the direct vicinity of the colonization event, if the response time of the regolith layer is long and the colonization is fast. This cold overshoot disappears when the colonization time is assumed to be long (10 Myr), and the continental configuration becomes a critical factor impacting the CO2 evolution.

How to cite: Godderis, Y., Maffre, P., and Donnadieu, Y.: Thick regoliths and the geological history of climate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19235, https://doi.org/10.5194/egusphere-egu2020-19235, 2020.

EGU2020-7022 | Displays | SSS8.12

Evolution of the continental weathering of the South American margin during the Late Cretaceous: a new look upon the tectonic-climate links.

Pauline Corentin, Emmanuelle Pucéat, Pierre Pellenard, Nicolas Freslon, Michel Guiraud, Justine Blondet, and Germain Bayon

Continental weathering is a major sink of atmospheric CO2 over long time scale (> 1Ma) through CO2 consumption during chemical weathering of silicate minerals. Yet the importance of this process in climate evolution remains debated. The Late Cretaceous period records a pronounced decrease in temperatures at a global scale between 90 and 65 million years, that marks the first step of the progressive climatic decline leading to our modern climate. This cooling is concomitant to a major tectonic uplift of the African and South American continents (Friedrich et al., 2012; Gallagher et al., 1999).

The main objective of this work is to bring new constraints on the links between tectonic, weathering and climate processes, in order to explore the potentially determinant impact of this tectonic uplift on the late Cretaceous long-term cooling. We use here a new proxy of silicate weathering, based on the coupled Lu-Hf and Sm-Nd isotope systems in clays. This proxy has been recently calibrated in modern environments (Bayon et al., 2016) but has only been scarcely applied to deep-time environments. This approach was coupled to clay mineralogy, assessing the evolution of the intensity of physical erosion linked to the uplift. In this study, these coupled weathering and erosion proxies have been applied on clays recovered from DSDP site 356 (Brazil margin).

A change in detrital clay material is recorded at the Santonian-Campanian transition (83.6 Ma), characterized by a decrease in primary clay minerals (illite, chlorite) proportions and an increase of smectite. We interpret this change as reflecting an increase in chemical weathering forming pedogenic smectites, which would have followed an episode of intense mechanical erosion from the Turonian to the Santonian. Enhanced chemical weathering, lasting until the Maastrichtian, was likely associated to locally increased hydrolysing conditions, that would be consistent with the observed decrease in palygorskite proportions, a clay mineral commonly formed in arid conditions.

We interpret the ɛNd decrease  observed (at 87 Ma) as reflecting a change of sources with a possibly decreasing contribution of basalts from the Parana-Etendeka traps associated to an increasing contribution of old crustal material. ΔɛHf values, which represents the deviation of the sample’s ɛHf compared to the clay array (Bayon et al., 2016), highlight a marked increase in the intensity of chemical weathering at the transition between the Santonian and the Campanian, that is coherent with the concomitant evolution of clay mineral assemblages.

Our new results point to the existence of a relatively arid local climate in the Turonian to Santonian interval, which would have favoured the physical disaggregation of rocks during the uplift of the Brazilian margin. The new relief would thereafter have favoured, from the Campanian onward, locally enhanced precipitations and more hydrolysing conditions, and thus intensified chemical weathering. In the context of the Brazilian margin, the observed chemical weathering increase would then represent the consequence of the active uplift.

Bayon et al. (2016) EPSL 438, p. 25-36.

Friedrich et al. (2012) GSA 40(2), p. 107-110.

Gallagher and Brown (1999) Geol. Soc. Londond Sepc. Pub 153(1), p.41-53

How to cite: Corentin, P., Pucéat, E., Pellenard, P., Freslon, N., Guiraud, M., Blondet, J., and Bayon, G.: Evolution of the continental weathering of the South American margin during the Late Cretaceous: a new look upon the tectonic-climate links., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7022, https://doi.org/10.5194/egusphere-egu2020-7022, 2020.

EGU2020-9521 | Displays | SSS8.12

Combining (U-Th-Sm)/He dating and geochemical budget to understand laterite formation

Claire Ansart, Damien Calmels, Cécile Gautheron, Gaël Monvoisin, Pierre Agrinier, Renaud Couëffe, Jean-Yves Roig, and Cécile Quantin

Laterite formations are deep regoliths, up to one hundred of meters thick, that represent about 80% of the global soil volume. Formed under tropical conditions, laterites result from successive chemical weathering reactions over long periods up to tens of millions of years. Laterites can thus be seen as both an actor of the long-term carbon cycle, through CO2 consumption by silicate weathering and witness of the long-term climate evolution. Indeed, secondary minerals found nowadays in lateritic profiles may have recorded past environmental conditions that prevailed at the time of their formation. Despite the large distribution of lateritic formations around the world, their timing and processes of formations as well as their preservation over long period of time remain unclear.

Here, we investigate an entire weathering profile developed on the Guiana Shield, in Brownsberg mountains, Suriname. The sampling region has remained in equatorial position for the last 100 Myr and has seen lateritic development since early Tertiary [1]. Such latitudinal stability offers the possibility to look at links between long-term climate evolution or climatic events and long-term chemical weathering processes.

The lateritic profile shows a strong loss in both alkali and alkaline-earth elements as well as a desilication, and an enrichment in Fe, particularly in the duricrust. The study of trace elements and rare earth elements highlights various geochemical processes behind the development of a lateritic – bauxitic profile.

 (U-Th-Sm)/He ages of iron oxides from the duricrust show the presence of multiple generations of Fe oxides, demonstrating that the Brownsberg profile underwent multiple dissolution and recrystallization phases since its formation, at least 19.9 ± 1.8 Ma ago. These successive weathering processes may have led to the particular enrichment in the profile such as the one observed for Fe and V in the duricrust. Measurement of d18O – dD on secondary minerals, i.e. kaolinite and Fe-oxides s.l., will help to connect mineralogical and geochemical variations with the environmental conditions that prevailed at the time of their formation [2].

[1] Theveniaut and Freyssinet, 2002. Pal. Pal. Pal., 178, 91-117

[2] Girard et al., 2000. GCA, 64 n°3, 409 – 426

How to cite: Ansart, C., Calmels, D., Gautheron, C., Monvoisin, G., Agrinier, P., Couëffe, R., Roig, J.-Y., and Quantin, C.: Combining (U-Th-Sm)/He dating and geochemical budget to understand laterite formation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9521, https://doi.org/10.5194/egusphere-egu2020-9521, 2020.

EGU2020-13820 | Displays | SSS8.12

Silicon isotopes as tracers of laterite formation processes through time and space

Damien Guinoiseau, Julien Bouchez, Zuzana Fekiacova, Thierry Allard, Claire Ansart, and Cecile Quantin

Lateritic soils are deep weathering profiles, developed in tectonically quiescent areas under tropical conditions and over long timescales. Laterites are key components in the regulation of element cycle in the Earth’s history but, the timing between climatic changes and lateritic weathering episodes remains unconstrained. The combination of chronometric and weathering proxies is one way to build a comprehensive story of laterite formation.

In this study, two lateritic vertical profiles were targeted on the outer part of the Guyana Shield in the Amazon Basin. This region is tectonically stable and subjected to a rainy tropical climate since the Cretaceous. The first soil profile, located in the Brownsberg Mountains, Suriname, is developed on Proterozoic Greenstone [1]. The second lateritic cover, already studied and dated using EPR technique [2], is developed over the Cretaceous sedimentary Alter do Chao formation, Brazil. Both lateritic profiles are characterized by 1/ a total depletion of soluble elements and weathering of primary minerals at the base of the profile and 2/ a desilication followed by the formation of Fe and Al duricrusts on top. Here, traditional geochemical budgets are seconded by measurements of Si isotopes in both soils (bulk and/or clay fractions) and laterite draining streams. Silicon isotopes (δ30Si) are known to be an excellent weathering proxy, fractionated during clay mineral formation [3].

In Suriname bulk soils, heavier δ30Si is associated with lateritization due to the “buffering” quartz exerts on bulk δ30Si. However, if clay fractions are isolated, the observed strong enrichment in light Si (Δδ30Siclay fraction-bedrock up to -0.9‰) is in line with the weathering of primary minerals and the formation of kaolinite. The dating of this intense weathering episode is c.a. 2-9 Ma based on preliminary EPR dating of kaolinites.

Regarding the Brazilian laterite, the material forming the Alter do Chao formation already suffered weathering episodes before deposition. The combination of EPR dating [2] and δ30Si measurements on the clay fraction reveals two distinct formation phases. First, chemical weathering is limited to the 37-22 Ma period. Second, the progressive depletion of δ30Si from the bottom to the top of the lateritic profile highlights a replacement of a first kaolinite generation by a second population through dissolution-reprecipitation around 6 Ma, as previously inferred by EPR dating [2].

These results, in combination with elemental mass budgets, give us better constraints to estimate the intensity and the timing of element mass transfers during laterite formation. 

[1] Monsels & van Bergen (2017) Journal of Geochemical Exploration 180, 71-90. [2] Balan et al. (2005) GCA 69 (9), 2193-2204. [3] Opfergelt & Delmelle (2012) Comptes Rendus Geoscience 334 (11), 723-738.

How to cite: Guinoiseau, D., Bouchez, J., Fekiacova, Z., Allard, T., Ansart, C., and Quantin, C.: Silicon isotopes as tracers of laterite formation processes through time and space, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13820, https://doi.org/10.5194/egusphere-egu2020-13820, 2020.

EGU2020-11900 | Displays | SSS8.12

(U-Th-Sm)/He dating of supergene Fe duricrusts in NE French Guiana: implications of a multiproxy approach

Beatrix Heller, Silvana Bressan Riffel, Cécile Gautheron, Thierry Allard, Guillaume Morin, Jean-Yves Roig, and Renaud Coueffe

Laterites are developing under intense chemical weathering and low physical erosion rates. Despite their large extension at the Earth’s surface, there is still a lack of time constraints for their formation, evolution and relation with climatic change. Nevertheless, several chronological studies show that they represent a geological record at least all along the Cenozoic Era. Indeed, laterite samples often contain several coexisting generations of iron oxides and oxyhydroxides that indicate successive weathering processes due to the dissolution of previously formed phases followed by reprecipitation. This study focuses on the condition and chronology of weathering in Northeastern French Guiana which generated pedogenic iron crusts on Paleoproterozoic mafic and intermediate rocks. It offers the opportunity to document the evolution of this part of the Guyana Shield, known as a tectonically stable area since the Cretaceous. The two sampling sites, Kaw and Baduel, are paleosurfaces at 300m and 100m elevations, respectively, that have been dated previously by paleomagnetism, providing Eocene ages for both sites, albeit with some substantial uncertainties and dispersion [1].

Since the duricrust (top layer) of the lateritic profile is enriched in hematite and goethite, we aim to date those mineral phases using the (U-Th-Sm)/He method. Older ages are from Oligocene and Miocene epochs for the Kaw and Baduel sites, respectively, with a large dispersion in the age values, as expected from the presence of several generations of Fe-minerals. Identification of petrological relationship between these different generations is hindered by their intimate mixing. In order to overcome this difficulty and to identify the episodes of weathering and mineral precipitation, we coupled a number of mineralogical and geochemical analyses, namely through powder and single grain X-ray diffraction, energy dispersive X-ray spectrometry (SEM-EDS) and solution- and LA-ICP-MS. Data on formation ages of secondary iron phases will be discussed by reference to literature, in terms of geodynamic and paleoclimatic forcing.

[1] Théveniaut, H., and Freyssinet, P. (2002): Timing of lateritization on the Guiana Shield: synthesis of paleomagnetic results from French Guiana and Suriname. Palaeogeography, Palaeoclimatology, Palaeoecology (178) 91-117

How to cite: Heller, B., Bressan Riffel, S., Gautheron, C., Allard, T., Morin, G., Roig, J.-Y., and Coueffe, R.: (U-Th-Sm)/He dating of supergene Fe duricrusts in NE French Guiana: implications of a multiproxy approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11900, https://doi.org/10.5194/egusphere-egu2020-11900, 2020.

It is well-understood that iron redox dynamics can lead to both organic matter persistence—through the stabilization of organic matter in iron mineral associations or in Fe-cemented aggregate structures—as well as organic matter decomposition—through microbial respiration on ferric iron and through the production of hydroxyl radicals during the oxidation of ferrous iron (i.e., Fenton chemistry). However, we do not understand how the relative impact of each of these processes manifests during redox fluctuations. For instance, we do not understand how the net decomposition of organic matter via Fenton chemistry during the oxidation of ferrous iron compares with the net protection of organic matter via newly formed short-range-ordered (SRO) ferric minerals; nor do we understand how much of that recently-protected organic matter will be lost during a transient anoxic event. Certainly, some of the key parameters determining the balance of iron-mediated OM protection vs. decomposition include the timescales of the redox fluctuations (the duration of the oxic or anoxic periods), the rates of iron oxidation, and critically, the dynamics of the resident microbial community. Here, we explore these parameters using upland soils from the Calhoun and Luquillo Critical Zone Observatories in laboratory experiments. (1) We quantified Fe-stimulated OM protection vs. decomposition by amending 13C-labeled dissolved OM (DOM) and 57Fe-labeled FeIIaq to soil slurries incubated under either static oxic or fluctuating redox conditions. (2) We tracked the rates of Fe reduction, CO2 production, and CH4 production from soils during multiple redox fluctuations with three different lengths of O2 exposure and equal lengths of anoxia. From these experiments we find that (1) the addition of iron only conferred net protection to newly added organic matter and only under strict oxic conditions, whereas in treatments without added DOC or that were exposed to transient anoxia, the addition of iron stimulated net organic matter decomposition. (2) That the length of O2 exposure altered the balance of Fe reduction and methanogenesis during the anoxic periods with longer O2 exposure suppressing Fe reduction and enhancing methanogenesis. These findings suggest iron redox dynamics will likely tend to enhance organic matter decomposition in soils. But, importantly, these studies have specifically focused on localized iron dynamics and biogeochemical coupling with organic matter by using well-mixed systems. Spatial heterogeneity and soil structural features have yet to be evaluated in this context.

 

How to cite: Thompson, A.: Dynamics of organic matter decomposition during iron redox fluctuations in soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12540, https://doi.org/10.5194/egusphere-egu2020-12540, 2020.

EGU2020-21278 | Displays | SSS8.12

Ferrihydrite mineral transformations in the presence of Fe(II) and organic ligands

Laurel K. ThomasArrigo and Ruben Kretzschmar

In soils and sediments, poorly-crystalline, short-range order (SRO) iron minerals constitute one of the most abundant and reactive components. With high surface areas, SRO minerals like ferrihydrite (Fe10O14(OH)2+mH2O) influence the biogeochemical cycling of trace elements and nutrients, particularly in redox dynamic environments. While under oxic conditions SRO iron mineral adsorption capacity is high, in the absence of O2, FeIII acts as an electron acceptor during microbial respiration. Electron transfer induces transformations in pure iron minerals, impacting the release and re-distribution of SRO-associated trace elements and nutrients.

In nature, however, pure SRO iron minerals rarely form. Rather, the ubiquitous presence of natural organic matter (OM) in soils and sediments promotes the formation mineral-organic associations. Coprecipitation of ferrihydrite with OM decreases particle size and alters the mineral susceptibility towards microbial reduction. Thus, under reducing conditions, an increased rate and extent of mineral transformation could be expected for OM-associated ferrihydrite. However, in the presence of abiotic reductants, mineral transformation rates and extents in OM-associated ferrihydrite are markedly inhibited when compared to that of a pure ferrihydrite. Using polygalacturonic acid (PGA) as a proxy for acid carbohydrate fraction found in exopolymeric substances, we reacted ferrihydrite-PGA coprecipitates of varying C:Fe molar ratios (0-2.5) with ferrous Fe (Fe(II), 0.5-5.0 mM) at neutral pH for up to 5 weeks. Through a combination of XRD and 57Fe Mössbauer spectroscopy, we showed that at all Fe(II) concentrations, the kinetics and extent of mineral transformation decreased with increasing C content of the coprecipitates. Similarly, ferrihydrite-OM coprecipitates comprising PGA, citric acid (CA), or galacturonic acid (GA) of similar C:Fe molar ratios (~0.6) also showed inhibited mineral transformations compared to a pure ferrihydrite, whereby the extent of inhibition of mineral transformations followed the order GA>>CA>PGA. In addition, electron microscopy imaging showed that the crystal morphology of the secondary mineral phases varied with the varying chemical structure of the coprecipitating organic ligands. Despite this, applications of stable Fe isotope tracers revealed that all OM-associated ferrihydrite actively partook in iron atom exchange, suggesting that the presence of OM inhibited crystal growth of more crystalline phases, therefore again leading to SRO phases during iron atom exchange. Collectively, the stabilization of high surface-area ferrihydrite under reducing conditions via recrystallization has implications for the release and re-distribution of ferrihydrite-associated trace elements and nutrients in redox-dynamic environments.

How to cite: ThomasArrigo, L. K. and Kretzschmar, R.: Ferrihydrite mineral transformations in the presence of Fe(II) and organic ligands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21278, https://doi.org/10.5194/egusphere-egu2020-21278, 2020.

EGU2020-11949 | Displays | SSS8.12

Iron-reducing bacteria play a key role in lignin degradation by electron transferring from soil organic matter

Carolina Merino, Francisco Matus, Yakov Kuzyakov, Ignacio Jofré, and Francisco Najera

Electron acceptors (NO3, SO42–, Fe3+, Mn4+) play a crucial function in the oxidation of soil recalcitrant organic compounds. Soils that present large amount of total Fe (8-57 g kg-1soil) and organic (C) (10-110 g kg-1soil), iron-reducing bacteria (IRB)  may play a importan role. In the present study we hypothesized that IRB which reduce Fe(III)(oxyhydr)oxide of low solubility to soluble Fe(II), can contribute substantially to the degradation of lignin from soil organic matter (SOM). The aim of this study was to isolate IRB and evaluate their importance in lignin degradation. IRB were obtained from topsoils of different climates (humid temperate, cold temperate, subpolar), vegetation type (steppe, rainforest) and parent materials (granitic, volcanic, fluvio-glacial, basaltic-Antartic and metamorphic). The potential of IRB to reduce Fe(III) was assessed with lactate substrate as source of carbon (C) and anthraquinone-2,6-disulfonate (AQDS) as electron acceptor. The contribution of IRB to lignin degradation was assessed in an anaerobic microcosms experiment for 36 h. The CO2 efflux from sterilized and reinoculated soil with IRB was compared with sterilized (abiotic), non-sterilized (biotic) and induced Fenton reaction. Lignin degradation by IRB was examined by: 1) bacterial growth containing alkali lignin and alkali lignin disappearance during incubation, 2) Lignin peroxidase and manganese peroxidase activities originated from IRB, 3) cells abundance estimated from ATP synthase from bacteria growing in alkali lignin and 4) lignin degradation monitored by fluorescence disappearance intensity. The major microbial group for Fe(III) reduction, as essayed by PLFA and nested-PCR and sequencing different species were Geobactericeae-strains (G. metallireducens and G. lovleyi) in all studied. The CO2 respiration in reinoculated soils was 140% higher than the CO2 release by abiotic and Fenton reaction and, 40% lower than biotic treated soil. The Fe(II) extractable in HCl in soil derived from basaltic-Antarctic parent material showed 362 % more Fe(II) solubilisation than that of biotic treatment. Fluorescence intensity decreased during lignin degradation and it was closely correlated with CO2 release in the same sample. We conclude that IRB community such as Geobacter spp. Uses intensively Fe(III) as an electron acceptor to oxidize lignin compounds, and this process is especially active in Fe rich soils.

How to cite: Merino, C., Matus, F., Kuzyakov, Y., Jofré, I., and Najera, F.: Iron-reducing bacteria play a key role in lignin degradation by electron transferring from soil organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11949, https://doi.org/10.5194/egusphere-egu2020-11949, 2020.

EGU2020-14593 | Displays | SSS8.12

How does Ca modify the surface reactivity of Fe-OM aggregates against Arsenic binding?

Anthony Beauvois, Delphine Vantelon, Jacques Jestin, Martine Bouhnik-Le Coz, Charlotte Catrouillet, Camille Rivard, Aurélien Dupont, Valérie Briois, Thomas Bizien, and Mélanie Davranche

Iron-Organic Matter (Fe-OM) aggregates produced by redox alternation in wetlands are a key factor in the control of metallic pollutants mobility. Their ability to adsorb metal(loid)s depends on the size, morphology and structural arrangement between Fe and OM phases, which are mainly controlled by the OM occurrence. The physical, chemical and morphological organization of such aggregates is influenced by the physico-chemical conditions prevailing in the environment. Calcium (Ca) is a common major ion in natural waters which exhibits high affinity for OM. It can thus modify the size and the structural organization of Fe-OM aggregates and, subsequently, their  ability to bind metal(loid)s. Among metal(loids), arsenic (As) is of major importance because of its high toxicity and its high affinity towards Fe(III)-oxyhydroxides. Moreover, Fe-OM aggregates are an important factor controlling the mobility of arsenic (As) in the environment.

Mimetic natural Fe-OM aggregates were synthesized at various Fe/OM and Ca/Fe ratios. After a fine characterization of the size and structural organization, Fe-OM-Ca associations were used to perform As binding sorption experiments at 2 As/Fe ratios. The suspensions were stirred during 24h and subsequently filtrated ant ultra-filtrated.

Our study demonstrates that Ca strongly influences the Fe-OM aggregates physical organisation. For low Ca/Fe ratio, Fe phases exhibit a fractal organization in which Fe phases are composed of oligomers, and primary nano-aggregates (around 6 nm) which aggregate in larger Fe secondary aggregates (>200 nm). Both are embedded in the OM matrix composed of isolated molecules and OM aggregates. For high Ca/Fe ratios, OM, Fe oligomers and primary nano-aggregates form a large continuous network where Fe phases are connected by OM large molecules. With the increasing Ca/Fe ratio, the amount of Fe oligomers decreases to the benefit of larger primary nano-aggregates (increase of their geometrical radius). Ultrafiltration experiments demonstrated that DOC, Fe, Ca and As follow the same size distribution. Surprisingly, As sorption increases with the increasing size and amount of primary nano-aggregates and the formation of the large network. SAXS analyses revealed that in such network, the distance between primary nano-aggregates increases as compared to their distance in secondary aggregates. All this results suggest that, with the increasing Ca/Fe ratio, although the primary nano-aggregates size increase, their structural distance allows to rise the availability of their binding site for As.

This study demonstrates that Ca not only controls the Fe-OM structural organization but also its subsequent capacity to bind toxic elements such as As. These results are of major importance since such parameter was never so clearly evidence. They show that the actual representation of the physical organisation of Fe-OM aggregates and its reactivity have to be renewed as well as the geochemical models.

How to cite: Beauvois, A., Vantelon, D., Jestin, J., Bouhnik-Le Coz, M., Catrouillet, C., Rivard, C., Dupont, A., Briois, V., Bizien, T., and Davranche, M.: How does Ca modify the surface reactivity of Fe-OM aggregates against Arsenic binding?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14593, https://doi.org/10.5194/egusphere-egu2020-14593, 2020.

EGU2020-2938 | Displays | SSS8.12

Influence of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction

Zhe Zhou, E. Marie Muehe, Elizabeth J. Tomaszewski, Andreas Kappler, and James M. Byrne

Ferrihydrite (Fh) is a short-range ordered Fe(III) oxyhydroxide which is often associated with significant amounts of trace metals in soils and sediments. Fh is frequently observed to be unstable under reducing conditions and can be transformed into secondary Fe minerals, during which associated trace metals are either redistributed in the minerals or released into solution. Natural organic matter (NOM), often coexisting with Fe minerals, is known to alter the transformation pathways of Fh, however, its effect on associated trace metals is not well known. Here we investigated how cadmium (Cd) is redistributed when Fh undergoes microbial Fe(III) reduction in the presence of NOM. Incubation with the Fe(III)-reducing bacteria Geobacter sulfurreducens showed that the rate and extent of reduction of Cd-loaded Fh were enhanced by increasing concentrations of NOM (i.e. increasing C/Fe ratio). Under low C/Fe ratios, only 3-5% of Fe(III) was reduced, but around 70% of pre-adsorbed Cd was released into the aqueous phase due to Fh transformation to lepidocrocite. At high C/Fe ratio (1.6), the Fe(III) reduction rate in the first 6 hours became nearly 3 times faster than in the absence of NOM, and more than 35% of Fe(III) was reduced over 5 days, possibly because the adsorbed NOM decreased the size of aggregates and the residual NOM in solution worked as electron shuttle. No Fh transformation was observed (using Mössbauer spectroscopy or X-ray diffraction) suggesting NOM could impede Fh crystal growth, and there was only negligible Cd release into solution. Lower concentrations of aqueous Cd lowered the metal's toxicity toward Geobacter sulfurreducens thus enabling more prolonged microbial reduction. The negligible Cd released during microbial Fh reduction might be due to recapture of Cd (initially bound to Fh) by NOM adsorbed on Fh. In summary, our study suggests the presence of NOM can be beneficial for the stability of Cd adsorbed to Fh under reducing conditions.

How to cite: Zhou, Z., Muehe, E. M., Tomaszewski, E. J., Kappler, A., and Byrne, J. M.: Influence of Natural Organic Matter on the Fate of Cadmium During Microbial Ferrihydrite Reduction , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2938, https://doi.org/10.5194/egusphere-egu2020-2938, 2020.

EGU2020-1360 | Displays | SSS8.12

Mobilization, release and speciation of arsenic in an As-contaminated gold mine spoil under varied soil redox conditions

Albert Kobina Mensah, Bernd Marschner, Jianxu Wang, Sabry M. Shaheen, and Jörg Rinklebe

Redox-induced release dynamics of arsenic (As) in an abandoned geogenic arsenic-contaminated gold mine spoil in Ghana has never been studied. Therefore, our aim was to investigate the effects of varied soil redox conditions on mobilisation and speciation of As from an abandoned highly contaminated gold mine spoil (with 4,283 mg As/kg soil) using an automated biogeochemical microcosm set-up. We also studied the impact of redox potential (EH)-dependent changes of pH, Fe, Mn, Al, S, Cl-, SO42-, DOC, DIC, DC, DN and SUVA on the release dynamics of As. As mineralogical composition and speciation were further determined using a synchrotron-based X-ray absorption spectroscopy (XANES). Linear combination fits of XANES results indicated that scorodite (FeAsSO4) and arsenopyrite (FeAsS) are the two major As-containing minerals in the studied mine spoil. Geochemical fractionation using sequential extraction procedure indicated greater proportions of the extracted As in the amorphous iron oxide fraction III (1390.13 mg kg-1, 32.5% of the total As) and residual fraction V (2591.67 mg kg-1, 60.5% of the total As). Concentrations of dissolved Fe and SUVA were higher during reducing conditions and decreased under oxidising conditions and both showed negative significant relationships with EH (EH and SUVA: r = -0.76, P < 0.01; EH and Fe: r = -0.75). Mobilisation of As was greater under reducing conditions (dissolved As = 136.68 mg/L) than in oxidising environments (dissolved As = 8.06 mg/L). The release of As under low EH can be explained by the associated reductive dissolution of Fe oxides, as demonstrated by the high positive significant relationship between Fe and As (r = +0.97, P < 0.01). Dissolved As release dynamics can also be linked to desorption of aromatic carbon compounds on the surfaces of dissolved organic carbon, as demonstrated by the high positive significant correlation between SUVA and As (r = +0.573, P < 0.01). Further, the release dynamics of dissolved As was also affected by changes in pH (r = -0.4, P < 0.05), but were not affected by redox-induced dynamics of Mn, Al, S, Cl-, SO42-, DOC, DIC, DC, DN. We conclude that conditions such as flooding and high rainfall in this contaminated mine spoil could create reducing conditions, leading to reductive dissolution of the arsenopyrite As-bearing primary mineral and may lead to higher As release into the groundwater, translocation into the food chain with potential impacts on human health.

Keywords: Arsenopyrite, redox chemistry, arsenic mobilisation, gold mine spoil, reductive and oxidative dissolution.

How to cite: Mensah, A. K., Marschner, B., Wang, J., Shaheen, S. M., and Rinklebe, J.: Mobilization, release and speciation of arsenic in an As-contaminated gold mine spoil under varied soil redox conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1360, https://doi.org/10.5194/egusphere-egu2020-1360, 2020.

EGU2020-942 | Displays | SSS8.12

Manganese speciation in soils using X-ray absorption spectroscopy

Teresa Zahoransky and Christian Mikutta

How to cite: Van Thuyne, J.: Are Fungus-Growing Termites Major Contributors To Sediment Grain-Size Distributions In Subtropical Environments? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1280, https://doi.org/10.5194/egusphere-egu2020-1280, 2020.

The role of Arbuscular mycorrhizal fungi (AMF) in conditioning soils is achieved by its metabolite glomalin. However, glomalin has not been biochemically defined, it has often been quantified in terms of Glomalin-related soil protein (GRSP). Therefore, as a proxy for AMF, GRSP has been widely used to explore the role of AMFs in various ecosystems around the world. However, information on AMF-carbon-weathering interactions is limited. To evaluate the relationship among the AMF, carbon content, nutrients and chemical index of alteration (CIA), GRSP in 133 surface sediment samples and the major components, nutrient content and the grain size of 304 surface sediment samples were analyzed in the wetlands of the Liaohe Delta (LHD), including the upper delta plain wetlands (UDPW) and its adjacent shallow sea wetlands (SSW). The GRSP concentrations averaged over 133 samples were 2.30 ± 0.17 mg g-1, in a range between 0.11 and 11.31mg g-1, and significantly affected by the land use pattern. The ratios of organic carbon in GRSP (GRSP-C) to soil organic carbon (SOC) ranged between 0.71 and 25.34%, with an average of 10.34 ± 0.52%, confirmed that GRSP was an important part of the sediment carbon pool in the LHD. In addition, it is worth noting that the carbon dynamics in these wetlands were closely related to human activities. The CIA values varied from 18.97 to 68.75, and were significantly higher in the UDPW than in the SSW (p<0.05). In order to explore the effect of AMF on weathering process, triangle maps were constructed to analyze the weathering characteristics of sediment samples with different GRSP concentrations. The results indicated that biologically AMF-mediated weathering in this area leads to the formation of clay minerals. Moreover, The CIA was significantly correlated with GRSP concentrations (r=0.43, p<0.01), and both the CIA and GRSP were significantly correlated with nutrient concentrations (SOC, TN, P, and Fe) (p<0.01). These results indicate that AMF excursions in wetland ecosystems enhance carbon sequestration and mineral weathering, and in turn they alter retention of at least some nutrients.

How to cite: Pei, L., Ye, S., Yuan, H., Pei, S., Xie, S., and Wang, J.: The distributions of Glomalin-related soil protein in the coastal wetlands of the Liaohe Delta, Northeast China: Implications for mineral weathering and carbon sequestration, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2496, https://doi.org/10.5194/egusphere-egu2020-2496, 2020.

Chestnut soils are an obligatory component of solonetz complexes in the northern part of the Caspian lowland, differ from solonetzes by the morphological properties of the horizons, although these soils are usually located at a distance of several meters.

For the chestnut soil we can see the following vegetation: forbs-fescue-feather association with spirea, sometimes with a thin moss cover. Above the solonetz dominates Kochia prostrata and Artemisia pauciflora with Myosúrus sp. and rare Poa sp. curtains.

The aim of the study is to identify the mineralogical composition of clay fraction (<1 μm) of chestnut soil and to compare it with the mineralogical composition of the solonetz in the area with unexpressed microrelief.

To separate soil fractions <1 μm samples were rubbed into a thick paste and sedimented. Oriented preparations of fractions were examined by XRD method.

The balance of the mineral phases of clay in soils and parent rocks is the same - mixed-layered minerals prevail over illite. An exception is only the upper horizons of the compared soils, in which the content of illite prevails over mixed-layer minerals. In this case, the thickness of the surface horizons differs more significantly (5 times) than the difference in the content of illite in the clay fraction of the solonetz in SEL (0-5 cm) horizon. This soils are also have certain features of similarity in the crystallochemical shape: the imperfection of the kaolinite structure and the superdispersed shape of the mixed-layer phase at the surface horizons, as well as the appearance of individual smectite and chlorite packets in the mixed-layer phase in the lower horizons (BC and C).

The work was supported by RFBR 18-016-00129-а.

How to cite: Churilin, N., Lebedeva, M., and Varlamov, E.: Mineralogical composition of solonetzic complex with unexpressed micro-relief in the northern part of the caspian lowland., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3332, https://doi.org/10.5194/egusphere-egu2020-3332, 2020.

‘Machair’ describes a landscape form that is present along the Atlantic seaboard of Scotland and Ireland, and that is characterized by a gently sloping coastal plain developed from aeolian carbonate and quartzose sand. We characterized three grassland soil profiles along a coastal transect on Harris (Outer Hebrides, Scotland) by standard methods (colour, texture, pH, wet-chemical extractions), infrared spectroscopy, X-ray diffractometry, X-ray fluorescence spectrometry and differential scanning calorimetry. Our aim was to understand the impacts of humankind, matter input, weathering and accumulation of soil organic matter (SOM) on chemical processes and soil properties. One of the profiles differed distinctly from the other two, in particular regarding depth, texture, carbonate and SOM contents, and properties of SOM (relative content of rather labile permanganate-oxidizable SOM, transformation state), presumably caused by earlier land use as arable land. We classified the soil with the least depth as Hypereutric Leptosol, and the others as Cambic and Calcaric Phaeozem. Thermally stable SOM was present in all samples, likely pointing to pyrogenic SOM, i.e. black carbon. The mineralogical composition differed among the profiles and reflected the intermediate character of the local rocks. In all topsoil horizons, we identified Mg-hydroxy-interlayered minerals (HIMs), which are rather rare, given the commonly low abundance of Mg ions in the soil solution relative to Ca, or Al in acidic soil. The share of Mg-HIMs of the total minerals in the clay fraction ranged from 25% in a subsoil to 71% in a topsoil horizon. We suggest that sea spray is the source of subsequently intercalated Mg. This composition of the clay fraction, which is possibly typical of soil on certain machair sites, and is the result of a pedogenic process, surely affects soil properties and processes such as cation exchange capacity and SOM storage and thus element cycles.

How to cite: Rennert, T. and Herrmann, L.: Sea spray and land use affect clay mineral and soil organic matter properties in soil on machair (Harris, Scotland), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4425, https://doi.org/10.5194/egusphere-egu2020-4425, 2020.

EGU2020-11873 | Displays | SSS8.12

Soil amendments reduce P release from flooded soils: Incubation studies simulating snowmelt and summer flooding

Chammi Attanayake, Darshani Kumaragamage, Chamara Weerasekara, Udaya Vitharana, Saman Dharmakeerthi, Emily Van, Doug Goltz, and Srimathie Indraratne

Flooding caused by snowmelt runoff in the spring and early summer and heavy rainfall in the summer could enhance P release into nearby surface water bodies causing eutrophication. Six soil amendments were tested for their effectiveness  in reducing P release from flooded-soils. Soils were collected from the flood-prone fields in the Red River Valley region in Manitoba, Canada. The tested amendments were gypsum, magnesium sulphate, alum, ferric chloride, zeolite and manganese oxides. Intact soil columns were subjected to flooding for 8 weeks at 4oC simulating the snowmelt in the spring and the early summer and at 22oC simulating flooding occurrences in the summer.  Release of soil P into soil solution and floodwater was higher at 22oC than that at 4oC. Gypsum, magnesium sulphate, alum and ferric chloride were effective in reducing the concentrations of P in the pore- and flood-water at various capacities. Ongoing research on zeolite and manganese oxide suggests that manganese oxide was more effective in reducing soluble P concentrations in soils at early days of flooding.

How to cite: Attanayake, C., Kumaragamage, D., Weerasekara, C., Vitharana, U., Dharmakeerthi, S., Van, E., Goltz, D., and Indraratne, S.: Soil amendments reduce P release from flooded soils: Incubation studies simulating snowmelt and summer flooding, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11873, https://doi.org/10.5194/egusphere-egu2020-11873, 2020.

EGU2020-8241 | Displays | SSS8.12

Anthropogenic desilication of agricultural soils – Results from a long-term field experiment in NE Germany

Daniel Puppe, Danuta Kaczorek, and Michael Sommer

Due to intensified land use (agriculture, forestry) humans directly influence silicon (Si) cycling on a global scale. In this context, especially Si exports by harvested crops (most of them are Si accumulators) and increased erosion rates generally lead to a Si loss in agricultural soils (anthropogenic desilication). Harvesting of field crops can cause Si losses of up to 100 kg Si ha-1 per year. On a global scale about 35% of total phytogenic Si is synthesized by field crops due to their relatively high Si contents as well as biomasses and this proportion is going to increase with increased agricultural production within the next decades. In order to avoid (natural) limitations of plant available Si and enhance plant growth and resistance against abiotic and biotic stresses, Si fertilization is widely used, especially in (sub)tropical agricultural systems. In this context, specific Si fertilization, for example, in the form of recycled organic siliceous materials (e.g., straw, biochar), might be a promising strategy for both increasing crop yields and decreasing desilication of agricultural soils. However, most studies focus on rice and sugarcane production and there is still only little knowledge about Si cycling in agricultural systems of the temperate zone. We analyzed soil and plant samples from an ongoing long-term field experiment (established 1963, randomized block design: plots with low, medium, and high mineral NPK fertilization rates, plots with straw fertilization in addition to NPK fertilization, control plots) in NE Germany to answer the following questions: (i) Can we observe a significant desilication (indicated by a decrease in plant available Si in soils) of agricultural systems in the temperate zone in the long term?, (ii) Is this potential desilication affected by NPK fertilization rates?, (iii) Is this potential decrease of plant available Si in soils reflected in Si concentrations of the grown plants (e.g., wheat)?, and (iv) Can we prevent potential anthropogenic desilication by straw fertilization? Here we present our first results to answer these questions. The answers to these questions will help us to obtain a deeper understanding of Si cycling in agricultural biogeosystems in the temperate zone in general and to derive practice-oriented recommendations for a more environmentally friendly and sustainable crop production in particular.

How to cite: Puppe, D., Kaczorek, D., and Sommer, M.: Anthropogenic desilication of agricultural soils – Results from a long-term field experiment in NE Germany, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8241, https://doi.org/10.5194/egusphere-egu2020-8241, 2020.

EGU2020-10140 | Displays | SSS8.12

Competition of monomeric and polymeric silicic acid with natural organic matter for binding sites at goethite

Jana Dobritzsch, Anika Klotzbücher, Thimo Klotzbücher, Klaus Kaiser, Christian Mikutta, and Robert Mikutta

Silicon (Si) is not considered an essential element for plant growth but improves blade stability and enhances the plant’s ability to resist metal toxicities. In soil solution, dissolved Si can be present as monomeric and polymeric silicic acid. Pre-experiments showed that monomeric Si is much less competitive than dissolved organic carbon (DOC) in sorption to Fe oxides, suggesting that monomeric Si can easily be leached from upper soil layers. However, drying of soil can increase Si pore water concentrations, thus facilitating the formation of Si polymers. We tested the sorption of monomeric versus polymeric silicic acid to goethite (a-FeOOH) at pH 4.5, and presumed stronger binding and less desorption by DOC for polymeric Si because of its multidentate mineral surface attachment. Equilibrium solutions were analysed for dissolved Si by optical emission spectrometry and Si species present at the mineral surfaces were revealed by X-ray photoelectron spectroscopy. Adsorption experiments indicated that the initial binding of polymeric Si was followed by surface polymerization at higher Si loads. Due to surface polymerization, the sorption of polymeric Si greatly exceeded that of monomeric Si. Besides adsorption experiments, desorption experiments using a DOC solution produced from an organic soil surface layer will provide information on the remobilization potential of the sorbed Si species. We hypothesize that (1) the displacement of monomeric as well as of polymeric Si by organic compounds depends on its surface loading and (2) polymeric Si is less desorbable than monomeric Si. Knowledge on the resistance of monomeric and polymeric Si against desorption by DOC will improve our understanding of processes controlling Si leaching and phytoavailability in soil.

How to cite: Dobritzsch, J., Klotzbücher, A., Klotzbücher, T., Kaiser, K., Mikutta, C., and Mikutta, R.: Competition of monomeric and polymeric silicic acid with natural organic matter for binding sites at goethite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10140, https://doi.org/10.5194/egusphere-egu2020-10140, 2020.

All plants contain some silicon (Si), but some species take it up passively through the transpiration stream while others additionally actively accumulate Si by producing transporters. Here, we review the literature, both qualitatively and quantitatively, to investigate the importance of transpiration for Si uptake across diverse plant groups with different accumulation capacities.  We will use variation among species in terms of phylogeny, habitat (e.g. aquatic vs. terrestrial), and environmental conditions (e.g. water or nutrient stress) to tease apart the roles of transporters and transpiration in controlling rates of Si accumulation, and make use of published manipulative experiments to explore how Si availability impacts the importance of these two uptake mechanisms.

How to cite: Cooke, J. and Carey, J.: Transpiration and transporters: teasing apart passive and active transport of plant silicon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15907, https://doi.org/10.5194/egusphere-egu2020-15907, 2020.

EGU2020-16603 | Displays | SSS8.12

Silicon recycling through rice-residue management does not prevent silicon depletion in paddy rice cultivation

Harold Hughes, Dao Trong Hung, and Daniela Sauer

Silicon (Si) is known to have beneficial effects on plants, in particular on rice, which is a strong Si accumulator. Si helps mitigate environmental stresses and nutrient deficits of plants. In some regions, the limited plant-available Si in soils might have detrimental effects on rice cultivation. Crop-residue recycling can help to maintain the amount of plant-available Si in soils. However, the effect of crop-residue management practices on the soil-plant Si cycle and on Si availability to plants remains largely understudied. Here, we contribute to fill this knowledge gap by reporting a study on the effects of three different rice-residue management practices on Si-depleted paddy rice systems from northern Vietnam. The rice-residue management practices were (1) direct incorporation of rice residues into the soils, (2) burning in the field, and (3) use as fodder for animals, followed by composting of the obtained manure, and subsequent application of the composted manure to the field. We analyzed different Si reservoirs in soils and plant-Si contents under these different practices. Our results show a strong correlation between the different soil Si reservoirs and plant Si contents. We found no significant difference with respect to plant-available Si in soils and plant-Si contents between the different management practices. Moreover, our data suggest that Si-depleted rice-cultivation systems proportionally lose Si through grain harvest faster than less Si-depleted systems, because of enhanced relative Si accumulation in the grains. This loss cannot be mitigated by straw recycling. It may be one of the reasons why straw recycling has only a limited effect in the extremely Si-depleted rice-cultivation systems that were analysed in this study. Such information is critical in finding ways to maintain an appropriate level of plant-available Si in cultivated soils.

How to cite: Hughes, H., Trong Hung, D., and Sauer, D.: Silicon recycling through rice-residue management does not prevent silicon depletion in paddy rice cultivation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16603, https://doi.org/10.5194/egusphere-egu2020-16603, 2020.

EGU2020-19728 | Displays | SSS8.12

Rainfall as the major driver of plant Si availability in gibbsitic Andosols

Charles Vander Linden, Zimin Li, Anne Iserentant, and Bruno Delvaux

The amount of water available to leach solutes from soil is one of the major features determining mineral weathering, secondary mineral synthesis and soil properties. The occurrence of gibbsite in soils denotes strong desilication.

Here, we quantify the reservoirs of bioavailable Si and phytolithic Si in wet tropical Andosols rich in gibbsite along a topoclimosequence where mean annual rainfall (MAR) increases from 2650 to 4400 mm with increasing altitude (65-375m above sea level) in Basse-Terre, Guadeloupe. We assessed bioavailable Si through CaCl2 extraction in soil and the pool of soil phytoliths through Na2CO3 extraction and heavy liquid (hl) separation (followed by XRD quantification). The Na2CO3 extraction was performed on both the bulk soil and oxalate–treated soil (ox-Na2CO3) cleared of its amorphous aluminosilicates.

The Andosols have reached an advanced weathering stage. Their secondary products included (Al, Fe)-humus complexes, ferrihydrite, gibbsite and aluminous allophanic substances. The contents of organic C, metal-humus, ferrihydrite and gibbsite increased in wettest conditions (>3000mm) whereas allophane content concomitantly decreased. Ox-Na2CO3 Si (2-7 g kg-1) contents were below hl Si contents (2-22 g kg-1), and were negatively correlated to each other (r = -0.88) suggesting the occurrence of two pools of phytoliths: (i) free and fresh phytoliths, (ii) aged phytoliths entrapped in soil aggregates. Yet, bioavailable Si content in soil decreased from 63 to 12 mg kg-1 with increasing MAR (r = -0.92), and was strongly correlated (r = +0.95) to that of phytolithic Si as assessed after ox-Na2CO3 extraction. The Si/Al ratio of the ox-Na2CO3 extract regularly decreased from 1.06 to 0.37 with increasing MAR, hence corroborating strongest desilication in wettest conditions. In these highly leached, gibbsitic Andosols, rainfall is thus the major driver of plant Si availability.

How to cite: Vander Linden, C., Li, Z., Iserentant, A., and Delvaux, B.: Rainfall as the major driver of plant Si availability in gibbsitic Andosols, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19728, https://doi.org/10.5194/egusphere-egu2020-19728, 2020.

EGU2020-2534 | Displays | SSS8.12

Rust precipitates in drainage systems of peaty acid sulphate soils in Finland

Markku Yli-Halla, Jarkko Kekkonen, Timo Lötjönen, and Hannu Marttila

Clogging of subsurface pipe drainage systems by rust precipitates is a problem in many cultivated areas and especially on the coast of Ostrobothnia, northwestern Finland. The subsurface drainage pipes need to be flushed every few years to remove the rust, which causes additional maintenance costs. These problems are particularly common in acid sulphate (AS) soils that have peat horizons on top of sulfidic materials. These soils are often wet, and the drainage water contains high dissolved iron concentration, commonly above 20 mg l-1. Reducing conditions prevail in certain horizons and oxidation of sulfidic minerals and low pH are typical of the horizons above, all resulting in mobilization of several elements. Upon entering the aerobic drainage pipe dissolved iron is oxidized and readily precipitates as rust. In dry summers, the precipitate is typically hardened and the whole pipe drainage system can be blocked. Minerals containing sulphur (S) may also be precipitated in the pipes. The fresh precipitates can adsorb heavy metals that occur in substantial concentrations in AS drainage waters. In this study, 10 rust samples were collected from ditches and wells. All sites, except one, had a 20-70 cm peaty topsoil. A comprehensive chemical analysis was carried out and the precipitates were investigated with a scanning electron microscope (SEM). Colours of the samples were strong brown or reddish yellow (Munsell notation 7.5YR 5/6-6/8). Silicon content was only 0.3-0.9%, indicating the absence of actual soil material in the precipitates. The material contained 27-49% organic matter (1.9 x C), co-precipitated from the humic substances of drainage water. Iron was by far the most abundant element. If all Fe is contained in ferrihydrite (66% Fe), this mineral constituted 35-63% (mean 46%) of the precipitate while aluminium hydroxide (34% Al) constituted 0.7-9% (mean 5%). Even though most drainage waters were rich in S (commonly above 40 mg l-1, the maximum S concentration of the precipitates was only 1.9% and the mean at 0.7%. Sulphur-containing minerals jarosite and schwertmannite were not detected in the SEM images, either, suggesting that these minerals are not precipitated from AS drainage waters. Dissolved heavy metals are leached from AS soils but they were not markedly co-precipitated in our samples. The mean concentration of Cd was only 1 mg kg-1 and Ni 12 mg kg-1, Cr 33 mg kg-1, Cu and Zn 32 mg kg-1 while Mn was more abundant, 355 mg kg-1. In our peaty AS soils there is thus substantial mobilization of Fe and a flux out of the soil and a new solid phase is formed in the drainage pipes and ditches constituting mostly of iron hydroxide and humic substances. If dredged, application of this material onto the fields seems not to pose major environmental hazards.

How to cite: Yli-Halla, M., Kekkonen, J., Lötjönen, T., and Marttila, H.: Rust precipitates in drainage systems of peaty acid sulphate soils in Finland, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2534, https://doi.org/10.5194/egusphere-egu2020-2534, 2020.

EGU2020-6736 | Displays | SSS8.12

Loss of jarosite during remediation of a sandy acid sulfate soil

Angelika Koelbl, Klaus Kaiser, Luke Mosley, Rob Fitzpatrick, Petra Marschner, and Robert Mikutta

When acid sulfate soils dry, they generate large amounts of sulfuric acid due to oxidation of iron (Fe) sulfides (e.g., pyrite), causing formation of Fe sulfates such as jarosite and strong acidification (pH < 4). After re-saturation of these sulfuric soils and re-establishment of reduced conditions, activity of Fe- and sulfate-reducing bacteria promote re-formation of Fe sulfides and pH increase. However, many reducing bacteria are heterotrophic and require sufficient available organic carbon (OC). Despite the general knowledge about positive impacts of OC addition to ameliorate sulfuric soils, little is known about the reduction of Fe sulfates (here: jarosite) to Fe sulfides and the formation of mineral-organic associations after establishing anoxic conditions.

We investigated the remediation of a sandy, jarosite-containing sulfuric soil (initial pH = 3.0, initial redox values approx. 400 mV) in a 20-week anoxic laboratory incubation experiment under re-submerged conditions. We used a control without OC addition plus treatments with wheat straw addition as substrate for reducing bacteria. Besides the natural sulfuric soil, an artificial acid sulfate soil composed of synthesized jarosite mixed with quartz sand was used to simulate a simple, mineralogically well-characterized model of the natural soil. To ensure similar conditions, the artificial soil was submerged with soil solution from the natural sulfuric soil. We monitored pH and redox values in the soil suspension weekly. After 20 weeks, concentrations of OC, Fe, and S were analysed in bulk soils and soil solutions. The mineral composition was characterised by X-ray diffraction (XRD).

Addition of wheat straw to the natural acid sulfate soil led to quick changes in redox and pH values, reaching pH ≥ 6.0 and redox values ≤ -100 mV within three weeks. XRD analyses revealed complete loss of jarosite during incubation. Addition of wheat straw to the artificial acid sulfate soil led to slightly lower pH and higher redox values than for the natural soil, resulting in approx. pH 5.7 and redox values ≤ 0 mV after three weeks. Some of the jarosite was reduced, but it is still detectable after incubation. Without wheat straw addition, for both soils pH values remained low (pH ≤ 4.0) and redox values remained high (≥ 300 mV). Jarosite concentration did not change during the incubation without straw. The results showed that microbial reduction of acid sulfate soils requires supply of sufficient organic matter, which effectively triggers the reduction of jarosite to sulfides.

How to cite: Koelbl, A., Kaiser, K., Mosley, L., Fitzpatrick, R., Marschner, P., and Mikutta, R.: Loss of jarosite during remediation of a sandy acid sulfate soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6736, https://doi.org/10.5194/egusphere-egu2020-6736, 2020.

EGU2020-8131 | Displays | SSS8.12

The dramatic variability of cations impacts on Fe speciation in Fe-OM nanoaggregates

Delphine Vantelon, Anthony Beauvois, Jacques Jestin, and Mélanie Davranche

Natural colloids composed of iron (Fe) and organic matter (OM) are a key factor controlling metallic pollutants mobility according to their high adsorption capacities, consequence of their high binding sites density. The physico-chemical condition in which the Fe-OM nanoaggregates are formed influences their structural organization, and more specifically the Fe speciation. In this study, we probe the influence of three major cations, present in high quantity in natural systems: Calcium (Ca), Aluminum (Al) and Silicon (Si). Ca is known to have a huge affinity toward OM, as well as Al which also easily get into Fe hydroxides structure. For its part, Si is known to restrain Fe oxides growth and crystallinity, despite mechanisms remain unknown. Ca, Al and Si are thus expected to modify Fe-OM nanoaggregates organization and impact Fe speciation.

Mimetic environmental Fe-OM-cation nanoaggregates were synthesized with different Fe/OM and cation/Fe ratios. They were observed by TEM. The Fe speciation was characterized by XAS as well as the cations interactions with the components of the Fe-OM colloids. The size and arrangement of Fe-nanoparticles were determined by SAXS. Results show that Fe speciation is complex and variable according to Fe and cation contents relative to OM. Fe phases appear to be composed of oligomers and ferrihydrite nanoparticles, both embedded in the OM matrix. The Fe-nanoparticles are forming a fractal network which organization is controlled by the OM. When the Fe/OM ratio increases, oligomers content decreases to the benefit of Fe-nanoparticles which size increases. Adding cations, this phenomenon is strongly modified, either increased, with the addition of Ca and Al, or decreased, with the addition of Si. These modifications result from the different interactions we could evidence between the cations and the different Fe-OM network components.

These results clearly highlight the dramatic effect of Al, Si and Ca cations on the Fe-OM colloidal network, impacting both Fe speciation and OM organization. These structural modifications directly impact the capabilities of Fe-OM nanoaggregates to trap and transport pollutants.

How to cite: Vantelon, D., Beauvois, A., Jestin, J., and Davranche, M.: The dramatic variability of cations impacts on Fe speciation in Fe-OM nanoaggregates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8131, https://doi.org/10.5194/egusphere-egu2020-8131, 2020.

EGU2020-11956 | Displays | SSS8.12

The effects of fire on sulfidic peat swamp sediments

Vanessa Wong, Tess Williamson, Barbara Etschmann, and Sasha Wilson

Peat swamps contain substantial accumulations of organic matter due to waterlogging and slower decomposition rates. Peat swamps can be underlain by sulfidic sediments where there is  abundant iron and sulfate for reduction to form a range of sulfidic minerals, primarily pyrite (FeS2). Sulfidic sediments can acidify to produce sulfuric acid, similar to acid mine drainage (AMD) and acid sulfate soil (ASS) environments when oxidised, which can occur when water levels drop due to drainage or periods of drought. Discharging surface and shallow groundwater can therefore acidify adjacent lakes and waterways. These swamps can also present significant fire hazards when drying occurs. 

This study identified the chemical and mineralogical changes in sulfidic peat swamp sediments along a temperature gradient to simulate the effects of fire. We found that fire induced changes in the Fe-minerals to form a range iron (oxy)hydroxides and iron oxides such as magnetite, mghemite and haematite in increasing crystallinity  with increasing temperatures. pH initially decreased on drying a minimum of pH 3.15, before increasing with increasing temperature to 650oC to pH 4.86, which can mobilise environmentally important pH-sensitive metals. 

Peat swamps are highly susceptible to the effects of fire when surface- and shallow groundwater levels decrease as a result of extended drought or drainage. Fire can irreversibly alter underlying soil properties to induce changes in soil minerals and potentially impact the surrounding environment. 

How to cite: Wong, V., Williamson, T., Etschmann, B., and Wilson, S.: The effects of fire on sulfidic peat swamp sediments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11956, https://doi.org/10.5194/egusphere-egu2020-11956, 2020.

EGU2020-14873 | Displays | SSS8.12

Fe(II)-catalyzed transformation of Fe (hydr)oxides in particle-size soil organic matter fractions from amended agricultural soils

Beatrice Giannetta, Ramona Balint, Daniel Said-Pullicino, César Plaza, Maria Martin, and Claudio Zaccone

Redox-driven changes in Fe crystallinity and speciation may affect soil organic matter (SOM) stabilization and carbon (C) turnover, with consequent influence on global terrestrial soil organic carbon (SOC) cycling. Under reducing conditions, increasing concentrations of Fe(II) released in solution from the reductive dissolution of Fe (hydr)oxides may accelerate ferrihydrite transformation, although our understanding of the influence of SOM on these transformations is still lacking. 

Here, we evaluated abiotic Fe(II)-catalyzed mineralogical changes in Fe (hydr)oxides in bulk soils and size-fractionated SOM pools (for comparison, fine silt plus clay, FSi+Cl, and fine sand, FSa) of an agricultural soil, unamended or amended with biochar, municipal solid waste compost, and a combination of both. 

FSa fractions showed the most significant Fe(II)-catalyzed ferrihydrite transformations with the consequent production of well-ordered Fe oxides irrespective of soil amendment, with the only exception being the compost-amended soils. In contrast, poorly crystalline ferrihydrite still constituted ca. 45% of the FSi+Cl fractions of amended soils, confirming the that the higher SOM content in this fraction inhibits atom exchange between aqueous Fe(II) and the solid phase. Building on our knowledge of Fe(II)-catalyzed mineralogical changes in simple systems, our results evidenced that the mechanisms of abiotic Fe mineral transformations in bulk soils depend on Fe mineralogy, organic C content and quality, and organo-mineral associations that exist across particle-size SOM pools. Our results underline that in the fine fractions the increase in SOM due to organic amendments can contribute to limiting abiotic Fe(II)-catalyzed ferrihydrite transformation, while coarser particle-size fractions represent an understudied pool of SOM subjected to Fe mineral transformations. 

How to cite: Giannetta, B., Balint, R., Said-Pullicino, D., Plaza, C., Martin, M., and Zaccone, C.: Fe(II)-catalyzed transformation of Fe (hydr)oxides in particle-size soil organic matter fractions from amended agricultural soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14873, https://doi.org/10.5194/egusphere-egu2020-14873, 2020.

EGU2020-16894 | Displays | SSS8.12

Siderite Oxidation in the Presence of Organic Ligands

Katherine Rothwell and Ruben Kretzschmar

The biogeochemical cycle of iron is fundamentally important in natural systems and facilitates processes ranging from the carbon cycle to the immobilisation of potentially toxic elements. In the absence of oxygen, iron is the most abundant terminal electron acceptor for microbial respiration, which produces both Fe(II) and oxidised organic matter. Thus, in low-sulfur reducing environments it is likely that conditions favouring the precipitation of the ferrous carbonate mineral siderite are abundant. Previous research has suggested that the oxidation of siderite in the presence of arsenic produced a combination of goethite and siderite that had a sorption capacity for arsenic that was an order of magnitude higher than either siderite or synthetic goethite alone1. Furthermore, the oxidation of siderite may produce reactive oxygen species, such as hydroxyl radicals, that are capable of oxidising recalcitrant contaminants and may influence CO2 release in soils2,3. However, despite the clear environmental importance, little is currently known about the oxidative transformation of siderite under environmentally relevant conditions.

Here, we used a series of batch experiments (2 g L-1 mineral suspension, pH 7.5) to characterise siderite oxidation kinetics under oxic conditions, in the presence and absence of the organic ligands citrate, EDTA, tiron, and salicylate (10 mM). We selected these ligands to be representative of small organic acids that are likely ubiquitous in environments where siderite forms and to contain a range of interesting functional groups, namely carboxylates, catechols and thiols. Alongside batch experiments, we used a combination of Raman microspectroscopy and X-ray diffraction for mineral characterisation.

Our results show that synthetic siderite oxidises extremely quickly and undergoes a complete transformation to poorly crystalline goethite in less than 6 hours. However, in the presence of an organic ligand, up to 50 % of structural Fe(II) remains after 300 hours, which we propose is due to surface passivation of the mineral by the organic ligand. We found that the rate and products of oxidation are dependent on the ligand structure. For the carboxylate ligands citrate and EDTA we found that siderite remained the dominant phase whereas ferrihydrite and lepidocrocite/magnetite predominated in the presence of tiron and salicylate respectively.

Our findings are important for understanding iron dynamics in periodically reducing environments, as siderite may be more stable in the presence of oxygen than previously thought and therefore iron redox cycling may occur at a slower rate than would be otherwise accounted for in biogeochemical models.

 

(1)           Guo, H.; Ren, Y.; Liu, Q.; Zhao, K.; Li, Y. Enhancement of Arsenic Adsorption during Mineral Transformation from Siderite to Goethite: Mechanism and Application. Environ. Sci. Technol. 2013, 47 (2), 1009–1016.

(2)           Tong, M.; Yuan, S.; Ma, S.; Jin, M.; Liu, D.; Cheng, D.; Liu, X.; Gan, Y.; Wang, Y. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments. Environ. Sci. Technol. 2015, 50 (1), 214–221.

(3)           Trusiak, A.; Treibergs, L. A.; Kling, G. W.; Cory, R. M. The Role of Iron and Reactive Oxygen Species in the Production of CO2 in Arctic Soil Waters. Geochim. Cosmochim. Acta 2018, 224, 80–95.

How to cite: Rothwell, K. and Kretzschmar, R.: Siderite Oxidation in the Presence of Organic Ligands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16894, https://doi.org/10.5194/egusphere-egu2020-16894, 2020.

EGU2020-19106 | Displays | SSS8.12

Dynamics of redox potential and nutrient turnover in dry floodplain soils during a simulated rain fall event

Johanna Schlögl, Lena Cramaro, Christian Griebler, and Stefan B. Haderlein

Floodplain soils experience highly dynamic wet and dry cycles that trigger changes in redox conditions and as such play a crucial role for environmental nutrient cycling and pollutant fate.

To elucidate the effects of varying water saturation on the predominant biogeochemical processes and their dynamics we simulated a heavy rain fall event with subsequent steady rain over ten consecutive days at a plot of arable soil in a floodplain near Tübingen, southwest Germany. We monitored how soil redox conditions, redox sensitive soil constituents and microbial communities responded to changing water saturation.

 

The experiment design was fully randomized comprising irrigated plots mimicking rain events and dry controls.

Multi-level redox probes recorded in situ redox potentials at 10 cm intervals down to 90 cm depth on irrigated and dry plots. The initially dry soil showed redox potentials of +600 mV. The simulated heavy rain fall provoked a drop in redox potentials within hours in depths down to 40 cm and within a delay of 1 to 2 days in depths down to 60 cm. Subsequent steady rain lead to a decrease of the redox potentials to a minimum of -200 mV to -300 mV in depths of 20 to 30 cm and -100 mV in depths of 40 to 50 cm.

Soil cores were retrieved throughout the experiment to identify microbial communities and to determine depth profiles of nitrate, ammonium, adsorbed and poorly crystalline iron as well as total iron, and sulfide and sulfate in the pore water and the solid phase.

 

The high resolution temporal data on changes in redox potential, soil chemistry and soil microbial communities will be presented and discussed in terms of the predominant biogeochemical processes in the soil profile.

How to cite: Schlögl, J., Cramaro, L., Griebler, C., and Haderlein, S. B.: Dynamics of redox potential and nutrient turnover in dry floodplain soils during a simulated rain fall event, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19106, https://doi.org/10.5194/egusphere-egu2020-19106, 2020.

EGU2020-20789 | Displays | SSS8.12

Linking Isotope Exchange and Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides

Jagannath Biswakarma, Kyounglim Kang, Walter D.C. Schenkeveld, Stephan M. Kraemer, Janet G. Hering, and Stephan J. Hug

Dissolution of iron(oxyhydr)oxides is a key biogeochemical process that affects the cycling and bioavailability of iron (Fe). Recently, we demonstrated that submicromolar concentrations of Fe(II) accelerate dissolution of Fe(III)(hydr)oxides with the synthetic ligands ethylenediaminetetraacetate (EDTA) and hydroxybenzyl ethylenediaminediacetic acid (HBED) and also with the biogenic ligand desferrioxamine-B (DFOB) in anoxic conditions at circumneutral pH. The catalytic effect of Fe(II) was explained by electron transfer (ET) to surface Fe(III) and accelerated detachment of surface Fe(III)-ligand complexes. However, the extent of ET on the mineral surface before and during accelerated dissolution remained unclear. Here we describe the extent of ET by investigating dissolution and isotope exchange with lepidocrocite (Lp) and goethite (Gt) and varying concentrations of Fe(II), 57Fe(II), and DFOB. Most experiments were conducted under anoxic conditions at pH 7.0 in bicarbonate-CO2-buffered suspensions.

Our results show that in anoxic carbonate-buffered suspensions, 1-5 µM Fe(II) increased the rates of Lp dissolution at pH 7.0 by up to 60-fold. The addition of 20 or 50 µM DFOB after 57Fe(II) led to accelerated detachment of 56Fe(III) from Lp and release of already adsorbed/exchanged 57Fe into the solution. A kinetic model considering exchange of charge on the surface between 57Fe(II) and 56Fe(III), before and during dissolution, was developed to explain the observed results. The rates for ET and isotope exchange before and during accelerated dissolution are very different for Lp and Gt, presumably reflecting the differences in structure and mineralogy.

This study contributes to the quantification of ET from added Fe(II) to the surface of Fe(III)(hydr)oxides and of the acceleration of overall non-reductive dissolution by traces of Fe(II) in anoxic environments. In this presentation, the key findings of the isotope exchange and dissolution studies with Lp and Gt will be presented in order to highlight the importance of interfacial Fe(II)/Fe(III) ET  processes occurring at (sub)oxic-anoxic interfaces of soils and sediments.

How to cite: Biswakarma, J., Kang, K., Schenkeveld, W. D. C., Kraemer, S. M., Hering, J. G., and Hug, S. J.: Linking Isotope Exchange and Fe(II)-Catalyzed Ligand-Controlled Dissolution of Iron(hydr)oxides , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20789, https://doi.org/10.5194/egusphere-egu2020-20789, 2020.

EGU2020-22500 | Displays | SSS8.12

How does silica affect Fe(II)-catalysed transformation of ferrihydrite and lepidocrocite?

Katrin Schulz, Laurel Kathleen ThomasArrigo, Katherine Ann Rothwell, and Ruben Kretzschmar

Ferric iron (Fe(III)) minerals, such as ferrihydrite and lepidocrocite, can be reduced to ferrous iron (Fe(II)) through microbial reductive dissolution under reducing soil conditions, to form dissolved Fe(II) or mixed Fe(II)-Fe(III) mineral phases. The dissolved Fe(II) catalyses iron mineral transformation to more crystalline iron phases. Silica (Si), in the form of silicic acid, is an ubiquitous component of natural soil solutions and is known to hinder the iron mineral transformation process. However, the mechanisms and the mineral phases that are formed during ferrihydrite and lepidocrocite transformation in the presence of Si remain unclear. We reacted ferrihydrite, Si-ferrihydrite co-precipitates, lepidocrocite and Si-adsorbed lepidocrocite with 0.3 mM and 3 mM isotopically labelled 57Fe(II) for four weeks. At six time points, we sampled the solid and the aqueous phase, to follow iron mineral transformation by X-ray diffraction and dissolved Fe(II) dynamics. In addition, we tracked the iron atom exchange between the aqueous and the solid phase by measuring the 57/56Fe isotope ratio in filtrates and dissolved solid phases. Our data demonstrates the hindering effect of Si on Fe(II) catalysed ferrihydrite and lepidocrocite transformation. The presence of Si decreased the initial Fe(II) adsorption and strongly slowed down the iron atom exchange, especially in the lepidocrocite treatment. Collectively, the results of this study demonstrate, how Si can impact iron mineral transformation in soils with different Fe(II) release potentials under reducing conditions.

How to cite: Schulz, K., ThomasArrigo, L. K., Rothwell, K. A., and Kretzschmar, R.: How does silica affect Fe(II)-catalysed transformation of ferrihydrite and lepidocrocite?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22500, https://doi.org/10.5194/egusphere-egu2020-22500, 2020.

EGU2020-8407 | Displays | SSS8.12

Paleogene to Quaternary geodynamical evolution of the lowland Central Amazonia inferred by weathering phases dating

Cecile Gautheron, Cristiana Cabriolu, Fabiano Pupim, Mauricio Parra, Stéphane Schwartz, Rosella Pinna-Jamme, Adriana Horbe, Andrea K. Kern, and André Oliveria Sawakuchi

The landscape in lowland Amazonia is shaped by large rivers, whose depositional-erosive dynamics built fluvial terraces covered by upland forests. Thus, fluvial deposits distributed across lowland Amazonia are of crucial relevance since they represent the best accessible archives to study the history of environment and climate change. The timing of the assembly of the modern transcontinental Amazon River is considered a key event in the landscape evolution of Amazonia, however, proposed ages range from Miocene, early Pliocene to Pliocene/Pleistocene. Therefore, regional stratigraphic correlations need to improve to ensure a better understanding of reconstructions of past conditions in Amazonia during the Cenozoic. Yet, these are difficult due to the lack of absolute ages to constrain phases of sediment deposition or erosion and weathering. In lowland central Amazonia, past environmental conditions are recorded in the Alter do Chão and Novo Remanso Formations. Both units are dominated by sandy and highly oxidized sediments with scarce paleontological remains complicating the application of biostratigraphy dating methods. The Alter do Chão and Novo Remanso Formations are well exposed in the left margin of the Solimões-Amazon River main stem and show remarkable zones rich in supergene iron weathering products, which has been used to define the stratigraphic boundaries among the Alter do Chão Formation, Novo Remanso Formation and overlying sediments. In this study, we use the (U-Th-Sm)/He dating method on goethite and hematite grains to determine the age of iron-enrichment layers and duricrusts that mark boundary surfaces used to define the stratigraphic framework of the Alter do Chão and Novo Remanso formations. The (U-Th-Sm)/He ages allow to improve chronological constraints for both formations and to discuss the timing of fluvial terraces building and weathering conditions in central Amazonia through time.

How to cite: Gautheron, C., Cabriolu, C., Pupim, F., Parra, M., Schwartz, S., Pinna-Jamme, R., Horbe, A., Kern, A. K., and Oliveria Sawakuchi, A.: Paleogene to Quaternary geodynamical evolution of the lowland Central Amazonia inferred by weathering phases dating, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8407, https://doi.org/10.5194/egusphere-egu2020-8407, 2020.

EGU2020-8846 | Displays | SSS8.12

First proofs of preservation of a Mesozoic paleorelief in Southeast Africa: Insights from the (U-Th)/He dating of iron oxides from Malawian duricrusts

Maximilien Mathian, Guillaume Baby, Jean-Noël Ferry, François Guillocheau, Thierry Allard, Patrick Rafiki N Chindandali, Gilles Ruffet, Cécile Quantin, Rosella Pinna-Jamme, and Cécile Gautheron

Approximately 70% of the emerged relief on the Earth is characterized by erosional low-gradient topography also known as planation surfaces (PS). Many geomorphologists defend the idea that some of these surfaces could be relics of old reliefs uplifted and preserved from erosion for tens of millions years. Some of the highest PS of Southeast Africa (> 2000 m) were considered by King (1962) as remnants of an ante-Cretaceous paleorelief called “Gondwana Surface”. Specifically, the Nyika Plateau (Northern Malawi, 2200 m) is one of the largest potential relics of the “Gondwana Surface” in Southeastern Africa. This PS overlooks the stripped etchplain of the Malawian Plateau, a potential Late Cretaceous PS about 1200 m of elevation.

However, the preservation of such ancient reliefs is controversial, particularly under a tropical wet-dry climate. Doubts about the ages of these PS exist mainly due to the lack of a precise chronology of these objects on a continental scale. In detail, African PS are often covered by preserved or partly eroded tropical weathering covers such as unconsolidated laterites and/or duricrusts. Under these climatic conditions, lateritic duricrusts can be preserved for millions of years and thus contain several generations of iron oxides witnesses of past local paleoenvironment and geodynamic evolution. In order to understand the formation and preservation of the Southeast African highest PS and date them, we decided to apply (U-Th)/He dating of iron oxides on selected duricrust samples. The exploration of the Nyika Plateau allowed the discovery of an outcropping duricrust and a depositional area of eroded duricrust blocks from different origins. We study duricrust samples from these two areas in order to find some clues about the plateau antiquity and to improve our knowledge about the local paleoclimatic and geodynamic history.

Samples from the in situ duricrust levels, outcropping on the plateau, are polygenic and are formed by three main types of zones: preserved and degraded hematite-rich zones, that are considered to correspond to the initial generation of iron oxides, and a goethitic matrix. The preserved hematites have a Mesozoic (U-Th)/He ages, whereas the goethite-rich matrix of this duricrust formed during the Quaternary. The degraded hematite-rich parts, also rich in quartz, have more dispersed ages ranging from the Mesozoic to the Tertiary. In the detrital accumulation zone, blocks from a similar duricrust were found as well as blocks of another type of duricrusts: a pisolithic one rich in goethite. This last type of duricrust was eroded from a more recent duricrust level, as their iron oxides have Late Tertiary/Quaternary ages. These dating proved the Nyika Plateau relative stability since the Mesozoic period, confirming that duricrusting of reliefs in tropical area can also protect old emerged landscapes from total erosion.

King L.C. (1962) Morphology of Earth, Oliver and Boyld, Edinburg.

 

How to cite: Mathian, M., Baby, G., Ferry, J.-N., Guillocheau, F., Allard, T., Rafiki N Chindandali, P., Ruffet, G., Quantin, C., Pinna-Jamme, R., and Gautheron, C.: First proofs of preservation of a Mesozoic paleorelief in Southeast Africa: Insights from the (U-Th)/He dating of iron oxides from Malawian duricrusts, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8846, https://doi.org/10.5194/egusphere-egu2020-8846, 2020.

EGU2020-12777 | Displays | SSS8.12

First Cenozoic ages from the Roraima’s region landscape (Northern Brazil): insights from hematite and goethite (U-Th)/He dating

Caroline Sanchez, Cécile Gautheron, Rosella Pinna-Jamme, Frédéric Haurine, Jean-Yves Roig, and Renaud Coueffë

Lateritic peofiles results from weathering processes involving coeval warm temperature and high precipitation seasons rates in intertropical context. Through geological times, the laterite will develop and an indurated duricrust iron oxide enriched horizon may develop on the profile top. The duricrusts can be used as excellent lateritic surface markers, that can be preserved from erosion. Nevertheless, the relationship between the timing of their development, the geomorphology and the processes involved are still debated.

To this end, we have investigated duricrusts of the large Roraima plateau, in the Guyana shield, Northern Brazil, attributed to the “Gondwana” surface of purported “Jurassic-Cretaceous” age. Four duricrust samples have been collected from ~840 to 950 m.a.s.l in the same area, with both 1.9 Ga sandstone and 1.75 Ga gabbro as parent rock respectively. The duricrust samples exhibit different textures, including pisoliths and massive banded type textures.

Samples mineralogy have been characterized using classical methods such as optical properties, texture and DRX. Several generations have been finally identified. The SEM analysis revealed different porosities and microstructures. Each identified generation collected has been dated by the (U-Th)/He method using micrometric aliquots.

All the samples present quite homogenous dated generations, presenting mostly Paleocene/Eocene as well as early and late Miocene ages. In addition, oldest identified generations in the pisolithic sample suggest remaining of older Cretaceous weathering event. Our geochronological results are not directly correlated to the sample altitudes but more likely to the duricrust structure. Finally, the (U-Th)/He age distribution reveal that the Roraima landscape underwent several weathering episodes in the Cenozoic times and are younger than initially supposed.

How to cite: Sanchez, C., Gautheron, C., Pinna-Jamme, R., Haurine, F., Roig, J.-Y., and Coueffë, R.: First Cenozoic ages from the Roraima’s region landscape (Northern Brazil): insights from hematite and goethite (U-Th)/He dating, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12777, https://doi.org/10.5194/egusphere-egu2020-12777, 2020.

EGU2020-17822 | Displays | SSS8.12

Discussing the dating of ferruginous duricrusts: promises from mineralogy of supergene minerals with non-destructive microsampling

Karina Marques, Thierry Allard, Guillaume Morin, Benoît Baptiste, Cécile Gautheron, and Pablo Vidal-Torrado

Ferruginous duricrusts record a part of the Earth’s geodynamical and climatic history in tropical area, because they can be formed over a wide geologic period. However, the events and processes related to their formation, transformation and distribution are still obscure. This is mainly due to the complexity arising from their finely divided and polycrystalline nature together with the coexistence of various generations of supergene minerals, such as iron and aluminum oxides, oxyhydroxides or hydroxides (e.g. goethite, hematite and gibbsite) and kaolinite, even at microscopic scale. Classical mineralogical investigations are often realized using powders samples, which hinders subsequent analyses on the same sample, such as SEM or (U-Th)/He dating. Thus, the aim of this study was to propose a new way to investigate the mineralogy of supergene ferruginous samples on micrometric grains that will be analyzed by (U-Th)/He dating method. Prior to this analysis, we first compare the X-ray diffraction data of grains and small amounts of powders looking to reveal the mineralogical composition of populations of secondary minerals of a ferruginous duricrust by taking into account the heterogeneity of the material. Samples were collected from a ferruginous duricrust with pisolitic structure developed over epiclastic conglomerates and sandstones deposited by alluvial fan and fluvial streams from the Upper Cretaceous at the western Minas Gerais state (Brazil). The geomorphology of the study area is delineated by remnants of paleosurface (up to 1,000 m a.s.l.), which comprises an important record of long-term Brazilian continental history.Macroscopic facies recognized on duricrusts sections were described, which allowed the identification of various populations of secondary minerals. After this detailed description, grains (size < 0.5 mm) were collected and powder samples of each population were prepared by crushing. Overall, the results point out that the grain and powder samples could be used to identify mineralogical composition at fine resolution of secondary minerals from ferruginous duricrusts. In addition, XRD results are similar for both types of sample preparation, however the < 0.5 mm grain samples are more advantageous because they are not destructive and thus allow to get a finer description of the mineralogy of different populations and can subsequently be used for e.g. (U-Th)/He dating, providing critical information for interpreting and discussing the ages of iron oxides.

Grant: 19/10708-7; 17/22292-4; 17/20788-2, São Paulo Research Foundation (FAPESP)

References

Allard, T., Gautheron, C., Riffel, S.B., Balan, E., Soares, B.F., Pinna-Jamme, R., Derycke, A., Morin G., Bueno, G.T., Nascimento, N., 2018. Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia. Chemical Geology 479, 136-150.

Monteiro, H.S., Vasconcelos, P.M.P., Farley, K.A., Spier, C.A., Mello, C.L., 2014. (U-Th)/He geochronology of goethite and the origin and evolution of cangas. Geochim. Cosmochim. Acta  131, 267–289.

Vasconcelos, P.M., Heim, J.A., Farley, K.A., Monteiro, H.S., Waltenberg, K., 2013. 40Ar/39Ar and (U–Th)/He - 4He/3He geochronology of landscape evolution and channel irondeposit genesis at LynnPeak, Western, Australia. Geochim. Cosmochim. Acta 117, 283-312.

How to cite: Marques, K., Allard, T., Morin, G., Baptiste, B., Gautheron, C., and Vidal-Torrado, P.: Discussing the dating of ferruginous duricrusts: promises from mineralogy of supergene minerals with non-destructive microsampling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17822, https://doi.org/10.5194/egusphere-egu2020-17822, 2020.

EGU2020-18181 | Displays | SSS8.12

Supply-limited weathering regime in a tropical shields basin (Ogooué River basin, Gabon)

Jean-Sébastien Moquet, Julien Bouchez, Jean-Jacques Braun, Sakaros Bogning, Auguste Mbonda, Jean-Pierre Bricquet, Sébastien Carretier, Vincent Regard, Marie Claire Paiz, and Jérôme Gaillardet

At the global scale and on geological time scales, mechanical erosion and chemical weathering budgets are linked. Together, these processes contribute to the formation and the degradation of the Earth’s critical zone and to the biogeochemical cycles of elements. While the weathering of hot and humid shields areas exhibit low weathering rates because of the depth of the mature depleted soil mantle there, shields areas dominate the continents areas over intertropical regions and, therefore, represent a significant proportion of the global delivery of dissolved matter to the oceans. In addition, these environments are under supply-limited conditions (the weathering rate is limited by the low rates of the erosion) and thus particularly sensitive to long-term variability erosion rates. Despite this importance, weathering-erosion budgets and rates estimation in these environments is sparse, and generally performed at a local scale (soil profiles) or, when performed at a larger catchment scale, the intra cratonic characteristics variabilities (e. g. the diversity of mechanical erosional regimes) are usually not singled out.

In the present study, we explored the variability of the weathering intensity of the Ogooué sub-basins (Western central Africa, Gabon) as a function of their geomorphologic, tectonic and lithological setting variability. We analyzed major and trace elements concentration and the strontium and neodymium isotopes of water, suspended matter sediments and bedload sampled in 24 Ogooué tributaries (September 2017 campaign). Our results show that shield areas exhibit a high variability of chemical weathering intensity, which follows the erosional regime characteristics of the studied sub-basins, likely related to their tectonic activity. Three regions can be distinguished: The Bateke plateau (East sub-basins - PB), is composed of pure sandstones (quartz) and is inert in term of tectonic activity and therefore in term of erosion and weathering budget; the northern sub-basins (NB) are subjected to low tectonic activity and exhibit slightly higher erosion and weathering intensity than PB region and, by comparison, southern sub-basins (SB) exhibits uplift activity which is traduced by more intensive erosion and weathering processes.

The annual dissolved solid budget of the Ogooué basin is ~2.52 t.yr-1 for a rate of 11.7 t.km-2.yr-1. According to the source discrimination method performed based on the geochemical analysis, the atmospheric inputs contributes to around 20% to the TDS, the silicate weathering contribution dominates the dissolved exports throughout 70% of its production while the carbonates weathering lowly contributes to the TDS production.

By comparison to the other large shields rivers, this basin exhibit a lower range of chemical silicate weathering rate than most of the world’s large rivers, with values similar to those of the Congo River. This new dataset provides a key information to complete the World River chemistry database, which is limited for inter-tropical regions, especially in tectonically quiescent environments. Moreover, this study provides new data for tropical shields contexts allowing for the exploration of the interactions between erosion rates and climate in the control of continental weathering rates, and their relationships with long-term carbon cycle and short-term biogeochemical cycles.

How to cite: Moquet, J.-S., Bouchez, J., Braun, J.-J., Bogning, S., Mbonda, A., Bricquet, J.-P., Carretier, S., Regard, V., Paiz, M. C., and Gaillardet, J.: Supply-limited weathering regime in a tropical shields basin (Ogooué River basin, Gabon), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18181, https://doi.org/10.5194/egusphere-egu2020-18181, 2020.

EGU2020-18466 | Displays | SSS8.12

Climate control of silicate weathering intensity through the Smithian/Spathian boundary in the western USA basin

Nicolas Freslon, Emmanuelle Pucéat, Arnaud Brayard, and Germain Bayon

The aftermath of the end-Permian mass extinction is marked by large and recurrent perturbations of the environment and of the biosphere, which are thought to have delayed the recovery of marine ecosystems. A potential widespread loss of vegetation cover linked to destabilization of terrestrial ecosystems along with the climate warming that persisted for several million years after the Permian-Triassic boundary likely contributed to the markedly enhanced soil erosion and intensified continental chemical weathering recorded in the Early Triassic (Algeo and Twitchett, 2010). As continental weathering delivers nutrients to the oceans, this process could have played a major role in the repeated development of anoxic conditions by sustaining primary productivity and export of organic matter to the seafloor (Algeo and Twitchett, 2010; Sun et al., 2018). Yet our knowledge of the importance of this process in triggering anoxic conditions is currently hampered by the lack of proxies providing chemical weathering records at a local scale. In this study, we tested a novel proxy of chemical weathering intensity at the local scale, based on the coupled isotopic composition of hafnium and neodymium in clay minerals, to explore the links between chemical weathering, climate fluctuations, and anoxia in the western USA basin during the Early Triassic. This proxy has been recently calibrated in modern environments (Bayon et al., 2016) but has only been scarcely applied to deep-time environments.

We analyzed clay sediments for their Hf and Nd isotope composition from 5 sections within the western USA basin (that encompasses the Smithian-Spathian boundary (SSB). The well -stablished bio-chemo-stratigraphical frame of this basin allows the exploration of the respective timing of anoxia establishment and variations in chemical weathering of the continental masses adjacent to the basin at a high temporal resolution. Our new dataset highlights the existence of a decrease in chemical weathering of the continents surrounding the Basin at the Smithian-Spathian boundary, during the development of anoxic conditions marked by enhanced organic matter burial in the sediments. Our new data therefore bring new light on the links between nutrient inputs linked to modifications in continental weathering and the establishment of anoxic conditions in the western USA basin. The decrease in continental chemical weathering depicted in our data set occurs during the global cooling event identified by conodont  d18O records in other regions of the word (Goudemand et al., 2019). This cooling may have promoted a decrease in the intensity of the hydrological cycle and the establishment of more arid conditions in the western USA basin, impeding chemical weathering in the studied area.  

Algeo, T. J. & Twitchett, R. J. (2010). Geology, 38(11), 1023-1026.

Bayon, G. et al. (2016). Earth and Planetary Science Letters, 438, 25-36.

Goudemand, N. et al. (2019). Earth-Science Reviews.

Sun, H. et al. (2018). Proceedings Nation. Academy of Sciences, 115(15), 3782-3787.

How to cite: Freslon, N., Pucéat, E., Brayard, A., and Bayon, G.: Climate control of silicate weathering intensity through the Smithian/Spathian boundary in the western USA basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18466, https://doi.org/10.5194/egusphere-egu2020-18466, 2020.

EGU2020-21770 | Displays | SSS8.12

Recent developments and applications of kaolinite dating: examples of weathering covers from the Amazon Basin (Brazil)

Thierry Allard, Maximilien Mathian, Guilherme Taitson Bueno, Luciana Pereira, Bruna Fernances Soares, Celia Regina Montes, Etienne Balan, and Nadia Regina do Nascimento

Revealing the age of secondary minerals derived from weathering participates to an increasingly detailed understanding of evolution of continental surfaces. Among weathered materials, laterites represent 1/3 of emerged continents area and 80 % of global soil volume [1]. At a global scale, the Amazon Basin is a major basin where the chronology of weathering covers, witnesses of its past geodynamic and paleoclimatic evolution, is still poorly documented. It was demonstrated that kaolinites from laterites can be dated using their concentration in radiation-induced paramagnetic defects and that their ages can be discussed in terms of geodynamic or paleoclimatic episodes [2] [3] [4] [5] [6]. This complements Fe (oxyhydr)oxides and Mn oxides dating in weathering covers.

In a first part, recently upgraded steps of the methodology for kaolinite dating will be presented. They include an improved fitting strategy of dosimetry curves and a better assessment of radiation dose rate in the investigated samples, accounting for an heterogeneous spatial distribution of radionuclides and for some degree of geochemical opening due to Rn mobility.

In a second part, contrasting examples of kaolinite dating in laterites (from loose horizons or iron duricrusts) occurring in the Amazon Basin will be presented. These data highlight that weathering episodes revealed by kaolinite dating mostly range over late Miocene to Quaternary periods. Discussion will first point to profile genesis, showing that rejuvenation of kaolinites or erosion may have prevailed and obliterated more ancient generations, and that variation of ages along profiles allow simple models of weathering fronts propagation to be proposed. In addition, kaolinite ages will be discussed by comparison to the geochronology of main geodynamic or paleoclimatic events in the region.

 

[1] Nahon, D.B., (2003). Comptes Rendus Acad. Sci. Geoscience, 335, 1109-1119.

[2] Balan E.; Allard T., Fristch E., Selo M., Falguères C., Chabaux F., Pierret M.C., Calas G. (2005) Geochim. Cosmochim. Acta 69(9), 2193-2204.

[3] Allard T., Gautheron C., Bressan Riffel S., Balan E., Fernandes Soares B., Pinna-Jamme R., Derycke A., Morin G., Taitson Bueno G., do Nascimento N. (2018) Chem. Geol., 479, 136-150.

[4] Allard T., Pereira L., Mathian M., Balan E., Taitson Bueno G., Falguères C., do Nascimento N.R. (2020) Palaeogeogr. Palaeoclimatol. Palaeoecol. (submitted)

[5] Mathian M., Aufort J., Braun J.J., Riotte J., Selo M., Balan E., Fritsch E., Bhattacharya S., Allard T. (2019) Gondwana Res., 69, 89-105.

[6] Mathian M., Taitson Bueno T. G., Balan E., Fritsch E., do Nascimento N.R., Selo M., Allard T. (2020) Geoderma (in revision).

How to cite: Allard, T., Mathian, M., Taitson Bueno, G., Pereira, L., Fernances Soares, B., Regina Montes, C., Balan, E., and Regina do Nascimento, N.: Recent developments and applications of kaolinite dating: examples of weathering covers from the Amazon Basin (Brazil), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21770, https://doi.org/10.5194/egusphere-egu2020-21770, 2020.

SSS9.3 – Biogeosciences and wine: the management and the environmental processes that regulate the terroir effect in space and time

EGU2020-37 | Displays | SSS9.3 | Highlight

Climate Change Resilience in Viticulture: Knowledge transfer and ecosystem services of adaptation strategies

Martin Reiss, Barbara Bernard, and Eckhard Jedicke

The Rheingau is one of the 13 designated German wine-growing regions and produces the highest proportion of Riesling in Germany. The effects of climate change on air temperature and precipitation can already be seen in phenological observations. The result is an earlier beginning of the budding, flowering and maturing dates. If the date of the beginning of the wine harvest for Riesling in the period 1961-1990 was on October 17 on average, the time in the period 1981-2010 shifted five days to the beginning of the month to October 12. In 2019, the harvest yield was significantly lower than the average of the past ten wine harvests. A consequence of increasing drought and heat in summer, more sunburn damage, but also increasingly late frosts and hailstorms. An evaluation of climatic variables for the near future (2050) relevant to viticulture performed for the individual phenological phases indicated critical changes. An increasing probability of the occurrence of tropical nights (minimum air temperature ≥ 20°C) which would potentially endanger the character of the Riesling and an increased probability of humid conditions during maturation, with the danger of higher pest load is to be expected. Higher, increasing evaporation rates will further reduce the availability of soil water in the growing and especially in the maturing phase. A systematic and regional-specific adaptation strategy for the Rheingau is still lacking. In addition, viticulture produces monoculture agro-ecosystem and causes specific environmentally problems, like soil erosion, loss of biodiversity and nitrate leaching relating to surface and groundwater eutrophication. The KliA-Net project launched in the middle of 2019 to address these problems together with the effects of climate change and to find sustainable, nature-based and landscape-integrative solutions. The aim of the project is to establish local and, above all, inter-communal cooperation and to develop it into joint action for adaptation to climate change. The resulting impulses lead to measures to reduce climate damage under the premise of climate protection, sustainable management and the best possible provision of ecosystem services. We will present the overall theoretical framework and the integrated approach to demonstrate that the concept of Terroir reflects the interactions between people and nature. Here, the concept of Vinecology was adapted, as the integration of ecological and viticultural principles and practices; it contextualizes sustainable land management within the specific agricultural sector and serves as an entry point to biodiversity conservation in an economically and biologically important biome integrated in its adjacent landscape. Concrete measures for climate adaptation in viticulture compiled in a catalogue, which is divided into 5 areas of action: viticulture, soil protection, water, biodiversity and landscape. These represent the different vinecological scales (landscape, vineyard, plant). This catalogue forms the basis for the transfer of knowledge between science, winegrowers, communal politics, administration and NGOs. Furthermore, we also contextualize related ecosystem services to indicate benefits resulting from a concrete measure. We hypothesize, that this is a way to harmonize objectives in nature conservation, soil and water protection and sustainable economic development.

How to cite: Reiss, M., Bernard, B., and Jedicke, E.: Climate Change Resilience in Viticulture: Knowledge transfer and ecosystem services of adaptation strategies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-37, https://doi.org/10.5194/egusphere-egu2020-37, 2020.

EGU2020-2347 | Displays | SSS9.3 | Highlight

Agroclimatic zoning of wine denominations of origin in Portugal: current and future conditions

João Andrade Santos, Mónica Santos, Helder Fraga, and André Fonseca

Weather and climatic conditions have a strong implication on wine production and quality. High-Resolution agroclimatic zoning over 50 protected denominations of origin (DOs) in Portugal is carried out using two agroclimatic indices commonly applied in viticultural zoning (dryness and Huglin indices). For this purpose, a high-resolution dataset of climate data over Portugal and for 1981–2015 (baseline) is used. Furthermore, climate change projections are assessed based on two anthropogenic forcing scenarios (RCP4.5 and RCP8.5), retrieved from a 5-member climate model ensemble over two future periods (medium-range: 2041–2070, and long-range: 2071–2100). An optimized compound index was isolated from a principal component analysis applied to the time mean spatial patterns of the two selected indices, for baseline and over vineyard cover areas in each region only. The spatial variability of Portuguese DOs is highlighted. For the future periods, and regardless of the scenario, significant changes in the agroclimatic conditions are projected for most of the DOs. In future scenarios, strong upward trends in the growing-season mean temperatures, along with an overall strengthening of dryness are projected. This is particularly noteworthy in south-eastern Portugal and north-eastern Portugal along the upper Douro Valley. Hence, as Portuguese DOs are projected to become much drier than currently, irrigation or the selection of new varieties are likely adaptation measures to maintain the viability and sustainability of regional viticulture in future decades. New research methods and decision support tools should be applied to assist stakeholders in developing more climate change-resilient viticulture. The Clim4Vitis project (Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach, WIDESPREAD-05-2017 Twinning, European Union’s Horizon 2020 research and innovation programme, under grant agreement nº 810176) has been very active in promoting capacity building activities and knowledge transfer to the European winemaking sector.

How to cite: Santos, J. A., Santos, M., Fraga, H., and Fonseca, A.: Agroclimatic zoning of wine denominations of origin in Portugal: current and future conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2347, https://doi.org/10.5194/egusphere-egu2020-2347, 2020.

EGU2020-7384 | Displays | SSS9.3

Pedoclimatic comparison of three viticultural areas of Italy devoted to high-quality Aglianico and Cabernet Sauvignon production

Eugenia Monaco, Roberto De Mascellis, Giuliana Barbato, Paola Mercogliano, Maurizio Buonanno, Anna Brook, Veronica De Micco, and Antonello Bonfante

In the Mediterranean area, the expected increase in temperature coupled with the decrease in rainfall, as well as the increase in the frequency of extreme events (heatwaves and drought, IPCC, 2019), will severely affect the survival of current vineyard areas. Cultivar thermal requirement and soil water availability could be not satisfied, leading to a limitation in yield and berry quality also due to constraints in the achievement of optimal grape maturity.

In this context, the understanding of how the spatial viticultural suitability will change under climate change is of primary interest in order to identify the best adaptation strategies to guarantee the resilience of current viticultural areas. Moreover, the improvement of knowledge of climate, soil, and their interaction for each specific cultivar will be fundamental because the terroir system is based on this interaction able to influence the plant status (e.g., water).

In this study, different pedo-climatic conditions (past, present, and future) in three Italian sites at different latitudes (from center to southern), were compared for two red varieties of grapevine: Aglianico (indigenous cv) and Cabernet Sauvignon (international cv).

Grapevine adaptation to future climate in each experimental farm in Campania, Molise, and Sicily Italian regions has been realized through the use of bioclimatic indexes (e.g., Amerine & Winkler for Aglianico 2110 GDD). The climatic evaluation was performed using Regional Climate Model COSMO-CLM at high-resolution (8km x 8km) climate projections RCP4.5 and RCP 8.5 (2010-2100) and Reference Climate (RC, 1971-2005).

Results have shown how climate change will affect the cultivation of Aglianico and Cabernet Sauvignon, considering both the climate and bioclimatic needs of cultivars themselves in the current viticultural areas.

Finally, coupled with the climatic evaluation, a pedological survey to characterize the soils, and the analysis of satellite images (Sentinel2 ) coupled with stemwood anatomical analysis has been performed to reconstruct the past eco-physiological behavior.

How to cite: Monaco, E., De Mascellis, R., Barbato, G., Mercogliano, P., Buonanno, M., Brook, A., De Micco, V., and Bonfante, A.: Pedoclimatic comparison of three viticultural areas of Italy devoted to high-quality Aglianico and Cabernet Sauvignon production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7384, https://doi.org/10.5194/egusphere-egu2020-7384, 2020.

EGU2020-4053 | Displays | SSS9.3

Study of the distribution of Rare Earth Elements in soil and in Vitis Vinifera L.cv Cannonau in two different regions

Salvatore Pepi and Valeria Medoro and the Giulia Piroddi, Elena Marrocchino, Carmela Vaccaro

Vitis vinifera L. cultivar “Cannonau” (Magnoliopsida Vitaceae) has been grown for years in the Italian regions to produce a fine wine, with Controlled Designation of Origin (DOC) and Denomination of Controlled and Guaranteed Origin, (DOCG). The International Organization of Vine and Wine (OIV) defined the “terroir” as “a concept which refers to a specific area in which the interactions between the physical and biological environment and applied vitivinicultural practices develops. Whereas, from a geological point of view, the terroir has been defined as the geochemistry of soil, surface and ground water. Recent studies, regarding vitis vinifera, based on geochemical characterization have clearly shown the connection among geological origin, vineyard soil and grape berries. Another way to trace geographical origin can be through the identification of Rare Earth Elements (REEs) in the soil-plant system. However, the study of REEs is also important to define the petrological characterization and the relations between soil and plants.

We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in “Cannonau” grape berries in vineyards belonging to two different vineyards located in the valleys Pardu and Pelau in Sardinia (Italy) and one in Susegana in the Veneto Region (Northern Italy). The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS) and the data were elaborated with multivariate statistics (Linear Discrimination Analysis).The concentration of REEs in soil and grape berry samples allowed an identification of each locality examined . Moreover, the geochemical and statistical analyses allowed to discriminate the vineyard soils and grape berries according to geo-lithological characteristics of each area and to identify possible geochemical markers for the cultivar “Cannonau” .These markers, suitable as terroir fingerprintings, may be useful to avoid fraudulent use of the denomination label and falsification of the Made in Italy trademark.

How to cite: Pepi, S. and Medoro, V. and the Giulia Piroddi, Elena Marrocchino, Carmela Vaccaro: Study of the distribution of Rare Earth Elements in soil and in Vitis Vinifera L.cv Cannonau in two different regions , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4053, https://doi.org/10.5194/egusphere-egu2020-4053, 2020.

EGU2020-5770 | Displays | SSS9.3

The distribution pattern of Rare Earth Elements (REE) in Vitis vinifera L. discriminates the substrate of growth ?

Marcella Barbera, Pierpaolo Zuddas, and Filippo Saiano

Rare Earth Elements (REE) have been employed to stimulate the plant growth in national and international strategies while their role still remains controversial as the process involved in soil-plant system is not completely understood yet.  

In this study we have investigated the effect of REE amount in the substrate during the Vitis vinifera L growth analysing the REE distribution in the different part of the plants. Experiments were carried out over 1 year using two different substrates: one with a "natural" substrate (blank experiments) and another using the same substrate artificially enriched by an equimolar solution of REE (spiked experiments).

We found that both plant mass and amount of REE in leaves are both not influenced by the substrate enrichment. However, roots are by 1 order of magnitude enriched in REE for the 3 orders of magnitude enriched substrate of growth. This indicates that Vitis vinifera L. does not significantly transfer REE into the aerial parts during growth while identify roots as the plant critical parts responsible for the filtering of the environmental stress.  Plotting the REE normalized distribution for every element, the different experimental conditions can be significantly discriminated: under spiked substrate conditions, REE normalised distribution shows a ‘zig zag’ pattern in both leaves and roots. We propose that the REE normalised distribution pattern measured in the different plant parts (leaves and roots) can be used to discriminates the conditions of substrate characteristics during the vitis vinifera growth. Acting as natural tracers, the REE normalised distribution could be potentially used as tool tracing the substrate origin of the Vitis vinifera plant. 

How to cite: Barbera, M., Zuddas, P., and Saiano, F.: The distribution pattern of Rare Earth Elements (REE) in Vitis vinifera L. discriminates the substrate of growth ?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5770, https://doi.org/10.5194/egusphere-egu2020-5770, 2020.

EGU2020-21339 | Displays | SSS9.3

Accumulation of micronutrients (Cu, Zn) in vineyard soils and transport via soil erosion

Izabella Babcsányi, Nhung Thi Ha Pham, Péter Balling, Zalán Tobak, and Andrea Farsang

Copper (Cu) and zinc (Zn) are important micronutrients for vine plants; however, the long-term use of Cu-fungicides and micronutrient fertilizers can lead to their accumulation in the topsoil of vineyards. Water erosion on sloping vineyards transports sediments downslope, a processus that may redistribute micronutrients in the topsoils. Our study aims at assessing the rate of enrichment in Cu and Zn of vineyard topsoils compared to the geochemical background and their downhill transport during rainfall events attached to sediments.

The study was conducted in 2019 in a 1,8 ha sloping vineyard at Tokaj (mean slope: 8°) and a 0.4 ha plot near Tállya (mean slope: 18°), both in the historical vinegrowing region of Tokaj-Hegyalja (in northern Hungary). The vineyards at Tokaj have been converted to organic farming, where Cu-based fungicides are repeatedly used in a typical dose of 4 kg/ha/year, supplemented with fertilizers containing micronutrients. The soil samples from the top layers (0-10 cm and 10-20 cm) have been collected using a hand auger from the two vineyards and from local forested sites, the latter accounting for the local geochemical background. Additionally, sediment traps have been deployed for collecting eroded sediment samples. The examined soil type is a Regosol at Tokaj with sandy loam texture, while the Cambisol at Tállya displays slightly heavier soil texture (sandy loam/loam). The soils are characterized by a slightly acidic pH(d.w.) of 6.36±0.27 at Tállya and a moderately alkaline pH(d.w.) of 8.03±0.04 at Tokaj. The differing pH is due to the soil forming parent rocks, that are loess at Tokaj and rhyolite at Tállya. The topsoils (0-20 cm) bear a low to medium organic matter (OM) content (1.5±0.5% OM at Tállya and 1.4±0.2% OM at Tokaj) and a low carbonate content at Tállya (3.1±0.2%), while a low to medium carbonate content at Tokaj (4.4±1.5%).

The micronutrient (Cu, Zn) concentrations have been determined by an inductively coupled plasma-optical emission spectrometer, following microwave-assisted digestion of powdered soil samples in aqua regia (hydrochloric acid:nitric acid = 3:1). At Tállya, our results show a considerable Cu enrichment and a slight Zn enrichment in the topsoil (mean±se: 127±37 mg/kg Cu, 47±4 mg/kg Zn) due to the repeated use of pesticides and fertilizers, compared to a local forested soil displaying 5 mg/kg Cu and 28 mg/kg Zn. The lower Cu enrichment in the vineyard topsoil at Tokaj (49±14 mg/kg in vineyards, 17 mg/kg at the local forested site) is probably due to the more recent plantation of grapevines. The soil-bound Zn at Tokaj also displayed to some degree higher concentrations in the top 20 cm layers in vineyards (64±6 mg/kg) as to the forest soil, exhibiting 41±3 mg/kg Zn. At both sites, eroded sediments tend to display higher Cu and Zn concentrations relative to the vineyard topsoils with mean enrichment factors (sediments/topsoil) of 4.2 (Cu) and 1.4 (Zn). Additionally, we evidenced that soil erosion significantly affects the topsoil Cu concentrations at Tokaj, as higher Cu concentrations have been found downslope, where the eroded sediments accumulate, compared to the erosion bases upstream.

How to cite: Babcsányi, I., Thi Ha Pham, N., Balling, P., Tobak, Z., and Farsang, A.: Accumulation of micronutrients (Cu, Zn) in vineyard soils and transport via soil erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21339, https://doi.org/10.5194/egusphere-egu2020-21339, 2020.

EGU2020-5156 | Displays | SSS9.3

Soil loss monitoring of vineyards in the Gerecse Hills (Hungary), using UAV technology

Tünde Takáts and Gáspár Albert

The northern loess-covered part of the Gerecse belongs to the Ászár-Neszmély Wine Region, and is highly frequented by soil erosion. One of the largest vinery in the region recognized the problem and already makes efforts to cope with the natural degradation, but the exact measure of soil loss, and thus its cost, is yet unknown. In this project three vineyards were selected in the vicinity of Dunaszentmiklós village. Previous studies identified the most erosion-sensitive locations using satellite images, but to specify the soil erosion between the rows of grape vines, high resolution images were collected with UAV (Unmanned Aerial Vehicle). The images were used to create the digital surface model (DSM) and the orthophoto of the areas by means of photogrammetric analysis. The final resolution in which the soil loss was defined is 10 cm.

Since the summer of 2019 data have been collected in seasonal measurements. We used the USLE (Universal Soil Loss Equation) model [1] to determine the soil loss and its precise location. The focus was on the definition of the C (crop management) and the R (rainfall erosivity) factors because these change from season to season. The effect of the change of land cover as the summer turned into autumn was remarkable from the aspect of soil erosion. A similar change was observed in the weather impact: in this period more rain fell during the summer than in the autumn. According to the USLE model in the study area the rate of the soil loss was twice as high during the summer as in the autumn.

The vinery do its best to prevent soil erosion. One of their effective method is to sow grass among the vines. In this study a hypothetic model was also created to prove the importance of their method in the scale of the erosion. The most significant difference between the results of the model and the reality was observed in the summertime. Based on the hypothetic model the soil loss would be 3.5 times more if they would not take care of sowing grass in the vineyard.

The project was supported by the ÚNKP-19-2 New National Excellence Program of the Ministry for Innovation and Technology (from part of T. Takáts),  the Thematic Excellence Program, Industry and Digitization Subprogram, NRDI Office, project no. ED_18-1-2019-0030 (from part of G. Albert), and the  Hilltop vinery.

Data Sources:

Precipitation data from the OMSZ Hungarian Meteorological Service and the K factor (soil erodibility) from Pásztor et. al. [2] MTA ATK TAKI.

References:

[1] Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses- a guide to conservation planning. USA: USDA, Science and Education Administration.

[2] Pásztor, L., Waltner, I., Centeri, C., Belényesi, M., & Takács, K. (2016). Soil erosion of Hungary assessed by spatially explicit modelling. Journal of Maps, 1-8.

How to cite: Takáts, T. and Albert, G.: Soil loss monitoring of vineyards in the Gerecse Hills (Hungary), using UAV technology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5156, https://doi.org/10.5194/egusphere-egu2020-5156, 2020.

EGU2020-11481 | Displays | SSS9.3

Assessment of Falanghina vine status at different spatial and temporal scales by means of a smart multiple spatial and temporal resolution system

Anna Brook, Antonello Bonfante, Nicola Damiano, Chiara Cirillo, Giovanna Battipaglia, Arturo Erbaggio, Maurizio Buonanno, and Veronica De Micco

Sustainable grapevine cultivation and the stable production of high-quality wine is endangered by climate change in many areas of the Mediterranean region. Climate change is expected to induce rising temperatures, changes in precipitation frequency and increasing occurrence of extreme events such as severe and prolonged drought with direct effects on berry production and composition, and consequently wine quality. In this context, the monitoring and dynamic assessment of vine status with an early detection of health decline signs are needed to evaluate and adopt mitigation actions oriented to precision and sustainable agriculture (e.g., irrigation).

Several indicators are reported in literature to evaluate plant health status (e.g., Ref. MAES reports), based on remote sensing, UAV techniques or in situ data collection. With remote sensing technologies, standardized information, over large areas, at low costs and with high temporal coverage, can be acquired, allowing assessment of plant indicators trends in a practical, repetitive and comparative way. However, data processing techniques do not fully reflect the overall physiological status and healthiness of plant systems. On the other hand, in situ morpho-physiological analyses at the single plant level are time-consuming and restricted to a low number of individuals compared to remote sensing or UAV techniques, not always covering the whole variability of the vineyards.

This study aimed to apply an integrated multidisciplinary conceptual approach for vine health assessment, based on a systematic process for a multi-source, multi-scale and multi-temporal synergic interpretation of data with different techniques in order to cover the gaps of the single disciplines. This approach was recently developed and successfully tested on an Aglianico vineyard in Southern Italy and its applicability needs to be tested on other terroirs.

Therefore, in this study, the multidisciplinary approach was calibrated and applied in a hilly environment in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region) on Vitis vinifera L. subsp. vinifera ‘Falanghina’ in order to assess the ability of the system to evaluate the plant status during the various phenological phases. The plant status results obtained from four sites were compared with data collected from different techniques including the monitoring of plant growth and ecophysiology as well as the reconstruction of past eco-physiological behavior through the analysis of tree rings in the stemwood.

The overall results confirmed the applicability of such an approach to achieve a comprehensive assessment of the vine health status considering the continuum soil-plant-atmosphere, thus furnishing information on possible plant responses to expected environmental changes as valuable inputs to manage cultivation factors in various terroirs.

How to cite: Brook, A., Bonfante, A., Damiano, N., Cirillo, C., Battipaglia, G., Erbaggio, A., Buonanno, M., and De Micco, V.: Assessment of Falanghina vine status at different spatial and temporal scales by means of a smart multiple spatial and temporal resolution system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11481, https://doi.org/10.5194/egusphere-egu2020-11481, 2020.

EGU2020-10352 | Displays | SSS9.3

Effects of tractor traffic on soil compaction, water infiltration and soil erosion in tilled and grassed vineyards

Marcella Biddoccu, Giorgio Capello, and Eugenio Cavallo

Soil erosion is affected by rainfall temporal pattern and intensity variability. In vineyards, machines traffic is implemented with particular intensity from late spring to harvest, and it is responsible of soil compaction, that likely affects soil hydraulic properties, runoff, and soil erosion. Additionally, hydraulic and physical properties of soil are highly influenced by vineyards’ inter-rows soil management. The effect of machines traffic on soil compaction, hydrological and erosional processes has been investigated on a sloping vineyards with different inter-row soil managements (tillage and permanent grass cover) in the Alto Monferrato area (Piedmont, NW Italy). During the investigation (November 2016 – October 2018) soil water content, rainfall, runoff, and soil erosion were continuously monitored. Field-saturated hydraulic conductivity (Kfs), soil penetration resistance (PR) and bulk density (BD) were recorded periodically in portions of inter-rows affected and not by the machine traffic. In order to take into account temporal and management variability of soil compaction and hydrological properties, field-monitored data were statistically analysed, in order to identify existing relationships between climate and management variables and soil physical and hydrological variables. Very different yearly precipitation characterized the observed period, leading to higher bulk density and lower infiltration rates were in the wetter year, especially in the tilled vineyard, whereas soil penetration resistance was generally higher in the grassed plot, and in drier conditions. Soil bulk density and penetration resistance in tracked soil of the tilled plot increase, compared to the grassed plot, after only one to three tractor passages following tillage operation, especially in the topsoil (first 10 cm). Soil compaction affects water infiltration, especially in the wet year. In the tilled vineyard, one tractor passage on wet soil after tillage operation dramatically reduced Kfs from over 1000 to near 1 mm h-1, while with grass cover Kfs remained above the usual rain-intensity values, allowing water to infiltrate the soil. By means of linear and multilinear regression, significant relationships have been found to relate hydraulic conductivity and soil penetration resistance with soil water content, weather variables and a factor that takes into account the number of tractor passages and the elapsed time from last soil disturbance. Lastly, runoff and soil erosion were higher in the tilled plot, even if lower than the long-period average values. Indeed, in the wet year, management with grass cover reduced considerably runoff (-76%) and soil loss (-83%) compared to tillage and, in the dry season.

How to cite: Biddoccu, M., Capello, G., and Cavallo, E.: Effects of tractor traffic on soil compaction, water infiltration and soil erosion in tilled and grassed vineyards, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10352, https://doi.org/10.5194/egusphere-egu2020-10352, 2020.

EGU2020-9928 | Displays | SSS9.3

Relationships between vine hydraulics and wine production in Falanghina: morpho-functional and isotopic traceability to evaluate sustainability in a climate change context

Nicola Damiano, Chiara Cirillo, Giovanna Battipaglia, Chiara Amitrano, Antonio Pannico, Rosanna Caputo, Carmen Arena, Arturo Erbaggio, Paolo Cherubini, Matthias Saurer, Antonello Bonfante, and Veronica De Micco

In the Mediterranean region, climate change is intensifying the need to improve the resource use efficiency of crops (e.g. water use efficiency) and to increase yield, quality and stability of productions, especially in high profitability and vulnerable crops as grapevine. In a climate change scenario, with increasing temperature and frequency of extreme events, such as prolonged periods of drought, the improvement of knowledge about the plasticity of morpho-functional traits in vines, becomes pivotal. Only a deep knowledge of vine responses to environmental constraints can help achieving the correct management of cultivation factors towards sustainability.

The objective of this study is to apply a multidisciplinary approach for monitoring the resource use efficiency and resource allocation during vine development up to wine production. This general objective will be pursued by analysing the complex relationships between parameters in the continuum environment/plant/wine with specific emphasis on the influence of water availability on the vine, grapes, must and finally wine, in order to relate climate, plant water status and oenological characteristics.

The study was conducted in a vineyard of Vitis vinifera L. subsp. vinifera ‘Falanghina’ located in southern Italy (La Guardiense farm, Guardia Sanframondi, Benevento, Campania region).

The vineyard performance was monitored on the basis of several morphological and eco-physiological parameters, measured in the main phenological phases, including: plant architecture, fertility, leaf anatomical traits, photosynthetic efficiency, leaf gas exchanges, nutritional status, berry and must quality. Water use efficiency was estimated through the analysis of anatomical and stable isotope traits (linked with hydraulic and resource efficiency parameters) from tree-ring series and leaf samples. Stable isotopes were also analysed in the must, in order to check the occurrence of an isotopic signature from the plants towards the must.

The approach proved to be promising for achieving a comprehensive understanding on the impact of environmental constraints not only on plant behaviour, but also on the characteristics of the oenological products, furnishing at the same time a promising tool to reconstruct vine status from the isotopic trace in the must.

 

How to cite: Damiano, N., Cirillo, C., Battipaglia, G., Amitrano, C., Pannico, A., Caputo, R., Arena, C., Erbaggio, A., Cherubini, P., Saurer, M., Bonfante, A., and De Micco, V.: Relationships between vine hydraulics and wine production in Falanghina: morpho-functional and isotopic traceability to evaluate sustainability in a climate change context, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9928, https://doi.org/10.5194/egusphere-egu2020-9928, 2020.

EGU2020-18343 | Displays | SSS9.3

Unraveling metabolically active fungal-bacterial diversity in commercial organic vineyard soils

Carmen Biel, Miriam Guivernau, Marc Viñas, Xavier Aranda, and Felicidad de Herralde

This study aims to assess the impact of the pre-bloom and post-harvest periods on the diversity of metabolically active soil-rhizosphere microbiota in a commercial vineyard in Sant Sadurní d’Anoia, a typical wine producing region (Penedès DO, Catalonia, Spain). Thereby, total genomic DNA and RNA was simultaneously monitored to distinguish total from active bacterial-fungal microbiota, by molecular tools in both periods. The studied organic vineyard had 20 years old plants of the white grape variety of Macabeu and 41B as a rootstock. Soil had last been amended (14 tm/ha of composted cow manure) 5 years before.

The soil was monitored in April 2018 in the pre-bloom period (stages 09 to 12 Eichhorn and Lorenz 1977) and the post-harvest period (October 2018) in 2 different plots of the vineyard: Zone1 (loam texture with permanent cover crop) and Zone 4 (sandy-loam without vegetal cover). Samples soils were obtained at a soil depth of30 cm and 20 cm of distance from a plant (n=4 for each plot and sampling event). Each soil sample was submerged in a DNA/RNA preservative solution at 4⁰C and afterward stored at -20⁰C until the further analysis. In order to quantify and to assess bacterial and fungal diversity (total and active), (RT)qPCR and MiSeq-Illumina analysis (16SrRNA/ITS1rRNA region) were performed.

Results showed that in post-harvest period the bacterial populations were more active in both zones (2 and 5 orders of magnitude in Zone1 and Zone4, respectively) vs. pre-bloom period. Metabolically active fungal population was increased in both plots by 4 orders of magnitude. It is noteworthy to mention that fungal population was present but not active in pre-harvest period. This fact could be explained for the mutualistic microbe interaction and the environmental conditions (soil temperature and soil water content), including grape drop in harvest linked to rainy conditions.

High-throughput sequencing analysis revealed that the microbial diversity was specific for each plot, vine and sampling period. Bacterial population in post-harvest was more diversified but still dominated by Actinobacteria (mainly by Actinomycetales order), Proteobacteria (mainly by Rhizobiales and Pseudomonadales orders). Interestingly, during post-harvest Clostridiales (Firmicutes phylum), present in the pre-bloom period, completely disappeared. Alpha bacterial diversity was higher than fungal one in both plots. Interestingly, the bacterial diversity (H Shannon index) of metabolically active bacteria (cDNA) was higher during post-harvest season compared to April, suggesting more activity and diversity in the former. On the contrary, fungal diversity was smaller and less uniform in both periods. They were predominated by Ascomycota, Basidiomycota and Zygomycota phyla. Noticeably, the relative abundance (RA) of existing fungal population (DNA) in the soil were highly different compared to the RA of active fungal community (cDNA).

In conclusion, simultaneous RNA/DNA-based molecular biology tools could improve the knowledge of metabolically active microbial populations in vineyard soils under different seasons.

Funding: VITIMPAC project (INIA RTA2015-00091-00-00).

How to cite: Biel, C., Guivernau, M., Viñas, M., Aranda, X., and de Herralde, F.: Unraveling metabolically active fungal-bacterial diversity in commercial organic vineyard soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18343, https://doi.org/10.5194/egusphere-egu2020-18343, 2020.

EGU2020-10687 | Displays | SSS9.3

Yield Determinants and Prediction for California’s Almond Orchards Based on Machine Learning Analytics

Yufang Jin, Bin Chen, Bruce Lampinen, and Patrick Brown

Agricultural productivity is subject to various stressors, including abiotic and biotic threats, many of which are exacerbated by a changing climate. The productivity of tree crops, such as almond orchards, is particularly complex. Moreover, the State of California has implemented legislatively mandated nitrogen (N) management strategies of all growers statewide to minimize nitrogen losses to the environment, and almond growers must now apply N in accordance with the estimated yield in early spring. To understand and mitigate these threats requires a collection of multi-layer large data sets, and advanced analytics is also critical to integrate these highly heterogeneous datasets to generate insights about the key constraints on the yields at tree and field scales. Here we used machine learning approaches to predict orchard-level yield and examine the determinants of almond yield variation in California’s almond orchards, based on a unique 10-year dataset of field measurements of light interception, remote sensing metrics, and almond yield, along with meteorological data. We found that overall the maximum almond yield was highly dependent on light interception, e.g., with each one percent increase in light interception resulting in an increase of 57.9 lbs/acre in the potential yield. Light interception was highest for mature sites with higher long term mean spring incoming solar radiation, and lowest for younger orchards and when March maximum temperature was lower than 19 oC. However, at any given level of light interception, actual yield often falls significantly below full yield potential, driven mostly by tree age, temperature profiles in June and winter, and summer maximum vapor pressure deficit (VPDmax). The full random forest model was found to explain 82% (±1%) of yield variation, with a RMSE of 480±9 lbs/acre. When excluding light interception from the predictors, overall orchard characteristics (such as age, location and tree density) and key meteorological variables could still explain 78% of yield variation. The model analysis also showed that warmer winter conditions often limited mature orchards from reaching maximum yield potential and higher summer VPDmax  significantly limited the yield. Our findings through the machine learning approach improved our understanding of the complex interaction between climate, canopy light interception, and almond nut production. The demonstrated relatively robust predictability of almond yield, driven by “big data”, also provides quantitative information and guidance to make informed orchard nutrient management decisions, allocate resources, determine almond price targets, and improve market planning.

How to cite: Jin, Y., Chen, B., Lampinen, B., and Brown, P.: Yield Determinants and Prediction for California’s Almond Orchards Based on Machine Learning Analytics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10687, https://doi.org/10.5194/egusphere-egu2020-10687, 2020.

EGU2020-10572 | Displays | SSS9.3

Site Specific Nitrogen Management in Citrus Orchard to Minimize Nitrogen Pollution

Tarin Paz-Kagan, Dolev Termin, Raphael Linker, Eran Raveh, Noa Ohana, and Shahar Baram

Site-specific agricultural management relies on identifying within-field spatial variability and is being used for variable rate input of resources. Precision agricultural management commonly attempts to integrate multiple datasets to determine management zones (MZs), homogenous units within the field, based on spatial characteristics of environmental and crop properties (i.e., terrain, soil, vegetation conditions). This study aims to develop a novel statistical multivariate spatial clustering approach to determine MZs for precision nitrogen fertilization in a citrus orchard along the growing season. Five variables were used to characterize spatial variability (i.e., N spectral index, crop water stress index (CWSI), tree height, elevation, and slope) within four plots based on a monthly thermal and multispectral high-resolution imagery acquired from an unmanned aerial vehicle (UAV). The UAV data was tested against leaf N samplings based on samples taken from 48 trees within the four craters plots, which were selected based on a stratified random design (SRD) model. A Support Vector Machines-Regression (SVM-R) model was applied to develop a prediction N spectral index for canopy N levels. The clustering model included the following components — spatial representation of the data based on Getis Ord Gi*. Then variable weights were assigned based on their relative contribution to principal component analysis. Fuzzy C-means algorithm was applied to the weighted spatial representation and was found to generate spatially continuous and homogeneous MZs with similar numbers of trees. In addition, we analyzed the temporal dynamics in the MZs and clustering patterns throughout the year, using information based on the monthly UAV imagery. Management of the sub-units, or plots, using spatial representation rather than the measured values, is suggested as a more suitable platform for agricultural practices. Future development of fertilization applications for individual trees will require adjusting the statistical approach to support tree-specific management. The proposed model composite is flexible and may be composed of different models and/or variables for developing optimal MZ delineation for specific plots.

How to cite: Paz-Kagan, T., Termin, D., Linker, R., Raveh, E., Ohana, N., and Baram, S.: Site Specific Nitrogen Management in Citrus Orchard to Minimize Nitrogen Pollution, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10572, https://doi.org/10.5194/egusphere-egu2020-10572, 2020.

EGU2020-898 | Displays | SSS9.3 | Highlight

In-situ and imaging spectroscopy for grape disease detection: towards a global surveillance and warning system

Kaitlin Gold

SSS9.4 – Challenges for competitive and sustainable EU-China agricultural systems under increasing pressures on soil and water resources | Posters only

EGU2020-5709 | Displays | SSS9.4

Uncertainties associated with the delineation of management zones in precision agriculture

Tomás R. Tenreiro, Margarita García-Vila, José A. Gómez, and Elías Fereres

The characterization of spatial variations in soil properties and crop performance within precision agriculture, and particularly the delineation of management zones (MZ) and sampling schemes, are complex assignments currently far from being resolved. Considerable advances have been achieved regarding the analysis of spatial data, but less attention has been devoted to assess the temporal asymmetry associated with variable crop×year interactions. In this case-study of a 9 ha field located in Spain, we captured interactions between both spatial and temporal variations for two contrasting seasons of remotely sensed crop data (NDVI) combined with several geomorphological properties (i.e., elevation, slope orientation, soil apparent electrical conductivity - ECa, %Clay, %Sand, pH). We developed an algorithm combining Principal Component Analysis (PCA) and clustering k-means and succeeded to delineate four MZ’s with a satisfactory fragmentation degree, each one associated with a different Elevation×ECa×NDVI combination. Simulated yield maps were generated using NDVI maps correlated to ground cover to establish initial conditions in simulation settings with a crop model. Yield maps were spatially correlated but fitted into variograms with irregular spatial structure. Both CV and spatial patterns did not show consistency from year to year. The results indicate that MZ’s temporal instability is an important issue for site-specific management as agronomic implications varied greatly with crop×year setting. We observed differences, not only regarding NDVI patterns but also in yield response to the combination of Elevation×ECa (and Texture) depending on the seasonal rainfall. A reduction of 14% of the ’Goodness of Variance Fit’ was observed for simulated yield from the first to the second crop×year, highlighting the difficulties in the delineation of MZ’s with persistent confidence. The interpretation of MZ×Yield associations was not straight forward from the metrics selected here as it also depended on agronomic knowledge. We believe that precision agriculture will benefit greatly from improved protocols for MZ delineation and sampling schemes. However, the uncertainty associated with temporal asymmetry of yield clustering and MZ’s interpretation reveals that ‘automated digital agricultural systems’ are still far from reality.

How to cite: Tenreiro, T. R., García-Vila, M., Gómez, J. A., and Fereres, E.: Uncertainties associated with the delineation of management zones in precision agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5709, https://doi.org/10.5194/egusphere-egu2020-5709, 2020.

EGU2020-7424 | Displays | SSS9.4

Plot-scale experiments to assess the effects of surface spatial heterogeneity on runoff and soil loss

David Zumr, Jakub Jeřábek, Josef Krása, and Tomáš Dostál

Topsoils on the arable fields are usually considered as spatially uniform layers, especially just after the cultivation when the seedbed conditions are present. Nevertheless, there are features, resulting from the agricultural machinery operations or memory effects from the previous growing season, that cause spatially non-uniform soil infiltration characteristics even on a small scale. Examples of such features are the wheel tracks, wrinkles from the ploughing or the non-uniform morphology of the compacted subsoil. Surface runoff and soil loss are affected by the direction of the agro-operations. Wheel tracks act as an obstacle for the surface flow if the orientation is perpendicular to the slope and as the main draining flow path if the orientation is in slope wise direction. Ploughing changes the soil structure in the shallow part of the soil profile, creates sharp delineation between topsoil and compacted subsoil and subsequently alters the natural infiltration and may create lateral subsurface runoff. Plot scale artificial rainfall / runoff experiments were designed to study the ploughing and wheel track compaction effect on the surface runoff and soil loss. Several experiments were carried out at mildly declined slopes (slope ca 10 %) at 16 m2 plots located at an experimental site in the central part of the Czech Republic utilizing Norton Ladder Rainfall Simulator. Experiments were replicated at (1) a plot without wheel track (noWT), (2) a plot with wheel track oriented slope wise (swWT) and (3) a plot with wheel track oriented perpendicularly to the slope (psWT). Artificial rainfall experiments were supplemented with a detailed soil water regime monitoring, geophysical measurement and measurement of penetration resistance. Wheel track at the swWT plot caused faster runoff and soil loss response to the rainfall and increased the total runoff volume and soil loss mass. Wheel track at the psWT plot disconnected the upper and lower part of the plot. The psWT plot was entirely connected when surface depressions were connected which increased the time lag of the runoff and soil loss response. It was concluded that the surface topography and possibly impact of raindrops are the first order control factors of the surface runoff and soil loss formation. Filling and consequent interconnection of the surface depressions together, to the bottom of the plot or to the wheel track, triggers the surface runoff and soil loss. The compacted subsoil, which exhibited high penetration resistance and electrical resistivity, did not exhibit any lateral subsurface runoff in the shallow soil profile suggesting high hydraulic conductivity of both the topsoil and the subsoil when the soil is fully saturated. The experiments were carried out within a scope of projects 773903 “SHui - Soil Hydrology research platform underpinning innovation to manage water scarcity in European and Chinese cropping systems” and LTC18030  “The effect of land-use changes on soil erosion, sediment transport, water quality and rainfall-runoff balance”.

How to cite: Zumr, D., Jeřábek, J., Krása, J., and Dostál, T.: Plot-scale experiments to assess the effects of surface spatial heterogeneity on runoff and soil loss, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7424, https://doi.org/10.5194/egusphere-egu2020-7424, 2020.

EGU2020-7888 | Displays | SSS9.4

Research challenges on gully erosion control in EU and China

Jose Alfonso Gomez, Guangju Zhao, Honghu Liu, Yu Yang, Javier Lopez, and Yun Xie

 

Gully erosion is a soil degradation process widely present across the world. Permanent gully erosion has usually soil erosion rates one order of magnitude higher than hillslope water erosion in conventional agriculture, e.g. 2.1 vs 0.6 mm year-1 (Castillo and Gómez, 2016). It remains a major process of soil degradation worldwide.

 

This work attempts to investigate recent trends of published research on gully erosion in relation to gully erosion control since 2000. A review in Web of Science (core collection, 2000-19 by title) reported 401 documents, produced mainly in the European Union (52.1%), China (22.7%), USA (16.0%) and Australia (8.7%). Approximately 17% of all these articles covered restoration or control of gully erosion as their main topic. When screened most of these 68 articles deal with specific situations and techniques with a limited number devoted to a comparative review of effectiveness of different techniques, one of the few exceptions was Liu et al. (2019a). To provide perspective, there were a similar proportion of articles devoted to the study of gully erosion processes, a and a much larger number of articles devoted to the description of gully development and erosion rates in specific situations. It is apparent that the subject of gully erosion control is not a dominant one in the scientific indexed literature. This review was complemented with an analysis in WOCAT (WOCAT, 2019), a comprehensive international databases of soil conservation technologies. It showed with 27 entries of gully erosion restoration techniques over a total of 1098 descriptions (2.5% approximately). This might be explained, partially, because most of the information on gully erosion control appears in documents outside scientific, or technical, international databases, many times in local languages. Overall, two of the major barriers frequently noted by stakeholders, particularly farmers, for effective gully erosion control, their high costs and the complexity of controlling expansion of very large gullies (e.g. Liu et al.2019b) are not major major subjects  in the international scientific literature on gullies in the last decades.

 

It is apparent that there is the need for a more comprehensive comparative analysis of the effectiveness and cost of different strategies of gully erosion control techniques, particularly oriented to reduce the investment cost of their implementation, especially in very large gullies where compex slope instability processes might play a dominant role. This communication presents a comprehensive analysis on the available information on international scientific literature on gully erosion research to suggest key lines and strategies for future research.

 

References

Castillo, C., Gómez, J.A. 2016 A century of gully erosion research: Urgency, complexity and study approaches Earth-Science Reviews 160: 300–319

Liu, X., et al. 2019a. Gully Erosion Control Practices in Northeast China: A Review. Sustainability 11: 5065, doi:10.3390/su11185065

Liu, H., et al. 2019b. Using 3D scanner to study gully evolution and its hydrological analysis in the deep weathering of southern China. Catena 183. https://doi.org/10.1016/j.catena.2019.104218

WOCAT. 2020. World Overview of Conservation Approaches and Technologies. https://www.wocat.net/en/

How to cite: Gomez, J. A., Zhao, G., Liu, H., Yang, Y., Lopez, J., and Xie, Y.: Research challenges on gully erosion control in EU and China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7888, https://doi.org/10.5194/egusphere-egu2020-7888, 2020.

EGU2020-8805 | Displays | SSS9.4

Partitioning evapotranspiration into transpiration and evaporation by use of isotope balance calculation

Gunther Liebhard, Andreas Klik, Peter Strauß, and Reinhard Nolz

Knowledge and quantification of water fluxes within the soil-vegetation-atmosphere continuum is fundamental to understand ecohydrological systems. It is also essential to further develop water management practices and irrigation systems in times of increasing needs for water and rising water scarcity. A major component in this regard is evapotranspiration (ET) as it links the energy balance and the water balance. Evapotranspiration can be fractionated into productive water fluxes through plants’ stomata (transpiration) and non-productive water loss from soil surface (evaporation). Determination and understanding of factors influencing this ratio are assumed to help improving water use efficiency through best management practices in agriculture, especially in water limited environments. Aim of this study was to adapt a stable isotope mass balance method for determining evapotranspiration and its components transpiration and evaporation for soybeans under natural conditions.

The study site was in Groß-Enzersdorf, east of Vienna, Austria (48°12’ N, 16°34’ E; 157 m elevation a.s.l.). The study period covered the vegetation period of soybeans in 2019. Crop evapotranspiration was determined using a weighing lysimeter with 1.8 m diameter. For the fractionation, a stable isotope mass balance method from literature was adapted and further developed for soybeans under natural (stressed) climatic conditions. The underlying principle of isotope fractionation is that different physical properties of naturally occurring stable isotopes in water cause shifts in the isotopic composition due to evaporation. Therefore, evaporation causes enrichment of heavier stable isotopes in the near surface soil water, whereas water uptake by plant roots does not cause considerable partitioning in soil water. This allows determination of both fractions, assuming all other water balance components are known. Soil samples for the stable isotope mass balance were taken near a weighing lysimeter (1.8 m diameter). Evapotranspiration determined by the lysimeter provided the basis for the mass balance fractionation calculations. Monitoring throughout the soybeans vegetation period included weekly analyses of isotopic composition of soil samples, measurements of water content over the soil profile in 10 cm steps down to 80 cm, weather data, and crop growing stages.

Results reveal a plausible course of soybean evapotranspiration and its components. The preliminary designed method of soil water sampling could be adequately adapted to determine representative isotopic soil profiles for water balance determination under the given conditions. Water extraction from the soil samples worked well under moist as well as very dry soil conditions. Further data analysis was done to assess applicability of the modified method to determine fractionation ratios for different plant development stages. The available results encourage further experiments to test and investigate the versatility of this method with respect to different soil cultivation methods for a water use efficiency review.

How to cite: Liebhard, G., Klik, A., Strauß, P., and Nolz, R.: Partitioning evapotranspiration into transpiration and evaporation by use of isotope balance calculation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8805, https://doi.org/10.5194/egusphere-egu2020-8805, 2020.

AquaCrop is considered a reliable simulation model to predict crop yield. AquaCrop is supported by the FAO and seems to provide reasonable balance between accuracy and simplicity. While AquaCrop handles crop response to conditions of salinity, there have been few studies evaluating its accuracy to this parameter. We evaluated AquaCrop for its ability to simulate crop growth, transpiration and yield under conditions of irrigation-induced salinity using an experimental database of tomato grown during different meteorological conditions and demands under highly varied conditions of irrigation water salinity and irrigation amounts.

Field and lysimeter experiments were carried out in the Southern Arava Valley in Israel in fall and spring seasons. Tomato (Lycopersicon esculentum Mill. cultivar ‘5656’) was grown. Irrigation in the field was managed with treatments of 30, 60, 100, and 130% of reference evapotranspiration (ET0) of Class A pan with irrigation water salinity (ECI = electrical conductivity of irrigation water) of 3 dS m-1. Irrigation treatments in the lysimeters were six ECI levels from 1 to 11 dS m-1 all at 130% of ET0 and five irrigation levels of 30, 60, 100, 130 and 160 % of ET0 all at ECI of 3 dS m-1. ECI was regulated adding 1:1 Molar concentrations NaCl and CaCl2. Irrigation was applied via drippers from soil surface covered with polyethylene mulch to reduce evaporative losses to a minimum. AquaCrop was run to calculate yield and transpiration in fall and spring. The datasets of meteorological, crop, management, and soil data were obtained from field-measured results.

Predicted biomass at the end of both growing periods agreed relatively well with measured biomass. Patterns of accumulated transpiration were different in the two seasons, with gradual increase to a stable maximum in the fall and continued increase in the spring. Irrigation level and salinity were found to effect biomass, transpiration and yield alternatively, with irrigation dominant at low ECI levels and salinity dominant when irrigation application was relatively high. Transpiration was simulated well, showing similar trends of the measured data in lysimeters in both fall and spring. The biomass in fall and spring was predicted relatively well. Following these results, AquaCrop appears applicable for simulation of salinity effects on yield and transpiration, at least under conditions similar to those of the current study.

How to cite: Ito, Y. and Ben-Gal, A.: Evaluating AquaCrop for simulating response of tomato to irrigation induced salinity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9459, https://doi.org/10.5194/egusphere-egu2020-9459, 2020.

EGU2020-10964 | Displays | SSS9.4

Recent trends in crop rotation in the Czech Republic and associated soil erosion risks

Josef Krasa, Tomas Dostal, David Zumr, Adam Tejkl, and Miroslav Bauer

In last decades several trends have been visible in agricultural land use in the Czech Republic. Among all oil rape production was raised (mainly in last 10 years) and maize production was enlarged in some regions where bio-fuel stations have been newly built. As a row crop, maize without proper management control leads to accelerated water erosion and sediment transport. Oil rape is generally considered as a relatively soil preserving crop, supporting also infiltration by a root system. But seeding period of oil rape in the Czech Republic starts in August still in the peak period of erosive rainstorms. Recent risks associated with both crops will be presented by data from field rainfall-runoff simulations, targeted on developing actual crop protection factor (C-factor) of USLE for Czech conditions. The second source of the data for presenting risk trends is Czech soil erosion monitoring database of State Land Office (https://me.vumop.cz/), where many occurrences of erosion damages were identified on both crops. Finally, study focused on bare soil remote sensing via Landsat 8 and Sentinel 2 in recent years showed link between erosion risks and the two above mentioned crops.

National implementation of European cross compliance policy in the Czech Republic targeted the protection also to fight these risky trends, but the power of the agricultural policy, as will be presented, is limited in this scope. We see similar threats in other European countries and we were able to visit North East China regions with intensive corn production where soil erosion by water is causing serious soil and water degradation. Therefore, shared knowledge on strategies how to prevent risky soil managements could lead to benefits in both European and Chinese conditions.

The contribution was prepared in the frame of projects No. QK1920224 (Possibilities of anti-erosion protection on farms to avoid the use of glyphosate), and H2020 SHUi (Soil Hydrology research platform underpinning innovation to manage water scarcity in European and Chinese cropping systems).

How to cite: Krasa, J., Dostal, T., Zumr, D., Tejkl, A., and Bauer, M.: Recent trends in crop rotation in the Czech Republic and associated soil erosion risks, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10964, https://doi.org/10.5194/egusphere-egu2020-10964, 2020.

EGU2020-21244 | Displays | SSS9.4

Deficit irrigation and the reuse of reclaimed water as strategies to cope with water scarcity in perennial crops. A summary of long-term trials within the H2020 SHUI project

Diego Intrigliolo, Emilio Nicolas, Francisco Pedrero, Pedro Nortes, and Juan José Alarcón

In arid and semi-arid regions, restriction on water for agriculture is fostering the search of alternative water resources, such as the reuse of reclaimed water (RW), and water-saving techniques, such as regulated deficit irrigation (RDI) strategies to cope with forecasted food production requirements. Two long-term experiments carried out by the CEBAS-CSIC team offer two scenarios: 1) Intensive cultivation of citrus in coastal areas and 2) extensive grape production for wine making in inland areas of Spain. Experiments in the Murcia Region (Spain) studied the physiological and agronomic effects of irrigating a young commercial grapefruit orchard with two water sources (saline RW versus conventional water). Water transferred from an irrigation canal (TW; electrical conductivity, EC≈1.3 dS m−1) and RW from a wastewater treatment plant (EC≈3.0 dS m−1) were compared, with control irrigation supplying 100% of the crop evapotranspiration (ETc) while the RDI treatment was irrigated at 50% of ETc during the 2nd stage of fruit growth Although the RDI treatment decreased annual irrigation volume by 13.2%, soil salinity substantially increased in summer in the RDI treatment While these treatments did not negatively affect vegetative growth, yield and fruit quality, trial duration (2008-2010) was short in relation to the commercial life of a citrus grove, requiring further research over a longer term. This highlights the need for a longer-term socio-economic analysis that is possible within projects of SHui’s duration (2018-2021). In grapevines research initiated in 2012 continues within SHui, to explore the effects of applying two different strategies: a) RDI in comparison with rainfed conditions and a full irrigation control. During the first three seasons (2012-2014), SDI was the preferred strategy to substantially improve yield (by 49%) compared to the rainfed regime, thereby significantly increasing water use efficiency (calculated considering both precipitation and irrigation). However, yield increments at 100% ETc were offset by detrimental effects that full irrigation had on grape composition. In this case, 8 years of these irrigation treatments produced similar results to the first three seasons of water application, suggesting cost benefit analyses of different deficit irrigation treatments over 3 may provide useful results to inform farmer choice

How to cite: Intrigliolo, D., Nicolas, E., Pedrero, F., Nortes, P., and Alarcón, J. J.: Deficit irrigation and the reuse of reclaimed water as strategies to cope with water scarcity in perennial crops. A summary of long-term trials within the H2020 SHUI project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21244, https://doi.org/10.5194/egusphere-egu2020-21244, 2020.

EGU2020-21825 | Displays | SSS9.4

Policy scenarios for agriculture that enhance soil ecosystem services in Europe and China

Araceli Martín-Candilejo, David Santillan, Luis Garrote, and Ana Iglesias

Aiming to evaluate the effect of agricultural management practices in the environmental footprint, this study develops scenarios of future farm and soil management systems for improved productivity and enhanced soil quality. The analysis is at the continental scale in Europe and China. The evaluation has two components: (1) A multi-actor approach is used to develop the policy scenarios; and (2) An upscalling model is used to evaluate the effect of the scenarios at the continental scale. The results are presented in a series of maps with a 10 x 10 km resolutions, that allow comparison of strategies relevant to agricultural policy development. Three scenarios are evaluated: The Expected scenario maintains the observed tendency in the implementation of beneficial agricultural management practices. The Regional Targets assumes the same rate of implementation of agricultural management practices, but considers that policy efforts are focused on areas where soil threats are more active and soil quality indicators are poorer. The emphasis, therefore, is place on targeting the regions that where the practices would be more beneficial. The Towards 2050 scenario assumes an intensification on the rate of implementation of agricultural management practices as a result of public policies. The scenarios are necessarily a simplification of the complex policy processes that influences farmer choices at the local and regional levels. The content of the study is based on the results of the iSQAPER (http://www.isqaper-project.eu/) H2020 project.

How to cite: Martín-Candilejo, A., Santillan, D., Garrote, L., and Iglesias, A.: Policy scenarios for agriculture that enhance soil ecosystem services in Europe and China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21825, https://doi.org/10.5194/egusphere-egu2020-21825, 2020.

EGU2020-21981 | Displays | SSS9.4

SEW-REAP: planting the seeds of early career soil-soya research in China

Ian Dodd, Pedro Castro, Purificacion Martinez-Melgarejo, Francisco Perez-Alfocea, Jian Tian, Hon-Ming Lam, Jianhua Zhang, and David Tyfield

SEW-REAP (Addressing food Security, Environmental stress and Water by promoting multidisciplinary Research EU And China Partnerships in science and business) was a European Union funded project (2016-2019) that placed European environmental researchers at Chinese institutions, in contrast to the more typical model of China Scholarship Council-funded visits of Chinese PhD students to the EU. These EU students were registered for their PhDs in European institutions, but conducted most of their research (18-24 months) in China. Since Chinese government policy is to become more self-sufficient in soya (Glycine max) production, and this crop provides a well-studied model system with significant genomic resources, two European students (PC and PMM) investigated variation in environmental stress responses (water deficit and phosphorus deficiency respectively) of diverse Chinese soya germplasm. PC identified significant variation in soya stomatal sensitivity to drying soil, which was related to variation in root-shoot signalling of the stress hormone ABA. PMM identified significant variation in soya root growth sensitivity to lack of phosphorus, which was related to variation in root accumulation of the stress hormone ABA. Whether variation in stomatal closure affects phosphorus transport to the shoot, and whether phosphorus-mediated changes in root growth affect root-to-shoot signalling of water deficit, needs to be investigated as different genotypic strategies may have antagonistic or complementary effects in multi-stress environments. Regardless of the physiological mechanisms involved in plant responses, SEW-REAP early career researchers have accessed complementary expertise across two continents to embrace a unique training opportunity and develop new scientific networks.

How to cite: Dodd, I., Castro, P., Martinez-Melgarejo, P., Perez-Alfocea, F., Tian, J., Lam, H.-M., Zhang, J., and Tyfield, D.: SEW-REAP: planting the seeds of early career soil-soya research in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21981, https://doi.org/10.5194/egusphere-egu2020-21981, 2020.

EGU2020-22620 | Displays | SSS9.4

Real time monitoring of nitrate in soils as a key for optimization of agricultural productivity and prevent groundwater pollution

Ofer Dahan

SSS9.7 – Soil organic and inorganic carbon stocks and dynamics in agro-ecosystems: mechanisms, measurements and modelling strategies

EGU2020-18355 | Displays | SSS9.7

Modelling soil carbon stocks in semi-natural and agro-ecosystems – quantifying national scale impacts of the Anthropocene

Victoria Janes-Bassett, Jessica Davies, Richard Bassett, Dmitry Yumashev, Ed Rowe, and Edward Tipping

Throughout the Anthropocene, the conversion of land to agriculture and atmospheric deposition of nitrogen have resulted in significant changes to biogeochemical cycling, including soil carbon stocks. Quantifying these changes is complex due to a number of influential factors (including climate, land use management, soil type) and their interactions. As the largest terrestrial store of carbon, soils are a key component in climate regulation. In addition, soil carbon storage contributes to numerous ecosystem services including food provision. It is therefore imperative that we understand changes to soil carbon stocks, and provide effective strategies for their future management.

Modelling soil systems provides a means to estimate changes to soil carbon stocks. Due to linkages between the carbon cycle and other major nutrient cycles (notably nitrogen and phosphorus which often limit the productivity of ecosystems), models of integrated nutrient cycling are required to understand the response of the carbon cycle to global pressures. Simulating the impacts of land use changes requires capacity to model both semi-natural and intensive agricultural systems.

In this study, we have developed an integrated carbon-nitrogen-phosphorus model of semi-natural systems to include representation of both arable and grassland systems, and a range of agricultural management practices. The model is applicable to large spatial scales, as it uses readily available input data and does not require site-specific calibration.  After being validated both spatially and temporally using data from long-term experimental sites across Northern-Europe, the model was applied at a national scale throughout the United Kingdom to assess the impacts of land use change and management practices during the last two centuries. Results indicate a decrease in soil carbon in areas of agricultural expansion, yet in areas of semi-natural land use, atmospheric deposition of nitrogen has resulted in increased net primary productivity and subsequently soil carbon. The results demonstrate anthropogenic impacts on long-term nutrient cycling and soil carbon storage, and the importance of integrated nutrient cycling within models.

How to cite: Janes-Bassett, V., Davies, J., Bassett, R., Yumashev, D., Rowe, E., and Tipping, E.: Modelling soil carbon stocks in semi-natural and agro-ecosystems – quantifying national scale impacts of the Anthropocene, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18355, https://doi.org/10.5194/egusphere-egu2020-18355, 2020.

EGU2020-600 | Displays | SSS9.7

Geospatial modeling approaches for mapping topsoil organic carbon stock in northern part of Mongolia

Samdandorj Manaljav and Purevdorj Tserengunsen

Soil organic carbon (SOC) is one of the most important indicators of soil quality and agricultural productivity. This paper presents the application of Regression Kriging (RK), Geographically Weighted Regression (GWR) and Geographically Weighted Regression Kriging (GWRK) for prediction of topsoil organic carbon stock in Tarialan. A total of 25 topsoil (0-30 cm) samples were collected from Tarialan soum of Khuvsgul aimag in Mongolia. In this study, seven independent variables were used including normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), normalized difference moisture index (NDMI), land surface temperature (LST) and terrain factors (DEM, Slope, Aspect). We used root mean square error (RMSE), mean error (ME) and determination coefficient (R2) to evaluate the performance of these methods. Validation results showed that performance of the GWRK, GWR, and RK approaches were good with not only low values of root-mean-square error (1.38 kg m-2, 1.48 kg m-2, 0.69 kg m-2), mean error (0.28 kg m-2, -0.22 kg m-2, 0.17 kg m-2) but also high values of R2 (0.76, 0.72, 0.94). The estimated SOC stock values ranged from 0.28-16.26 kg m-2, 0.72–15.24 kg m-2, 0.16–15.83 kg m-2 using GWRK, GWR, RK approaches in the study area. The highest average SOC stock value was in the wetland (6.47 kg m-2, 6.08 kg m-2, 6.44 kg m-2) and the lowest was in cropland (1.63 kg m-2, 1.48 kg m-2, 1.80 kg m-2) using these approaches. According to the validation, GWRK, GWR, and RK approaches produced satisfactory results for estimating and mapping SOC stock. However, Regression Kriging was the best model, followed by GWRK and GWR to predict topsoil organic carbon stock in Tarialan.

How to cite: Manaljav, S. and Tserengunsen, P.: Geospatial modeling approaches for mapping topsoil organic carbon stock in northern part of Mongolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-600, https://doi.org/10.5194/egusphere-egu2020-600, 2020.

Soil organic carbon (SOC) is an important carbon pool sensitive to land use change (LUC). There are concerns that at the end of PECs cultivation cycle, the re-conversion of these crops back to arable land could negatively impact the SOC stock. However, a positive effect of reconversion on SOC is possible, due to the high amount of C added to the soil with the disruption of belowground biomass (BGB) during re-conversion process. In this study, C storage potential in SOC and BGB of six perennial energy crops (PECs) was measured in a 11 years old field trial in Italy before its reconversion to arable land. SOC dynamics and greenhouse gases (GHGs) emission were measured in the first two years after the reconversion. SOC and GHG measurements were compared to ECOSSE soil carbon model predictions (run for a LUC from arable land to PECs and re-conversion to arable land) to understand SOC dynamics. After 11 years of cultivation, PECs significantly increased SOC stock respect to arable land. In average, BGB accounted for the 68% of total carbon stocked by PECs. The ECOSSE soil carbon model successfully simulated the dynamics of SOC pool and the GHGs emissions from soil after the re-conversion of PECs.

How to cite: Martani, E., Pilla, M., Ferrarini, A., Amaducci, S., and Hastings, A.: Simulation of soil organic carbon stock and greenhouse gases emission from Perennial Energy Crops cultivation cycle in Italy with ECOSSE model: from establishment to removal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10846, https://doi.org/10.5194/egusphere-egu2020-10846, 2020.

EGU2020-11334 | Displays | SSS9.7

Empirical modelling of plant and soil carbon flux drivers under field conditions

Chris McCloskey, Guy Kirk, Wilfred Otten, and Eric Paterson

Our understanding of soil carbon (C) dynamics is limited; field measurements necessarily conflate fluxes from plant and soil sources and we therefore lack long-term field-scale data on soil C fluxes to use to test and improve soil C models. Furthermore, it is often unclear whether findings from lab-based studies, such as the presence of rhizosphere priming, apply to soil systems in the field. It is particularly important that we are able to understand the roles of soil temperature and moisture, and plant C inputs, as drivers of soil C dynamics in order to predict how changing climate and plant productivity may affect the net C balance of soils. We have developed a field laboratory with which to generate much-needed long-term C flux data under field conditions, giving near-continuous measurements of plant and soil C fluxes and their drivers.

The laboratory contains 24 0.8-m diameter, 1-m deep, naturally-structured soil monoliths of two contrasting C3 soils (a clay-loam and a sandy soil) in lysimeters. These are sown with a C4 grass (Bouteloua dactyloides), providing a large difference in C isotope signature between C4 plant respiration and C3-origin soil organic matter (SOM) decomposition, which enables clear partitioning of the net C flux. This species is used as a pasture grass in the United States, and regular trimming through the growing season simulates low-intensity grazing. The soil monoliths are fitted with gas flux chambers and connected via an automated sampling loop to a cavity ring-down spectrometer, which measures the concentration and 12C:13C isotopic ratio of CO2 during flux chamber closure. Depth-resolved measurements of soil temperature and moisture in each monolith are made near-continuously, along with measurements of incoming solar radiation, rainfall, and air temperature a the field site. The gas flux chambers are fitted with removable reflective backout covers allowing flux measurements both incorporating, and in the absence of, photosynthesis.

We have collected net ecosystem respiration data, measurements of photosynthesis, and recorded potential drivers of respiration over two growing seasons through 2018 and 2019. Through partitioning fluxes between plant respiration and SOM mineralisation we have revealed clear diurnal trends in both plant and soil C fluxes, along with overarching seasonal trends which modify both the magnitude of fluxes and their diurnal patterns. Rates of photosynthesis have been interpolated between measurement periods using machine learning to generate a predictive model, which has allowed us to investigate the effect of plant productivity on SOM mineralisation and assess whether rhizosphere priming can be detected in our system. Through regression analyses and linear mixed effects modelling we have evaluated the roles of soil temperature, soil moisture, and soil N content as drivers of variation in plant and soil respiration in our two contrasting soils. This has shown soil temperature to be the most important control on SOM mineralisation, with soil moisture content playing only a minor role. We have also used our empirical models to suggest how the carbon balance of pasture and grassland soils may respond to warming temperatures.

How to cite: McCloskey, C., Kirk, G., Otten, W., and Paterson, E.: Empirical modelling of plant and soil carbon flux drivers under field conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11334, https://doi.org/10.5194/egusphere-egu2020-11334, 2020.

EGU2020-10139 | Displays | SSS9.7

Contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system

Tiphaine Chevallier, Rémi Cardinael, Bertrand Guenet, Thomas Cozzi, Cyril Girardin, and Claire Chenu

In the last years, soil organic carbon (SOC) dynamics have been explored for agronomic and environmental issues in different agro systems. Many soils of the world, especially in arid and semi-arid environments, contain large stocks of soil inorganic carbon (SIC) as carbonates. Yet, the SOC dynamics has been poorly investigated in these soils, due to the complexity of measurements and of the processes involved. Indeed, few previous studies have shown links between SIC and SOC dynamics. Theses interactions are initiated by biological activities, i.e. CO2 production, are explained through equilibrium equations between soil carbonates and bicarbonates. However, few data were available on the specific impact of SIC on SOC mineralization especially at increasing soil depth.

Alley agroforestry systems increased SOC content in the tree rows without any change in the SIC content.  The heterogeneity in organic inputs and SOC contents induced by alley agroforestry allows the investigation of the interactions between SIC and SOC on CO2 emissions.

To assess contributions of SIC to CO2 emissions with depth, we incubated carbonaceous soil samples coming from an 18-year-old agroforestry system (both tree row and alley) and an adjacent agricultural plot. Soil samples were taken at four different depths: 0-10, 10-30, 70-100 and 160-180 cm. Total CO2 emissions, the isotopic composition (δ13C, ‰) of the CO2 and microbial biomass were measured. The SIC concentrations were from 48 to 63 g C kg-1 soil and the SOC concentrations from 4 to 17 g C kg-1 soil. The total amounts of CO2 emissions from soil were correlated to C contents and decreased with depth (from 183-569 µgC g-1 soil in top soil vs 21-25 µgC g-1 soil in subsoil).

The contribution of SIC-derived CO2 was not homogenous along the soil profile. It represented about 20% in the topsoil and 60% in the subsoil of the total soil CO2 emissions. As the SOC content and the microbial biomass, the SOC-derived CO2 emissions were larger in the topsoil especially in the tree row compared to the alley and the agricultural plot. The SIC-derived CO2 emissions were also larger in topsoil and in tree rows at 0-10 cm than in alleys or agricultural plots (71 µg C g-1 soil vs 45-48 µg C g-1 soil) or in the subsoil (13-15 µg C g-1 soil), whereas the amount of SIC was similar in top and subsoil and in tree rows, alleys or agricultural soils. This indicate that CO2 emissions from SIC were linked to the SOC content and its mineralization.  In addition, our results suggest that the measurement of soil respiration in calcareous soils could be overestimated if the isotopic signature of the CO2 is not taken into account. It also advocates more in-depth studies on carbonate dissolution-precipitation processes and their impact on CO2 emissions.

Reference:

Cardinael, R., Chevallier, T., Guenet, B., Girardin, C., Cozzi, T., Pouteau, V., and Chenu, C. 2019 Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system, Eur J Soil Sci, https://doi.org/10.1111/ejss.12908.

How to cite: Chevallier, T., Cardinael, R., Guenet, B., Cozzi, T., Girardin, C., and Chenu, C.: Contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10139, https://doi.org/10.5194/egusphere-egu2020-10139, 2020.

Soil organic matter has generated international interest in carbon and nitrogen sequestration. In reality, small fluctuations of soil organic stock could have large impacts on global warming. Therefore, quantification of Soil Organic Carbon (SOCs) and Total Nitrogen (TNs) stocks in surface and deep horizons are important to control the release of greenhouse gases. The present research was undertaken in order to determine SOCs and TNs evolution over 50 years. For this aim, we selected two soils (P1 and P2) developed under contrasted pedogenetic conditions in North-West of Tunisia (Beja governorate). P1 is a Luvisol located in a forest region. However, P2 is a Cambisol situated in an agriculture zone. Soil samples were gathered from surface (0-30 cm) and deep (50-100 cm) horizons in 1971, 2005, 2012 and 2019. SOCs declined in surface and deep horizons during the experimental period in both studied soils. In the case of Luvisol, the values declined from 91.01 t/ha to 75.54 t/ha and from 53.00 t/ha to 24.51 t/ha, respectively in surface horizons and deep horizons. Likewise, the SOCs values decreased from 84.24 t/ha to 25.52 t/ha in surface horizons and from 24.45 t/ha to 14.20 t/ha in deep horizons of the Cambisol. The TNs recorded lower values than SOCs. Nevertheless, they showed the same behavior. Our results showed that the highest values of SOCs and TNs were recorded in the Luvisol. This soil exhibited the greatest amount of organic matter since it was developed under forest vegetation. In addition, the results showed an enrichment in SOCs and TNs of superficial horizons to the detriment of the deep horizons. Nevertheless, this decrease in organic stocks with depth occurred following different patterns according to soil type. In fact, the Cambisol reported an important depletion of soil organic stocks as compared to the Luvisol. The loss of SOCs and TNs were estimated to be 69.71% and 54.17% in surface horizon, and 41.94 % and 28.28 % in deep horizon, respectively. Indeed, the land-use change increases the decomposition of soil organic matter principal source of SOCs and TNs. Such a reduction has wider implications on global warming and soil fertility.  

How to cite: Tlili, A., Dridi, I., and Gueddari, M.: Organic Carbon and Nitrogen stocks in two soil types of Northwestern Tunisia: Temporal and spatial variation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-810, https://doi.org/10.5194/egusphere-egu2020-810, 2020.

EGU2020-19490 | Displays | SSS9.7

Organic carbon sequestration potential, rate and associated practices, as observed in Swiss arable land

Pascal Boivin, Xavier Dupla, Ophélie Sauzet, and Karine Gondret

Since 1993, analysing the soil of any cropped field at least every ten years is required to receive subsides associated with ecological services in Switzerland. After data quality control, we used 3’000 repeated analyses available from the cantons of Vaud and Geneva to quantify the deficit in Soil Organic Carbon (SOC), the SOC content change rate per year and its time evolution along the past 25 years. We then interviewed 120 farmers on a sample representative of the overall range of SOC change rates to analyse the relationships between their practices in the past ten years and the resulting rate.

The SOC deficit was quantified based on the soil vulnerability index, namely SOC to clay ratio (Fell et al., 2018; Johannes et al., 2017), with the 10% SOC:clay ratio as minimum desired SOC level. This yielded different deficits ranging from 20% to 70 % of the average SOC content in the Swiss cantons depending on the cropping systems and the soil types. 

Though the SOC deficit was different between the cantons, the distribution of SOC change rates was very similar, ranging from -50‰ to +50‰ with a median value close to 0. The average change rate, however, was significantly and linearly changing with time, from -4‰ in the 1995-2000 period to 9‰ in the present. This pattern was identical on both cantons and can be related to the introduction of different mandatory measures in 1993-1998 such as cover crops in fall, and a minimum of 4 crops in the rotation, and the development of conservation agriculture practices.

The detailed analysis of cropping practices and related SOC change rates allowed revealing the major options allowing for rapid sequestration and conversely. Moreover, exceptions to the general trends, allowing either to compensate SOC losses practices or jeopardizing sequestration efforts, were also highlighted. Two performing cropping systems were emerging: polyculture with breeding and conservation agriculture. Farmers’ income per ha of these systems were equal to or larger than the conventional models. Interestingly, the first factor for high sequestration performance was diversified rotation and intensive cover crops, regardless of the manuring level. These results were used to define the agricultural sections of the climate plan of the cantons.

 

Fell, V., Matter, A., Keller, T., Boivin, P., 2018. Patterns and Factors of Soil Structure Recovery as Revealed From a Tillage and Cover-Crop Experiment in a Compacted Orchard. Front. Environ. Sci. 6. https://doi.org/10.3389/fenvs.2018.00134

Johannes, A., Matter, A., Schulin, R., Weisskopf, P., Baveye, P.C., Boivin, P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma 302, 14–21. https://doi.org/10.1016/j.geoderma.2017.04.021

How to cite: Boivin, P., Dupla, X., Sauzet, O., and Gondret, K.: Organic carbon sequestration potential, rate and associated practices, as observed in Swiss arable land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19490, https://doi.org/10.5194/egusphere-egu2020-19490, 2020.

EGU2020-5304 | Displays | SSS9.7

Shrub encroachment decreases soil inorganic carbon stocks in Mongolian grasslands

Shangshi Liu, Luhong Zhou, He Li, Xia Zhao, Yankun Zhu, Haihua Shen, and Jingyun Fang

Widespread shrub encroachment in global drylands may increase plant biomass and change soil organic carbon stocks of grassland ecosystems. However, the response of soil inorganic carbon (SIC), which is a major component of dryland carbon pools, to this vegetation shift remains unknown. Here, we conducted a systematic field survey in 75 pairs of shrub-encroached grassland and control plots at 25 sites in the grasslands of the Inner Mongolia Plateau to evaluate how shrub encroachment affects SIC density (SICD) in these ecosystems. We found that shrub encroachment significantly reduced SICD in the upper 100 cm, especially in the subsurface soil (20-50 cm layer). The magnitude of SICD changes was related to the change in soil pH, shrub patch size, and initial SICD, reflecting that the reduction in SICD might be attributed to the shrub encroachment-related soil acidification. Our results also revealed that the lost SIC was mainly released into the atmosphere rather than redistributed into deeper soil layers. Overall, we provide the first evidence for the soil acidification-induced SIC loss caused by shrub encroachment. Our findings highlight the non-negligible role of SIC dynamics in the C budget of shrub-encroached grassland ecosystems and the need to consider these dynamics in terrestrial C cycle research.

How to cite: Liu, S., Zhou, L., Li, H., Zhao, X., Zhu, Y., Shen, H., and Fang, J.: Shrub encroachment decreases soil inorganic carbon stocks in Mongolian grasslands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5304, https://doi.org/10.5194/egusphere-egu2020-5304, 2020.

EGU2020-7325 | Displays | SSS9.7

Carbon speciation and carbon isotopic characterization of agricultural soils in Emilia-Romagna Region (Northeastern Italy)

Valentina Brombin, Gianluca Bianchini, Claudio Natali, Livia Vittori Antisari, Gloria Falsone, Mauro De Feudis, Gian Marco Salani, Enrico Mistri, and Francesco Malavasi

The agricultural European Innovation Partnership (EIP-AGRI) Focus Group on Soil Organic Matter (SOM) content in Mediterranean regions highlighted the poor organic carbon (OC) content in the investigated soils, with some areas, especially in Southern Europe, showing low (≤2%) or even very low (≤1%) OC values. For this reason Emilia-Romagna Region (Northeastern Italy) invested heavily in the Rural Development Programme (RDP), which financed projects addressed to the needs of specific geographical areas. Among these, SaveSOC2 project (Save Soil Organic Carbon) aims to evaluate the quantity and quality of SOM in both conventional and organic farms from distinct pedo-climatic setting of Emilia-Romagna Region and with possible critical issues, in order to identify the best agricultural practices which could contribute to i) carbon conservation and sequestration in soil and ii) mitigation of SOM mineralization responsible for the greenhouses emissions. Here we report the data of the “Tassinari” organic farm located at Bondeno, near Ferrara city in Padania Plain, an area characterized by soil with very low amount of OC. In the selected organic farm, topsoil samples (0-15 cm and 15-30 cm depth) were collected from strawberry fields and orchards converted from conventional to organic production since 1992. The soils have loam and silt loam texture, they are subalkaline (pH: 7.9-8.7) and nonsaline (EC: 0.1-0.2 dS m-1). To characterize the soil inorganic (SIC) and organic (SOC) carbon, for each sample, elemental and isotopic analyses were performed using the Thermally Based Separation protocol tested by Natali et al. (2018) with an EA-IRMS. As expected, the vertical distribution of carbon along each site showed a negative correlation between SIC and SOC contents, as IC slightly increase over depth while OC show a clear decline. Moreover, irrespectively of the sampling depth, the OC values (0.90-1.14 wt.%) are always lower than those of IC (1.04-2.50 wt.%). The relatively low negative δ13C values of the total carbon (from -12.1‰ to -9.0‰) reflect the predominance of SIC in the investigated topsoils. The low storage of organic matter in this area is also confirmed by the OC stock value in the topsoils, which is on average 42.6 Mg/ha. A Soli TOC Cube® was also used to discriminate the labile organic carbon (TOC400) and the residual oxidizable carbon (ROC) fractions, which are oxidized at temperature below and above 400°C, respectively. In all the investigated topsoils, the TOC400 values (0.60-0.84 wt.%) are higher than those of ROC (0.21-0.28 wt.%), indicating large amount of “fresh” organic matter, and low amount of residual organic carbon. The high relative presence of labile OC pools, probably due to the soil fertilisation with easy available organic compounds, can be critical for SOM sequestration, preventing the accumulation of stabilised organic compounds.

 

Natali C., Bianchini G., Vittori Antisari L. 2018. Thermal separation coupled with elemental and isotopic analysis: A method for soil carbon characterisation. Catena 164, 150-157.

How to cite: Brombin, V., Bianchini, G., Natali, C., Vittori Antisari, L., Falsone, G., De Feudis, M., Salani, G. M., Mistri, E., and Malavasi, F.: Carbon speciation and carbon isotopic characterization of agricultural soils in Emilia-Romagna Region (Northeastern Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7325, https://doi.org/10.5194/egusphere-egu2020-7325, 2020.

EGU2020-7646 | Displays | SSS9.7

Organic matter investigation in agricultural Apennine topsoils (Emilia-Romagna Region): carbon pools and isotopic C signature

Enrico Mistri, Gianluca Bianchini, Claudio Natali, Livia Vittori Antisari, Gloria Falsone, Mauro De Feudis, and Valentina Brombin

The exploitation of soils due to farming has produced a progressive loss of soil organic matter (SOM) over the years. At the same time, the degradation of SOM has led to a decline of several ecosystem services provided by soil, especially in mountain. Against this background, the partnership between Department of Physics and Earth Sciences of University of Ferrara and Department of Agricultural and Food Sciences of University of Bologna led to the creation of the SaveSOC2 project (Save Soil Organic Carbon), funded by Rural Development Programme of Emilia-Romagna Region. This project primarily seeks to investigate and promote carbon storage processes in agricultural soils of Emilia-Romagna Region (NE Italy). The present study outlines an overview about the SOM dynamics of “I Rodi” organic farm, located in the Modena Apennine. “I Rodi” produces and processes small organic fruits, especially raspberries. Three different sites (grassland -G, very low productive raspberries -LR, and good productive raspberries -GR) have been selected and the topsoils (0-15 cm and 15-30 cm) have been investigated. Elemental and isotopic analyses of soil C were performed using an EA-IRMS. In particular, the application of the Thermally Based Separation protocol [1] allowed the determination of both inorganic (IC) and organic (OC) carbon contents in each soil sample. OC accounted for 93.50% of the total carbon (1.72-4.84 wt.%). The negative δ13C values of the total carbon (from -27.8 to -19.7 ‰) confirmed the predominance of OC over IC in the investigated soils. The average values of OC isotopic C signature showed a decreasing trend among the three sites (-28.2, -27.2 and -25.8‰ for GR, G and LR, respectively), with the low productivity site having the highest δ13C value. The isotopic C signature of separated organic C fractions (0-15 cm topsoils) showed that humin (832-879 g/kg), which is the SOM fraction mostly interacting with the soil mineral phase and the largest pool, confirmed the observed trend (-27.5, -27.0, -26.4‰, GR, G and LR). The humic acids (6-17 g/kg) showed similar trend but lower δ13C values in all sites (-28.5, -28.0, -26.8 ‰, GR, G and LR). Finally, fulvic acids (5-10 g/kg) differed, having dissimilar trend and values of δ13C (-27.1, -26.8, -26.0 ‰ for G, GR and LR). Comparing to G, the GR data suggested that organic management i) did not decrease quantity and quality of organic matter, and ii) it was more efficient in OC stabilisation, increasing the amount of less transformed OC in both humin and humic acids (more negative δ13C values). In the LR site, instead, the observed trend can be due to low suitability of this soil to raspberries production, negatively affecting both crop yields and organic C dynamics. In our opinion, in order to combine agricultural productivity and its sustainability, more attention should be paid both to soil management and suitability in the area.

[1] Natali C., Bianchini G., Vittori Antisari L. 2018. Thermal separation coupled with elemental and isotopic analysis: A method for soil carbon characterisation. Catena 164, 150-157.

How to cite: Mistri, E., Bianchini, G., Natali, C., Vittori Antisari, L., Falsone, G., De Feudis, M., and Brombin, V.: Organic matter investigation in agricultural Apennine topsoils (Emilia-Romagna Region): carbon pools and isotopic C signature, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7646, https://doi.org/10.5194/egusphere-egu2020-7646, 2020.

EGU2020-21454 | Displays | SSS9.7

Spatial variability of organic and inorganic carbon stocks in Hungry Steppe (Uzbekistan)

Sophia Demina, Viacheslav Vasenev, Kristina Ivashchenko, Inna Brianskaia, Bakhtiyor Pulatov, and Alim Pulatov

Desertification is an important soil treat, affecting soil functions and ecosystem services   in arid and semiarid climate zones. Salinization is one of the principal processes which follows desertification and has a negative impact on soil properties and functions. Carbon sequestration is considered a principle soil function and the decline in soil carbon stocks in one of the main negative consequences of soil degradation. Soil salinization is caused by combination of natural factors (e.g. dry climate condition and high table of mineralized ground waters) and human activities such as improper water management. Globally, soils of the areas affected by salinization are considered to be poor in organic carbon due to low biomass and hampered microbiological activity. However, the contribution of inorganic carbon to the total carbon stocks in these areas can be comparable. Considering that soil inorganic carbon is more stable to mineralization compared to organic carbon, soil carbon stocks in saline landscape shall not be neglected.

Central Asian regions and especially the Aral Sea basin have been historically affected by desertification enhancing soil salinity. Hungry Steppe (Mirzachul) is an area of historical desertification and salinization, covering around 10000 km2 at the territories of Uzbekistan, South Kazakhstan and Tajikistan. The region has a sharp continental climate with large seasonal fluctuations. Dry and semidesertic steppe vegetation dominates the natural areas (mainly coincided with high soil salinity), whereas most of the areas is managed to produce cotton, perennial grasses, melons and gourds. Soils are dominated by serozems corresponding to Calcisols in WRB soil classification. The research aimed to analyze the effect of salinization on carbon stocks in Hungry Steppe. To achieve this aim, soil carbon stocks were estimated at the four collective farms, referred as Water Consumer Assiociations (WCAs) or ‘shirkats’ in Syrdarya province: Khavast district in Yangier WCA, Mirzaobod district in Beruniy WCA  Oq Oltin district in Andijan WCA and Syrdarya district in Sobir  Rakhimov WCA. The selected sites belonged to different in land quality classes, based on the land evaluation survey carried out by the melioration expedition of the Ministry of Agriculture and Water Resources of Uzbekistan in 201,  from the lowest (Mirzaobod) to the highest (S. Rahimov). Soil pH, electroconductivity, chlorides, organic and inorganic carbon stocks and total nitrogen stocks were estimated for each of the areas. Although the internal variability in the analyzed parameters was high we clearly showed the highest stocks of soil inorganic carbon in the most salinized area, whereas the highest stocks of organic carbon were shown for the most fertile lands. However, we didn’t ding significant difference in the total carbon stocks between the sites. It can be concluded that desertification has more effect on the redistribution of organic and inorganic forms of carbon, rather than on the total carbon stocks.

Acknowledgements The experimental research was performed with the support of the Russian Foundation for Basic Research, Project # 18-54-41004 and Ministry of Innovation development of the Republic of Uzbekistan, Project # MRU-SQV 86/2017. Data analysis and mapping was supported by the RUDN project “5-100”.

How to cite: Demina, S., Vasenev, V., Ivashchenko, K., Brianskaia, I., Pulatov, B., and Pulatov, A.: Spatial variability of organic and inorganic carbon stocks in Hungry Steppe (Uzbekistan), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21454, https://doi.org/10.5194/egusphere-egu2020-21454, 2020.

EGU2020-2775 | Displays | SSS9.7

Anthropogenic impact on inorganic soil C: Impact of Irrigated Agriculture on Carbonates Dynamics in Semiarid Land

Isabel S. De Soto, Iñigo Virto, Alberto Enrique, Rodrigo Antón, and Pierre Barré

In many semiarid Mediterranean soils, carbonates can constitute a significant proportion of the soil mass. Unlike other soil inorganic components, carbonates can react in the short term to changes in the soil water regime and the physical-chemical conditions of the soil solution. The introduction of irrigation can be associated to such changes, as it changes the water balance, the composition of the soil solution, and the concentration of CO2 in the soil atmosphere.

To gain knowledge on the importance of the effect of irrigation on carbonates dynamics in the tilled layer of agricultural Mediterranean soils, we conducted a three-step study embracing field observations and numerical simulation.

In the first step, carbonates stocks and size-distribution were quantified for two different situations (irrigation and non-irrigation) in paired plots of three irrigation districts in Navarre (Spain). Our results, showed that although the net annual balance of total carbonates-C between irrigated and non-irrigated plots was neutral, carbonates concentration was lower with irrigation in the finest (< 50 μm) soil fractions (25.6 ± 2.6 carbonates 100 g−1 without irrigation for 19.3 ± 2.1 with irrigation, on average).

In a second step, numerical simulations of the geochemical interactions between soil carbonates, the soil solution and irrigation water were run using actual soil characteristics and soil solution data from the tilled layer (0-30 cm) of two paired plots 9 years after irrigation started. A sensitivity analysis was also conducted to investigate the potential impact of water quality and crop types as sources of variability in the model outputs. The modelling results showed annual losses of carbonates-C in the range of 12.06-13.52 g m−2 year−1 in the studied depth under irrigation, depending on the quality of irrigation water, for 0.46 g m−2 without irrigation.

Lastly, and because the acceleration of carbonate dissolution/precipitation cycles, together with the addition of calcium in fertilizers and irrigation water, can cause an increase in the formation of pedogenic carbonates, their proportion was estimated in paired plots from carbonates-C isotopic signatures: a preferential accumulation of pedogenic carbonates in the finest size fractions (87-92%) was observed with irrigation (61-74% without irrigation).

Future investigations

New field observations and numerical simulations will be done in an experimental plot in  which corn (Zea mays L.) has been grown since 2010 with and without irrigation. A numerical model will be developed to study the expected changes in the carbonate dissolution/precipitation cycles in semi-arid Mediterranean areas and these results will be compared with the concentration and characteristics of carbonates (size distribution and isotopic signature as an indicator of their geological or pedogenic origin) in the experimental plot.

Finally, the model will be validated at a regional scale, using a network of real representative agricultural plots in which there has been a change in land use from unirrigated to irrigated land in Navarre.

 

How to cite: De Soto, I. S., Virto, I., Enrique, A., Antón, R., and Barré, P.: Anthropogenic impact on inorganic soil C: Impact of Irrigated Agriculture on Carbonates Dynamics in Semiarid Land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2775, https://doi.org/10.5194/egusphere-egu2020-2775, 2020.

EGU2020-1514 | Displays | SSS9.7

Deep soil accumulation of organic carbon under cultivated Kazakh Steppe soils

Aleksey Prays, Sonia Banze, Friedrich Jalowy, Klaus Kaiser, and Robert Mikutta

The decline in organic carbon (OC) stocks after conversion from grassland to cropland under conventional soil tillage practices was 24-32% for American prairie soils. The respective decreases in OC stocks ranged from 27% to more than 40% for steppe soils of the European part of Russia and was about 31% in semi-arid steppe soils of South Siberia. Here, we present results on the soil OC stocks in steppe soils of Northern Kazakhstan, which partly were converted to arable land over the last 60 to 90 years. We sampled soils by genetic horizons along a north-south transect, where precipitation increased towards north but negligible variation in temperature. Soil samples were analyzed for organic and inorganic carbon as well as bulk density.

Surprisingly, we found along the transect on average only 3.5% smaller OC stocks at 0-10 cm depth in arable than in natural soils. Even more astonishing, all arable soils tested had larger OC stocks in the layers beneath 10 cm depth than the natural steppe soils. On average, the OC stocks in 10-100 cm depth were 34% larger in soils under arable management than in natural steppe soils. We credit the enhanced deep soil accumulation of OC in arable soils of Northern Kazakhstan to colloidal translocation of OC-rich particles along vertical pores. The cause of the increased in colloidal transport under arable management is still under evaluation but appears connected to the clayey soil texture and the large abundance of expandable clay minerals. We conclude that despite of the intense land use and severe climatic conditions accumulation of subsoil carbon is possible even after many decades of cultivation history. Our findings stress the importance of considering whole soil profiles for analyzing the consequences of land use change on the net carbon balance of soils.

How to cite: Prays, A., Banze, S., Jalowy, F., Kaiser, K., and Mikutta, R.: Deep soil accumulation of organic carbon under cultivated Kazakh Steppe soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1514, https://doi.org/10.5194/egusphere-egu2020-1514, 2020.

EGU2020-13092 | Displays | SSS9.7

Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library

Tiphaine Chevallier, Cécile Gomez, Patricia Moulin, Imane Bouferra, Kaouther Hmaidi, Dominique Arrouays, Claudy Jolivet, and Bernard Barthès

Mid-Infrared Reflectance Spectroscopy (MIRS, 4000–400 cm-1) is being considered to provide accurate estimations of soil properties, including soil organic carbon (SOC) and soil inorganic carbon (SIC) contents. This has mainly been demonstrated when datasets used to build, validate and test the prediction model originate from the same area A, with similar geopedological conditions. The objective of this study was to analyze how MIRS performed when used to predict SOC and SIC contents, from a calibration database collected over a region A, to predict over a region B, where A and B have no common area and different soil and climate conditions. This study used a French MIRS soil dataset including 2178 soil samples to calibrate SIC and SOC prediction models with partial least squares regression (PLSR), and a Tunisian MIRS soil dataset including 96 soil samples to test them. Our results showed that using the French MIRS soil database i) SOC and SIC of French samples were successfully predicted, ii) SIC of Tunisian samples was also predicted successfully, iii) local calibration significantly improved SOC prediction of Tunisian samples and iv) prediction models seemed more robust for SIC than for SOC. So in future, MIRS might replace, or at least be considered as, a conventional physico-chemical analysis technique, especially when as exhaustive as possible calibration database will become available.

How to cite: Chevallier, T., Gomez, C., Moulin, P., Bouferra, I., Hmaidi, K., Arrouays, D., Jolivet, C., and Barthès, B.: Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13092, https://doi.org/10.5194/egusphere-egu2020-13092, 2020.

EGU2020-1006 | Displays | SSS9.7

Hyperspectral imaging for high-resolution mapping of soil profile organic carbon distribution in an Austrian Alpine landscape

Yaser Ostovari, Baptist Köppendörfer, Julien Guigue, Jan Willem Van Groenigen, Rachel Creamer, Thomas Guggenberger, Florian Grassauer, Eleanor Hobley, Laura Ferron, Henk Martens, Ingrid Kögel-Knabner, and Alix Vidal

Studies on soil organic carbon (SOC) stocks mostly focus on topsoils (< 30 cm). However, 30 to 63% of the SOC are stored in the subsoils (30 to 100 cm), and the factors controlling SOC storage in subsoils may be substantially different than in topsoils. The low mean SOC content in subsoils makes its quantification and characterization challenging. Thus, new approaches are required to depict the SOC stocks distribution in full soil profile. Hyperspectral imaging of soil core samples can provide high spatial resolution of the vertical distribution of SOC in a soil profile. The main objective of the ongoing study, within the Horizon 2020 European Project Circular Agronomics, is to apply laboratory hyperspectral imaging with a variety of machine learning approaches for the mapping of OC distribution in undisturbed soil cores. Soil cores were collected down to a depth of one meter in grasslands of 15 organic farms located in the Lungau Valley, in Austria. Some samples were divided into five depths in the field for classical bulk soil measurements (total carbon and nitrogen, texture, pH, EC and bulk density) on disturbed samples. Undisturbed soil cores were sliced vertically for laboratory hyperspectral imaging in the range of Vis-NIR (400-1000 nm). We were able to reveal the hotspots of OC and map the OC distribution in soil profile by applying a variety of machine learning approaches (i.e. partial least square and random forest regression) as a function of spectral responses. A digital elevation model was further exploited to investigate the effects of topographical factors such as elevation, aspect and slope on SOC profile distribution. Landsat 8 data were also used to depict the spatial variability of land insensitive cover/vegetation in study area.

How to cite: Ostovari, Y., Köppendörfer, B., Guigue, J., Van Groenigen, J. W., Creamer, R., Guggenberger, T., Grassauer, F., Hobley, E., Ferron, L., Martens, H., Kögel-Knabner, I., and Vidal, A.: Hyperspectral imaging for high-resolution mapping of soil profile organic carbon distribution in an Austrian Alpine landscape , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1006, https://doi.org/10.5194/egusphere-egu2020-1006, 2020.

EGU2020-13668 | Displays | SSS9.7

Impact of site-specific fertilizing management in carbon and water footprint. The case of cotton under Mediterranean conditions

Antonios Papadopoulos, Gerasimos Troyanos, Dionissios Kalivas, Maria Doula, Stamatios Kavasilis, Georgios Zagklis, and Chronis Kolovos

In field homogenous application of fertilizers can be considered as a non-environment friendly agricultural practice as it ignores site specific variations of soil and plant properties. Conventional fertilizing management usually results in overfertilization guiding to burdens of the environment in terms of chemical pollution in soil-water system and Greenhouse Gas (GHG) emissions in the atmosphere. The effects are expected to be more severe in Mediterranean region under the evolving climate change. Site-specific fertilizing management on the other hand, poses a practice that is adapted to high precision spatial soil, climatic and plant conditions. In this sense, the agricultural practices are properly adjusted to the needs of the crops. The research is focused on the assessment of the impacts of conventional and site-specific management of nitrogen fertilization to carbon and water footprint at cotton cultivation in field level. The study area concerns two cotton fields in Central Greece that were monitored with the use of classical soil analytical methods and remote sensing sensors throughout a cultivation period. The monitoring process led to the delineation of the fields in different management zones needing variable fertilizing doses. Further, all conventionally applied practices were annotated concerning the last 4-year period in order to collect historical fertilizing data. In both cases (conventional and site-specific) the carbon and water (blue, green, grey) footprints of the two fields were calculated. Carbon footprint was calculated by assessing IPCC 2006 guidelines (updated in 2019) as regards direct and LULUCF emissions. For this, Tier 2 emission factors were used for the main emission categories, as these were defined by the Greek State, while for the other categories, emission factors of Tier 1 of IPCC guidelines were used. For the determination of water footprint, local meteorological data and cotton development stages concerning Greek conditions were used. The determination of the footprints was realized with the use of a software tool developed by the BalkanROAD project in the framework of INTERREG Balkan-Mediterranean 2014-2020 programme, which addresses territorial competitiveness and environment. Preliminary results show encouraging prospective for the improvement of carbon and water footprint when shifting from conventional to site-specific management.

How to cite: Papadopoulos, A., Troyanos, G., Kalivas, D., Doula, M., Kavasilis, S., Zagklis, G., and Kolovos, C.: Impact of site-specific fertilizing management in carbon and water footprint. The case of cotton under Mediterranean conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13668, https://doi.org/10.5194/egusphere-egu2020-13668, 2020.

EGU2020-15424 | Displays | SSS9.7

Soil organic carbon stock development in chernozemic soils following agricultural abandonment

Tibor József Novák, László Márta, and Szabolcs Balogh

Post agricultural development of traditionally intensively cultivated high fertility soils is a relevant question in surroundings of towns affected by urban sprawl, where extent areas of former cultivated soils are converted into residential, industrial or infrastructural surfaces. Part of these areas will covered by artificially sealed soils, but always extent areas remain for green areas, managed with different intensity, which allows recharge of soil organic carbon stocks and soil regeneration processes. In our study agricultural and post agricultural soils were sampled in a Chernozemic landscape affected by urbanization processes. Besides of other regeneration processes, concerning to the improvement of soil structure, we found that soil organic carbon stocks in the 0-30 cm soil layer are significantly higher in post agricultural soils (9.4±0.5 kg·m-2) as in ploughed (6.4±0.8 kg·m-2) or in ploughed plus irrigated (5.6±0.7 kg·m-2) profiles. The difference was found to be significant not only until the depth of the cultivated layer (30 cm), but until the sampled 70 cm depth throughout (17.8±0.9; 10.8±3.3 and 10.6±2.7 kg·m-2 respectively). Our results point on the high carbon recovery potential of suburban areas converted from fertile cultivated soils.

How to cite: Novák, T. J., Márta, L., and Balogh, S.: Soil organic carbon stock development in chernozemic soils following agricultural abandonment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15424, https://doi.org/10.5194/egusphere-egu2020-15424, 2020.

EGU2020-16855 | Displays | SSS9.7

Changes in soil properties on agricultural land with the impact of water and tillage erosion in the last 60 years

Anna Juřicová, Tomáš Chuman, and Daniel Žížala

The decline in soil organic carbon (SOC) is generally perceived as a major threat to the sustainability of the soil due to its key role in many productive and non - productive soil functions. The aim of this research is to assess the intensity of changes and the spatial variability of SOC and soil depth in the last 60 years. Estimation of spatial variability of soil properties was performed by using digital soil mapping. A study area is located in the chernozems area in south Moravia (Czechia). This region is traditionally intensively cultivated with the strong impact of water and tillage erosion. The study is based on the analysis of historical data that comes from the Large-scale mapping of Agricultural Soils in Czechoslovakia soil database. Our dataset contained data from 120 soil profiles. A new field investigation shows significant SOC losses on steep slopes and slope shoulders with a decrease of depth of the humic horizon. As a result, there is a gradual transformation of soil units from the former Calcic Chernosems into the Haplic Calcisols. These findings are the result of ongoing environmental changes with the strong impact of historical agricultural policy and inappropriate interference in the landscape.

How to cite: Juřicová, A., Chuman, T., and Žížala, D.: Changes in soil properties on agricultural land with the impact of water and tillage erosion in the last 60 years, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16855, https://doi.org/10.5194/egusphere-egu2020-16855, 2020.

EGU2020-18914 | Displays | SSS9.7

Achievements and challenges of the modelling of soil organic carbon in a highly variable Mediterranean area

Sergio Saia, Calogero Schillaci, Aldo Lipani, Alessia Perego, and Marco Acutis

Mediterranean areas are vulnerable and at high risk of desertification, although harboring high fractions of the global biodiversity. Resilience of these (agro)ecosystem strongly relies on soil preservation, and thus the reduction of both the sediment and soil organic carbon (SOC) losses. However, SOC dynamic is understudied in the Mediterranean areas, especially in the arid and semiarid regions [1].

Here we are summarizing the known and unknown of the SOC modelling in a highly variable Mediterranean area, namely Sicily (southern Italy). In addition, we highlight main research needs to increase the reliability of the estimation of the SOC change in time.

A total of 6674 soil samples were taken in various sampling campaigns from the 1993 to the 2008 from various depths (of which only 20% with soil bulk density [SBD] information) from both agricultural and forest lands on a 25,711-km2 area [2]. Such database was used for SOC modelling through various procedures including classification and regression trees (CARTs) and Least Absolute Shrinkage and Selection Operator (LASSO) [3-5].

Modelling SOC stock estimated with an already developed pedotransfer (R2 = 0,3) function for SBD consisted in a high uncertainty, with a ratio between the model mean absolute error and the modelled 90th percentile higher than 26.9%, suggesting that SBD information or its reliable prediction is a prerequisite for SOC stock modelling in these areas, especially in agricultural land. In addition, taking into account the sampling campaign almost doubled the r squared of the CART models, which on average outcompeted the kriging and LASSO methods for the prediction certainty.

When modelling the time-variation of the SOC concentration through the use of non-paired samples [5], the closer of which was few km apart, a mean SOC variation was highlighted, and the model yielded high pseudo-R2 (0.63–0.69) and low uncertainty (s.d. < 0.76 g C kg−1). However, these s.d. can be used only to highlight strong variations at a relatively low resolution (i.e. 1-km), especially if data are not collected with the same sampling scheme. The variation found in the aforementioned work [5] likely depended on a change of both the sampling scheme and land use rather than an accumulation or loss of SOC in a given land use.

Thus, measuring SOC concentration and SBD in time-paired sites appears as a prerequisite to detect a SOC change in a given land use, especially if taking into account that the most important SOC predictors throughout the experiments were rainfall and temperatures and climate change is likely to differentially affect each site. To overcome such a lack, a time paired-sampling was performed in 2017 in 30 sites in the arable land, providing evidence that the increases estimated from the 1993 to 2008 were not evident when resampling the 10% of the 1993’s sites in field with continuous arable land use.

 

Reference: [1] Schillaci et al. DOI: 10.3301/ROL.2018.68; [2] Schillaci et al. DOI: 10.1016/j.catena.2018.12.015; [3] Veronesi and Schillaci DOI: 10.1016/j.ecolind.2019.02.026; [4] Lombardo et al. DOI: 10.1016/j.geoderma.2017.12.011; [5] Schillaci et al. DOI: 10.1016/j.scitotenv.2017.05.239

How to cite: Saia, S., Schillaci, C., Lipani, A., Perego, A., and Acutis, M.: Achievements and challenges of the modelling of soil organic carbon in a highly variable Mediterranean area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18914, https://doi.org/10.5194/egusphere-egu2020-18914, 2020.

EGU2020-17848 | Displays | SSS9.7

Biochar combined with manure application can decrease organic matter decomposition compared to manure alone in the dry tropical cropland of south India

Mayuko Seki, Soh Sugihara, Hidetoshi Miyazaki, Muniandi Jegadeesan, Pandian Kannan, and Haruo Tanaka

Soils in the dry tropical croplands of south India are inherently low in soil carbon (C) stock, and it is essential to accumulate the soil C for sustainable soil management. Biochar is generally considered to be a useful material that enhance the soil C stock, though its real effect on soil C dynamics is still unclear especially in the dry tropical croplands such as south India. Thus, our objective was to evaluate the effect of biochar application on soil C dynamics for optimal soil management in south India. Field experiment was conducted in Tamil Nadu state (Inceptisols) from Sep. 2017 to Apr. 2019 (1.5 years), which include two times sorghum cultivation (each 4 months) with six treatment plots (control (C), biochar (B) (8.2 Mg C ha-1), farmyard manure (FYM) (F) (1.1 Mg C ha-1), chemical fertilizer (CF) (100 kg N; 40 kg P ha-1), biochar and FYM (B+F), and biochar and chemical fertilizer (B+CF)). We applied biochar once at the beginning of the experiment to evaluate the effective duration of biochar in soil after application, while we applied FYM every year before crop cultivation. We periodically measured the CO2 efflux rate (29 times totally) with continuous environmental data including soil moisture (0-15 cm) and soil temperature (5 cm), and estimated the total CO2 flux as C output, based on the relationship between the CO2 efflux rate and environmental data. We found that the CO2 efflux rate in the B+F plot tended to be lower than the F plot throughout the experimental period, though the significant difference between the B+F plot and F plot was only in the cultivation period of the 1st year, in case of using the analysis of variance for each cultivation period separately. We found that cumulative CO2 flux in the B+F plot (2.2 Mg C ha-1 1.5 year-1) was also lower than the F plot (2.5 Mg C ha-1 1.5 year-1), and that biochar and FYM application decreased ca. 0.3 Mg C ha-1 1.5 year-1 decomposition compared to the application of FYM alone. This might be because combined application of biochar and FYM decreased the soil microbial activity, resulting in the lower FYM decomposition in the B+F plot. Our results indicate that biochar combined with FYM application would effective for soil C sequestration, and hence for sustainable soil management in the dry tropical cropland.

How to cite: Seki, M., Sugihara, S., Miyazaki, H., Jegadeesan, M., Kannan, P., and Tanaka, H.: Biochar combined with manure application can decrease organic matter decomposition compared to manure alone in the dry tropical cropland of south India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17848, https://doi.org/10.5194/egusphere-egu2020-17848, 2020.

EGU2020-9404 | Displays | SSS9.7

SOC modelling and cropping system managements in contrasting climatic conditions

Marco Acutis, Elena Valkama, Gulya Kunypiyaeva, Muratbek Karabayev, Rauan Zhapayev, Erbol Zhusupbekov, Alessia Perego, Calogero Schillaci, Dario Sacco, Barbara Moretti, and Carlo Grignani

Conservation agriculture (CA) involves complex and interactive processes that ultimately determine soil C storage, making it difficult to identify clear patterns, particularly, when the results originate from many experimental studies. To solve these problems, we used the ARMOSA process-based crop model to simulate the contribution of different CA components (minimum soil disturbance, permanent soil cover with crop residues and/or cover crops, and diversification of plant species) to soil organic carbon (SOC) sequestration at 0-30 cm soil depth and to compare it with SOC evolution under conventional agricultural practices. We simulated SOC changes in two sites located in Central Asia (Almalybak, Kazakhstan) and Southern Europe (Lombriasco, Italy), which have contrasting soils, organic carbon contents, climates, crops and management intensity.  Simulations were carried out for the current (1998-2017) and future climatic scenarios (period 2020-2040, scenario Representative Concentration Pathway 6.0).

Five cropping systems were simulated: conventional systems under ploughing at 25-30 cm with monoculture and  residues removed (Conv–R) or residues retained (Conv+R); no-tillage (NT) with residue retained and crop monocultures; CA and CA with a cover crop, Italian ryegrass (CA+CC). In Conv–R, Conv+R and NT, the simulated monocultures were spring barley in Almalybak and maize in Lombriasco. In CA and CA+CC, crop rotations were winter wheat - winter wheat - spring barley - chickpea in Almalybak; maize - winter wheat - soybean in Lombriasco, together with Italian ryegrass in the +CC options.

In Lombriasco, conventional systems led to SOC decline of 170-350 kg ha-1 yr-1, whereas, NT and CA prevented the decline and kept it on the slightly positive level under both climate scenarios. A low rate of SOC increase most likely stems from, in addition to climates, the low silt-clay fraction (34%), and thus, more vulnerable to mineralization and decay.

In Almalybak, SOC loss in conventional systems was 480-560 kg ha-1 yr-1 under current climate, and NT prevented the loss only under current climate, but not under the future climate scenario. In contrast, CA allowed for the annual C sequestration of 300 kg ha-1 and up to 620 kg ha-1 with cover crops. Under the future climate scenario, the model predicted somewhat less C sequestration under CA, probably, due to the reduction of residue biomass. Particularly, in Southern Kazakhstan, CA has the largest potential for C sequestration under both climate scenarios, twice exceeding the objectives of the “4 per 1000” initiative. This initiative claims that an annual growth rate of 0.4% in the soil carbon stocks, or 4‰ per year, in the first 30-40 cm of soil, would significantly reduce the CO2 concentration in the atmosphere related to human activities.

How to cite: Acutis, M., Valkama, E., Kunypiyaeva, G., Karabayev, M., Zhapayev, R., Zhusupbekov, E., Perego, A., Schillaci, C., Sacco, D., Moretti, B., and Grignani, C.: SOC modelling and cropping system managements in contrasting climatic conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9404, https://doi.org/10.5194/egusphere-egu2020-9404, 2020.

EGU2020-4644 | Displays | SSS9.7

Effects of conversion from vineyard to tree plantation on humus forms, soil organic carbon stock and other soil properties

Chiara Ferré, Gianni Facciotto, Sara Bergante, and Roberto Comolli

We explored the effects of conversion from vineyard to tree plantation on humus forms, soil organic carbon (SOC) stocks and other soil properties by sampling paired plots in a hilly area of Monferrato (Piedmont, Italy).

The study area is located at Rosignano Monferrato (AL) and includes a vineyard (VY) and a nearby 30-years-old tree plantation (TP) for wood production that replaced an existing vineyard, where eight poplar clones were consociated with other timber species (wild cherry, European ash, manna ash, deodar cedar). The area under study covers 3 ha and extends along a slighty-wavy slope with an average gradient of 15%; according to the WRB classification, soils are Calcaric Cambisols (Loamic).

The impact of land use change on soil properties was evaluated considering the spatial variability of soil characteristics, testing for autocorrelation among the model residuals. Soil sampling was performed from 3 layers (0-10 cm, 10-40 cm and 40-70 cm) at 61 and 69 points in the VY and the TP respectively, to characterize soil pH in water, organic carbon content and SOC stock, C:N ratio, soil texture and total carbonates. The common pedological origin of soils within the study area was verified and confirmed by comparability of soil texture and carbonates content of the deeper layer.

At TP the humus forms were described and classified; the organic horizons were sampled and analyzed for OC content determination.

Statistical analyses showed significant (p-value < 0.05) differences for all the investigated layers between the considered land uses with regard to pH, SOC stock and C:N ratio.

Our study provided evidence that: (1) the conversion from vineyard to tree plantation resulted in the appearance of organic horizons: the main humus forms in TP were Mull and Amphi; (2) 30 years of tree plantation strongly modified SOC stock, resulting in an increase of 26% in the first 70 cm, which became 42% if the organic layers were included; (2) soil acidification (pH difference of 0.4) and change in SOC type (C:N increase of 1) were also observed in TP compared to VY; and (3) the spatial distribution of soil properties in the VY were affected by erosive and depositional dynamics unlike the TP where vegetation counterbalance erosion.

How to cite: Ferré, C., Facciotto, G., Bergante, S., and Comolli, R.: Effects of conversion from vineyard to tree plantation on humus forms, soil organic carbon stock and other soil properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4644, https://doi.org/10.5194/egusphere-egu2020-4644, 2020.

Planting trees is suggested as a cheap measure to capture CO2, but might conflict with agricultural land use. Changing pasture and cropland into agroforestry systems like nut orchards might increase carbon (C) sequestration, without encroaching on agricultural land use. C-sequestration can act as a climate engineering measure to mitigate increasing CO2 emissions to the atmosphere. The general discourse is that agroforestry systems can sequester more carbon than cropland or pastures. Data on the impact of land use change from agriculture to agroforestry systems like nut orchards in the temperate climate zone are scarce.

In this study we analysed C-sequestration dynamics in above and below soil stocks and fluxes, from the perspective of global climate mitigation. Field measurements and lab results on chronosequences from pasture and cropland to stands of Corylus and Juglans trees have been combined with modelling future pathways at the level of parcels. The object of study was a temperate nut orchard located on sandy soils in the Netherlands (Province Gelderland).

Data on C stocks and fluxes have been collected in four methods: (1) field sampling analysed in a laboratory, (2) field survey, (3) collecting historic agricultural management data by interviewing and document analysis, and (4) analysing data by literature review. Focus was on C-stock data analysis and additional analysis of the C-budget change over years (chronosequence).

Results show different patterns (all data related to sequestration in reference plots):

C-sequestration in soil organic carbon (based on field samples, 0-60cm depth) ranges from -0.1 to 2.2 Mg C ha-1yr-1.

C-sequestration in Corylus trees (based on field data and allometric equations) ranges from 0.5 to 1.2 Mg C ha-1yr-1.

C-sequestration in Juglans trees (based on field data and allometric equations) ranges from 0.3 to 0.7 Mg C ha-1yr-1.

C-sequestration in below ground biomass (based on allometric equations) ranges from 0.06 to 0.4 Mg C ha-1yr-1.

The parameterized allometric equations show a large increase in C-sequestration, ranging from 0.9 to 3.5 Mg ha-1yr-1. Compared to grassland and cropland estimates this is 10 times higher, meaning a potential useful contribution to the mitigation of CO2 emissions. Further we observed an increase in quality of soil organic carbon, due to a shift to higher C/OM and C/N levels, lower annual OM breakdown and larger amounts of observed earthworms.

 

How to cite: Roest, E., Lansu, A., Baltissen, T., and Dekker, S. C.: From Pasture and Cropland to Nut Orchards: Modelling the Dynamics of Carbon Sequestration by Agroforestry Systems in the Temperate Climate Zone., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11195, https://doi.org/10.5194/egusphere-egu2020-11195, 2020.

EGU2020-19866 | Displays | SSS9.7

Investigation of the carbon sequestration potential of soils and woodlands at university farms

Jiaqian Wang, David Werner, and David Manning

Reducing carbon footprint has increasingly become an important topic regarding the management of industries and universities from different fields. Newcastle University promised to achieve the goal of net-zero carbon dioxide emissions by 2040, and the first process from this ambitious target is to produce a 43% reduction by July 2020, against a 2005/06 baseline. According to the report from Carbon Management Plan 2019 of Newcastle University, there are still 1,720 tons of carbon that should be reduced or offset during this year.

Two farms were investigated in this project: Nafferton Farm (NF) and Cockle Park Farm (CP) . Soil sampling was conducted within each field at three depth increment (0-30 cm, 30-60 cm and 30-90 cm) separately. Except for soil analysis, this study also chooses some plots in the woodlands around two farms to estimate the carbon storage by various vegetation species, and these two sections will offer comprehensive information about the quality and quantity of carbon in two farms.

On average, the percentage of total carbon (TC) from all soil profiles was higher under woodland than crop fields in CP. Because the hectare of crop fields is greater than woodland, the sum of total carbon in individual soil layers from the areas is comparatively larger in crop lands, where C stock is 14,122 tons, 6,017 tons, 5,437 tons for the 0-30 cm layers, 30-60 cm layers and 60-90 cm layers, respectively. Meanwhile, the data is 1, 905 tons, 822 tons, and 648 tons for three soil depth layers in the woodland of CP. In Nafferton Farm, the value of TC from the corresponding soil layers is 17,841 tons, 6,844 tons, 6,177 tons separately.

The results attained so far represent that TC and soil organic carbon (SOC)  in each farm are all statistically significantly different (p< 0.001) with respect to soil depth, but differences were not significant with respect to crop and tree species grown in a single area. Moreover, TC in surface soil of NF is statistically higher (p< 0.01) than that in CP. In Cockle Park Farm, C contents from woodland were considerably higher than those in crop fields (p< 0.001) and the difference of TC and SOC at individual depth layer cannot be ignored. Gross carbon sequestration of plants in woodland is 150.64 tons’ annually, which was calculated by i-Tree Ecosystem Analysis. Simultaneously, the total carbon of trees, including leaf biomass and tree trunks, is in a range of 3,198- 4,096 tons in the woodland of CP. Consequently, the current quality of carbon in topsoil from the whole fields of two farms and the woodland of CP is 35,610 tons which is over four times as high as the estimated carbon emission produced by University in 2019/20 ( 8, 181 tons).

Overall, it is recommended that the management team of university should attach importance to the operation of two farms. The expectation of mitigating 1,720 ton’s carbon in the short term can be fulfilled if the management department considers converting 58.79 ha crop fields to mixed-species woodland.

How to cite: Wang, J., Werner, D., and Manning, D.: Investigation of the carbon sequestration potential of soils and woodlands at university farms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19866, https://doi.org/10.5194/egusphere-egu2020-19866, 2020.

EGU2020-19993 | Displays | SSS9.7

Interacting abiotic, biochemical and management factors explain soil organic carbon in Pyrenean grasslands

Antonio Rodríguez, Rosa Maria Canals, Josefina Plaixats, Elena Albanell, Haifa Debouk, Jordi García-Pausas, Leticia San Emeterio, Juan José Jiménez, and M.-Teresa Sebastià

Grasslands are one of the major sinks of terrestrial soil organic carbon (SOC). Understanding how environmental and management factors drive SOC is challenging because there are scale-dependent effects, and large scale drivers affecting SOC both directly and through drivers working at fine spatial scales. Here we address how regional and landscape factors, and grazing management, soil properties and nutrients, and herbage quality factors affect SOC in mountain grasslands in the Pyrenees. Taking advantage of the high variety of environmental heterogeneity in the Pyrenees, we fitted a set of models with explicative purposes including variables that comprise a wide range of environmental and management conditions. We found that temperature seasonality (MMT) was the most important abiotic driver of SOC in our study. MMT was positively related to SOC but only under certain conditions: exposed hillsides, steep slopes and relatively highly grazed areas. High MMT conditions probably are more favourable for plant biomass production, but landscape and grazing management factors buffer the conversion of this biomass into SOC. Concerning biochemical SOC predictors, we obtained some unexpected interaction effects between grazer type, soil nutrients and herbage quality. Soil N was a crucial factor modulated by effects of livestock species and neutral-detergent fibre content of vegetation. Herbage recalcitrance effects varied depending on grazer species. These results highlight the need to expand knowledge about grassland SOC drivers under different environmental and management conditions.

 

How to cite: Rodríguez, A., Canals, R. M., Plaixats, J., Albanell, E., Debouk, H., García-Pausas, J., San Emeterio, L., Jiménez, J. J., and Sebastià, M.-T.: Interacting abiotic, biochemical and management factors explain soil organic carbon in Pyrenean grasslands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19993, https://doi.org/10.5194/egusphere-egu2020-19993, 2020.

SSS9.9 – Soil amendments – innovative applications and sustainable land use

EGU2020-4706 | Displays | SSS9.9 | Highlight

Impacts of conservation agriculture on soil nitrogen pools and microbial physiology

Jörg Schnecker and Gernot Bodner

Conservation or regenerative agriculture, i.e. reduction of mechanical soil disturbance, introduction of crop rotations, and especially cover crops as a form of natural soil amendment, has been shown to increase soil organic matter contents as well as soil health. One mechanism behind the increase in organic carbon under regenerative agriculture could be an increase in microbial biomass, as well as an enhanced carbon use efficiency (CUE) of the soil microorganisms in these systems. Such changes in microbial biomass and activity could also influence soil nitrogen (N) cycling. Here we show first results of on-farm research at four sites in Austria comparing crop fields under regenerative agriculture practices with conventional practices, and nearby perennial grasslands at each site. The four sites span different climate gradients, soil types and textures.

Soil organic carbon (SOC) content ranged from 1 to 2.3% in the agricultural soils and was significantly higher under regenerative management compared to conventional practices in two out of four sites. SOC contents in perennial grasslands were up to 5% and always higher than in agricultural fields. Extractable organic carbon was similar in the two agricultural fields of the respective site, while grasslands diverged. Microbial biomass carbon was highest in grasslands at all sites and significantly higher in fields under regenerative agriculture compared to conventional agriculture at three out of four sites.

Total nitrogen was highest in perennial grasslands at all sites, and similar in regenerative and conventional fields. The form of N however differed between soils under conventional and regenerative agriculture. Dissolved N, expressed per g total N was significantly higher or tended to be higher in conventional compared to regenerative agricultural fields. From this dissolved pool a higher proportion was in inorganic N forms that are more prone to leaching and gaseous loss compared to organic N forms. In soils from regenerative agricultural fields a higher proportion of the total N was found in the microbial biomass. This pool is considered to be highly dynamic, but also protected against losses. Less N in dissolved and inorganic form as well as a higher proportion of N in the microbial biomass indicates that the N cycle is more closed in soils managed regeneratively versus conventional.

A greater importance of the microbial biomass could also have effects on soil C cycling. Higher microbial biomass is often related to increased carbon use efficiency, which in turn could indicate increased soil carbon sequestration. The already mentioned results will thus be discussed with further measurements of microbial respiration, growth and CUE.

How to cite: Schnecker, J. and Bodner, G.: Impacts of conservation agriculture on soil nitrogen pools and microbial physiology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4706, https://doi.org/10.5194/egusphere-egu2020-4706, 2020.

EGU2020-3779 | Displays | SSS9.9

Strong mitigation of net global warming potential (GWP) via short-term aerobic pre-digestion of green manured soil in rice paddy

Hyeonji Song, Jin Ho Lee, Songrae Cho, Hogyeong Chae, and Pil Joo Kim

 Cover crop cultivation is strongly recommended during fallow season to increase soil organic carbon (SOC) stock. However, since its biomass recycling as green manure can dramatically increase greenhouse gas (GHG) emission, in particular, methane (CH4) during rice cropping season, smart cover crop management strategy should be developed. In our previous research, CH4 emission during cropping season was dramatically reduced via short-term aerobic decomposition before irrigation (Lee et al.). However, due to a fast response rate of aerobic decomposition, the effect of mitigating CH4 emission could be offset by SOC depletion which results in accelerating global warming. To evaluate the comprehensive impact of the short-term aerobic decomposition on global warming, net global warming potential (GWP), defined as the difference between GWP and SOC stock change was employed. SOC stock change was estimated using net ecosystem carbon budget (NECB), a balance between soil C input and output. The mixture of barley and hairy vetch cultivated during the dried fallow season, and then its whole biomass was incorporated 0-30 days before irrigation for rice transplanting. The aerobic decomposition of cover crop biomass significantly reduced CH4 emission by 24-85% over control but negligibly influences N2O emission. Total C input and output were unaffected by the aerobic digestion. Although carbon emission before flooding dramatically increased after biomass application in aerobic decomposition treatments, the mineralized C losses exhibited no differences among treatments. Based on these results, NECB values were similar in all treatments. This implies the aerobic decomposition did not stimulate SOC depletion, compared to the control. Finally, the net GWP highly decreased by 30-86% by the aerobic digestion due to the significant reduction of CH4 emission. In conclusion, earlier application of cover crops before irrigation is a smart strategy to decrease methane emission, maintaining soil carbon sequestration effect of cover crop biomasses application.

How to cite: Song, H., Lee, J. H., Cho, S., Chae, H., and Kim, P. J.: Strong mitigation of net global warming potential (GWP) via short-term aerobic pre-digestion of green manured soil in rice paddy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3779, https://doi.org/10.5194/egusphere-egu2020-3779, 2020.

EGU2020-672 | Displays | SSS9.9

Can combined application of biochar and nitrogen promote microbial functions and root plasticity for plant growth in low-fertile soils?

Xiaona Song, Bahar Razavi, Bernard Ludwig, Kazem Zamanian, Huadong Zang, Yakov Kuzyakov, Michaela Dippold, and Anna Gunina

Biochar and nitrogen (N) fertilizers are frequently applied to improve soil properties and increase crop productivity. However, it remains unclear how root plasticity, soil enzyme activities, N and (phosphorus) P cycling in plant-soil system are changed after application of biochar, N or their combination. To address these questions, left and right parts of rhizoboxes were filled with silty-clay loam subsoil amended with biochar (15 g kg-1 soil, wheat straw, 300 °C), N (0.05 g KNO3-N kg-1 soil) or a control (no amendments), resulting the following combinations (Cm): biochar/control (Cm1), N/control (Cm2) and biochar/N (Cm3). One seed of maize (Zea mays L.) was planted in the middle of each rhizobox, thus allowing roots to choose freely the growth direction. Root growth was quantified by a photographic approach constantly during the experiment (30 d), and soil enzyme activities, available N and P, root morphology and plant biomass were analyzed after plant harvest.

Maximum plant biomass was found for biochar/N application (0.91 g), whereas minimal values was for biochar/control (0.56 g). At the same time, decreased soil bulk density and increased availability of P in the biochar compartment (Cm1 and Cm3) stimulated root length by 1.4-1.8 times – an effect which was independent from the presence of N in the same rhizobox. Together with stimulated activities of ß-glucosidase and leucine aminopeptidase (by 33%-39%) in presence of biochar (Cm3) compared to N, this shows the coupling of C, N and P cycles in biochar/N treated soils. Application of N (Cm2) also increased ß-glucosidase activity compared to control soil, whereas root elongation stayed unaffected. Thus, combined application of biochar/N over-win benefits of biochar or N alone for plant growth, which is linked with i) the stimulation of microbial enzyme activity at the biochar locations to reduce C and N limitation for both plant and microorganisms, and ii) increasing of fine root proportion to improve N utilization efficiency in the N-treated compartment. Thus, strategy of combined biochar/N application can not only improve the above-ground biomass production, but also increase root-microorganism interactions to overcome nutrient limitation in low fertile agricultural soils.

How to cite: Song, X., Razavi, B., Ludwig, B., Zamanian, K., Zang, H., Kuzyakov, Y., Dippold, M., and Gunina, A.: Can combined application of biochar and nitrogen promote microbial functions and root plasticity for plant growth in low-fertile soils?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-672, https://doi.org/10.5194/egusphere-egu2020-672, 2020.

EGU2020-5384 | Displays | SSS9.9

The chemical interaction of biochar with iron and phosphate might explain the effects of biochar in alkaline and calcareous soils

Roberto Baigorri, Óscar Urrutia, Sara San Francisco, and José María García-Mina

Due to the low consistency of the results obtained in field, the use of biochar as soil amendment is controversial. Thus, in general in acidic soils results are positive while in alkaline soils they are non-significant or even negative. The results regarding biochar action in acidic soils have been related to a lime-like effect due to its alkaline pH and the high doses normally used. However, the causes of biochar effects in alkaline soils remain unknown. We have used a well characterized biochar as a component of two complex N and PK granulated fertilizers at two different doses (1 and 5%). These fertilizers have been applied to wheat cultivated in pots containing an alkaline and calcareous soil and grown for 60 days. No effect was shown for the N-biochar fertilizer application. However, the PK-biochar fertilizer application caused a decrease in crop yield. Complementary, the absorption isotherms of Iron (Fe), Molybdenum (Mo), Manganese (Mn) and Phosphate (Pi) in biochar were also studied. The results showed that Fe was rapidly adsorbed in biochar, while Pi was only absorbed on the Fe-Biochar complex. Desorption experiments showed that P and Fe were no desorbed from the P-Fe-biochar complex by water or the Olsen reactant, while a partial desorption was observed when HCl 0.1 M was used. This blockage of Fe and P through Fe bridges in biochar could partially explain the negative effects in alkaline soils.

How to cite: Baigorri, R., Urrutia, Ó., San Francisco, S., and García-Mina, J. M.: The chemical interaction of biochar with iron and phosphate might explain the effects of biochar in alkaline and calcareous soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5384, https://doi.org/10.5194/egusphere-egu2020-5384, 2020.

The two primary problems currently facing agriculture are drought and the availability of mineable phosphorus minerals used for fertilization. More frequent and longer drought periods are predicted to threaten agricultural yields in future. The capacity of soils to hold water is a highly important factor controlling drought stress intensity for plants during the growing phase. High phosphorus availability in soils is necessary for high agricultural yield. For both drought and phosphorus availability in soils amorphous silica (ASi) has been suggested to be able to mitigate these problems. Amorphous silica pools in natural soils are in the range of 0-6%. However ASi pools have declined in agricultural soils since the development of high intensity agriculture to values of <1% due to yearly crop harvests, decreasing water the holding capacity of the soils. Here, we analyzed the effect of ASi on the water holding capacity (WHC) of soil and how the ASi effects the mobilization of phosphorus.  ASi was mixed at varying rates with different soils. Afterwards, the retention curve of the soils was determined. Here we show that ASi increases the soil water holding capacity substantially, by forming silica gels with a water content at soil saturation higher than 700%. An increase of ASi by 1% or 5% (weight) increased the water content at all studied water potentials and plant available water increased by >40% and >60%, respectively. Additionally, we fertilized soils with ASi and measured phosphorus mobilization from the solid phase into the soil pore waters. We found a strong mobilization of phosphorus by ASi. In a lysimeter experiment we found that ASi strongly increased the WHC of soils. Furthermore, as expected from the batch experiments the ASi is decreased phosphorus sorption to soil minerals and consequently increased its mobilization. Our results suggest that ASi addition to soils enhances the water availability, potentially decreases drought stress for plants as well as increasing phosphorus mobility in soil of terrestrial ecosystems.

How to cite: Schaller, J., Gilfedder, B., and Frei, S.: Amorphous silica increases the water holding capacity and the phosphorus mobility in soils - solving the two main problems of agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6926, https://doi.org/10.5194/egusphere-egu2020-6926, 2020.

EGU2020-9510 | Displays | SSS9.9

Application of Different Fractions of Anaerobic Digestate Significantly Influences the Carbon Cycle in Grassland Soils

Marta Cattin, Kirk T. Semple, Marc Stutter, Gaetano Romano, Alfonso Lag-Brotons, Chris Parry, and Ben W.J. Surridge

Applying digestate to soil is of growing interest in agriculture. However, the impacts of digestate on soil biogeochemical cycles often remain unclear, especially after solid-liquid separation of whole digestate (WD). We used a 21 d incubation to examine the effects of WD and solid digestate (SD) on CO2-C efflux, dissolved organic carbon (DOC), microbial biomass C (Cmicro), phospholipid fatty acid (PLFA) and carbon use efficiency (CUE) within two grassland soils of contrasting nutrient status. Application rates for SD and WD were based on recommended N inputs to grassland soils for these organic materials. Compared to un-amended controls, cumulative CO2-C efflux, Cmicro and the fungal:bacterial in soils increased significantly following SD application, regardless of the soil nutrient content (+20% CO2-C, +29% Cmicro, +58% fungal:bacteria for high nutrient soil; +563% CO2-C, +36% Cmicro, +18% fungal:bacteria for low nutrient soil). In contrast, WD produced a significant effect on CO2-C efflux and fungal:bacterial only in the low nutrient soil. Our results also indicated that both digestate fractions and the initial soil nutrient status affected CUE. Applying both SD and WD to a low nutrient soil potential leads to decreases in soil C stocks, whilst the application of SD to a high nutrient soil can potentially enhance soil C stocks. Digestate application must be carefully planned, accounting for both the nature of the digestate and of the soil, in order to avoid adverse impacts on soil C stocks.

 

How to cite: Cattin, M., Semple, K. T., Stutter, M., Romano, G., Lag-Brotons, A., Parry, C., and Surridge, B. W. J.: Application of Different Fractions of Anaerobic Digestate Significantly Influences the Carbon Cycle in Grassland Soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9510, https://doi.org/10.5194/egusphere-egu2020-9510, 2020.

EGU2020-8512 | Displays | SSS9.9

C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shift of microbial community in paddy soil

Zhenke Zhu, Xiaomeng Wei, Tida Ge, Jinshui wu, and Andreas Richter

Soil carbon (C), nitrogen (N), and phosphorus (P) contents and their stoichiometric ratios play modifying the microbial metabolism of C. Microbial populations vary in their strategies for C and nutrient acquisition to maintain the microbial biomass C:N:P balance. However, the regulation of soil C mineralization and microbial activities by stoichiometric ratios in input substrates becomes unpredictable in flooded soils because of the frequent redox fluctuations and general oxygen limitation. Stoichiometric control on input substrate (glucose) and soil organic carbon (SOC) mineralization were assessed by a manipulation experiment based on N or P fertilization in paddy soil. Glucose mineralization increased by nutrient addition up to 11.6% with combined N and P applications compared with addition without nutrients. During 100-days incubation, about 4.5% of SOC was mineralized in all five treatments, being increased by glucose and reduced by P fertilization. Glucose and SOC mineralization increased exponentially with the dissolved organic carbon (DOC):NH4+-N, DOC:Olsen P, and microbial biomass (MB)C:MBN ratios. The glucose mineralization was negatively associated with the MBC:MBP ratio, suggesting that P addition relieved P limitation for microorganisms and increased microbial activities of labile C mineralization. The shift of bacterial community structure was significantly affected by the soil available and microbial biomass C:N:P stoichiometric ratios. The decrease of negative associations between bacterial taxa in the P-added soil indicated that microbial competition for nutrients was alleviated. 16S rRNA amplicon sequencing showed that combined C and nutrients application stimulated the Clostridia and β-Proteobacteria (r strategists) and increased the enzyme activities of β-glucosidase and β-acetyl-glucosaminidase. In contrast, after 100-day incubation, when the available substrate was exhausted, Syntrophus (K strategist) was found as the keystone species. Hence, soil microbial communities shifted their keystone species to acquire necessary elements to maintain the microbial biomass C:N:P stoichiometric balance in response to the change of resource C:N:P stoichiometry.

How to cite: Zhu, Z., Wei, X., Ge, T., wu, J., and Richter, A.: C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shift of microbial community in paddy soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8512, https://doi.org/10.5194/egusphere-egu2020-8512, 2020.

EGU2020-51 | Displays | SSS9.9

Nitrogen availability in biochar-amended soils with excessive compost application

Chen-Chi Tsai and Yu-Fang Chang

Taking into consideration economic viability, the doses of manure compost in Taiwan are recommended as 1% to 2%; however, some farmers apply more than 2% to 5% in intensive cultivation periods for short-term leafy crops, to add more N. Although many studies report positive effects of a biochar-compost mix on soil properties and plant growth, but there are no studies that have determined the changes in N availability over time after biochar (BC) application in compost over-applicated soil. In the present study, in vitro N mineralization kinetics were examined in further. We tested the hypothesis that BC addition may diminish mixed-soil N mineralization, enhance ammonium retention, reduce nitrate leaching, and decrease P and nutrients loss in compost over-applicated soils. The aim of our research was to evaluate the N and nutrient regulation or enhancement role of different BC addition rates in three compost over-applicated soils over time. The effect of four rates (0%, 0.5%, 1.0%, and 2.0% w/w) of BC co-applied with swine manure compost (5.0% w/w) on three Taiwan rural soils (topsoil, slightly acid Oxisols (SAO), mildly alkaline Inceptisols (MAI), and slightly acid Inceptisols (SAI)) was investigated during 371-d incubation study. BC was produced from lead tree (Leucaena leucocephala (Lam.) de. Wit) at 750 degree C. The incubation results indicated that soil, rate and interaction between soil and rate significantly influenced soil NO3-N and total inorganic N concentrations, but only soil significantly influenced soil NH4-N concentration. Soil NH4-Nand NO3-N concentrations on average during a 371-day incubation followed the order: SAO soil > SAI soil > MAI soil. In most cases the effect was insignificant and inconsistent in terms of time and rate of BC application, rendering it difficult to summarize the effects of BC on ammonium of our investigated soils. The negative effect of BC was prominent almost in all investigated soils during the incubation period and the amount of decline increased as the rate of BC application increased from 0.5% to 2%. In addition, only soil significantly influenced all Mehlich 3-extractable nutrient concentrations, and rate significantly influenced M3-K concentration. At the end of the incubation, adding 0.5% BC and 1.0% BC in SAI soil and 1.0% BC and 2.0% BC in MAI soil both had positive improvement on the nutrients (P, K, Mg, Fe and Mn), and application of BC in SAI soil led to improvement in Cu and Pb (2.0% BC), Zn and N mineralization (0.5% BC and 1.0% BC). In conclusion, the studied results confirmed the potential of biochar-compost blend is promising for preventing excess N and nutrients loss in compost over-applicated soil, as well as maintaining SOC. As adding a large amount of biochar in open fields would be unrealistic and not economically sustainable, we suggested that adding 0.5%~1.0% woody BC to three studied soils should be reasonable and appropriate.

How to cite: Tsai, C.-C. and Chang, Y.-F.: Nitrogen availability in biochar-amended soils with excessive compost application, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-51, https://doi.org/10.5194/egusphere-egu2020-51, 2020.

EGU2020-2662 | Displays | SSS9.9

Application of biochar from crop residues for the removal of lead and copper

José M. De la Rosa, Águeda Sánchez-Martín, María L. Sánchez-Martín, Nikolas Hagemann, Heike Knicker, and Paloma Campos

Due to the chemical composition and surface properties of biochar, a C-rich porous material produced by pyrolysis of biomass, it can act as an effective tool for the remediation of soils polluted with trace elements [1, 2]. However, its capacity to sorb these contaminants in a solution varies considerably depend on pyrolysis conditions, but also on the feedstock.  Thus, the major aim of this study is to evaluate the capacity of biochars from two crop residues to sorb Pb2+ and Cu2+.

For this purpose, rice husk and olive pit biochars (RHB and OPB, respectively) were produced in a continuously feed reactor (Pyreka reactor, max. temperature 500 ºC, residence time 12 min; N2 atmosphere).

The efficiency of lead and copper ions (Pb²⁺, Cu2+) removal by the biochars was investigated through batch adsorption experiments. 20 mL of single-metal solutions with 0.05, 0.1, 0.5, 1, 2 and 5 mM of initial concentration of Pb2+ and Cu2+ were mixed with 20 mg of milled biochar during 48 h. After filtering at 0.45 µm, their concentrations were measured by ICP-OES (Varian ICP 720-ES, Varian Inc., CA, USA).

Removal efficiency of both heavy metals was over 80 % for RHB and OPB when the initial cation concentration was ≤ 0.5 mM. RHB removal capacity was 26 % for Cu2+ and 35 % for Pb2+ when the initial concentration of metal was 5 mM, whereas OPB removal capacity for both cations was lower than 20 %. The adsorption data fitted well to a Langmuir model for both cations for RHB as other authors found [3]. Although, the Langmuir maximum sorption capacity obtained in this work for Cu2+ was similar to that obtain by Samsuri et al. (2014) [3], it was lower for Pb2+. However, sorption data for OPB better fitted to a Temkin isotherm model for Cu2+ and Freundlich model for Pb2+.

The selection of the adequate biomass to produce biochars for the immobilization of trace elements, as Pb and Cu, in soils is very important, due to the huge differences in their adsorption efficiency. RHB showed a greater removal efficiency for Cu2+ and Pb2 than OPB.

References:

[1] Uchimiya, M., Klasson, K.T., Wartelle, L.H., Lima, I.M., 2011. Chemosphere 82, 1438-1447.

[2] Zhao, J., Shen, X.-J., Domene, X., Alcañiz, J.-M., Liao, X., Palet, C., 2019. Sci. Rep. 9, 9869.

[3] Samsuri, A.W., Sadegh-Zadeh, F., She-Bardan, B.J., 2014. Int. J. Environ. Sci. Technol. 11, 967.

Acknowledgements:

The former Spanish Ministry of Economy, Industry and Competitiveness (MINEICO) and AEI/FEDER are thanked for funding the project CGL2016-76498-R (BIOREMEC). P. Campos thanks the “Fundación Tatiana Pérez de Guzmán el Bueno” for funding her PhD.

How to cite: De la Rosa, J. M., Sánchez-Martín, Á., Sánchez-Martín, M. L., Hagemann, N., Knicker, H., and Campos, P.: Application of biochar from crop residues for the removal of lead and copper, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2662, https://doi.org/10.5194/egusphere-egu2020-2662, 2020.

EGU2020-3075 | Displays | SSS9.9

Do chemical characteristics affect the potential of biochars to adsorb cations?

Heike Knicker, Jose Maria Garcia Castro de Barragan, Elena Elena Fernandez-Boy, Michael Knicker, Regina León-Ovelar, and Marta Velasco-Molina

Since peatlands are valuable habitats and provide important environmental services, the policy of several European countries is to decrease the use of peat in potting mixtures to preserve peat bogs as nature areas. As a consequence, alternative growing media are needed. Therefore, the impact of biochar addition to gardening soil on tomato plant growth has been investigated previously (García de Castro Barragán, 2018). Those studies revealed a positive effect on seed germination and plant development during the first growing stage. However after three months, leaf discoloration was observed and associated to the lack of macro or micronutrients. It was hypothized that adsorption of nutrients onto the biochar may have decreased their availability for plants. For a first evaluation of this hypothesis, we tested the adsorption of Cu2+ to three biochars derived from feedstocks with different chemical composition, aromaticity and content of polar groups.  We produced biochar from shrimp chitin which was highly aromatic and contained considerable amounts of N-heterocyclic aromatic structures. The biochar of shells of the oil seed of Acrocomia aculeata derived from a woody feedstock with high contribution of cellulose, but had a low charring degree. The peat biochar was prepared at a pyrolysis temperature of 500°C which resulted in a highly aromatic material.  The difference in the organic matter (OM) quality of the biochars went along with differences in their pH and electrical conductivity (EC); elemental composition and ash content. Concomitantly, different specific surface areas were measured using the BET method.

For the absorption test, copper nitrate solutions were used at increasing concentration, brought into contact with the biochar for 24 hours at 25 °C. In the equilibrium solution, the Cu2+ content was analyzed. The solid biochar was separated from the solution and dried. Due to the paramagnetic nature of Cu2+, solid-state NMR relaxometry was used to identify preferential adsorption sites within the organic network of the biochars.

Our results showed low Cu2+ adsorption for all three biochars. Neither biochar porosity, nor polarity could be identified as a responsible for Cu-adsorption. As revealed by NMR relaxation times (T1H, T1C, T1rohH and T1rohC), all organic C and H groups were affected by the interactions between OM and Cu2+, although no preferential adsorption site was revealed. We found indications that adsorbed Cu2+ act as bridging agent, lowering the mobility of aromatic domains. Based on our preliminary results, we suggest that in our biochars, metals are mainly adsorbed via bonding to π-orbitals of the aromatic rings. Based on the low adsorption potential of the studied cation, we conclude further that our biochars do not sequester Cu2+ (or other metals with comparable characteristics) sufficiently strong for preventing their uptake by growing plants. However, to which extend our findings may be generalized, has to be unveiled by ongoing studies.

How to cite: Knicker, H., Garcia Castro de Barragan, J. M., Elena Fernandez-Boy, E., Knicker, M., León-Ovelar, R., and Velasco-Molina, M.: Do chemical characteristics affect the potential of biochars to adsorb cations?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3075, https://doi.org/10.5194/egusphere-egu2020-3075, 2020.

Suitability of organic materials as growing media in plant production is dependent on physical properties of the media. Undecomposed Sphagnum moss growing media is an innovative and potentially more sustainable alternative to the commonly used peat-based media. However, the physical properties of the moss media are not comprehensively understood. Furthermore, amending the growing media with biochar has the potential to sequester carbon and enhance the properties of the receiving substance, but biochar impacts on organic growing media properties remain unknown.

This study aimed to (1) quantify differences in water retention, aeration and pore structure properties of three different low- or non-humified Sphagnum-based growing media with 3D X-ray imaging and conventional physical measurements, (2) determine impacts of intense drying-wetting cycles on their pore structure. Furthermore, we aimed to (3) quantify the 3D pore structure of three different plant-based biochars and (4) demonstrate their impact on moss growing media physical properties.

The drying of the media occurred in three distinct phases with (1) large changes in the air-filled porosity in the suction range 0.2-3.2 kPa, (2) clearly smaller changes in 3.2-312 kPa and (3) again large changes in 312-1585 kPa. In the phases 2 and 3, the aeration of the media was satisfactory for plant growth, but the amount of easily available water was low. This sets challenges for the suitability of the materials in conditions without regular irrigation. These properties of the moss media were comparable to the peat media. The pore structure of the media was not sensitive to drying-wetting cycles, but the pore size distributions was observed to shift slightly towards smaller pore size classes with increasing decomposition degree and stress impact of the drying-wetting cycles.

Regarding biochar physical properties, the 3D imaging results demonstrated that irrespective of the feedstock, the major share (0.80-0.94 m3 m-3) of the biochar pore volume resided in pores with diameters 2-11 µm. Biochar pore properties reflected plant tissue structure of the raw materials. The application of biochar increased the water retention of the growing media in the pore diameter range 1-8 µm. The maximum increase was 0.06 m3 m-3. This is relevant for plant-available water, which indicates the usability of the biochar amendments.

From methodological point of view, the value of combining 3D imaging with conventional measurements was shown. The approach revealed how water table continuum between biochar and surrounding growing media affect availability of water stored inside the biochar particles.  The results are based on a recently published article (Turunen et al. 2019) and an accepted manuscript (Turunen et al. 2020).

 

References:

Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Koestel, J. and Rasa, K., 2019. Quantifying Physical Properties of Three Sphagnum-Based Growing Media as Affected by Drying–Wetting Cycles. Vadose Zone Journal, 18:190033. doi:10.2136/vzj2019.04.0033

Turunen, M., Hyväluoma, J., Heikkinen, J., Keskinen, R., Kaseva, J., Hannula, M. and Rasa, K., 2020. Quantifying the pore structure of different biochars and their impacts on the water retention properties of Sphagnum moss growing media. Accepted for publication (Biosystems Engineering).

 

How to cite: Turunen, M.: Pore structure of different biochars and their impacts on physical properties of Sphagnum moss growing media, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8567, https://doi.org/10.5194/egusphere-egu2020-8567, 2020.

EGU2020-4760 | Displays | SSS9.9

How do grain size and dose of sunflower husk biochar influence the water retention of sandy soil?

Anna Rafalska-Przysucha, Radosław Szlązak, Justina Vitková, Łukasz Gluba, Mateusz Lukowski, Kamil Szewczak, and Bogusław Usowicz

Biochar is a carbon-rich material obtained from the process of biomass pyrolysis. Due to its desirable properties, it is discussed as a soil amendment to improve soil quality; for example, adding biochar can change soil water retention by modifying soil textural and structural properties. However, the optimal fabrication conditions and proportions of biochar particles sizes, that would improve soil properties are still not precisely known. In our research, we investigated the influence of grain size and a dose of biochar on water retention of sandy soil. For this purpose, water retention curves (pF) were measured, as it indicates such important properties as plant available water, field water capacity, wilting point. The studies were carried out on podzol soil samples taken from meadow located in Sekow, Poland, mixed with different percentage mass content of sunflower husk biochar produced in 650-750°C (0.95, 2.36, 4.76 and 9.52% of sample weight). Samples contain one of biochar granulometric fraction: 250-100, 100-50 or less than 50 µm. The control included soil samples with the addition of mixed fractions of biochar and soil without biochar. The research method we used allows obtaining information about plant available water content by comparing differences in water content between 0.06 and 5 bar pressure points which corresponding to a 1.85-3.7 pF. In this range, most plants can use water for their growth and development. Our results revealed that, surprisingly, soil with all fractions of biochar reduces the amount of available water for plants compared to the control (soil without biochar), regardless of the biochar dose applied. However, fractionated biochar can both increase or decrease the soil water content, depending on the particle size and dose. Small doses of sunflower husk biochar (0.95 and 2.36%) and the finest fraction (<50μm) have the most beneficial effects for water retention of investigated soil. Our research may strongly suggest the biochar producers that the production of biochar with the right fraction may be more favourable for increasing soil water retention. 

Research was partially conducted under the project “Water in soil - satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” – BIOSTRATEG strategic R&D programme.

How to cite: Rafalska-Przysucha, A., Szlązak, R., Vitková, J., Gluba, Ł., Lukowski, M., Szewczak, K., and Usowicz, B.: How do grain size and dose of sunflower husk biochar influence the water retention of sandy soil?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4760, https://doi.org/10.5194/egusphere-egu2020-4760, 2020.

Every year agricultural soils lose significant amounts of nitrogen (N) over winter through N leaching and gas emissions as a result of freeze-thaw cycles. The incorporation of carbon amendments after harvest, such as crop residues or other carbon rich material, can help to promote soil microbial growth, and in doing so, immobilise N within the microbial biomass. It is still unclear which amendments are most effective at promoting microbial N immobilisation and at what time they should be incorporated into the soil to give best results.

In order to investigate this, we measured soil microbial biomass carbon (Cmic) and -nitrogen (Nmic) at 12 timepoints between harvest and spring in soils from an established agricultural field experiment in Kiel (Germany). We selected plots which had the same fertilisation regime and crop rotation (Faba bean-winter wheat-winter barley rotation) but differed in soil carbon amendment treatment; removal of residues (control), wheat straw, faba bean, and sawdust.  In addition to microbial biomass measurements, we measured microbial nutrient limitation at each timepoint via substrate induced respiration, in order to give a qualitative indication of microbial activity in respect to growth limiting nutrients.

Our data show that there was little effect of wheat straw in comparison to the control on the microbial biomass carbon or -nitrogen, but different patterns were observed for the latter amendments. Cmic generally decreased over time after harvest in all treatments, but again the decreases were less pronounced in the faba bean and sawdust treatments. Nmic decreased over time after harvest in control and wheat straw treatment but increased with time in the faba bean and sawdust treatments, suggesting improved N immobilisation by the microbial biomass for these treatments. We found that all soils were nearly always N limited throughout the winter and were never P limited. However, a shift to C limitation was observed after addition of fertiliser in spring, except for in the sawdust treatment, which remained N limited despite the addition of mineral N in the field. This result suggests that sawdust has a higher potential for N immobilisation compared to the other soil amendments.

In summary, there was little difference in the microbial post-harvest dynamics between the control and wheat straw treatments but stronger effects were observed in the faba bean and saw dust treatments, which suggested improved microbial N immobilisation. Interestingly, the sawdust amendment seemed to have the highest potential for microbial N immobilisation over winter and enduring into spring.

How to cite: Clayton, J., Rothardt, S., Reichel, R., and Bonkowski, M.: Effect of different soil carbon amendments on the post-harvest dynamics of soil microbial biomass carbon and -nitrogen in an agricultural field experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-867, https://doi.org/10.5194/egusphere-egu2020-867, 2020.

EGU2020-2268 | Displays | SSS9.9

Slow-release of fertilizer in soil using pectin/calcium-bentonite hydrogel

Bryan Pajarito, John Anthony Kho, Raymond Mayo, Jendrich Spencer Ong, and John Andrew Kane Jovellana

Plant survival and growth are greatly affected by moisture and nutrient loss around root zones. Water and nutrient retaining agents such as hydrogels have been gaining popularity to solve this problem, but most commercial hydrogels are composed of non-biodegradable and synthetic components.  In this study, we successfully prepared hydrogels made of biodegradable pectin and naturally-occurring calcium bentonite. The synthesized hydrogels contained varied loadings of fertilizer (equivalent to 0, 0.2, 0.6, and 0.85 g NPK L-1 soil). We characterized the hydrogels in terms of morphology (scanning electron microscopy/SEM), nutrient P and K concentration (X-ray fluorescence/XRF analysis), and degree of swelling in water (gravimetric method). We also determined the nutrient retention capacity and release of the hydrogels using a soil column leaching setup coupled with periodic monitoring of conductivity and total dissolved solids of column leachate. 

SEM indicates the porous structure of the hydrogels, while XRF confirms the successful loading of fertilizer in the hydrogels. The hydrogel at 0.2 g NPK L-1 soil has the highest degree of swelling in the water at 692.5%. The nutrient retentions of soil columns containing fertilizer-loaded hydrogels (0.2, 0.6, and 0.85 g NPK L-1 soil) are greater by 35.5, 11.5, and 20.1%, respectively, compared to the control (soil column without hydrogel). Our measurements of fertilizer release rate also indicate that the presence of hydrogel in the soil column slows down the release of fertilizer as detected in the column leachates. We conclude that the pectin/calcium-bentonite hydrogels are effective in retaining water and reducing the release of fertilizer from the soil. With the biodegradability of pectin and natural occurrence of calcium bentonite, the hydrogel has the potential for sustainable management of slow-release fertilizer systems. 

How to cite: Pajarito, B., Kho, J. A., Mayo, R., Ong, J. S., and Jovellana, J. A. K.: Slow-release of fertilizer in soil using pectin/calcium-bentonite hydrogel, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2268, https://doi.org/10.5194/egusphere-egu2020-2268, 2020.

EGU2020-1394 | Displays | SSS9.9

Cr6+ adsorption by modified vermiculite

Valeria Medoro, Celia Marcos Pascual, Giacomo Ferretti, Giulio Galamini, and Massimo Coltorti

Abstract: Cr6+ adsorption by modified vermiculite

 

Valeria Medoro- University of Ferrara , Department of Physics and Earth Sciences, Italy

Celia Marcos Pascual-University of Oviedo, Department of Geology, Spain

Giacomo Ferretti- University of Ferrara , Department of Physics and Earth Sciences, Italy

Giulio Galamini- University of Ferrara , Department of Physics and Earth Sciences, Italy

Massimo Coltorti- University of Ferrara , Department of Physics and Earth Sciences, Italy

 

This work aimed at investigating the adsorption of Cr6+ in water by exfoliated vermiculite. The adsorbant tested in this experiment was a vermiculite (from China) which has been subjected to heating at 1000 °C for 1 minute, resulting in an exfoliated vermiculite.

Three effects were studied: 1) contact time; 2) initial concentracion of Cr6+; 3) adsorbent mass. Samples were analysed by X Ray Fluorescence (XRF), X Ray Diffraction (XRD) and the solutions with Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to quantify the adsorbed Cr6+ by the vermiculite.

Results from XRD diffraction showed a conversion of vermiculite into flogopite  after heating at 1000°C for 1 minute because of: 1) high content of potassium, 2) dehydration and 3) structural re-ordering; after the contact of vermiculite with Cr6+, the mineral structure did not change. The adsorption of Cr6+ was studied by Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) isotherm models. DKR model, indicative of a cooperative process, described adsorption equilibrium better than the other two models and the maximum adsorption capacity obtained was of 2.81 mol/g. Kinetic was studied using pseudo-first and pseudo-second order kinetic models, with a better description of the process by pseudo-second order model with correlation coefficient almost unitary (R2=0.9984; other kinetic parameters were k2=0.0015 and the absorption initial rate of 0.2x10-8 mg g-1 h-1). 

The present study demonstrates the effectiveness of modified vermiculite adsorbents for the treatment of hexavalent chromium-contaminated waters and that its adsorption depends on the experimental conditions (such as contact time, initial concentracion of Cr6+ and adsorbent mass).

How to cite: Medoro, V., Marcos Pascual, C., Ferretti, G., Galamini, G., and Coltorti, M.: Cr6+ adsorption by modified vermiculite, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1394, https://doi.org/10.5194/egusphere-egu2020-1394, 2020.

EGU2020-3436 | Displays | SSS9.9

Combined application of induced MAP (Magnesium Ammonium Phosphate) precipitation and adsorption through natural zeolites for reducing NH4+ and PO43- in swine wastewaters

Nicola Tescaro, Giulio Galamini, Giacomo Ferretti, Barbara Faccini, Negar Eftekhari, and Massimo Coltorti

Combined application of induced MAP (Magnesium Ammonium Phosphate) precipitation and adsorption through natural zeolites for reducing NH4+ and PO43- in swine wastewaters

Nicola Tescaro*1, Giulio Galamini1, Giacomo Ferretti1, Barbara Faccini, Negar Eftekhari, Massimo Coltorti

* Corresponding author

1) Department of Physics and Earth Science, University of Ferrara, Ferrara Via Saragat 1 44122, Italy.

 

Modern agriculture, in response to the constantly increasing need of high crop production, requires application of high levels of N and P fertilizers to soil. These substances are mainly composed by nutrients such as NH4+ and PO43- and are often applied in strong excess in order to assure high crop yield. The nutrients applied through fertilizers and not exploited by crops (estimated on average around 50%) can considerably impairs  environmental quality through nitrogen losses in atmosphere (N2O, NOx, NH3) and eutrophication of water bodies.

In this work, a new method for reducing NH4+ and PO43- in swine wastewaters (commonly used as organic fertilizer) was studied. The aim is to reduce their environmental impact and concomitantly create a new slow-release fertilizer.

Two techniques have been combined: the induced MAP precipitation (magnesium ammonium phosphate) and natural zeolite ammonium adsorption for removing the NH4+ excess that generally remains in solution after MAP precipitation. Given the complexity of working with real wastewaters, in this preliminary phase a synthetic analogue was used in order to better evaluate the efficiency of this method. Two synthetic wastewaters with different Mg2+ : NH4+ : PO43- molar ratio were tested:  MR1 (1:1,5:1) and MR2 (2:1:1), which according to the literature give the best reductions of NH4+ and PO43-.  Since swine wastewater are naturally rich of both NH4+ and K+, isotherm studies were conducted on natural zeolites for evaluating their adsorption capacity of NH4+ under different levels of K+ competition. Results showed that  the potential in NH4+ adsorption decreased while competition with K+ increased.  The combination of MAP precipitation and NH4+ adsorption by natural zeolite has been tested in 2 ways: 1) zeolite was added before inducing MAP precipitation 2) zeolite was added after inducing MAP precipitation.  These two treatments were compared to a blank in which only MAP precipitation technique was used.

The amount of NH4+ and PO4+ was monitored in various steps during the experiments as well as  SEM observations were conducted on precipitated obtained. Results showed that adding zeolites before MAP precipitation induce a variation in the  Mg2+ : NH4+ : PO43- ratio due to cation exchange processes before MAP precipitation which introduce interfering ions such as Ca2+ favoring calcium phosphates precipitation instead of MAP. The best test conditions, which produced the 75,1% of NH4+ and 99,9% of PO43- reductions, occurred when zeolites have been added after MAP precipitation using the MR2.  This new material obtained  combines good N and P concentration and have therefore potentialities to be a high-quality slow-release fertilizer.

How to cite: Tescaro, N., Galamini, G., Ferretti, G., Faccini, B., Eftekhari, N., and Coltorti, M.: Combined application of induced MAP (Magnesium Ammonium Phosphate) precipitation and adsorption through natural zeolites for reducing NH4+ and PO43- in swine wastewaters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3436, https://doi.org/10.5194/egusphere-egu2020-3436, 2020.

EGU2020-17916 | Displays | SSS9.9

Ammonium adsorption by chabazite zeolite-tuff from swine manure for soil amendment

Giulio Galamini, Giacomo Ferretti, Valeria Medoro, Nicola Tescaro, Barbara Faccini, and Massimo Coltorti

The use of natural sorbent geomaterials, like zeolitites (rocks containing > 50% of zeolites) is recognized as a valid method to recover N in the form of ammonium ions (NH4+) from Zootechnical Wastewaters (ZoWs).

Using zeolite-rich tuff as N sorbent from ZoWs lead to varius advantages like the decrease in environmental impact of ZoWs (decreased N content) and the subsequent creation of a high-value soil amendment employable also in organic agriculture (NH4-charged zeolite-tuff).

In order to understand the characteristics of NH4-charged zeolites (CZ) as sorbent, it is mandatory a deep investigation on their sorption dynamics when they react with ZoWs. Scientific literature is rich of studies about sorption in sintetic solutions (especially NH4CL) while it lacks studies about sorption in real ZoWs.

The aim of this work was therefore to characterize the NH4 sorption dynamics of a chabazite zeolite tuff from swine manure. In particular, two grain sizes were selected, a micronized (< 125 µm, CHAµ) and a granular one (0.7-2.0 mm, CHAg). A series of batch experiments were performed to investigate the effects of temperature, contact time and grain size on sorption of NH4. Equilibrium data were fitted with appropriate isothermal models; kinetic models were also investigated to characterize the kinetik sorption reactions and the thermodinamic parameters like change in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS).

Results have shown a significant grain size effect with respect to the equilibrium loading (qe), with better performances for CHAµ in all the temperatures investigated; the isothermal data showed that the influence of temperature is less for CHAµ with respect to CHAg.

The kinetic data differs from the two grain size investigated, in particular CHAg showed an initial external surface adsorption and macropore diffusion during the first 60 minutes of contact, then the diffusion occurs also inside the micropores. The Intraparticle Diffusion model (ID) for CHAµ showed that the diffusion in the macropores are much more fast than CHAg and the intercept indicates the formation of a boundary layer thicker than CHAg. Pseudo-second-order kinetic model well explained CHAg behavior but not that of CHAµ. Both grain sizes were well explained by Elovich equation wich is a model used to explain the sorption kinetics for energetically heterogeneous solids surfaces (as likely the surface of the zeolite-tuff employed).

Thermodinamic data showed that the energy in the liquid-solid adsorption surfaces increased during adsorption (ΔH ˃ 0), thus the cation exchange reaction needs energy from the liquid phase.

The free standard entropy change (ΔS) is also positive, indicating that the NH4 sorption is a directional process with no significant differences with respect to the tested temperatures and that the randomness at the solid-solution interface increased during adsorption.

The negative values of Gibbs free energy (ΔG) indicates that the NH4 sorption is an exergonic process (spontaneous reaction).

How to cite: Galamini, G., Ferretti, G., Medoro, V., Tescaro, N., Faccini, B., and Coltorti, M.: Ammonium adsorption by chabazite zeolite-tuff from swine manure for soil amendment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17916, https://doi.org/10.5194/egusphere-egu2020-17916, 2020.

EGU2020-21166 | Displays | SSS9.9

Soil Amendments to Re-establish Agricultural Production on Ex-tin Mined Area

Rizki Maftukhah, Ngadisih Ngadisih, Murtingrum Murtiningrum, Axel Mentler, Katharina Keiblinger, Rosana Kral, and Michael Gartner

Abstract

Mining is an important industrial sector in Bangka Island (Indonesia) where about 70% of this area is tin mining. The separation of tin via flotation of tin-containing soils results in acidic nutrient-poor soils with very low organic matter contents. Hence, ex-tin mined areas are highly and unsuitable for plant growth due to their un-fertility. To improve soil fertility soil amendments are of vital importance. This research aims to evaluate the impact of different soil amendments on agricultural production and basic soil parameters on the ex-tin mined area.

The study was conducted on ex-tin mined area located in Bangka Regency, Indonesia (1o47’22.9085 S and 106o5’47.0461 E). Bangka Regency has a tropical climate with an average daily temperature of 27.2oC, precipitation during the growing season is 191.5 mm per month. The field trial was set up in July 2018 by a randomized complete block design with five different soil amendments and control plots for comparison, with a size of 2 x 2 m in four replicates. The treatments consist of the: (1) Control, (2) Lime, (3) Compost; (4) Charcoal and combinations of (5) Charcoal and Compost, and (6) Charcoal and sawdust. The soil was amended with t.ha-1 for the single amendments (treatments 2-4), and with rate 20 t.ha-1 for combined amendments (treatments 5 and 6). The plots are used to grow cassava (Manihot esculenta) for 12 months as the main crop and Centrocema pubescens as used as a cover crop grown twice for 6 months to avoid soil erosion. Soil samples were taken before and after harvest to analyze soil properties. Soil samples were analyzed for the following parameters: pH, Dissolved Organic Carbon (DOC), and Electric Conductivity (EC). Crop yields were determined by weighing the total harvest of each crop per plot. The cover crop was harvested in December 2018, and replanted, until the main crop Cassava was harvested (30 July 2019), where the cover crop yield was also evaluated. Cassava yields were separated into belowground and aboveground yields.

Soil amendments showed positive effects on soil pH, DOC, and EC at harvest time. Lime treatment significantly improved soil pH and EC (7.40 and 72.30 µS.cm-1 respectively), while DOC was significantly increased by compost treatment. Centrocema pubescens yields were significantly higher at the first harvest compared to the second one. The combined treatment with charcoal (10 t.ha-1) + Compost (t.ha-1) showed significantly the highest yield for both samplings. While another combined treatment, where, charcoal and sawdust was applied at 10 t.ha-1 each, showed the highest total cassava belowground biomass (5.44 ton.ha-1 ) as well as cassava aboveground biomass (3.06 ton.ha-1).

Results of the present field experiment suggest that the application of soil amendments directly affected soil parameters. The effect on yields was positive but crop dependent, likely due to different nutrient requirements. Data on heavy metal uptake by plants regarding soil amendments will be presented. Soil amendments can provide the potential to improve food safety and security in the ex-tin mined area.

Keywords: ex-tin mined, soil fertility, soil amendments, soil parameters, crop yields

How to cite: Maftukhah, R., Ngadisih, N., Murtiningrum, M., Mentler, A., Keiblinger, K., Kral, R., and Gartner, M.: Soil Amendments to Re-establish Agricultural Production on Ex-tin Mined Area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21166, https://doi.org/10.5194/egusphere-egu2020-21166, 2020.

EGU2020-4842 | Displays | SSS9.9

Wheat yield as influenced by urea applied with nitrification inhibitor and gibberellic acid

Rayehe Mirkhani, Mehdi Shorafa, and Mohammad Zaman

Among the essential plant nutrients, nitrogen (N) is the most needed. Farmer apply N fertilizer, predominantly urea to meet crop N demand. However, a greater proportion of the applied urea-N is not being used by plants and lost to the atmosphere as ammonia or greenhouse gases. Therefore, it is necessary to enhance N use efficiency (NUE) of applied urea by minimizing such losses, which has environmental and economic implications. Nitrification inhibitor, such as nitrapyrin (NP), has the most potential to minimise N losses and enhance crop yield. Similarly, plant hormones, such as GA3, has the potential to reduce abiotic stress and improve plant growth and yield.   
A field experiment was established on an arable site at University of Tehran, Karaj to determine the effect of urea applied with Nitrapyrin and GA3 on wheat yield in 2018-2019. Karaj has a Mediterranean climate with annual precipitation of 265 mm. A randomized complete block design in five replications was used in this study. Treatments were: T1 (control treatment - without urea), T2 (farmers practice - 138 kg N/ha), and T3 (best practice - 138 kg N/ha+NP+GA3). Urea was applied in three split applications (46 kg N/ha) at growth stage (GS 21) or tillering, (GS 32) or stem elongation, and (GS 40) or booting. GA3 in T3 treatment, was applied only at stem elongation stage. 
The crop yield data showed that, urea applied with NP and GA3 had a significant (p ≤ 0.01) effect on grain yield, biological yield, number of grains, 1000-grain weight and % Harvest Index (%HI) compared to other treatments. Urea applied with NP and GA3 increased grain yield (10.30 t ha-1) by 13.9% and 46.1% compared to farmer practices (9.04 t ha-1) and control treatment (7.05 t ha-1). These results suggest that co-application of urea with NP and GA3 has the potential to enhance wheat yield in semi-arid area of Iran.

How to cite: Mirkhani, R., Shorafa, M., and Zaman, M.: Wheat yield as influenced by urea applied with nitrification inhibitor and gibberellic acid , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4842, https://doi.org/10.5194/egusphere-egu2020-4842, 2020.

EGU2020-8959 | Displays | SSS9.9

Changes in soil nutrient content, biological activity and CO2 emission rate as a result of low-dose municipal sewage sludge compost application

Andrea Prof. Dr. Farsang, Katalin Dr. Perei, Attila Bodor, Zsuzsanna Dr. Ladányi, Katalin Csányi, Katalin Gombos, Izabella Dr. Babcsányi, and Károly Dr. Barta

Land application of sewage sludge is an increasingly popular means of the reuse of sewage sludge as it allows for recycling of valuable components, such as organic matter, N, P and other nutrients. Indeed, sewage sludge amendment to the soil modifies the soil’s physico-chemical properties, such as plant-available macro/micro nutrient contents, organic matter content. Additionally, sewage sludge applications can significantly increase the amount of microbial biomass in the soil and can also increase the soil enzyme activities. The aim of the present study is to investigate the impact of low-dose municipal sewage sludge compost amendment on the nutrient status and the biological activity in Chernozem soils. 

The study area, located near Újkígyós (SE Hungary), is a 5.6 ha arable land, where 2.5 m3/ha/year municipal sewage compost has been regularly disposed since 2013. The pH (in H2O) and humus content of soils were measured according to standard procedures. The macronutrients P2O5 and K2O were extracted using ammonium-lactate, while the nitrogen forms (NO2- + NO3- -N) were extracted with KCl-solution. The nutrient content was then determined by a flow injection analysis photometer. In order to determine the bacterial composition and enzyme activity of the soil samples, the number of living cells (CFUs), the catalase enzyme activity (CAT) and the dehydrogenase activity (DHA) were determined. The CO2 emission was measured by an EGM-5 Portable High Precision CO2 Meter in the field.  

The sewage sludge compost applied to Chernozem soils improved soil properties by adding slowly decomposing organic matter, abundant in plant macronutrients (N, K, P). The anaerobic microorganisms and the DHA enzyme activity in the anaerobic soil layers did not increase in the compost-amended soils. The aerobic microorganisms (CFUs) and CAT activity tended to be higher in treated soils compared to the non-amended (control) site, however not significantly. These results suggest that the soil biological activity is only moderately affected by the low-dose municipal sewage sludge compost applications. According to our field CO2 emission measurements, the yearly application of the sewage sludge compost in a low-dose seemingly did not affect the soil respiration rates, compared to a local control site.

The research was funded by the ‘Thematic Network for the Sustainable Use of Re-sources – RING2017’ project (program code: EFOP-3.6.2-16-201700010).

How to cite: Prof. Dr. Farsang, A., Dr. Perei, K., Bodor, A., Dr. Ladányi, Z., Csányi, K., Gombos, K., Dr. Babcsányi, I., and Dr. Barta, K.: Changes in soil nutrient content, biological activity and CO2 emission rate as a result of low-dose municipal sewage sludge compost application, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8959, https://doi.org/10.5194/egusphere-egu2020-8959, 2020.

EGU2020-10042 | Displays | SSS9.9

How Available is Phosphorus from Sewage Sludge Incinerator Ash?
not presented

Persephone Ma and Carl Rosen

The Twin Cities (Minneapolis and Saint Paul) of Minnesota (MN) in the United States incinerate sewage sludge for energy.  Every day at the Metropolitan Wastewater Treatment Plant, 650 million liters of wastewater are converted to an average of 5 MW of power and 32 MT of ash (SSA).  This ash is currently landfilled at a cost to taxpayers but contains 13% phosphorus (P), a limited natural resource required for all living things.  While some have reported that the P in this ash is unavailable for plant uptake, a previous greenhouse study of Twin Cities ash demonstrated that this SSA, as is, could be a safe and available source of P for corn and lettuce.  To follow up, we conducted three years of corn and soybean field studies from 2016-2019 in Rosemount, MN comparing various rates (0 to 180 kg P2O5/ha) of untreated SSA to equivalent rates (based on citrate soluble P) of triple superphosphate, a conventional P-only fertilizer, and two other residual products - Class A EQ (exceptional quality) biosolids and commercially available struvite.  Our objectives were to describe and compare responses from SSA and other P sources to assess the feasibility of SSA as an alternative agricultural fertilizer.  Response variables included harvest yield and plant and soil concentrations of P and other metals of concern.

Our results indicated that SSA as a soil amendment provided comparable amounts of P as the other P sources.  Final 2019 harvest yields in plots amended with SSA or any P source were significantly higher than control plots that had no P applied.  In 2017 and 2018, P uptake increased with increasing application rate, regardless of P source.  Similar trends were found within Bray-P and Olsen-P soil tests, which assess available soil P, and within buried ion exchange resin soil probes.  Except for copper (Cu) and zinc (Zn), no metal of concern was found to have increased significantly in either plant material or the soil.  Soil concentrations of Cu and Zn, but not plant concentrations, increased significantly with increasing rate in plots amended with biosolids and SSA but below levels dangerous to the environment or human health.  Taken together, we believe untreated SSA has the potential to be a safe and viable source of P and an additional option for returning a valuable natural resource to our food system.

How to cite: Ma, P. and Rosen, C.: How Available is Phosphorus from Sewage Sludge Incinerator Ash?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10042, https://doi.org/10.5194/egusphere-egu2020-10042, 2020.

EGU2020-22392 | Displays | SSS9.9

Developing reservoir sediment ceramsite as a novel growing medium: I low temperature and anaerobic production

Yu-Hsiang Liu, Yi-Hao Chu, and Chih-Hsin Cheng

Ceramsite is a typical substrate used in soilless culture systems. It is clean and durable but usually shows poor performance in water and nutrient retention capacity. In this study, we used reservoir sediment as the material to produce ceramsite to use as a growing medium. We sintered it under relatively low temperature (600°C, 800°C, and 1000°C) and anaerobic conditions with and without organic matter addition (5%, 10%, and 15%). We examined their water holding capacity, bulk density, mechanic strength, and pH, which were related to the essential characteristics using the growing media. The results showed that organic matter addition decreased bulk density and mechanic strength but increased water holding capacity and pH. The sintering temperature has less influence on bulk density and water holding capacity but increased mechanic strength and pH with the increasing sintering temperature. Compared with the commercial high-temperature ceramsite and lava rock, the water holding capacity in our ceramsite can be three times higher than those. The microstructure from scanning electronic microscopy indicated the rough surface in ceramsite at 600°C and 800°C but became glassy surface at 1000°C which was similar to the commercial ceramsite and lava rock that showed more glassy and non-porous surface. The addition of organic matter maintained rough surfaces at 1000°C, which can be the mechanism to have higher water and nutrient retention. Our results suggest that the ceramsite produced from reservoir sediment under lower temperature and anaerobic conditions with organic matter addition can be used as a growing medium to replace commercial ceramsite with its better water retention capability.

 

How to cite: Liu, Y.-H., Chu, Y.-H., and Cheng, C.-H.: Developing reservoir sediment ceramsite as a novel growing medium: I low temperature and anaerobic production, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22392, https://doi.org/10.5194/egusphere-egu2020-22392, 2020.

Over 36% of the arable area in England is at moderate to very high risk of surface sealing/crusting and erosion, including much of the better-drained and more easily worked land, especially sandy soils (Evans, 1990).

The intensive production of leafy greens consists of short growing cycles –between 21 and 28 days- and intensive seedbed preparation. From seeding to emergence, the bare soil is susceptible to rainfall and irrigation induced soil sealing. The direct consequence is an impeded seedling emergence, a delay in stand establishment and reduction in plant populations, with direct impacts on productivity. To avoid soil sealing, the grower is required to undertake additional field operations such as breaking the crust, applying supplementary low intensity irrigations or, in extreme cases, replanting crops, in a vicious cycle that spirals into soil structure degradation, loss of nutrients and further soil-sealing susceptibility.

Polyacrylamides (PAMs) are long-chained carbon polymers featuring an amide functional group that allows them to form bonds with an array of soil surfaces. The efficacy of PAMs to stabilise soil aggregates and prevent soil splash, capping and erosion has been documented for >25 yrs. Further, it has been demonstrated that PAMs consistently outperform bio-polymers and other synthetic alternatives. However, a technological innovation is required to effectively spray PAM on to the soil surface as typically PAM’s become extremely viscous when mixed with water making conventional spray application un-viable. This research investigates the efficacy of a dual-fluid nozzle to apply PAM to the soil surface. Conventional applications  to mitigate soil sealing are either in powder form or diluted within the sprinkle irrigation system and are effective at application rates ranging from between 10 and 20 kg ha-1[SR1] (Levy et al. 1992). However, the powdered form is extremely susceptible to wind drift, and the sprinkle irrigation alternative is severely limited by the amount of water required to deliver the same amount of product.  Initial nozzle calibration results indicate that PAM can be applied at rates of 13-20 kg ha-1 using 110-150 litres of water ha-1 instead of 1000 m3 ha-1(Levy et al. 1992). Subsequently, the effect of three PAM formulations with contrasting molecular weight and charge density were tested on a crust susceptible soil. Soil microcosms were subjected to two consecutive simulated rainfall events, representing pre-emergence conditions of field grown leafy salads. Treatment performance was assessed in terms of degree of crust formation. This was quantified by assessing pre and post rainfall changes in Soil Surface Roughness (SSR) using a Creaform HEXAScan laser scanner at 0.20 mm resolution, in infiltration rate using a Decagon Devices minidisk infiltrometer, and in crust penetrative resistance with a 3 mm diameter probe using an Instron 5542 tension and compression testing machine.

How to cite: Arpano, S., Simmons, R. W., and Deeks, L. K.: The efficacy of a novel polyacrylamide spray application method to mitigate soil crusting and enhance seedling emergence on crust susceptible soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22515, https://doi.org/10.5194/egusphere-egu2020-22515, 2020.

EGU2020-22393 | Displays | SSS9.9

Developing reservoir sediment ceramsite as a novel growing medium: II pot experiments

Yi-Hao Chu, Yu-Hsiang Liu, and Chih-Hsin Cheng

Reservoir sedimentation is an environmental issue that can be substantially detrimental to the lifetime of reservoirs. In this study, we tried to develop the ceramsite made from reservoir sediment and used it as a growing medium. Different from the traditional method, we sintered the material at a lower temperature (800oC) under an anaerobic atmosphere. The low-temperature ceramsite might provide higher water and nutrient retention capacity compared to the high-temperature ceramsite. The anaerobic atmosphere could preserve organic matter as biochar, which may offer better water and nutrient retention capacity as well. Pot experiments using the low-temperature ceramsite along with commercial high-temperature ceramsite (1200oC) and lava rock as the growing media were conducted. Two species Tagetes erecta and Melissa officinalis under the full water supply and limited water supply (100 ml per pot per week) conditions were planted. The results showed that the plants grown in low-temperature/anaerobic ceramsite had the best agronomic performance. Under the full water supply, the shoot height was higher in the low-temperature ceramsite than other treatments. The height was 45.8 - 48.2 vs. 16.28 - 18.73 cm in Tagetes erecta and 15.1 - 18 vs. 7.65 - 9.4 cm in Melissa officinalis. The dry weight in the low-temperature ceramsite was 5-10 times higher than those in other treatments after four months of growth. Under the water-limited condition, the plants are grown in the low-temperature ceramsite still performed better on shoot height (Tagetes erecta: 25.05 - 30.88 cm and Melissa officinalis: 14.08 – 14.75 cm) and dry weight (Tagetes erecta: 1.03 - 1.5 g and  Melissa officinalis: 0.67 – 0.89 g). The results suggest that the low-temperature/anaerobic ceramsite has the potential using as a novel growing medium and a new option for treating reservoir sediment.

 

How to cite: Chu, Y.-H., Liu, Y.-H., and Cheng, C.-H.: Developing reservoir sediment ceramsite as a novel growing medium: II pot experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22393, https://doi.org/10.5194/egusphere-egu2020-22393, 2020.

EGU2020-19138 | Displays | SSS9.9

Cultivation of industrial hemp using solid and liquid residues from municipal composting

Florian Hirsch, Agne Matvejeva, Nils Dietrich, and Thomas Raab

Industrial hemp as a renewable raw material for fiber extraction like for construction material or as biomass for energy generation is a potential agricultural product for low productive soils in temperate climates. Soil and climate conditions in Lower Lusatia, South Brandenburg, generally qualify this region suitable for growing industrial hemp. But due to the nutrient requirements of the plants, fertilization is necessary for optimal growth. Fertilization on sandy soils is, however, often problematic, since the groundwater risk is increased by the entry of nitrogen and phosphorus from the fertilizer supply. In addition, the costs of fertilizers make resource-efficient and sustainable use of the locations problematic. The liquid phase obtained in the course of municipal composting would be a suitable fertilizer in terms of nutrient concentrations, but due to the potential risk to groundwater, the use of the liquid phase from composting is currently not feasible. The aim of the project is the development of a closed cultivation system for industrial hemp using hydroponics, whereby sand and pelleted soil additives from composting are used as a supporting substrate. Nutrients from the liquid phase from the municipal composting will be used as fertilizer. The cultivation will take place under controlled conditions (light, temperature, watering water and leachate) in a glasshouse experiment. A mixture of sand and pelletized soil additives is to be tested as a plant substrate in various additional amounts. The sandy substrate is representative for the soils in Lower Lusatia. The use of pelletized soil additives in combination with the liquid phase from municipal composting is an innovative process and on the one hand contributes to the development of a new sales market and on the other hand promotes the local and resource-saving use of recyclables in the sense of the circular economy. The use of hydroponics is a promising process that can be used regardless of the climate and without endangering soil and groundwater.

How to cite: Hirsch, F., Matvejeva, A., Dietrich, N., and Raab, T.: Cultivation of industrial hemp using solid and liquid residues from municipal composting , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19138, https://doi.org/10.5194/egusphere-egu2020-19138, 2020.

SSS9.10 – Managing wildfire in a changing world

EGU2020-13770 | Displays | SSS9.10

Recent fire activity in the boreal forests of central western Siberia is unprecedented in the past 5000 years: palaeoenvironmental evidence contextualises a burning issue

Angelica Feurdean, Andrei Cosmin Diaconu, Gabriela Florescu, Mariusz Galka, Simon M. Hutchinson, Mirjam Pfeiffer, Sergey Kirpotin, Ioan Tanţău, and Boris Vannière

Although wildfire events in Siberia have increased in frequency and intensity over recent decades, in the absence of long-term records, it is not clear how far this trend deviates from baseline conditions. Short-term datasets categorise the forest fire regime in Siberia as one of surface, litter fires alternating withdevastating crown fires, although there is significant variability within this region likely reflecting vegetation composition. However, a comprehensive understanding of how vegetation composition and properties determine fire regimes remains lacking. To address this question we used two peat records spanning the last 2500 yr and a 5000 yr, respectively of charcoal morphologies-derived fire regime, pollen-based vegetation dynamics and stable isotope and testate amoebae-based climate reconstructions from boreal forests in central western Siberia, combined with fire-related functional traits of key boreal tree species. Compared to the trend over the 5000 yr period (mean fire return interval=FRI of 400 yr), our reconstructed mean FRI of 145 yr for the last five centuries is notably the shortest in the record. Most fires in this area tend to be surface, litter fires, although over the last centuries surface fires show an increased trend towards crowning. Frequent fires between 5000 and 4000 cal yr BP and 1500 cal yr BP to the present were concurrent with the dominance of invader species (primarily Betula) and fire endurer (mainly herbs) with prevalence of resisters (Pinus sylvestris, Pinus sibirica). Longer fire return intervals (up to 500 yr) between 4000 and 1500 cal yr BP were associated with the dominance of fire resisters with a considerable proportion of fire avoiders (Abies sibirica and Picea obovata). The rising number of fire episodes and the intensification of fire events over the past 1500 years have likely promoted fire-adapted plant communities (invaders and endurers) that can rapidly reach maturity, contributing to the reduction of avoider and resister species. This trend demonstrates that fire avoider species particularly fail to regenerate if the intervals between fire episodes are too short and thatan increasing number of fire episodes can drive land cover towards more fire-adapted plant communities. Our long-term perspective shows that the current fire regime lies significantly outside baseline conditions, which may drive future change in forest composition towards an increased prevalence of invader species. This study also contributes to an understanding of disturbance regimes in Pinus-Betula forests and considers the potential of tree species to adapt to new fire regimes.

 

How to cite: Feurdean, A., Diaconu, A. C., Florescu, G., Galka, M., Hutchinson, S. M., Pfeiffer, M., Kirpotin, S., Tanţău, I., and Vannière, B.: Recent fire activity in the boreal forests of central western Siberia is unprecedented in the past 5000 years: palaeoenvironmental evidence contextualises a burning issue , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13770, https://doi.org/10.5194/egusphere-egu2020-13770, 2020.

EGU2020-974 | Displays | SSS9.10

VNIR spectroscopy for assessment of post-fire impacts on soil properties using linear and non-linear calibration methods

Iva Hrelja, Ivana Šestak, Aleksandra Perčin, Paulo Pereira, and Igor Bogunović

Fire is an important element of the ecosystems, nevertheless, high severity fires can have negative impacts on the ecosystems as consequence of the high temperatures reaches. High temperatures normally have detrimental impacts on soil properties. The objective of this work was to determine the relationship of spectral reflectance and soil pH, electrical conductivity (EC), carbonates (CaCO3) and total carbon (TC) content after a medium to high severity wildfire occurred in Croatia using linear and nonlinear calibration models.

Soils were sampled 2 days after a medium to high severity wildfire in Zadar County, Croatia. A total of 120 soil samples (0-5 cm) were collected from three different treatments (n= 40 per treatment): control (C), mean severity (MS), high severity (HS). Soil pH, EC, CaCO3 and TC content were determined using standard laboratory methods.  Soil spectral measurements were carried out using a portable spectroradiometer (20 per treatment, 60 in total). Linear statistical model - partial least squares regression (PLSR) and non-linear - artificial neural network (ANN) were generated to estimate changes in soil pH, EC, CaCO3 and TC content based on the original spectral reflectance and its first derivative in form of principal components (PC). One-way ANOVA revealed pH values were significantly different in all three treatments. EC, CaCO3 and TC were significantly higher in HS plots compared with the other treatments.

Different wildfire severity indicated very collinear soil spectral response, but with certain variations of reflectance intensity. Control samples showed a higher reflectance than MS and HS samples. This is attributed to the low pH and TC content. Low reflectance of MS and HS samples could be explained by their increased pH and TC values. Soil pH was the only parameter that showed a high R2 and low root mean squared error (RMSE) after Savitzky Golay smoothing and the first derivation. In PLSR model, strong to very strong correlation and low RMSE were obtained. ANN model also showed a high R2 and lower RMSE for all properties except pH. Both models showed satisfactory results for prediction of the studied soil properties. ANN model predicted EC, CaCO3, and TC better, while PLSR proved to be a better model for pH prediction.

Key words: soil reflectance, fire severity, principal components, partial least squares regression, neural networks

Acknowledgements

This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).

How to cite: Hrelja, I., Šestak, I., Perčin, A., Pereira, P., and Bogunović, I.: VNIR spectroscopy for assessment of post-fire impacts on soil properties using linear and non-linear calibration methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-974, https://doi.org/10.5194/egusphere-egu2020-974, 2020.

EGU2020-10672 | Displays | SSS9.10

Impacts on soil organic matter quantity and composition of a prescribed fire in a eucalypt forest (Sydney, Australia)

Cristina Santin, Agustin Merino, Parvaneh Sayyad-Amin, and Stefan H. Doerr

In this presentation, we will assess the direct impacts of a prescribed fire on the quantity and composition of organic matter in oligotrophic soils of a dry eucalypt forest (Warragamba, Sydney, Australia). Samples of the litter layer and surface soils horizons (Oa and Ah) were collected immediately before and after the fire. The prescribed fire was carried out September 2014 and was classified of moderate to high severity. In addition to litter and soil, samples of ash (burnt litter) were also collected after the fire.  In order to monitor the temperatures reached by the different soil organic matter pools during the fire, we installed thermologgers at the litter layer (n=30), the surface of the Oa soil horizon (n = 9), and at 1 cm depth within the Ah soil horizon (n =4). All samples were characterized by elemental analysis (total carbon, nitrogen, oxygen and hydrogen), thermogravimetry-differential scanning calorimetry and, a selected subset by solid-state 13C nuclear magnetic resonance. The observed changes in quantity and characteristics of the different organic matter pools will be discussed and the relationships between these changes and the temperatures recorded during the burn explored.

How to cite: Santin, C., Merino, A., Sayyad-Amin, P., and Doerr, S. H.: Impacts on soil organic matter quantity and composition of a prescribed fire in a eucalypt forest (Sydney, Australia) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10672, https://doi.org/10.5194/egusphere-egu2020-10672, 2020.

EGU2020-5765 | Displays | SSS9.10

Lateral redistribution of fire-derived carbon: A rainfall simulation experiment

Severin-Luca Bellè, Asmeret Asefaw Berhe, Frank Hagedorn, Marcus Schiedung, and Samuel Abiven

Wildfires are a key component in the global carbon (C) cycle, releasing significant amount of CO2 to the atmosphere, but also producing one of the most persistent terrestrial organic C forms by the incomplete combustion of natural vegetation, namely fire-derived or pyrogenic carbon (PyC). Post-fire, PyC is deposited on the soil surface, but can then be laterally redistributed by wind or water erosion. Due to the lack of vegetation cover after a fire, primary factors that govern rate of PyC distribution post-fire will be changes in soil surface properties and physical characteristics of PyC. However, the drivers and quantities of transported PyC (and non-fire derived organic matter) by water erosion from its site of production remain largely unknown, which limits our understanding of PyC movement in the landscape.

In this study, we tracked PyC erosion (and movement in soil) in a controlled experiment using a gravity-type rainfall simulator (at an intensity of 50mmh-1). We studied the quantity of PyC eroded from the soil surface (runoff and splash sediment) as well as its vertical movement within the soil (soil cores) for two Swiss temperate forest soils (initial soil moisture of 12-16%). We calculated the distribution of PyC using the isotopic 13C signature differences of grass-PyC (Miscanthus grass), wood-PyC (spruce wood grown under FACE conditions) and natural forest soil C in soil flume of 0.25m2. We studied the combination of the following factors: soil texture (sandy silt and clay loam), slope (10° and 25°), PyC particle size (63µm and 63µm-2mm) and PyC feedstock (grass and wood) to identify the major drivers of PyC redistribution.

We hypothesize that: i) higher quantities of PyC can be found in the sediment of the sandy silt soil, with higher slopes and with bigger PyC particles, ii) higher quantities of PyC move vertically in the clay loam soil and with smaller PyC particles and iii) PyC is preferentially eroded compared to bulk SOC.

Results suggest that we find 100 times more runoff sediment on sandy silt soil compared to clay loam soil, and two times more runoff sediment on 25° slope compared to 10°. We also find 1.5 times more splash erosion on sandy silt soil than on the clay loam soil. Regarding PyC erosion, observations suggest that > 50% of initial PyC is eroded on the sandy silt soil, whereas a majority of the PyC particles moves vertically through the soil for the clay loam.

How to cite: Bellè, S.-L., Asefaw Berhe, A., Hagedorn, F., Schiedung, M., and Abiven, S.: Lateral redistribution of fire-derived carbon: A rainfall simulation experiment , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5765, https://doi.org/10.5194/egusphere-egu2020-5765, 2020.

EGU2020-19102 | Displays | SSS9.10 | Highlight

Post-fire mobilization of metals and polycyclic aromatic hydrocarbons in a recently burnt eucalypt stand in North-Central Portugal

Dalila Serpa, Ana I. Machado, Martha Santos, Isabel Campos, Bruna R. F. Oliveira, Behrouz Gholamahmadi, Martinho Martins, Oscar González-Pelayo, Fátima Jesus, Jacob Keizer, Nelson Abrantes, and Life-Reforest Consortium

Wildfires constitute a diffuse source of contamination to aquatic ecosystems. In burnt areas, the increase in surface runoff and associated sediment losses after fire, promotes the mobilization of hazardous substances, such as metals and polycyclic aromatic hydrocarbons (PAHs), posing a risk for the adjacent water bodies. In the present study, post-fire metals and PAHs export by surface runoff was evaluated in 16 m2 bounded plots in a eucalypt stand in Albergaria-a-Velha (Aveiro district, North-Central Portugal) burnt in September 2019. Runoff samples were collected on a weekly to bi-weekly basis, depending on the occurrence of rainfall, during the first 6 months after fire. The metals analyzed in this study were, vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd) and lead (Pb). As for PAHs, the analyses focused on the 16 compounds classified as priority pollutants by the United States Environmental Protection Agency. Both dissolved and particulate fractions of metals and PAHs in runoff waters were analysed in this work. Preliminary results suggest that metals are more likely to affect the water quality of fire-affected water bodies than PAHs, since low levels of PAHs were found in runoff waters. This work provides valuable information for water managers to minimize the risks of wildfires both to the environment and to public health.

How to cite: Serpa, D., I. Machado, A., Santos, M., Campos, I., R. F. Oliveira, B., Gholamahmadi, B., Martins, M., González-Pelayo, O., Jesus, F., Keizer, J., Abrantes, N., and Consortium, L.-R.: Post-fire mobilization of metals and polycyclic aromatic hydrocarbons in a recently burnt eucalypt stand in North-Central Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19102, https://doi.org/10.5194/egusphere-egu2020-19102, 2020.

EGU2020-22181 | Displays | SSS9.10

Post-Wildfire Numerical Modeling for Flood Risk Management

Ian Floyd, Stanford Gibson, Gaurav Savant, Alejandro Sanchez, and Ronald Heath

The number and intensity of large wildfires in is a growing concern in the United States.  Over the past decade, the National Interagency Fire Centre (NSTC, 2015) reported increases of large fires in every western state in the arid and semi-arid western U.S.  Wildfires, remove vegetation, reduce organic soil horizons to ash, extirpate microbial communities, alters soil structure, and potential development of hydrophobic soils.  These processes all increase water and sediment runoff. Post-wildfire environments can cause a spectrum of hydrologic and sedimentation responses ranging from no response to catastrophic floods and deadly debris flows. Numerical modellers have developed a variety of Newtonian and non-Newtonian shallow-water algorithms to simulate each of these physical processes – making it difficult to model the range of post-wildfire flood conditions and understand model assumption and limitations. This makes a modular non-Newtonian computation library advantageous. This work presents a flexible, numerical model, library framework ‘DebrisLib’ to simulate large-scale, post-wildfire non-Newtonian flows using diverse shallow-water parents code architecture. This work presents the non-Newtonian model framework effectiveness by linking it with two different modelling frameworks, specifically the diffusive-wave one-dimensional and two-dimensional Hydrologic Engineering Center River Analysis System (HEC-RAS), and shallow-water two-dimensional Adaptive Hydraulics (AdH) numerical models. The model library was verified and validated using three flume experiments for mud flows, hyperconcentrated flows, and debris flows under steady and unsteady flow conditions. Additionally the shallow-water model library framework linked with the 1D Hydrologic Engineering Centre Hydrologic Modelling System (HEC-HMS) successfully predicted the 2018 post-wildfire flooding and debris flows following the 2017 Thomas Fire near Santa Barbara, California.

How to cite: Floyd, I., Gibson, S., Savant, G., Sanchez, A., and Heath, R.: Post-Wildfire Numerical Modeling for Flood Risk Management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22181, https://doi.org/10.5194/egusphere-egu2020-22181, 2020.

EGU2020-3384 | Displays | SSS9.10

Do alter post-wildfire straw mulching application and salvage logging pine natural regeneration after wildfires?

Manuel Esteban Lucas-Borja, Cristina Fernández, Pedro Antonio Plaza- Alvárez, Javier González-Romero, Esther Peña-Mollina, Daniel Moya, and Jorge De las Heras

Mulching application and salvage logging are often performed in forests after fire to recover timber values and avoid soil erosion. These post-fire practices are believed to positively and negatively impact soil properties and initial seedling recruitment or seedling growth in pine stands. Mulch may increase soil moisture and lower soil temperature, which thus promotes seedling recruitment, whereas logging operations may generate soil compaction and destroy seedlings. As Mediterranean forests are delicate ecosystems, and different pine species or contrasting microclimate conditions (semiarid vs. subhumid Mediterranean climates) can display several natural regeneration trends, we investigated whether mulching combined with logging significantly alters soil properties, initial seedling recruitment and seedling growth in burned Pinus halepensis (Lietor) and Pinus pinaster (A Gudiña) stands in the short term. Our results demonstrated that soil organic matter and total nitrogen were the only soil parameters affected by treatments at site Liétor. Monitoring activity confirmed that regardless of tree felling or not, mulch treatment improved seedling density in the short term with a semiarid Mediterranean climate. At Liétor, seedling density was over 40% higher when mulching was applied, whereas aerial seedling length was the only seedling variable affected by this treatment. Conversely, the mulching+logging combination showed the highest seedling density, which could be related with more light availability after tree felling and the almost null effect of employed logging machinery. The harsh conditions at Liétor due to the limited water and light demands of pine species when water resources were ensured at site A Gudiña could be decisive for understanding the effect of mulching and logging operations for initial seedling recruitment. Our results generally suggest short-term soil changes and contrasting initial seedling recruitments after mulch and logging in burned semiarid and subhumid Mediterranean pine forests. 

 

How to cite: Lucas-Borja, M. E., Fernández, C., Plaza- Alvárez, P. A., González-Romero, J., Peña-Mollina, E., Moya, D., and De las Heras, J.: Do alter post-wildfire straw mulching application and salvage logging pine natural regeneration after wildfires? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3384, https://doi.org/10.5194/egusphere-egu2020-3384, 2020.

EGU2020-1200 | Displays | SSS9.10

Wildfire spreading across the urban area: definition and mapping of vegetation connectivity

Maria Polinova, Haim Kutiel, Lea Wittenberg, and Anna Brook

Climate change, increased frequency of natural disasters and their anomaly in the modern world demand review existing knowledge about environment and approaches for its management. In recent decades, one of the phenomena that humanity met with is urban wildfires. Experience has shown that existing approaches from forest fire management are not effective in a built-up environment. In practice, studying this phenomenon is limited due to lack of empirical knowledge.

To bridge this knowledge gap, the fire dynamic patterns in an urban area was reconstructed based on fire service data on the example of wildfire in Haifa (Israel) in November 2016. The results of reconstruction show that unlike forest fires, where fuel is almost unlimited around the ignition point, urban areas are sensitive to wildfire because of 'fire connectivity' through vegetation: fire moves from one green patch to another, bypassing nonflammable structures.

Although the role of urban vegetation in the spread of fires is obvious, it is difficult to define a suitable term in case of fire management. Today, cities and vegetation are studied together in the urban planning and ecosystem services and have different definitions, depends on study propose: ‘Urban Green Spaces’, ‘Green Infrastructure’, ‘Urban Forestry’, etc. The closest term in fire management for vegetation interaction with structures is ‘Wildland Urban Interface’ (WUI). However, WUI considers vegetation surrounding the city and excludes urban green spaces. Since before this time the inner-city vegetation was not considered in the fire management and wasn’t estimated its essential parameters for this case, it does not have an exact term and definition. The reconstructed wildfire allows to analyze and define vegetation in context of fire connectivity.

The results show that wildfire spreads in the urban area through ember attacks. Meanwhile, the embers led to ignition only in some patches and only in a few cases the energy amount was enough for new embers emission. Thus, the fire vegetation connectivity in urban areas can be defined by its ability to ignite and reproduce new embers.

To support fire management and risk assessment in urban areas, it is important to map vegetation based on its ignitability and potential energy emission. The task is complicated due to the uncertainty of surface fuel (including both litter and human waste). Citywide, detecting and monitoring such patches through field surveys is time-consuming work. To solve this objective by remote sensing technique, we analyzed series of Landsat 8 images for 2015 to identify spectral and temporal features of vegetation related to its flammability. The proposed approach supports estimation and mapping of vegetation connectivity in case of urban wildfire based on its multi-temporal spectral signature.

How to cite: Polinova, M., Kutiel, H., Wittenberg, L., and Brook, A.: Wildfire spreading across the urban area: definition and mapping of vegetation connectivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1200, https://doi.org/10.5194/egusphere-egu2020-1200, 2020.

EGU2020-5088 | Displays | SSS9.10

Thermokinetic characteristics of coal spontaneous combustion of Jurassic coal from China

Jingyu Zhao, Jun Deng, Furu Kang, and JiaJia Song

Jurassic coal samples from two coal mines were selected for oxidative thermal energy experiments. By using a temperature-programmed experimental system, the variation of gaseous products was obtained, and the changes in thermal energy release with temperature were measured. Thermokinetic parameters, such as apparent activation energy (Ea) and pre-exponential factor (A), of the coal samples under four different heating rates, were determined by thermogravimetric analyzer. The results showed that during the low-temperature oxidation stage, the index gas (CO) used to characterize the spontaneous combustion state of the coal body was roughly the same as the temperature curve of the two samples with the temperature change, but the critical temperature was different. The WD sample produced less CO gas. However, the maximum and minimum exothermic strengths of the two samples showed similar to temperature change curves. The characteristic temperatures for coal were discovered using different heating rates. For the WD sample, the characteristic temperature varied according to the heating rate. For the same type of sample, the TG and DTG curves lagged with an increase in heating rate. Characteristic temperatures T1−T5 had an increasing tendency with an increase in heating rate. As one of the integral methods, Coats-Redfern integral method was adopted to capture the thermokinetic parameters of the samples. The straight line fitting by this method was higher. The heating rate conditions increased from 2 to 15 °C min-1 when the oxygen concentration was 21 vol%, the apparent activation energy of the samples decreased with an increase in the heating rate.

How to cite: Zhao, J., Deng, J., Kang, F., and Song, J.: Thermokinetic characteristics of coal spontaneous combustion of Jurassic coal from China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5088, https://doi.org/10.5194/egusphere-egu2020-5088, 2020.

Coal spontaneous combustion is one of the severe nature hazards among nature resources. There are many influence factors which control the development of spontaneous combustion such as particle size, oxygen concentration, etc. Weathering effects alter the spontaneous combustion characteristics of coal. To explore the effect of particle size on gas emission from weathered coal under high temperature oxygen deficiency, the macroscopic spontaneous combustion characteristics of weathered coal with various particle sizes in high temperature oxidation process were studied. The gas concentration of different particle sizes with weathered coal oxidation from normal temperature to 600 °C was tested by the self-built high temperature program experiment system, and the variation law of the indicator gas was analyzed. The results showed that there were different experimental phenomena in each particle size coal sample. The concentration of indicator gas neither increased nor decreased monotonically with the change of particle size. Roughly, 3 mm is the critical particle size in the process of high temperature oxidation of weathered coal. The experimental results provided a pivotal theoretical basis for the early prediction and the scientific prevention of the spontaneous combustion of the weathered coal during the mining process of the open pit and the shallow coal seam.

How to cite: Song, J., Deng, J., and Zhao, J.: Effect of particle size on indicator gas emission during high-temperature oxidation of weathered coal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8904, https://doi.org/10.5194/egusphere-egu2020-8904, 2020.

EGU2020-11536 | Displays | SSS9.10

Burning trash for science - using waste to monitor wildfire energies

Anna Losiak, Amber Avery, Andy Elliott, Sarah Baker, and Claire Belcher

     Properties of the wildfires are hard to precisely and accurately measure during the event. This limits our ability to estimate effects of the event on the environment (e.g., how quickly will the area be able to recover, and what will be the long-term carbon storage in an ecosystem Hurteau and Brooks, 2011). Currently used methods of estimating of the ‘fire severity’ (the amount of vegetation and carbon loss from an ecosystem following a fire) are either subjective (fire severity scales Ryan and Noste 1985), time consuming (charcoal reflectance Belcher et al. 2019) or expensive (thermocouples with data-loggers).

     Here we present results of our proof of concept tests of a new approach that may allow ecologists to monitor fire severity and the energy distribution across a burned area by looking at the effects of the fire on litter such as tin cans, bottles and plastic items, that are often revealed following wildfire events. The approach is based on the fact that different types of packages and materials are known to decompose at different temperatures. We will present results from: 1) Field observations of burned litter compared with the charcoal reflectance measurements based on samples collected in the same spot from the 2018 Ferndown, UK. 2) experimental heating of a range of typical litter based elements in the wildFIRE Lab, using it’s state-of-the-art fire testing equipment; 3) results of the field-scale experiments performed during the controlled burns in Dorset in the beginning of 2020.

How to cite: Losiak, A., Avery, A., Elliott, A., Baker, S., and Belcher, C.: Burning trash for science - using waste to monitor wildfire energies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11536, https://doi.org/10.5194/egusphere-egu2020-11536, 2020.

EGU2020-512 | Displays | SSS9.10

Wildfire-driven release of metal(loid)s from topsoils in a smelter-polluted semi-arid area: an experimental approach

Marek Tuhý, Vojtěch Ettler, Jan Rohovec, Šárka Matoušková, Martin Mihaljevič, Juraj Majzlan, Bohdan Kříbek, and Ben Mapani

Wildfires contribute to global emissions of trace elements. This study focuses on highly polluted areas near an operating copper smelter and old mine-tailing disposal sites in Tsumeb (semi-arid north of Namibia), where wildfires frequently occur. Capturing of particulates windblown from the ore processing and smelting areas by vegetation (trees, grass) leads to the topsoil enrichment with metal(loid) contaminants (up to 7090 mg/kg Cu, 2070 mg/kg As, 4820 mg/kg Pb, 3480 mg/kg Zn, 75 mg/kg Cd, 7.66 mg/kg Hg). Experimental samples corresponding to representative biomass-rich topsoils (bushland with acacia and marula trees, grassland) were investigated using a combination of mineralogical and geochemical methods. Wildfires were simulated using a thermodesorption (TD) technique (75-670 °C; Hg) and an experimental setup composed of a temperature-controlled furnace (250-850 °C), an aerosol-filtering unit and a gas-trapping device (As, Cd, Cu, Pb, Zn). The obtained ashes were investigated to depict any mineralogical and chemical transformations in order to understand temperature-dependent release of metal(loid) contaminants during the simulated wildfire.

Thermodesorption experiments indicated that more than 90% of Hg was released at ~340 °C, which corresponded to predominant grassland-fire conditions. A comparison with the TD curves of the Hg reference compounds confirmed that the Hg in the biomass-rich topsoils occurs as a mixture of Hg bound to the organic matter and metacinnabar (black HgS), which exhibited similarities with the TD pattern of smelter flue dust residue. Temperature-dependent release of other metal(loid)s (As, Cd, Cu, Pb, Zn) is dependent on their solid-state speciation. Cadmium is released at ~750 °C, corresponding to the thermal decomposition of carbonates, in which Cd is mainly bound. Arsenic exhibits first remobilization step at <350 °C (decomposition of arsenolite, As2O3) and the second step at >650 °C corresponding to the instability of arsenates and As-rich slag glass. Other contaminants (Cu, Pb, Zn) were mainly bound in carbonates, slag particles and sulfides/sulfosalts. During the simulated wildfire, they were mainly retained in the ash and were remobilized to a lesser degree at >650 °C. Calculations indicated that at 850 °C (worse-case wildfire scenario) 2-17 % of total As, Cu, Pb and Zn, 27-79 % of total Cd and 100 % of Hg can be volatilized from these biomass-rich contaminated topsoils.

This study was supported by the Czech Science Foundation (GACR project no. 19-18513S) and a student grant from the Grant Agency of Charles University (GAUK no. 1598218).

How to cite: Tuhý, M., Ettler, V., Rohovec, J., Matoušková, Š., Mihaljevič, M., Majzlan, J., Kříbek, B., and Mapani, B.: Wildfire-driven release of metal(loid)s from topsoils in a smelter-polluted semi-arid area: an experimental approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-512, https://doi.org/10.5194/egusphere-egu2020-512, 2020.

High temperatures reached at topsoil during wildfires can induce changes in physical, chemical, and biological soil properties. In the end, these changes are related to the loss of soil organic matter (SOM) and control the post-fire soil management decision. Therefore, the objectives of this study were: (1) to develop a numerical model to predict the SOM decay during wildfires, and (2) to study which are the main parameters that control the soil response. The model couples the energy balance for soil heating, and the species conservation for water and SOM using high temperature-induced vaporization and combustion kinetics. Fluid flow was neglected; however, radiative energy conducted through pores was included as a function of the volumetric pore radius. The soil thermal evolution showed values of r2>0.92 when the radiative term in the thermal conductivity was neglected, and r2>0.98 when the volumetric pore radius was adjusted. The results showed that the main parameters that control the soil response were soil texture, soil water content, volumetric pore radius, and oxygen availability. Also, soil response depends on the surface temperature and exposure time. Soil water content enhances the thermal properties and determines the amount of heat consumed during vaporization because of the high enthalpy of this endothermic reaction. On the other hand, neglecting oxygen flux leads to restricted oxidation, limiting the SOM decay. In terms of texture, silty soils showed the lower soil response, clay and loamy soils an intermediate response, and sandy soils had a higher response. Also, the volumetric pore radius enhances the soil thermal conductivity at high temperatures, leading to higher temperatures near the soil surface. These results suggest that the normalized SOM decay does not depend on the initial SOM content.

How to cite: Aedo, S. A. and Bonilla, C. A.: A numerical approach for understanding the main parameters and processes influencing the soil organic matter decay in wildfire events, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12513, https://doi.org/10.5194/egusphere-egu2020-12513, 2020.

EGU2020-12365 | Displays | SSS9.10

Wildfire temperature effect on soils physical and hydraulic properties

Sofía Martínez, Cristina Contreras, Sara Acevedo, and Carlos Bonilla

Wildfires affect soil physical, chemical, and hydraulic properties, which in turn control many processes such as soil water availability, soil water balance, infiltration, and soil stability. Because of the multiple factors controlling the changes in soil properties and the nature of fire events, the number of predictive models for these effects is limited. Therefore, the objective of this study was to develop a soil-burning laboratory procedure to identify changes in physical and hydraulic soil properties across a fire temperature range. With this purpose, saturated hydraulic conductivity, pH, electric conductivity, soil texture, aggregate stability, repellency, and organic matter content (OM) were measured in soils burned at increasing temperatures. Six sandy loam soils were burned at four different temperatures (300ºC, 500ºC, 700ºC and 900ºC) and non-burned samples were used as a control to compute the change on each property. Additionally, three of these soils were sampled in a naturally burned area and used later to test the laboratory setup reliability to reproduce a natural fire. Preliminary results for soils burned in a muffle furnace (300ºC for two hours) showed that the changes in physical properties are more significant with soils rich in OM. On the other hand, properties such as water retention and hydraulic conductivity curves showed little variation at 300ºC.

How to cite: Martínez, S., Contreras, C., Acevedo, S., and Bonilla, C.: Wildfire temperature effect on soils physical and hydraulic properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12365, https://doi.org/10.5194/egusphere-egu2020-12365, 2020.

EGU2020-6600 | Displays | SSS9.10

How much fire-derived carbon is transported vertically through the soil and what controls its mobility?

Marcus Schiedung, Severin-Luca Bellè, Alysha Coppola, and Samuel Abiven

Wildfires produce a fire-derived carbon (C) residue known as pyrogenic carbon (PyC). This residue is one of the largest and most persistent terrestrial organic C pools with residence times over 1000 years. Large quantities of PyC can remain on the site where the fire occurs or can be transferred along the landscape and eventually enter the soil where it represents a major component of the total soil organic carbon (SOC). The drivers explaining the vertical PyC mobility in soils and the quantities it represents remain largely unknown, which limits our understanding of the fate of PyC in the terrestrial systems. Here, we used a manipulative soil column experimental approach in order to study the proportion of transportable PyC and its interaction with the soil mineral phase and non-fire-derived SOC during its vertical transport. To do this, we applied highly 13C-labelled ryegrass biochar (as a PyC proxy) on the upper layer of small soil columns (7 cm length, 2.5 cm diameter), and traced the fire-derived C in the soil and in the soluble fractions sequentially extracted during a percolation of 600 pore volumes under saturated conditions (equivalent to 18 years continues rainfall). We studied a combination of ranging soil texture (sandy loam and sand), SOC content (0.3-3.0%) and weathering state (age) of the ryegrass biochar (artificial oxidation with H2O2) to identify drivers controlling the vertical mobility of fire-derived C. We hypothesized that: i) Significant proportions of fire-derived C are transported through the soil column over the whole experimental period but decrease with time, ii) fire-derived C can be retained and stabilized within the soil column and influence the mobility of non-fire-derived SOC and iii) weathered fire-derived C is more mobile than fresh fire-derived C which may control its long-term fate in soils.

How to cite: Schiedung, M., Bellè, S.-L., Coppola, A., and Abiven, S.: How much fire-derived carbon is transported vertically through the soil and what controls its mobility? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6600, https://doi.org/10.5194/egusphere-egu2020-6600, 2020.

EGU2020-210 | Displays | SSS9.10

What is wrong with post-fire soil erosion modelling?

Antonio Girona-García, Ana Rita Lopes, Sofia Corticeiro, Ricardo Martins, Jacob Keizer, and Diana Vieira

Wildfire patterns are shifting all over the world as a consequence, among others, of changes in land use and climate [1], which may entail remarkable social, environmental, and economic implications. The occurrence of wildfires is often linked to increased post-fire hydrological and erosive responses, which are hard to predict due to the complexity of factors involved [2]. Against this background, soil erosion models arise as a resourceful tool in the decision-making process for environments that are or could be affected by wildfires: from prevention to mitigation and from emergency actions to long-term planning. Nevertheless, the current soil erosion models were not originally developed for post-fire conditions, so they are not adapted to include fire-related changes into their predictions [3]. This work aimed to review the scientific advances in the last twenty years in post-fire soil erosion modelling research from a meta-analysis approach.

To this end, the Scopus database was searched using different combinations of the terms “model”, “modelling”, “fire”, “wildfire” “hydrology”, “erosion”, “runoff”, “burn”, “burnt”, “erosion”, “soil erosion”, “sediment” and “rill”. Afterwards, the following publications were excluded: a) reviews; b) journals without peer-review process; c) books or book chapters; d) reports; e) editorials; f) conference proceedings; g) works in which the modelling was conducted on individual processes; h) studies modelling debris flows and landslides; i) works that did not conduct post-fire and/or erosion modelling; j) works that are not in English. Then, it was identified whether authors included in the models important factors related to soil erosion in fire-affected environments such as changes in water infiltration, burn severity, and/or the application of post-fire mitigation treatments. The main modelling approaches used, the calibration and validation of predicted data, and the use of efficiency indexes were also evaluated. 

The screening resulted in 33 works (43 cases based on the model used) that were not homogeneously distributed worldwide, neither according to the model type used, nor by regions most affected by wildfires. For the calibration process, in 70% of the cases models were adapted to burned conditions but only in 25% of them, individual input parameters were improved to accommodate processes that were not previously represented. Additionally, burn severity and changes in infiltration were considered in 77 and 65% of the cases, respectively, whereas only 26% of the cases corresponded to studies where post-fire mitigation treatments were applied. It is noteworthy that only in 19% of the cases, the predicted data were validated with independent field datasets and uncertainty was assessed in 5% of the studies.

It is highlighted that further efforts are required on the adaptation of erosion models to burned conditions, evaluating the model performance in both calibration and validation stages for a wider variety of environments and scenarios, in order to accurately predict the hydrological and erosive response after fires.

[1] Andela et al. (2017). Science 356: 1356-1362. DOI: 10.1126/science.aal4108

[2] Larsen & MacDonald (2007). Water Resour. Res. 43: W11412. DOI: 10.1029/2006WR005560

[3] Vieira et al. (2018). Environ. Res. 165: 365-378. DOI: 10.1016/j.envres.2018.04.029

How to cite: Girona-García, A., Lopes, A. R., Corticeiro, S., Martins, R., Keizer, J., and Vieira, D.: What is wrong with post-fire soil erosion modelling? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-210, https://doi.org/10.5194/egusphere-egu2020-210, 2020.

EGU2020-11537 | Displays | SSS9.10

Event runoff calibration with LISEM in a recently burned Mediterranean forest catchment.

Diana Vieira, Marta Basso, João Nunes, Jacob Keizer, and Jantiene Baartman

Wildfires are known to change post-fire hydrological response as a consequence of fire-induced changes such as soil water repellence (SWR). SWR has also been identified as a key factor determining runoff generation at plot and slope scale studies, in which soil moisture content (SMC) has been presented as dependent variable. However, these relationships have not been established at catchment scale yet, mainly due to the inherent difficulties in monitoring post-fire hydrological responses at this scale and in finding relationships between these events with SWR point (time and space) measurements. To fulfil these knowledge gaps, the present study aims to advance the knowledge on post-fire hydrological response by simulating quick flows from a small burned catchment using a physical event-based soil erosion model (OpenLISEM).

OpenLISEM was applied to simulate sixteen events with two distinct initial soil moisture conditions (dry and wet), in which the model calibration was performed by adjusting Manning’s n and saturated soil moisture content (thetas). Considering that manual calibration resulted in distinct Manning’s n for wet and dry conditions, while thetas required an individual calibration for each event, an alternative parameterization of thetas was created by means of linear regressions, for all the events together (“overall”), and for wet and dry events separately (“wet” and “dry”). Model performance was evaluated at the outlet, while hillslope predictions were compared with runoff data from micro-plots that were installed at 3 of the hillslopes (Vieira et al., 2018).

The validation of field data at micro-plot scale revealed several comparability limitations attributed to the time-step of the field data (1- to 2-weekly) in comparison to the duration of the events (170-940 min). Nevertheless, the most striking result from our simulations is the fact that OpenLISEM did not predict overland flow generation at two out of the three locations where it was observed. Our simulations also showed that the forest roads are a source of the runoff generation and their configuration affects catchment connectivity.

At the outlet level, OpenLISEM achieved a satisfactory (0.50 < NSE ≤ 0.70) and very good (NSE > 0.80) model performance according to Moriasi, et al. (2015), in predicting total discharge (NSE=0.95), peak discharge (NSE=0.68), and the time of the peak (NSE=1.00), for the entire set of events under manual calibration. In addition, simulations in wet conditions achieved higher accuracy in comparison to the dry ones.

When using the parameterization based on the linear regression calibration, OpenLISEM simulation efficiency dropped, but still to satisfactory and very good (NSEoverall = 0.58, NSEcombined =0.86) accuracy levels for total discharge.

Overall, we conclude that calibrating post-fire hydrological response at catchment scale with the OpenLISEM model, can result in reliable simulations for total flow, peak discharge and timing of the peaks. When considering the parameterization of thetas as proxy for repellent and wettable soils, more information than the initial soil moisture is required.

How to cite: Vieira, D., Basso, M., Nunes, J., Keizer, J., and Baartman, J.: Event runoff calibration with LISEM in a recently burned Mediterranean forest catchment., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11537, https://doi.org/10.5194/egusphere-egu2020-11537, 2020.

EGU2020-19462 | Displays | SSS9.10

The role of water content in wildfire ash mobilization by wind erosion under laboratory conditions

Jan Keizer, Ricardo Martins, Adriana Xavier, Diana Vieira, Ana Miranda, Sandra Sorte, Carlos Borrego, Luís Correia, Fábio Morgado, Sandra Rafael, and Micael Rebelo

The Portuguese ASHMOB project (CENTRO-01-0145-FEDER-029351) is addressing the overall lack of knowledge on the mobilization of wildfire ash with time since fire. More specifically, ASHMOB is looking into the lateral transport of wildfire ash by water as well as wind erosion. ASHMOB involves a combined measurement-modeling approach comprising five phases: (i) wildfire ash collection and characterization; (ii) wind tunnel experiments of ash mobilization by wind erosion; (iii) hydraulic laboratory experiments of ash mobilization by rainfall splash, run-on and their combination; (iv) adjusting selected wind and water erosion models to accommodate erosion of wildfire ash; (v) validating the adjusted models by field measurements in a recently burnt area.  The current presentation concerns the second phase and, in particular, wind tunnel experiments aiming to assess the influence of water content on the post-fire ash mobilization. The experiments were performed in the wind tunnel of the Atmosphere Aerodynamics Laboratory of Aveiro University’s Department of Environment and Planning, which is an open-circuit wind tunnel with 13 m long and a test section of 6.5x1.5x1.0 m (LxWxH), often used for physical modelling of urban flows and air quality. For these experiments, wildfire ash was used from three different land cover types, i.e. Maritime Pine and Eucalypt forest plantations and Strawberry tree woodlands (or, more concretely, woodland patches). These ashes were collected as soon as possible after three wildfires that occurred during the summer of 2019 in central Portugal, typically within 2 weeks. The pine, strawberry tree and eucalypt ashes were collected following wildfires in july in Vila de Rei, august in Fátima and september in Albergaria-a-Velha, respectively. The experiments involved one specific ash load of 10 mm, based on findings of earlier experiment with varying ash loads, and ash-to-water ratio of 1:0, 1:0.25, 1:0.5, 1:0.75, 1:1, 1:1.5 and 1:2 (wash/wwater) at the start of the experiments. Ash mobilization with stepwise increasing wind speeds up till 9 m.s-1 was measured continuously using a measurement scale linked to a computer and was also filmed from above using a Go-Pro video camera. For each combination of ash type and ash-to-water ratio, 5 replicate experiments were run. Preliminary analysis of the obtained results revealed a clear role of water content in the mobilization by wind of all three types of wildfire ash, with marked increased shear velocity with increasing ash-to-water ratio. At the same time, shear velocity also differed markedly between the woodland types, with consistently lower shear velocity for pine ash than for eucalypt as well as strawberry tree ash at the different ash-to-water ratios.

How to cite: Keizer, J., Martins, R., Xavier, A., Vieira, D., Miranda, A., Sorte, S., Borrego, C., Correia, L., Morgado, F., Rafael, S., and Rebelo, M.: The role of water content in wildfire ash mobilization by wind erosion under laboratory conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19462, https://doi.org/10.5194/egusphere-egu2020-19462, 2020.

EGU2020-22501 | Displays | SSS9.10

Drought legacy effects on post-fire vegetation dynamics in a Mediterranean shrubland of Central Spain

Antonio Parra, María Belén Hinojosa, Iván Torres, and José Manuel Moreno

Post-fire regeneration often occurs under water scarcity conditions in Mediterranean ecosystems. This fact is likely to be more frequent in the future, as climate change projections for the Mediterranean show increased temperature and decreased rainfall, as well as higher fire weather danger. Therefore, studying how vegetation responds to fire and drought is critical for anticipating vegetation vulnerability to global warming. Here, we present the results of a manipulative field study in a Mediterranean shrubland of Central Spain in which 4 drought treatments were imposed before and after carrying out an experimental burning of the treated plots: natural rainfall, historical rainfall regime (2 months summer drought per year), moderate drought (ca. 25% rainfall reduction from historical records, 5 months drought), and severe drought (ca. 50% rainfall reduction, 7 months drought). We monitored the plant community during the first 4 years after fire under the drought treatments followed by additional 6 years once such treatments had ceased. We found that drought significantly reduced density, cover, and size of seeder species during the first post-fire years under treatment. In contrast, resprouter species were virtually unaffected. As a whole, the changes in woody species dynamics resulted in a community ‘herbalization’, which was richer and more diverse, but probably more prone to a new fire. Moreover, we found that the drought effects on the community, and especially on the seeders, were maintained various years after all plots started receiving natural rainfall. 10 years after the fire, the legacy effect of the drought had been diluted, although some effects on plant density or cover in certain seeder species were still present. Overall, this means that what happens during the first few years after fire is extremely important for vegetation recovery, and that the effects of a long drought can persist over various years, and likely over a whole fire cycle.

How to cite: Parra, A., Hinojosa, M. B., Torres, I., and Moreno, J. M.: Drought legacy effects on post-fire vegetation dynamics in a Mediterranean shrubland of Central Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22501, https://doi.org/10.5194/egusphere-egu2020-22501, 2020.

The effects of mulch (Olea europea and Pinus halepensis) on burned soils: A preliminary study in Adriatic coast (Croatia)

Delac, Domina1*; Pereira, Paulo2*; Kisic, Ivica1

1University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Svetosimunska cesta 25, 10000 Zagreb, Croatia. (*ddelac@agr.hr)

2Mykolas Romeris University, Environmental Management Laboratory, Ateitis street 20, LT-08303, Vilnius, Lithuania (*pereiraub@gmail.com)

 

In the recent decades the frequency and intensity of summer drought periods is increasing in Adriatic coast. These changes in climate increase the vulnerability to wildfires. Wildfires can change soil physical and chemical properties. However, these effects can be mitigated by mulching. The aim of this work is to study the effects of mulch (Olea europea and Pinus halepensis) on fire affected soils. The wildfire occurred on 28 July 2019 and affected an area of about 900 ha in Dalmatia, near Adriatic Coast (43°45'06.0"N 15°56'02.9"E with an elevation of 105 m a.s.l.).  The mean annual temperature is 15.8 °C, and the annual precipitation is 800 mm. It was affected agricultural land with dominant culture Olea europea and abandoned grassing where dominates Pinus halepensis. Soils are classified as calcocambisols. Twenty-five days after the fire, two plots (5 treatments per plot) were established and covered with Olea europea and Pinus halepensis mulch. A control plot was established as well. Soil were sampled (0 – 5 cm), twenty- days after fire (August, 2019), before mulch application, and then 3 months after fire (November, 2019). A total of 15 samples were collected per treatment (45 each sampling date). The soil properties analysed were soil pH, soil organic matter (SOM), mean weight diameter (MWD) to express aggregate stability, and soil water repellency (SWR) measured with water drop penetration time method (WDPT) in different fractions (2 – 1 mm; 1 – 0.5 mm, 0.5 – 0.25 mm, and <0.25 mm). Soil pH was not significantly different among sampling dates and treatments. SOM was significantly different among sampling dates for Olea europeae treatment and control. Olea europeae treatment had a significantly higher SOM then Pinus halepensis and control treatment. MWD was significantly higher within Olea europeae treatment. Within Pinus halepensis and control treatment no significant difference was observed. The soil was classified as slightly water repellent (5 – 60 seconds) in Olea europeae soil finer fraction (0.5 – 0.25 mm and <0.25) in both sampling dates. In Pinus halepensis treatments and control, soil was wettable (<5 seconds), and no significant difference was observed among sampling date. Future sampling and analysis will be conducted during one year to estimate the effect of Olea europeae and Pinus halepensis mulch on soil properties.

Keywords: Wildfire, Olea europeae, Pinus halepensis, mulch.

 

Acknowledgments

This work was supported by Croatian Science Foundation through the project "Influence of Summer Fire on Soil and Water Quality” (IP-01-2018-1645).

How to cite: Delač, D., Pereira, P., and Kisić, I.: The effects of mulch (Olea europea and Pinus halepensis) on burned soils: A preliminary study in Adriatic coast (Croatia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1295, https://doi.org/10.5194/egusphere-egu2020-1295, 2020.

EGU2020-5814 | Displays | SSS9.10

Pre-fire forest management effectivity to decrease wildfire impact on soil properties in a Mediterranean forest.

Marcos Francos, Xavier Úbeda, Paulo Pereira, Victoria Arcenegui, and Jorge Mataix-Solera

Forest mechanical fuel treatments in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. These pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the effectivity of this treatment (clear-cutting operation whereby part of the vegetation was cut and left covering soil surface) carried out before a wildfire that broke out in 2015 and evaluate if the management had influence on post-wildfire soil properties of three sites: two exposed to management practices in 2005 (site M05B) and in 2015 (site M15B)–and one that did not undergo any management (NMB) and to compare their properties with those recorded in a Control area unaffected by 2015 wildfire. The fourth areas were sampled and compared 2, 10 and 18 months after wildfire. The study area is located in Ódena (Catalonia, Spain). The wildfire occurred at July 27th of 2015 and burned 1237 ha. In each area and in each sampling moment we collected 9 topsoil samples (0-5 cm depth). We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (Cmic) and basal soil respiration (BSR). Two-way ANOVA was carried out to check the differences according to sampling moment and to management. The results show that 2 months after the wildfire M05B showed greater amount of IC and pH; M15B showed greater Na than the other areas; NMB resulted higher in AS, TN, SOM, EC, Ca, Mg, K and BSR; and Control registered the highest Cmic. C/N resulted similar in the 4 areas in the three sampling moments. Ten months after wildfire, M05B showed greater AS and IC; NMB resulted higher in TN, SOM, EC, Mg and K; and Control showed higher pH, Ca, Na, Cmic and BSR. In the last sampling, 18 months after wildfire, M05B showed greater pH; M15B showed higher AS; NMB resulted higher in TN, SOM, EC, Ca and K; and Control showed higher IC, Mg, Na, Cmic and BSR. According to the treatments M05B registered higher TN, SOM, IC, EC, Mg, Na and K during 1st sampling; AS and C/N during 2nd sampling; and pH, Ca, Cmic and BSR during 3rd sampling. M15B registered higher IC, Mg, Na and K during 1st sampling; BSR and C/N during 2nd sampling; and AS, TN, SOM, pH, EC, Ca and Cmic during 3rd sampling. NMB registered higher IC, Mg, Na, K, Cmic and BSR during 1st sampling; AS and C/N during 2nd sampling; and TN, SOM, pH, EC and Ca during 3rd sampling. Control did not vary significantly over time due to the absence of perturbation. Overall, a comparison of the pre-fire treatments showed that NMB was the practice that had the least negative effects on the soil properties studied, followed by M15B, and that fire severity was highest at M05B due to the accumulation of dead plant fuel.

How to cite: Francos, M., Úbeda, X., Pereira, P., Arcenegui, V., and Mataix-Solera, J.: Pre-fire forest management effectivity to decrease wildfire impact on soil properties in a Mediterranean forest., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5814, https://doi.org/10.5194/egusphere-egu2020-5814, 2020.

EGU2020-11035 | Displays | SSS9.10

Post-fire moss colonization and rehabilitation in forests of the Southwestern USA

Henry Grover, Matthew Bowker, Peter Fulé, Kyle Doherty, Carolyn Sieg, and Anita Antoninka

With wildfires increasing in extent and severity in the Southwestern USA, practitioners need new tools to rehabilitate recently burned ecosystems. Fire mosses consist of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argenteum, that naturally colonize burned landscapes, aggregate soils, and can be grown rapidly in the greenhouse. We explored the efficacy of fire moss as a passive and active postfire rehabilitation tool. First, we conducted a natural survey of moss colonization and function on 10 severely burned areas in the Southwestern USA. We tested 11 landscape scale predictors of fire moss cover and found that it is most strongly influenced by insolation, pre-fire vegetation type, soil organic carbon, and time since fire. We also found that, when compared to bare soils, fire mosses increase infiltration by 50% on average and soil stability by more than 100%. Using this information, we selected two study sites on which to inoculate greenhouse grown fire moss. Directly after a wildfire near Flagstaff, Arizona we added sieved moss, finely ground moss, and moss combined with diatomaceous earth and rolled into pellets (n=15). After two years of growth, B. argenteum was the only successful species and no treatment had attained more than 1% cover on average, pellet treated plots had higher moss colonization (p <.001).

Four months after a wildfire in the Jemez Mountains of New Mexico, we added greenhouse cultivated moss that was sieved as well as high and low cover of pellets (n= 12). After 1.5 years of growth, we found increased B. argenteum cover with a mean of 10.5% on plots that received high cover of pellets compared to 5.1% cover for controls (p= .02). Currently we are analyzing data to determine if this cover influenced point scale erosion and infiltration metrics. Our results indicate that fire mosses are functionally important colonizers of north facing severely burned hillslopes, however more research is necessary to develop them as an active rehabilitation tool.

How to cite: Grover, H., Bowker, M., Fulé, P., Doherty, K., Sieg, C., and Antoninka, A.: Post-fire moss colonization and rehabilitation in forests of the Southwestern USA , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11035, https://doi.org/10.5194/egusphere-egu2020-11035, 2020.

EGU2020-20618 | Displays | SSS9.10

Testing a novel technique, geotubes with mycotechnosoil, to mitigate post-fire erosion and enhance ecosystem recovery

Dalila Serpa, Jan J. Keizer, Ana I. Machado, Martha Santos, Bruna R. F. Oliveira, Behrouz Gholamahmadi, Martinho Martins, Oscar González-Pelayo, and Life-Reforest Consortium

Recently burnt areas have frequently been documented to produce strong to extreme catchment-scale hydrological and erosion responses to major rainfall events, even if these responses have rarely been quantified. These responses have raised important concerns, both among forest owners and managers on the on-site implications of soil (fertility) loss and among water resources managers for the off-side impacts on downstream values-at-risk such as road and hydraulic infrastructures, flood zones, and surface water quality in reservoirs or at river intake points. State-of-the-art emergency stabilization management, as practiced in the USA and Galicia, aims at reducing the hydrological and erosion response at its main source, i.e. the hillslopes. Based on years and decades of experience and pain-staking field monitoring in both the USA and Galicia, mulching is typically preferred over barrier-based methods, especially for being more effective in the case of high-intensity rainfall storms. Even so, the LIFE-REFOREST consortium (LIFE17 ENV/ES/000248) has developed an innovative barrier-based technique that is designed to be implemented easier and faster than log and shrub barriers and, at the same time, to improve vegetation recovery, using seeds of plant species that establish vegetation strips against runoff and erosion and/or seeds of tree and shrub species for re- or afforestation. The REFOREST barriers consists of geotubes containing, besides seeds, a mycotechnosoil as well as straw. The effectiveness of the LIFE-REFOREST geotubes is current being tested under field conditions in summer-2019 burnt areas in north-central Portugal and Galicia, in contrasting forest types (eucalypt vs. pine) on contrasting parent materials (schist vs. granite). Both field trials involve, besides 3 control plots and 3 plots with geotubes, also 3 plots mulched with either eucalypt logging residues or pine needles. The present poster will show preliminary results of the field trial in north-central Portugal, in a second-rotation eucalypt stand where tree crowns were scorched by the fire and soil burn severity was classified as moderate. These results concern the initial monitoring period till early spring 2020. However, this monitoring period has been quite rainy so far, arguably providing rather ideal conditions for testing the effectiveness of barrier-based solutions such as that of LIFE-REFOREST.

How to cite: Serpa, D., J. Keizer, J., I. Machado, A., Santos, M., R. F. Oliveira, B., Gholamahmadi, B., Martins, M., González-Pelayo, O., and Consortium, L.-R.: Testing a novel technique, geotubes with mycotechnosoil, to mitigate post-fire erosion and enhance ecosystem recovery, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20618, https://doi.org/10.5194/egusphere-egu2020-20618, 2020.

SSS9.12 – Irrigation for a resilient and sustainable food-energy-water nexus: science, technology and innovation

EGU2020-19219 | Displays | SSS9.12 | Highlight

The value of information for the management of deficit irrigation systems

Niels Schuetze and Oleksandr Mialyk

Due to climate change, extreme weather conditions such as droughts may have an increasing impact on the water demand and the productivity of irrigated agriculture. For the adaptation to changing climate conditions, the value of information about irrigation control strategies, future climate development, and soil conditions for the operation of deficit irrigation systems is evaluated. To treat climate and soil variability within one simulation-optimization framework for irrigation scheduling, we formulated a probabilistic framework that is based on Monte Carlo simulations. The framework can support decisions when full, deficit, and supplemental irrigation strategies are applied. For the analysis, the Deficit Irrigation Toolbox (DIT) is applied for locations in arid and semi-arid climates. It allows the analysis of the impact of information on (i) different scheduling methods (ii) different crop models, (iii) climate variability using recent and future climate scenarios, and (iv) soil variability. The provided results can serve as an easy-to-use support tool for decisions about the value of climate and soil data and/or a cost-benefit analysis of farm irrigation modernization on a local scale.

How to cite: Schuetze, N. and Mialyk, O.: The value of information for the management of deficit irrigation systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19219, https://doi.org/10.5194/egusphere-egu2020-19219, 2020.

EGU2020-5956 | Displays | SSS9.12

Laboratory calibration of different soil moisture sensors in various soil types

Urša Pečan, Damijana Kastelec, and Marina Pintar

Measurements of soil water content are particularly useful for irrigation scheduling. In optimal conditions, field data are obtained through a dense grid of soil moisture sensors. Most of the currently used sensors for soil water content measurements, measure relative permittivity, a variable which is mostly dependant on water content in the soil. Spatial variability of soil characteristics, such as soil texture and mineralogy, organic matter content, dry soil bulk density and electric conductivity can also alter measurements with dielectric sensors. So the question arises, whether there is a need for a soil specific calibration of such sensors and is it dependant on the type of sensor? This study evaluated the performance of three soil water content sensors (SM150T, Delta-T Devices Ltd, UK; TRIME-Pico 32, IMKO micromodultechnik GmbH, DE; MVZ 100, Eltratec trade, production and services d.o.o., SI) in nine different soil types in laboratory conditions. Our calibration approach was based on calibration procedure developed for undisturbed soil samples (Holzman et al., 2017). Due to possible micro location variability of soil properties, we used disturbed and homogenized soil samples, which were packed to its original dry soil bulk density. We developed soil specific calibration functions for each sensor and soil type. They ranged from linear to 5th order polynomial. We calculated relative and actual differences in sensor derived and gravimetrically determined volumetric soil water content, to evaluate the errors of soil water content measured by sensors which were not calibrated for soil specific characteristics. We observed differences in performance of different sensor types in various soil types. Our results showed measurements conducted with SM150T sensors were within the range of manufacturer specified measuring error in three soil types for which calibration is not necessary but still advisable for improving data quality. In all other cases, soil specific calibration is required to obtain relevant soil moisture data in the field.

How to cite: Pečan, U., Kastelec, D., and Pintar, M.: Laboratory calibration of different soil moisture sensors in various soil types , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5956, https://doi.org/10.5194/egusphere-egu2020-5956, 2020.

EGU2020-7195 | Displays | SSS9.12

Laboratory lysimeters and proximal sensing data for optimizing irrigation water needs

Nicola Paciolla, Imen Ben Charfi, Chiara Corbari, and Marco Mancini

The increase of irrigation efficiency and crop productivity in agriculture is nowadays a general requirement at national and international level to mitigate planet food security problems due to: the freshwater supply variability and scarcity enhanced by climate change (FAO, 2018), the increasing water demand due to population growth and also due to using ancient and sometimes empirical agricultural techniques.

To test the effectiveness of these irrigation strategies, on-field surveys alone are not enough. In the laboratory environment, a higher degree of insight is accessible, with a number of measurements that would be difficult on site.

In this work, we have tested the water dynamics related to the particular irrigation strategy developed in the SIM project (Smart Irrigation from soil moisture forecast using satellite and hydro-meteorological Modelling). The basic principle behind the strategy is that the soil moisture in the root-zone should be kept between the plant stress threshold and reducing deep percolation at all times. In that way, the irrigation amount is always enough so that the crop does not suffer water stress, and any water loss is avoided. As a comparison, two more common irrigation strategies have been tested in the same conditions: potential and deficit irrigation.

The laboratory set-up involves a wide range of instruments and devices: a lysimeter, a high-resolution (2g tolerance) scale, a thermal camera, a spectrometer, an infrared and an ultraviolet lamp, a radiometer and a leaf porometer. To increase the accuracy of the measurements, instead of working directly on the lysimeter, the crops have been cultivated in separate boxes, placed directly above the lysimeter. Three boxes have been managed according to each irrigation strategy. As a reference, one box has been kept with bare soil throughout the whole testing period, one has been filled with water and, finally, dense grass has been cultivated in another, totalling 12 boxes. The subdivision in boxes allows weighing each separately, guaranteeing higher accuracy.

The laboratory routine consisted of daily measurements of the weight of the boxes, together with measurements of temperature and leaf irradiance spectra. The evapotranspiration and percolation from each box are derived from the weight difference, and the water mass balance is closed for every box. At the end of the experimental set-up, the productivity for each irrigation strategy has been computed by measuring the final crop yield of each box.

Positive results, in terms of crop health and water savings, have been obtained with the SIM strategy.

How to cite: Paciolla, N., Ben Charfi, I., Corbari, C., and Mancini, M.: Laboratory lysimeters and proximal sensing data for optimizing irrigation water needs, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7195, https://doi.org/10.5194/egusphere-egu2020-7195, 2020.

EGU2020-9995 | Displays | SSS9.12 | Highlight

High-resolution soil moisture retrieval using a Neural Network approach from Sentinel-1 SAR data

Qi Gao, Maria Jose Escorihuela, Nemesio Rodriguez-Fernandez, Olivier Merlin, and Mehrez Zribi

High-resolution soil moisture product is important for agriculture-related managements including irrigation. We have investigated the Change Detection (CD) method using Sentinel-1 data for 100 m resolution soil moisture retrieval and got a Root Mean Square Error (RMSE) about 0.6 m3/m3. However, the result of this approach is not accurate enough for high-density crops like corn. Another approach needs to be studied to get better accuracy over all types of crops. The artificial neural network (NN) technique, which involves nonlinear parameterized mapping from an input vector to an output vector, is an appropriate tool for retrieving geophysical parameters from remote sensing data. Many studies have explored the NN approach for processing remotely sensed data, including retrieving soil moisture, however, only a few studies [Notarnicola et al., 2010; Paloscia et al., 2013, etc.] had investigated NN for soil moisture estimation over vegetation-covered areas, especially in a large scale.

The objective of this study is to develop an approach based on neural networks to estimate soil moisture at high resolution over vegetation-covered areas from Sentinel-1 C-band SAR data. The quality of the output results depends directly on the quality of the input data used to train the NN and the reference data for the training, therefore, we performed our study over Catalonia, where we have many auxiliary data. The study is performed using both VV and VH polarization over the whole Catalonia. Apart from Sentinel-1 SAR data, auxiliary data including Sentinel-2 NDVI, SMAP soil moisture, CCI (ESA Climate Change Initiative) land cover, SIGPAC (Sistema de Información Geográfica de Parcelas Agrícolas) land cover, irrigation index and crop type information from SIGPAC, and DEM (Digital elevation model) are also used for approach development. DISPATCH (Disaggregation based on Physical and Theoretical scale Change) soil moisture product at 1 km resolution is considered as the target in the Neural Network training, adding great value to our study. To prepare the Neural Network training, all data sets are co-registered at 1 km resolution within the same size and resampled for the same dates within one year (2017). Two indexes describing the normalized backscatter difference and soil moisture are introduced as equation (1) and (2):

Index1 = (σ0i - σ0min) / (σ0max - σ0min) (1)
Index2 = SMmin + (SMmax - SMmin) * Index1 (2)

 

Different parameters were tested to train the Neural Network approach, the preliminary results show a correlation value compared with DISPATCH product about 0.71 over croplands, 0.73 over irrigated fields, and 0.65 over forests, considering Index1, Index2 and SMAP soil moisture. Works are still on-going to try to improve the results by better analyzing the SAR data performance over different fields and conditions. The final goal of the study is to produce 100 m resolution soil moisture product. After 1 km resolution study, we will apply the approach at 100m resolution, and the in-situ soil moisture will be used for validation.

This work is inscribed within the Water4Ever project, which is funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme. 

How to cite: Gao, Q., Escorihuela, M. J., Rodriguez-Fernandez, N., Merlin, O., and Zribi, M.: High-resolution soil moisture retrieval using a Neural Network approach from Sentinel-1 SAR data, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9995, https://doi.org/10.5194/egusphere-egu2020-9995, 2020.

EGU2020-11408 | Displays | SSS9.12

Multispectral reflectance vegetation indices are highly sensitive to water stress in grapefruit trees

Pablo Berrios, Abdelmalek Temnani, David Pérez, Ismael Gil, Susana Zapata, Manuel Forcén, Tiago B. Ramos, Filipe N. Santos, Juan Antonio López Riquelme, and Alejandro Pérez-Pastor

The sensitivity to water stress of different plant water indicators (PWI) at different plot scales (leaf and aerial) was evaluated during the second fruit growth stage of grapefruit (Citrus paradisi cv. Star Ruby) trees growing in a commercial orchard for a sustainable irrigation scheduling. Trees were drip-irrigated and submitted to two irrigation treatments: (i) a control (CTL), irrigated at 100% of crop evapotranspiration to avoid any soil water limitations, and (ii) a non-irrigated (NI) treatment, irrigated as the control until the 104 days after full bloom (DAFB) when the irrigation was suppressed, until to reach a severe water stress level in the plants (around -2.3 MPa of stem water potential at solar midday). The plant water indicators studied were: stem water potential (SWP); leaf conductance (Lc); net photosynthesis (Pn), and several vegetation indices (VI) in the visible spectral region derived from an unmanned aerial vehicle equipped with a multispectral sensor. The measurements were made at 9, 12 and 18h (solar time) on 50 and 134 DAFB, coinciding with a fruit diameter of 20 and 70 mm, respectively. The correlation analysis between the PWI at leaf scale (SWP, Lc and Pn) and at aerial scale showed relatively poor results, with Pearson correlation coefficients (r values) around 0.6. However, SWP presented the highest r value with the normalized difference vegetation index (NVDI), green index (GI), normalized difference greenness vegetation index (NDGI) and red green ratio index (RGRI) showing the higher coefficients 0.80, 0,80, 0.85 and 0.86, respectively. In addition, a quadratic regression curve fitting was made for the SWP and aforementioned indices, obtaining values ​​of R2 around 0.7 in all cases; the best fit corresponded to SWP = - 4.869 + 15.765 NDGI - 14.283 NDGI2 (R2 = 0.749) to predict SWP values between -0.5 and -2.3 MPa. Results obtained show the possibility of using certain vegetation indices to be used in the detection of water stress in adult grapefruits, and thus propose a sustainable and efficient irrigation scheduling.

Funding:

-WATER4EVER is funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme

-RIS3MUR REUSAGUA is funded by the Consejería de Empresa, Industria y Portavocía of the Murcia Region under the Feder Operational Program 2014-2020

How to cite: Berrios, P., Temnani, A., Pérez, D., Gil, I., Zapata, S., Forcén, M., Ramos, T. B., Santos, F. N., López Riquelme, J. A., and Pérez-Pastor, A.: Multispectral reflectance vegetation indices are highly sensitive to water stress in grapefruit trees, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11408, https://doi.org/10.5194/egusphere-egu2020-11408, 2020.

Soil water storage (SWC) is a major spatio-temporal geophysical variable that control many atmospheric and hydrological processes including evaporation from soil surface, transpiration from plant cover, soil water uptake and plant growth. In agricultural practice is widely accepted that SWC is closely linked to plant water stress. In this respect SWC is used as main parameter in irrigation technology of agricultural crops with both uniform and non-uniform water application techniques. For both mentioned types of irrigation a determination of timing water application as well as dozes are critical for developing effective agricultural water management practices and improving of water use efficiency at sub-field scale. In case of uniform water application the SWC is averaged at the field level. In case of non-uniform water (variable rate) application the SWC is averaged for management zones at sub-field scale bringing spatially heterogeneous irrigated into group of quasi-homogeneous areas. Tuning of regulated deficit irrigation by management zones provide great opportunities to control more rigorously plant water stress at quite large agricultural field with site-specific patterns of spatial characteristics depending of surface topography as well as soil & plant cover properties.

A field experiment was conducted in summer 2012 at the Research Center of the Volghsky Scientific Research Institute for Hydrotechnics and Land Reclamation (VolgNIIGiM) located near town Engels (Saratov Region, Russian Federation) at the left bank of the middle part of the Volga river. Main aim of this experiment was to examine the spatial correlation between SWC and alfalfa yield production (AY) at plot of 400m2 which included one half of the field irrigated with pivot machine providing uniform water application. The results of the analysis of variation of both parameters was suspected to be essential to test the spatial correlation between them.

During the field experiment a SWC was monitored before and after 2nd alfalfa harvesting with electromagnetic sensor EM 38 (Geonics Ltd.). Spatial analyses of sets of SWC geodata showed a presence of quite stable patterns within irrigated and non-irrigated parts of experimental plot. Location of SWC patterns was controlled firstly by spatial variation of soil surface elevation forming some shallow ponds and secondly by narrow furrows of circular form formed by wheels of the irrigation machine connecting in some case not adjacent areas. To map alfalfa yield plant samples were harvested from about 10 to 10 m plots. Alfalfa yield data was resulted as organic carbon mass per m2 after drying in laboratory conditions. Spatial analysis of AY geodata set showed the presence of patterns like SWC patterns. The spatial correlation between SWC and AY indicated the quite strong relationship between both parameters.

Acknowledgments: The reported study was funded by RFBR, project number 19-29-05261 мк

How to cite: Zeyliger, A. and Ermolaeva, O.: An example of spatial correlation between soil water content and irrigated alfalfa yield at sub-field scale , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10944, https://doi.org/10.5194/egusphere-egu2020-10944, 2020.

EGU2020-2304 | Displays | SSS9.12

Smallholder: an inconvenient label in the adoption of water pumping technologies?

Juan Carlo Intriago Zambrano, Ruben van Dijk, Martin van Beusekom, Jan-Carel Diehl, and Maurits W. Ertsen

Use of water pumping technologies (WPTs) to drive pressurized systems in smallholder irrigation schemes is one of the key interventions to secure water, hence to increase yields and to potentially alleviate poverty, as well as to foster local and global good security. Whichever the chosen WPT, smallholders face many decision-making variables when considering them: finances, information, technical performance, ease of use, market characteristics, and even environmental concerns are amongst them. We will present evidence that suggests that the way smallholders deal with those factors cannot be predicted based on mere land size-based classifications that are used in many existing policy studies and actual policies. As there are not many specific studies that focus on understanding the influence that the aforementioned variables, directly and indirectly, have on smallholders’ adoption of WPTs, we conducted field work in three different contexts—Nepal, Indonesia and Malawi—to identify the multidimensional gaps and relations between farmer and technology.

Due to the nature of the study, which comprised several (subjective) variables across a number of contexts and individuals, a triangulation of data collection techniques (e.g. direct observations, semi-structured interviews, surveys) was preferred. The main research method was Q-methodology, an increasingly popular inverted technique of factor analysis that combines the strengths of qualitative and quantitative research. Furthermore, one of its main advantages is that representativeness of the subjectivity does not depend on large samples of respondents but rather on their diversity.

By this process, it became evident that clustering farmers under the “smallholders” label—in line with the traditional farm size-based approach—did not reflect their heterogeneity in the WPTs’ adoption process. As a matter of fact, some smallholders are willing (and able, at times) to make substantial investments in WPTs for agricultural irrigation, thus moving away from the “external support-reliant-farmer” image. In conclusion, smallholder’s behaviour, thus decision making, is highly contextualized and cannot be underpinned by solely and simplistically looking at the holding size.

How to cite: Intriago Zambrano, J. C., van Dijk, R., van Beusekom, M., Diehl, J.-C., and Ertsen, M. W.: Smallholder: an inconvenient label in the adoption of water pumping technologies?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2304, https://doi.org/10.5194/egusphere-egu2020-2304, 2020.

EGU2020-10599 | Displays | SSS9.12

Optimizing water use in agriculture to preserve soil and water resources. The WATER4EVER project

Ramiro Neves, Tiago Ramos, Lucian Simionesei, Ana Oliveira, Nuno Grosso, Filipe Santos, Pedro Moura, Vivien Stefan, M. Jose Escorihuela, Qi Gao, Alejandro Pérez-Pastor, Juan Riquelme, Manuel Forcén, Marcella Biddoccu, Danilo Rabino, Giorgia Bagagiolo, and Nusret Karakaya

The WATER4EVER Project (http://water4ever.eu/) was built on the premise that agriculture is by far the largest consumer of water, with about 70% of the diverted water being used in irrigation. Agriculture is also considered as a key source of diffuse pollution with inefficient practices resulting in high water and nutrient (particularly N and P) surpluses that are transferred to water bodies through diffuse processes (runoff and leaching), promoting eutrophication, with associated biodiversity loss. WATER4EVER aims thus to develop new monitoring strategies at the plot and catchment scales to provide detailed information of water and nutrient flow, and gain new insights on the connectivity between both scales. New monitoring strategies were developed and tested in agricultural fields in Portugal, Spain, Italy and Turkey and included: (i) crop physiological indicators assessment using static sensors for defining improved deficit irrigation strategies for woody crops; (ii) crop stress and productivity maps from measurements taken with a smart sensor mounted on a tractor and equipped with LIDAR 2D, normalized difference vegetation index (NDVI) and thermal cameras, and a GNSS receiver; (iii) leaf area index maps at 30 m resolution derived from ATCOR and Landsat 8 imagery data using the NDVI and the Soil Adjusted Vegetation Index (SAVI); (iv) soil moisture maps at 100 m resolution by combining the 10 m resolution synthetic-aperture radar (SAR) images from Sentinel 1 with the 10 m resolution NDVI computed from Sentinel 2 images, averaged into 100 m cells, and then by considering the backscatter difference with the driest day, or alternatively the backscatter difference between two consecutive dates; (v) soil moisture maps at 1 km resolution created with the DISaggregation based on a Physical And Theoretical scale CHange (DISPATCH) algorithm for the downscaling of the 40 km SMOS (Soil Moisture and Ocean Salinity) soil moisture data using land surface temperature (LST) and NDVI data; (vi) conventional monitoring techniques combined with modeling tools for assessing the impact of different soil managements (conventional tillage, tillage with grass trips, grass cover) on soil infiltration, soil water content, runoff and soil erosion of hillslope vineyards; (vii) an improved deterministic model for irrigation and fertigation management at the plot scale; and (viii) a decision support system for irrigation water management at the plot scale which integrated a deterministic model for irrigation scheduling and the NDVI computed from Sentinel 2 imagery data for crop growth monitoring. Preliminary results derived from the use of the innovative monitoring and mapping strategies, besides model applications are presented. The remote sensing products described above were also applied for catchment modeling validation of streamflow, which results fall outside the scope of this communication. WATER4EVER activities were thus wide and diverse, aimed at optimizing crop management practices which will help to promote the sustainability of different Mediterranean production systems.

 

WATER4EVER is funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme

How to cite: Neves, R., Ramos, T., Simionesei, L., Oliveira, A., Grosso, N., Santos, F., Moura, P., Stefan, V., Escorihuela, M. J., Gao, Q., Pérez-Pastor, A., Riquelme, J., Forcén, M., Biddoccu, M., Rabino, D., Bagagiolo, G., and Karakaya, N.: Optimizing water use in agriculture to preserve soil and water resources. The WATER4EVER project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10599, https://doi.org/10.5194/egusphere-egu2020-10599, 2020.

The continuous intensification of agriculture along the High Plains in the US has been sustained by improvements in genetics, understanding of soil complexity, hydroclimate controls, and irrigation. The present work aims to identify the socioecological and sociotechnical processes involved in sustaining the intensification of yields in the past 50 years. We hypothesize that in the occurrence of extreme events, the boundaries of the agricultural systems –for example, water tradeoffs, governance, and natural availability—can be compromised, leading to a reduction in yields. Furthermore, the complexity of the Ag system –characterized by the interdependencies among complex hydroclimate, soil, and management – can change across spatial scales. The objectives are (1) to collect digital yield and climate data, as well as information about standards of water-for-agriculture; and (2) use the collected data to characterize the limits and limitations of the standards. In the proposed approach, the standards will represent our ability to manage resources, and ultimately create resilient water-for-food infrastructure in a changing climate.

How to cite: Munoz-Arriola, F.: Climate-resilient water-for-agriculture infrastructure: boundaries, complexities and standards in irrigated working lands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21288, https://doi.org/10.5194/egusphere-egu2020-21288, 2020.

EGU2020-9488 | Displays | SSS9.12

IrrigaSys – a decision support system for irrigation management in the Sorraia Valley region, Portugal

Lucian Simionesei, Tiago B. Ramos, Jorge Palma, Ana R. Oliveira, and Ramiro Neves

IrrigaSys is a decision support system (DSS) for irrigation water management based on online, open
access tools. The system includes remote access to local meteorological stations for weather
conditions, a MM5 model for weather forecast, the MOHID-Land model for the computation of the
soil water balance and irrigation scheduling, and a MySQL database for data repository. Despite its
complexity, the data necessary to run IrrigaSys is minimal, and include the location of the agricultural
field, crop type, sowing and harvest dates, soil texture, irrigation method, and daily/weekly irrigation
depths applied by the farmer. Based on this information, the system automatically downloads the
weather data from the meteorological station located closest to the agricultural plot, as well as the
weather forecast for the seven days following the current date. The soil water balance is then
computed for the previous and following week as well as the crop irrigation needs using the MOHIDLand
model. Results are made available via a web interface, a mobile app, SMS, and email. Besides the
model outputs, the IrrigaSys further provides the Normalized Difference Vegetation Index (NDVI) for
the agricultural field. The NDVI is computed from Sentinel 2 spectral bands with a resolution of 10m,
and is updated every time new Sentinel 2 imagery data (with cloud cover < 10%) is available. The
IrrigaSys has been developed in close cooperation with the Water Board Association of the Sorraia
Valley irrigation district (15360 ha), southern Portugal, over the last 5 years, supporting 103 plots of
30 farmers during the last irrigation season. As a result, the main limitation is naturally associated to
the difficulty in providing reliable estimates for all field plots based on calibrated model data. As the
next step, the service should start automatically identifying the culture status based on satellite
information as well as providing fertigation recommendations to farmers.

How to cite: Simionesei, L., Ramos, T. B., Palma, J., Oliveira, A. R., and Neves, R.: IrrigaSys – a decision support system for irrigation management in the Sorraia Valley region, Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9488, https://doi.org/10.5194/egusphere-egu2020-9488, 2020.

EGU2020-20547 | Displays | SSS9.12

Irrigation efficiency and optimization: the Optirrig model

Bruno Cheviron, Claire Serra-Wittling, Magalie Delmas, Gilles Belaud, Bruno Molle, and Juan-David Dominguez-Bohorquez

A possible way to save agricultural water is to improve global irrigation efficiency, defined as the ratio between the irrigation water volume used for crop transpiration and the total irrigation water volume. Higher irrigation efficiency leads to higher irrigation productivity ("more crop per drop") and profitability in relation to irrigation water costs: higher financial expectations for the same water and energy costs or identical financial expectations for lesser water and energy costs.

Improvements of irrigation efficiency may be sought either from better performing material (contextual relevance, technical quality or durability) or from optimized irrigation strategies with multiple levers of action (dates, doses, scheduling or trigger criteria, leaning on weather forecasts or not) and expected constraints (availability, quota, prefecture decrees).

It is even possible to handle these two issues at once by

(i) evaluating the irrigation water losses attributable to material (e.g. accidental pipe rupture or unavoidable intrinsic losses when using rainguns, spatial heterogeneity of water delivery),

(ii) evaluating the losses due to inadequate irrigation strategies (drainage or evaporation of irrigation water, excessive irrigation water storage in soils, losses due to wind drift)

(iii) gathering all losses in a "cascade scheme" that organizes them in phenomenological and chronological manner, somehow assuming successive losses "from the canal to plant roots",

(iv) exploring numerous irrigation scenarios that would allow reducing losses, improving efficiency and finally finding the minimal irrigation water amount required to reach the target agricultural yield (or fulfil a typical set of contradictory constraints, e.g. irrigation quota vs. objectives in crop yield profitability and possibly no drainage)  

This was the scope of the recent development of the "Efficiency" module of the Optirrig model built for the generation, analysis and optimisation of crop irrigation scenarios.

How to cite: Cheviron, B., Serra-Wittling, C., Delmas, M., Belaud, G., Molle, B., and Dominguez-Bohorquez, J.-D.: Irrigation efficiency and optimization: the Optirrig model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20547, https://doi.org/10.5194/egusphere-egu2020-20547, 2020.

EGU2020-10876 | Displays | SSS9.12 | Highlight

Environmental effects of irrigation modernization in The Violada District (Spain)

Mª Teresa Jimenez-Aguirre, Sifeddine Ouahdani, Rocío Barros, and Daniel Isidoro

The comparative environmental studies on the modernization of irrigation systems are generally based on different areas with different characteristics (soil, dominant crops, crop management, or even weather conditions), not allowing for comparing the environmental effects in the same pre- and post-modernized irrigation district. Thus, there is a need to analyze the effect of the modernization process through the use of actual, detailed data from the same irrigation district.

The Violada Irrigation District (VID; 5234 ha, widely studied since the 1980s), with  92% of the surface modernized in 2008-09 form gravity to pressurized irrigation, offers an ideal scenario to evaluate the environmental implications of irrigation modernization.

The main tools for this evaluation have been (i) the water balance in the VID, to characterize the main irrigation water flows and their concentrations in salts and N, (ii) the soil water balance, to determine the main crops consumption [corn, alfalfa and cereal actual evapotranspiration (ETa)]; and (iii) the farmers surveys to establish fertilization and cropping practices. With all this information under both systems, the differences between the water and nitrogen use efficiencies for the main crops have been established for surface and sprinkler irrigation.

Comparing periods with similar crop patterns, dominated by corn, the modernization reduced the water abstraction for irrigation, decreased irrigation return flows and increased the consumptive use by the crops. Altogether, the modernization left more high-quality water available for other uses in the basin.

The irrigation and fertilization management also changed considerably with the modernization, allowing for lower doses with higher frequencies, and increasing the crop yields. Corn (the main crop in VID) showed the highest decrease in nitrogen fertilization. Nevertheless, the total nitrogen inputs to the system slightly increased due to the introduction of double crops. Thus, the corn increased water use efficiency and the nitrogen use efficiency.

The salt and nitrogen loads exported decreased after modernization, due to the reduced irrigation return flows. Under surface irrigation, the salts leaching was mainly produced during the irrigation season while under sprinkler irrigation, it took place all the year-round, avoiding the higher salt loads to the water bodies during the period of lower flow, when their environmental impact would be higher.

On the basis of the results obtained, it can be concluded that the modernization of the irrigation system caused a decrease in the flow restored to the basin, reduced the irrigation water depletion and preserved water quality globally. In this way, modernization leaves more water available for further uses and reduces the irrigation return flows and the pollutant loads associated with them. Finally, it was inferred that the salt and nitrogen loads emitted from the VID depend mainly on the irrigation system, and secondly, in regard to nitrogen only, on the prevailing crops.

How to cite: Jimenez-Aguirre, M. T., Ouahdani, S., Barros, R., and Isidoro, D.: Environmental effects of irrigation modernization in The Violada District (Spain), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10876, https://doi.org/10.5194/egusphere-egu2020-10876, 2020.

EGU2020-18482 | Displays | SSS9.12 | Highlight

Water-food-energy-ecosystems nexus in irrigation systems adaptation to climate change: a case study of the Adda basin (Italy)

Claudio Gandolfi, Alessandro Castagna, Andrea Castelletti, Matteo Giuliani, Maria Chiara Lippera, and Michele Rienzner

Water resources planning at the basin scale is the keystone to adaptation of water resources systems to socio-economic and climate changes. Simulation and optimization models can provide a useful support to the planning process. Besides including all significant processes, they need to incorporate the contribution of the relevant stakeholders from the early stages of their development, particularly in areas where multiple concurring uses of water resources occur and where surface water-groundwater interactions are important.  This is the case of the plain of the Lombardy Region, Italy, where an ancient system of irrigation canals has been successfully used for centuries to supply huge amounts of water to a large irrigated area, which is also one of the most industrialized in Europe (Lombardy is one of the “Four Motors for Europe”, a transnational network of highly industrialized regions including Rhône-Alpes, Baden-Württemberg and Catalonia). Indeed, the Lombardy water resources have suffered recurrent crisis in the last years and a huge pressure has been raising on irrigation water use, which is by far the main consumptive use. We illustrate here an integrated approach to the analysis of different strategies of adaptation of irrigation systems to changing conditions, which accounts for the links between water use, crop production, energy consumption and hydrological conditions (as a proxy of the ecosystems quality).  We will consider the case study of the Adda river basin, an 8,000 km2 basin including lake Como, where the requirements of hydropower production and irrigation supply need to strike a balance with lake tourism, flood protection and environment conservation.

The approach is based on a combination of simulation models (of upstream sub-basin, lake and downstream sub-basin) and optimization model (of lake regulation policy) that allow assessing the effects of different climate and technological scenarios. The former scenarios were obtained downscaling the regional climate projections provided by the CORDEX project till 2100, while for the latter we focused on measures to increase the efficiency of irrigation systems, that emerged as priority from the discussions with the stakeholders. Specifically, we considered different degrees of reconversion of irrigation methods from surface irrigation to more efficient methods (sprinkler or drip). The effects of the reconversion, under different climate projections, were assessed by running simulations with the IdrAgra spatially distributed agro-hydrological model, which provided the estimated values of crop water use, groundwater recharge, return flows, as well as of crop production and energy consumption.  The comparison of different reconversion intensities was carried out considering indicators for the satisfaction of crop water requirements, the energy consumption, the groundwater recharge, and the river hydrological regime. A number of remarks can be made from the analysis of the results, among which it clearly emerged that under the current trend of increasing temperature already at the mid of the century irrigation deficits and impacts on the river hydrological regime will be intolerable unless the irrigation system efficiency will increase significantly in vast portions of the study area. Finally, a preliminary estimate of the cost of interventions is provided.

How to cite: Gandolfi, C., Castagna, A., Castelletti, A., Giuliani, M., Lippera, M. C., and Rienzner, M.: Water-food-energy-ecosystems nexus in irrigation systems adaptation to climate change: a case study of the Adda basin (Italy), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18482, https://doi.org/10.5194/egusphere-egu2020-18482, 2020.

EGU2020-21612 | Displays | SSS9.12

Inventory of Good Agricultural Practices for climate resilience in Central America

Julia Urquijo Reguera, José Luis Postigo, Ivanka Puigdueta, Laura Juarez, Eduardo Sánchez Jacob, Margarita Ruiz Ramos, Carlos Gregorio Hernández Díaz-Ambrona, and Leonor Rodríguez-Sinobas

Agricultural practices and technologies play a crucial role in the adaptation to climate change and disaster risk reduction, especially in contexts of high social and environmental vulnerability as in the Meso American Dry Corridor. This area, home to more than 40 million people and half of the smallholders basic grain farmers, is highly sensitive to El Niño phenomenon, associated to 30-40% decrease of precipitation and long periods of water shortages. This in turn makes agricultural production difficult to success and maintain subsistence livelihoods of the rural poor. Thus, adaptation to climate variability is key for sustainable development in the dry corridor.

In this study we develop a methodology to systematically review Good Agricultural Practices (GAP) for climate change adaptation and disaster risk reduction to gain a comprehensive overview of adaptation options that can guide policy recommendations at the local level. The food-water-energy nexus approach has been considered in this methodology.

The methodology starts analyzing good agricultural practices (GAP) already identified in the Meso American Dry Corridor documented by different types of actors (International organizations, NGOs, local and national governments, academia, private sector). They were classified in different agricultural subsectors (farming, livestock, agroforestry, forestry and fishing and aquaculture) regarding climate variability and several natural hazards such as drought and flood. Then, a live spread sheet database was developed where the best practices were organized following the criteria defined based on literature review and expert knowledge. These  criteria were established to assess each potential good practice taking into account agroecological adequacy, socioeconomic viability, increase in resilience and environmental co-benefits, and specific consideration to the water-energy nexus. Finally, a group of 145 GAP were identified for the region.

Most of the GAP correspond to crop production, and they are mostly related to drought management and coping with interannual climate variability. It is observed that GAP are frequently implemented as a combination of practices and techniques as well as to face several hazards at the same time. In this regard, the analysis of water resources and the energy component should be seen under the food-water-energy nexus approach to ensure that a complete assessment of a potential GAP.

How to cite: Urquijo Reguera, J., Postigo, J. L., Puigdueta, I., Juarez, L., Sánchez Jacob, E., Ruiz Ramos, M., Hernández Díaz-Ambrona, C. G., and Rodríguez-Sinobas, L.: Inventory of Good Agricultural Practices for climate resilience in Central America, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21612, https://doi.org/10.5194/egusphere-egu2020-21612, 2020.

EGU2020-11370 | Displays | SSS9.12

Real-Time Detection of Water Stress in Corn Using Image Processing and Deep Learning

Mor Soffer, Naftali Lazarovitch, and Ofer Hadar

Water limitation is one of the main environmental constraints that adversely affects agricultural crop production around the world. Precise and rapid detection of plant water stress is critical for increasing agricultural productivity and water use efficiency. Numerous studies conducted over the years have attempted to find effective ways to correctly recognize situations of water stress in order to determine irrigation regimes.

Water stress detection is currently done by various methods that are not ideal; these methods are often very expensive, destructive and cumbersome. Water stress in plants is also expressed at different visual levels. Image processing is alternative way to visually recognize water stress levels. Such analysis is non-destructive, inexpensive and allows to examine the spatial variability of stress level under field conditions.

In our study, we propose a new method for detecting water stress in corn using image processing and deep learning. For the purpose of collecting the images, we performed a three-months experiment, in which we took images of five different groups of corn. Each group had a different irrigation treatment, which led to five different levels of water stress. The images were collected using a web camera located approximately 2 m from the plants.

Stress classification was done by inserting processed images into a Convolutional Neural Network (CNN). Training the network was done using transfer-learning techniques in order to exploit the performance of an already trained CNN, for a fast and efficient training over the dataset. Testing the quality of classification was done using extra camera which took a different set of images.

Results were tested upon two sub-experiments - classification of three types of treatments and classification of five types of treatments; the results were 98% accuracy in classification into three types of treatments (well-watered, reduced-watered and draught stressed treatment), and 85% accuracy in classification into five different treatments. These initial results are definitely excellent and can certainly serve decision making for optimal irrigation.  

How to cite: Soffer, M., Lazarovitch, N., and Hadar, O.: Real-Time Detection of Water Stress in Corn Using Image Processing and Deep Learning, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11370, https://doi.org/10.5194/egusphere-egu2020-11370, 2020.

EGU2020-11924 | Displays | SSS9.12

A contribution to the sustainable use of water in rice production in the Mediterranean region: the Lower Mondego case study (Portugal)

Isabel de Lima, Romeu G. Jorge, João L.M.P. de Lima, José M. Abreu, and José P. L. de Almeida

The water use in agriculture has been the focus of special attention, particularly in regions where the pressure on water resources has increased and the prospect of climate change suggests that the temporal and spatial distribution of rainfall will likely become more uncertainty. In particular, there are concerns in relation to the use of water to irrigate crops that demand relatively higher quantities of water, such as rice, which is traditionally grown under continuous flooding. It therefore requires much more irrigation water than non-ponded crops. On the other hand, rice is strategic for food security in some countries, and human water consumption in the whole Mediterranean is steadily increasing.

The work reported was conducted in the framework of an international project (MEDWATERICE, www.medwaterice.org), which started in 2019 and aims to explore the opportunity to apply water-saving, alternative, rice irrigation methods. The project is focused on improving the sustainable use of water in Mediterranean rice-based agro-ecosystems, and involves several rice-producing countries in the Mediterranean basin. The MEDWATERICE consortium includes universities, research centres and private companies operating in the Mediterranean area (Italy, Spain, Portugal, Egipt, Turkey, Israel). The methodology adopted in this project involves experimental fields for testing different alternative rice production practices that adopt innovative irrigation technologies, as well as selected rice varieties and the most appropriate agronomic practices, tailored to local conditions. The alternatives to be tested will be identified by a participatory action research approach through the establishment of Stakeholder Panels (SHPs) in each country, which will include regional authorities, water managers, farmers’ associations and consultants, and private companies involved in the rice production chain. The participation of SHPs in the project is expected to improve the transfer of project’s results to the agricultural sector and decision makers.

In particular, the situation corresponding to the case study of the Lower Mondego (Portugal), which is part of this project, is described. The Lower Mondego, which corresponds to the most downstream section of the river Mondego catchment, comprehends an agricultural area of around 15 000 ha. The main agricultural production is rice, which occupies about 60% of this region; this crop has a very significant social and economic value in the region; despite the small area under rice production, the number of farmers involved is large. Other important crops are corn and beans (18,1% of the area). The study will use a multi-scale approach (farm and irrigation district scales), multi-disciplinary (water consumption, product quality, environmental quality and economic and social sustainability), and multi-actors (SHPs will guarantee that interests of all actors involved in the water management of paddy areas and in the rice production chain will be considered within the project).

How to cite: de Lima, I., G. Jorge, R., L.M.P. de Lima, J., Abreu, J. M., and L. de Almeida, J. P.: A contribution to the sustainable use of water in rice production in the Mediterranean region: the Lower Mondego case study (Portugal), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11924, https://doi.org/10.5194/egusphere-egu2020-11924, 2020.

The Available Soil Water Capacity (AWC) is standard data in most soil databases and expresses soil water contents in the rootzone between field capacity (FC;-33 kPa) and permanent wilting point (WP; -1500 kPa). Literature suggests that increasing the content of soil organic matter (SOM) of a given soil does not significantly increase AWC and this has important implications when estimating soil moisture supply to crops and evaluating the potential for climate mitigation. For most crops, the real FC values vary between -10 and -50 kPa in different soils and WP values between -800 and -1500 kPa. Thus standard values for AWC of FC and WP do not represent field conditions in many soils. When exploring AWC for six Italian soil series, ranging from clay to sandy, AWC values at increasing %SOM were lower in clay soils and higher in sand as compared with actual conditions, which could be explained by considering the shape of the corresponding moisture retention curves. Rather than focus on static AWC values to define moisture supply to plants, real or actual soil moisture supply capacities (MSC) can be obtained by dynamic modeling of the soil-water-atmosphere-plant system, including a “sink-term” indicating a continuous relation between water uptake and negative pressure head of soil water and evaporative demand. Also, only models allow exploration of the effects of future severe IPCC climate scenario RCP 8.5. Thus, studying MSC for the six Italian soil series showed that MSC values were: (i) on average 30% higher than the corresponding AWC; (ii) distinctly different for the six soils; (iii) affected by declines of 1-9% as a result of the effects of future climate scenarios.; (iv) not significantly affected by increases of %SOM when considering climate change, except for the sand. Generalizations as to the effect of future climate scenarios and %SOM on MSC can only be realistic when modeling is performed for soil series in different climate zones. The contribution has been published in Geoderma journal by Bonfante A., Basile A., and Bouma J. (https://doi.org/10.1016/j.geoderma.2019.114079).

How to cite: Bonfante, A., Basile, A., and Bouma, J.: Exploring the effect of varying soil organic matter contents on current and future moisture supply capacities of six Italian soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13846, https://doi.org/10.5194/egusphere-egu2020-13846, 2020.

EGU2020-16325 | Displays | SSS9.12

Assessing canopy temperature-based water stress indices for soybeans under subhumid conditions

Angela Morales Santos and Reinhard Nolz

Sustainable irrigation water management is expected to accurately meet crop water requirements in order to avoid stress and, consequently, yield reduction, and at the same time avoid losses of water and nutrients due to deep percolation and leaching. Sensors to monitor soil water status and plant water status (in terms of canopy temperature) can help planning irrigation with respect to time and amounts accordingly. The presented study aimed at quantifying and comparing crop water stress of soybeans irrigated by means of different irrigation systems under subhumid conditions.

The study site was located in Obersiebenbrunn, Lower Austria, about 30 km east of Vienna. The region is characterized by a mean temperature of 10.5°C with increasing trend due to climate change and mean annual precipitation of 550 mm. The investigations covered the vegetation period of soybean in 2018, from planting in April to harvest in September. Measurement data included precipitation, air temperature, relative humidity and wind velocity. The experimental field of 120x120 m2 has been divided into four sub-areas: a plot of 14x120 m2 with drip irrigation (DI), 14x120 m2 without irrigation (NI), 36x120 m2 with sprinkler irrigation (SI), and 56x120 m2 irrigated with a hose reel boom with nozzles (BI). A total of 128, 187 and 114 mm of water were applied in three irrigation events in the plots DI, SI and BI, respectively. Soil water content was monitored in 10 cm depth (HydraProbe, Stevens Water) and matric potential was monitored in 20, 40 and 60 cm depth (Watermark, Irrometer). Canopy temperature was measured every 15 minutes using infrared thermometers (IRT; SI-411, Apogee Instruments). The IRTs were installed with an inclination of 45° at 1.8 m height above ground. Canopy temperature-based water stress indices for irrigation scheduling have been successfully applied in arid environments, but their use is limited in humid areas due to low vapor pressure deficit (VPD). To quantify stress in our study, the Crop Water Stress Index (CWSI) was calculated for each plot and compared to the index resulting from the Degrees Above Canopy Threshold (DACT) method. Unlike the CWSI, the DACT method does not consider VPD to provide a stress index nor requires clear sky conditions. The purpose of the comparison was to revise an alternative method to the CWSI that can be applied in a humid environment.

CWSI behaved similar for the four sub-areas. As expected, CWSI ≥ 1 during dry periods (representing severe stress) and it decreased considerably after precipitation or irrigation (representing no stress). The plot with overall lower stress was BI, producing the highest yield of the four plots. Results show that DACT may be a more suitable index since all it requires is canopy temperature values and has strong relationship with soil water measurements. Nevertheless, attention must be paid when defining canopy temperature thresholds. Further investigations include the development and test of a decision support system for irrigation scheduling combining both, plant-based and soil water status indicators for water use efficiency analysis.

How to cite: Morales Santos, A. and Nolz, R.: Assessing canopy temperature-based water stress indices for soybeans under subhumid conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16325, https://doi.org/10.5194/egusphere-egu2020-16325, 2020.

EGU2020-16459 | Displays | SSS9.12

Use of Mohid-Land to model water balance for implementation of deficit irrigation in vineyards

Giorgio Capello, Marcella Biddoccu, Lucian Simionesei, Tiago Ramos, Ana Oliveira, Nuno Grosso, Pritimoy Podder, Danilo Rabino, Giorgia Bagagiolo, and Ramiro Neves

The Water4ever project aims to increase irrigation water and fertilization efficiencies through precision irrigation. The project has 3 major components: A technological component devoted to the development of measuring technologies based on optical sensors; a modelling component addressing both the local and the catchment scales; and a fieldwork component based on 3 case studies dedicated to vineyards and fruit trees where the new sensor and modelling tools will be combined with field data obtained by conventional monitoring and remote sensing. The project aims also to improve modelling at plot and catchment scale in order to quantify the effect of agriculture practices on water availability and quality. MOHID-Land is a physically-based, spatially distributed, continuous, variable time step model for the water and property cycles. It integrates four compartments or mediums (atmosphere, porous media, soil surface, and river network). In this study, the MOHID-Land model has been calibrated and implemented at plot scale in two of the project’s study cases, located in Portugal and Italy, that are representative of local vineyards, with different management, climate and topographical conditions: (i) the Vinha do Mel - Companhia das Lezírias (Portugal) is an irrigated vineyard of 14000 m2 with limited slope, while (ii) the Cannona Erosion Plots (NW Italy) are 1200 m2 portions of a rainfed hillslope experimental vineyard, with different inter-rows’ management. Water inputs (precipitation and irrigation), meteorological parameters and soil water content at different depths have been monitored in both plots during two years (2017-2018), using field sensors. Direct runoff measurements are available for the Cannona Erosion Plots. The vegetative development of the vineyards has been estimated from remote imagery. The field and remote datasets were used to calibrate and validate the MOHID-Land model, by comparing with simulated values of soil water content and LAI, with satisfactory to good efficiency of the model. The performance of the model was considered acceptable to support the IrrigaSys decision support system, using the Portuguese study case as reference for weekly irrigation recommendation in the region. The Italian study case was also used to estimate the water balance in two growing seasons with contrasting weather conditions, in order to evaluate the different behaviour with respect to the adopted soil management and the needing to introduce irrigation in a region where vines are traditionally rainfed.

WATER4EVER is co-funded by the European Commission under the framework of the ERA-NET COFUND WATERWORKS 2015 Programme.

How to cite: Capello, G., Biddoccu, M., Simionesei, L., Ramos, T., Oliveira, A., Grosso, N., Podder, P., Rabino, D., Bagagiolo, G., and Neves, R.: Use of Mohid-Land to model water balance for implementation of deficit irrigation in vineyards , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16459, https://doi.org/10.5194/egusphere-egu2020-16459, 2020.

EGU2020-16487 | Displays | SSS9.12 | Highlight

Multifunctional irrigation for viticulture adaptation to climate change: a case study in northern Italy

Daniele Masseroni, Lucio Brancadoro, Riccardo Guidetti, Roberto Beghi, Davide Bianchi, Andrea Casson, Sara Cazzaniga, Valentina Giovenzana, Davide Modina, Bianca Ortuani, Alessio Tugnolo, and Claudio Gandolfi

The last decades have been characterized by an important development of viticulture in Italy, especially in Lombardy, where this sector is focusing on improving grapevine production, by enhancing quantity and, even more, quality. The increasing frequency of extreme meteorological events that has been observed in recent years has started raising concerns about the risks for grapevine quality and production, caused by summer heat waves and late spring frosts. The role of over-vine sprinklers in frost protection is well known; less so is their effect on heat stress protection. In fact, recent studies have shown that evaporation of sprayed water in the canopy layer during heat waves can reduce local air temperature through latent heat absorption by water evaporation. Moreover, in order to minimize the temperature-related stress, water spraying can be combined with the control of soil water content through drip irrigation, to lower soil temperature and enhance turgor maintenance.

The ADAM project (http://www.adam-disaa.eu/IT/DEFAULT.ASP#) fits into this research framework. The objective of the project is to develop a multifunctional irrigation strategy combining controlled soil water content and protection from temperature-related stress conditions. An experimental activity has started in the 2019 season in a Chardonnay vineyard located in the Colli Morenici area (Lombardy, northern Italy). Four irrigation management strategies have been compared, namely: no irrigation (NI); farmer’s drip irrigation (IT); automated drip irrigation, based on tensiometer measurements (IG); automated drip plus over-vine micro-sprinkler irrigation based on tensiometer measurements, temperature measurements and short-term forecast (IS). In the latter case, irrigation is activated before heat wave occurrence, based on 5days-ahead temperature forecasts (with 3 h refresh period).

At the end of the first year of experiment, we have obtained interesting preliminary results: while the first three strategies did not lead to significant differences in grape quality (in terms of sugars content, acidity and pH of musts), differences were found in all three parameters for the IS strategy. Specifically, pH and acidity are higher and sugars content is lower. Further analysis, including micro-vinification, are ongoing in order to assess the effects on wine quality. The experimental activity will continue in 2020 and 2021 with the aims of: collecting enough data to define a preliminary protocol for multi-functional irrigation management; assess the irrigation water requirements and the energy consumptions; test the effectiveness of VIS/NIR techniques for the quick measurement of crop conditions; verify the sustainability of the different strategies, both at the farm and district scale.

How to cite: Masseroni, D., Brancadoro, L., Guidetti, R., Beghi, R., Bianchi, D., Casson, A., Cazzaniga, S., Giovenzana, V., Modina, D., Ortuani, B., Tugnolo, A., and Gandolfi, C.: Multifunctional irrigation for viticulture adaptation to climate change: a case study in northern Italy , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16487, https://doi.org/10.5194/egusphere-egu2020-16487, 2020.

EGU2020-18284 | Displays | SSS9.12 | Highlight

Machine Learning-based inference system to detect the phenological stage of a citrus crop for helping deficit irrigation techniques to be automatically applied.

Manuel Forcén, Nieves Pavón Pulido, David Pérez Noguera, Pablo Berríos Reyes, Alejandro Pérez Pastor, and Juan Antonio López Riquelme

This paper presents a system that helps farmers to irrigate crops, minimizing water consumption, while productivity is kept, when deficit irrigation techniques are applied, according to the phenological stage of such crop. Such stage is automatically inferred by using a Machine Learning-based technique, which uses single images, which can be acquired by simply using a low cost commercial camera (even the one embedded in a smartphone), as inputs. Specifically, this work compares several Machine Learning approaches, in particular, classical and deep neural networks trained with a dataset obtained from taking multiple real images from a citrus crop. Such images represent different growing stages of the citrus associated to different phenological stages. Since, according to the deficit irrigation approach, the amount of water that can be reduced without affecting the yield depends on the phenological stage of the crop, once such stage is inferred, a Decision Support System uses such information for automatically programming irrigation. The paper also remarks the main advantages of using a single camera as unique sensor in terms of low economic cost as opposed to other systems that uses more expensive and invasive sensors in the crop. In addition, as a smartphone camera could be used as sensor, the smartphone itself could be used as computing device to run the phenological stage detector in real time, and to interact with the Decision Support System by using Cloud and Edge computing technologies. Finally, a set of experiments show the main results obtained after testing different Machine Learning approaches. After comparing such approaches, the best choice is selected to be integrated as a part of the mentioned Decision Support System.

How to cite: Forcén, M., Pavón Pulido, N., Pérez Noguera, D., Berríos Reyes, P., Pérez Pastor, A., and López Riquelme, J. A.: Machine Learning-based inference system to detect the phenological stage of a citrus crop for helping deficit irrigation techniques to be automatically applied., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18284, https://doi.org/10.5194/egusphere-egu2020-18284, 2020.

EGU2020-20534 | Displays | SSS9.12

Sustainable water use for rice agro-ecosystems in northern Italy

Arianna Facchi, Alice Mayer, Enrico Chiaradia, Andrea Ricciardelli, Michele Rienzner, Bianca Ortuani, Olfa Gharsallah, Claudio Gandolfi, and Marco Romani

In the Mediterranean basin, rice is cultivated over an area of 1,300,000 hectares. The most important rice-producing countries are Italy and Spain in Europe (72% of the EU production; 345,000 ha), and Egypt and Turkey among the extra-EU countries (almost totality of the production; 789,000 ha). Traditionally, rice is grown under continuous flooding; thus, it requires much more irrigation than non-ponded crops. The MEDWATERICE project (PRIMA-Section 2-2018; https://www.medwaterice.org/) aims at exploring sustainability of innovative rice irrigation management solutions, in order to reduce rice water consumption and environmental impacts, and to extend rice cultivation outside of traditional paddy areas to meet the escalating demand. Within the MEDWATERICE project, irrigation management options to address the main site-specific problems are being tested for each rice areas involved in the project (IT, ES, PT, EG, TR). Case studies are being conducted in pilot farms, with the involvement of Stake-Holder Panels (SHPs) in each country. Data collected at the farm level will be extrapolated to the irrigation district level, to support water management decisions and policies. Moreover, indicators for quantitative assessment of environmental, economic and social sustainability of the irrigation options will be defined.

This work illustrates the first year of results for the Italian Case Study (Lomellina area, Pavia) at the pilot farm scale. This area is characterized by a growing water scarcity in drought years in many districts. Within the farm managed by the National Rice Research Center (CRR), in the agricultural season 2019 the experimentation was conducted in six plots of about 20 m x 80 m each, with two replicates for each of the following water regimes: i) water-seeded rice with continuous flooding (WFL), ii) dry-seeded rice with continuous flooding from the 3-4 leaf stage (DFL), and iii) water seeded-rice with alternate wetting and drying from fertilization at the tillering stage (AWD). One out of the two replicates of each treatment was instrumented with: water inflow and outflow meters, set of piezometers, set of tensiometers and water tubes for the irrigation management in the AWD plots. A soil survey was conducted before the agricultural season (EMI sensor and physico-chemical analysis of soil samples). Periodic measurements of crop biometric parameters (LAI, crop height, crop rooting depth) were performed. Moreover, nutrients (TN, NO3, PO4, K) and two widely used pesticides (Sirtaki – a.i. Clomazone; Tripion E – a.i. MCPA) were measured in irrigation water (inflow and outflow), groundwater, and porous cups installed at two soil depths (20 and 70 cm, above and below the plough pan). Finally, rice grain yields and quality (As and Cd in the grain) were determined. First results in terms of cumulative water balance components (rainfall, irrigation inflow and outflow, difference in soil and ponding water storage, evapotranspiration, net percolation), water application efficiency (evapotranspiration over net water input), and water productivity (grain production over net water input), will be presented and discussed. Results of a 1D Richard-equation-based numerical simulation model applied to generalize results obtained under the different irrigation regimes will be moreover illustrated.

How to cite: Facchi, A., Mayer, A., Chiaradia, E., Ricciardelli, A., Rienzner, M., Ortuani, B., Gharsallah, O., Gandolfi, C., and Romani, M.: Sustainable water use for rice agro-ecosystems in northern Italy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20534, https://doi.org/10.5194/egusphere-egu2020-20534, 2020.

EGU2020-319 | Displays | SSS9.12 | Highlight

Combining the FAO56 agrohydrological model and remote sensing data to assess water demand in a Sicilian irrigation district

Matteo Ippolito, Mario Minacapilli, and Giuseppe Provenzano

Agricultural water use in irrigated areas plays a key role in the Mediterranean regions characterized by semi-arid climate and water shortage. In the face of optimizing irrigation water use, farmers must revise their irrigation practices to increase the drought resilience of agricultural systems and to avoid severe damages in agro-ecosystems. In this direction, during the last decades, the research has been focused on mathematical models to simulate the process of driving mass transport and energy exchanges in the Soil-Plant-Atmosphere system.

The objective of the paper was to test the suitability of the combination of FAO56 agro-hydrological model with remote sensing data retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) platform, to assess the spatiotemporal distributions of crop water requirement and to schedule irrigation in an irrigation district of the south-west of Sicily, Italy.

The proposed approach allowed obtaining the spatiotemporal distributions of soil and crop parameters used in the FAO56 model implemented in a GIS environment to simulate the water balance, as well as to assess the actual irrigation strategy. The GIS database was organized to include soil and crop parameters, as well as the irrigation volumes actually delivered to each farmer; the latter data can be used not only as input for water balance to evaluate the efficiency of the actual irrigation strategies but also to identify different irrigation scheduling scenario obtained by the FAO56 procedure.

The first application was carried out for the period 2014-2017, to identify a combination of irrigation scheduling parameters to be implemented in the model aimed at reproducing the ordinary strategy adopted by the farmers, based on the spatiotemporal variability of soil and climate forcings. When the model outputs were aggregated for single crop types, a fairly good agreement was found between simulated and actual seasonal irrigation volumes delivered either at the level of district and secondary units. Alternative scenarios of irrigation water distribution were then identified and analyzed, to provide irrigation technicians and policymakers a decision support tool to improve the efficiency of irrigation systems and to optimize the distribution based on the availability of water resources.

How to cite: Ippolito, M., Minacapilli, M., and Provenzano, G.: Combining the FAO56 agrohydrological model and remote sensing data to assess water demand in a Sicilian irrigation district , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-319, https://doi.org/10.5194/egusphere-egu2020-319, 2020.

EGU2020-2711 | Displays | SSS9.12

Centre-pivot irrigation system design for uniform water application rate

Giorgio Baiamonte, Mustafa Elfahl, and Giuseppe Provenzano

In the last few decades, the use of centre-pivot irrigation systems has significantly increased, since it makes farming easier, is more efficient and less time-consuming compared to the other irrigation systems. Several studies have been focused on the hydraulics of the centre-pivot systems. Standard high-pressure impact sprinklers or low-pressure spray sprinklers or Low Energy Precision Application (LEPA) systems are generally mounted on the pipeline.

To ensure the uniformity of water application, the centre-pivot design requires increasing the flow rates along the lateral, because the sprinklers farther from the pivot move faster, and therefore their instantaneous application rates must be greater. Thus, the irrigated area under a centre-pivot system expands substantially with increasing system length. To irrigate the increased area by maintaining constant the application intensity, the manufacturers propose: i) to increase the flow rates of equally spaced sprinklers, ii) to gradually decrease the spacing of equal-flow sprinklers along the centre-pivot lateral, and iii) to use semi-uniform spacing, which is a combination of the first two methods.

However, the most common centre-pivot systems have equally spaced sprinklers with increasing flow rates (nozzle sizes) along the lateral, which is probably the easiest method from a practical point of view. Although many definitions and design procedures can be found in the technical literature, a universally accepted design procedure has not yet been found. In fact, the issue of centre-pivot irrigation system design is widely debated and there is still a need for simple, yet adaptive designing guidelines for farmers using these systems, specifically to maximize water use efficiency.

This study presents an alternative design procedure of centre-pivot irrigation system allowing to set favourable water application rates. First, the sprinklers’ spacing distribution corresponding to a fixed irrigated area along the radial direction is derived. According to this outcome, the results showed that sprinkler characteristics and/or pipe diameter need to be varied along the lateral, based on the desired and uniform water application rate. Then, for a practical case, an application based on the proposed hydraulic design procedure was performed and discussed.

How to cite: Baiamonte, G., Elfahl, M., and Provenzano, G.: Centre-pivot irrigation system design for uniform water application rate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2711, https://doi.org/10.5194/egusphere-egu2020-2711, 2020.

In this study, we developed a simulation-optimization model for optimum water allocation to meet environmental flow requirements and agricultural demand. The simulation model consists of three modules: a hydrologic module, an agronomic module, and an economic module. The hydrologic module is based on a dynamic coupling of WEAP and MODFLOW, and includes water balances for the crop root zone, the surface water system, and the underlying aquifer. The agronomic module simulates the effect of deficit irrigation on crop yield response in each growth stage, while the economic module calculates the net benefit of crop production. The optimization model contains two objective functions, one related to agricultural production and the other related to environmental flows. These conflicting objective functions are maximized using the Multi-Objective Particle Swarm Optimization algorithm. Decision variables include crop acreages, minimum environmental flow requirements in the river, and the degree of deficit irrigation. We applied the simulation-optimization model to the irrigated Miyandoab plain in the semi-arid northwest of Iran, for the historical period 1984 to 2013. There is competition between irrigation demands in the plain and environmental flow requirements to downstream Lake Urmia, which has been shrinking in recent years due to decreased inflows. Our results quantify what the (Pareto) trade-off looks like between meeting environmental and agricultural water demand in the region. We find that historical water allocations were suboptimal and that both agricultural and environmental benefits can be increased by better management of cropping decisions, deficit irrigation, and environmental flow requirements. We further show that increased groundwater use for irrigation can partly alleviate the trade-off, but that it leads to significant declines in groundwater levels due to the relatively small specific yield of the aquifer.

How to cite: Dehghanipour, A., Schoups, G., and Zahabiyoun, B.: Simulation–optimization model for optimum water allocation between environmental and agricultural demand using a coupled WEAP-MODFLOW model: Application in Miyandoab plain, Urmia basin, Iran, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3143, https://doi.org/10.5194/egusphere-egu2020-3143, 2020.

EGU2020-3582 | Displays | SSS9.12

Can we deduce irrigation trends at global scale from the ones of essential climate variables?

Agnes Ducharne, Amen Al-Yaari, Frédérique Cheruy, and Jean-Pierre Wigneron

Irrigation is the most important water use sector that can impact land-atmosphere feedback and climate. The use of irrigation is increasing but its effects on climate are still ignored in most of the climate models due to the lack of accurate information on its sources or its extent over the whole globe. The only map that presented a global inventory on the extent of areas irrigated with groundwater and surface water was published in 2013 (Siebert et al., 2013). Here, we take advantage of the abundance of global satellite observations to investigate the effects of irrigation on long-term trends in essential climate variables: (i) temperature obtained from the Climate Research Unit (CRU data), (ii) precipitation obtained from CRU, Global Precipitation Climatology Project (GPCP), and Global Precipitation Climatology Centre (GPCC), (iii) soil moisture obtained from Soil moisture and ocean salinity (SMOS) satellite, (iv) evapotranspiration obtained from CRU and the Global Land Evaporation Amsterdam Model (GLEAM), and (v) land cover based on the multi-epoch ESA LC dataset. Based on the potential links between the existing information of irrigation and these five climate and land-surface variables, possible tracking of the irrigation extent over other regions, where no information exist, will be investigated. This study is ongoing and preliminary results will be presented.

References

Siebert, S., Henrich, V., Frenken, K., Burke, J., 2013. Update of the Global Map of Irrigation Areas to version 5. Proj. Rep.

How to cite: Ducharne, A., Al-Yaari, A., Cheruy, F., and Wigneron, J.-P.: Can we deduce irrigation trends at global scale from the ones of essential climate variables?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3582, https://doi.org/10.5194/egusphere-egu2020-3582, 2020.

EGU2020-4575 | Displays | SSS9.12

Study of the wet bulb in drip irrigation in stratified soils using HYDRUS

José Roldán Cañas, Antonio Jesús Zapata Sierra, Rafael Reyes Requena, and María Fátima Moreno Pérez

The “enarenado” (sand-covering soil) is a technique used in greenhouses located in the southeast of Spain that consists of placing a layer of soil between 20 and 40 cm above the original material, a thin layer of organic matter and above it a layer of sand of about 5 to 10 cm.

It is necessary to know the shape of the wet bulb produced by the emitters for a correct design and management of the drip irrigation systems. In stratified soils, as in the case of “enarenado” soils, the distribution of water can change substantially with respect to the case of homogeneous soils. The objective of this work is to present the methodology of data acquisition and the actions carried out so far to obtain a model that precisely defines the evolution of humidity in wet bulbs generated in “enarenado” soils characteristic of intensive horticultural crops.

The tests have been carried out at the facilities of the IFAPA Center La Mojonera, Almería, SE Spain. The textures of the added soils are sandy loam and clay loam, representative of the horticultural crops of Almeria. The crop was pepper , Mazo variety, planted on September 15, 2018 in the two selected greenhouses. The irrigation is automatic, with drippers of nominal flow Qn = 3 l / h, self-compensating, anti-drainage of Netafim. Irrigation control is carried out using classic tensiometers with built-in pressure transducer.

The humidity has been measured at 10 points distributed around a dripper, 7 probes at 5 cm deep in the added soil layer and 3 probes at 18 cm depth, near the original soil layer. The sensor used is TE5 Decagon. The plantation frame coincides with that of the drippers, Sg = 50 cm and Sr = 120 cm, for this reason the probes were placed up to half of the plantation frame.

The data collected show a small variation in humidity over time. That is, the added soil, with a clayey texture, quickly redistributes moisture and the probes register very small variations.

Once the values specified in the methodology have been measured, the theoretical humidity retention curves of greenhouse soils have been calibrated. With the data collected, the system has been simulated by completing the fields that the Hydrus model needs. This operation has been specified in the definition of a simple, multi-layered 3D model. In general, the model predicts moisture behavior well in the conditions set.

How to cite: Roldán Cañas, J., Zapata Sierra, A. J., Reyes Requena, R., and Moreno Pérez, M. F.: Study of the wet bulb in drip irrigation in stratified soils using HYDRUS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4575, https://doi.org/10.5194/egusphere-egu2020-4575, 2020.

EGU2020-5751 | Displays | SSS9.12

Response of Decagon 10HS soil water content sensor to different porous media

Giuseppe Provenzano, Giovanni Gugliuzza, and Ceres Duarte Guedes Cabral de Almeida

Optimizing irrigation management requires increasing the accuracy of moisture monitoring in soils or substrates, especially when it depends on electronic sensor readings. Substrates are widely used in horticulture, for growing urban ornamental plants, as well as on green roofs. Due to the lack of information about the accuracy of soil water content sensors on substrates, this research was carried out to evaluate the accuracy of the 10HS sensor (Decagon Devices Inc., Pullman, WA) to estimate soil water content (SWC) in organic substrates and mineral soil. The study was carried out at the Hydrology Laboratory of the University of Palermo. The sensors were inserted into substrates or soil in conical vessels (4 dm3 volume), drilled at the base to measure the drained volume and covered with a transparent film to limit surface evaporation. For both the substrates (A and B) and the mineral soil (C), a known amount was placed in the vessel and compacted to a value of bulk density equal to 0.177 g cm-3, 0.471 g cm-3, 1.480 g cm-3, respectively. The sensors were connected to a CR1000 datalogger (Campbell Scientific Inc., Logan, UT), which allowed the data acquisition and storage. The tests were conducted by wetting the samples with the progressive addition of known volumes of water (about 40 cm3) that were evenly distributed over the sample surface. After the end of the redistribution process of water applied to the container, the sensor readings were acquired. SWC monitoring was performed until reaching the value corresponding to the field capacity. The calibration equation recommended by the sensor manufacturer systematically underestimated the values of SWC of about 5% or more when the substrate A and B were used. On the other hand, when evaluating the sensor performance in the mineral soil (C), it was observed that the errors associated with the manufacturer's equation resulted in ±5%. Therefore, for both substrates specific calibration is necessary to improve the sensor’s accuracy, even accounting for the bulk density; on the other hand, for the mineral soil, the manufacturer's equation can be considered suitable.

How to cite: Provenzano, G., Gugliuzza, G., and Duarte Guedes Cabral de Almeida, C.: Response of Decagon 10HS soil water content sensor to different porous media, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5751, https://doi.org/10.5194/egusphere-egu2020-5751, 2020.

EGU2020-5774 | Displays | SSS9.12

Calibration and evaluation of a capacitance probe in agricultural soils in northeast Brazil

Ceres Duarte Guedes Cabral de Almeida, Lais Barreto Franco, José Ediclécio Barbosa dos Santos, Brivaldo Gomes de Almeida, and Giuseppe Provenzano

Soil water content is an important parameter for irrigation management. Among the indirect methods to determine soil water content (SWC), there are electronic sensors, that need site-specific calibration to increase the accuracy of the measurements. In this research, a capacitance probe (Diviner 2000®, Sentek Pty Ltda., Australia) was calibrated for two agricultural soils. The experiment was carried out in a protected environment at the Federal Rural University of Pernambuco (UFRPE), Brazil. The textural classes of soils were sandy clay loam (66% sand) and sandy (95% sand). Undisturbed and disturbed soil samples were collected in the soil top layer (0-30 cm). The disturbed soil samples were initially air-dried, passed through a 4.75 mm mesh sieve, and then introduced to fill eight vessels (four replications for each soil). These vessels, equipped with drainage holes, have lower and upper diameters of 15 cm and 25 cm, respectively, and height of 22.5 cm (4.66 L). In each pot, a 5 cm layer of gravel with an average diameter of 2 cm covered with bidim® geotextile was disposed before introducing the soil. During filling, the soil was compacted to reach the same bulk density measured on the undisturbed samples (sandy clay loam: 1.54 g cm-3 and sandy: 1.50 g cm-3). In the center of each pot, a PVC access tube was installed. According to the manufacturer's recommendation, during calibration, the probe normalization was performed. The pots were wetted by capillary rise and, once saturated, they were placed on a bench for drainage. After this process stopped each pot was daily weighed at a fixed time (8 a.m.), and the sensor reading was acquired until when the daily mass variations became negligible. Data were used for regression analysis to fit the site-specific calibration equation and to evaluate the mean error. Linear calibration equations, characterized by R2=0.931 and 0.986, were obtained for the sandy clay loam and the sandy soil, respectively. The mean errors (ME) associated with the manufacturer’s equation resulted in -0.05 and -0.01 for sandy clay loam and for sandy soil and decreased after calibration. The results confirmed the suitability of the manufacturer's equation in sandy soils. On the other hand, the manufacture’s equation slightly underestimated SWC, in sandy clay loam soil, especially in the range above 0.26 m3 m-3. The Diviner 2000 probe can be therefore successfully used to support irrigation management in irrigated areas with soils similar to those investigated because it is easy to operate and allows fairly accurate estimations of soil water content.

How to cite: Duarte Guedes Cabral de Almeida, C., Barreto Franco, L., Barbosa dos Santos, J. E., Gomes de Almeida, B., and Provenzano, G.: Calibration and evaluation of a capacitance probe in agricultural soils in northeast Brazil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5774, https://doi.org/10.5194/egusphere-egu2020-5774, 2020.

EGU2020-982 | Displays | SSS9.12

Expert soil moisture Wireless Sensor Network for the feed-back control of irrigation in heterogeneous crop systems

Angela Puig Sirera, Giovanni Rallo, Stefano Giusti, Giuseppe Provenzano, Andrea Sbrana, Jeff Tuker, and Rossano Massai

New technologies in agriculture present the opportunity to create intuitive and user-friendly decision support systems, and to improve the productivity of the systems requiring water and energy. In the last few years, the adoption of these technologies have been increasing through third mission activities, and the collaboration between researchers, consultants, agri-food managers and farmers.

The general objective of the proposed dissemination activity carried out by the AgrHySMo laboratory of the University of Pisa, was to transfer a soil moisture-based wireless sensor network (SM-WSN) to a commercial pear orchard named Illuminati Frutta (Arezzo, Italy), for the feedback control of irrigation.

The plan of the third mission activity was designed by the following phases: i) the team evaluated the hydraulic performance and management of the irrigation system in the pear orchard; ii) the use of proximal sensing provided the NDVI for the biophysical characterization of the crop in a pilot area extended thirteen ha; iii) the open-source QGIS suite program was used to elaborate the collected images, to assess a zoning analysis, and to discretize homogeneous areas inside the orchard. These zoning maps were used to define the topology of the SM-WSN.

The orchard was characterized by four homogeneous zones, inside which at least one sensor of soil water content (FDR Drill and Drop probe, Sentek Inc.) was installed. A total of 6 probes were installed in the pilot area. The hardware and the smartphone of the dedicated sensor network applications, AgriNET, were provided by Tuctronics (Walla Walla, Washington, USA). The measurements of volumetric soil water contents are sent to a platform using the MODBUS RTU protocol interfaced with a communication board and then delivered, using the cellular 3G data network, to a MySQL database operated by AgriNET/Tuctronics accessible from the web. According to the ordinary scheduling of irrigation, the expert system allowed the farmer to maintain the soil water content within a pre-defined optimal range, which upper limit corresponds to the soil field capacity and the lower is the threshold below which water stress occurs. During the first experimental growing season, by considering the results obtained in the pilot plot, compared with the ordinary irrigation scheduling the farmer saved up to 35% of the water and energy supply. In the future, the proposed feedback control of irrigation protocol will be extended to the entire farm. Thus, the adoption of this new technology aimed at identifying the most appropriate irrigation management, have the potential to generate positive economic returns and to reduce the environmental impacts.

How to cite: Puig Sirera, A., Rallo, G., Giusti, S., Provenzano, G., Sbrana, A., Tuker, J., and Massai, R.: Expert soil moisture Wireless Sensor Network for the feed-back control of irrigation in heterogeneous crop systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-982, https://doi.org/10.5194/egusphere-egu2020-982, 2020.

EGU2020-11344 | Displays | SSS9.12

Development of criteria to improve water use efficiency in tomato crop (Solanum lycopersicum L.) under greenhouse in Ecuador

Leonor Rodriguez-Sinobas, Javier Ezequiel Colimba-Limaico, and Sergio Zubelzu

Tomato (Solanum lycopersicum L.), grown under greenhouse in Ecuador, has a major weight in the farmers’ income in regions with water scarcity. In the one hand, these areas show  small water  use efficiency  caused by the non-technical criteria in the design of drip irrigation systems. On the other hand, farmers are unknown of the tomato water requirements, and do not know how to determine them. Moreover, they do not know how much water apply and the irrigation frequency depends on the availability of farmers’ time. In addition, in most cases greenhouses are lacked of equipment to measure climatic conditions.

This study evaluates different irrigation strategies, and its efficiency in the use of water, in the cultivation of tomatoes under greenhouse. It considers also they effect on the production and organoleptic quality of the fruit (size, dry matter and number of fruits). The methodology, first estimates the tomato water needs which was developed through the measures taking with practical and affordable equipment for farmers in the area. Then, the optimal water depth for irrigation was estimated on a daily basis application. Likewise, two factors were evaluated:  number of irrigations per day (one or two) and water depth (80%, 100%, 120% of crop evapotranspiration, and the one applied by local farmers). Thus, the combination of the two factors resulted in eight irrigation strategies which were implemented in irrigation plots following a randomized block design with four repetitions. The evaluation was accomplished in the four crop harvest over one year. The results helped to develop sustainable irrigation criteria for tomato crop under greenhouse in the area. These have improved water use efficiency, and maintained the production and quality of the fruits, which will  be beneficial not only for the farmers’ income but also in agriculture's resilience .

How to cite: Rodriguez-Sinobas, L., Colimba-Limaico, J. E., and Zubelzu, S.: Development of criteria to improve water use efficiency in tomato crop (Solanum lycopersicum L.) under greenhouse in Ecuador, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11344, https://doi.org/10.5194/egusphere-egu2020-11344, 2020.

SSS10.1 – Digital soil mapping meets remote sensing for soil monitoring and assessment

EGU2020-3013 | Displays | SSS10.1 | Highlight

Mapping soil organic carbon based on simulated EnMAP images and the LUCAS soil spectral library

Kathrin J. Ward, Maximilian Brell, Daniel Spengler, Fabio Castaldi, Carsten Neumann, Karl Segl, Saskia Foerster, and Sabine Chabrillat

The degradation of European soils is a cause for concern. Examples are the reduction of carbon content and soil fertility. The European Commission therefore recommends further research on how to better monitor soils and their changes over time and space. Digital soil mapping (DSM) is already an established method for the use of hyperspectral information from soil samples for quantifying soil properties under laboratory conditions based on soil spectral libraries. At the remote sensing level, imaging spectroscopy has already achieved good results for the prediction of soil properties on a local scale. Major advantages of this method are that topsoil maps can be updated more frequently, spatially more accurately and with less costs.

In this study we bring together pedometric and remote sensing approaches to achieve the development of soil spectral models applicable to upcoming global hyperspectral imagery, combining DSM methods and data with Earth Observation expertise. In a first step at laboratory level, we used the EU-wide topsoil database LUCAS. We investigated whether using solely spectral data (without any covariates) and selected classification algorithms combined with PLSR could allow and improve the quantification of soil organic carbon (SOC) content. The best results were obtained for the local PLSR approach with RMSE=5.16 g kg-1, RPD=1.74 and R²=0.67. In addition, the local PLSR approach was tested with LUCAS spectral data resampled to EnMAP satellite spectral resolution, resulting in a very similar SOC prediction model accuracy.

In the next step, the local PLSR approach was applied to airborne HySpex image data and simulated satellite EnMAP data from a test area in north-eastern Germany where local soil data are available for model validation. This area is associated with one LUCAS point. A direct application of the laboratory-based SOC model to the spectra of the airborne image was not possible due to higher variability in the image data caused by different environmental conditions (solar illumination, mixed soil-vegetation pixels, surface state -roughness, wetness-) and sensor performances different from the laboratory data resulting in an overall lower signal-to-noise ratio in the airborne image. Therefore, after reducing the effect of soil moisture, green vegetation cover, residues coverage, we used a two-step approach where (i) wet chemistry SOC analyses for a set of soil samples from the test area were replaced by the local PLSR approach using the LUCAS database. Then (ii) an airborne model was calibrated using the SOC content from (i) and the corresponding image spectra to calibrate an airborne PLSR. Preliminary results show a good airborne model accuracy for HySpex imagery with RMSE=3.33 g kg-1, RPD=1.59, R²=0.63 and slightly lower but still good accuracy for simulated EnMAP imagery with RMSE=3.72 g kg-1, RPD=1.45, R²=0.55. Both models were then applied to the images to produce SOC maps for bare soils and validated with existing data and previous SOC mapping works in the area based on local datasets. This approach demonstrates the possibility to replace wet chemistry by the local PLSR approach based on large scale soil spectral libraries for SOC mapping.

How to cite: Ward, K. J., Brell, M., Spengler, D., Castaldi, F., Neumann, C., Segl, K., Foerster, S., and Chabrillat, S.: Mapping soil organic carbon based on simulated EnMAP images and the LUCAS soil spectral library, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3013, https://doi.org/10.5194/egusphere-egu2020-3013, 2020.

EGU2020-2589 | Displays | SSS10.1

Characterizing Soil Organic Carbon Content in Forests at National Scale using Reflectance Spectroscopy

Asa Gholizadeh, Raphael Viscarra Rossel, Mohammadmehdi Saberioon, Lubos Boruvka, and Lenka Pavlu

Any strategy to change Carbon (C) pool would have a substantial effect on functionality of numerous ecosystem functions, detachment of Soil Organic Carbon (SOC), atmospheric carbon dioxide (CO2) concentration, and climate change mitigation. As the largest amount of the world’s C is stored in forests soils, the importance of forest SOC management is highlighted. Total SOC in forest varies not only laterally but also vertically with depth; however, the SOC storage of lower soil horizons have not been investigated enough despite their potential to frame our understanding of soil functioning. Visible–Near Infrared (vis–NIR) reflectance spectroscopy enables rapid examinations of the horizontal distribution of forest SOC, overcoming limitations of traditional soil assessment. This study aims to evaluate the potential of vis–NIR spectroscopy for characterizing the SOC contents of organic and mineral horizons in forests. We investigated 1080 forested sites across the Czech Republic at five individual soil layers, representing the Litter (L), Fragmented (F), and Humus (H) organic horizons, and the A1 (depth of 2–10 cm) and A2 (depth of 10–40 cm) mineral horizons (total 5400 samples). We then used Support Vector Machine (SVM) to model the SOC contents of (i) the profile (all organic and mineral horizons together), (ii) the combined organic horizons, (iii) the combined mineral horizons, and (iv) each individual horizon separately. The models were validated using 10-repeated 10-fold cross validation. Results showed that there was at least more than seven times as much SOC in the combined organic horizons compared to the combined mineral horizons with more variation in deeper layers. All individual horizons’ SOC was successfully predicted with low error and R2 values higher than 0.63; however, the prediction accuracy of F and A1 was greater compared to others (R2 > 0.70 and very low-biased spatial estimates). We have shown that modelling of SOC with vis–NIR spectra in different soil horizons of highly heterogeneous forests of the Czech Republic is practical.

How to cite: Gholizadeh, A., Viscarra Rossel, R., Saberioon, M., Boruvka, L., and Pavlu, L.: Characterizing Soil Organic Carbon Content in Forests at National Scale using Reflectance Spectroscopy, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2589, https://doi.org/10.5194/egusphere-egu2020-2589, 2020.

EGU2020-8092 | Displays | SSS10.1

Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands

Nathan Levi, Arnon Karnieli, and Tarin Paz-Kagan

The rapid growth in the global population over the past few decades has resulted in the transformation of many natural ecosystems into human-dominated ones. Land-use (LU) dynamics are accompanied by an increase in resource exploitation, often causing deteriorated environmental conditions that are reflected in the soil quality. Soil quality differences between LUs can be observed and measured using near-infrared reflectance spectroscopy (NIRS) methods. The research goal was to apply, measure, and evaluate soil properties based solely on the spectral differences between both natural and human-dominated LU practices, in the dryland environment of the central Negev Desert, Israel. This goal was achieved through the development and implementation of chemometrics techniques that were generated from soil point spectroscopy. Soil quality index (SQI) values, based on 14 physical, biological, and chemical soil properties, were quantified and compared between LUs and geographical units across the study area. Laboratory spectral measurements of soil samples were applied. Significant differences in SQI values were found between the geographical units. The statistical and mathematical methods for evaluating the soil properties’ spectral differences included principal component analysis (PCA), partial least squares-regression (PLS-R), and partial least squares-discriminant analysis (PLS-DA). Correlations between predicted spectral values and measured soil properties and SQI were calculated using PLS-R and evaluated by the coefficient of determination (R2), the Root Mean Square Error of Calibration, and Cross-Validation (RMSEC and RMSECV), and the ratio of performance to deviation (RPD). The PLS-R managed to produce “excellent” and “good” prediction values for some of the soil properties, including EC, Cl, Na, Ca + Mg, SAR, NO3, P, and SOM. Results of the PLS-R model for SQI are R2 = 0.90, RPD = 2.46, RMSEC = 0.034, and RMSECV = 0.057. The PLS-DA classification of the laboratory spectroscopy was applied and resulted in high accuracy and kappa coefficient values when comparing LUs. In contrast, comparing the sampling sites resulted in lower overall accuracy (Acc = 0.82) and kappa values (Kc = 0.80). It is concluded that differentiation between physical, biological, and chemical soil properties, based on their spectral differences, is the key feature in the successful results for recognizing and characterizing various soil processes in an integrative approach.  The results prove that soil quality and most soil properties can be successfully monitored and evaluated using NIRS in a comprehensive, non-destructive, time- and cost-efficient method.

How to cite: Levi, N., Karnieli, A., and Paz-Kagan, T.: Using reflectance spectroscopy for detecting land-use effects on soil quality in drylands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8092, https://doi.org/10.5194/egusphere-egu2020-8092, 2020.

EGU2020-8474 | Displays | SSS10.1

VIS-NIR wavelength importance in SOC models

Javier Reyes and Mareike Ließ

EGU2020-9107 | Displays | SSS10.1

Usage of visual and near-infrared spectroscopy to predict soil properties in forest stands

Felix Thomas, Rainer Petzold, Carina Becker, and Ulrike Werban

There is a high demand for information about soil conditions in forests stands as it is crucial to ensure sustainable management, to maintain ecosystem services, to preserve timber production and establish proper pest management. Nowadays, the main drivers for changes in soil conditions are element input, forest conversion, subsoil liming and changing climate. These drivers influence nutrients and water availability and are challenging current site mapping methods. However, for impact assessment high-resolution and up-to-date information is needed. As laboratory analysis is time consuming and expensive, alternative approaches are preferred.

The project DIGI-Humus uses methods of reflectance spectroscopy in the visual and near-infrared-region of the electromagnetic spectrum for indirect measurement and prediction of physical and chemical soil properties in forest stands. For this purpose, spectral data were collected under laboratory conditions to build a database of forest soils. We used retained samples from Saxony soil survey, measuring both Oh and Ah horizons. To ensure data quality, we developed our own protocol based on literature review and self-conducted test measurements. The data has been used to successfully calibrate regression models based on different forest types and soil horizons to predict the soil parameters C and N content, C/N ratio and pH-value.

To improve model performance and test its generalization capability, the created library has been extended with new samples from a field campaign conducted in 2019 at an additional local test site. Using this data, the impact of adding new information to the modelling process and the robustness of the models could be evaluated.

The results of this research will be used to assess forest sites regarding nutrients availability, as basis for the development of site specific management strategies and to enhance and improve current methods of periodic site mapping of forest stands.

How to cite: Thomas, F., Petzold, R., Becker, C., and Werban, U.: Usage of visual and near-infrared spectroscopy to predict soil properties in forest stands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9107, https://doi.org/10.5194/egusphere-egu2020-9107, 2020.

EGU2020-2092 | Displays | SSS10.1

Soil Surface Reflectance as a Tool to Estimate Water Infiltration Rate from UAV Platforms

Nicolas Francos, Eyal Ben Dor, Nunzio Romano, Paolo Nasta, Briggita Szabó, Janos Mészáros, Antonino Maltese, Salvatore Manfreda, Monica Garcia, and Yijian Zeng

Soil is an essential component in the environment and is vital for food security. It provides ecosystem services, filters water, supplies nutrients to plants, provides us with food, stores carbon, regulates greenhouse gases emissions and it affects our climate. Traditional soil survey methodologies are complicated, expensive, and time-consuming. Visible and infrared spectroscopy can effectively characterize soil properties. Spectral measurements are rapid, precise and inexpensive. The spectra contain information about soil properties, which comprises minerals, organic compounds, and water. Today, several Soil Spectral Libraries (SSLs) are being created worldwide because these datasets have a notable potential to be used as training datasets for machine learning methods that will benefit precision agriculture activity for better management of food production. Nonetheless, as SSL's are created under laboratory conditions it is not clear if it can be used to infer field conditions in situ and/or from the sky. Thus, study the relationship between RS, field spectroscopy and the laboratory measurements of soil is very important. Accordingly, this study postulates that traditional SSLs don't simulate the real spectral signatures in the field that both, satellite and airborne sensors measure as well, because they are affected by factors that are not an integral part of the soil, such as: moisture, litter, human and animal activity, plow, grass, dung, waste, etc… However, under laboratory conditions, these factors are usually removed for the preparation of SSLs. Thus, given the several SSLs available, it is necessary to evaluate the protocols that were used in these SSLs. The objective of this study is to evaluate the gap between field and laboratory spectral measurements through the analysis of the performance of spectral based models. This procedure combined two soil spectral libraries that contain 114 samples that were measured in the laboratory as well as in the field. The nature of the dataset is varied, because these samples were collected from six different fields in three countries of the Mediterranean basin: Israel, Greece and Italy. Moreover, 63 samples are mainly sandy and 51 are mainly clayey. In order to obtain optimal spectral measurements in the field, we used a new optical apparatus that simulates the sun's radiation. Next, we generated PLSR models to estimate one of the most important hydrological parameters namely “infiltration rate” that control the runoff stage, soil erosion and water storage in the soil profile. This property is strongly affected by the surface characteristics. Finally, the field based spectral model was adapted to an UAV hyperspectral sensor in order to estimate the infiltration rate from the sky. The results were successfully validated in field, and we concluded that for the estimation of the infiltration rate, SSLs must be created using surface reflectance in field because laboratory protocols can be detrimental for the performance of the dataset in question.

 

How to cite: Francos, N., Ben Dor, E., Romano, N., Nasta, P., Szabó, B., Mészáros, J., Maltese, A., Manfreda, S., Garcia, M., and Zeng, Y.: Soil Surface Reflectance as a Tool to Estimate Water Infiltration Rate from UAV Platforms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2092, https://doi.org/10.5194/egusphere-egu2020-2092, 2020.

EGU2020-6728 | Displays | SSS10.1

Assessment of PRISMA imaging spectrometer data for the estimation of topsoil properties of agronomic interest at the field scale

Raffaele Casa, Stefano Pignatti, Simone Pascucci, Victoria Ionca, Nada Mzid, and Irina Veretelnikova

On the 22 March 2019 the Italian Space Agency (ASI) launched the PRISMA satellite, having onboard a hyperspectral imager covering the 400-2500 nm range with 234 spectral bands and about 10 nm of bandwidth. The ground spatial resolution is 30 m, plus a panchromatic camera with 5 m spatial resolution. One of the potential application areas of this scientific mission is for precision agriculture applications, among which the mapping of field-scale variability of topsoil properties is of particular interest.

PRISMA clear-sky hyperspectral images were acquired in autumn and spring 2019 on the Maccarese farm in Central Italy, in the framework of the PRISCAV project, which is aimed at a first assessment of the PRISMA data. An intensive soil sampling campaign was performed, using a ground sampling scheme adapted to PRISMA and Sentinel-2 spatial resolutions, in the fields where bare soil was exposed at the satellite acquisition dates. Soil texture (clay, silt, sand), carbonates, pH and soil organic carbon (SOC) for the collected soil samples were then determined in the laboratory.

The dataset was then used to test calibration and validation of PLSR (Partial Least Squares Regression) and RF (Random Forest) models developed using PRISMA surface reflectance data. To this aim, several pre-treatment tests were performed, including pan-sharpening at 5 m using PRISMA panchromatic data as well as Sentinel-2 multispectral data.

The results show that the good results could be obtained in particular for clay estimation. The best-performing algorithm for topsoil properties retrieval using PRISMA hyperspectral data was RF algorithm as compared with PLSR.

How to cite: Casa, R., Pignatti, S., Pascucci, S., Ionca, V., Mzid, N., and Veretelnikova, I.: Assessment of PRISMA imaging spectrometer data for the estimation of topsoil properties of agronomic interest at the field scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6728, https://doi.org/10.5194/egusphere-egu2020-6728, 2020.

EGU2020-3621 | Displays | SSS10.1

Space-time machine learning for modelling soil organic carbon change

Gerard Heuvelink, Marcos Angelini, Laura Poggio, Zhanguo Bai, Niels Batjes, Rik van den Bosch, Deborah Bossio, Sergio Estella, Johannes Lehmann, Guillermo Olmedo, and Jonathan Sanderman

Spatially resolved estimates of change in soil organic carbon (SOC) stocks are necessary for supporting national and international policies aimed at achieving land degradation neutrality and climate mitigation through better land management. In this work we report on the development, implementation and application of a data-driven, statistical space-time method for mapping SOC stocks, using Argentina as a pilot area. We used the Quantile Regression Forest machine-learning algorithm to predict SOC stock at 0-30 cm depth at 250 m resolution for Argentina between 1982 and 2017, on an annual basis. The model was calibrated using over 5,000 SOC stock values from the 36-year time period and 35 environmental covariates. Most covariates were static and could only explain the spatial SOC distribution. SOC change over time was modelled using time series maps of the AVHRR NDVI vegetation index. These NDVI time series maps were pre-processed using a temporal low-pass filter to allow the SOC stock for a given year to depend on the NDVI of the current as well as preceding years. Spatial patterns of SOC stock predictions were persistent over time and comparable to baseline SOC stock maps of Argentina. Predictions had modest temporal variation with an average decrease for the entire country from 2.55 kg C m‑2 to 2.48 kg C m‑2 over the 36-year period (equivalent to a decline of 210.7 Gg C, 3.0% of the total 0‑30 cm SOC stock in Argentina). The Pampa region had a larger estimated SOC stock decrease from 4.62 kg C m‑2 to 4.34 kg C m‑2 (5.9%) during the same period. For the 2001-2015 period, predicted temporal variation was 7-fold larger than that obtained using the Tier 1 approach of the Intergovernmental Panel on Climate Change and the United Nations Convention to Combat Desertification. Prediction uncertainties turned out to be substantial, mainly due to the limited number and poor spatial and temporal distribution of the calibration data, and the limited explanatory power of the covariates. Cross-validation confirmed that SOC stock prediction accuracy was limited, with a Mean Error of 0.03 kg C m-2 and a Root Mean Squared Error of 2.04 kg C m-2. The model explained 45% of the SOC stock variation. In spite of the large uncertainties, this work showed that machine learning methods can be used for space-time SOC mapping and may yield valuable information to land managers and policy makers, provided that SOC observation density in space and time is sufficiently large.

How to cite: Heuvelink, G., Angelini, M., Poggio, L., Bai, Z., Batjes, N., van den Bosch, R., Bossio, D., Estella, S., Lehmann, J., Olmedo, G., and Sanderman, J.: Space-time machine learning for modelling soil organic carbon change, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3621, https://doi.org/10.5194/egusphere-egu2020-3621, 2020.

EGU2020-11797 | Displays | SSS10.1

Applying machine learning and differential evolution optimization for soil texture predictions at national scale (Germany)

Anika Gebauer, Ali Sakhaee, Axel Don, and Mareike Ließ

In order to assess the carbon and water storage capacity of agricultural soils at national scale (Germany), spatially continuous, high-resolution soil information on the particle size distribution is an essential requirement. Machine learning models are good at computing complex, composite non-linear functions. They can be trained on point data to relate soil properties (response variable) to approximations of soil forming factors (predictors). Finally, the obtained models can be used for spatial soil property predictions.

We developed models for topsoil texture regionalization using two powerful algorithms: the boosted regression trees machine learning algorithm, and the differential evolution algorithm applied for parameter tuning. Texture data (clay, silt, sand) originated from two sources: (1) the new soil database of the German Agricultural Soil Inventory (BZE), and (2) the well-known, publicly available database of the European Land Use / Cover Land Survey (LUCAS). BZE texture data results from an eight-kilometer sampling raster (2991 sampling points). LUCAS data from soils under agricultural use (Germany) comprises 1377 sampling points. The predictor datasets included DEM-based topography variables, information on the geographic position, and legacy maps of soil systematic units. In a first step, a nested five-fold cross-validation approach was used to tune and train models on the BZE data. In a second step, the amount of training data was increased by adding two-thirds of the LUCAS data. Model performance was evaluated by (1) cross-validation (RCV²), and (2) by using the remaining LUCAS data as an independent external test set (Rexternal²).

Models trained on the BZE data were able to predict the nation-wide spatial distribution of clay, silt and sand (RCV² = 0.57 – 0.76; Rexternal² = 0.68 – 0.83). Model performance was further enhanced by adding the LUCAS data to the training dataset.

How to cite: Gebauer, A., Sakhaee, A., Don, A., and Ließ, M.: Applying machine learning and differential evolution optimization for soil texture predictions at national scale (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11797, https://doi.org/10.5194/egusphere-egu2020-11797, 2020.

EGU2020-19356 | Displays | SSS10.1

Mapping soil phosphorus sorption capacity in four depths with uncertainty propagation

Anders Bjørn Møller, Goswin Johann Hechrath, Cecilie Hermansen, Trine Nørgaard, Maria Knadel, Lis Wollesen de Jonge, and Mogens Humlekrog Greve

Phosphorus (P) is one of the most important plant nutrients, and farmers regularly apply P as mineral fertilizer and with animal manures. Typically, reactions with amorphous aluminum and iron oxides or carbonates retain P in the soil. However, if P additions exceed the soil’s ability to bind them, P may leach from soil to surface waters, where it causes eutrophication. The phosphorus sorption capacity (PSC) is thus an inherent soil property that, when related to bound P, can describe the P saturation of the soil. Detailed knowledge of the spatial distribution of the PSC is therefore important information for assessing the risk of P leaching from agricultural land.

In weakly acidic soils predominant in Denmark, the PSC depends mainly on the oxalate-extractable contents of aluminum and iron. In this study, we aimed to map PSC in four depth intervals (0 – 25; 25 – 50; 50 – 75; 75 – 100 cm) for Denmark using measurements of oxalate-extractable aluminum and iron from 1,623 locations.

We mapped both elements using quantile regression forests. Predictions of oxalate-extractable aluminum had a weighted RMSE of 13.9 mmol kg-1. For oxalate-extractable iron, weighted RMSE was 33.5 mmol kg-1.

We included depth as a covariate and therefore trained one model for each element. For each element in each depth interval, we predicted the mean prediction value as well as 100 quantiles ranging from 0.5% to 99.5% in 1% intervals. The maps had a 30.4 m resolution. We then calculated PSC by convoluting the prediction quantiles of the two elements, using every combination of quantiles, in order to obtain the prediction uncertainty for PSC.

Oxalate-extractable aluminum was roughly normal distributed, while oxalate-extractable iron had a large positive skew. The age and origin of the parent material had a large effect on oxalate-extractable aluminum, and soil-forming processes such as weathering and podzolization had clear effects on the distribution in depth. Meanwhile, organic matter, texture and wetland processes were the main factors affecting oxalate-extractable iron, so much so that they obscured any trends with depth.

The weighted RMSE of the predicted PSC was 19.1 mmol kg-1. PSC was highest in wetland areas and lowest in young upland deposits, such as aeolian deposits and the loamy Weichselian moraines of eastern Denmark. The sandy glaciofluvial plains and Saalian moraines of western Denmark had intermediate PSC. In most cases, PSC was highest in the top soil, but in the sandy soils of western Denmark, PSC was highest in the depth interval 25 – 50 cm due to podzolization.

How to cite: Møller, A. B., Hechrath, G. J., Hermansen, C., Nørgaard, T., Knadel, M., de Jonge, L. W., and Greve, M. H.: Mapping soil phosphorus sorption capacity in four depths with uncertainty propagation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19356, https://doi.org/10.5194/egusphere-egu2020-19356, 2020.

EGU2020-8700 | Displays | SSS10.1

Spatial patterns in winter wheat development related to soil properties and historic management. A case study from central Belgium.

Dimitri Goffart, Klara Dvorakova, Yannick Curnel, Quentin Limbourg, Giacomo Crucil, Viviane Planchon, Kristof Van Oost, and Bas van Wesemael

Intra-field heterogeneity of soil properties is function of complex interaction between biological, physical factors and historic agricultural management. Quantifying the spatial patterns of soil properties such as soil organic carbon (SOC), nitrogen (N), phosphorous, exchangeable cations, pH, soil texture will contribute to an optimization of fertilizer application and crop yields. We tested the capacity of the multispectral Micasense rededge camera mounted on a UAV in order to map the development of winter wheat and related the Red-Edge NDVI (RENDVI) from the sensor to the Plant Area Index (PAI) measured in the field. The geo-referenced grain yield of the winter wheat was measured by a combine harvester and the top soil characteristics analysed by a grid based sampling. The spatial patterns in RENDVI at three phenological stages were mapped together with the yields. For each of these images conditional inference trees were used to derive the soil properties that significantly influenced these spatial patterns. Within-field variation in PAI (cv 41 % in March, 27% in April and 9 % in May) and yield (cv 4%) can be observed. The spatial patterns of RENDVI are rather constant and their correlation with yields is highest in March and April (r=0.64). Soil properties explain between 67 to 79 % of the variance in vegetation index throughout the growing season as well as 67 % of the variance in yield.  Legacy effects of land consolidation two years earlier reflected in the field lay-out, pH and exchangeable K are significant factors explaining around 12-18 % of the variance in crop yield each. The SOC contents were overall low (8-15 g kg-1). Hence, the N supply resulting from SOC mineralization throughout the growing season covered less than 10% of the crop needs and the yield patterns did not reflect the variation in SOC contents.

How to cite: Goffart, D., Dvorakova, K., Curnel, Y., Limbourg, Q., Crucil, G., Planchon, V., Van Oost, K., and van Wesemael, B.: Spatial patterns in winter wheat development related to soil properties and historic management. A case study from central Belgium., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8700, https://doi.org/10.5194/egusphere-egu2020-8700, 2020.

EGU2020-19135 | Displays | SSS10.1

Bayesian spatio-temporal modeling of soil phosphorus in Britany in western France (1995-2014) with INLA-SPDE

Bifeng Hu, Nicolas Saby, Hocine Bourennane, Thomas Opitz, Pascal Denoroy, Blandine Lemercier, and Zhou Shi

Soil phosphorus (P) is one of the most critical elements for Earth’s ecosystem. P is a component of the complex nucleic acid structure of plants, which regulates protein synthesis, plants deficient in P are stunted in growth and lead to diseases. In practice, P is most often the element responsible for eutrophication problems in freshwater meanwhile, and it is considered the macronutrient most frequently as the element limiting eutrophication because many blue-green algae are able to use atmospheric N2. Since the Second World War overuse application of fertilizer P has leaded to lots of serious environmental problems such as eutrophication of water body.

Soil P was affected by several factors including climate, geology, time, anthropogenic activities (irrigation, industrial emission, fertilizer application, crop planting pattern etc.) and so on. This makes soil P varied in a very complex manner on both spatial and time dimension and thus increases the difficulty of estimating spatio-temporal variation of soil P. Therefore, a flexible framework is necessary for modelling spatio-temporal variation of soil P.

To explore spatio-temporal variation of soil available P, we propose a Bayesian hierarchical spatio-temporal model using Integrated Nested Laplace Approximation with Stochastic Partial Differential Equation approach (INLA-SPDE). The study was conducted on phosphorus measured by Olsen (P Olsen) and Dyer (P Dyer) methods in Britany (western France) from 1995 to 2014 with data of more than 30,000 samples of France national soil test database (BDAT).

The INLA-SPDE method exploits the Laplace approximation in Bayesian latent-Gaussian models and does not require generating samples from the posterior distribution. Hence, it can often be used for quite large data sets at reasonable computational expense. It could provide approximate marginal (posterior) distributions over all states and parameters. In this study, the constructed model includes of several components such as spatial varying trend, space varying temporal trend, effects of covariates, and residual with space-time dependent variation.

Regardless the method of quantifying phosphorus, the results indicated that the mean content of soil available P decreased between 1995 and 2014 in Britany. Our model explained 49.5% of variance of spatio-temporal variation of P Olsen in Britany in external validation dataset. For P Dyer, our model explained 50% of variance in external validation dataset. The purely spatial effects shown that the available P in west of Britany was higher than east part. Our study could contribute to better soil management and environmental protection. Further study still needed to include more related factors into the model to improve the model performance and detected more related factors (such as soil management measures) which have important effects on spatio-temporal variation of available P in soil.

How to cite: Hu, B., Saby, N., Bourennane, H., Opitz, T., Denoroy, P., Lemercier, B., and Shi, Z.: Bayesian spatio-temporal modeling of soil phosphorus in Britany in western France (1995-2014) with INLA-SPDE, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19135, https://doi.org/10.5194/egusphere-egu2020-19135, 2020.

EGU2020-1400 | Displays | SSS10.1

Using Bayesian Network for Soil Organic Carbon Prediction despite its Incredible Complexity

Tabassom Sedighi, Jacqueline Hannam, and Ron Corstanje

In this research, static Bayesian networks (BN) is presented for predicting Soil Organic Carbon (SOC) in the complex and open soil systems. BN is a graphical computational model which provides a simple technique to define the nonlinear dependencies and, therefore, to implement a compact representation of the complex systems. Moreover, the BN is used as a simulation tool for effective processing of the complex system outcomes by probability propagation methods. This permits evaluation and potential intervention in complex soil systems and determines the dependencies between different variables. We use a BN to identify key factors in predicting England and Wales SOC. Then, we explore the relationships between different key factors such as geographical, environmental or climate and their roles individually in predicting SOC, particularly to identify those which have the highest impact. The proposed BN is also used to calculate the effectiveness of these interventions where the uncertainties associated with these casual relationships at the same time. This approach works with data from the variety of sources and handles a mix of subjective and objective data and can incorporate variables which differ across the contexts. The effectiveness of the technique is demonstrated with a case study to predict SOC.

How to cite: Sedighi, T., Hannam, J., and Corstanje, R.: Using Bayesian Network for Soil Organic Carbon Prediction despite its Incredible Complexity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1400, https://doi.org/10.5194/egusphere-egu2020-1400, 2020.

Maintaining soil organic carbon (SOC) content is recognized as an important strategy for a well-functioning soil ecosystem. The UN Convention to Combat Desertification (UNCCD) recognizes that reduced SOC content can lead to land degradation, and ultimately low land and agricultural productivity. SOC is almost universally proposed as the most important indicator of soil health, not only because SOC positively influences multiple soil properties that affect productivity, including cation exchange capacity and water holding capacity, but also because SOC content reflects aboveground activities, including especially agricultural land management. To be useful as an indicator, it is crucial to assess the importance of both inherent soil properties as well as external factors (climate, vegetation cover, land management, etc.) on SOC dynamics across space and time. This requires large, reliable and up-to-date soil health data sets across diverse land cover classes. The Land Degradation Surveillance Framework (LDSF), a well-established method for assessing multiple biophysical indicators at georeferenced locations, was employed in nine countries across the tropics (Burkina Faso, Cameron, Honduras, India, Indonesia, Kenya, Nicaragua, Peru, and South Africa) to assess the influence of land use, tree cover and inherent soil properties on soil organic carbon dynamics. The LDSF was designed to provide a biophysical baseline at landscape level, and monitoring and evaluation framework for assessing processes of land degradation and the effectiveness of rehabilitation measures over time. Each LDSF site has 160 – 1000 m2 plots that were randomly stratified among 16 - 1 km2 sampling clusters. A total of 6918 soil samples were collected (3478 topsoil (0-20 cm) and 3435 subsoil (20-50 cm)) within this study. All samples were analyzed using mid-infrared spectroscopy and 10% of the samples were analyzed using traditional wet chemistry to develop calibration prediction models.  Validation results for soil properties (soil organic carbon (SOC), sand, and total nitrogen) showed good accuracy with R2 values ranging between 0.88 and 0.96. Mean organic carbon content was 21.9 g kg-1 in topsoil and 15.2 g kg-1 in subsoil (median was 18.3 g kg-1  for topsoil and 10.8 g kg-1 in subsoil). Forest and grassland had the highest and similar carbon content while bushland/shrubland had the lowest. Sand content played an important role in determining the SOC content across the land cover types. Further analysis will be conducted and shared on the role of trees, land cover and texture on the dynamics of soil organic carbon and the implications for LDN reporting, land restoration initiatives as well as sustainable land management recommendations.

How to cite: Winowiecki, L. and Vågen, T.-G.: Using a data-driven network to understand the drivers of soil organic carbon dynamics across the tropic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15028, https://doi.org/10.5194/egusphere-egu2020-15028, 2020.

EGU2020-12945 | Displays | SSS10.1

Modelling and mapping global soil information

Laura Poggio, Luis Moreira de Sousa, Gerard Heuvelink, Bas Kempen, Zhanguo Bai, Ulan Turdukulov, Maria Ruiperez Gonzalez, Eloi Ribeiro, Niels Batjes, and Rik van den Bosch

Soil information is fundamental for many global applications, such as food security, land degradation, water resources, hydrology, climate change and ecological conservation. To address these diverse needs, it is important to provide free, consistent, easily accessible and standardized soil information. SoilGrids meets these requirements being a  global product supporting global modelling and providing complementary information for the development of regional and national products in data-poor areas. This presentation will focus on the methodological aspects for modelling and mapping of global soil information. We describe the selection of models for global mapping using quantile random forest and recursive feature elimination to obtain a parsimonious model. We also use a refined cross-validation procedure to account for bias caused by spatial differences in sampling density at different depths. SoilGrids also quantifies location-specific uncertainty at global level by computing 90% prediction interval limits. 

How to cite: Poggio, L., Moreira de Sousa, L., Heuvelink, G., Kempen, B., Bai, Z., Turdukulov, U., Ruiperez Gonzalez, M., Ribeiro, E., Batjes, N., and van den Bosch, R.: Modelling and mapping global soil information, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12945, https://doi.org/10.5194/egusphere-egu2020-12945, 2020.

EGU2020-11439 | Displays | SSS10.1

"Bare soil" detection addressing agricultural production optimization throughout the year: case study in Emilia Romagna using Sentinel-2 images.

Nicolas Greggio, Martina Cimatti, Andrea Spisni, Luca Domenico Sapia, Andrea Baraldi, Andrea Contin, and Diego Marazza

Changes in soil practices and management policies are fundamental in order to satisfy future growing food and energy demand, limiting risks of soil depletion. To this purpose remote sensed data are proving crucial for precision farming and for soil characterization and monitoring. In regions where agronomic rotations are adopted, soils experience unproductive periods between two main crops ("bare soil"), causing nutrient leaching, erosion and acceleration of organic matter consumption. Although the presence of "bare soil" period is evident and well known, there are no studies able to provide a dedicated regional framework to draw attention to this issue.

This study aims at mapping soils cultivated but unproductive during certain times of the year ("bare soil") using satellite images. Once detected, "bare soils" are deeply investigated to define their surface and the time duration of the bare soil status. Thereafter, valorization scenarios for these "bare soil" are proposed considering an optimized mix of energy and cover crops.

The applied methodology includes Sentinel-2, 5-days-return-time optical images, with 20 m ground spatial resolution acquired during 2017. The images were pre-processed using the Satellite Image Automatic Mapper™ (SIAM™) and outputs subsequently processed on the QGIS platform and validated with ground truths provided by the regional agriculture authority.

Of the total Utilised Agricultural Area (UAA), results show that up to 20% is "bare soil" from July to October and about 10% is unproductive from November to April. The size of most plots varies from 0.5-2 ha, however, about 30% of the "bare soil" fields have surface size from 3 to 50 ha, sufficient to justify their agronomic exploitation. In a basic scenario where biomass sorghum is cultivated from July to October, 50% of the bioenergy demand can be met through anaerobic digestion.

This study proposes a digital soil mapping methodology able to answer several questions: if yields can be improved, in what period of the year, in which area, how large are the plots. Therefore, the potential of "bare soils" for increasing food or energy crops and to store more carbon in soils is highlighted.

How to cite: Greggio, N., Cimatti, M., Spisni, A., Sapia, L. D., Baraldi, A., Contin, A., and Marazza, D.: "Bare soil" detection addressing agricultural production optimization throughout the year: case study in Emilia Romagna using Sentinel-2 images., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11439, https://doi.org/10.5194/egusphere-egu2020-11439, 2020.

EGU2020-11855 | Displays | SSS10.1

Soil salinity assessment using temporal series of Sentinel2 satellite images in irrigated paddy fields of Western Africa

Moussa Issaka, Walter Christian, Michot Didier, Pichelin Pascal, Nicolas Hervé, and Yadji Guéro

Salinization and alkalinization are worldwide among the soil degradation threats in irrigated schemes affecting soil productivity. Niger River basin irrigated schemes in the Sahel arid zone are no exception (ONAHA, 2011). The use of remote sensing for identifying and evaluating the level of these phenomena is an interesting tool. The launching of the Sentinel2 satellite constellation (2015) brings new perspectives with high spectral and temporal resolutions images. The aim of this study was to develop a methodology for detection of salt-affected soils in this climatic condition.

To achieve our goal, we used two types of data: remote sensing and ground truth data.

Two complementary approaches were used: one by observing salinity on bare soil by the use of salinity index (SI) and the other by observing the indirect effects of salinity on the vegetation during eight (8) rice growth phases  using vegetation index NDVI.

Remote sensing data were acquired from multi temporal sentinel2 images over 4 years (from 11/12/2015 to 30/11/2019). One hundred and fifty seven (157) images were downloaded (one image each 5 days) and corrected from atmospheric effects and some bands resampled to 5 m using python software. The salinity and vegetation indices were calculated. NDVI index was calculated and NDVI integral between NDVI curve and the threshold of 0.21 NDVI calculated for the eight growing cycles.

Ground truth data were collected in 2019 during the dry growing season (January – may 2019) from 24 calibration plots and 40 validation plots. One hundred and twenty (120) soil samples collected and analyzed for pH and electrical conductivity and finally forty six (46) biomass samples were collected, air dried and weighed for biomass yield and 46 grains samples collected for grain yield.

NDVI integral proved to be good indicator for yield variations and could distinguish crops behavior according to the growing period. It also makes it possible to distinguish plots which were not cultivated or with weak growth due to strong constraints of which the main one is salinity. It showed also that the effect of salinity on growth differs according to the growing season and the possibility of managing irrigation. Bare soil analysis distinguishes fields with different salinity indexes despite the low number of dates for which bare soil can be observed.

Ascending Hierarchical Classification (AHC) enabled to identify four classes of NDVI dynamics over time and bare soil salinity index. High saline soils according to direct soil measurements were related to the class characterized by high frequency of no-cultivation during the dry season and low NDVI integral during the wet season. Multi-temporal Sentinel2 images analysis enabled therefore to detect rice crop fields affected by salinity through its influence on crop behavior. This approach will be tested over the whole paddy schemes of the Niger River valley.

How to cite: Issaka, M., Christian, W., Didier, M., Pascal, P., Hervé, N., and Guéro, Y.: Soil salinity assessment using temporal series of Sentinel2 satellite images in irrigated paddy fields of Western Africa , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11855, https://doi.org/10.5194/egusphere-egu2020-11855, 2020.

EGU2020-18516 | Displays | SSS10.1

Predicting and mapping of soil salinity using machine learning algorithms in central arid regions of Iran

Ruhollah Taghizadeh-Mehrjardi, Norair Toomanian, Shahab Shamshirband, Amir Mosavi, Thorsten Behrens, Karsten Schmidt, and Thomas Scholten

In this study, we predicted and mapped soil salinity using machine learning (ML) and digital soil mapping (DSM) approaches. Support vector regression (SVR) and the hybrid of SVR with wavelet transformation (W-SVR) where applied to correlate soil salinity of the upper 200 cm of soil to a wide range of environmental covariates derived from a digital elevation model (DEM), remote sensing (RS) and climatic data. Results indicate that W-SVR performed better in predicting soil salinity at all depth intervals with scattered index ranging from 1.45 to 1.68 compared to the standalone SVR. This is particularly true at the lowest soil depth when W-SVR indicated ~1.5 times higher accuracy compared to the SVR. At this soil depth topographic features are the main covariates in the models. For topsoil salinity, land use represented by RS features controls the spatial distribution of the salinity widely. Independent from soil depth, climatic features are the most important predictors for soil salinity in all ML models. The predicted salinity maps show the highest salinity for soils in the eastern parts of central Iran. Furthermore, the importance of topographic features for all ML algorithms coincides with most landform characteristics in central Iran and confirms a close relation of soil salinity not only to land use practices like irrigation but also to soil-landscape relationships in this dry region.

Keywords: Soil salinity, machine learning, spatial variation, central Iran, support vector regression, wavelet transformation

Acknowledgments

Ruhollah Taghizadeh-Mehrjardi has been supported by the Alexander von Humboldt Foundation under the grant number: Ref 3.4 - 1164573 - IRN - GFHERMES-P.

How to cite: Taghizadeh-Mehrjardi, R., Toomanian, N., Shamshirband, S., Mosavi, A., Behrens, T., Schmidt, K., and Scholten, T.: Predicting and mapping of soil salinity using machine learning algorithms in central arid regions of Iran, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18516, https://doi.org/10.5194/egusphere-egu2020-18516, 2020.

EGU2020-21992 | Displays | SSS10.1

Using multi-temporal Sentinel-2 data to predict chemical properties of the organic surface layer of forest soils

Carina Becker, David Frantz, Rainer Petzold, Karsten Schmidt, Thorsten Behrens, and Thomas Scholten

Area-wide high resolution information of organic layer properties is required for assessing the current nutrient availability in forest stands. Together with climate, location, parent material and terrain predictors, vegetation is known to have a direct impact on the characteristics of the organic surface layer of forest soils and therefore plays an important role in predicting its chemical properties.

Here, we use multi-temporal Sentinel-2 (S2) Earth Observation (EO) data as a proxy for various vegetation characteristics to spatially predict forest organic layer properties at 10 m spatial resolution in Saxony/Germany. To ensure full data coverage of the study area, we used multi-temporal statistical measures of S2 data generated by the FORCE algorithm. Complementary to ancillary predictors (climate, location, parent material, terrain), we compared three different sets of vegetation related data as predictors: (1) categorical tree species groups from a field survey, (2) multi-temporal statistical measures derived from S2 data and (3) S2 multi-temporal statistical measures and additional S2 multi-temporal spectral indices.

We used random forest regression models to estimate pH value, base saturation, C/N ratio and effective cation exchange capacity of the organic surface layer and the upper 0-5 cm of the first mineral soil horizon. For model evaluation 5-times 10-fold cross-validation was applied. For predictor evaluation and selection, we used recursive feature elimination.

The results indicate that S2 data can serve as a vegetation proxy when predicting forest organic layer properties. For example, the cross-validation estimate of the prediction error in scenario (3) for C/N ratio (organic surface layer) is about 7.3 % lower than in scenario (1). In some cases the explanatory power is higher compared to the field survey data of the tree species groups, probably due to the high local variability of EO based data. This may help to reveal short range variability of chemical properties. We conclude that the three scenarios show comparable results and thus multi-temporal S2 data can be used as a vegetation proxy to spatially predict chemical properties of the organic surface layer of forest soils.

How to cite: Becker, C., Frantz, D., Petzold, R., Schmidt, K., Behrens, T., and Scholten, T.: Using multi-temporal Sentinel-2 data to predict chemical properties of the organic surface layer of forest soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21992, https://doi.org/10.5194/egusphere-egu2020-21992, 2020.

The study presents the analysis of effect of changes of the open surface of arable soils occuring due to the influence of agricultural practices or natural factors (mainly, precipitation) on the possibility of assessment of organic matter content in the arable layer with optical remote sensing data.

The object of the research was gray forest arable soil of a test field located in the Yasnogorsky district of the Tula region. In 2019, the field was complete fallow.

During field work conducted on the test field on 15.08.2019, the spectral reflectance of the surface of arable soils and a wetter subsurface horizon was measured at 30 points. At the same points, 30 mixed samples of the arable horizon were collected for laboratory estimation of organic matter content.

Spectral reflectance was measured using a HandHeld-2 field spectroradiometer, which operates in the range 325–1050 nm with a step of 1 nm.

Proximal sensing data were smoothed with Savitzky-Golley function and recalculated into Sentinel-2 bands using Gaussian function.

We also chose seven Sentinel-2 scenes for 2019 for the studied region: 2.04.2019, 17.04.2019, 20.04.2019, 5.05.2019; 6.06.2019, 19.06.2019, 28.08.2019. Atmospheric correction for chosen scenes was performed with Sen2Cor model in SNAP. Aftewords we extracted reflectance values at points, where we collected spectral data and soil samples in the field.

Then we calculated a number of spectral indices and ratios for both proximal and Sentinel-2 data which were further used in regression modelling. Models were cross-validated by bootstrapping.

At field scale, difference in moisture content did not significantly affect the accuracy and quality of the models. R2adjcv of model for dry surface layer was a bit higher than in case of model for wet subsurface layer (0.77 vs. 0.72). RMSEPcv and RPIQ for both cases were very close (0.71 and 0.71; 2.09 and 2.12).

When we used models developed based on proximal sensing data to calculate OM content with Sentinel-2 data at different acquisition dates, we found that the accuracy of OM prediction varied. In some cases RMSE was higher than 7 % and predicted OM content was two times higher than actual.

Models developed based only on Sentinel-2 data for different acquisition dates, varied in accuracy, quality and informative bands. R2adjcv of most models was about 0.72-0.83, RPIQ was 2.09-2.07, and RMSEPcv was in the range of 0.56-0.77 %.

Therefore changes in surface state of arable soils result in a situation when for each state we have different model. That imposes restrictions on further use of such models for remote evaluation and monitoring of organic matter content in arable soils. To deal with this problem, it is necessary to account for soil surface state when developing models for properties of arable soils based on optical remote sensing data.

The research was funded by the Ministry of Science and Higher Education of Russia (contract № 05.607.21.0302). 

How to cite: Prudnikova, E. and Savin, I.: Modelling of soil organic matter of arable soils with optical remote sensing data: the impact of soil surface state, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20185, https://doi.org/10.5194/egusphere-egu2020-20185, 2020.

EGU2020-8253 | Displays | SSS10.1

Soil organic carbon mapping from remote sensing: The effect of crop residues

Klara Dvorakova, Pu Shi, Limbourg Quentin, and Bas van Wesemael

Since the onset of agriculture, soils have lost their organic carbon to such an extent that the soil functions of many croplands are threatened and there is therefore a strong demand for mapping and monitoring critical soil properties and in particular soil organic carbon (SOC). Pilot studies have demonstrated the potential for remote sensing techniques for SOC mapping in croplands, given their large spatial coverage and high temporal resolution. It has however been shown that the assessment of SOC may be hampered by crop residues. In this study we tested the effect of the threshold for the cellulose absorption index (CAI), on the performance of SOC prediction models for bare cropland soils. Airborne Prism Experiment (APEX) hyperspectral images covering an area of 230 km2 in the Belgian Loam Belt were used together with a local soil dataset. We used the partial least square regression (PLSR) model to estimate the SOC content based on 104 georeferenced calibration samples, firstly without setting a CAI threshold, and obtained a satisfactory result (R²=0.49, RPD=1.4 and RMSE=2.14 g kgC-1 for cross-validation). However, a cross comparison of the estimated SOC values to grid-based measurements of SOC content within three fields revealed a systematic overestimation for fields with high residue cover. We then tested different thresholds of CAI in order to mask pixels with high residue cover, by eliminating calibration samples used in the PLSR model based on this threshold. The best model was obtained for CAI threshold of 0.8 (R²=0.59, RPD=1.5 and RMSE=1.76 g kgC-1 for cross-validation). These results reveal that the purity of the pixels needs to be assessed aforehand in order to produce reliable SOC maps. Preliminary results indicate that an index based on the SWIR bands of the MSI Sentinel 2 sensor is also capable of detecting crop residues. However, the application under moist conditions and for different types of residues needs to be confirmed.

How to cite: Dvorakova, K., Shi, P., Quentin, L., and van Wesemael, B.: Soil organic carbon mapping from remote sensing: The effect of crop residues, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8253, https://doi.org/10.5194/egusphere-egu2020-8253, 2020.

EGU2020-3271 | Displays | SSS10.1

Detection and quantification of soil compaction in a post-mining landscape by geophysical methods

Lutz Weihermüller, Jessica Schmäck, Mario Mertens, Manuel Endenich, Jan van der Kruk, Harry Vereecken, Gerd Welp, and Stefan Pätzold

Rhenish opencast mines located in the central west of Germany have used about 330 km2 of land so far. Of this, some 230 km2 have been recultivated, including 125 km2 of arable land. After recultivation, the land is cultivated for at least seven years by the mining company before let to the farmers. Where new farmland is envisaged, the stackers spread pure loess mixed with soil material of the original Luvisols (loess loam) at the top of the refilled mining areas. After a certain settling time, this layer must be at least two meters thick. In a next step, the loess is levelled in a soil-sparing fashion using caterpillars with extra-wide rawler tracks. Even if care is taken that the loess layer will not be heavily compacted during levelling, local soil compaction is one of the major problems, as leveling often is performed during unfavorable moist soil conditions. These local compactions lead to reduced crop growth during either wet or dry growing seasons and result in yield losses over periods of many years. Localizing and evaluating such compacted field zones would enable the mining company to perform a physical soil melioration before handing over the land to a farmer.

To identify local soil compaction, a field study was performed in 2019 on a selected field with known variability in crop performance within the recultivated area of the Garzweiler mine in North Rhine-Westphalia, Germany. Over the course of 5 months, the field was intensively investigated using geophysical methods such as electromagnetic induction (EMI) and electrical resistivity tomography (ERT). Additionally, soil samples were taken to determine soil water contents, bulk density, penetration resistance, and soil texture.

The geophysical maps gathered, clearly show zones of higher electrical conductivities in the soil, which were associated to conventionally measured subsoil compaction. Regression of bulk densities with EMI data yielded good results allowing to map out compacted zones within the field and also to quantify compaction. Hence, geophysical methods provide a promising approach to plan soil melioration measures.

How to cite: Weihermüller, L., Schmäck, J., Mertens, M., Endenich, M., van der Kruk, J., Vereecken, H., Welp, G., and Pätzold, S.: Detection and quantification of soil compaction in a post-mining landscape by geophysical methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3271, https://doi.org/10.5194/egusphere-egu2020-3271, 2020.

EGU2020-5455 | Displays | SSS10.1

Modelling and mapping soil pH in Andalusia (Spain) using phenological products as predictor features

Francisco M. Canero, Victor Rodriguez-Galiano, Aaron Cardenas-Martinez, and Juan Antonio Luque-Espinar

Soil pH is one of the most important soil parameters, due to its importance for for soil management and food security. Spatial distribution of pH could altered by the different environmental conditions, such as geology, climate or soil-vegetation interactions. pH has an ecological function in controlling spatial distribution of plant species, conditioning absence or presence of different species due to soil pH ability or modifying mineral solubility. Hence, pH and remotely sensed land surface phenology (LSP) could be associated. The objective of this work was two-folded: i) mapping the soil pH of Andalusian soils and ii) the evaluation of new features derived from remote sensing which are related to seasonal cycles of vegetation applied to digital soil mapping

We developed a pH model using 3215 pH measurements at different locations together with three types of predictor features: terrain (elevation, slope, hydrological attributes…), climatic (annual and monthly precipitation and maximum and minimum temperatures) and phenological features extracted from remotely sensed vegetation indices time series (date of the start of spring, date of the end of senescence, growing season length, end of the growing season, length of the growing season, maximum peak, and large seasonal integral as a proxy of productivity). The LSP features were obtained from time series of NDVI that were computed from the MODIS weekly surface reflectance product (MOD09Q1 v6) at a spatial resolution of 250 for the entire study period. The performance of  multiple lineal regression (MLR) and Random Forest was evaluated within the framework of a high dimensional feature space.

The results showed that RF outperformed MLR (R2: 0.66 and 0.58; RMSE: 0.76 and 0.83). ph and feature pairwise correlations were higher for the phenological features: median of large integral (-0.55); median of maximum peak (-0.51); valley depth (0.48); median of date of start of spring (-0.47), median of value on the date of start of spring (-0.46). The most important features in RF prediction were almost the same: the median of large integral, valley depth, maximum temperatures in September and median of maximum peak, showing that LSP features were relevant in pH spatial modelling, with an better performance of RF model.

How to cite: Canero, F. M., Rodriguez-Galiano, V., Cardenas-Martinez, A., and Luque-Espinar, J. A.: Modelling and mapping soil pH in Andalusia (Spain) using phenological products as predictor features, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5455, https://doi.org/10.5194/egusphere-egu2020-5455, 2020.

EGU2020-8335 | Displays | SSS10.1 | Highlight

The consortium GLADSOILMAP

Dominique Arrouays, Zamir Libohova, Budiman Minansny, Vera Leatitia Mulder, Laura Poggio, Pierre Roudier, Anne C. Richer-de-Forges, Hocine Bourennane, Pierre nehlig, Guillaume Martelet, and Philippe Lagacherie

Soils have critical relevance to global issues, such as food and water security, climate regulation, sustainable energy, desertification and biodiversity protection. All these examples require accurate national soil property information and there is a need to scientific support to develop reliable baseline soil information and pathways for measuring and monitoring soils. Soil sustainable management is a global issue, but effective actions require high-resolution data about soil properties. Two projects, GlobalSoilMap and SoilGrids, aim at delivering the first generation of high-resolution soil property grids for the globe, the first one by a bottom-up approach (from country to globe), the latter by top-down (global). The GLobAl Digital SOIL MAP (GLADSOILMAP) consortium brings together world scientific leaders involved in both projects. The consortium aims at developing and transferring methods to improve the prediction accuracy of soil properties and their associated uncertainty, by using legacy soil data and ancillary spatial information. This approach brings together new technologies and methods, existing soil databases and expert knowledge. The consortium aims at transferring methods to achieve convergence between top-down and bottom-up approaches, and to generate methods for delivering maps of soil properties. These maps are essential for communities from climate and environmental modeling to decision making and sustainable resources management at a scale that is relevant to soil management. The consortium will ensure links with the numerous actors in geosciences of the world, and will contribute to improving their skills in digital mapping and their national and international legibility. The actions include 4 main Work Packages (WP) subdivided into several tasks that are summarized below:

 

WP0 Management of the project

WP1 Legacy and ancillary data for Digital Soil Mapping (DSM)

Test the potential of new ancillary data for DSM

Explore methodologies to merge and/or harmonize different products

Propose methods for harmonizing products to a common date

 

WP2 Methods for sampling, modelling and mapping soils in space and time

Testing and developing new methods/models for prediction

Testing methods for estimating complete probability distribution

 

WP3 Methods for estimating model and map uncertainty

Develop methods of uncertainty spatial assessment

Develop methods do deal with censored data/soft data

Solve the question of influence on the age of the rescued soil data on predictions

 

WP4 Scientific outreach and capacity building

Produce an exhaustive review of GlobalSoilMap initiatives and results all over the world

Revise and update the GlobalSoilMap specifications by keeping them at the state-of-the-art level

Show relevance of gridded, Global, DSM by use cases and communication to end users

 

The added value of the consortium is to allow a direct scientific exchange between members that should result in synthesis papers, in the identification of the major knowledge gaps, and in extending, deepening and disseminating knowledge of DSM, with the final aim to contribute to the achievement of global soil maps. Another added value of the consortium will certainly be to foster the creation of new ideas.

 

Acknowledgements: the Consortium GLADSOILMAP is supported by LE STUDIUM Loire Valley Institute for Advanced studies.

How to cite: Arrouays, D., Libohova, Z., Minansny, B., Mulder, V. L., Poggio, L., Roudier, P., Richer-de-Forges, A. C., Bourennane, H., nehlig, P., Martelet, G., and Lagacherie, P.: The consortium GLADSOILMAP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8335, https://doi.org/10.5194/egusphere-egu2020-8335, 2020.

EGU2020-8426 | Displays | SSS10.1 | Highlight

Digital mapping of soil information at a broad-scale: A review on GlobalSoilMap

Songchao Chen, Vera Leatitia Mulder, Laura Poggio, Pierre Roudier, Zamir Libohova, Budiman Minasny, Zhou Shi, Jacqueline Hannam, and Dominique Arrouays

In the 21st century, soils are at the crossroads of global issues (i.e., food security, water security, biodiversity protection, climate change, and ecosystem services) and essential to achieve some of the Sustainable Development Goals. Although soils are central to these global issues, their management requires local actions and knowledge, which requires fine-resolution soil information. With an emphasis on broad-scale studies (>10,000 km2), this review outlines recent progress in the development of GlobalSoilMap, an initiative to provide a global fine-resolution grid of soil properties with quantified uncertainties using the bottom-up approach. This review provides an overview related to the soil data source, environmental covariates, spatial prediction, modelling and mapping techniques, uncertainty qualification, and target soil properties. The main findings of this review are: (1) A great increase of publication was observed after 2012, reaching a peak in recent years; (2) Australia and China were the most active countries; (3) Geoderma was the most frequent journal that was preferred by authors to publish related studies; (4) More than a half of the studies did not report soil sampling design; (5) Data splitting was the most frequent strategy for model evaluation, and independent validation was rarely used; (6) Nonlinear predictive model (i.e., machine learning) was becoming popular than ever before; (7) Relief, organisms and climate were the top three SCORPAN factors used in modelling; (8) Soil organic carbon (or soil organic matter) was the top soil property of interest.

This review also highlights the perspectives of GlobalSoilMap for further improving the quality of soil information globally and making it practical in decision making.

How to cite: Chen, S., Mulder, V. L., Poggio, L., Roudier, P., Libohova, Z., Minasny, B., Shi, Z., Hannam, J., and Arrouays, D.: Digital mapping of soil information at a broad-scale: A review on GlobalSoilMap, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8426, https://doi.org/10.5194/egusphere-egu2020-8426, 2020.

EGU2020-9234 | Displays | SSS10.1

Renewal of a national soil water management category system and legacy map by data mining methods, digital primary and hydrological soil property maps

Brigitta Szabó, Annamária Laborczi, Gábor Szatmári, Zsófia Bakacsi, András Makó, Péter Braun, and László Pásztor

Soil physical properties and soil water regime have been in the focus of soil surveys and mapping in Hungary due to their importance in various environmental processes and hazards, like waterlogging and drought, which endanger extended areas. 
In the late ‘70s a category system was elaborated for the planning of water management, which was used as the legend of a nationwide map prepared at a scale of 1:500.000. Soils were characterized qualitatively (e.g.: soil with unfavorable water management was defined with low infiltration rate, very low permeability and hydraulic conductivity, and high water retention), without quantification of these features. The category system was also used for creating large-scale (1:10.000) water management maps, which are contained legally by expert’s reports prepared on the subject of drainage, irrigation, liquid manure, sewage or sewage-sludge disposal. These maps were prepared eventually, essentially for individual plots and are not managed centrally and are not available for further applications.
Recently a 3D Soil Hydraulic Database was elaborated for Europe at 250 m resolution based on specific pedotransfer functions and soil property maps of SoilGrids. The database includes spatial information on the soil water content at the most frequently used matric potential values, saturated hydraulic conductivity, Mualem-van Genuchten parameters of the moisture retention and hydraulic conductivity curves. Based on similar idea, the work has been continued to produce more accurate and spatially more detailed hydrophysical maps in Hungary by generalizing the applied pedotransfer functions and using national soil reference data and high resolution, novel, digital soil property maps.
We initiated a study in order to formalize the built-in soil-landscape model(s) of the national legacy map on water management, together with the quantification of its categories and its potential disaggregation. The relation of the legacy map with the newly elaborated 3D estimations were evaluated at two scales: nationwide with 250 m resolution and at catchment scale with 100 m resolution. Hydrological and primary soil property maps were used as predictor variables. Unsupervised classifications were performed for spatial-thematic aggregation of the soil hydraulic datasets to identify their intrinsic characteristics, which were used for the elaboration of a renewed water management classification. Hydrological interpretation of the categories provided by the optimum classifications has been carried out (i) by their spatial cross-tabulation with the categories of the legacy map and (ii) using the interval estimation of the applied soil hydraulic properties provided for the individual water management categories. Machine learning approaches were used to analyze the information content of the legacy maps’s category system, whose results were used for its disaggregation. Conditionally located random points were sequentially generated for virtual sampling of the legacy map to produce reference information. The disaggregated maps with the legend of the traditional water management classes were produced both on national and catchment level.

Acknowledgment: The research has been supported by the Hungarian National Research, Development and Innovation Office (NRDI) under grants KH124765, KH126725, the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and the MTA Cloud infrastructure (https://cloud.mta.hu/).

How to cite: Szabó, B., Laborczi, A., Szatmári, G., Bakacsi, Z., Makó, A., Braun, P., and Pásztor, L.: Renewal of a national soil water management category system and legacy map by data mining methods, digital primary and hydrological soil property maps, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9234, https://doi.org/10.5194/egusphere-egu2020-9234, 2020.

EGU2020-9324 | Displays | SSS10.1

Predicting topsoil organic carbon using UAV-based hyperspectral sensor

János Mészáros, Gergely Jakab, Mátyás Árvai, Judit Szabó, Márton Tóth, Boglárka Keller, Gábor Szatmári, Zoltán Szalai, and László Pásztor

There is increasing demand for up‐to‐date spatial information on soil organic carbon (SOC). Meanwhile, Unmanned Aerial Vehicles (UAV) provide flexible technology for monitoring land surface features with high spatial resolution at plot scale. Suitably performed, airborne imagery simultaneously provides spectral and terrain based spatial auxiliary data, which can be used as predictors in DSM-type modelling of topsoil OC.

To test its applicability for spatial prediction of topsoil OC, an aerial survey was carried out on a plot situated on a gently undulating slope by a Cubert UHD-185 hyperspectral snapshot camera mounted on a Pixhawk-based octocopter. The camera is capable to record electromagnetic spectrum between 450-950 nm in 125 spectral bands on 50×50 pixels images and the panchromatic spectrum in 1 Mpx images. Because of the narrow field-of-view of the UHD-185, three consecutive flights were needed to cover the whole area (cca. 10 ha); all were happened in the hours close to noon and flown in automatic flight mode to ensure the right over- and sidelap between images to make possible the photogrammetric processing. Despite the automatic flights a surveying grade GPS unit was also used to survey 12 markers, evenly distributed on the field to orthorectify images later.

The hyperspectral and panchromatic images were pre-processed in Cubert Edelweiss to produce different versions of them depending on the used spectral information to investigate later how built-in pan-sharpening method affects the prediction accuracy. The generated datasets are the native and pan-sharpened hyperspectral mosaics. Later the photogrammetric processing was performed in Agisoft Photoscan for both hyperspectral datasets, resulting in two georeferenced outcomes: a common digital elevation model (DEM) and two hyperspectral orthomosaics of the area, each exported with 1 m spatial resolution. Further data editing steps were carried out in R, generating various versions of exported hyperspectral orthomosaics: mosaic containing all of the 125 spectral bands; filtered (where spectrally overlapping bands with high correlation were removed based on Full Width at Half Minimum information) and Principal Component Analysis transformed versions.

Based on different kind of spectral orthomosaics and DEM combinations, a custom R script using Random Forest algorithm generated 36 predicted layers for topsoil OC, which were validated by Leave-One-Out Cross-Validation, hence independent mean and RMSE errors could be calculated for each dataset combinations. The overall best performing datasets were provided by the FWHM-filtered hyperspectral orthomosaic, hence the lowest mean error is resulted by the filtered, pan-sharpened PCA-transformed combination containing the DEM and its derivatives. However, in the RMSE values there were no significant difference between the six lowest RMSE combinations, but mostly the pan-sharpened and PCA-transformed versions perform better.

How to cite: Mészáros, J., Jakab, G., Árvai, M., Szabó, J., Tóth, M., Keller, B., Szatmári, G., Szalai, Z., and Pásztor, L.: Predicting topsoil organic carbon using UAV-based hyperspectral sensor, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9324, https://doi.org/10.5194/egusphere-egu2020-9324, 2020.

EGU2020-9645 | Displays | SSS10.1

Functional applications of primary soil property maps provided by DOSoReMi.hu

László Pásztor, Annamária Laborczi, Brigitta Szabó, Nándor Fodor, Sándor Koós, and Gábor Szatmári

The main objective of DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) initiative has been to broaden the possibilities, how demands on spatial soil related information could be satisfied in Hungary, how the gaps between the available and the expected could be filled with optimized digital soil (related) maps. During our activities we have significantly extended the potential, how goal-oriented, map-based soil information could be created to fulfill the requirements. Primary and specific soil property, soil type and certain tentative functional soil maps were compiled. The set of the applied digital soil mapping techniques has been gradually broadened incorporating and eventually integrating geostatistical, machine learning and GIS tools. Soil property maps have been compiled partly according to GlobalSoilMap.net specifications, partly by slightly or more strictly changing some of their predefined parameters (depth intervals, pixel size, property etc.) according to the specific demands on the final products. The nationwide, thematic digital soil maps compiled in the frame and spin-off of our research have been utilized in a number of ways.

Soil hydraulic properties (saturated hydraulic conductivity, wilting point, field capacity, saturated water content) were mapped applying generalized pedotransfer functions on available, primary soil property maps supplemented with further environmental co-variables, which were also used in the elaboration of the specific PTF.

Spatial assessment of certain provisioning and regulating soil functions and services was carried out by the involvement of soil property maps in digital process/crop models, which properly simulate the soil-plant-water environment conditioned by various factors based on actual, predicted or presumed data. Specific outputs of the modelled processes provided adequate information on functional behavior of soils.

Programs or studies dedicated to the designation of areas suitable for irrigation; risk modelling of inland excess water hazard; mapping of potential habitats; spatial assessment and mapping of ecosystem services were heavily relied on the novel type spatial soil information. The approaches sometimes required certain modifications of the standard GSM products due to various reasons.

The paper will present various national functional applications of primary soil property maps provided by DOSoReMI.hu.

 

Acknowledgment: Our research was supported by the Hungarian National Research, Development and Innovation Office (NRDI; Grant No: KH126725).

How to cite: Pásztor, L., Laborczi, A., Szabó, B., Fodor, N., Koós, S., and Szatmári, G.: Functional applications of primary soil property maps provided by DOSoReMi.hu, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9645, https://doi.org/10.5194/egusphere-egu2020-9645, 2020.

EGU2020-10173 | Displays | SSS10.1

Modelling the extent of Cs-137 soil contamination patterns at the Kostica River basin (Bryansk Region, Russia)

Vitaly Linnik, Alexander Sokolov, Oleg Ivanitsky, and Anatoly Saveliev

Digital terrain analysis may be a useful tool for modeling the extent of Cs-137 soil contamination patterns after the Chernobyl disaster. The test area of the  Kostica River basin (Bryansk Region, Russia)  covers an area of 19,4x11,6 km and is characterized by relatively low levels of 137Cs contamination after the Chernobyl accident  in the range of  2.4  to 33 kBq/m2. It is just 4-18 times higher than the global fallout which was equal to 1,75 kBq/m2 in 1986.

The purpose of  the research was to obtain estimates of the transformation of initial 137Cs patterns as influenced by different landscape factors (DEM attributes) with a grid resolution of 100, 50 and 25 m. Different kinds of DEM  curvatures calculations  may be done by using SAGA, Whitebox GAT and Grass for each grid size model.

In the case under study two informational layers were made use of  to evaluate processes of 137Cs redistribution in the River Kostica basin. These are: 1) SRTM  layer with a resolution of 90 m  and  2) the data of air-gamma survey with a resolution of 100 m.  The total watershed area of the Kostica River occupies 225 km2. SRTM data were resampled in a coordinates and georeference system of AG (air-gamma survey was represented in the Gauss-Kruger coordinate system) lay  with a resolution of 100 m.

The results of the air gamma survey conducted in the summer of 1993, give clear evidence that the processes of 137Cs lateral migration took place due to nearly a fourfold increase of 137Cs in the lower slope as compared to the surface of the watershed during a seven-year period after the Chernobyl accident.

We examine the effect of grid size of the  digital elevation model (DEM) on the erosion simulations. For resampled grid data with a resolution  of 50 and 25 m  we apply SAGA-GIS Module “Resampling” and compare the results with those of  the original method of simplicity versus fitting (SvF).  The method SvF is devoted to finding a compromise between simplicity of the model and precision of replication of experimental data. The integral in the range of squared second derivatives was used as a measure of simplicity, with usual standard deviation being applied as a measure for replication of experimental data.

The study is based on the concept of sediment and hydrological connectivity. We apply GIS-based models considering lateral soil migration to analyze sediment cascade systems. Soil erosion was evaluated based on an analysis of Cs-137 migration determined using the LS factor implemented by GRASS GIS.

The reported study was funded by RFBR according to the research project № 20-07-00701A 

How to cite: Linnik, V., Sokolov, A., Ivanitsky, O., and Saveliev, A.: Modelling the extent of Cs-137 soil contamination patterns at the Kostica River basin (Bryansk Region, Russia), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10173, https://doi.org/10.5194/egusphere-egu2020-10173, 2020.

EGU2020-10552 | Displays | SSS10.1

Soil Organic Carbon Prediction at National Scale (Germany)

Ali Sakhaee, Anika Gebauer, Mareike Ließ, and Axel Don

Soil Organic Carbon (SOC) plays a crucial role in agricultural ecosystems. However, its abundance is spatially variable at different scales. In recent years, machine learning (ML) algorithms have become an important tool in the spatial prediction of SOC at regional to continental scales. Particularly in agricultural landscapes, the prediction of SOC is a challenging task.

In this study, our aim is to evaluate the capability of two ML algorithms (Random Forest and Boosted Regression Trees) for topsoil (0 to 30 cm) SOC prediction in soils under agricultural use at national scale for Germany. In order to build the models, 50 environmental covariates representing topography, climate factors, land use as well as soil properties were selected. The SOC data we used was from the German Agricultural Soil inventory (2947 sampling points). A nested 5-fold cross-validation was used for model tuning and evaluation. Hyperparameter tuning for both ML algorithms was done by differential evolution optimization. 

This approach allows exploring an extensive set of field data in combination with state of the art pedometric tools. With a strict validation scheme, the geospatial-model performance was assessed. Current results indicate that the spatial SOC variation is to a minor extent predictable with the considered covariate data (<30% explained variance). This may partly be explained by a non-steady state of SOC content in agricultural soils with environmental drivers. We discuss the challenges of geo-spatial modelling and the value of ML algorithms in pedometrics.

How to cite: Sakhaee, A., Gebauer, A., Ließ, M., and Don, A.: Soil Organic Carbon Prediction at National Scale (Germany), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10552, https://doi.org/10.5194/egusphere-egu2020-10552, 2020.

Satellite multi-spectral remote sensing has been used extensively in mapping the nature and characteristics of the terrestrial land surface including vegetation, rock, soil and landforms across global through to local scales. However, with the exception of hyper-arid regions mapping rock and soil from space has been problematic due to vegetation that either masks the underlying substrate or confuses the spectral signatures of geological materials (i.e. diagnostic mineral spectral features) making them difficult to resolve. A barest earth multi-spectral algorithm operating on time series satellite archives can now significantly reduce the influence of vegetation and provide enhanced mapping of soil and exposed rock from space.

 

The methodology firstly applies a high-dimensional statistic called a ‘weighted geometric median’ which is robust to outliers or contamination (such as cloud cover, shadows, detector saturation, and pixel corruption) by removing sub-populations in the data. The weighted geometric median also maintains the relationship between all the spectral wavelengths which is important for the later implementation of image enhancement techniques based on the spectral signatures of minerals. The second component of the methodology applies a weighting scheme that preferences the bareness of pixels from those pixels that exhibit a vegetation influence.  After considerable experimentation a single model weighting scheme using a loss function that minimises NDVI was found to be the most robust for application at the continent scale. Customised calibration and weighting schemes can also be developed for local study areas. The result of this process for a given time series is an estimation of the barest state relating to either soil or exposed rock. The approach does not require local calibration and can be applied to other satellite archives globally.

 

We have applied the barest earth algorithm on Landsat and Sentinel-2 multispectral datasets to develop a suite of enhanced image products over the Australian continent to support digital soil mapping, geochemical modelling and mineral exploration. Image enhancements include individual band composites, ratio bands and selected principal component analysis. These enhanced mineral products provide new and improved inputs for machine learning and more broadly geo-spatial modelling/mapping.  The bare earth products significantly reduce the effects of fire scars in semi-arid areas of the continent and seasonal variations in vegetation cover that to-date have limited the use of satellite remote sensing in mapping soils in agricultural landscapes. The bare earth algorithm can be applied across different time intervals (e.g. annually, deeper time since mid-1980’s) and has the potential to establish environmental baselines for understanding and responding to food security, climate change, environmental degradation, water scarcity, and threatened biodiversity.

How to cite: Wilford, J. and Roberts, D.: Bare Earth – enhanced multi-spectral satellite imagery for mapping soil and exposed rock., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12371, https://doi.org/10.5194/egusphere-egu2020-12371, 2020.

EGU2020-13549 | Displays | SSS10.1

A multi-dimensional Sentinel-based Soil Monitoring Scheme (S2MoS) for soil clay content estimation

Nikolaos Tziolas, Nikolaos Tsakiridis, Eyal Ben Dor, John Theocharis, and George Zalidis

Earth Observation (EO) has an immense potential as an enabling tool for mapping the spatial variation of the topsoil layer. Additionally, machine learning based algorithms deployed on cloud computing infrastructures have a great potential to revolutionize the processing of EO data. This paper aims to present a multi-dimensional Sentinel-based Soil Monitoring Scheme (S2MoS) based on open-access Copernicus Sentinel data and the Google Earth Engine platform to map soil properties. Building on key results from existing data mining approaches to extract bare soil reflectance values the current study presents i) preliminary insights on the synergistic use of open access SAR and optical images obtained from Sentinel-1 and Sentinel-2 sensors; and ii) evaluate the efficiency of machine learning algorithms to predict soil attributes based on multi-temporal analysis. In that regard, this study evaluated, based on Sentinel images extending over a 3 years period (2017-2019), the performance of two state of the art machine learning approaches, namely random forest and neural networks. Spatial thresholds values of 0.25 and 0.075 for Normalized Difference Vegetation Index and Normalized Burn Ratio 2 indices respectively were applied to mask bare soil pixels. In this study, we used 5000 soil data belonging to cropland land use from the European LUCAS topsoil database. We calibrated the models based on 4000 soil samples and then validated this approach with the rest 1000 samples  predict soil clay content. A higher prediction performance (R2=0.53) was achieved by the inclusion of both types (SAR and optical) of observations using the neural network model, demonstrating an improvement of about 5% in overall accuracy compared to the R2 using the multi-year median optical composite.

How to cite: Tziolas, N., Tsakiridis, N., Ben Dor, E., Theocharis, J., and Zalidis, G.: A multi-dimensional Sentinel-based Soil Monitoring Scheme (S2MoS) for soil clay content estimation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13549, https://doi.org/10.5194/egusphere-egu2020-13549, 2020.

EGU2020-14589 | Displays | SSS10.1

Influence of bare rock on remote sensing information extraction of Antarctic Emperor penguin habitats

Miao Zhang, Xintong Chen, and Xianglan Li

EGU2020-17487 | Displays | SSS10.1

Harmonizing, merging and publishing hydropedological data for the Czech Republic

Luděk Strouhal, Petr Kavka, Hana Beitlerová, and Daniel Žížala

Czech soil data is a mess. Modelling infiltration, or its probably most watched companion - runoff, has been quite a painful process for any researcher or practitioner studying any site larger or more heterogeneous than a few parcels of arable land. There are at least three main national soil databases in the Czech Republic, each of different age, scope, classification system and - most unfortunately - different administrator. So far Research Institute for Soil and Water Conservation has taken good care of data for agricultural land, while The Forest Management Institute did his job considering forest soils. A few other research institutes manage their own specific databases. There has been no service available providing consistent data for the whole country, nor methodology giving some guidelines on how to cope with differences in existing datasets, though a few large-scale applications and studies do exist. This contribution presents preliminary results of a running project TJ02000234 - Physical and hydropedological soil properties of the Czech Republic. It aims at harmonizing and combining available datasets and deriving layers of soil texture and hydropedological properties. Next the project aims at gathering available measurements of hydraulic properties of Czech soil types and their partial validation and extending with field measurements in the scope limited by the 2-years of project duration. The derived database and data products will be published in the form of a certified map as well as offered to professionals through an online GIS portal. Design planners in the Land consolidation, flood and soil erosion mitigation projects as well as professionals in public administration and researchers in environmental disciplines will benefit from the publication of this consistent data.

How to cite: Strouhal, L., Kavka, P., Beitlerová, H., and Žížala, D.: Harmonizing, merging and publishing hydropedological data for the Czech Republic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17487, https://doi.org/10.5194/egusphere-egu2020-17487, 2020.

The minimum set of indicators recommended for tracking progress towards LDN against a baseline are: land cover, land productivity and carbon stocks above and below ground. While land cover and its change can be and actually is operatively monitored by Earth Observation in a relatively straightforward manner, spatio-temporal assessment of the two other, soil related indicators poses challenges.

Soil organic carbon (SOC) stock in Hungary was first mapped in the frame of Global Soil Organic Carbon Map initiative. The Hungarian Soil Information and Monitoring System was used to create the GSOC product with quantile regression forest, which made the assessment of local uncertainty possible.  The map was produced with 500 meter spatial resolution and aggregated for the predefined 1 km grid. Since it used data collected in the first field campaign, in 1994, consequently its estimates represent that year’s state.

In 2018 a national report was expected by UNCCD on LDN firstly quantifying trends in carbon stocks above and below the ground. Based on global databases (ESA Climate Change Initiative Land Cover Dataset, SoilGrids250) default values were assigned to countries, which were asked about its acceptance or providing more accurate estimations based on national datasets. Similarly to the global initiative, SOC change estimation was not based on soil reference data dating from two distinct dates, but on the only available spatial prediction and changes of SOC were exclusively attributed to changes in land cover. Corine Land Cover Change maps were used to derive the GSOC estimations for the base year (2000) as well as for the target year (2012) from the original SOC map (representing 1994) according to Trends.Earth tool guidelines. SOC change between 2000 and 2012 was estimated by the difference of the two predictions.

In the next step, the SOM measurements on the samples collected in 2010 in the frame of Hungarian Soil Information and Monitoring System became available to map soil organic carbon stock in the topsoils (0-30 cm) of Hungary for the year 2010. New modelling was carried out based on the experiences of GSOC estimations, the map was produced with 100 m resolution using quantile regression forest for both years. 10-fold cross-validation was used for checking the accuracy of the spatial predictions and uncertainty quantifications. The performance of the spatial predictions and uncertainty quantifications was appropriate, which was verified by the computed biases, the root mean square errors, accuracy plots and the G statistics. Based on the compiled SOC stock maps, we assessed the spatial and temporal changes of SOC stocks on the whole area of Hungary except artificial surfaces and water bodies. The total SOC stock in the topsoil increased by 27.18 Tg over the respective period. We compared our estimate with others provided by global and continental SOC stock inventories. The comparison pointed out that a SOC stock map compiled by a given country can provide more accurate estimates at national level. We recommend applying the SOC stock map of 1992 as baseline to track and assess SOC stock change in Hungary.

How to cite: Pásztor, L., Laborczi, A., and Szatmári, G.: Spatio-temporal modelling of soil organic carbon stock for the support of national level assessment of land degradation neutrality in Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17642, https://doi.org/10.5194/egusphere-egu2020-17642, 2020.

EGU2020-18480 | Displays | SSS10.1

Creation of detailed soil properties maps of the Czech Republic based on national legacy data and digital soil mapping

Robert Minařík, Daniel Žížala, and Anna Juřicová

Legacy soil data arising from traditional soil surveys are an important resource for digital soil mapping. In the Czech Republic, a large-scale (1:10 000) mapping of agricultural land was completed in 1970 after a decade of field investigation mapping. It represents a worldwide unique database of soil samples by its national extent and detail. This study aimed to create a detailed map of soil properties (organic carbon, ph, texture, soil unit) by using state-of-the-art digital soil mapping (DSM) methods. For this purpose we chose four geomorphologically different areas (2440 km2 in total). A selected ensemble machine learning techniques based on bagging, boosting and stacking with random hyperparameters tuning were used to model each soil property. In addition to soil sample data, a DEM and its derivatives were used as common covariate layers. The models were evaluated using both internal repeated cross-validation and external validation. The best model was used for prediction of soil properties. The accuracy of prediction models is comparable with other studies. The resulting maps were also compared with the available original soil maps of the Czech Republic. The new maps reveal more spatial detail and natural variability of soil properties resulting from the use of DEM. This combination of high detailed legacy data with DSM results in the production of more spatially detailed and accurate maps, which may be particularly beneficial in supporting the decision-making of stakeholders.

The research has been supported by the project no. QK1820389 " Production of actual detailed maps of soil properties in the Czech Republic based on database of Large-scale Mapping of Agricultural Soils in Czechoslovakia and application of digital soil mapping" funding by Ministry of Agriculture of the Czech Republic.

How to cite: Minařík, R., Žížala, D., and Juřicová, A.: Creation of detailed soil properties maps of the Czech Republic based on national legacy data and digital soil mapping, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18480, https://doi.org/10.5194/egusphere-egu2020-18480, 2020.

Previous studies have shown that remote sensing data can be very useful input into soil prediction models. This input usually represents reflectance from bare soils, which, however, make up only a small part of the total area in a given part of the year. For eliminating masking effect of vegetation time series of individual images (Žížala et al. 2019; Shabou et al. 2015; Demattê et al. 2016; Blasch et al. 2015a) or multitemporal composites of spectral data can be used. Exposed Soil Composite Mapping Processor (SCMaP) (Rogge et al. 2018), Geospatial Soil Sensing System (GEOS3) (Demattê et al. 2018), Bare Soil Composite Image (Gallo et al. 2018), and Barest Pixel Composite for Agricultural Areas (Diek et al. 2017), all developed from Landsat time series, multitemporal bare soil image developed from RapidEye time series (Blasch et al. 2015b), or bare soil mosaic (Loiseau et al. 2019) derived from Sentinel-2 data can serve as examples of such composites. However, only some of the composite products have been used yet to predict soil properties. Promising results were achieved; however, the potential of these spectral composites has not yet been tested in a relevant number of studies. Further research is needed for its evaluation.

Aims of this study are to analyze and to compare the prediction ability of models using different types of multitemporal bare soil composites derived from Sentinel-2 images and their applicability for mapping soil properties in large areas. The study was conducted on a regional scale in the soil heterogeneous region of central Czechia with dissected relief and variable soil properties, where data from 100 soil profiles with soil analytics were available. Sentinel-2 images from 2016-2019 were used for composite formation in the python numpy environment. Different methods of cloud masking, bare soil identification and data aggregation (both already used in previous studies and newly derived) have been tested to compare which is the most suitable for prediction of soil properties. The principles of digital soil mapping and machine learning algorithms (random forest and support vector machine multivariate methods) were used for prediction.

Results reveal that Sentinel-2 multitemporal bare soil composites can be successfully applied in the prediction of soil properties. The setting of basic parameters of composite creation is very complex and challenging and it requires to use exact algorithms for masking clouds and bare soil. Soil moisture and surface roughness also greatly affect spectral characteristics of bare soil and thus a very important aspect of compositing is finding appropriate statistics to derive final pixel values of reflectance (minimum, mean, median, ...). One possible way to minimize the effect of moisture and surface roughness may be incorporation radar backscatter information from Sentinel-1. However, it further complicates the processing of data and makes the composite creation more complex.

The research has been supported by the project no. QK1820389 " Production of actual detailed maps of soil properties in the Czech Republic based on database of Large-scale Mapping of Agricultural Soils in Czechoslovakia and application of digital soil mapping" funding by Ministry of Agriculture.

How to cite: Zizala, D.: Sentinel-2 Multitemporal Bare Soil Composites for predicting soil properties using machine learning methods, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18564, https://doi.org/10.5194/egusphere-egu2020-18564, 2020.

EGU2020-22026 | Displays | SSS10.1

Predicting the spatial distribution of C stock in Swedish boreal forest using remotely sensed and site-specific variables

Ozias Hounkpatin, Johan Stendahl, Mattias Lundblad, and Erik Karltun

The status of the Cstock at any position in the landscape is subject to a complex interplay of soil-state factors operating at different scale and regulating conflicting processes resulting either in soils acting as sink or source of carbon.  Since spatial variability is characteristic of large landscape, key drivers of C stock might be specific for subareas compared to those influencing the whole landscape. Consequently, calibrating separately models for subareas (local models) that collectively cover a target area can result in different prediction accuracy and Cstock drivers compared to a single model (global model) that covers the whole area. The goal of this study was therefore to (1) assess how global and local models differ in predicting the litter, mineral soil and total Cstock in Sweden boreal forest, (2) identify  the key variables  in  forest  Cstock prediction and their scale of influence. We here use the Swedish National Forest Soil Inventory (NFSI) database and the digital soil mapping approach to evaluate the prediction performance of the random forest  that is calibrated locally for the northern (N-SE), central (C-SE) and southern (S-SE) Sweden and for the whole Sweden (global model). Models were built by considering (1) only site characteristics which are direct record on plot during NFSI, (2) remotely sensed variables and (3) both site characteristics and remotely sensed variables. Local models are generally more effective for predicting Cstock after testing on independent validation data. Using remotely sensed variables with soil inventory indicates that such covariates have limited predictive strength but that site specific covariates show better explanatory strength for C stocks. The latter also were the main drivers for Cstock both locally and globally. Investment could focus in mapping these influential site covariates which have potential for future Cstock prediction  models.

 

How to cite: Hounkpatin, O., Stendahl, J., Lundblad, M., and Karltun, E.: Predicting the spatial distribution of C stock in Swedish boreal forest using remotely sensed and site-specific variables , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22026, https://doi.org/10.5194/egusphere-egu2020-22026, 2020.

EGU2020-4904 | Displays | SSS10.1

Covariates selection assessment for field scale digital soil mapping in the context of precision fertilization management

Nada Mzid, Stefano Pignatti, Irina Veretelnikova, and Raffaele Casa

The application of digital soil mapping in precision agriculture is extremely important, since an assessment of the spatial variability of soil properties within cultivated fields is essential in order to optimize agronomic practices such as fertilization, sowing, irrigation and tillage. In this context, it is necessary to develop methods which rely on information that can be obtained rapidly and at low cost. In the present work, an assessment is carried out of what are the most useful covariates to include in the digital soil mapping of field-scale properties of agronomic interest such as texture (clay, sand, silt), soil organic matter and pH in different farms of the Umbria Region in Central Italy. In each farm a proximal sensing-based mapping of the apparent soil electrical resistivity was carried out using the EMAS (Electro-Magnetic Agro Scanner) sensor. Soil sampling and subsequent analysis in the laboratory were carried out in each field. Different covariates were then used in the development of digital soil maps: apparent resistivity, high resolution Digital Elevation Model (DEM) from Lidar data, and bare soil and/or vegetation indices derived from Sentinel-2 images of the experimental fields. The approach followed two steps: (i) estimation of the variables using a Multiple Linear Regression (MLR) model, (ii) spatial interpolation via prediction models (including regression kriging and block kriging). The validity of the digital soil maps results was assessed both in terms of the accuracy in the estimation of soil properties and in terms of their impact on the fertilization prescription maps for nitrogen (N), phosphorus (P) and potassium (K).

How to cite: Mzid, N., Pignatti, S., Veretelnikova, I., and Casa, R.: Covariates selection assessment for field scale digital soil mapping in the context of precision fertilization management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4904, https://doi.org/10.5194/egusphere-egu2020-4904, 2020.

EGU2020-13202 | Displays | SSS10.1

Digital soil mapping of organic carbon and it’s spatial distribution uncertainty in field scale

Yan Guo, Ting Liu, Zhou Shi, and Laigang Wang

     Soil organic carbon (SOC) is a key property that affects soil quality and the assessment of soil resources. However, the spatial distribution of SOC is very heterogeneous and existing soil maps have considerable uncertainty. Traditional polygon-based soil maps are less useful for fine-resolution soil maps modeling and monitoring because they do not adequately characterize and quantify the spatial variation of continuous soil properties. And recently, digital soil mapping of organic carbon is the main source of information to be used in natural resource assessment and soil management. In this study, we collected 100 soil samples on a 50 m grid to conduct soil maps of topsoil (0-20 cm) organic carbon in a 500×500m field and evaluate the uncertainty by spatial stochastic simulation. The map of soil organic carbon generated by inverse distance weighting interpolation indicated that the average topsoil SOC is 11.59±0.61g/kg with averaged standard deviation error is 0.61. In order to evaluate the uncertainties, numbers were defined as 50, 100, 200, 500, 1000, 5000, 10000 with interval of 2×2 m to conduct conditional simulation. The standard deviation error gradually declined from 0.74 to 0.51 g/kg. Then, the uncertainty of SOC was expressed as the range of the 95% confidence intervals of the standard deviation error. Maps of uncertainty showed fine spatial heterogeneity even the numbers of simulations reached 10000. Compared with inverse distance weighting interpolation method, conditional simulation approach can improve the fine-resolution SOC maps. For some points, the simulated values deviated from the averaged values while closed to the observed values. On the whole, the maps of uncertainty showed larger waves in the field-edge and different SOC contour border. Consideration of the sample distribution and sampling strategy, the uncertainty map provides a guide for decision-making in additional sampling.

Key words: Soil organic carbon (SOC); uncertainty assessment; conditional simulation; digital soil mapping

Acknowledgements

This material is based upon work funded by National Natural Science Foundation of China (No. 41601213), Major science and technology projects of Henan (171100110600), the Key Science and Technology Program of Henan (182102410024).

How to cite: Guo, Y., Liu, T., Shi, Z., and Wang, L.: Digital soil mapping of organic carbon and it’s spatial distribution uncertainty in field scale, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13202, https://doi.org/10.5194/egusphere-egu2020-13202, 2020.

EGU2020-20873 | Displays | SSS10.1

Digital soil mapping: the challenge to obtain the best soil dataset and create a precise environmental model to support land use management at a national level (Ecuador).

Daphne Armas, Mário Guevara, Fernando Bezares, Rodrigo Vargas, Pilar Durante, and Cecilio Oyonarte

One of the biggest challenges for digital soil mapping is the limited of field soil information (e.g., soil profile descriptions, soil sample analysis) for representing soil variability across scales. Global initiatives such as the Global Soil Partnership (GSP) and the development of a Global Soil Information System (GloSIS), World Soil Information Service (WoSis) or SoilGrids250m for global pedometric mapping highlight new opportunities but the crescent need of new and better soil datasets across the world. Soil datasets are increasingly required for the development of soil monitoring baselines, soil protection and sustainable land use strategies, and to better understand the response of soils to global environmental change.  However, soil surveys are a very challenging task due to their high acquisition costs such data and operational complexity. The use of legacy soil data can reduce these sampling efforts.

The main objective of this research was the rescue, synthesis and harmonization of legacy soil profile information collected between 2009 and 2015 for different purposes (e.g., soil or natural resources inventory) across Ecuador. This project will support the creation of a soil information system at the national scale following international standards for archiving and sharing soil information (e.g., GPS or the GlobalSoilMap.net project). This new information could be useful to increase the accuracy of current digital soil information across the country and the future development of digital soil properties maps.

We provided an integrated framework combining multiple data analytic tools (e.g., python libraries, pandas, openpyxl or pdftools) for the automatic conversion of text in paper format (e.g., pdf, jpg) legacy soil information, as much the qualitative soil description as analytical data,  to usable digital soil mapping inputs (e.g., spatial datasets) across Ecuador. For the conversion, we used text data mining techniques to automatically extract the information. We based on regular expressions using consecutive sequences algorithms of common patterns not only to search for terms, but also relationships between terms. Following this approach, we rescued information of 13.696 profiles in .pdf, .jpg format and compiled a database consisting of 10 soil-related variables.

The new database includes historical soil information that automatically converted a generic tabular database form (e.g., .csv) information.

As a result, we substantially improved the representation of soil information in Ecuador that can be used to support current soil information initiatives such as the WoSis, Batjes et al. 2019, with only 94 pedons available for Ecuador, the Latin American Soil Information System (SISLAC, http://54.229.242.119/sislac/es),  and the United Nations goals  towards increasing soil carbon sequestration areas or decreasing land desertification trends.  In our database there are almost 13.696 soil profiles at the national scale, with soil-related (e.g., depth, organic carbon, salinity, texture) with positive implications for digital soil properties mapping. 

With this work we increased opportunities for digital soil mapping across Ecuador. This contribution could be used to generate spatial indicators of land degradation at a national scale (e.g., salinity, erosion).

This dataset could support new knowledge for more accurate environmental modelling and to support land use management decisions at the national scale.

 

How to cite: Armas, D., Guevara, M., Bezares, F., Vargas, R., Durante, P., and Oyonarte, C.: Digital soil mapping: the challenge to obtain the best soil dataset and create a precise environmental model to support land use management at a national level (Ecuador). , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20873, https://doi.org/10.5194/egusphere-egu2020-20873, 2020.

SSS10.4 – Quantifying and communicating uncertain information in earth sciences

EGU2020-18769 * | Displays | SSS10.4 | Highlight

Supporting users to implement uncertainty of climate change information in adaptation studies

Gabriella Zsebeházi and Beatrix Bán

There is a growing need to develop climate services both at national and international level, to bridge the gap between the providers and the end-users of climate information. Several national climate services are aiming to serve the local users’ needs by creating web portals. Thanks to this trend, the number of available climate data (both measured and modelled) is rapidly growing and often there is not any personal contact between the users and the climate scientists via the web portals. Therefore, it is important to make this service usable and informative and train the potential users about the nature, strengths and limits of climate data.

Within the framework of a national funded project (KlimAdat), the regional climate model projections of the Hungarian Meteorological Service are extended and a representative climate database is developed. Regular workshops are organised, where we get hands-on information about the requirements and give training about climate modelling in exchange. One of the most discussed issue during the workshops is tackling with uncertainty information of climate projections in climate change adaptation studies. The future changes are quantified in probabilistic form, applying ensemble technique, i.e. several climate model simulations prepared with different global and regional climate models and anthropogenic scenarios are evaluated simultaneously.

In order to help the users orienting through the mushrooming climate projections, a user guide is prepared. Topics are e.g. how to select model simulations, how to take into account model validation results and what is the difference between signal and noise. The guideline is based on 24 simulations of the 12-km resolution Euro-CORDEX regional climate models, driven by the RCP4.5 and RCP8.5 scenarios. Two target groups are distinguished based on the required level of post-processing climate data: 1) climate impact modellers, who need large amount of raw or bias corrected data to drive their own impact model; 2) decision makers and planners, who need heavily processed but lightweight data. The purpose of our guideline is to provide insight into the customized methodologies used at the Hungarian Meteorological Service for fulfilling users’ needs.

How to cite: Zsebeházi, G. and Bán, B.: Supporting users to implement uncertainty of climate change information in adaptation studies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18769, https://doi.org/10.5194/egusphere-egu2020-18769, 2020.

EGU2020-21281 | Displays | SSS10.4

Uncertainty Quantification and Explainable Artificial Intelligence

Maria Moreno de Castro

The presence of automated decision making continuously increases in today's society. Algorithms based in machine and deep learning decide how much we pay for insurance,  translate our thoughts to speech, and shape our consumption of goods (via e-marketing) and knowledge (via search engines). Machine and deep learning models are ubiquitous in science too, in particular, many promising examples are being developed to prove their feasibility for earth sciences applications, like finding temporal trends or spatial patterns in data or improving parameterization schemes for climate simulations. 

However, most machine and deep learning applications aim to optimise performance metrics (for instance, accuracy, which stands for the times the model prediction was right), which are rarely good indicators of trust (i.e., why these predictions were right?). In fact, with the increase of data volume and model complexity, machine learning and deep learning  predictions can be very accurate but also prone to rely on spurious correlations, encode and magnify bias, and draw conclusions that do not incorporate the underlying dynamics governing the system. Because of that, the uncertainty of the predictions and our confidence in the model are difficult to estimate and the relation between inputs and outputs becomes hard to interpret. 

Since it is challenging to shift a community from “black” to “glass” boxes, it is more useful to implement Explainable Artificial Intelligence (XAI) techniques right at the beginning of the machine learning and deep learning adoption rather than trying to fix fundamental problems later. The good news is that most of the popular XAI techniques basically are sensitivity analyses because they consist of a systematic perturbation of some model components in order to observe how it affects the model predictions. The techniques comprise random sampling, Monte-Carlo simulations, and ensemble runs, which are common methods in geosciences. Moreover, many XAI techniques are reusable because they are model-agnostic and must be applied after the model has been fitted. In addition, interpretability provides robust arguments when communicating machine and deep learning predictions to scientists and decision-makers.

In order to assist not only the practitioners but also the end-users in the evaluation of  machine and deep learning results, we will explain the intuition behind some popular techniques of XAI and aleatory and epistemic Uncertainty Quantification: (1) the Permutation Importance and Gaussian processes on the inputs (i.e., the perturbation of the model inputs), (2) the Monte-Carlo Dropout, Deep ensembles, Quantile Regression, and Gaussian processes on the weights (i.e, the perturbation of the model architecture), (3) the Conformal Predictors (useful to estimate the confidence interval on the outputs), and (4) the Layerwise Relevance Propagation (LRP), Shapley values, and Local Interpretable Model-Agnostic Explanations (LIME) (designed to visualize how each feature in the data affected a particular prediction). We will also introduce some best-practises, like the detection of anomalies in the training data before the training, the implementation of fallbacks when the prediction is not reliable, and physics-guided learning by including constraints in the loss function to avoid physical inconsistencies, like the violation of conservation laws. 

How to cite: Moreno de Castro, M.: Uncertainty Quantification and Explainable Artificial Intelligence, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21281, https://doi.org/10.5194/egusphere-egu2020-21281, 2020.

EGU2020-6902 | Displays | SSS10.4

Soil Quality and Health – can it be quantified?

Kirsty Hassall, Joanna Zawadzka, Alice Milne, Gordon Dailey, Jim Harris, Ron Corstanje, and Andrew Whitmore

Soil quality and health (SQH) are terms used extensively to characterise soils. However, the exact definitions of quality and health are often qualitative with differing meanings to different stakeholders. Collecting and combining these differing viewpoints is a non-trivial task. In this work, we will discuss how we have used the Bayes Net framework to define a hierarchical structure that enables a subjective concept such as soil quality and health to be quantified from multiple sources of information including diverse sources of expert knowledge and linking this through to national databases.

Information within a Bayes Net is encapsulated through a set of conditional probability tables that describe the conditional dependencies of all variables of interest. It is well known that humans are particularly poor at estimating such probabilities which, when a Bayes Net relies upon experts from differing disciplines and stakeholders from disparate application areas to quantify their beliefs through these conditional probability tables, is often a major limitation to these techniques. Here, we demonstrate an elicitation web app that mitigates some of the difficulties associated with quantifying subjective opinion. Moreover, we show how an inference network of known associations aids in the extraction of information from increasingly subjective sources within the hierarchical framework.

How to cite: Hassall, K., Zawadzka, J., Milne, A., Dailey, G., Harris, J., Corstanje, R., and Whitmore, A.: Soil Quality and Health – can it be quantified?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6902, https://doi.org/10.5194/egusphere-egu2020-6902, 2020.

Digital soil mapping (DSM) aims to provide spatial soil information for a wide range of studies (e.g. agro-environmental management, nature conservation, rural development, water and food security etc.). For this purpose, advanced statistical methods are in use for inferring the spatial variations of soil. Nowadays, there is a heap of evidences that researchers and stakeholders are not just interested in the maps of soil properties, functions and/or services but in their uncertainties as well. This is indispensable to support decision making process. In DSM various uncertainty quantification methods are in use, however, only a few studies have addressed the issue of comparing them. In this study, we compared the suitability of several commonly applied digital soil mapping methods to quantify uncertainty with regard to a survey of soil organic carbon stock in Hungary. To fairly represent the wide range of DSM methods, the followings were selected: universal kriging (UK), sequential Gaussian simulation (SGS), random forest plus kriging (RFK) and quantile regression forest (QRF). For RFK two uncertainty quantification methods were adopted based on kriging variance (RFK-1) and bootstrapping (RFK-2). We used a control dataset consisting of 200 independent SOC stock observations for validating not just the spatial predictions but their uncertainty quantifications as well. For validating the uncertainty quantifications we applied accuracy plots (a.k.a. prediction interval coverage probability plots) and a modified version of G-statistics. According to our results, QRF and SGS provided the best quantifications of uncertainty. UK and RFK-2 overestimated whereas RFK-1 underestimated the uncertainty. Based on our results we could draw a conclusion that there is a need to validate the uncertainty quantifications before using them for decision making. Furthermore, special attention should be paid to the assumptions made in uncertainty quantification.

 

Acknowledgment: Our research was supported by the Hungarian National Research, Development and Innovation Office (NRDI; Grant No: KH126725) and the Premium Postdoctoral Scholarship of the Hungarian Academy of Sciences (PREMIUM-2019-390) (Gábor Szatmári).

How to cite: Szatmári, G. and Pásztor, L.: Comparison of uncertainty quantification methods on the example of soil organic carbon stock mapping in Hungary, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7095, https://doi.org/10.5194/egusphere-egu2020-7095, 2020.

EGU2020-18713 | Displays | SSS10.4

Quantifying the uncertainty in the prediction of soil properties from soil-spectra using local and regional spectral libraries

Timo Breure, Alice Milne, Richard Webster, Stephan M. Haefele, Jacqueline A. Hannam, and Ronald Corstanje

Spectral measurements are increasingly used to predict soil properties. Libraries of soil spectra are built and statistical models are used to relate the spectra to wet chemistry measurements. These relationships can then be used to predict the properties of new samples. An important  consideration is the uncertainty associated with the prediction. Often to reduce this error calibration is done at field level. This is time and resource intensive, however, and there is scope to use existing spectral libraries. Our aim was to quantify the uncertainty in the prediction of soil properties from spectral measurements using a local library and compare this to predictions made using a regional library.   

To investigate this, we considered two case study fields in the Cambridgeshire fens (UK) that were planted with lettuce. These fields contain complex soils which are a combination of peat with underlying alluvial and marine silts that became elevated features in the landscape due to peat oxidation and shrinkage. These elevated features are captured by a 2 m x 2 m LiDAR raster used in our study (UK Environment Agency). We took a total 467 soil samples across the fields and made spectral measurements (near- and mid-infrared). A subset of the soil samples underwent wet chemistry analysis for available pH, P, K, total N and soil particle size fraction. For the regional library we use soil the National Soil Inventory spectral database and its respective wet chemistry reference values.

We used partial least squares to regress the soil spectra for the local and regional spectral libraries against the wet chemistry reference values. These two models were then used to predict the soil properties for both fields. We then mapped the variation in each soil property and the associated uncertainty by kriging.  The variation in some of the soil variables was clearly affected by elevation and there were signs of spatial trend and so we used universal kriging to map the soil properties. To reduce bias, we used residual maximum likelihood estimation (REML) to estimate the variogram by fitting a linear mixed model with the trend accounted for as fixed effects.  We compared these different maps to assess how the calibration regression from local and regional spectral libraries translates itself in uncertainty of kriged maps for five different soil properties within each field.

 

How to cite: Breure, T., Milne, A., Webster, R., Haefele, S. M., Hannam, J. A., and Corstanje, R.: Quantifying the uncertainty in the prediction of soil properties from soil-spectra using local and regional spectral libraries, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18713, https://doi.org/10.5194/egusphere-egu2020-18713, 2020.

EGU2020-22569 | Displays | SSS10.4

Development of a Swiss National Soil Spectral Model Library using data-driven modeling

Philipp Baumann, Anatol Helfenstein, Andreas Gubler, Reto Meuli, Armin Keller, Juhwan Lee, Raphael A. Viscarra Rossel, and Johan Six

Soil data at different scales are needed for assessments and monitoring of soil functions. Soil diffuse reflectance spectroscopy using visible–Near Infrared and mid-Infrared energies can be used to estimate a range of soil properties, rapidly and inexpensively. However the spectroscopic modeling is challenging because of the large soil diversity and its complex composition. We developed a National Soil Spectral library (SSL) (n = 4339) using samples from (i) the Swiss Soil Monitoring Network (NABO; 7 sampling campaigns at 71 agricultural locations since 1985, n = 592) and (ii) the National Biodiversity Monitoring (BDM) Program (n = 4295, 1094 locations across a 5x5 km grid). The SSL will provide spectroscopic models for estimation of functional soil properties at different scales (e.g. total carbon (C) and nitrogen, organic C, texture, pH and cation exchange capacity). We used a rule-based algorithm, Cubist, for the modelling. The models were tuned across full combinations of {5, 10, 20, 50, 100} committees and {2, 5, 7, 9} neighbors, using 5 times repeated 10-fold cross-validation grouped by location. Further, transfer learning with RS-LOCAL tuning was performed for each of the 71 monitoring sites separately by a hold out approach in order to select optimal instances from the remaining SSL. Total soil C in the reference data ranged from 0.1% to 58.3% C and the best Cubist model had a cross-validated RMSE of 0.82% C. The RS-LOCAL approach (RMSEmean = 0.14 %) was on average 2.5 times more accurate for the estimation of C over time at each of the 71 NABO sites compared to the general Cubist approach. Our results suggest that data-driven selection of SSL instances targeted to closely related soils produces less biased estimation of soil properties over time at smaller geographic extents. The general Cubist calibration models are useful when reference analyses in a new study area are scarce. In conclusion, the Swiss SSL models can be used to cost-efficiently estimate a range of soil properties for a diverse applications and purposes in Switzerland.

How to cite: Baumann, P., Helfenstein, A., Gubler, A., Meuli, R., Keller, A., Lee, J., A. Viscarra Rossel, R., and Six, J.: Development of a Swiss National Soil Spectral Model Library using data-driven modeling, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22569, https://doi.org/10.5194/egusphere-egu2020-22569, 2020.

EGU2020-9154 | Displays | SSS10.4

Bayesian uncertainty quantification of spatio-temporal trends in soil organic carbon using INLA and SPDE

Nicolas P.A. Saby, Thomas Opitz, Bifeng Hu, Blandine Lemercier, and Hocine Bourennane

The assumption of spatial and temporal stationarity does not hold for many ecological and environmental processes. This is particularly the case for many soil processes like carbon sequestration, often driven by factors such as biological dynamics, climate change and anthropogenic influences. For better understanding and predicting such phenomena, we develop a Bayesian inference framework that combines the integrated nested Laplace approximation (INLA) with the stochastic partial differential equation approach (SPDE). We put focus on modeling complex temporal trends varying through space with an accurate assessment of uncertainties, and on spatio-temporal mapping of processes that are only partially observed.

We model observed data through a latent (i.e., unobserved) smooth process whose additive components are endowed with Gaussian process priors. We use the SPDE approach to implement flexible sparse-matrix approximations of the Matérn covariance for spatial fields. The separate specification of the spatially varying linear trend allows us to conduct component-specific statistical inferences (range and variance estimates, standard errors, confidence bounds), and to provide maps to stakeholders for time-invariant spatial patterns, spatial patterns in slopes of time trends, and the associated uncertainties. For observed data following a Gaussian distribution, we add independent measurement errors, but more general response distributions of the data can be implemented. We also include in our model covariate information on parent material, climate and seasonality.

The INLA method and its implementation in the R-INLA library provide a rich toolbox for statistical space-time modelling while sidestepping typical convergence problems arising with simulation-based techniques using Markov Chain Monte–Carlo codes for large and complex hierarchical models such as ours. Uncertainties arising in model parameters and in pointwise spatio-temporal predictions are naturally captured in the posterior distributions computed through INLA using appropriate approximation techniques, and we can communicate on them through maps of various properties. Moreover, INLA also allows for direct simulation from the estimated posterior model, such that we can conduct statistical inferences on more complex functionals of the multivariate predictive distributions by analogy with MCMC frameworks.

Soil organic carbon is a major compartment of the global carbon cycle and small variations of its level can largely impact atmospheric CO2 concentrations. In the context of global climate change, it is important to be able to quantify and explain spatial and temporal variability of SOC in order to forecast future changes. In this work, we used this approach to study possible trends in space and time of soil carbon stock of three agricultural fields in France. Fitted models reveal significant temporal trends with strong spatial heterogeneity. The Matérn model and SPDE approach provide a flexible framework with respect to field design.

How to cite: P.A. Saby, N., Opitz, T., Hu, B., Lemercier, B., and Bourennane, H.: Bayesian uncertainty quantification of spatio-temporal trends in soil organic carbon using INLA and SPDE, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9154, https://doi.org/10.5194/egusphere-egu2020-9154, 2020.

EGU2020-14373 | Displays | SSS10.4

Testing the first-order SOC decay hypothesis over multiple sites through Bayesian uncertainty representation

Lorenzo Menichetti, Göran Ågren, PIerre Barré, Fernando Moyano, and Thomas Kätterer

The conventional soil organic matter (SOM) decay paradigm considers SOM quality as the dominant decay limitation, and it is modelled with simple first-order decay kinetics. This view and modelling approach is criticized for being too simplistic and unreliable for predictive purposes. It is still under debate if first-order models can correctly capture the variability in temporal SOM decay observed between different environments. The hypothesis needs to be tested statistically, but this implies the use of a dynamic model with multiple degrees of freedom to describe the observations. Since we want to test the general validity of the SOC decay theory the test must also include multiple sites, and rises the problem of how to describe the unavoidable local variability. This defines a multivariate space where the hypothesis must be tested which, considering also the known problem of an equifinality “by design” in biogeochemical models, generate difficulties.

To address this issue, we calibrated a first-order model (Q) on six long-term bare fallow field experiments across Europe within a Bayesian framework assuming some general and some local parameters. Following conventional SOM decay theory, we assumed that parameters directly describing SOC decay (rate of SOM quality change and decomposer metabolism) are thermodynamically constrained, therefore valid for all sites. Initial litter input quality and edaphic interactions (both local by definition) and microbial efficiency (possibly affected by nutrient stoichiometry) were instead assumed to be site-specific. Initial litter input quality explained most observed kinetics variability, and the model predicted a convergence toward a common kinetics over time, while site-specific variables played no detectable role. All these characteristics could be represented with posterior probability distributions and their comparison provided the hypothesis testing.

According to our analysis the decay of decades-old SOM seemed mostly influenced by OM chemistry and was well described by first order kinetics and a single set of general kinetics parameters.

How to cite: Menichetti, L., Ågren, G., Barré, P., Moyano, F., and Kätterer, T.: Testing the first-order SOC decay hypothesis over multiple sites through Bayesian uncertainty representation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14373, https://doi.org/10.5194/egusphere-egu2020-14373, 2020.

EGU2020-2833 | Displays | SSS10.4

A unified diagnostic platform to quantify the source of uncertainty in modelling global SOC dynamics

Cuijuan Liao, Yizhao Chen, Yuanyuan Huang, Xingjie Lu, Xiaomeng Huang, Yishuang Liang, and Yiqi Luo

As the largest carbon reservoir in biosphere, soil organic carbon (SOC) has been extensively studied. However, the large uncertainty of modeling SOC  impedes the accurate prediction of global carbon dynamics in response to climate change. Thus, evaluating and tracing the sources of large uncertainty in predicting SOC dynamics by Earth system models are the urgently needed to improve our understanding and predicting capability. Although great efforts have been made to predict land C storage using multiple models, disentangle uncertainty sources among models are still extremely difficult. To take this challenge, we developed a Matrix-based ensemble Model Inter-comparison Platform (MeMIP). MeMIP is an integrated platform to quantify the various sources of uncertainty under a unified framework. MeMIP is embedded a new community-based ESM, Community Integrated Earth System Model (CIESM) and implemented in the super-computing cluster in Wuxi, China. Within the MeMIP, multiple SOC decomposition schemes from different land models (e.g. CLM-CENTURY, CLM-BGC, LPJ-GUESS, JULES and CABLE) have been re -constructed in a unified matrix model format. With the unified format of matrix model, the inter-model differences can be quantitatively attributed to the sources by using the traceability analysis. In this study, we analyzed how SOC decomposition schemes and the vertical resolved SOC exchange structure (VR structure) influences SOC prediction with the three-dimension parameter output (NPP, residence time and carbon storage potential) space. The results indicate that model with the VR structure result in significantly higher SOC predictions and introduced higher uncertainty than single layer models. It is mainly due to increased residence time, which is also very sensitive to future warming. The identified major uncertain components are targets for improvement via data assimilation. Overall, MeMIP provides a modeling platform that not only unifies all land carbon cycle models in the matrix form but also offers traceability analysis to identify sources of uncertainty and data assimilation to constrain multiple model ensemble prediction.

How to cite: Liao, C., Chen, Y., Huang, Y., Lu, X., Huang, X., Liang, Y., and Luo, Y.: A unified diagnostic platform to quantify the source of uncertainty in modelling global SOC dynamics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2833, https://doi.org/10.5194/egusphere-egu2020-2833, 2020.

EGU2020-12514 | Displays | SSS10.4

Model structure uncertainty of SOC dynamics studied in a single modeling framework

Nadezda Vasilyeva, Artem Vladimirov, and Taras Vasiliev

The aim of our study is the source of uncertainty in soil organic carbon (SOC) models which comes from the model structure. For that we have developed a family of mathematical models for SOC dynamics with switchable biological and physical mechanisms. Studies mechanisms include microbial activity with constant or dynamic carbon use efficiency (CUE) and constant or dynamic microbial turnover rate; priming effect: decay of stable SOC pool in the presence of labile SOC pool; temperature and moisture dependencies of SOC decomposition rates; dynamic adsorption strength and occlusion. Model SOC cycle includes measurable C pools in soil size and density fractions, each comprised of two estimated theoretical C pools (labile and stable - biochemical C cycle). Reaction rates of the biochemical cycle are modified according to its physical state: decay accelerates with size, accelerates with the amount of adsorbed C (density: heavy to light) and decelerates with soil microaggregation (occluded state). The models family was tested on C and 13C dynamics detailed data of a long-term bare fallow chronosequence.

Analysis of SOC models family with different combinations of mechanisms showed that the best (estimated by BIC) description of SOC dynamics in physical fractions was with microbially-explicit models only in case of a feedback via dynamics of microbial turnover and CUE. First, we estimated uncertainty of all mechanism-specific parameters for every model in the family. We calculated density distributions for parameters characterizing functional properties and stability of soil components (such as energy of activation, adsorption capacity, CUE, 13C distillation coefficient) for the models family weighted with models likelihoods. These parameter values were then compared with common experimental values.

We discuss the use of the study results to estimate relevance of observed parameter and structural uncertainties for global SOC projections obtained using different model structures.

How to cite: Vasilyeva, N., Vladimirov, A., and Vasiliev, T.: Model structure uncertainty of SOC dynamics studied in a single modeling framework, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12514, https://doi.org/10.5194/egusphere-egu2020-12514, 2020.

EGU2020-12481 | Displays | SSS10.4

Effect of soil C model structural uncertainty on global projections

Artem Vladimirov, Taras Vasilyev, and Nadezda Vasilyeva

In this study we apply the family of mathematical models for soil organic carbon (SOC) dynamics to estimate the effect of SOC model structural uncertainty on global scale C  projections. The model family features switchable biological and physical mechanisms (such as explicit microbes, dynamic CUE and turnover, priming effect, dynamic adsorption strength and physical occlusion) in a single modeling framework where mechanisms can be turned on and off without affecting model parameters that are not involved in a given mechanism. The model family fit to experimental chronosequence data provided uncertainty ranges for mechanism-specific parameters and individual models likelihood.

Selected models were run with litter fall, soil surface temperature and moisture from Earth System Model (ESM) simulation as an input, while model parameters were randomly distributed according to their uncertainties. Variance of obtained model trajectories in a given time frame was assumed as a lower estimate for model prediction uncertainty. Different models in the family were compared by their prediction uncertainty in addition to their likelihoods to obtain the final estimate for efficiency of a certain model for ESM.

How to cite: Vladimirov, A., Vasilyev, T., and Vasilyeva, N.: Effect of soil C model structural uncertainty on global projections, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12481, https://doi.org/10.5194/egusphere-egu2020-12481, 2020.

EGU2020-13152 | Displays | SSS10.4

Expert elicitation as tool for climate and hydrological model uncertainty reduction

Hans Jørgen Henriksen, Ernesto Pasten-Zapata, Peter Berg, Rafael Pimentel, Guillaume Thirel, Andrea Lira-Loarca, and Christiana Photiadou

As part of the ERA-NET Cofund for Climate Service from JPI-Climate, Expert Elicitation (EE) has been investigated as a tool for uncertainty reduction in the research project AQUACLEW in European case studies. Results from the elicitation can be compared to quantitative approaches to determine whether we have the knowledge and skills to differentiate good-performing models from an ensemble of models. EE could thus be a potential method to refine the climate-impact production chain, in cases where a quantitative validation of the ensemble is not feasible. 
To implement the EE on selective case studies of AQUACLEW we have developed a framework of the procedure. This protocol is then used as training material by experts who are invited to a one-day workshop. In this document an introduction provides background information about the project including a short description of the five case studies involved in the elicitation. A subset of the EURO-CORDEX EUR-11 ensemble of climate models based on three General Circulation Models and four Regional Climate Models is described. Finally, the hydrological models used in three of the five case studies are described along with results on their skills to simulate the observations at the selected study sites. 
As an example, the Danish case study focuses on agricultural production in central Denmark. Climate change in the Danish case is expected to affect soil moisture and wetness conditions during winter and spring, where more precipitation is foreseen, and dryness during summer and early fall, where less precipitation is expected. More wetness/higher groundwater levels during winter and spring will adversely affect the farming field work in connection with sowing as well as crop growth on water logged fields leading to needs for increased drainage of fields. Dryer summers will adversely affect crop yield and lead to needs for increased irrigation. Hence both flooding and drought has been examined together with the resulting effect on the root zone moisture content, the groundwater level and the river discharge. Focus is given to uncertainty of the projections of future conditions which is a function of both emission scenario, choice of climate model and agro-hydrological model. 
The presentation will focus on the training material consisting of a structured, condensed text and comparable illustrations across case studies and selected modelling approaches. Results of the EE workshop held in March 2020 will be discussed with lessons learned and viability of the EE tool. 

How to cite: Henriksen, H. J., Pasten-Zapata, E., Berg, P., Pimentel, R., Thirel, G., Lira-Loarca, A., and Photiadou, C.: Expert elicitation as tool for climate and hydrological model uncertainty reduction , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13152, https://doi.org/10.5194/egusphere-egu2020-13152, 2020.

EGU2020-21848 | Displays | SSS10.4

Do different geologists see the same fractures? Quantifying subjective bias in fracture data collection.

Billy Andrews, Jennifer Roberts, Zoe Shipton, Gareth Johnson, Sabina Bigi, and M.Chiara Tartarello

The characterisation of natural fracture networks using outcrop analogues is important in understanding subsurface fluid flow and rock mass characteristics in fractured lithologies. It is well known from decision sciences that subjective bias can significantly impact the way data is gathered and interpreted, introducing scientific uncertainty.

This study investigates the scale of and nature of subjective bias on fracture data collected by geoscientists using four commonly used approaches (linear scanlines, circular scanlines, topology sampling and window sampling) both in the field and in workshops using field photographs.

We observe considerable variability between each participant’s interpretation of the same scanline, and this variability is seen regardless of participants’ level of geological experience. Geologists appear to be either focussing on the detail or focussing on gathering larger volumes of data; personal character traits that affect the recorded fracture network attributes. As a result, the fracture statistics that are derived from field data can vary considerably for the same scanline, depending on which geologist collected the data. Additionally, the personal bias of geologists collecting the data affects the scanline size (minimum length of linear scanlines, radius of circular scanlines or area of a window sample) needed to collect a statistically representative amount of data.

Based on our findings and on understanding of bias reduction in decision sciences, we suggest protocols to recognise, understand and limit the effect of subjective bias on fracture data biases during data collection.

Our work shows the capacity for cognitive biases to introduce uncertainty into observation-based data. Fracture statistics derived from field data often inputs into geological models that are used for a range of applications, from understanding fluid flow to characterising rock strength, and so these uncertainties have ramifications for propagation into a range of outcomes. Importantly, our findings that personal bias can affect data collection have implications well beyond the geosciences.

How to cite: Andrews, B., Roberts, J., Shipton, Z., Johnson, G., Bigi, S., and Tartarello, M. C.: Do different geologists see the same fractures? Quantifying subjective bias in fracture data collection. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21848, https://doi.org/10.5194/egusphere-egu2020-21848, 2020.

EGU2020-21294 | Displays | SSS10.4

Fault Fictions: Systematic biases in the conceptualization of fault zone architecture

Zoe Shipton, Jen Roberts, Emma Comrie, Yannick Kremer, Lunn Rebecca, and Caine Jonathan

Mental models are a human’s internal representation of the real world and have an important role in the way a human understands and reasons about uncertainties, explores potential options, and makes decisions. However, they are susceptible to biases. Issues associated with mental models have not yet received much attention in geosciences, yet systematic biases can affect the scientific process of any geological investigation; from the inception of how the problem is viewed, through selection of appropriate hypotheses and data collection/processing methods, to the conceptualisation and communication of results. This presentation draws on findings from cognitive science and system dynamics, with knowledge and experiences of field geology, to consider the limitations and biases presented by mental models in geoscience, and their effect on predictions of the physical properties of faults in particular. We highlight a number of biases specific to geological investigations and propose strategies for debiasing. Doing so will enhance how multiple data sources can be brought together, and minimise controllable geological uncertainty to develop more robust geological models. Critically, we argue that there is a need for standardised procedures that guard against biases, permitting data from multiple studies to be combined and communication of assumptions to be made. While we use faults to illustrate potential biases in mental models and the implications of these biases, our findings can be applied across the geoscience discipline.

How to cite: Shipton, Z., Roberts, J., Comrie, E., Kremer, Y., Rebecca, L., and Jonathan, C.: Fault Fictions: Systematic biases in the conceptualization of fault zone architecture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21294, https://doi.org/10.5194/egusphere-egu2020-21294, 2020.

EGU2020-11442 | Displays | SSS10.4

Assessing the role of a priori user knowledge in climate services perception: An experiment with university students across Europe

Rafael Pimentel, María José Polo, María José Pérez-Palazón, Stefan Achleitner, Manuel Díez-Minguito, Andreas Huber, Philip Kruse, Andrea Lira, Johannes Lückenkötter, and Maria-Helena Ramos

By definition a climate service (CS) is a provision of climate information to assist decision-making. Therefore, CS users are the crucial agent in the CS production chain. User role needs to go further than only making use of the CS, their function must be taken into account during CS design and implementation. This can be accomplished by creating a feedback loop, in which users interact with CS developers. Nevertheless, the a priori user knowledge (i.e. their background, expectations of CS, previous experiences with CS) can condition user role in this co-development process. Identifying this previous knowledge and how this can condition user perception about CS is not easy. On-line surveys and personal interviews which are the most extended technique to gather information about users, on the one hand, are not usually designed to dig into the user a priori knowledge, and on the other hand, can be influenced by many subjective aspects.

This work tries to assess the role of user previous knowledge and the perception that users have about CS. An experiment was designed and carried out with about 100 final year bachelor and master engineering students (agronomic, civil, forestry, geotechnical, hydraulic) across Europe (Germany, Austria, France and Spain) as potential CS users with similar initial knowledge. In the experiment the student population was split into two samples. Specific CS training was given to one, no training to the other. Therefore, users with and without a priori knowledge about CS were simulated. Then a role game, in which they become consultants hired by a water management authority to make a decision regarding the management of a lake, was played.  Different levels of information (i.e. ensemble mean, ensemble spread, robustness of climate model) are provided to the students along the game to evaluate basic climate concepts.

Experiment results show that previous knowledge has a role in the decision taken by the users. Trained users required more complex information before being willing to make a decision, while non-trained ones trust less complex information. No significant differences were found between countries or the two educational levels. 

This work was funded by the project AQUACLEW, which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by FORMAS (SE), DLR (DE), BMWFW (AT), IFD (DK), MINECO (ES), ANR (FR) with co-funding by the European Commission [Grant 690462].

How to cite: Pimentel, R., Polo, M. J., Pérez-Palazón, M. J., Achleitner, S., Díez-Minguito, M., Huber, A., Kruse, P., Lira, A., Lückenkötter, J., and Ramos, M.-H.: Assessing the role of a priori user knowledge in climate services perception: An experiment with university students across Europe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11442, https://doi.org/10.5194/egusphere-egu2020-11442, 2020.

SSS10.5 – Sustaining soil functions in organic and inorganic farming – soil quality assessment, processes and models

EGU2020-5694 | Displays | SSS10.5

Ecosystem services of organic wine production – Linking different views

Ana Iglesias, Luis Garrote, Vicente Sotes, and Isabel Bardaji

Aiming to explore and exchange ideas about the ecosystem services of organic wine production, this presentation will address two questions. First, what is the potential for improving ecosystem services? This is explored at the continental scale, looking at the spatial distribution of the effect of organic management practices in permanent crops. Second, how can the targets be reached based on public and private solution? This is explored based on local policy targets and contract based solutions including the private sector and the value chain. A case study of organic wine production in the Spanish Denomination of Origin Rueda is presented as a practical example. The content of the study is based on the results of the iSQAPER (http://www.isqaper-project.eu/) and CONSOLE (https://console-project.eu/) H2020 projects.

How to cite: Iglesias, A., Garrote, L., Sotes, V., and Bardaji, I.: Ecosystem services of organic wine production – Linking different views, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5694, https://doi.org/10.5194/egusphere-egu2020-5694, 2020.

Arbuscular mycorrhizal fungi (AM fungi) and soil organic matter (SOM) can be important factors in soil fertility, cycling of nutrients, and plant productivity. It is still unclear whether greater AM fungi abundance is advantageous for plant productivity under nutrient-poor tropical soils despite the relatively common lack of phosphorus (P) and the purported benefit of AM fungi in obtaining and exchanging P with plants for carbon. We explored whether AM fungi and/or SOM augmented plant productivity in different field soils to test the hypotheses that AM fungi were important contributors to plant productivity and that the contribution by AM fungi is higher on soils with lower organic matter and presumably lower nutrient availability compared to soils with higher organic matter. We conducted a factorial experiment in the greenhouse with potted soils of either high or low organic matter (SOM) collected from each of three different land uses, grazed by wildlife in a protected area (Serengeti National Park, Tanzania), grazed by livestock, and cropland. Half the soils were sterilized to remove soil microbes, including AM fungi. Two grass species, Zea mays and Themeda triandra, were grown for 12 weeks in 8 replicates of each soil type and sterilization treatment. About 52.4% and 62.6% of Z. mays roots grown in non-sterilized soils were colonized by AM fungi in low and high SOM, respectively, and 38.1% and 46.7% of T. triandra roots grown in non-sterilized soils were colonized by AM fungi in low and high SOM respectively. Overall, the production of both plant species was significantly higher on control soils than sterilized soils, indicating that AM fungi likely contributed to productivity, and on soils with higher SOM. However, the separate contribution to the productivity of SOM and soil microbes varied significantly among plant species and soils from different land uses. Zea mays productivity increased most strongly to higher SOM, and declined with sterilization in agricultural, but not livestock or wildlife grazed soils. In contrast, T. triandra production was largely insensitive to SOM or sterilization except on wildlife-grazed soils, where it increased most strongly in unsterilized soils. Soil microbe impacts on productivity, therefore, may be driven more by host plant species than by lower nutrient supply, as associated with lower SOM. Furthermore, the results suggest that efforts to enhance productivity in uncultivated lands should perhaps focus on altering plant species composition, while efforts to enhance productivity in agriculture soils might not depend on beneficial soil microbes or additional fertilizer but instead on effective crop rotations to reduce soil pathogens.

How to cite: Soka, G. and Ritchie, M.: Contributions of soil microbes and soil organic matter to plant productivity in tropical savanna soils under different land uses, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-644, https://doi.org/10.5194/egusphere-egu2020-644, 2020.

EGU2020-3345 | Displays | SSS10.5

Smart use of microbial-rich vermicomposting to enhance tripartite plant-microbe-soil interactions

Gilbert Koskey, Luciano Avio, Mariateresa Lazzaro, Fernando Pellegrini, Cristiana Sbrana, Alessandra Turrini, and Paolo Bàrberi

Vermicomposting is a natural process that utilizes earthworms and associated microbiome to transform organic wastes into vermicompost by-products that are rich in beneficial microorganisms and nutrients such as carbon, phosphorus, nitrogen, magnesium, and calcium. Liquid vermicompost extract (LVE), a derivative of the vermicomposting process, has recently gained interest among scientists and organic farmers due to their potential ability to enhance tripartite plant-microbe-soil interactions that would lead to improved plant and root growth, soil health and overall crop yield productivity. To investigate the short-term effect of LVE on soil mycorrhizal inoculum potential (MIP) and plant-mycobiome interactions, a field trial was carried out at CiRAA E. Avanzi, San Piero a Grado, Pisa, Italy.

The effect of LVE and its associated microbial and chemical components on soil MIP and AMF root colonization was evaluated on five summer crops, i.e. chickpea (Cicer arietinum L.), berseem clover (Trifolium alexandrinum L.), lentil (Lens culinaris L.), soybean (Glycine max L. Merrill), and sunflower (Helianthus annuus L.). The test plants were grown with or without the application of LVE in a split-plot trial with five replicates. Freshly made LVE from vermicomposting of wheat straws mixed with horse manure was screened for microbial properties using the Illumina Miseq sequencing platform. Seed inoculation with LVE was done before planting while field inoculation was done at the stem-elongation stage. Un-inoculated seeds and plots were used as controls. Soil MIP was assessed before planting and after harvesting, while AMF root colonization was evaluated at the mid-flowering stage of each crop.

The bacterial 16S and fungal ITS sequence analyses showed a high bacteria and fungal abundance and taxonomic alpha diversity present in the LVE. The most dominant taxa included Mucor, Citrobacter, Pseudomonas, Arcobacter, Azomonas and Clostridium. These microbes are commonly found in agricultural soil and are linked to the hydrolysis of complex organic matter, nutrient recycling, production of growth-promoting factors and siderophores, while others are known to produce peptide antimycotics and antibiotics that protect plants against pathogenic soil microorganisms.

The soil MIP significantly (p < 0.0001) differed between the two soil sampling times (before planting and after harvesting). It was evident that both seed and field inoculation with LVE significantly enhanced the soil MIP and this could benefit the next crop under rotation. AMF root colonization varied significantly across the crop species (p < 0.0001) and LVE treatment (p = 0.006). Highly nodulated lentils and berseem clover roots recorded significantly higher AMF root colonization than all the other crops. LVE inoculation had an overall positive effect on AMF root colonization with an average increase of 6.2% compared to the un-inoculated crops. These short-term results indicate that there could be a positive effect of the LVE inoculation on the soil MIP and AMF root colonization of our test crops, which could be attributed to the beneficial additive effects of the LVE that enhanced the tripartite plant-microbe-soil interactions.  

Keywords: Vermicomposting, Liquid vermicompost extract, Soil MIP, AMF root colonization, Legumes

How to cite: Koskey, G., Avio, L., Lazzaro, M., Pellegrini, F., Sbrana, C., Turrini, A., and Bàrberi, P.: Smart use of microbial-rich vermicomposting to enhance tripartite plant-microbe-soil interactions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3345, https://doi.org/10.5194/egusphere-egu2020-3345, 2020.

EGU2020-13611 | Displays | SSS10.5

Soil inorganic N contents and maize yield following winter-hardy vs. freeze-killed cover crop mixtures on an organic farm in Eastern Austria

Juergen K. Friedel, Julia Fohrafellner, Marie-Luise Wohlmuth, and Gabriele Gollner

Cover crop mixtures of legumes and non-legumes have multiple advantages compared to bare soil like reducing erosion by covering the soil, fixing nitrogen from the air and reducing nitrate leaching, adding organic matter to the soil, increasing soil biological activity and improving soil structure. The advantages and disadvantages of a winter-hardy vs. a freeze-killed cover crop (CC) mixture were studied on an organic farm in Raipoltenbach in Lower Austria (10.5 °C, 760 mm) with non-inverting soil cultivation since 2008. Effects on soil inorganic nitrogen contents and the yield of a following maize crop were assessed. On an orthic Luvisol with a silty clay to silty loam texture, two field experiments (FE1 and FE2) were laid out in a randomized complete block design in four replicates in two consecutive years. The winter-hardy CC mixture was “Landsberger Gemenge” consisting of winter vetch, crimson clover and Italian ryegrass. The freeze-killed CC mixture consisted of fodder pea, common vetch, chickling vetch, buckwheat, phacelia and fodder radish. The winter-hardy catch crop mixture was terminated with a rotary cultivator and the freeze-killed CC was worked into the soil with a chisel on 4 April 2017 / 19 April 2018. After chiseling the soil (only in FE1), maize, cv “Connexxion RZ 340”, was sown on 4 May 2017 / 7 May 2018. In both treatments, soil was harrowed once in May and hoed twice in June. Soil inorganic nitrogen (Nin) was analysed in 0.0125 M CaCl2 extracts. The winter-hardy CC had a biomass of 2.8 t ha-1 on average when terminated in April, the freeze-killed CC reached on average 3.1 t ha-1 in November. The Nin values in 0-90 cm soil depth in spring (2017 FE1 / 2018 FE2) were almost doubled in the freeze-killed CC treatment compared to the winter-hardy CC treatment. The winter-hardy CC mixture in took up soil nitrogen until termination in April, thus reducing Nin contents after winter and the risk of nitrate leaching during winter, saving nitrogen for the following main crop. An assessment in June (FE1) and May (FE2) showed no differences in the number of maize plants per m2. Maize grain dry matter yield was 7.8 t ha-1 in FE1 and 7.0 t ha-1 in FE2 on average and did not differ between treatments. Also maize nitrogen yield did not differ. Sowing maize without inverting soil cultivation was more difficult in the winter-hardy CC treatment than in the treatment where the CC mixture was freeze-killed. But mainly due to the effective CC termination with the rotary cultivator, weed density was not higher in this treatment (except for one assessment date in July 2018 in FE2). In our study, both freeze-killed and winter-hardy CC mixtures consisted of a legume-dominated legume-non-legume mixture. This resulted in a narrow C-to-N ratio (10 to 13) in the CC biomass as a basis for a swift N mineralization from the CC residues in both treatments. Accordingly, maize grain DM yield and maize grain N yield did not differ between the CC treatments.

How to cite: Friedel, J. K., Fohrafellner, J., Wohlmuth, M.-L., and Gollner, G.: Soil inorganic N contents and maize yield following winter-hardy vs. freeze-killed cover crop mixtures on an organic farm in Eastern Austria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13611, https://doi.org/10.5194/egusphere-egu2020-13611, 2020.

Conservative Agriculture (CA) practices are recognized to enhance soil organic carbon stock and in turn to mitigate the effect of climate change. One of the CA principles is to integrate cover crops (CC) into the cropping systems. The termination of CC before the cash crop sowing and the weeds control are the most critical aspects to manage in the CA. The technique currently adopted by farmers for the termination of CC implies the use of Glyphosate. However, the European Commission is currently discussing the possibility of banning the use of this herbicide due to the negative effects on human health and the agro-environment. The disk harrow (DH) or the roller-crimper (RC) can be adopted in CA as an alternative to the use of Glyphosate for the devitalization of CC, their incorporation into the soil (in the case of the disk harrow), and the reduction of weed pressure on the subsequent cash crop.

From November 2017 to October 2019, soil organic carbon (SOC, g kg-1) and crop biomass production were observed in a 2-year field experiment located in Lodi (northern Italy), in which minimum tillage (MT) has been applied for the last 5 years. The soil was loamy and SOC was 16.2 g kg-1 at the beginning of the experiment. The winter CC was barley (from November to May) and the cash crop was soybean (from June to October). The experiment consisted in three treatments replied for two consecutive years in a randomized block design: Glyphosate spray + DH + sowing + hoeing (MT-GLY); DH + sowing + hoeing (MT-ORG); RC + sod seeding (NT-ORG).

At the end of 2019, SOC resulted in a higher increase in MT-GLY (+15%) and in MT-ORG (+14%) than in NT-ORG (+6%; p<0.01). This was due to the fact that CC litter in NT-ORG was not in direct contact with soil particles and the process of immobilization was lower than in the other treatments.

Moreover, the increase in SOC resulted positively correlated to the CC biomass (2018+2019), which was significantly lower in NT-ORG. In particular, no differences of soybean and CC between the three treatments were observed at the end of 2018, but MT-GLY resulted in significantly higher CC and soybean biomass at the end of the second year (+32%, p<0.01). MT-GLY allows to stock more carbon via photosynthesis that in turn results in higher SOC content.

However, if we consider the tractor fuel consumption (for Glyphosate spray, DH, RC, hoeing), along with the biomass production, the carbon sequestration did not vary between the three treatments.

Further studies are needed for the definition of optimized field management practices to reduce the passage of machinery while increasing crop production and SOC.

How to cite: perego, A., acutis, M., and schillaci, C.: Alternatives to Glyphosate in conservation agriculture: effects on carbon sequestration in a field experiment in northern Italy , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13792, https://doi.org/10.5194/egusphere-egu2020-13792, 2020.

The compost from the wine industry as a source of nitrogen in vulnerable areas

 

Raquel Villena1, M. Teresa Castellanos1, M. Carmen Cartagena1,2*, Ana M. Tarquis2 and. Augusto Arce1,2.

1 Departamento de Química y Tecnología de Alimentos. ETSIAAB-UPM. Avda. Puerta de Hierro 4. 28040 Madrid

2 CEIGRAM-UPM. Senda del Rey 13. 28040 Madrid

*mariacarmen.cartagena@upm.es

 

Abstract

            The use of organic waste in agriculture, from the agri-food industry, is one of the most important outlets for this type of waste. Once that it is stabilized, it plays an important role in the context of circular economy. The application of this in vulnerable areas, where it is produced, is a possible substitute for traditional fertilization (fertirrigation) avoiding continuous contamination of aquifers.

 

            Spain is the third world producer of wine. This industry generates between two and three million tons of organic waste annually being more than half generated in Castilla - La Mancha. The residues of the wine industry, can be valued in many ways. One of them could be the agricultural application as a source of organic matter and nutrients, given its chemical characteristics. These residues aerobically treated can be used in horticultural crops in the same area, as a source of nitrogen substituting traditional inorganic fertilization.

 

            In this work, a three years’ field experiment was carried out in a drip-irrigated melon crop, traditionally grown in the area where also, these wastes are generated in Mediterranean climatic conditions in Castilla – La Mancha. The area is designated as “vulnerable zone” by the Nitrates Directive (91/676/CEE). The objective was to compare the behavior environmental and nutritional of organic fertilization versus fertirrigation. Due to the slow rate of mineralization of these residues in the soil, it is essential to know their residual effect on it. This effect was studied using wheat as a capture crop.

 

How to cite: Villena Gordo, R.: The compost from the wine industry as a source of nitrogen in vulnerable areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8961, https://doi.org/10.5194/egusphere-egu2020-8961, 2020.

The world’s agricultural and food systems vary by climate, geographic region, and local economic development conditions, but trade is making food products global in many cases, which is then followed by global interest in the efficiencies of production, water consumption, energy use, and emissions. Consumers want to know and consider in their decisions the environmental implications of the food they eat, and want to see profound reductions. Farmers and agricultural and food companies want to react positively and make changes, which is a challenge in the face of changing economic, climatic, labor, water, dietary, energy, labor, and emissions considerations and conditions.

Food, energy, and water systems are individually complex and inherently interdependent. Their joint study is both a necessity and a challenge. We have developed an integrated model of food, energy, and water systems to employ all three models simultaneously to tackle complex questions that span all three systems, but also problems that one would only see once the components and parameters of the three systems are in the same framework.

Our model accounts for the various inputs of agricultural production, food processing, and food distribution, from farm to consumer, including water, energy, biocides, labor, capital equipment, productivity, supply chains, transportation, retail and distribution, cooling, food processing, and food and packaging waste. The methodological basis for our model includes life-cycle assessment, life-cycle cost analysis, and a dynamic Bayesian network that allows us to propose optimal solutions in the face of changing conditions.

Through case studies we show what environmental and economic costs are expected to be when evolving water treatment technologies and sources (especially wastewater recycling, stormwater capture, and desalination) and water-saving technologies are deployed in most agricultural production areas of the world to maintain production in the face of climate change and disruptions. Packaging of products holds a key to reducing the environmental impacts of fruits and vegetables. Changing the electricity and energy supply has become an economically feasible opportunity. We incorporate into our model the enormous inefficiencies food waste represents.

The target audience for our model and results includes farmers and agricultural planners in the private and public sectors, individual consumers, water and wastewater agencies and companies, energy companies, food processors, and retail and distribution companies. Our model is globally applicable and scalable.

How to cite: Horvath, A. and Qin, Y.: An Integrated Food-Energy-Water Systems Model for Tackling Questions Related to Agricultural Produce and Food Supply Chains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9890, https://doi.org/10.5194/egusphere-egu2020-9890, 2020.

EGU2020-8528 | Displays | SSS10.5

Does temperate agroforestry reduce nutrient leaching losses compared to cropland monocultures?

Marcus Schmidt, Marife D. Corre, Xiaohong Duan, Florian Heinlein, and Edzo Veldkamp

Over the past decades, excessive use of fertilizers in cropland monocultures in combination with a decrease in fertilizer use efficiency, have led to an increase in nutrient leaching losses, especially for nitrate. Consequently, ground water pollution is widespread and starting to be recognized and potentially sanctioned by the European Union. Unfertilized tree rows alternating with crop rows (e.g. alley-cropping agroforestry) are hypothesized to act as a safety net by taking up excess nutrients below the crop-rooting zone. Here, we measured leaching losses of nitrogen (N), phosphorus (P) and potassium (K) during two growing seasons in agroforestry systems and adjacent monocultures at three sites in Germany, representing a wide range of soil characteristics. Leaching losses of N, P and K were generally lower under agroforestry tree rows at all sites compared to agroforestry crop rows or crop monocultures. Overall, agroforestry reduced nitrate leaching losses by up to 82% compared to monocultures, but showed comparable losses of P and K. Nutrient leaching losses were high in the agroforestry crop rows close to the tree rows where crop productivity is lowest due to resource competition with trees. An adjusted management, e.g. reduced fertilizer inputs close to the tree rows, may counteract these losses. Our results suggest that agroforestry has the potential to reduce nutrient leaching losses through the trees and the application of fertilizer should be reduced in the agroforestry crop row close to the trees. The reduction in nutrient leaching losses in agroforestry indicates an increase in the soil function of water filtration. In order to achieve large-scale implementation of temperate agroforestry, its environmental benefits need to be financially valued for farmers to adapt this widely applicable land use alternative. The presented project, SIGNAL (Sustainable intensification of agriculture through agroforestry) is part of the German research initiative BonaRes (Soil as a sustainable resource).

How to cite: Schmidt, M., Corre, M. D., Duan, X., Heinlein, F., and Veldkamp, E.: Does temperate agroforestry reduce nutrient leaching losses compared to cropland monocultures?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8528, https://doi.org/10.5194/egusphere-egu2020-8528, 2020.

EGU2020-9098 | Displays | SSS10.5

Grazing and mowing impact on soil organic carbon and microbial activity in grassland soil

Aliia Gilmullina, Cornelia Rumpel, Evgenia Blagodatskaya, Michaela Dippold, Frederique Louault, Katja Klumpp, and Abad Chabbi

Grassland management practices, such as grazing with varying animal density and mowing may impact the processes leading to soil organic carbon (SOC) accumulation. Although, they serve similar agricultural purposes, they differ in their effect on plant physiology and their influence on SOC remains uncertain. We hypothesised that both practices affect SOC storage differently due to an altered plant C input and changed growth and physiological response leading consequently to contrasting soil microbial activity.

Based on this, our experiment included the investigation of three grassland treatments: grazing at two intensities and mowing which are located at the experimental station of SOERE ACBB (Clermont-Ferrand, France). Additionally, we included bare soil and unmanaged abandoned site considering as negative and positive controls, accordingly. The aim of the study was to estimate how grazing and mowing affect SOC chemical characteristics and its link with microbial activity.

Our results show highest SOC contents under low grazing intensity, whereas SOC content under high grazing intensity was lower and did not differ from abandoned grassland. SOC content under mowing was lowest among all treatments but still higher compared to bare soil. Microbial biomass C (MBC) followed a similar pattern under high grazing intensity and positive control whereas it was similar under mowing and low grazing intensity and lowest under bare soil. Absolute enzyme activities showed a similar tendency as SOC content. However, enzyme activities per MBC resulted in highest values under low grazing intensity and similarly lower values under all other treatments.

These results demonstrate that microbial parameters responded to management in various ways most probably related to the differences in dung and litter inputs. We suggest that dung input under high grazing intensity increased MBC and consequently compensated for plant removal thus keeping SOC contents increasing. Consequently, grazing at both intensities allows to maintain SOC at similar levels as in absence of management. While on unmanaged land high SOC may be related to absence of harvest, on grazed land it may be related to stimulation of microbial activity due to animal activity. Mowing treatment on the other hand did not allow to increase SOC.

We conclude that the presence of animals in the system is essential to improve soil heath, biogeochemical cycling, and SOC storage.

How to cite: Gilmullina, A., Rumpel, C., Blagodatskaya, E., Dippold, M., Louault, F., Klumpp, K., and Chabbi, A.: Grazing and mowing impact on soil organic carbon and microbial activity in grassland soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9098, https://doi.org/10.5194/egusphere-egu2020-9098, 2020.

EPIC calibration and validation to predict crop yields and soil organic carbon dynamics among different management practices

 

Authors:

F. Briffauta, M. Longoa. N. Dal Ferroa, Furlan Lb, F. Moraria

aDAFNAE Dept., University of Padova, Viale Dell’Università 16, 35020, Legnaro (PD), Italy

b Veneto Agricoltura, Settore Ricerca Agraria, Viale Dell'Università 14, 35020 Legnaro, PD, Italy;

 

Mathematical models are valuable tools to estimate agronomic and environmental effects of different management practices. Their use could be of interest for the evaluation of long term benefits associated with agri-environmental measures financed by European Common Agricultural Policy (CAP) through the regional Rural Development Programmes (RDP). In this study we focus on the simulation performances of the widely used agri-environmental model EPIC (Environmental Policy Integrated Climate Model). We tested the model ability in simulating crop yields, soil organic carbon (SOC) levels, soil volumetric water content (VWC) and water table depth in 44 plots from three farms located in the low-lying Veneto plain (North Eastern Italy). In each farm, three different management practices were used: conventional agriculture (CV), conservation agriculture (CA) and conventional agriculture with the use of cover crops (CC). The model was tested in the 2010-2017 period, with the first four years used as calibration period and the last as validation period.  We also compared the performance of two subroutines for simulating SOC: PHOENIX and CENTURY.

Differences among tillage practices were detected in the original data, with CA causing a reduction in yield, in particular for corn and soybean, but also a rise in SOC levels in the most superficial layers with respect to CC and CV managements.

First results showed that EPIC performance in reproducing crop yields and SOC content was satisfying (r2 = 0.59 and NSE(Nash – Sutcliffe Efficiency) = 0.61, for crop yields and r2 = 0.78 and NSE = 0.76 for SOC), while it was less accurate for VWC and water table dynamic (r2 < 0.5 and NSE < 0.0). An improvement in the simulation of soil hydrology was obtained using a modified version of the model which incorporates the Richards equation. Another adaptation was the use of Johnsongrass (Sorghum halepense) to simulate weed infestation in CA managed plots which allowed to improve yields simulations.

This study demonstrated that EPIC can be a valid tool to predict patterns of environmental parameters under different management scenarios and therefore, once validated to local conditions, it could be used to support public administrations or farmers’ decisions.

How to cite: Briffaut, F.: EPIC calibration and validation to predict crop yields and soil organic carbon dynamics among different management practices., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17849, https://doi.org/10.5194/egusphere-egu2020-17849, 2020.

Assumed effects on land attributes have important implications for nearly all aspects of social, environmental and economic sustainability as well as policy designed to enhance sustainable agriculture. Life-cycle assessments, technical-economic assessments, and sustainability assessments of agriculture and bioproduct industries often use computational models to contribute to an understanding of complex processes. However, because the impacts attributed to a specific process or product must be interpreted in terms of a “business as usual” case, the reference scenario is a key factor in interpreting assessment results. Further, predictions of change are not equivalent to knowledge or data from empirical studies and instead can reflect underlying assumptions and embedded uncertainty from large input datasets. For example, in estimating soil organic carbon (SOC) dynamics, there is no internationally agreed SOC measurement protocol. This complicates the establishment of baseline scenarios for comparison across industries and continents (e.g. Brazil and the US: two of the largest bioproduct producers who often trade in equivalent products). If these models are used to accurately predict change and to justify the sustainability of a product, the reference scenario assumptions need to be realistic, measurable, and clearly documented. Justification for assumptions or simplifications should be based on published data and research that employs scientific principles and best available practices for measurement. We will present the results of a systematic literature review to determine the degree to which reference scenarios are explicitly defined when the effects of bioproducts are assessed; and to identify any published guidelines or rules for defining appropriate reference scenarios when assessing bioproducts. We will also present a summary of key aspects of a reference scenario and show the application of these principles to develop a SOC baseline for bioproduct assessments.

How to cite: Davis, M.: Reference Scenarios for Bioproduct Assessments: soil carbon and standardized reference scenarios, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12429, https://doi.org/10.5194/egusphere-egu2020-12429, 2020.

The modern Russian agroecological landscape evaluation is based on identification of areas with specific hydrology, soil and terrain constraints to crop, that are named as agroecological groups of lands. Soil quality of the lands is characterized by a combination of conditions ensuring sustainable crop yields and determining the ecological functions and stability of agrolandscapes. The main differences in soil quality in the forest-steppe of the East European Plain are due to soil erosion and precipitation redistribution by the topography elements. If the erosion processes are comprehensively studied by the world scientific community, then the influence of differences in soil moisture reserves, its spatial heterogeneity and potential impact on the crops productivity is not sufficiently considered by Russian specialists. In this regard, large-scale studies were carried out at two key areas: the Central Russian Upland (Kursk region) and the Oka-Don Lowland (Tambov region). The studies included conventional mapping with identification of agroecological groups of lands and their quality assessment using GIS and statistical analysis. To determine the spatial heterogeneity of the moisture conditions, the SIMWE simulation model was applied. This model calculates the precipitation redistribution by the topography elements using digital elevation model and several input parameters. It was find, that the territory of the Central Russian Upland is characterized by normal moisture conditions, leaching water regime, silty-loamy soil texture. Redistribution of precipitation occurs without delay, as a result of which most of the territory does not experience overmoistening and the soils are highly productive with moisture reserves in the top meter layer up to 150 mm. The spatial structure of soil water capacity in a meter soil layer was determined by the regression analysis method of the measured soil moisture and calculated runoff using the SIMWE model. It was determined that the intra-landscape variation of moisture capacity as an indicator of soil quality for agriculture is associated with the topography of the interfluves and the erosion. The second key area, the Oka-Don Lowland, is characterized by a lowland topography and clay soil texture, and excess of moisture in soils in almost all years. Several agroecological groups of lands with significantly different in soil water capacity. To determine the spatial structure of soil water capacity, the SIMWE model was also used, that showed a high intra-landscape soils diversity, that is due to a flat topography of interfluve with lots of depressions. The soils of drained interfluves with a short-term overmoistening and a groundwater level below 6 meters are of the highest quality. In addition, hydromorphic lands with groundwater above 6 meters and average annual moisture reserves in top meter soil layer up to 300 mm are distinguished. They occupy about 72% of the total area of ​​the key site. Such lands are suitable for cultivation of perennial grasses, winter wheat, soybeans, sunflowers and others.

This study is supported by Russian Foundation for Basic Research, grant №19-29-05277.

How to cite: Lozbenev, N. and Kozlov, D.: The agroecological soil quality assessment of Central-Russian upland and Oka-Don lowland of Russia. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11317, https://doi.org/10.5194/egusphere-egu2020-11317, 2020.

EGU2020-13759 | Displays | SSS10.5

Nitrogen use efficiency of different slurry management in the pre-alpine grassland region – a 15N tracing experiment

Marcus Zistl-Schlingmann, Steve Kwatcho-Kengdo, Mirella Schreiber, Bernd Berauer, Anke Jentsch, Ralf Kiese, and Michael Dannenmann

Grasslands of the alpine and pre-alpine region do not only sustain economic soil functions such as fodder production for local dairy and cattle farming but also important ecological soil functions such as water and nutrient retention, erosion and flood protection and habitat provision for extraordinarily high plant and animal biodiversity. The current management in the more intensively used grasslands in this region is based on fertilization with liquid cattle slurry, which is assumed to be prone to high N leaching and gaseous N emissions with their undesired consequences for soil, air and water quality.

In order to assess the nitrogen use efficiency and trade-offs such as greenhouse gas emissions and nitrate leaching of liquid slurry surface application under the auspices of climate change, we set up a 15N cattle slurry labeling experiment, combined with a space for time climate change experiment using plant-soil mesocosms and lysimeters. The 15N signal was traced in the plant-soil-microbe system for an entire year to assess productivity, plant nitrogen use efficiency, soil nitrogen retention and nitrogen losses. We found surprisingly low plant nitrogen use efficiency (recovery of less than ¼ of the applied 15N in harvested plant biomass), soil N retention (ca ¼ 15N recovery) and high environmental N losses (ca ½ of the 15N tracer remained unrecovered). The estimates of N losses based on unrecovered 15N were in good agreement with independent measurements of gaseous and hydrological N losses. Due to very high productivity and associated N exports with grass harvests, total N exports exceeded total N inputs. Such soil nitrogen mining was especially pronounced in the climate change treatments and was supported by increased soil nitrogen mineralization.

We also tested alternative slurry management (slurry injection into the soil, slurry acidification) that is supposed to increase nitrogen use efficiency. Slurry acidification but not slurry injection slightly increased plant nitrogen use efficiency and reduced nitrogen losses, however could overall not prevent significant soil nitrogen mining.

Consequently, both surface application and the more modern techniques of liquid cattle slurry fertilization showed low nitrogen use efficiency and promoted soil nitrogen mining. This is asking for a re-consideration of traditional fertilization regimes based on solid manure mixed with straw, a management that over historical timescales likely contributed to the build up of the large nitrogen stocks in pre-alpine grassland soils.

How to cite: Zistl-Schlingmann, M., Kwatcho-Kengdo, S., Schreiber, M., Berauer, B., Jentsch, A., Kiese, R., and Dannenmann, M.: Nitrogen use efficiency of different slurry management in the pre-alpine grassland region – a 15N tracing experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13759, https://doi.org/10.5194/egusphere-egu2020-13759, 2020.

EGU2020-18940 | Displays | SSS10.5

Insights into modelling of soil organic carbon from Irish grassland sites using ECOSSE model

Alina Premrov, Jesko Zimmermann, Stuart Green, Reamonn Fealy, and Matthew Saunders

Abstract

Grassland represents the dominant land use in Ireland, and the estimation of soil organic carbon (SOC) stocks and changes for Irish grasslands requires further improvements. This study uses the ECOSSE 6.2b process-based model in site-specific mode (Smith et al., 2010) to predict SOC stocks and changes associated with different grassland management practices. The work presented here aims to provide preliminary insights into SOC modelling procedures. Five Irish sites under different grassland management were selected from the 2009 LUCAS SOC database (JRC, 2018). Due to the lack of repeated SOC measurements over time, the initial SOC input values (required for the simulation initialisation) were assigned from the Irish NSDB database (EPA, 2007). This was done based on the site-specific information from both databases such as distance and matching land-use. The initial SOC values from the NSDB were assigned to 2002 (i.e. the start of simulation). Information on management was obtained from the Irish Integrated Administration and Control System database,LPIS (Zimmermann et al., 2016b), climate data were obtained from MÉRA (Met Éireann, 2018) and atmospheric N deposition from http://www.emep.int (Premrov et al. 2019). Fertilisation inputs were adapted from the literature and categorised based on stocking rates derived from Green et al. (2016). The 2009 yearly averaged SOC predicted values were compared to LUCAS measured SOC across five sites (r2 = 0.06), showing over- and under-estimation of simulated SOC, which could be due to potential poor matching NSDB and LUCAS data. This result indicates that the repeated SOC field-measurements over the time are needed for proper model-parameterisation. This was further supported by the observed strong relationship between initial SOC inputs and ECOSSE predicted SOC (r2 = 0.85) indicating the high sensitivity of model SOC predictions to the initial SOC inputs.

 

Acknowledgements

SOLUM project is funded under the Irish EPA Research programme 2014-2020. Thanks go to Dr Marta Dondini (U. Aberdeen) and Dr Rowan Fealy (Maynooth U.) for their support.

 

Literature

EPA, 2007. National Soils Database (NSDB). Environmental Protection Agency (EPA), Ireland.

Green, S., et.al., 2016. Cattle stocking rates estimated in temperate intensive grasslands with a spring growth model derived from MODIS NDVI time-series. Int. J. Appl. Earth Obs. & Geoinfo. 52, 166-174.

JRC, 2018. LUCAS 2009 TOPSOIL data, European Soil data Centre. Joint Research Centre. European Commission.

Met Éireann, 2018. MÉRA: Met Éireann Re-Analysis – Climate Re-analysis.

Premrov, A., et al., 2019. Biogeochemical modelling of soil organic carbon-insights into the processing procedures of selected atmospheric input data: Part II. IGRM2019.UCD. Dublin.

Smith, J., et al., 2010. ECOSSE. User Manual.

Zimmermann, J., et al., 2016. The Irish Land-Parcels Identification System (LPIS). Experiences in ongoing and recent environmental research and land cover mapping. Biol. & Environm. Proceedings RIA 116B, 53-62.

How to cite: Premrov, A., Zimmermann, J., Green, S., Fealy, R., and Saunders, M.: Insights into modelling of soil organic carbon from Irish grassland sites using ECOSSE model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18940, https://doi.org/10.5194/egusphere-egu2020-18940, 2020.

Cultivation of Stropharia rugosoannulata on rice straw

 

Zhi Jin, Xue-Feng Hu

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

 

According to statistics, the annual output of crop straw in China attains more than 900 million tons. A C/N ratio of the straw of grass crops is too high to be bio-degraded rapidly when it returns to fields, adversely affecting the next rotation of crops. Therefore, the straw on the fields after harvesting is often treated with burning in China since the early history. The open-air burning, however, often causes the severe pollution of atmosphere, and has thus been forbidden by the Chinese government. However, the treatment of straw has become a headache problem since then. Stropharia rugosoannulata is one of the top ten mushrooms in the international mushroom market, as well as one of the important edible fungi recommended by the Food and Agriculture Organization of the United Nations to the developing countries. The rice straw, mainly composed of cellulose, hemicellulose, lignin, protein, resin and nutrient elements of Ca, P, K, Fe, Cu, Mn, Zn and Co, provides sufficient nutrients to Stropharia rugosoannulata. A field experiment was conducted to study the feasibility of growth of Stropharia rugosoannulata on fresh rice straw in the suburb of Shanghai after rice was harvested in late 2019. The cultured mycelia of Stropharia rugosoannulata were evenly sprinkled over fresh rice straw, and covered with a thin layer of soil and again with a layer of rice straw. The culture bed was kept at humidity of 70%-75% and temperature of 22°C-28°C. After two months, the sporophores of Stropharia rugosoannulata came out abundantly. This suggests that Stropharia rugosoannulata can grow and produce sporophores on fresh rice straw without addition of any organic manure. The sporophores of Stropharia rugosoannulata are treasures in food and highly enriched in human nutrients, with 25.75% of crude proteins, 2.19% of crude fat, 7.99% of crude fiber, 45.93% of carbohydrates and 16.72% of amino acids, as well as some antioxidants such as flavoniods, saponins and phenols. Moreover, the cellulose, hemicellulose and other non-biodegradable substance in rice straw were highly decomposed after the growth of Stropharia rugosoannulata, thus making it rapidly available to crops when returning to fields. With high content of organic matter and available nutrients, free of toxic heavy metals, the fungal-degraded rice straw is high-quality organic manure and will be chosen to be applied to the organic farming system in Shanghai in the future.

How to cite: jin, Z.: Cultivation of Stropharia rugosoannulata on rice straw, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-995, https://doi.org/10.5194/egusphere-egu2020-995, 2020.

EGU2020-22630 | Displays | SSS10.5

Virulence of a soil inhabiting fungus, Ophiosphaerella korrae, to rice

Keisuke Tomioka, Kenji Nagata, Masahiro Chiba, Kobayashi Hidekazu, Naoyuki Ishikawa, Akira Kawakami, Akira Masunaka, and Hiroyuki Sekiguchi

A soil inhabiting fungus, Ophiosphaerella korrae (J. Walker & A.M. Sm. bis) Shoemaker & C.E. Babc. has been confirmed to be pathogenic to barley, durum wheat and bread wheat of the major crops (Hong et al., 2018; Tomioka et al., 2019ab). Foliage and spikes of the affected plants early blight with root rot and ripening disorder. In this study, we revealed virulence of the fungus to rice, which is also one of the major crops. When a rice cultivar (cv. Norin No. 22) was grown in pots in artificial climate chambers after being sowed with culture discs (6 mm in diameter) of the fungus (strains MAFF150117 and MAFF150118 from bread wheat and durum wheat, respectively) on synthetic nutrient agar (SNA) (1 disc per seed), growth delay and early foliage blight (including ripening disorder) with rotting of roots and stem bases occurred. Defect rates were 22% and 84% for the plants inoculated with strains MAFF150117 and MAFF150118, respectively. Control plants simultaneously treated with aseptic SNA discs had no symptom. The fungal strains were consistently isolated from all the inoculated plants, but not from healthy controls, demonstrating that the fungal strains were virulent to rice. Additionally, a decrease tendency of grain yield without symptom on foliage and roots was detected on a rice cultivar (cv. Koshihikari that is cv. Norin No. 1 × cv. Norin No. 22) inoculated with strain MAFF150117 in another pot experiment. Ophiosphaerella korrae is also known as a pathogen causing spring dead spot or necrotic ring spot of Bermudagrass (Wetzel et al., 1999ab; Camara et al., 2000; Iriarte et al., 2004; Gullino et al., 2007; Perry et al., 2010; Sasaki et al., 2010), Kentucky bluegrass (Wetzel et al., 1999a; Camara et al., 2000, 2001; Hayakawa et al., 2004; Wong et al., 2015), Louisiana grass (Wetzel et al., 1999a; Camara et al., 2000) and Zoysiagrass (Hayakawa et al., 2004; Tredway and Butler, 2007). We will investigate varietal difference against O. korrae as well as the fungal emergent ecology in the future.

[References] Camara et al. (2000) Mycologia 92:317-325 Camara et al. (2001) Mycol Res 105:41-56 Gullino et al. (2007) Pl Dis 91:1200 Hayakawa et al. (2004) J Jpn Soc Turf Sci 33 (Supplement 1):24-25 Hong et al. (2018) Pl Dis 103(1):158 Iriarte et al. (2004) Pl Dis 88:1341-1346 Perry et al. (2010) Mycopathologia 169:395-402 Sasaki et al. (2010) Jpn J Phytopathol 76(3):158 Tomioka et al. (2019a) Abstracts of papers presented at the 44th annual meeting of the pesticide science society of Japan, p 82 Tomioka et al. (2019b) Abstracts of papers presented at the 63th annual meeting of the mycological society of Japan, p 64 Tredway and Butler (2007) Pl Dis 91:1684 Wetzel et al. (1999a) Mycol Res 103:981-989 Wetzel et al. (1999b) Pl Dis 83:1160-1166 Wong et al. (2015) Pl Pathol 44:545-555

 

How to cite: Tomioka, K., Nagata, K., Chiba, M., Hidekazu, K., Ishikawa, N., Kawakami, A., Masunaka, A., and Sekiguchi, H.: Virulence of a soil inhabiting fungus, Ophiosphaerella korrae, to rice , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22630, https://doi.org/10.5194/egusphere-egu2020-22630, 2020.

EGU2020-8063 | Displays | SSS10.5

Therapeutic and inclusive organic horticulture: an University-society collaborative learning experience

Juana Labrador, Aída Pérez, Marta M. Moreno, and Francisco Pérez-Vera

Therapeutic horticulture is a discipline which belongs to both society and health sciences that has its own identity, which differentiates it from others. It arises as a result of the complementary fusion of two disciplines: horticulture and therapy or rehabilitation. In the therapeutic field, it incorporates some knowledges about physical, cognitive and sensory disabilities, different pathologies, psychosocial problems and special needs. Around horticulture, it allows us to develop knowledge about agriculture, gardening, landscaping, environment and others. It has been used, for educational and socialization purposes, for more than half a century, since then with great implantation and recognition in many countries.

The implementation of an organic garden with pedagogical purposes for students of Agroecology in the School of Agricultural Engineering of the University of Extremadura (Spain), has been the scene for the realization of a collaborative project of integrative - teaching - learning strategy between the University and the “Sorapán de Rieros” Foundation. This project has allowed the use of the ecological orchard created for pedagogical purposes based on the needs of students with mental disorders of different nature with whom the Foundation works, connecting then different points of view.

The specialized training in Permaculture, Organic Agriculture and Agroecology, the tutoring work with specific methodologies developed by the expert staff of the Foundation in Psychology and Psychiatry, as well as the coexistence with the University students has been an enriching experience, with enormously satisfactory results in the improvement of mental and physical health, as well as the labor integration of the Foundation students.

Keywords: Therapeutic horticulture, inclusive horticulture, mental health, organic farming, permaculture.

How to cite: Labrador, J., Pérez, A., Moreno, M. M., and Pérez-Vera, F.: Therapeutic and inclusive organic horticulture: an University-society collaborative learning experience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8063, https://doi.org/10.5194/egusphere-egu2020-8063, 2020.

EGU2020-17394 | Displays | SSS10.5

The use of hydromulches in organic farming: Effect on different soil parameters in Central Spain

Marta M. Moreno, Jaime Villena, Sara González-Mora, Concepción Atance, Manuel Ramírez, Juan A. Campos, and Carmen Moreno

In recent years, the problem arising from the weed control in perennial crops is increasing, both in young woody crops during the first years of cultivation and in established plantations. The control of weeds through herbicides, the most widespread practice, presents many inconveniences, among which we can mention the appearance of weeds resistant or tolerant to them, crop phytotoxicities, especially in young plantations, or the significant reduction in the active materials allowed. Another aspect to take into account is the search for techniques that allow saving crop water consumption by reducing soil evaporation

Therefore, in this work we evaluate the effect of three mixtures based on by-products derived from the agricultural sector, mixed with a binder and recycled paper paste and applied in liquid form on the ground with subsequent solidification (hydromulch), on different soil parameters (soil water content, temperatura and flow of CO2) in a young olive plantation in containers of 700 liters capacity. Additionally, two control treatments were included (manual weeding and a no-weeding treatments).

In summary, and as preliminary results, hydromulches increased the soil water content, reduced slightly the soil temperature in the summer season and increased the flow of CO2, indicative of a higher soil microbial activity, closely related with the air temperature and the soil moisture. These preliminary results position hydromulches as an interesting alternative to herbicides and the conventional plastic mulches.

 

Keywords: hydromulches, soil CO2 flow, soil temperatura, soil water content.

Acknowledgements: Project RTA2015-00047-C05-03 - INIA (Spanish Ministry of Economy and Competitiveness).

How to cite: Moreno, M. M., Villena, J., González-Mora, S., Atance, C., Ramírez, M., Campos, J. A., and Moreno, C.: The use of hydromulches in organic farming: Effect on different soil parameters in Central Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17394, https://doi.org/10.5194/egusphere-egu2020-17394, 2020.

EGU2020-8489 | Displays | SSS10.5

Bringing (Tracking) polymicrobial biofilms in Biogeosystem Technique methodology

Alexander Swidsinski, Valery Kalinichenko, Alexey Zavalin, Alexey Glinushkin, Abdulmalik Batukaev, Peter Mukovoz, Tatiana Minkina, Svetlana Sushkova, Saglara Mandzieva, Vladimir Chernenko, Sergey Gudkov, and Marina Burachevskaya

Organic biodegradation is a microbial controlled process that significantly influences soil fertility. The microorganisms involved are polymicrobial and organized in communities. Beyond this general statement, there are no reliable data available on the occurrence, structure and composition of polymicrobial biofilms in soil. The few published data are based on sequence analysis of unsystematically raised soil samples and provide no information to the involved biofilms, their structural organization or adherence to particles, which they are biodegrading.

The objective of the following proposal is tracking down polymicrobial communities and biofilms, which are responsible for biodegradation and which in turn, can be used as starter, indicator, and control tools for the targeted soil- and landscaping.

Over the last 30 years, the laboratory of polymicrobial infections and biofilms of the Charité hospital has developed multiple skills in identification, characterizing and monitoring of functional activity of polymicrobial biofilms in human body and gut specifically. One of the most striking results of these studies was the assessment, that bacteria within specific habitats of the mouth, tonsils, vagina or gut are not a faceless mixture of the once acquired participants, but structurally strictly ordered polymicrobial communities in which each participant takes its specific functional place.

Since the biofilms do not occur in all systems and at any time in relevant amounts, the mapping of biofilms is unavoidable and intentional. The assessment of polymicrobial communities on the FISH methods basis provides the biofilms mapping for the following objectives:

- identification of structured polymicrobial biofilms responsible for optimal composting, maximal soil fecundity, and reduction of environmental soil burden;

- modeling of soil fecundity based on polymicrobial starter and defined factors controlling their activity such as water supply, aerobe/anaerobe conditioning, pH, humic acids additives and other;

- testing of substrate bound polymicrobial biofilms as starter for the shaping of different lands and agricultures;

- development of soil-microbiological theoretical and technical fundamentals for the long-term soil improvement and efficient environmentally safe organic wastes recycling into the synthesized soil aggregate system under minimal sufficient intra-soil moistening and appropriate intra-soil mineral and organic matter, and waste load  (Biogeosystem Technique – BGT*).

The biochemical activity of the microorganisms till now is investigated solely in pure cultures. As soon as more than three different taxa are involved, the cultivation of microorganisms got problematic.

The main objective is the development of soil-microbiological theoretical and technical fundamentals for the long-term soil improvement and efficient environmentally safe organic wastes recycling in the synthesized soil aggregate system, for which microbial activity is decisive for polymicrobial infections and biofilms transformation into safe fertile substances.

Till now nothing is known about homology or interactions in arrangement and functioning of polymicrobial communities of colon and soil, and a new knowledge to fill this is needed.

Objectives of the study: to comparatively describe polymicrobial community dynamics in colon and soils; using BGT* methodology, to promote the function of polymicrobial biofilms in soil as a specific starter to insure the soil fertility, and to improve the human and soil health.

How to cite: Swidsinski, A., Kalinichenko, V., Zavalin, A., Glinushkin, A., Batukaev, A., Mukovoz, P., Minkina, T., Sushkova, S., Mandzieva, S., Chernenko, V., Gudkov, S., and Burachevskaya, M.: Bringing (Tracking) polymicrobial biofilms in Biogeosystem Technique methodology, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8489, https://doi.org/10.5194/egusphere-egu2020-8489, 2020.

EGU2020-19208 | Displays | SSS10.5

Effect of different agricultural management practices on soil quality in maize intensive production.

Ana Luísa, carlos oliveira, Isabel Campos, Oscar Pelayo, Dalila Serpa, Jacob Kaizer, Ana Paula Gomes, and Nelson Abrantes

Potential changes in soil quality as result of intensive agriculture are increasingly raising concerns about associated impacts and the need to implement more sustainable agricultural practices. Among several intensive crops, maize, an important human food source, is one of the most intensely produced around the world, representing harmful consequences for soil quality. Therefore, it is fundamental to understand how different agricultural management practices can influence soil quality. Hence, the main objective of this study was to compare the implications of the conventional tillage versus non-tillage in soil quality. Additionally, it was also an objective to evaluate how the implementation of herbage strips, non-irrigated and fallow areas, contribute to soil sustainability and biodiversity preservation, compensating the impacts of intensive maize cultivation. For this purpose, an integrative approach was adopted including physical-chemical parameters (e.g. bulk density, pH, electrical conductivity, field capacity, organic matter, nutrients) and biological parameters (e.g. phosphatase activity, urease activity, ecotoxicological tests with soil organisms).

The obtained results revealed the existence of differences between the analyzed practices, mainly associated with chemical parameters and nutrients. When comparing no-till and conventional sowing, higher mean values for no-till were observed for the following parameters: organic matter, cation exchange capacity, nitrogen, phosphorus, nitrates, calcium, copper, zinc, iron, manganese, urease activity and invertase activity. Hence, this study highlights the importance of the implementation of nonconventional agricultural practices, as is the case of no-till, as promoters of productivity and soil sustainability. Additionally, different management practices as herbage strip, non-irrigated and fallow areas around conventional areas play an additional role in soil quality and biodiversity preservation.

How to cite: Luísa, A., oliveira, C., Campos, I., Pelayo, O., Serpa, D., Kaizer, J., Gomes, A. P., and Abrantes, N.: Effect of different agricultural management practices on soil quality in maize intensive production., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19208, https://doi.org/10.5194/egusphere-egu2020-19208, 2020.

Predictions of N mineralization are still difficult but maybe this is due to the methodologies. Many soil tests have been proposed to predict N mineralization between field and laboratory experiment. Incubations of soil in the laboratory under controlled environmental conditions are most commonly used to assess N mineralization rates both from SOM and from added organic materials. However, predicting N mineralization due to the methods (the impact of using air-dried and fresh soil) has never been assessed before. If the results differ between the methods commonly used, there is a serious problem. Therefore, the objective of this study was to evaluate the influence of the incubation methods (air-dried vs fresh soil) to predict N mineralization. The N mineralization potential from fifteen agricultural soils in West and East Flanders – Belgium, were determined by aerobic incubation methods used air-dried and fresh soil at (20 – 250C) for 84-days in the laboratory. The results indicated that total mineral nitrogen (NH4+ + NO3-) concentrations and carbon content of microbial biomass (MBC) did not differ significantly between these methods. Nitrogen was mineralized in fresh soil incubations (0.36 mg N. kg-1 soil day -1) while in air-dried soil (0.31 mg N kg-1 soil day -1). Thus, the results generate that it may be conceivable to predict N mineralization by these two methods in controlled conditions.

How to cite: Banaty, O. A., Willekens, K., and De Neve, S.: How does measuring methodology impact N mineralization in controlled conditions and relations to soil biological parameters: air dried versus fresh soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22658, https://doi.org/10.5194/egusphere-egu2020-22658, 2020.

EGU2020-7779 | Displays | SSS10.5

Effects of nitrogen fertilization on soil fauna – A meta-analysis

Bibiana Betancur Corredor, Birgit Lang, and David Russell

The impact of agricultural activities on soil fauna can be highly variable, depending on the management options adopted. High-input agricultural practices can promote a reduction in diversity of soil microarthropod communities but, at the same time can also favor bacterial-feeding fauna through the increase of bacterial foodweb pathways. In contrast, low-input practices can increase the dominance of fungal-feeding fauna through the promotion of fungal pathways. Responses also vary with time after fertilizer application and are strongly dependent on crop species or shifts in plant species composition due to fertilization.

The type of fertilizer, organic or inorganic, can also have diverse effects on soil organisms. Organic fertilizers can increase the population of soil decomposers serving as nutrient sources for other soil organisms. Inorganic fertilizers can indirectly affect the soil organisms by increasing crop growth, potentially leading to higher soil organic matter generation. However, inorganic fertilizers can also reduce species richness and abundance of microarthropods and earthworms due to acidification. Other soil fauna such as collembolan may not be particularly sensitive to nitrogen fertilization types. Nitrogen fertilization may disturb soil organisms in a manner that affects ecosystem functioning, but the links are not yet well quantified. Therefore, a compilation of available experimental field data on the effects of nitrogen fertilization on taxonomic and functional groups of soil fauna is needed to clarify the patterns and mechanisms of responses.

We are currently working on a quantitative review based on a global meta-analysis that will use paired observations from studies published across several countries. With this review, we aim to synthesize and discuss the current global knowledge on the effects of nitrogen organic and inorganic fertilization on soil fauna. Depending on data availability, we aim to quantify the responses of several groups of soil organisms to synthetic and organic nitrogen inputs, considering factors such as application rate or crop type. Our findings will be used for the development of modeling tools for the prediction of the impacts of agricultural management practices on soil functions.

How to cite: Betancur Corredor, B., Lang, B., and Russell, D.: Effects of nitrogen fertilization on soil fauna – A meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7779, https://doi.org/10.5194/egusphere-egu2020-7779, 2020.

EGU2020-18732 | Displays | SSS10.5

Flux fields affect the spatial distribution of phosphorus in a tilled loamy soil

Stefan Koch, Henrike Lederer, Petra Kahle, and Bernd Lennartz

Heterogenous flow pathways through the soil are a major component in the transport of water, dissolved and particle-bound nutrients like phosphorus (P) to water resources, and promote the eutrophication of water bodies. Non-uniform water flow patterns may also influence the spatial variability of the P-content in soils.

This study was designed to understand the spatial distribution of P in agriculturally used soils and the mechanism causing P accumulation and depletion at the centimeter scale. We conducted three replicate dye tracer experiments using Brilliant Blue on a loamy Stagnosol in North-Eastern-Germany. The plant-available phosphorus of stained and unstained areas was analyzed using double lactate extraction and diffusive gradients on thin films (DGT).

The DL-extractable P and the DGT-extractable P were strongly correlated (p<0.001, R²=0.63) confirming that DL-P is a good measure for the mobile phase of soil phosphorus.

The plant available P contents of the topsoil were significantly higher than those of the subsoil in all three replicates. The topsoil’s stained areas showed higher P contents than unstained areas, while the opposite was found for the subsoil. The P contents varied strongly over the soil profiles (0.4 to 11.2 mg P 100 g-1) and different categories of flow patterns (matrix flow, flow fingers, preferential flow and no flow). The P contents of these flow patterns differed significantly from each other and followed the order: Pmatrix flow > Pfinger flow > Pno flow > Ppreferential flow.

We conclude that P tends to accumulate along flow pathways in managed and tilled topsoils, while in subsoils at a general lower P level, P is depleted from the prominent preferential flow domains. It is likely, that P in the shallow groundwater origins from preferred flow zones from the subsoil.

How to cite: Koch, S., Lederer, H., Kahle, P., and Lennartz, B.: Flux fields affect the spatial distribution of phosphorus in a tilled loamy soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18732, https://doi.org/10.5194/egusphere-egu2020-18732, 2020.

It is widely recognised that the intensification of agriculture has had significant impacts on soil condition and function, negatively affecting soil structure, fertility and biological diversity. Such impacts have contributed to reduced soil carbon storage, hydrological function, the storage of nutrients, the filtration of pollutants and potential crop productivity. It is therefore important that agricultural systems adapt to ensure the provision of food alongside multiple other critical ecosystem services (ES). Developing our understanding of how to quantify soil function in a given state is important in calculating the value of soil ES and natural capital (NC) under different management scenarios. It is critical for both the establishment of cost effective agri-environment policies and in driving sustainable on-farm decision making at management appropriate scales. 

This study aims to examine how field methods, used for the assessment of soil condition and function, can be applied to determine (i) How baseline soil condition measurements relate to soil function across organic and conventional field sites and (ii) Whether enhanced soil function is observed in agricultural soils under organic agriculture and if so, whether the potential economic benefits could offset the loss in crop productivity.

The study was conducted at Clinton Devon Estate in South West England. Nine conventional and nine organic fields, reflecting the main rotational land uses on the estate, were selected. Baseline soil samples were collected from each field in winter 2018 for the analysis of; total carbon (TC), total nitrogen, plant available phosphorus, soil texture, pH and bulk density (BD). Land management data was collected from the farmers for each field. Four soil functions/services were selected for monitoring; nutrient filtering and retention, soil organic matter decomposition, carbon storage and crop production. Crop yields for maize, cereals and grass silage were collected from each of the soil sampled points immediately ahead of harvest in 2019. BD and TC from each sample were used to estimate carbon storage.  Three sites from each field were selected for the assessment of soil organic matter decomposition using the standardised and globally applied Tea Bag Index method (Keuskamp et al., 2013). A smaller sub-set of six fields (three organic and three conventional) were selected for the determination of nutrient filtering and retention. Porous pots, ten replicates per field site, were installed below crop rooting depths in October 2018 for monitoring through the 2018 – 2019 and 2019 – 2020 drainage seasons. A sample of soil pore water was extracted (fortnightly) and analysed for nitrate, nitrite, ammonia and phosphate, allowing a comparison of nutrient leaching between sites. 

The data from this study will be presented for the assessment of whether quantification of soil functions at the field scale can help in the identification of useful baseline indicators and contribute to the valuation of soil ES and NC. 

 

 

References:

Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sarneel, J.M. and Hefting, M.M. (2013), Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol, 4: 1070-1075. doi:10.1111/2041-210X.12097

How to cite: Holden, M., Brazier, R., Day, B., Bridgewater, S., and Watkins, Y.: Exploring field methods for the assessment of soil condition and soil function in order to estimate ecosystem service and natural capital value across organic and conventional field sites , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5797, https://doi.org/10.5194/egusphere-egu2020-5797, 2020.

EGU2020-6654 | Displays | SSS10.5

Assessing the value and quality of German soils under agricultural use

Annelie Säurich and Holger Lilienthal

Halting and reversing soil degradation as well as protection and sustainable use of soil as a resource are part of the United Nations Sustainable Development Goals. Despite the vital significance and essential functions of soil, massive amounts of fertile soil worldwide are lost due to improper land use. In Germany, approximately 66 ha of soil are damaged partly or completely in their soil functions daily. The main issues are soil erosion, land area claims for housing estate and transportation, and pollution. Until now, precise spatial location and assessment of the loss of valuable soil in terms of fertility and productivity has not been quantifiable and therefore not controllable.

In the SOIL-DE project, indicators to evaluate the functionality, potential, intensity of use, and vulnerability of soils are developed in order to be able to assess the quality and value of soils, both in retrospective and under current agricultural use. The aim of this survey is (i) to detect the loss of land over the past ten years in high spatial accuracy, (ii) to determine the fertility of the soil and (iii) to identify risk areas, i.e. regions with particularly high soil loss rates and high soil profitability. The threat to soil, the fertility and impairment of soil functions by changes in land use, are to be recorded nationwide and statewide. Therefore, the evaluation of time series from satellite images is used in combination with official soil information at different spatial resolution, as well as digital elevation models and climatic data. In this study, different rating systems are investigated including e.g. the Muencheberg Soil Quality Rating (ZALF), biotic potential yield, resistance to erosion, filter, buffer and transformation function, and runoff regulation. First results will be presented.

How to cite: Säurich, A. and Lilienthal, H.: Assessing the value and quality of German soils under agricultural use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6654, https://doi.org/10.5194/egusphere-egu2020-6654, 2020.

EGU2020-9399 | Displays | SSS10.5

A quantitative approach of the slake test for assessing soil structural stabilty

Frédéric Vanwindekens, Brieuc Hardy, Christian Roisin, and Fabienne Delporte

Soils are at the heart of agro-ecosystems. In various parts of Europe, soils, their structure and function are under pressure from intensive farming practices and global changes. The main consequences are a loss of biodiversity, a decrease in organic matter content, an increase in their susceptibility to erosion. In this context, some farmers are adopting innovative practices to increase the quality of their soils. Among innovative practices, those related to conservation agriculture are particularly highlighted.

Conservation Agriculture practices are based on the threefold principles of (i) minimizing mechanical soil disturbance (e.g. no tillage), (ii) permanent soil cover, and (iii) diversification of crop species grown in the plots. These practices are encouraged by the farmers who adopt them and some stakeholders (ASBLs, advisors, etc.). Some related practices raise questions (use of herbicides) and the effects of the practices on the soil are subject to debate within the scientific communities.

The physical properties of soils are traditionally estimated by a series of laboratory tests that are resource-, time- and money-intensive. We propose to present a new pragmatic approach to assess the functioning and quality of agricultural soils, the 'slake test'. In the development phase, this approach has been tested for contrasting fertilisation and tillage modalities in various long-term trials at the Walloon Agricultural Research Centre (CRA-W).

A slake test is a simple and visual experiment shown by promoters of conservation agriculture. It consists of immersing a metal basket containing a soil sample and observing how this sample decomposes. It is done qualitatively, in two glass cylinders to compare soil samples from ploughed and no-till plots. Although this test is a quick way to assess the structural stability of a soil, its protocol has not been formalized and its results objectified by a quantitative method. We developed an original approach, the ©QuantiSlakeTest, aimed at continuously measuring the disintegration of the soil sample.

This original experimental design was first tested by comparing two contrasted treatments of a long term field experiment in Chastres (Belgium). This field experiment was conducted between 2004 and 2018 by the CRA-W for comparing soil management practices. Samples were taken from plots of treatment T (tillage) and treatment NT (no-tillage) in five repetitions (10 plots). In each plot, seven samples were taken in the superficial layer using Kopecky rings. The samples were dried 48 hours at 50°C before being tested. 

The application of ©QuantiSlakeTest highlights significant differences between tilled and non tilled plots. After one minute, the relative residual weight are significantly different between treatments (T: 0.76±0.16, NT: 0.95±0.06, p<0.001). At stabilisation, after 20 min, samples from tilled plots have lost more than 50% of their weight, while those from no-tilled plots have lost less than 30% (T: 0.49±0.32, NT: 0.71±0.22, p<0.001).

These early results confirm that ©QuantiSlakeTest is a credible approach for assessing the effect of soil management practices on soil stability, in controlled experimental conditions. We are now finetuning the protocol, trying the approach with room temperature dried samples and comparing other modalities (fertilisation, organic matter amendment).

How to cite: Vanwindekens, F., Hardy, B., Roisin, C., and Delporte, F.: A quantitative approach of the slake test for assessing soil structural stabilty, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9399, https://doi.org/10.5194/egusphere-egu2020-9399, 2020.

EGU2020-7366 | Displays | SSS10.5

Evaluation of agricultural field traffic by modelling traffic intensity and related soil compaction risk

Michael Kuhwald, Katja Augustin, and Rainer Duttmann

Soil compaction by field traffic is one of the main threats to all agricultural soils. Besides lower biomass productivity, compacted soils have a reduced regulation function which affects the air, water and nutrient cycles. To evaluate and mitigate soil degradation by field traffic, it is important to know where, when and to what extent soil compaction may occur during certain traffic events.

This study presents an approach to assess soil compaction risk at the field scale, considering the spatio-temporal changes of soil strengths and the machinery-induced changes in load and stress. Two newly developed models, the field traffic model “FiTraM” and the spatially explicit soil compaction risk assessment model “SaSCiA”, were used to evaluate the individual soil compaction risk for each field traffic activity during the maize cropping season. RTK-GPS data recorded by all farm vehicles served for the spatial calculation of traffic intensity and changing wheel loads at high spatial resolution (< 30 cm). These data were subsequently used for soil compaction risk assessment based on readily available soil and weather data.

Our model results indicated that nearly 95% of a field was trafficked throughout the maize-season; harvest traffic at high wheel load contributed to more than the half of the total trafficked area. Furthermore, the analyses showed that soil compaction risk varies greatly within individual fields. Soil moisture and soil texture variation inside the field results in varying soil strength and, therefore, in varying effects of field traffic on soil functions. Thus, one part of a field can be negatively affected by field traffic through an increase in dry bulk density and a decrease in hydraulic conductivity, while the other part is not affected.

In addition to the spatio-temporal assessment of field traffic intensity and soil compaction risk, the presented approach enables the calculation of maximum allowable wheel load until no harmful soil degradation occurs. Thus, the approach may support farmers in their decision-making for a more sustainable soil management.  

How to cite: Kuhwald, M., Augustin, K., and Duttmann, R.: Evaluation of agricultural field traffic by modelling traffic intensity and related soil compaction risk, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7366, https://doi.org/10.5194/egusphere-egu2020-7366, 2020.

EGU2020-18436 | Displays | SSS10.5

Evaluating Soil functions based on modeling under the impact of land use

Ulrich Weller, Birgit Lang, Stefanie Mayer, Bastian Stößel, Hans-Jörg Vogel, Martin Wiesmeier, and Ute Wollschläger

While the change of soil functions under different management is important in the evaluation of long term strategies in agriculture, they are often difficult to be quantified. The obstacles are measurement problems on one hand, and on the other hand predictions for new management strategies and changing climate scenarios require estimates for yet unknown conditions. Comprehensive modeling of soil processes provides a road to both: Soil properties and processes that are per se difficult to measure can be included in a model to derive suitable indicators for soil unions. In this way, also, predicitons in the future for different climate scenarios and management strategies are possible.

In this presentation we give definitions for a limited set of indicators to quantify the most important soil functions in terms of both the current soil state and the soils’ potential to fulfill these functions. This includes the production of biomass, storage of carbon, storage and filtering of ground water, nutrient cycling, and habitat for biodiversity.

The quantitative evaluation of soil functions byel based indicators and their dynamics facilitates further socio-economic assessment and the development tools for governance.

How to cite: Weller, U., Lang, B., Mayer, S., Stößel, B., Vogel, H.-J., Wiesmeier, M., and Wollschläger, U.: Evaluating Soil functions based on modeling under the impact of land use, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18436, https://doi.org/10.5194/egusphere-egu2020-18436, 2020.

EGU2020-10280 | Displays | SSS10.5 | Highlight

Effects of long-term field experiments on early stage litter decomposition in Austria and Sweden

Maria Regina Gmach, Martin A. Bolinder, Lorenzo Menichetti, Thomas Kätterer, and Taru Sandén

Soil organic matter decomposition affects the local and global C cycles. Decomposition is mainly affected by soil type and climatic conditions, for a given quality of organic material. This study tested the effect of land use and management, litter type, and climate on the early stage decomposition rate in long-term field experiments (LTEs) in Austria and Sweden. Standardized litter (Rooibos and Green tea) were used according to the Tea Bag Index (TBI) protocol (Keuskamp et al. 2013) for comparison of litter decomposition rate (k) and stabilization factor (S) in 11 sites in Austria (2015 and 2016) and 9 sites in Sweden (2016). The tea bags were buried at 8 cm depth and collected after ~90 days. Austrian LTEs focused on mineral nitrogen fertilization, mineral potassium fertilization, organic fertilization, tillage systems, and crop residues management. The LTEs evaluated in Sweden focused mainly on annual and perennial crops, mineral fertilization, and tillage systems. The impact of environmental parameters (air temperature and precipitation) was modeled to normalize the variance due to climatic effects at each site. The preliminary results show that in Austria TBI decomposition differed more between sites than between treatments at the same LTE. Minimum tillage treatment had significantly higher decomposition rates compared to reduced and conventional tillage. In Sweden, decomposition rate differed more between treatments than between sites. Fertilized plots showed higher stabilization than unfertilized, and maximum N fertilization had the highest k, while unfertilized had the lowest k. The effect of different tillage systems on k and S were variable across sites and treatments, although ploughing tended to result in the lowest k. The northernmost site resulted in the highest k value. Results indicated higher stabilization in perennial forage crops compared to annual crops. We also considered time-series decomposition for some sites with measurements at different time points by the TBI approach (retrieving tea bags after 15, 30, 60, and 90 days), and the use of Random Forest regressions to evaluate the importance of pedo-climatic variables on early stage decomposition.

How to cite: Gmach, M. R., Bolinder, M. A., Menichetti, L., Kätterer, T., and Sandén, T.: Effects of long-term field experiments on early stage litter decomposition in Austria and Sweden, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10280, https://doi.org/10.5194/egusphere-egu2020-10280, 2020.

EGU2020-21738 | Displays | SSS10.5

Changes in soil quality indices at different land uses in Semirom area

Sattar Chavoshi Borujeni, Elham Chavoshi, and Hamideh Nouri

Background and Objectives: Assessment of soil quality indices is important for identifying the effect of land use on soil function. Soil organic matter (SOM) is a major indicator of soil quality due to its capacity in affecting soil structure by enhancing aggregation. The aim of this study was to quantify the soil quality changes in pasture and agricultural lands around the Semirom city.

Materials and Methods: The study was conducted in a completely randomized design with five different levels including pastures, orchards, rain fed farming, irrigated cultivations of wheat and barley with 6 repetitions. A composite random soil sampling was done from the depth of 0-15 cm. Soil properties such as electrical conductivity (EC), pH, wet aggregate stability, particulate organic matter (POM), soil organic carbon (SOC) and carbohydrates were measured in each land use.

Results: The results showed that organic carbon (OC) and particulate organic carbon (POC) increased significantly in irrigated cultivation as compared to pasture. However particulate organic carbon was lower in rain fed farming compared with pasture. POC content were at least 2 times greater than those values in pasture and rain fed wheat farmlands. The highest carbohydrate amounts were observed in the irrigated wheat field (2 g kg-1) while the lowest values were belonged to the rain fed wheat cultivations (0.94 g kg-1). The content of carbohydrate had an increase of 40% in irrigated wheat field and a decrease of 50% in rain fed wheat field compared with pasture.The orchard and irrigated wheat and barley land uses had the highest mean weight diameter (MWD) of soil aggregates and the lowest values were obtained in the rain fed wheat and barley farming.

Conclusion: Overall, the survey results indicate a better soil quality of the orchards and irrigated farmlands, whereas the rain fed farmlands had more feeble soil quality as compared to other investigated land uses. Particulate organic carbon and carbohydrate showed greater sensitivity to land use changes. Therefore, these parameters are better indicators as compared to other investigated indicator for evaluating soil quality in the studied area.

How to cite: Chavoshi Borujeni, S., Chavoshi, E., and Nouri, H.: Changes in soil quality indices at different land uses in Semirom area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21738, https://doi.org/10.5194/egusphere-egu2020-21738, 2020.

EGU2020-8506 | Displays | SSS10.5

Modelling the effect of agricultural policy scenarios on soil ecosystem services at the continental level

Luis Garrote, David Santillan, and Ana Iglesias

The study presents a geographically explicit model that uses multiple layers of environmental and social information to assess the environmental footprint of soil management practices at a 10 x 10 km resolution at the continental scale. Changes in soil environmental footprint are quantified in terms of the effect of management practices on soil productivity, nutrients and biodiversity. Changes in soil environmental footprint are quantified in terms of their effects on soil organic carbon, productivity and biodiversity. The central actor in the analytical process is the farmer, who is managing a plot of land where a certain crop is grown under a typical farming system. This plot of land is subject to policy scenarios, determined by the combination of agro-environmental determinants at the regional level, defined within the targets of the Common Agricultural Policy, environmental policy, market conditions and socio-economic development. Functional relations to define the effect of agricultural management practices on ecosystem services are formulated in qualitative terms. Results of different soil quality indicators are then combined to produce descriptions of improvement of soil environmental footprint. Soil Environmental footprint scenarios are then analysed in terms of improvements with respect to the current situation. Our results show that the Expected scenario is not enough to make significant contributions towards improving the soil environmental footprint and the Towards 2050 scenario delivers important benefits. The Regional Targets scenario delivers important benefits in key challenging areas, where the effects improve greatly the soil environmental footprint. The content of the study is based on the results of the iSQAPER (http://www.isqaper-project.eu/) H2020 project.

How to cite: Garrote, L., Santillan, D., and Iglesias, A.: Modelling the effect of agricultural policy scenarios on soil ecosystem services at the continental level, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8506, https://doi.org/10.5194/egusphere-egu2020-8506, 2020.

EGU2020-19010 | Displays | SSS10.5

A soil carbon index to gauge soil health in England and Wales

Jonah Prout, Keith Shepherd, Steve McGrath, Guy Kirk, and Stephan Haefele

Soil organic carbon (SOC) is a key indicator of soil health, however, guideline values which indicate degradation and good status have been difficult to define. For soils in England and Wales, indicative management ranges were developed using ranges of SOC from the National Soil Inventory of England and Wales (NSI) for precipitation and clay content classes (Verheijen et al., 2005). Soils with higher clay content are often expected to have higher SOC content and this was evident in the management ranges. SOC interacts with clay particles through surface interactions and this, alongside occlusion in aggregates, is suggested to help protect SOC from decomposition and loss (Dungait et al., 2012). The management ranges, however, lacked a mechanistic perspective such that these might not be optimal ranges for soil physical properties and soil structure.

We have used the NSI to investigate how thresholds of clay/SOC might be used to assess SOC status. A clay/SOC ratio of 10 was proposed as a clay-SOC association capacity derived from correlations with soil physical properties (Dexter et al., 2008) and a further two thresholds (clay/SOC = 8 and 13) were proposed to indicate very good and degraded soil structural quality alongside the original threshold (Johannes et al., 2017). Comparing the distribution of soils under different land uses with the clay/SOC threshold ranges gave an increasing quality trend of arable << ley grassland < permanent grassland ≈ forest. The results suggested that 37% of arable soils would be considered degraded compared with 6% for grassland soils.

We have used the thresholds to define an index on a scale where negative values indicate degraded soils, and positive values (up to 1) suggest increasing quality beyond which a soil is considered very good. Data from the Woburn ley-arable rotation experiment (Johnston et al., 2017) have also been evaluated with this index to see how the index value might change with time under different managements. As a quantitative metric for SOC, this could form a monitoring framework and feed into other soil health schemes to assess a soil with respect to a clay-interaction capacity and expected soil quality.

 

References

Dexter et al. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144(3–4), 620–627.

Dungait et al. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781–1796.

Johannes et al. (2017). Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma, 302, 111.

Johnston et al. (2017). Changes in soil organic matter over 70 years in continuous arable and ley-arable rotations on a sandy loam soil in England. European Journal of Soil Science, 68, 305-316.

Verheijen et el. (2005). Organic carbon ranges in arable soils of England and Wales. Soil Use and Management, 21, 2–9.

How to cite: Prout, J., Shepherd, K., McGrath, S., Kirk, G., and Haefele, S.: A soil carbon index to gauge soil health in England and Wales, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19010, https://doi.org/10.5194/egusphere-egu2020-19010, 2020.

EGU2020-12860 | Displays | SSS10.5

Development of an IoT system for sensing monitoring of soil properties

Byeongchul Lee, Kyoung Jae Lim, Jae E Yang, Dong Seok Yang, and Jiyoeng Hong

In the age of big data, constructing a database plays a vital role in various fields. Especially, in the agricultural and environmental fields, real-time databases are useful because the fields are easily affected by dynamic nature phenomena. To construct a real-time database in these fields, various sensors and an Internet of Things (IoT) system have been widely used. In this study, an IoT system was developed to construct soil properties database on a real-time basis and aim to a big data system analysis that can assess ecosystem services provided from soil resources. The IoT system consisted of three types of soil sensors, main devices, sensor connectors, and subsidiary devices. The IoT system can measure soil temperature, moisture, and electrical conductivity (EC) data on a five-minute interval. Also, the devices were applied to two test-beds near Chuncheon city in South Korea and have been testing for the stability and availability of the system. In a further study, we will add various soil sensors and functions into the developed IoT system to improve their availability. If the developed IoT system becomes to be stable and functional, it can contribute to constructing soil properties database on a real-time basis and a big data system that assesses soil ecosystem services.

How to cite: Lee, B., Lim, K. J., Yang, J. E., Yang, D. S., and Hong, J.: Development of an IoT system for sensing monitoring of soil properties, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12860, https://doi.org/10.5194/egusphere-egu2020-12860, 2020.

EGU2020-12870 | Displays | SSS10.5

AN UNSUPERVISED SOIL MOISTURE ESTIMATION MODELLING APPROACH USING C-BAND DUAL PolSAR DATA

Reet Kamal Tiwari and Akshar Tripathi

With the advent of remote sensing and its widescale implementation in the field of agriculture and soil studies, today remote sensing has become an integral non-evasive analysis and research tool. After decades of research with conventional optical remote sensing, both airborne and spaceborne, a need was felt to have an all-weather remote sensing data availability. Spaceborne SAR (Synthetic Aperture RADAR) or microwave remote sensing with its all-weather availability and high temporal resolution, owing to its penetration capabilities has been found highly suitable for the soil and crop health studies. Since, SAR remote sensing is highly sensitive to surface roughness and dielectrics in dry and moist soil conditions respectively, it becomes highly important to study and observe the variations of these properties in various polarisation channels. PolSAR (Polarimetric SAR) data with its different decomposition models has an advantage over conventional SAR data since it uses more than one polarisation channels and polarimetric decomposition models which consider several soil and crop parameters. This helps to study the RADAR wave interaction with the target easier. This helps in the proper and better study and understanding of retrieval of soil moisture and analysis of its variation over time. This study makes use of C-band Sentinel 1A satellite dual PolSAR, time series data of VV and VH polarisations. The datasets used are that of pre-monsoon and monsoon period of 2019, February to May respectively for Rupnagar area. In this study it has been aimed to model for retrieval of soil moisture based on RADAR backscatter values and Normalised Differential Moisture Indices values from Sentinel-1A and Sentinel 2 satellite imageries respectively. The process has been performed on both VV and VH polarisations and the results are analysed for both the time periods. Theoretically, it has been observed that VH polarisation yields better and nearer to ground truth results with least Root Mean Squared Error (RMSE) of 0.05 and high R2-Squared statistics of 0.72 (72%) in training and testing. This study aims at unsupervised modelling using satellite datasets for model development, training and validation and without the input of field data. The results though not very good yet give an idea of soil moisture estimation and is highly beneficial for areas and conditions when field validations and data collection is difficult or not possible. This study also aims at reducing field validation dependence. Once integrated with field data, accuracy is expected to increase.

How to cite: Tiwari, R. K. and Tripathi, A.: AN UNSUPERVISED SOIL MOISTURE ESTIMATION MODELLING APPROACH USING C-BAND DUAL PolSAR DATA, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12870, https://doi.org/10.5194/egusphere-egu2020-12870, 2020.

EGU2020-791 | Displays | SSS10.5

Volumetric soil quality modelling with machine learning in a diverse agricultural landscape in Andalusia, Spain

Tobias Rentschler, Martin Bartelheim, Marta Díaz-Zorita Bonilla, Philipp Gries, Thomas Scholten, and Karsten Schmidt

Soils and soil functions are recognized as a key resource for human well-being throughout time. In an agricultural and forestry perspective, soil functions contribute to food and timber production. Other soil functions are related to freshwater security and energy provisioning. In general, the capacity of a soil to function within specific boundaries is summarised as soil quality. Knowledge about the spatial distribution of soil quality is crucial for sustainable land use and the protection of soils and their functions. This spatial knowledge can be obtained with accurate and efficient machine-learning-based soil mapping approaches, which allow the estimation of the soil quality at distinct locations. However, the vertical distribution of soil properties is usually neglected when assessing soil quality at distinct locations. To overcome such limitations, the depth function of soil properties needs to be incorporated in the modelling. This is not only important to get a better estimation of the overall soil quality throughout the rooting zone, but also to identify factors that limit plant growth, such as strong acidity or alkalinity, and the water holding capacity. Thus, the objective of this study was to model and map the soil quality indicators pH, soil organic carbon, sand, silt and clay content as a volumetric entity. The study area is located in southern Spain in the Province of Seville at the Guadalquivir river. It covers 1,000 km2 of farmland, citrus and olive plantations, pastures and wood pasture (Dehesa) in the Sierra Morena mountain range, at the Guadalquivir flood plain and tertiary terraces. Soil samples were taken at 130 soil profiles in five depths (or less at shallow soils). The profiles were randomly stratified depending on slope position and land cover. We used a subset of 99 samples from representative soil profiles to assess the overall 513 samples with FT-IR spectroscopy and machine learning methods to model equal-area spline, polynomial and exponential depth functions for each soil quality indicator at each of the 130 profiles. These depth functions were modelled and predicted spatially with a comprehensive set of environmental covariates from remote sensing data, multi-scale terrain analysis and geological maps. By solving the spatially predicted depth functions with a vertical resolution of 5 cm, we obtained a volumetric, i.e. three-dimensional, map of pH, soil organic carbon content and soil texture. Preliminary results are promising for volumetric soil mapping and the estimation of soil quality and limiting factors in three-dimensional space.

How to cite: Rentschler, T., Bartelheim, M., Díaz-Zorita Bonilla, M., Gries, P., Scholten, T., and Schmidt, K.: Volumetric soil quality modelling with machine learning in a diverse agricultural landscape in Andalusia, Spain, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-791, https://doi.org/10.5194/egusphere-egu2020-791, 2020.

SSS10.7 – Scaling soil processes across space and time: leveraging models and data syntheses

EGU2020-3414 | Displays | SSS10.7 | Highlight

Viewing soil systems from the top-down can make microbial ecology predictive for ecosystem functions

Johannes Rousk and Lettice Hicks

Understanding the role of ecological communities in maintaining multiple ecosystem processes is a central challenge in ecology. Soil microbial communities perform vital ecosystem functions, such as the decomposition of organic matter to provide plant nutrition. However, despite the functional importance of soil microorganisms, attribution of ecosystem function to particular constituents of the microbial community has been impeded by a lack of information linking microbial processes to community structure.

Here, we propose a new conceptual framework to determine how microbial communities influence ecosystem processes, by applying a “top-down” approach. Looking from the “top”, we first view the microbial community associated with a specific function as a whole, and describe the dependence of microbial community processes on environmental factors (e.g. the intrinsic temperature dependence of bacterial growth rates), allowing us to define the aggregate functional response curve of the community. We then demonstrate that the whole community contribution to ecosystem function can be predicted, by parameterising the functional response curve with current environmental conditions. In a final step, we show how this functional information can be linked to the taxonomic community composition (amplicon assessments of microbial community composition) in order to identify “biomarker” taxa that capture microbial communities’ regulation of ecosystem processes and the susceptibility of microbial community structure and function to environmental change. Ultimately, these biomarkers may be used as a diagnostic tool, enabling predictions of ecosystem function from community composition information combined with environmental metadata.

How to cite: Rousk, J. and Hicks, L.: Viewing soil systems from the top-down can make microbial ecology predictive for ecosystem functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3414, https://doi.org/10.5194/egusphere-egu2020-3414, 2020.

EGU2020-13107 | Displays | SSS10.7

Spatial control of carbon dynamics in soil by microbial decomposer communities
not presented

Holger Pagel, Björn Kriesche, Marie Uksa, Christian Poll, Ellen Kandeler, Volker Schmidt, and Thilo Streck

Trait-based models have improved the understanding and prediction of soil organic matter dynamics in terrestrial ecosystems. Microscopic observations and pore scale models are now increasingly used to quantify and elucidate the effects of soil heterogeneity on microbial processes. Combining both approaches provides a promising way to accurately capture spatial microbial-physicochemical interactions and to predict overall system behavior. The present study aims to quantify controls on carbon (C) turnover in soil due to the mm-scale spatial distribution of microbial decomposer communities in soil. A new spatially explicit trait-based model (SpatC) has been developed that captures the combined dynamics of microbes and soil organic matter (SOM) by taking into account microbial life-history traits and SOM accessibility. Samples of spatial distributions of microbes at µm-scale resolution were generated using a spatial statistical model based on Log Gaussian Cox Processes which was originally used to analyze distributions of bacterial cells in soil thin sections. These µm-scale distribution patterns were then aggregated to derive distributions of microorganisms at mm-scale. We performed Monte-Carlo simulations with microbial distributions that differ in mm-scale spatial heterogeneity and functional community composition (oligotrophs, copiotrophs and copiotrophic cheaters). Our modelling approach revealed that the spatial distribution of soil microorganisms triggers spatiotemporal patterns of C utilization and microbial succession. Only strong spatial clustering of decomposer communities induces a diffusion limitation of the substrate supply on the microhabitat scale, which significantly reduces the total decomposition of C compounds and the overall microbial growth. However, decomposer communities act as functionally redundant microbial guilds with only slight changes in C utilization. The combined statistical and process-based modelling approach derives distribution patterns of microorganisms at the mm-scale from microbial biogeography at microhabitat scale (µm) and quantifies the emergent macroscopic (cm) microbial and C dynamics. Thus, it effectively links observable process dynamics to the spatial control by microbial communities. Our study highlights a powerful approach that can provide further insights into the biological control of soil organic matter turnover.

How to cite: Pagel, H., Kriesche, B., Uksa, M., Poll, C., Kandeler, E., Schmidt, V., and Streck, T.: Spatial control of carbon dynamics in soil by microbial decomposer communities , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13107, https://doi.org/10.5194/egusphere-egu2020-13107, 2020.

EGU2020-13545 | Displays | SSS10.7

Predicting bi-decadal soil organic carbon mineralization with Rock-Eval® thermal analysis

Pierre Barré, Laure Soucémarianadin, Baudin François, Chenu Claire, Bent Christensen, Axel Don, Cyril Girardin, Sabine Houot, Thomas Kätterer, Andy Macdonald, Folkert van Oort, Christopher Poeplau, and Lauric Cécillon

The organic carbon reservoir of soils is a key component of climate change, calling for an accurate knowledge of the residence time of soil organic carbon (SOC). Existing proxies of the labile SOC pool such as particulate organic carbon or basal respiration tests are time consuming and unable to consistently predict SOC mineralization over years to decades. Similarly, models of SOC dynamics often yield unrealistic values of the size of SOC kinetic pools. Rock-Eval® 6 (RE6) thermal analysis of bulk soil samples has recently been shown to provide useful and cost-effective information regarding the long-term in-situ decomposition of SOC. The objective of this study was to design a method based on RE6 indicators to assess for a given soil, the proportion of SOC that will be mineralized in the coming 20 years.

To do so, we needed samples ready to be analyzed using RE6 with a known proportion of SOC mineralized in 20 years. We used archived soil samples from 4 long-term bare fallows and 8 C3/C4 chronosequences. For each sample, the value of bi-decadal SOC mineralization was obtained from the observed SOC dynamics of its long-term bare fallow plot or the calculated C3-derived SOC decline following the conversion to C4 plants. Those values ranged from 0.3 to 14.3 gC·kg−1 (concentration data), representing 8.6 to 52.6% of total SOC (proportion data). All samples were analyzed using RE6 and simple linear regression models were used to predict bi-decadal SOC loss (concentration and proportion data) from 4 RE6 parameters: 1) HI (the amount of hydrogen-rich effluents formed during the pyrolysis phase of RE6; mgCH.g-1 SOC), 2) OIRE6 (the O recovered as CO and CO2 during the pyrolysis phase of RE6; mgO2.g-1 SOC), 3) PC/SOC (the amount of organic C evolved during the pyrolysis phase of RE6; % of total SOC) and 4) T50 CO2 oxidation (the temperature at which 50% of the residual organic C was oxidized to CO2 during the RE6 oxidation phase; °C).

The RE6 HI parameter yielded the best predictions of bi-decadal SOC mineralization, for both concentration and proportion data. PC/SOC and T50 CO2 oxidation parameters also yielded significant regression models. The OIRE6 parameter was not a good predictor of bi-decadal SOC loss, with non-significant regression models. The results showed that SOC chemical composition (HI is a proxy for SOC H/C ratio), and to a lesser degree SOC thermal stability, are related to bi-decadal SOC dynamics. The RE6 thermal analysis method can therefore provide a quantitative and accurate estimate of SOC biogeochemical stability.

How to cite: Barré, P., Soucémarianadin, L., François, B., Claire, C., Christensen, B., Don, A., Girardin, C., Houot, S., Kätterer, T., Macdonald, A., van Oort, F., Poeplau, C., and Cécillon, L.: Predicting bi-decadal soil organic carbon mineralization with Rock-Eval® thermal analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13545, https://doi.org/10.5194/egusphere-egu2020-13545, 2020.

EGU2020-10442 | Displays | SSS10.7

Improving the accuracy of soil carbon models using a Rock-Eval-based initialization method

Eva Kanari, Lauric Cécillon, François Baudin, Hugues Clivot, Fabien Ferchaud, Bruno Mary, Laure Soucémarianadin, Claire Chenu, and Pierre Barré

In most soil organic carbon (SOC) dynamics models, SOC is divided into pools to which different mineralization rates are ascribed. The lack of a reliable, operational and fully validated method to initialize the size of the different SOC kinetic pools is a limitation for the accuracy of predictions of SOC stocks evolution provided by these models. AMG is a simple, well established French model, successfully used to simulate the evolution of C stocks for a large network of long-term monitored sites with agricultural experiments (LTEs). Initial conditions, namely the size of the stable C pool (CS) at the onset of the simulation, have been shown to be important for the accuracy of the model. Recently, Rock-Eval 6® (RE) thermal analysis has been proposed as a new method for direct determination of SOM stability. Based on this technique, a random forests model (RE model) was developed, calibrated on Long Term Bare Fallow data, which allows the estimation of the size of the centennially persistent SOC fraction (CPSOC) in a sample. Here, we first aimed at evaluating the performance of the RE model on fully independent soil samples. For this purpose, we compared the CPSOC values of 73 samples from 7 LTEs calculated with the RE model with the corresponding CS values optimized from AMG ex-post simulations. Then, we used the CPSOC values given by the RE model to define the size of the stable C pool of the AMG model (CS) at the onset of AMG simulations for the 7 sites. We show that the CPSOC (RE model) and optimized CS (ex-post AMG simulations) fractions are in good agreement (slope b=1.01, intercept a=0.04 / spearman ρ=0.88). This observation serves as a successful independent validation of the RE model. Finally, we show that the use of the RE based model improves the accuracy of the AMG model compared to default initialization (mean RMSE decreased by 13.5%), especially for sites with complex land-use history and long-term organic matter amendment. Our study therefore provides an operational method suitable to initialize the AMG model that can be expanded to other SOC dynamics models.

How to cite: Kanari, E., Cécillon, L., Baudin, F., Clivot, H., Ferchaud, F., Mary, B., Soucémarianadin, L., Chenu, C., and Barré, P.: Improving the accuracy of soil carbon models using a Rock-Eval-based initialization method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10442, https://doi.org/10.5194/egusphere-egu2020-10442, 2020.

EGU2020-12493 | Displays | SSS10.7

Modelling biophysically-defined, measurable soil organic matter with MEMS 2.0 model

yao zhang, Jocelyn Lavallee, Stephen Ogle, Keith Paustian, and M. Francesca Cotrufo

With advances in the understanding of the mechanisms leading to the persistence or vulnerability of soil organic carbon (SOC) at the profile scale, it is essential to develop infrastructure to integrate this knowledge with landscape-scale mapping and models. To address this need, we are developing a soil functional unit framework, intended to better scale mechanistic soil knowledge by merging geospatial datasets with targeted sample collection and analyses. Here we provide a proof of concept of this approach for SOC stocks (the soil function of interest) in the East River study area located near Gothic, Colorado, USA. We first generate a map estimating SOC stocks based only on available geospatial datasets, including factors such as topography, vegetation, geology, and basic soil maps. We then compare the mapped functional units against an independent SOC dataset of 450 soil profiles (~1700 samples) collected from the study region and refine the soil functional map to best capture the spatial variability observed in the dataset.  With the calibrated soil functional unit mapping algorithm, we can then calculate SOC stocks at landscape scales and better constrain the mechanisms that drive the observed heterogeneity.  The resulting data-driven soil functional maps can then be merged with regional scale SOC models to enhance forecasts of SOC change in response to disturbances.

How to cite: Lawrence, C.: Soil Functional Mapping: Using Data-Model Integration to Improve Regional-Scale SOC Forecasts , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10532, https://doi.org/10.5194/egusphere-egu2020-10532, 2020.

EGU2020-20117 | Displays | SSS10.7

An integration of soil parameters characterizing a Danish agricultural soil

Anne Christine Krull Pedersen, Vibeke Ernstsen, Henrik Breuning-Madsen, and Per L. Ambus

The complexity and interplay of soil processes are still investigated extensively. Continuous focus on this field of research is important since soil properties such as nitrate reductive capacity has a great influence on groundwater quality. Here, we try to give insight into the dynamics of a vadose zone soil under agricultural management.

A field of study was selected in Darum in Southwestern Jutland, Denmark. The site is situated in an old periglacial terrain on meltwater-deposited sand. The field has been under maize (Zea mays) monoculture for the past 20 years. Prior to this period it had been kept with C3 plants only.  Soil sampling was accomplished in three replicates of 1.6 m.

The bulk soil samples were analyzed for total C and N, δ13C and δ15N. Dissolved organic matter (DOM) and NO3- were recovered from cold-water extractions of the soil samples. Extractions were analyzed for their UV-Vis absorption spectra.

Incubation experiments were performed on bulk soil portions in order to assay the activity and isotopic imprint CO2 respiration. The soil were also incubated under anoxic conditions with substrate amendments (KNO3 and C additions). The resulting N2O releases were assigned to biologically driven nitrate reduction. Ultimately, principal component analyses (PCA) were carried out on the results.

The C and N concentrations were highest in the Ap horizon and decreased with soil depth. The respiratory and nitrate reductive capacity also declined with depth, but were evident in all of the analyzed soil depths. All individual depths responded statistically significant to substrate addition by increase in the N2O production.

The isotopic results showed that the main pool of maize-derived C were also found in the plough layer. However, the respiratory isotopic results evidenced the presence of C4 plant derived C throughout the soil profile, after 20 years of monoculture.

The UV-Vis absorption spectra gave insight into the quality of the DOM pools. The parameter E253/E203 is associated with functional groups on aromatic rings and increases with composting time. The soil had an overall increase in this parameter with depth. The integrated magnitude of distinct wavelengths (270-300 nm, 300-380 nm and 380-500 nm) is an index of protein-, fulvic-, and humic like substances. Surprisingly, no substantial discrepancies in the distribution between these pools was found with depth. However, the overall pattern was declining steeply with soil depth, emphasizing the importance of dilution when assessing DOM availability and quality.

The PCA could explain >55 % of the variance by the first principal component. The PCA showed that the C and N concentrations were positively correlated. Alongside were the ambient N2O activity to the indexes of protein-, fulvic and humic like substances. The inherent NO3- concentration, the N2O activity (KNO3 amended) and the respiratory CO2 production were also positively correlated – however negatively correlated with the E253/E203 parameter.
Therefore, respiratory and nitrate reductive capacities of the Darum soil, depends notably on the presence of less degraded DOM, on the concentration of protein-, fulvic and humic like substances, and finally on the inherent soil NO3- concentration.

How to cite: Pedersen, A. C. K., Ernstsen, V., Breuning-Madsen, H., and Ambus, P. L.: An integration of soil parameters characterizing a Danish agricultural soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20117, https://doi.org/10.5194/egusphere-egu2020-20117, 2020.

EGU2020-20653 | Displays | SSS10.7

C stocks and subsoil management in agroecosystems: application of hyperspectral imaging to study organic matter dynamics in the top one metre of soil

Julien Guigue, Christopher Just, Siwei Luo, Eleanor Hobley, and Ingrid Kögel-Knabner

While the demographic pressure for food demand is continuously rising, global environmental changes are threatening the productivity of agroecosystems. Climatic events like floods or droughts, and long-term decrease in soil organic matter stocks due to intensive agriculture are examples pointing to the necessity to find solutions for sustainable performance of agroecosystems.

Significant amounts of water and nutrients are stored in deep soil horizons, and thus subsoil management is being considered as an alternative to sustain high demand in crop productivity.

We used samples from an ongoing field experiment in Germany where the agricultural management was adapted to investigate the potential benefits of deep ploughing with OM incorporation. We recorded hyperspectral images of soil cores (depth = 1 m) using Vis-NIR reflectance spectroscopy and the C distribution within the soil was modeled at a very high spatial resolution (53×53 μm). The SOC mapping revealed an increase in SOC stocks resulting from deep ploughing, and the high resolution images generated allows the observation of OM distribution in the subsoil and the response in SOM stocks to different types of organic matter incorporation (compost vs green manure). The same imaging technique was also combined with solid-state 13C NMR measurements to track the molecular composition of the organic amendment during decomposition.

Hyperspectral imaging of soil cores allows the quantification of OM stocks and changes at the pedon scale, and fine scale resolution of heterogeneity in the spatial distribution of soil organic matter is helping to understand and quantify the processes related to changes in soil C stocks in subsoils.

How to cite: Guigue, J., Just, C., Luo, S., Hobley, E., and Kögel-Knabner, I.: C stocks and subsoil management in agroecosystems: application of hyperspectral imaging to study organic matter dynamics in the top one metre of soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20653, https://doi.org/10.5194/egusphere-egu2020-20653, 2020.

EGU2020-9770 | Displays | SSS10.7

Improving the analysis of the soil-plant-atmosphere system thought earth observations in large monocrop cereal sequences

David Rivas-Tabares, Juan J. Martín-Sotoca, Antonio Saa-Requejo, and Ana María Tarquis

Crop yields of rainfed cereal are highly dependent of the soil-plant-atmosphere system, especially referred to the weather conditions and soil properties. The study of this interaction is feasible through the earth observations of historical data. Remote sensing data and agricultural survey work together identifying and analyzing plots with monocrop cereal sequences. In this research, we investigate the relation of the Normalized Difference Vegetation Index (NDVI) residual time series behavior relative to soil classes from Self-Organizing Maps (SOM) and the precipitation residual time series.

The midlands of Eresma-Adaja watershed (Dueros’ River basin, Spain) is historically depicted to rainfed cereal agriculture, some evidence of monocropping sequences are worrisome the water availability in the area. Within this area, two contrasting soil properties sites were selected to assess plots with at least 20 years of rainfed monocropping sequences but under similar weather regime. This allows analyzing the effect and relationships of this practice by soil type in time. For this, we treat the NDVI and precipitation time residual series as signals. The use of the Generalized Structure Function applied to these residual time series and the Hurst exponent, serve to confirm the soil properties differences from SOM and to reinforce the scaling properties of soil-climate interaction in semiarid regions for cereals in monocrop. As a result, the NDVI and precipitation series present an antipersistence behavior supporting that precipitation regime is influencing as the same manner the NDVI residual time series among complimentary factors.

ACKNOWLEDGEMENTS

Finding for this work was partially provided by Boosting agricultural Insurance based on Earth Observation data - BEACON project under agreement Nº 821964, funded under H2020_EU, DT-SPACE-01-EO-2018-2020. The authors also acknowledge support from Project No. PGC2018-093854-B-I00 of the Spanish Ministerio de Ciencia Innovación y Universidades of Spain. The data provided by ITACyL and AEMET is greatly appreciated.

 

How to cite: Rivas-Tabares, D., Martín-Sotoca, J. J., Saa-Requejo, A., and Tarquis, A. M.: Improving the analysis of the soil-plant-atmosphere system thought earth observations in large monocrop cereal sequences, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9770, https://doi.org/10.5194/egusphere-egu2020-9770, 2020.

Sediment, nutrient deprivation and saltwater intrusion, among other factors, are driving widespread organic soil collapse and marsh loss in the Mississippi River Delta. Freshwater wetland diversions were designed to reintroduce Mississippi River water and sediment into the adjacent basins to manage salinity and mitigate land loss. However, there is concern that loading of excess nutrients from the Mississippi River into Barataria Basin wetlands can potentially lead to increased soil OM decomposition, less soil strength or increasing buoyancy and decreased belowground biomass. A baseline study was effected of a 3,145 km2 area of wetlands and estuaries within Barataria Basin in 2007, in which the spatial variation in plant and soils were described at 140 stations before full scale diversion operations began in 2009. A subsequent spatial survey was conducted in 2018 after 11 years of diversion influence. By resampling the top 20 cm, separated into 0-10 cm and 10-20 cm layers, in 2018 provides an assessment of the status of those soils produced since 2007 and provides context for changing soil conditions. For the 2018 sampling, the soil

How to cite: Corstanje, R., Spera, A., and White, J.: Mitigating for coastal erosion and C loss in the Mississippi Delta; do river water diversion do more harm than good? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17467, https://doi.org/10.5194/egusphere-egu2020-17467, 2020.

EGU2020-21414 | Displays | SSS10.7

Standardized automated data collection for soil C model parametrization at the regional scale of Russia

Taras Vasiliev, Artem Vladimirov, Alexander Pashkov, and Nadezda Vasilyeva

The aim of the study is to perform a regional scale (Russia) soil type-specific soil C models calibration with ESMs using Russian National Soil database. Particularly, to obtain temperature  and moisture dependencies of soil C cycle reaction rates, the model can be fitted to soil profiles of the same soil type in different climatic conditions. For this aim historical climate data, carbon concentration profiles and soil profile descriptions (soil type,  texture and other properties that can provide additional information to constrain model parameter values) are needed in different spatial locations. 

The regional soil database consists of standardized detailed descriptions of soil profiles for each soil type encountered in Russia, including soil carbon content and organic matter composition proxies, profile distribution of soil texture, nitrogen and pH.

We introduced a data collection system with a tool for field soil description according to the standard as well as a tool for soil determination which includes Kohonen algorithm to predict soil type based on the determined soil profile sequence of horizon indexes. Further the system allows automated RunaWFE based request for soil sample analysis (national method standards) which is obligatory accompanied with standard soil profile and samples descriptions. The system collects all data for expansion of regional soil database.

How to cite: Vasiliev, T., Vladimirov, A., Pashkov, A., and Vasilyeva, N.: Standardized automated data collection for soil C model parametrization at the regional scale of Russia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21414, https://doi.org/10.5194/egusphere-egu2020-21414, 2020.

EGU2020-9561 | Displays | SSS10.7

Soil-landscape patterns and fractal parameters of deforestation: a case study of Continental Ecuador Biosphere Reserves.

Andrea Urgilez-Clavijo, Ana Tarquis, David Rivas-Tabares, and Juan de la Riva

The complex dynamics of changes in land use and land cover at different scales cause changes in the composition and configuration of the landscape. Deforestation, mainly caused by the transformation of forest to agricultural land, has been one of the most representative changes in recent years worldwide. In Ecuador, this transformation has occurred in different areas of the country, even in those areas declared by UNESCO as biosphere reserves (BRs), endangering the diversity of ecosystems and species existing within each of them. In this context, the identification of patterns, trajectories and magnitudes associated with the deforestation process in the BR areas is essential for the management, conservation and even evaluation of the protection effectiveness of these areas. We analyze the changes in land cover produced between 1990 and 2016 in the Sumaco and Bosque Seco BRs belonging to continental Ecuador, as well as the patterns associated with the deforestation process that occurred in that period. The quantification of land cover changes was performed using a cross-tabulation-table and their spatial location was done through a cross-classification image. The patterns were characterized using landscape ecology metrics and their nature described through multifractal analysis. In addition, the scales at which self-similarity characteristics are detected were identified by lacunarity analysis. The results show that there are three patterns associated with deforestation processes, (1) regrowth of preexisting patches without fusion of the adjacent patches, (2) Regrowth and fusion of preexisting patches and (3) the appearance of new deforested patches. In addition, the multifractal nature of the deforested structure was verified and characteristics of self-similarity at parroquia scale were identified.

ACKNOWLEDGEMENTS

This work was supported by the Program of University of Zaragoza-Santander for Ibero633 Americans in Doctorate studies. Second author acknowledges support from Project No. 634 PGC2018-093854-B-I00 of the Spanish Ministerio de Ciencia Innovación y Universidades of Spain and to the Comunidad de Madrid (Spain) and Structural Funds 2014–2020 (ERDF and ESF) project AGRISOST-CM S2018/BAA-4330. We are also grateful to University of Azuay and Ministry of Environment of Ecuador for providing data and resources for the development of this academic work.

How to cite: Urgilez-Clavijo, A., Tarquis, A., Rivas-Tabares, D., and de la Riva, J.: Soil-landscape patterns and fractal parameters of deforestation: a case study of Continental Ecuador Biosphere Reserves., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9561, https://doi.org/10.5194/egusphere-egu2020-9561, 2020.

EGU2020-19380 | Displays | SSS10.7

Earth Observation for Accurate Mapping of Soil Functional Properties, Land Health and Soil Infiltrability in Rwanda

Tor-Gunnar Vågen, Leigh Ann Winowiecki, and Aida Bargues-Tobella

Earth observation (EO) has a large potential for mapping of soil functional properties such as soil organic carbon, soil pH or acidity, soil fertility parameters and soil texture. Recent advances in the application of EO data in combination with systematic field data sampling, standardized soil data reference analysis and the use of soil spectroscopy have shown these approaches to be both robust and scalable. We present a case study from Rwanda where we apply EO data in combination with field and laboratory data collected using the Land Degradation Surveillance Framework (LDSF) to map functional soil properties, soil erosion prevalence and land cover at fine spatial resolution. Digital soil maps were produced at a spatial resolution of 30m with an accuracy of 85 to 90%, while soil erosion prevalence was mapped with an accuracy of 86% using Landsat satellite imagery and machine learning models. 

We also assess interactions between spatial assessments of soil organic carbon, soil erosion prevalence and land cover at a spatial resolution of 30m in order to identify land degradation hotspots and better target interventions to restore degraded land across four districts in Rwanda. We further explore the effects of soil erosion, root-depth restrictions and soil organic carbon content on saturated hydraulic conductivity in three LDSF sites in Nyagatare, Kayonza and Bugesera districts, respectively. Saturated hydraulic conductivity was modeled based on single-ring measurements of infiltration capacity using a modified Reynolds & Elrick steady-state single ring model for 48 LDSF plots per site. The results show significant spatial variation in infiltrability within sites.

The results of the study show the importance of rigorous protocols for sampling and analyses of soil properties and indicators of land health across landscapes. By simultaneously assessing soil properties, indicators of land degradation and soil infiltrability we demonstrate the utility of these approaches in understanding drivers of land degradation across multiple spatial scales for targeting of options for land restoration and monitoring of the effectiveness of these interventions over time across multiple dimensions of land health.

How to cite: Vågen, T.-G., Winowiecki, L. A., and Bargues-Tobella, A.: Earth Observation for Accurate Mapping of Soil Functional Properties, Land Health and Soil Infiltrability in Rwanda, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19380, https://doi.org/10.5194/egusphere-egu2020-19380, 2020.

EGU2020-5514 | Displays | SSS10.7

Effect of Hydrologic Export on Soil Carbon Turnover Rates

Oleksandra Hararuk, Stuart Jones, and Christopher Solomon

Soil is the largest terrestrial carbon (C) reservoir and is an important component of climate-carbon feedbacks, potentially sequestering or releasing large amounts CO2 from or to the atmosphere. In global land models soil C dynamics is determined by the long-term balance between C inputs and turnover rates, and the latter are usually a function of soil texture, temperature, and soil moisture, which represents environmental limitation of microbial soil organic carbon (SOC) mineralization. Hydrologic C export is often overlooked in the terrestrial C cycle models, likely because proportionally soils contain a very small amount of C that can be exported with runoff, contributing around 2.9 Pg C yr-1 to aquatic systems globally. However, ignoring hydrologic C export in areas, where it has substantial effect on SOC turnover rate, could result in systematic overestimation of SOC stocks and inaccurate simulation of SOC responses to changing environmental conditions. We combined water quality data from the United States Geological Survey with hydrologic and soil chemistry data products to estimate the relative contribution of hydrologic export to bulk soil turnover rates across the continental USA. The catchment area weighted average of hydrologic export effect on SOC turnover was 5.2%. Hydrologic export accounted for 0-2% of the bulk SOC turnover in arid regions, 2-15% - in forests, and 20-40% - in wetland-rich areas. The SOC stocks generated for the continental U.S. using microbe-mediated turnover alone amounted to 88.3 Pg C and were 15.4% higher than the amount reported in the Harmonized World Soil Database (76.5 Pg C), thus illustrating the importance of accounting for hydrologic C export when simulating SOC dynamics.

How to cite: Hararuk, O., Jones, S., and Solomon, C.: Effect of Hydrologic Export on Soil Carbon Turnover Rates, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5514, https://doi.org/10.5194/egusphere-egu2020-5514, 2020.

EGU2020-8132 | Displays | SSS10.7

Global patterns of vertical distribution of soil microbial biomass carbon

Wenting Feng, Tingting Sun, Yugang Wang, and Xin Jing

Small changes in soil organic carbon (SOC) may have great influences on the climate-carbon cycling feedback. However, there are large uncertainties in predicting the dynamics of SOC in soil profile at the global scale, especially the role of soil microbial biomass in regulating the vertical distribution of SOC. Here, we developed a global database of soil microbial biomass carbon (SMBC), soil microbial quotient (SMQ, the ratio of SMBC to SOC), and SOC from 312 soil profiles, as well as climate, ecosystem type, and edaphic factors associated with these soil profiles. We assessed the global pattern of vertical distributions of SMBC and SMQ and the contributions of climate, ecosystem type, and edaphic factors to their vertical patterns. Our results showed that SMBC and SMQ decreased exponentially with depth, especially in the top 0-40 cm soil. SOC also decreased exponentially with depth but in different magnitudes compared to SMBC and SMQ. Edaphic factors (e.g., soil clay content and C/N ratio) were the most important controls for the vertical distributions of SMBC and SMQ, probably by mediating the preservation of substrates and nutrient supply for microbial growth in soils. Mean annual temperature and ecosystem types (i.e. forests, grasslands, and croplands) exerted weak influences on SMBC and SMQ. Overall, our data synthesis provides quantitative information of how SMBC, SMQ, and SOC changed along soil profiles globally and identifies important factors that influence their vertical distributions. The findings can help improve the prediction of C cycling in the terrestrial ecosystem by integrating the contributions of soil microbial roles in Earth system carbon models.

How to cite: Feng, W., Sun, T., Wang, Y., and Jing, X.: Global patterns of vertical distribution of soil microbial biomass carbon, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8132, https://doi.org/10.5194/egusphere-egu2020-8132, 2020.

SSS11.2 – Analytical methods as tools for new experimental approaches in soil science

EGU2020-21548 | Displays | SSS11.2

Effect of extraction temperature and time on the chemical and colloidal properties of dissolved organic matter

Erika Andersson, Victoriia Meklesh, Per Persson, Anders Tunlid, and Ulf Olsson

Dissolved organic matter (DOM) is ubiquitous in terrestrial and aquatic ecosystems where it serves several important functions. It plays a central role in the landscape carbon balance, connects the terrestrial and aquatic environments, and acts as a vector for both nutrients and contaminants. Herein DOM is defined as dissolved molecules and suspended colloidal objects with a size below 0.2 μm. Despite the high interest of DOM, the important connection between the chemical composition of DOM and its colloidal structure are poorly understood. An active discussion in this field of research is how different extraction procedures affect the properties of DOM. Historically, sodium hydroxide extraction has been widely applied but today water extraction, more resembling the natural process, is commonly used. Even when using water as the solvent, the protocol for DOM extraction can differ greatly resulting in the study of different material.

We have systematically investigated the effects of extraction temperature and time on the chemical and colloidal properties of DOM extracted with water from a boreal forest soil. Chemical composition was determined using elemental analysis, pH, z-potential and 1H NMR while the colloidal structure was probed using a combination of dynamic and static light scattering (DLS, SLS) and small angle x-ray scattering (SAXS). Our results show that chemically the DOM is dominated by carbohydrates irrespective of extraction time and temperature.  Concentration and colloidal structure on the other hand are affected by these parameters. At high temperatures the concentration of all identified components increases, with the most notable difference in the carbohydrates. Also, with increasing extraction temperature the colloidal structure transforms from dense clusters to something resembling flexible polymer chains.

Contrast match experiments of DOM using small angle neutron scattering (SANS) have also been performed in preparation for studies on DOM-mineral interactions. The results show that the match point of DOM agrees with that of carbohydrates further confirming our results of the chemical composition. We believe our broad combination of complementary techniques is necessary to advance the understanding of DOM, in particular the correlation between chemical composition and colloidal properties. In the long-term it can help to reveal the importance of DOM size distribution and aggregation of DOM components for biogeochemically important processes in soil.

 

How to cite: Andersson, E., Meklesh, V., Persson, P., Tunlid, A., and Olsson, U.: Effect of extraction temperature and time on the chemical and colloidal properties of dissolved organic matter, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21548, https://doi.org/10.5194/egusphere-egu2020-21548, 2020.

EGU2020-15883 | Displays | SSS11.2

Chemical composition and colloidal properties of dissolved organic matter in Norway spruce forest stands of different ages

Viktoriia Meklesh, Luigi Gentile, Ulf Olsson, Anders Tunlid, and Per Persson

     Dissolved organic matter (DOM) is the most mobile and actively cycling fraction of soil carbon and acts as a carrier of nutrients and contaminants. It is consumed by microbes, photodegraded, or adsorbed in soils and sediments on its way to the ocean. Despite intensive research in the last two decades, the formation and fate of DOM in soils and its response to changes in land use and climate are poorly understood [1-3]. The changes in temperature and chemical composition of soils affect substantially the rates of microbial decomposition. It has previously been observed that afforestation had a positive effect on carbon stocks approximately 3 decades after land-use change [4]. The aim of this study was to identify the role of afforestation on the chemical composition and colloidal nature of DOM. We compared water extractable DOM from an organic horizon in three differently aged (35-, 61-, 90-years-old) Norway spruce stands growing in the same Tönnersjöheden area located at Simlångsdalen, south-west Sweden . Arable fields that were adjacent to each of these three forests served as control DOM samples and represented the soil material before afforestation. Chemical composition of DOM was inferred from 13C solid-state nuclear magnetic resonance (NMR), high-resolution 1H NMR, infrared spectroscopy (DRIFT) and elemental analysis measurements. Colloidal properties of DOM were investigated using small-angle X-ray and dynamic light scattering methods together with electrophoretic mobility measurements. The dialysis experiment was additionally performed in order to investigate the high molecular fraction of DOM.

     Elemental analysis revealed an increase in the ratio between total organic C and total N with forest age and no differences between three field DOM extracts. 1H and 13C NMR results showed that both field and forest DOM extracts were dominated by carbohydrates and also contained carboxylic and aliphatic compounds. The aromatic structures were not detected using NMR. However, some features of aromatics and phenolics were detected in IR spectra, especially in forest cold DOM. Scattering data showed that field and forest DOM contained locally stable colloidal aggregates of ca. 100 nm in radius. The structures of these aggregates are consistent with a combination of globular and cluster-like colloids. Field DOM contained slightly higher fraction of clusters than forest DOM. According to the dialysis experiment the half of DOM was presented in high molecular weight fraction (> 12-14 kDa). Overall, our data suggest that DOM extracted from forest and field organic soils had similar chemical and colloidal properties. The relative composition was dictated more by temperature at which DOM was extracted.

  1. J. Lehmann, M. Kleber, Nature. 528, 60–68 (2015).
  2. M. W. I. Schmidt et al., Nature. 478 (2011), pp. 49–56.
  3. K. Kalbitz, S. Solinger, J.-H. Park, B. Michalzik, E. Matzner, Soil Sci. 165, 277–304 (2000).
  4. T. G. Bárcena et al., Glob. Chang. Biol. 20, 2393–2405 (2014).

How to cite: Meklesh, V., Gentile, L., Olsson, U., Tunlid, A., and Persson, P.: Chemical composition and colloidal properties of dissolved organic matter in Norway spruce forest stands of different ages, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15883, https://doi.org/10.5194/egusphere-egu2020-15883, 2020.

EGU2020-20828 | Displays | SSS11.2

Reconciling the multiple impacts of land use change on soil carbon, nitrogen, phosphorus and sulphur cycles

Luis Carlos Colocho Hurtarte, Liming Wang, and Jörg Prietzel

Predicted changes in land use in mountain ecosystems due to agricultural and climatic pressure have the potential to change the abiotic controls of soil organic matter storage (i.e. temperature, and humidity). Yet an integrated assessment of the impact of land use change on site abiotic varibles (temperature, humidity) and its relation to the molecular composition of carbon (C), nitrogen (N), sulphur (S) and phosphorus (P) is lacking. In this study, we used a natural land use gradient (forest [F], degraded forest [DF] and alpine pasture [AP]) within the Karwendel mountain range as a model system to  analyse the C, N,S and P dynamics. At these sites, we measured climatic variables (air temperature and humidity and soil temperature at three depths) through a whole year and determined significant changes in soil temperature after conversion to alpine pasture. Soils were sampled at the organic and mineral horizons of each site and thereafter analysed for its C, N, S and P total concentrations, pH and sugar and amino sugars content. Thereafter, the molecular composition of C,N,S and P in the soils  was analysed combining synchrotron-based X-ray absorption near edge structure (XANES) spectroscopy and liquid state 31P-NMR spectroscopy. Our results show that although forest to alpine pasture conversion led to losses of C no changes of N, P or S concentrations where observed. These analyses show that with conversion to alpine pasture the SOM changes to a more decomposed state (increase of Alkyl:O-Alkyl ratio), which is accompanied by an increase of Amidic and Pyrrolic-N and an increase of sulfate-S. Moreover, the nominal oxidation state (NOS) of each analysed element, calculated from the spectral data shows a decrease, which might be due to higher decomposition rates in alpine pasture.  This shows that molecular changes in C,N,S and P occur after land use change in the topsoil, and are majorly depended on the soil temperature.  Moreover, this indicates changes that soil microorganisms were affected by land use change, which will be explored further by aminosugar analysis and PLFA. Our results show the rapid molecular changes of soil C,N,S and P after to land use.

How to cite: Colocho Hurtarte, L. C., Wang, L., and Prietzel, J.: Reconciling the multiple impacts of land use change on soil carbon, nitrogen, phosphorus and sulphur cycles, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20828, https://doi.org/10.5194/egusphere-egu2020-20828, 2020.

EGU2020-11423 | Displays | SSS11.2 | Highlight

Determination of compost maturity using near infrared spectroscopy (NIRS)

Ivoneta Diethart, Eva Erhart, Marion Bonell, Katrin Fuchs, Dieter Haas, and Wilfried Hartl

The objective was to examine whether near infrared spectroscopy (NIRS) can be used as an alternative, quick method to determine compost maturity. A crucial prerequisite was to use a suitable reference parameter that describes the maturity of compost well and is also predictable with NIRS. A sum parameter for maturity was developed, which was calculated from contents of dissolved organic carbon (DOC), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), oxygen consumption (with Oxitop® method) and from Solvita™-maturity index (with Solvita™ test), with the individual parameters weighted differently in the calculation.

For the calibration 476 compost samples were collected from 28 composting plants in Austria and Czech Republic. The dried and ground samples were physico-chemically analyzed using conventional methods and scanned with an AOTF-NIR spectrometer (wavelength range 1200-2150 nm). Most of the samples (360) originated from the composting plant of the City of Vienna (C1), the other samples (116) originated from smaller composting plants (C2) which employ different compost process technologies and methods. Besides, the samples differed in their input material composition due to seasonal effects (proportion of greenwaste, biowaste, wood, leaves, etc.) and in composting time.

Multivariate analyses were performed to model the data using the statistical programme Unscrambler©. A principal component analysis (PCA) performed on the spectral data showed that samples differ tendentially according to their origin. Calibration models were developed for a) all samples (one overall model) and b) two groups of samples divided according to the PCA results. The first submodel S1 mainly consisted of samples from composting plant C1 and the second submodel S2 of samples from composting plants C2 and of several samples from C1. The performance of the overall model showed good results with correlation coefficients of r(cal)= 0.89 and r(val)= 0.82 and an average error of prediction of 1.24 (with the values of the sum parameter for compost maturity ranging from 0.5 to 12). The results of submodel S1 performed better with r(cal)= 0.91, r(val)= 0.89 and an average error of prediction of 0.95. The submodel S2 showed correlations of r(cal)= 0.89, r(val)= 0.82 and an average error of prediction of 1.36. The validation of the models showed that the use of submodels resulted in better predictions, especially for the C1 samples. For C2 samples the appropriate model needed to be selected as for some samples the overall model performed better. In general, prediction results of C1 samples were better than those of C2 samples due to a lower influence of factors such as different process technologies.

It is expected that prediction will still improve with further calibration and integration of samples of similar origin into the respective models.

The project INTEKO ATCZ42 was cofinanced by the EU through the European Regional Development Fund in the framework of INTERREG V-A Austria-Czech Republic and by the City of Vienna.

How to cite: Diethart, I., Erhart, E., Bonell, M., Fuchs, K., Haas, D., and Hartl, W.: Determination of compost maturity using near infrared spectroscopy (NIRS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11423, https://doi.org/10.5194/egusphere-egu2020-11423, 2020.

EGU2020-4733 | Displays | SSS11.2 | Highlight

Nanoscale STXM imaging of soil fungal exudates and organo-mineral interfaces

Milda Pucetaite, Per Persson, and Edith Hammer

Soils act as a major sink for atmospheric carbon (C) and, correctly managed, can help counterbalance the excessive CO2 emissions. Organic C in soils can be physically stabilized and ‘hidden’ from its decomposers within soil aggregates and it is thought that soil fungi play a decisive role in “gluing together” and redistributing soil mineral particles and existing organic matter to form them (M. W. I. Schmidt et al., Nature 478(7367), 49–56, 2011). A significant contribution to the early aggregation process is adsorption of fungal exudates to the reactive surfaces of mineral particles. To uncover the mechanisms of C stabilization processes and to be able to increase the C sink potential of our soils, we need a deepened understanding of which fungi play key roles in the process, what mineral properties promote it, and what type of fungal exudates are involved.

For this purpose, we have grown saprotrophic and symbiotic (both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM)) fungi under sterile conditions in contact with different principal soil components: quartz, goethite and muscovite, on top of X-ray transparent silicon nitride membrane windows and analyzed fungal hyphae by high lateral resolution synchrotron based scanning transmission X-ray microscopy (STXM) in combination with near edge X-ray fine structure (NEXAFS) spectroscopy at absorption edges of C(K), K(L), N(K) and Fe(L). We performed our experiments in the SM beamline at Canadian Light Source, Saskatoon, Canada and I08 beamline at Diamond Light Source, Oxfordshire, UK. In the resultant chemical images, we were able to differentiate the mostly proteinaceous hyphal material, the exudate layer constituting of mixtures of polysaccharides and proteins, and the organo-mineral interfaces consisting of a higher protein and carboxyl to sugar ratio than in the exudate layer. We also observed heterogeneous distributions of the exudate materials around the fungal hypha, indicating presence of exudation channels in the cell wall. Finally, we specifically analyzed NEXAFS spectra at Fe(L) absorption edge of goethite containing samples and were able to show changes in iron speciation in the mineral particles that were in contact with the fungal exudates. These results provide us with better insights to both nanoscale processes of fungal exudation and their role in the formation of organo-mineral interfaces subsequently responsible for soil aggregation.

How to cite: Pucetaite, M., Persson, P., and Hammer, E.: Nanoscale STXM imaging of soil fungal exudates and organo-mineral interfaces, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4733, https://doi.org/10.5194/egusphere-egu2020-4733, 2020.

EGU2020-17614 | Displays | SSS11.2

STXM analysis of fungal soil aggregation

Edith C. Hammer, Per Persson, and Milda Pucetaite

Understanding soil’s C sink potential is crucial to support soil management that increases its long-term carbon storage. Soil aggregate formation is known to be a main factor for long-term C sequestration, as C becomes physically protected, or “hidden”, within an increasingly complex three-dimensional structure.

The dynamic process of soil aggregation is however not yet clearly understood. Soil (micro) organisms are thought to play a decisive role in “gluing together” and redistributing particles. They also move existing organic material, and include own exudates and dead cells into aggregates. Fungi, and especially mycorrhizal fungi play a key role in physical organic matter stabilization as they transport carbon compounds over long distances and into narrow soil pores, but little is known about the chemical remnants they leave to soil aggregates.


We investigated the exudates of single hyphae of two saprotrophic and two mycorrhizal fungi (G. confluens, P. subvisciva, P. involutus, R. irregularis), with and without contact to three types of minerals (quarts, goethite, muscovite). We grew them in sterile cultures on Si3N4 windows and analysed hyphae, their exudate layers and the organo-mineral interfaces. STXM analysis was performed at CLS, Canada, Diamond, UK, at the C(K), K(L), N(K) and Fe(L) absorption edges, and we made complementary measurements with photothermal IR microspectroscopy at Soleil, France. We found differential composition of the exudates depending on fungal species and environmental conditions. In some cases, we could identify spatially resolved oscillating plumes of K exudates emitted from the hyphae, indicating possible exudation channels. Goethite particles in close vicinity to a hypha showed reduced Fe(2+) compounds, suggesting that oxidative processes may take place. We further investigated thin-polished samples of AMF hyphae grown in a sterile soil, and located polysaccharide-, lipid- and protein-compounds in the surrounding soil matrix.

 

Our results will help to better understand the processes of fungal soil aggregation and physical organic matter stabilization.

How to cite: Hammer, E. C., Persson, P., and Pucetaite, M.: STXM analysis of fungal soil aggregation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17614, https://doi.org/10.5194/egusphere-egu2020-17614, 2020.

The Tibetan Plateau is the third-largest glaciated area of the world and is one of the most sensitive regions due to climate warming, such as fast-melting permafrost, dust blow and overgrazing in recent decades. In the past 50 years, the warming rate on the Tibetan Plateau is higher than the global average warming rate with 0.40 ± 0.05 °C per decade. The climate warming is most distinct in the northeastern Tibetan Plateau, implying increasing air and surface temperatures as well as duration and depth of thawing. The main ecological consequences are a disturbed vegetation cover of the surface and a depletion of nutrient-rich topsoils (Baumann et al., 2009, 2014) coupled with an increase of greenhouse gas emissions, mainly CO2 (Bosch et al., 2017). Due to the extreme environmental conditions resulting from the intense and rapid tectonic uplift, highly adaptive and sensitive ecosystem have developed, and the Plateau is considered to be a key area for the environmental evolution of Earth on regional and global scales, which is particularly sensitive to global warming (Jin et al., 2007; Qiu, 2008). Climate warming and land-use change can reduce soil organic carbon (SOC) stocks as well as soil nitrogen (N) and phosphorus (P) contents and soil quality. Many species showed their distributions by climate-driven shifts towards higher elevation. In Tibetan Plateau, however, the elevational variations of the alpine grassland are rare (Huang et al., 2018) and it is largely unknown how the grass line will respond to global warming and whether soils play a major role. With this research, the hypothesis is tested that soil quality, given by SOC, N and P stocks and content, is a driving factor for the position and structure of the grass line and that soil quality is one of the major controls of biodiversity and biomass production in high-mountain grassland ecosystems.

A Fourier transformation near and mid-infrared spectroscopy (FT-NMIRS) should be used to measure soil P fractions rapid and for large numbers of soil samples, and analyze environmental factors, including temperature, precipitation, soil development, soil fertility, and the ability of plants to adapt to the environmental impact of climate using FT-NMIRS.

We explored first near-infrared spectroscopy (NIRS) in soils from grassland on the Tibetan Plateau, northwestern China and extracted P fractions of 196 samples from Haibei Alpine Meadow Ecosystem Research Station, Chinese Academy of Sciences, at four depths increments (0-10 cm 10-20 cm 20-40 cm and 40-70 cm) with different pre-nutrient additions of nitrogen (N) an P. The fractionation data were correlated with the corresponding NIRS soil spectra and showed significant differences for depth increments and fertilizer amendments. The R2 of NIRS calibrations to predict P in traditional Hedley fractions ranged between 0.12 and 0.90. The model prediction quality was higher for organic than for inorganic P fractions and changed with depth and fertilizer amendment. The results indicate that using NIRS to predict the P fractions can be a promising approach compared with traditional Hedley fractionation for soils in alpine grasslands on the Tibetan Plateau.

How to cite: Cao, Z., Kühn, P., and Scholten, T.: Soil and vegetation feedbacks on climate change in high mountain ranges of the Tibetan Plateau__using near and mid-infrared spectroscopy (FT-NMIRS) in soil properties, phosphorus (P) as example, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17087, https://doi.org/10.5194/egusphere-egu2020-17087, 2020.

The possibilities of analytical instruments are growing rapidly and the precision of analysis is increasing pidevalt. On the parallel with the development of high tech instrumentation, we can find large number of solutions for analytical determinations using simple, non analytical equipment. One of the trends in the development of analytical techniques and solutions is to find possibilities for a simple and cheap method for providing analysis. This has been made possible due to rapid development of biochemical, chemical, physical sciences and computer technology during the last decade.  

In many scientific articles we can find solutions using digital cameras and smartphones as spectrometers and data collecting devices.  And it is not only a few single experiments. There is a already a term known in scientific literature as „lab on phone“.

This has raised a question such as in which cases do we have the confidence in the results obtained from the useage of smartphones and when is it required to have the precision of spectrometrial measurements.

We have been working on the development of a method for determination of plant available phosphorus from extracts obtained by Mehlich 3 method for some years. During our work many soils have been analysed by diferent methods: digital image analysis and spectroscopical analysis. In our presentation we compare the results of soil P analysis obtained by smartphone, Vis-spectrometry and atomic emission spectrometry.

How to cite: Tõnutare, T. and Oras, A.: The comparison of smartphone, Vis- and atomic emission spectrometers for soil P analysis by Mehlich 3 method , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-581, https://doi.org/10.5194/egusphere-egu2020-581, 2020.

EGU2020-20338 | Displays | SSS11.2

Determination the influence of liming with oilshale ashes to the changes of water extractable plant nutrients in acidic soils

Mihkel Ilves, Tiina Köster, Kadri Krebstein, and Tõnu Tõnutare

The acidification process influences mostly soils used agriculturally. It causes yield decrease and loss of plant nutrients from soil via leaching and also rise in concentration of undesibrable, harmful for plant roots ions ( Al3+) in soil solution.

To overcome the negative effects of acidification to agricultural plant production, liming of agriculturally managed soils is widely in use. 40% of agriculturally used lands in Estonia needs periodic liming and approximately 130 000 tons of liming material will be needed for neutralizing acidic soils every year.  Typically different naturally occouring carbonatic materials , as limestone and dolomite, is used for this purpose.  In Estonia more than 9 million tons of ash has been produced as waste byproduct in Estonian power plants every year. Only 1,9% of this byproduct has been reused in building materials industry and agriculture. The amounts of oilshale ash used as liming material by farmers is increasing from year to year.  

The oilshale fly ash is higly alkaline material with high content of Ca (20 – 33% ), K ( 2,6 – 10%), Mg (2 – 4%) and several microlelement (Zn, Cu, Mo, Mn). Due to modernization of powerplants the new burning technology (CFB) was introduced. Therefore the the fly ash with new chemical and physical properties appeared on the market of liming agents for farmers.

The aim of the research was to investigate the change of water soluble plant nutrient  (P, K, Mg, Ca) content in acidic soils as a result of liming with oilshale fly ash.  Experiment was conducted as a pot experiment  with five different soils and three fly ashes and two types of granulated ashes and powdered limestone.  The influence of soil organic carbon, soil acidity, texture, to the water soluble  nutrient gradient in soil was investigated. 

The differences between oilshale ashes to the changes in nutrient gradient was found. The Nutrient gradient depends from oilshale ash as well from soil properties.   

How to cite: Ilves, M., Köster, T., Krebstein, K., and Tõnutare, T.: Determination the influence of liming with oilshale ashes to the changes of water extractable plant nutrients in acidic soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20338, https://doi.org/10.5194/egusphere-egu2020-20338, 2020.

EGU2020-20904 | Displays | SSS11.2

Comparison of Mehlich 3, AL and artificial root exudates containing extractants for soil phosphorus analysis

Tonu Tonutare, Gert Kaldmae, Tiina Köster, Kadri Krebstein, and Ako Rodima

Due to increase of fertilizers prices and tightening of environmental protection requirements the need for efficient use of fertilizers has increased. At moment over the word huge number of different methods for determination of soil plant available phosphorus (PAP) are in use. Due to unequal extraction ability of extractants have each method own specific gradation to evaluate the soil P class. Allmost all widely used PAP extraction methods are developed in last century, mostly more than fifty years ago and often there is not possible to found information how the P status classes and fertilizer recommendations are determined for each method is determined.

The content of PAP in soil is difficult to estimate because soil pH has a strong effect to soil  - solution chemistry. Therefore extracting  soils with higly buffered solutions as for example Mehlich 3 can give overestimated results. The acidic Mehlich  3 extactant can solubilize relatively insoluble Ca- Fe- and Al phosphates. Also the AL (acetate-lactate) method uses the buffered extraction solution and may influence the amount of extracted PAP. The most realistic conditions for PAP extraction can give the extraction solution which mimic the soil environment that has actively growing roots. 

The aim of our research was to investigate the extraction of PAP with extragent similar by chemical composition to soil solution with root exudates proposed by Haney et al (2010).  The obtained results were compared with Mehlich 3 and AL methods results.    

Ref.: Haney, R.L., Haney, E.B., Hossner, L.R., Arnold, J,G. 2010. Modification to the New Soil Extractant H3A-1: A Multinutrient Extractant. Communications in Soil Science and Plant Analysis, 41:1513-1523.

How to cite: Tonutare, T., Kaldmae, G., Köster, T., Krebstein, K., and Rodima, A.: Comparison of Mehlich 3, AL and artificial root exudates containing extractants for soil phosphorus analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20904, https://doi.org/10.5194/egusphere-egu2020-20904, 2020.

The cation exchange capacity (CEC, cmol(+)/kg) is a measure of soil’s capacity to retain exchangeable cations. However, it is expensive to collect CEC across a heterogenous field and at different depths. To value-add to limited data, proximal sensed electromagnetic (EM) data has been coupled to CEC through linear regression (LR) models, because they measure apparent soil electrical conductivity (ECa, mS/m). However, these LRs have been depth-specific. This approach was compared with one universal LR between estimates of true electrical conductivity (s, mS/m) and CEC from various depths, including topsoil (0-0.3 m), subsurface (0.3-0.6 m), shallow subsoil (0.6-0.9 m) and deeper subsoil (0.9-2.1 m). We estimated s from inversion of EM38 and EM31 ECa either alone or in combination (joint-inversion), in horizontal (ECah) and vertical (ECav) modes, using a quasi-3d (q3-d) inversion software (EM4Soil) and various parameters, including EM38 at two different heights (i.e. 0.2 or 0.4 m). In terms of performance, the LR correlation (R2 > 0.60) was largest between deeper subsoil CEC and EM38 ECah at 0.2 m. However, the LR was unsatisfactory for CEC calibration in the topsoil (0.31), subsurface (0.37) and shallow subsoil (0.52). In comparison, a universal LR between CEC and σ was well correlated (0.72), when both EM38 (0.2 m) and EM31 ECa in both modes, were inverted using a forward model (CF), inversion algorithm (S2) and small damping factor (λ = 0.03). The calibrations tested using a leave-one-out cross validation, showed CEC prediction was precise (RMSE, 2.35 cmol(+)/kg), unbiased (ME, -0.002 cmol(+)/kg) with good concordance (Lin’s, 0.83). To improve areal prediction, closer spaced transects need to be collected, while improved vertical resolution of CEC prediction we recommend DUALEM-421 ECa data be acquired. 

How to cite: Zhao, D. and Triantafilis, J.: Mapping cation exchange capacity using a quasi-3d joint-inversion of EM38 and EM31 data , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-918, https://doi.org/10.5194/egusphere-egu2020-918, 2020.

EGU2020-9564 | Displays | SSS11.2

Determination of trace elements and macronutrients in agricultural soils using energy dispersive X-ray fluorescence as a rapid and precise analytical technique

Maame Croffie, Paul N. Williams, Owen Fenton, Anna Fenelon, Konrad Metzger, and Karen Daly

X-ray fluorescence spectrometry (XRF) is a rapid and inexpensive method for soil analysis. Although, not as precise and accurate as mineral acid digestion-Inductively Coupled Plasma spectrometry for soil testing at present, the XRF method has the potential to be optimised. The objective of this study was to reduce moisture effects, particle size effects and spectra interferences on trace element and macronutrient analyses by improving soil sample preparation and XRF calibration, using bench top Energy-dispersive X-ray Fluorescence Spectrometry (EDXRF). The soil particle size effects study involved samples prepared as pressed powders, pressed pellets, and pressed pellets with a wax binder. After which, the recoveries of Al, Cr, Ni, Mn, Pb, Ca, Fe, K, Mg, P, S and Zn were evaluated as a measure of accuracy and precision. The XRF was calibrated with the fundamental parameters (FP) and matching library (FPML) methods to reduce spectral interferences and validated with certified reference materials. In addition, both XRF methods (FP and FPML) were compared with aqua regia digestion (acid digestion) -Inductively Coupled Plasma-Optic Emission Spectrometry (ICP-OES) using concordance correlation coefficient (CCC), whereby a value of 1 indicated good agreement between methods. There were significant differences (p<0.05) between the sample preparation methods and the pressed pellet with wax binder had the best accuracy and precision for all the elements. In addition, for the calibration study, the FPML gave better recoveries of Ni, Ca, Mg, S, P, Cr compared to the FP, however, for Fe, Zn, K and Mn the FP had better recoveries than the FPML. Furthermore, there was good agreement (CCC>0.80) between both XRF methods and ICP-OES for all elements except Al, P, Cu, K, S and Cr (CCC<0.60). Aqua regia digestion underestimated the total concentration of Al and K, thus, the XRF had better accuracy for predicting these elements. However, for Cr, S, Cu and P, the XRF overestimated the concentration of these elements in soil. This study has shown that the XRF is as accurate as the ICP-spectrometry for most elements when properly calibrated with the advantage of having a shorter sample preparation. Thus, environmental analysts can monitor soils frequently using the XRF without losing analytical results especially with Al and K and also incurring substantial costs in analyses as with traditional methods. 

Keywords: soil; elemental analysis; X-Ray Fluorescence; spectrometry; calibration

 

How to cite: Croffie, M., Williams, P. N., Fenton, O., Fenelon, A., Metzger, K., and Daly, K.: Determination of trace elements and macronutrients in agricultural soils using energy dispersive X-ray fluorescence as a rapid and precise analytical technique, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9564, https://doi.org/10.5194/egusphere-egu2020-9564, 2020.

EGU2020-6452 | Displays | SSS11.2

Soil morphometrics applied to soil trenches in a contaminated site

Fabio Terribile, Simona Vingiani, Antonio Mileti, and Giuliano Langella

In many contaminated sites and/or sites affected by a potentially toxic element (PTE) contamination, the spatial variability of soil contamination is a very complex issue.

This is because the history of contamination in a specific industrial site is often lost in time and with very different modifications occurring over time. It is even hidden in the case of illegal waste dumping, for which type, quantity and localization of contaminants are unknown. Thus it is not known in advance (i) the spatial distribution of contamination, (ii) the knowledge about how contaminants have been distributed over and beneath the soil, (iii) how far contaminants have been reworked during the life time of the contaminated site.

Despite these problems, it is self-evident that a detailed knowledge of the natural and the anthropogenic spatial variability of soil contamination and soil properties is of crucial importance in both site characterization and most importantly in site reclamation.

Here we claim that the analysis of soil trenches in combination with pXRF can strongly support the understanding about processes behind soil contaminant distribution and this information can then be used in the following study of contaminated site characterization.

This contribution focuses on how to acquire detailed knowledge of the spatial distribution of contamination in an agricultural area of southern Italy, 6 ha of farmland confiscated by the Italian Judiciary due to past illegal burial of industrial tannery wastes causing potential contamination by Cr, Zn and heavy hydrocarbons (C>12). After indirect geophysical and radiometric (i.e. soil gamma ray emissions) prospections, 8 sites for soil profiles and trenches (10 x 1.7 m wide) digging were identified.

Over these trenches both morphological (i.e. colour, structure, plant roots, etc.) and elemental total content analysis (Olympus p-XRF) were performed. This analysis enable to identify three type of soil contaminant deposition which affected to various degree the Ap, Bw and C horizons of the investigated Silandic Andosol. The highest Cr and Zn content was found in the B horizon, where levels of 25000 ppm were measured in soil-pockets of muddy-grey materials, very likely hosting the original processing residues.

How to cite: Terribile, F., Vingiani, S., Mileti, A., and Langella, G.: Soil morphometrics applied to soil trenches in a contaminated site, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6452, https://doi.org/10.5194/egusphere-egu2020-6452, 2020.

Correlations between magnetic enhancement and heavy metal pollution in the urban soils of an industrial area in Shanghai

 

Mei Li, Zi-Chen He, Xue-Feng Hu

School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China

 

Fifty-three topsoil samples (0-5 cm) on the sides of highways surrounding the Bao Steel Company were collected in Baoshan District of Shanghai, Southeast China. Physical-chemical properties and magnetic susceptibility of the topsoils were analyzed. Close to the Yangtze River Estuary, the soils in the study area in the northern part of Baoshan District, Shanghai, were mostly derived from tidal sediments of the estuary. The topsoils were thus alkaline, with pH in a range of 8.0-8.6. The content of organic matter in the topsoils was in a range of 8.0-78.6 mg g-1. The content of Fe in the topsoils varied greatly, possibly influenced by the industrial emissions from local metal smelters and power plants. The content of total Fe (Fet) in the topsoils was in a range of 21.0-68.6 mg g-1, with an average of 33.7 mg g-1; free Fe (Fed), 8.5-25.2 mg g-1, with an average of 13.8 mg g-1; amorphous Fe (Feo), 2.2-40.4 mg g-1, with an average of 13.1 mg g-1. Correspondingly, the magnetic signals of the topsoils were significantly enhanced and varied greatly from site to site. Magnetic susceptibility of the topsoils was in a range of 35.3-1722.7×10-8 m3 kg-1, with an average of 408.5×10-8 m3 kg-1. The topsoil with the maximum magnetic susceptibility, 1722.7×10-8 m3 kg-1, was coarse in grain size and located beside some machinery, cement and material factories. Magnetic susceptibility of the topsoils was significantly correlated with Fet, Fed and Feo (r=0.712, 0.777, 0.961, n=53; p<0.01). The contents of toxic heavy metals, Zn, Pb, Cr, Co, Mn and Ni, in the topsoils were also analyzed. It was found that heavy metals were highly accumulated in the topsoils. The contents of Mn, Cr and Ni in the topsoils were more than 2 times the background values in the soils of Shanghai, and Pb and Zn were more than 4 times the background values. Moreover, magnetic susceptibility of the topsoils was positively significantly correlated with the content of Zn, Mn and Ni (r=0.884, 0.819, 0.564, p<0.01; n=53). This suggests that magnetic susceptibility of the topsoils can be used to indicate the degree of heavy metal pollution to some extent. There are many iron smelting factories and coal-fired power plants in the study area, which emitted a high amount of Fe-containing magnetic particles. The small particles had a large surface area and often adsorbed toxic heavy metals. When the particles were settled down on the ground, both magnetic signals and heavy metal contents of the topsoils were enhanced simultaneously. Therefore, the magnetic techniques are a promising means to study and evaluate the pollution of urban soils.

How to cite: Li, M.: Correlations between magnetic enhancement and heavy metal pollution in the urban soils of an industrial area in Shanghai, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1117, https://doi.org/10.5194/egusphere-egu2020-1117, 2020.

EGU2020-5816 | Displays | SSS11.2

Determination of the silver concentration with ion-selective electrode potentiometry
not presented

Nataliia Chupakhina, Oleg Novikov, Pavel Maslennikov, and Galina Chupakhina

For technological control of hydrometallurgical processes, it is especially important to obtain data on element concentrations with an express method. Potentiometry on an ion-selective electrode makes it possible to determine concentrations in real time. We propose a method for calculation of silver concentrations for chloride solutions.

In chloride solutions, silver is present in several forms: the cation [Ag+] and the complexes [AgCl], [AgCl2]-, [AgCl3]2-, [AgCl4]3-. The ion-selective electrode is calibrated using an AgNO3 solution that contains exclusively Ag+ cations; therefore, it actually determines only the cation content. However, in chloride solutions the cationic form of silver is present in a minimum concentration. Complexes with chloride anions have an opposite charge and are not fixed during the analysis. The total silver concentration can be estimated by measuring the total chloride content in the sample. Using the reference data on the stability constants and information on the concentration of silver cations obtained with potentiometry on an ion-selective chlorine-silver electrode we developed a mathematical model in order to calculate the total silver concentration. Using this model, the total concentration of all the forms of silver was calculated. The data are summarized in Table 1.

Calculating the equilibrium concentration we found that in high-salinity solutions silver prevails in the form of [AgCl4]3-. All the other complexes are present in smaller quantities. This result shows that it is important to take into account the complexes formation in potentiometric measurements on ion-selective electrodes.

 

How to cite: Chupakhina, N., Novikov, O., Maslennikov, P., and Chupakhina, G.: Determination of the silver concentration with ion-selective electrode potentiometry, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5816, https://doi.org/10.5194/egusphere-egu2020-5816, 2020.

SSS11.4 – Development of new technologies in soil conservation and eco sustainability

EGU2020-3970 | Displays | SSS11.4

Critical area prioritization for river basin planning and management under future scenarios using SWAT model

Ashish Pandey, Bishal Kc, Praveen Kalura, and Vemuri Mutthya Chowdary

Suitable and practicable best management practices (BMPs) are needed to develop effective and efficient watershed management under future climate change scenarios. Tons river basin is an agricultural-based watershed having a great significance to the States of Madhya Pradesh and Uttar Pradesh. Identification of critical erosion prone areas of the Tons River basin and implementation of BMPs for the future scenarios (2030-2050) using RCP 4.5 and RCP 8.5 scenarios is the main aim of this study. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for simulation of runoff and sediment yield using the Sequential Uncertainty Fitting (SUFI-2) technique. The values of coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and RMSE-observations standard deviation ratio (RSR) were 0.71, 0.70, -8.3 and 0.54 respectively during the calibration period whereas in validation the values were 0.72, 0.71, -3.9 and 0.56 respectively. Thus, the SWAT model can be employed in the Tons river basin of India for critical area prioritization and river basin planning and management under future scenarios.

How to cite: Pandey, A., Kc, B., Kalura, P., and Chowdary, V. M.: Critical area prioritization for river basin planning and management under future scenarios using SWAT model, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3970, https://doi.org/10.5194/egusphere-egu2020-3970, 2020.

EGU2020-9170 | Displays | SSS11.4

How grass contributes to controlling hillslope erosion

Chengzhong Pan and Lan Ma

The aim of this study was to investigate how the spatial distribution of grass influenced run-off and erosion from a hillslope with loess and cinnamon soils in the rocky area of Northern China. We set up a trial to test the two soils with different treatments, including bare soil (BS), grass strips on the upper (UGS) and lower (DGS) parts of the slope, grass cover over the entire slope (GS), and a grass carpet on the lower part of the slope (GC), under simulated rainfall conditions. The results showed that the run-off coefficients for the loess and cinnamon soils decreased by between 4% and 20% and by between 2% and 37%, respectively, when covered with grass. Grass spatial distribution had little effect on the run-off, but more effect on erosion than vegetation coverage degree. The most effective location of grass cover for decreasing hillslope erosion was at the foot, and the high efficiency was mainly due to controlling of rill formation and sediment deposition. The soil loss from GS, DGS, and GC on the loess and cinnamon soils was between 77% and 93% less and 55% and 80% less, respectively, compared with the loss from BS. However, the soil characteristics had little effect on soil erosion for well-vegetated slopes. The results highlight the importance of vegetation re-establishment at the foot of hillslope in controlling soil erosion.

How to cite: Pan, C. and Ma, L.: How grass contributes to controlling hillslope erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9170, https://doi.org/10.5194/egusphere-egu2020-9170, 2020.

EGU2020-1494 | Displays | SSS11.4

Influence of crop residues on weed emergence

Nebojša Nikolić, Donato Loddo, and Roberta Masin

Weeds are one of the major problems in agriculture, they can reduce yield, interfere with harvest and serve as hosts to possibly harmful organisms. For a successful agricultural production, weed issue must be tackled in the begging, during the germination-emergence phase. With different management systems weed seed bank is exposed to different field conditions which may favour or obstruct the germination. One of these conditions is the presence or the absence of crop residues on the soil surface, very common in the newer agricultural practices, such as Conservation Agriculture. In this work the germination of eight weed species: Abuthilon theophrasti, Setaria glauca, Digitaria sanguinalis, Sorghum halepense, Amaranthus retroflexus, Sonchus oleraceus, Chenopodium album and Echinochloa crus-galli, was examined under the residues of two crop species maize (Zea mays) and wheat (Triticum sp.). For each weed species 200 seeds were used, while three different quantities of residues were used for the two crops, the quantity measured in one square meter of the field (1), half of that quantity (0,5) and a half more than the one measured in the field (1,5), plus control, without residues. The experiment was conducted at the experimental farm of the University of Padova in Legnaro (PD) in a 8x2x3 factorial design with three blocks, plus three control repetitions. Seeds of each weed species were sown in an area of 20 cm2. Before the beginning of the experiment, the soil from the designated areas was removed and sterilized at 105°C in order to prevent contamination by the seeds already present in the soil. Once the soil was sterilized and restored to the field, the seeds were sown on the surface of the soil and covered with the respective quantity of the respective crop residue or left uncovered in the case of control. The experiment started on December 2018, and the seeds were left undisturbed during the winter, imitating natural conditions. Seeds started germinating on March 2019 and were controlled twice a week until the end of germination process, all germinated plants were removed and counted. ANOVA and LSD analysis were performed on cumulated germination data. Only quantity of residues and weed species resulted significant as factors (p-value < 0,000). The results showed that the quantity 1 and 1,5 can reduce the germination from 10 to 30% respectively, while quantity 0,5 can in fact increase germination by 15%. As for the weed species, they were all more inhibited by the higher concentrations of residues, but in respect to control it was observed that some of them seemed to be favoured by the low presence of residues S. halepense and A. theophrasti, not particularly influenced were A. retroflexus, E. crus-galli and S. oleraceus, while C. album, D. sanguinalis and S. glauca showed major germination rate reduction. In conclusion, to obtain the weed inhibitory effect, it seems very important to pay particular attention to the homogeneity of the distribution of the crop residues on the soil surface, low residue density areas could favour weeds.

How to cite: Nikolić, N., Loddo, D., and Masin, R.: Influence of crop residues on weed emergence, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1494, https://doi.org/10.5194/egusphere-egu2020-1494, 2020.

Climate change and various human activities have resulted in noticeable changes in watershed hydrological and soil erosion regimes. In this study, a comprehensive investigation was conducted to distinguish between the effects of climate variables and those of land use and land cover change (LUCC) variables on runoff and sediment discharge in a watershed located at upper reaches of the Yangtze River. Statistical analysis results revealed significant and slight increasing trends in runoff and sediment discharge, respectively. Abrupt changes occurred in 1974 and 1995, which divided the entire time series into a decrease–increase–decrease tendency pattern; this pattern was the response to climate changes and the Reforestation and Returning Farmland to Forest project in China. In addition, redundancy analysis was used for partition statistical analyses, and the contributions of climate change and LUCC to runoff and sediment discharge were at the ratio of 4:1. Since 1990, the effect of LUCC has increased notably and its relationship with hydrological variables changed from positive to negative in approximately 1995. Finally, simulations performed using the distributed Basic Pollution Calculation Center (BPCC) model confirmed that climate and LUCC variables reduced the runoff depth and sediment load between 1980 and 2003. The contributions of climate fluctuation and LUCC to runoff depth were at the ratio of 5:1, and those to sediment load were at the ratio of 3:1, which exhibited the dominant role of climate change and the high sensitivity of sediment load to human interference. Overall, the results of distributed hydrological modeling were consistent with those of statistical analyses. The results provided detailed information and explained the mechanics underlying hydrological processes and soil erosion.

 

How to cite: Zhang, H.: Comprehensive evaluation of the effects of climate change and land use and land cover change variables on runoff and sediment discharge, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2970, https://doi.org/10.5194/egusphere-egu2020-2970, 2020.

The benefits of soil and water conservation measures during snowmelt process is rarely studied in Northeast China. Based on the observation results of snowmelt erosion of Jixing runoff plots (Meihekou City, Jilin Province)in spring in 2015 and 2016, combined with the previous results of rainfall erosion, the practice factor values of soil and water conservation measures, the numbers of soil erosion events, the runoff depth and erosion modulus between snowmelt and rainfall conditions were compared to investigate the difference of effects of the soil and water conservation measures on snowmelt and rainfall erosion. The results show that the practice factor values range from 0.001 to 0.46, while the best measure for prevention of snowmelt erosion is the ecological restoration measure, with the characteristics of shorter period, less amount of snowmelt runoff. The effect of the cut-off drain measure, a typical engineering measures, on snowmelt erosion is mainly controlling the amount of snowmelt runoff. The erosion modulus and runoff depth of the shrub ridging are larger compared with the contour ridge and furrow planting, another kind of tillage measure, under snowmelt condition. Both two types of soil erosion, namely snowmelt and rainfall erosion, should be taken into account in planning and design of soil and water conservation measures in areas with snowmelt erosion, especially for the cultivated land.

How to cite: Xu, X. Q., Fan, H. M., Tan, J., Jia, Y., and Wu, M.: Comparison of Practice Factor Values of Soil and Water Conservation Measures Under the Condition of Snowmelt and Rainfall Erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2834, https://doi.org/10.5194/egusphere-egu2020-2834, 2020.

EGU2020-16511 | Displays | SSS11.4

Flexible slope protection for the steep Pisha sandstone slopes based on hydraulic polyurethane combined with planting mate

Yanbing Zhao, Caiqian Yang, Feng Qu, Zhiren Wu, Zhishui Liang, and Wenbo Ma

The vegetation and stability of Pisha sandstone slopes are insufficient due to its inherent properties, such as low erosion resistance, strength, water stability, and high porosity. In this paper, a new flexible slope protection method, which considers the combination of hydraulic polyurethane(W-OH) and planting mate technology, is proposed to realize the ecological restoration and prevent soil erosion of the steep Pisha sandstone slopes. The properties of consolidated body of W-OH and Pisha sandstone were investigated. Furthermore, the optimal proportion of the nutrient substate was obtained by orthogonal test via laboratory and on-site experiments. The results illustrate that with 5% W-OH, the average compressive strength and water stability index of the consolidated body can reach about 6.70 and 3.71 times higher than the blank group. The on-site experiments demonstrate that the vegetation coverage of the optimal group reaches 85% after three months curing, which is 5.2 times that of the blank group.

How to cite: Zhao, Y., Yang, C., Qu, F., Wu, Z., Liang, Z., and Ma, W.: Flexible slope protection for the steep Pisha sandstone slopes based on hydraulic polyurethane combined with planting mate, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16511, https://doi.org/10.5194/egusphere-egu2020-16511, 2020.

Rocky desertification has long been identified as an adverse geo-environmental hazard to both humans and the environment. With increasing rocky desertification, karst ecosystem is one of the most severely-threatened ecosystems in the world due to its thin soil layer. As a typical karst landform, the Karst Gabin Basin in the southwest China is characterized by the presence of large arable land, frequent agricultural activities, and prominent soil and water loss. In this study, land use and land-cover change between 1980 and 2015 was investigated based on multi-temporal remote sensing images. InVEST model was used to calculate regional water production. The results showed that there was a decrease in the acreage of cultivated land and water body, but a slight increase in that of residential land. Meanwhile, there was an significant increase in forest land and grassland. During the study period, restored area was greater than degraded area. Water production area was divided into three ecological zones based on water yield capacity. Our finding showed that conservation strategy had a significant influence on land use change in this area, which also served as a basis for rational planning in the karst Gabin basin.

How to cite: Yu, Y., Liu, H., Zhang, W., and Wu, X.: Land use change and water production function in the Karst Gabin Basin: A regional study from southwest China (1980-2015), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13002, https://doi.org/10.5194/egusphere-egu2020-13002, 2020.

EGU2020-19686 | Displays | SSS11.4

A sustainable model for agriculture based on nanofibrous biodegradable polymers mimicking natural strategies

Antonella Macagnano, Massimo Mari, Giuseppe Scarascia-Mugnozza, and Fabrizio De Cesare

The damage and risk to the environment and human health consequent to traditional agricultural practices urged the development of innovative techniques and more environmentally friendly processes and compounds. Nanotechnology can improve the precision in the processes and the coordination of the management strategies of agricultural production. Therefore, innovative and groundbreaking tools have recently been developed employing natural and engineered nanomaterials to deliver agrochemicals to plants for both improving nutrition, stimulate plant growth, improve the quality of the soil and protect plants, while reducing the impact of these compounds on the environment and human health. Electrospinning (ES) is a highly versatile and inexpensive nanotechnology that allows to design and fabricate continuous non-woven polymer fibers with diameters ranging from micrometer to nanometer when a strong electrical field acts on a droplet of a solution with sufficient viscoelasticity. The resulting fibers can assume complex shapes, creating a multitude of structures with a broad spectrum of different properties (porosity, permeability, high fiber interconnectivity, nano-scale interstitial spaces, biomimetism and bioinspiration, etc.). 
Since the limitation of iron availability is a crucial condition in plant nutrition, the polymer fabrics here proposed, mimicking the natural strategy adopted by nongraminaceous and graminaceous species (Strategy I and II, respectively), were designed to make available to the plants the insoluble iron (Fe III) widely present in ecosystems by releasing selected iron-chelating molecules. Therefore, we investigated a model system based on ES biodegradable nanofibrous textiles with different shapes capable of releasing natural iron-chelators into soil/water by controlled rates (depending on the membrane morphology). The present study first focused on the production and functionality of a biodegradable nanofibrous polymer (polyhydroxybutyrate-PHB) scaffold, that is naturally produced by microorganisms and algae).  Because of its fragility, PHB was then blended with another biodegradable polymer (polycaprolactone-PCL), and then properly bio-loaded. The resulting polymer blend, due to the physical properties of PCL, resulted softer and mechanically more resistant than the previous one (PHB) and it was poorly affected by sudden changes in temperature. Both polymers are water insoluble and present low environmental impact, and are commonly investigated and used in drug delivery structures. The effectiveness and toxicity of both functional systems mimicking Strategy I and II concepts and dynamics were tested in two different plant hydroponic cultures. Such regenerative and sustainable agricultural practices based on natural sources and waste reduction, inspired by the principles of a circular bio-economy (European Environment Agency, report n. 2/2016), aimed at replacing the use of chemicals and traditional raw materials, improving health and environmental conditions, as required by the original principles of a circular economy, and at facing the increasing risk level for our natural capital.

How to cite: Macagnano, A., Mari, M., Scarascia-Mugnozza, G., and De Cesare, F.: A sustainable model for agriculture based on nanofibrous biodegradable polymers mimicking natural strategies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19686, https://doi.org/10.5194/egusphere-egu2020-19686, 2020.

Due to the hard surface and the lack of necessary soil environment for vegetation growth, the rock slope protection and ecological restoration is one of the research focuses nowadays. In this paper, we proposed a flexible slope protection method based on the vegetation membrane to protect the rock slopes including river and road slope. The vegetation membrane is a kind of organic bags which is perfused by a mechanical equipment with plant seeds, soil, sand, vermiculite, rice husk, adhesive material, water retaining agent with water in a certain proportion, forming a suitable environment for vegetation growth. Then the membrane is fixed on the rock slope by the anchor bolt in different specifications and quantities according to the different slope conditions. The results show that the minimum proportions of total nitrogen, phosphoric acid, potassium in the vegetation membrane are 5%, 25% and 10%, respectively. The tension load of the anchor bolt can reach 50 ~ 100 kg in different lengths. The vegetation coverage rate on the rock slope by this method can reach more than 80% in three months and the rock slope is much more stable. Additionally, two demonstrations of different rock slopes protected by this technique are briefly described and the good control effects are obtained. It will provide a new method for protecting steep and rock slopes.

How to cite: Liang, Z., Wu, Z., and Gao, H.: Study on the application of rock slope protection and ecological restoration technique based on vegetation membrane, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8906, https://doi.org/10.5194/egusphere-egu2020-8906, 2020.

Unsaturated soils are those in which pore is filled partially with water and partially with air. They are the most relevant porous medium to human activities, and cover almost all the soils near the ground surface. Hydraulic conductivity (HC) is one of the most important and useful properties of unsaturated soils in numerous studies, including governing flow process, settlement of soil foundations, migration of groundwater and gas hydrate. Unfortunately, direct measurement of HC for unsaturated soils is very difficult with high uncertainty due to its nature of complexity and limited experimental conditions. Thus, indirect estimation of HC from soil water characteristic curve (SWCC) becomes an alternative way and being widely used all over the world.

Because of the difficulty to reach high suction at the residual state of unsaturated soils, however, the SWCC obtained by laboratory experiments is often incomplete, which will lead to an unreliable estimation of hydraulic conductivity. However, no study has been published on how to estimate hydraulic conductivity of unsaturated soils with incomplete SWCC. In response to this situation, an innovative method was proposed based on the classical van Genuchten model and Mualem model. The proposed method was evaluated by extensive experimental data from existing literature and proved to have an excellent performance in predicting a complete SWCC for a wide range of soils. Also, it exhibits certain superiority in predicting hydraulic conductivity. The limitations of the proposed method were comprehensively discussed, and its corresponding improvement strategies were also addressed. This paper presents a practical way to obtain a more reliable hydraulic conductivity from incomplete SWCC.

How to cite: Ren, X., Fang, Q., and Chen, X.: How to predict hydraulic conductivity of unsaturated soils from an incomplete soil water characteristic curve?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5083, https://doi.org/10.5194/egusphere-egu2020-5083, 2020.

EGU2020-1127 | Displays | SSS11.4

Spatial Analysis of Soil Water Content in Newly Implemented Agricultural Bench Terraces in the Ethiopian Plateau

Giulio Castelli, Shimbahri Mesfin, Lucas Allan Almeida Olivera, Elena Bresci, and Eyasu Yazew

In arid areas prone to desertification and soil erosion, the effectiveness of agricultural bench terraces in increasing soil moisture is dependent on their correct implementation. However, despite its relevance for securing food production in many areas of the world, the relationship between proper terracing implementation and the landscape capacity of holding soil moisture is still not understood. Moreover, spatial patterns of Soil Water Content (SWC) within the same terraced hillslope are weakly studied. The present work analyses SWC variations in four newly implemented terraced sites in Tigray Region, Ethiopia: Teshi, Ruba Feleg, Michael Emba and Enda Chena. Field SWC data were collected for the dry season of 2017 (February, March and April) from the upper, middle and lower part of each terraced site, including a non-terraced benchmark area. In all sites, terraced areas show SWC significantly higher than non-terraced ones (p < 0.05), with the lower part of the terraced hillslope more humid than the others for the whole period analyzed. A Multiple Linear Regression (MLR) analysis of SWC was conducted in order to highlight possible dependencies of SWC values. MLR highlighted significant dependency of SWC from the date of analysis, the position of the sample in the terraced slope, as well as a significant positive correlation of SWC with the percent of Water Stable Aggregates (WSA) analyzed at the study sites. Since high soil disturbance induces low soil aggregates stability, this result shows how measures to reduce soil disturbance during implementation can significantly increase SWC of radical terraces. Overall, the results of the present paper testify the good performances of bench terraces in Northern Ethiopia in terms of water conservation, and this first benchmark study can inform future terracing implementation in some arid and semi-arid agricultural areas of the world.

The abstract is based on Mesfin, S.; Almeida Oliveira, L.A.; Yazew, E.; Bresci, E.; Castelli, G. Spatial Variability of Soil Moisture in Newly Implemented Agricultural Bench Terraces in the Ethiopian Plateau. Water 2019, 11, 2134.

How to cite: Castelli, G., Mesfin, S., Almeida Olivera, L. A., Bresci, E., and Yazew, E.: Spatial Analysis of Soil Water Content in Newly Implemented Agricultural Bench Terraces in the Ethiopian Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1127, https://doi.org/10.5194/egusphere-egu2020-1127, 2020.

The Pisha sandstone area on the Ordos Plateau of China is the primary source of coarse sediment of the Yellow River. Sediment size distribution and selectivity greatly affect sediment transport and deposition. Hence, sediment transport processes and size selectivity by overland flow on Pisha sandstone slopes were investigated in this study. Experiments were run with Pisha sandstone soil (bulk density of 1.35 g/cm3) under rainfall intensities of 87 and 133 mm/h with a 25° slope gradient, and the duration of simulated rainfall is 1 h. Sediment and runoff were sampled at 2-min intervals to examine the size distribution change of the eroded sediment. The particle composition, enrichment rate, fractal dimension, and time distribution characteristics of median grain size (d50) of eroded sediment were comprehensively analyzed. Statistical analyses showed that the erosion process of Pisha sandstone slope mainly transported coarse sediment. More than 40% of eroded sediment particles were coarse sediment, which will become the main sediment in the lower reaches of the Yellow River bed. The particle size of eroded sediment tended to gradually decrease with the continuous rainfall but remained larger than the background value of Pisha sandstone soil after refinement. The fractal dimension was positively correlated with the slope flow velocity, while the d50 was negatively correlated with the slope flow velocity. Overall, these findings show a strong relationship between the sediment transport and flow velocity, which indicates that the selectivity and transportation of sediment particles on the Pisha sand slopes is mainly influenced by the hydrodynamic parameters of overland flow. This study provides a methodology and data references for studying the particle selectivity characteristics of eroded sediment and provides a scientific basis for revealing the mechanism of erosion and sediment yield in the Pisha sandstone area of China.

How to cite: Zhang, P., Xiao, P., and Yang, C.: Experimental study of sediment transport processes and size selectivity of eroded sediment on steep Pisha sandstone slopes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2269, https://doi.org/10.5194/egusphere-egu2020-2269, 2020.

The response of extreme rainstorm to global climate pattern changes in the loess plateau

Shaobo Long1,3、Jianen Gao1,2,3*、Huijuan Li5、Zhe Gao4、minmin Qiang1,3、Sixuan Liu1,3

  1. Institute of Soil and Water Conservation, Northwest Agriculture and Forestry University, 712100, Yangling, Shaanxi, China.
  2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China.
  3. Research Center on Soil and Water Conservation, Ministry of Water Resources, 712100, Yangling, Shannxi, China.
  4. College of Water Resources and Architectural Engineering, Northwest Agriculture and Forestry University, 712100, Yangling, Shaanxi, China.
  5. Institute of Geographic Sciences and Natural Research, CAS, 100101, Beijing, China.

Abstract: The loess plateau is the region with the most serious soil and water problems in the world, the soil erosion mainly occurs in the season of rainfall, especially the extreme rainstorm has great influence on soil erosion. In recent years, under the background of global climate change, extreme rainstorm occurs frequently in the loess plateau, causes a series of soil damage, was difficult to predict. Therefore, it is a great significance to study the rule of extreme rainstorm for the soil erosion in the loess plateau. Based on the daily rainfall data of 56 meteorological stations and global sea surface temperatures (SST) data in the last 60 years, the effects of El Niño on extreme rainstorm were studied by using empirical orthogonal function (EOF), wavelet transform, and other statistical methods. The results show:

  • (1) The extreme rainstorm has obvious spatial distribution characteristics, which decreases gradually from the south to the north of the loess plateau; Temporal variation of extreme rainstorm has obvious decadal oscillation, showing a decreasing trend from 1982 to 2012 and an increasing trend after 2012.
  • (2) There was a significant positive correlation between the time coefficient of EOF1 for SST and the extreme rainstorm (P < 0.05). Wavelet analysis shows that Both extreme rainstorm and SST anomaly have a 30-year cycle, with the time change becoming more dramatic after 2012.
  • (3) El Niño has obvious influence on the extreme rainstorm in the loess plateau region. Extreme rainstorm can be predicted about 1 year in advance by the change of SST anomaly. This is of great significance to the study of extreme rainfall erosion in the loess plateau.

Keywords: The loess plateau; Extreme rainstorm; El Niño

Funding:

  1. The National key Research and Development Program of China (No.2017YFC0504703).
  2. National Natural Science Foundation of China (No. 41877078, 41371276).
  3. Knowledge Innovation Program of the Chinese Academy of Sciences (No.A315021615).

How to cite: long, S.: The response of extreme rainstorm to global climate pattern changes in the loess plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16507, https://doi.org/10.5194/egusphere-egu2020-16507, 2020.

EGU2020-12222 | Displays | SSS11.4

Impacts of terracing on hydrological processes: a case study in Wangmaogou watershed of the Loess Plateau

Xiuxiu Chen, Qihua Ran, Yanyan Hong, and Sheng Ye

The Loess Plateau of China is known for its severe soil and water loss problems. Terracing is one of the most important soil and water conservation measures there. Our understanding of the effects of terraces on soil and water conservation and its mechanism is limited by observation data on runoff and soil erosion as well as the influences from local environmental characteristics. In this study, we applied a physically-based distributed hydrological model (Integrated Hydrology Model, InHM) to an experimental terrace in Wangmaogou watershed of the Loess Plateau, and validated it with the measured soil water content. Our results suggested that terrace construction can substantially reduce runoff by changing the flow direction, especially during heavy rainfall events. This reduction in runoff would be greatly attenuated when ridges are damaged due to lack of maintenance. Under the rainfall intensity of 120 mm/h, compared with hillslope, a well-maintained terrace could reduce runoff by 100%, while the terrace without ridges could only reduce 28% runoff. Besides, ridges not only prevented water from flowing out of platforms, but also helped maintain the risers from terrace failure by decreasing about 20% of the saturation rate at the risers. Our results also emphasized the importance of evaporation, which could make up to 15% of the total water loss even during the rainfall events. Given the effects of terraces on water conservation, it is essential for the land use management of the Loess Plateau to take into account of the terracing approach, as well as a good maintenance of ridges.

How to cite: Chen, X., Ran, Q., Hong, Y., and Ye, S.: Impacts of terracing on hydrological processes: a case study in Wangmaogou watershed of the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12222, https://doi.org/10.5194/egusphere-egu2020-12222, 2020.

EGU2020-2875 | Displays | SSS11.4

Distribution characteristics of gullies with slope gradient in Northeast China

Hao Ming Fan and Di Chen Wang

Twenty selected watersheds were divided into five small watershed sets according to location in Liaoning Province (LN), China. Watersheds and slopes were extracted from a 1:50,000 DEM, and gully data for each watershed were obtained by remote sensing interpretation. The gullies and associated slopes within the small watersheds were identified, and the distributions of gully density, proportion of dissected land, and gully length-width ratio in each small LN watershed and in the five small watershed sets were obtained. The correlations between the small watershed sets and the gully distributions throughout LN demonstrate regional distribution differences, and the watershed area has a great influence on both the area and length of gullies. Regional differences are present in the gully density and the proportion of dissected land in the small watersheds. The distribution of gullies with respect to slope depends on both the gully parameters and the proportion of terrain in the different slope grade ranges. The distribution results for the five small watershed sets are similar to those from a census of the Liaoning-Around Bohai mountainous and hilly sub-region. The gully density and proportion of dissected land in LN showed a single-peak curve with respect to slope, with slope thresholds of 8° and 5°, respectively. The constructed distribution equation has a high degree of fit. The comprehensive distributions of gully density, proportion of dissected land, and length-width ratio with slope indicate that gully erosion in LN is serious within the slope range of 3~8°.

How to cite: Fan, H. M. and Wang, D. C.: Distribution characteristics of gullies with slope gradient in Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2875, https://doi.org/10.5194/egusphere-egu2020-2875, 2020.

EGU2020-9415 | Displays | SSS11.4

How does pretreatment of dry steppe soils affect particle size analysis by laser diffraction?

Moritz Koza, Aleksey Prays, Andrej Bondarovich, Kanat Akshalov, Christopher Conrad, and Gerd Schmidt

After extensive research on different methods to measure particle size distribution (PSD), soil scientists are proposing the laser diffraction method (LDM) as a standard method for soil texture analysis. However, the effects of different pretreatments on particle size analysis of dry steppe soils with LDM has not been tested so far. This study aims to evaluate different pretreatment methods with the purpose to disperse aggregates and remove binding agents in Chernozem and Kastanozem soils. To cover a wide range of different land-use types and farming methods, 112 surface soil samples were taken from 13 fields on four different test sites in Kazakhstan. Before LDM analysis, all samples were pretreated with either H2O2 to remove organic carbon or HCl to remove carbonates. The results showed that removing organic matter with H2O2 led to complete sample dispersion while HCl pretreatment caused incomplete dispersion, likely due to aggregation by calcium ions released by the dissolution of carbonates.

How to cite: Koza, M., Prays, A., Bondarovich, A., Akshalov, K., Conrad, C., and Schmidt, G.: How does pretreatment of dry steppe soils affect particle size analysis by laser diffraction? , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9415, https://doi.org/10.5194/egusphere-egu2020-9415, 2020.

EGU2020-3048 | Displays | SSS11.4

Looking high and low: comparing a UAV-based and a ground-based methodology for the detection of vineyard terrace failures

Anton Pijl, Edoardo Quarella, Teun A. Vogel, Vincenzo D'Agostino, and Paolo Tarolli

Agricultural terraces are known to be related to complex hillslope hydrology, characterized by surface and sub-surface water flows. Locally high fluxes or accumulation of water can be responsible for terrace wall failures, such as collapse and piping. There is a need for both scientific research and applied sustainable viticulture to better understand these processes. A key challenge is to find a suitable balance between highly integrated but local field measurements, and a more approximate but widespread approach such as remote sensing. In this study, two distinctive methodologies were applied in order to locate and explain terrace wall failure observed in a north-Italian vineyard: a field-based vs. a remote sensing approach. The field-based approach was based on spatially distributed measurements of topsoil soil moisture content using Time Domain Reflectometry (TDR) instrument. This survey revealed high relative soil water concentration at the damaged terraces, in both wet and dry conditions. Furthermore, a unique cross-sectional saturation profile was found above the damaged walls, with the highest values found near the edges. The remote sensing approach was based on a photogrammetric survey and subsequent high-resolution digital terrain analysis and modeling using the Topographic Wetness Index (TWI) and SIMulated Water Erosion model (SIMWE). Results showed how the formation of surface water flow patterns explains the location of damaged walls. These findings show both the opportunities and limitations of the two approaches. Field measurements provided more conclusive information about the location of walls at risk (high predictive potential), but this approach is relatively labour-intensive (low upscaling potential) as compared to a remote sensing approach. The latter can be a powerful tool for acquiring fully distributed estimations of wall failure over larger non-instrumented areas.

How to cite: Pijl, A., Quarella, E., Vogel, T. A., D'Agostino, V., and Tarolli, P.: Looking high and low: comparing a UAV-based and a ground-based methodology for the detection of vineyard terrace failures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3048, https://doi.org/10.5194/egusphere-egu2020-3048, 2020.

Pisha sandstone region is the most vulnerable and the most dramatic area of soil erosion, and it is also the concentrated area of the coarse sediment entering into the Yellow River. It is of great significance to research the anti-erosion and vegetation promotion technology in the Pisha sandstone region. Based on the new concept of anti-erosion and vegetation promotion, surface composition, chemical properties and particle structure of the Pisha sandstone particles were analyzed, and the lithologic mechanism of the easy-corrosion of the Pisha sandstone was revealed. High-tech materials suitable for anti-erosion and vegetation-promoting of Pisha sandstonewas developed. A Pisha sandstone dam using modified silt has been built. The field experiments were monitoredfor the effects of the anti-erosion and vegetation-promoting technology on controlling soil erosion. The results showed that: (1) The grain structureand pore cementation of Pisha sandstone leading to the high affinity of the Pisha sandstone and water; The high content of montmorillonite, calcite and feldspar and the development of pore micro-structure in the Pisha sandstone are the main reasons for the poor soil erosion resistance of the Pisha sandstone. (2) Anti-erosion and vegetation-promoting materials(W-OH) based on hydrophilic polyurethane resin combined with anti-UV stabilizer, aquasorb and vegetation growth promoter can encapsulate the Pisha sandstone particles and composethe composite with Pisha sandstone for erosion resistance and vegetation promotion, degradationcontrol freeze-thaw resistance, hydrolysis resistance and environmental friendliness. (3) The simulation analysis of materials and technology for the dam construction was carried out by using mechanics and chemical experiments. The dam design scheme and key procedures were further verified based on the field experiment, and the dam construction using modified materials of pisha sandstone was developed. The silt damusing modified Pisha sandstone was built in the Erlaohugou watershed. The dam height is 10.03 m, the controlled watershed area is 0.31 km2, and the total storage capacity is 32,600 m3. (4) According to the grading of different slopes of the Pisha sandstone and the diversity of its composition, the allocation model of the anti-erosion and vegetation-promoting treatment measures for the Pisha sandstone was proposed. In the top of the slope area, three-dimensional ecological measures such as grass, shrub and arbor mixed with intercepting ditch and other engineering measures were arranged. The technology of spraying anti-erosion and vegetation-promoting materials of low-concentration and planting vegetation measures was used on gentle slopes; the measures of spraying anti-erosion and vegetation-promoting materials of high-concentration combined with vegetation growth was adopted in steep slopes,and the consolidation material is sprayed to prevent weathering and gravity erosion of the Pisha sandstone. (5) The analysis of field plot data showed that the Anti-erosion and vegetation-promoting composite materials and the measures had obvious effects of controlling slope runoff, reducing soil erosion and vegetation restorationcompared with the bare soil plot, the runoff was reduced by more than 70%, the sediment yield was reduced by more than 90%, and the vegetation coverage was reached over 95%.

 

How to cite: Xiao, P., yao, W., zhang, P., and yang, C.: Research on the Technologyof Anti-Erosion and Vegetation Promotion for Pisha Sandstone Region in the Middle Yellow River Basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3990, https://doi.org/10.5194/egusphere-egu2020-3990, 2020.

EGU2020-12424 | Displays | SSS11.4

Spectral Sensitivity of Heavy Metal Concentration in Mine Soils: A case study of Gagok mine, South Korea

Hyesu Kim, Jaehyung Yu, Jieun Kim, Sangmo Koh, and Bumhan Lee

 Heavy metal contamination in soils of mining area accompanies contaminations in drainage and vegetation. The traditional soil survey methods for heavy metal contamination requires significant investment of time, labor, and money although the methods can drive accurate assessment. Moreover, the point-based survey is problematic to understand spatial distribution with limited sample numbers. Remote sensing approaches may provide alternative solutions to understand spatial distribution of contamination with minimal investment of time and labor. It is very critical to understand spectral signals associated with heavy metal concentration to apply the phenomenon to remote sensing approaches. This study investigated spectral signals associated with heavy metal concentration in mine soils based on chemical analysis, mineral composition analysis, and spectral analysis. The study site is a Pb-Zn skarn ore deposit located in Gangwon province, South Korea, where the ore was formed by granite intrusion to slate and limestone. The chemical analysis revealed that the soils are contaminated with heavy metals. Mineral composition classified the soils into two time with silicate/clay mineral group and silicate/carbonate/clay mineral groups. Spectral analysis showed that sensitive spectral bands to heavy metal concentration is located in SWIR region for silicate/clay mineral group and VNIR region for silicate/carbonate/clay mineral group. It reveals that mineral composition and geochemical reaction play an important role in spectral signals manifested by heavy metal concentration.

 

How to cite: Kim, H., Yu, J., Kim, J., Koh, S., and Lee, B.: Spectral Sensitivity of Heavy Metal Concentration in Mine Soils: A case study of Gagok mine, South Korea, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12424, https://doi.org/10.5194/egusphere-egu2020-12424, 2020.

Understanding the dynamics of basin-scale water budgets over the Tibetan Plateau (TP) is significant for hydrology and water resource management in the southern and eastern Asia. However, a detailed water balance analysis is limited by the lack of adequate hydro-climatic observations in this region. In this study, we investigate the spatiotemporal variation of water budget components (e.g. precipitation P, evapotranspiration ET and runoff Q etc.) in the Yarlung Tsangpo River basin (YTB) of southeast TP during the period of 1975-2015 through using multi-source datasets (e.g. insitu observation, remote sensing data products, reanalysis outputs and model simulations etc.). The change trend of water budget components and vegetation parameters was analyzed in the YTB on interannual scale. The results indicated that the detailed water budgets are different from upstream to downstream YTB due to different temperature, vegetation cover and evapotranspiration, which are mainly affected by different climate conditions. In the whole basin, precipitation that are mainly during June to October was the major contributor to the runoff. The P and Q were found to show a slight but insignificant decrease in most regions of YTB since the late 1990s, which showed positive relationships with the weakening Indian summer monsoon. While the ET showed an insignificant increase across most of the YTB, especially in the middle basin. The runoff coefficient (Q/P) exhibited an indistinctively decreasing trend which may be, to some extent, due to the overlap effects of ET increase and snow and glacier changes. The obtained results offer insights into understanding the evolution mechanism of hydrological processes in such a data-sparse region under changing environment.

How to cite: Jiang, Y. and Xu, Z.: Spatiotemporal characteristics of water budget dynamic in the Yarlung Tsangpo River basin of Tibetan Plateau based on multi-source datasets , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12197, https://doi.org/10.5194/egusphere-egu2020-12197, 2020.

EGU2020-4655 | Displays | SSS11.4

Estimation of potential surface ponding in agriculture using UAV-SfM

Eugenio Straffelini, Xuewei Chen, Sara Cucchiaro, Sofia Michieli, Jianping Chen, and Paolo Tarolli

Among the environmental problems that could affect agriculture, one of the most critical is ponding. Ponding is the water storage on the surfaces in concavities or small depressions, due to soil saturation. It can seriously affect crops and the management of agricultural landscapes. It is caused by prolonged rainfall events, soil type, or by wrong mechanization practices. Indeed, the increased pressure of heavy machinery can cause topsoil compaction or a subsoil hard pan directly under the ploughing depth, inducing run-off, soil loss and waterlogging. In order to better understand this issue, and therefore provide suitable solutions to reduce ponding risk, it is necessary to represent in details the surface morphology. In the last decade, a range of new remote-sensing techniques have led to a dramatic increase in terrain information, providing new opportunities for a better understanding of Earth surface processes based on geomorphic signatures. Among these, the Unmanned Aerial Vehicles (UAVs) combined with the Structure-from-Motion (SfM) photogrammetry technique represent undoubtedly the most interesting advance in the Earth observation and understanding of Earth surface processes. UAV-acquired imagery may provide a low-cost, rapid, and flexible alternative to airborne LiDAR for geomorphological mapping.

In this work UAV-SfM data are used to obtain high-resolution Digital Terrain Model (DTM) useful to analyze and evaluate the risks of water ponding at farm level in a mid-size agricultural Mediterranean catchment in northern Italy. Intensive photogrammetric surveys were carried out using a UAV while a GNSS in RTK (Real-Time Kinematic) mode was used to collect Ground Control Points (GCPs) and Check Points (CPs), fundamental for georeferencing process and SfM error analysis. The potential water depth was calculated using the Relative Elevation Attribute (REA) algorithm, a methodology successfully used in other contexts (Tarolli et al. 2019). The detection of more pronounced concavities and convexities allowed an estimation and mapping of the potential ponding conditions, thus providing a useful indication for a better environmental management in agriculture.

 

References

Tarolli, P, Cavalli, M., Masin, R., (2019). High-resolution morphologic characterization of conservation agriculture. Catena, 172, 846–856, doi: 10.1016/j.catena.2018.08.026

How to cite: Straffelini, E., Chen, X., Cucchiaro, S., Michieli, S., Chen, J., and Tarolli, P.: Estimation of potential surface ponding in agriculture using UAV-SfM, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4655, https://doi.org/10.5194/egusphere-egu2020-4655, 2020.

Gannan forest is an important safety barrier in southeast China. In recent years, Ecological engineering such as Natural Forest Protection, Close Hillsides for Forestry and so on have been implemented in this area. But its ecosystem service value is in a decrease. Especially the soil erosion is serious. The analysis on the dynamic trend of water and soil conservation ecosystem service value and its formation mechanism is of big practical and theoretical significance. In our study, land use change is considered as entry point, while land use remote sensing data and spatial statistic data are used as our database. Logistic-CA-Markov complex model is constructed to predict the space-time evolution trend of forest land use under different circumstance. Based on the prediction, water and soil conservation ecosystem service value is evaluated using assessment approaches like shadow project approach and production cost method. Strategies to promote the ecosystem service are then put forward.

How to cite: Fu, C., Yang, L., and Wu, Y.: Temporal-Spatial Assessment of Water and Soil Conversation Value of Gannan forest in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2858, https://doi.org/10.5194/egusphere-egu2020-2858, 2020.

EGU2020-1766 | Displays | SSS11.4

Water sustainability: the prospect of transfer projects in China

Naseer Ahmed Abbasi and Xiangzhou Xu

Affected by global climate change, water shortages and other extreme weather, water scarcity in world is alarming sign. China is suffering from severe water shortage in northern areas due to multiple reasons such as declining of runoff of main rivers to northern areas and serious rainfall shortage. This article provides the evidences regarding the feasibility and their technical, financial, political, socioeconomic, environmental from the aspects of two projects, Tunnel and Tianhe projects. The Tianhe water diversion project is expected to bring 2.5 billion cubic meters of precipitation in the Sanjiangyuan area, 200 million in the Qilian Mountains area and 120 million in the Qaidam area every year. On the other hand, the Tibet-Xinjiang Tunnel, which would be the longest water divert tunnel in the world, plan to divert the water from Tibet to Xinjiang using a 1000-kilometer tunnel. The project is expected to turn Xinjiang into California, which could carry 10 to 15 billion tons of water each year. These two projects are anticipated to solve the problem of water, food and drought in the country. In addition, the integrated telecoupling helps to promote ecosystem services research and governance, identify knowledge gaps, guide research design, and strengthen the interaction between researchers and stakeholders.

How to cite: Abbasi, N. A. and Xu, X.: Water sustainability: the prospect of transfer projects in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1766, https://doi.org/10.5194/egusphere-egu2020-1766, 2020.

Preferential flow is expected to provide an important pathway to replenish soil water at deep soil layers in arid or semiarid areas; however, few studies have addressed this topic, especially in semiarid Loess hillslopes. This study aimed to quantify the effect of stand origin and slope position on the contribution of preferential flow to total infiltration and spatial variations in water flow. A blue dye tracer experiment was conducted to visualize water flow in Robinia pseudoacacia plantation (PL), natural forestland (NF), and natural grassland (NG) at the upslope, midslope, and downslope, and semivariance analysis was used to determine spatial variability at the centimeter scale. The results showed that role of macropore flow was dominant in upslope and midslope, and larger in NF than that in PL and NG, due to presence of abundant root systems in the upper soil of NF. Moreover, contribution of preferential flow at the upper slope in NF was larger than that in PL. At the downslope, the role of rock fragments coverage at the downslope was emphasized, leading lateral flow dominant at the downslope in PL and NG. In addition, contribution of preferential flow and vertical variability of infiltration at the downslope in PL was higher than that in NF. The findings demonstrate that compared with PL, NF has a more positive impact on increasing infiltration and preferential flow that can replenish deep soil water, and reducing surface runoff and soil erosion. The presence of rock fragments coverage can make lateral flow dominant at the downslope on the Loess hillslope, related to water movement along the slope toward streams and catchment outlets.

How to cite: Ma, L., Mei, X., and Zhu, Q.: Effect of stand origin and slope position on infiltration pattern and preferential flow on a Loess hillslope, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1830, https://doi.org/10.5194/egusphere-egu2020-1830, 2020.

In recent years, due to the rapid development of the China, various production and construction projects have produced many exposed slopes which need to be restored by special recovery measures. However, the regulation effects of vegetation on sediment of slopes with different ecological recovery measures are different. Taking the reconstruction slope of large-scale open pit mine, highway and other demonstration projects as an example, this study analyzed the precipitation, rainfall density, runoff and sediment variation characteristics of 91 rainfalls, and explained the mechanism of vegetation configuration on sediment production on slopes. The results were shown that: (1) the vegetation coverage, early water content and total porosity were the key factors restricting the runoff generation on the slope, among which grey correlation were 0.72, 0.74 and 0.79 respectively. The total porosity, litter thickness and vegetation coverage were the key limiting factors of sediment yield on slope, and their grey correlation degree were 0.64, 0.60 and 0.58 respectively. (2) the comprehensive contribution degree P could reflect the influence of engineering and plant measures on slope sediment production. The analysis showed that the P value of most slopes with engineering and plant measures ranged from 0.31 to 0.77, and the larger the value, the better the effect of reducing soil erosion was. Sediment reduction effect of interlocking bricks greening measure and runoff reduction effect of vegetative carpet greening with coconut fiber measure were the best which P value were separately 0.77 and 0.55. (3) The comprehensive assess coupling model for vegetation-soil system were derived based on vegetation quantitative characteristics, diversity data, soil physicochemical properties and soil and water conservation benefits. Typical protection measures were ordered according to coupling degree (Cd). Three kinds of rocky slopes in mountainous area including metal net hanging combined with spray seeding measure, earth retaining with brick setting measure, ecological bags measure were recommended. Five kinds of soil slopes in mountainous area including grass protection, metal nets within ecological bags, geo-grid cell measure, six arises brick with hollow measure and vegetative carpet greening with coconut fiber measure were recommended. Two kinds of loose slopes including vegetative carpet greening with coconut fiber measure and ecological bags measure were recommended. Six arises brick with hollow measure was recommended in plain soil slopes. In conclusion, the combination of engineering measures and plant measures should be adopted for protection, so as to achieve the purpose of preventing and controlling soil and water loss.

How to cite: yan, Z. and tingning, Z.: Ecological protection effects on typical slopes with various combination of engineering measures and plant measures, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14017, https://doi.org/10.5194/egusphere-egu2020-14017, 2020.

Sediment provenance is an important factor in understanding soil erosion processes or assessing the ecological effects of soil and water conservation measures. Sediment fingerprinting is an effective technique used globally for identifying sediment sources. Few studies have examined sediment sources at different spatial scales. In this study, sediment fingerprinting was used with a Bayesian mixing model to quantify the relative contributions of different sediments to streambeds in the Hebei catchment (ca. 28.0 km2) and its sub-catchment (ca. 3.5 km2) in the black soil region of Northeast China. Three potential sediment sources were identified: cultivated topsoil, uncultivated topsoil, and gullies. A similar number of sediment samples were collected for each source in both catchments: 71 and 69 sediment samples from the sub-catchment and Hebei catchment, respectively. Five uniformly distributed streambed sediment samples were collected from each catchment. The results showed a significant difference in the spatial variability of fingerprinting properties between the two catchments (p < 0.01). The spatial variability in fingerprint properties of cultivated topsoil and gully soil was more sensitive to scale than that of uncultivated topsoil. The optimum composite fingerprint that was used to discriminate potential sediment sources differed between the sub-catchment and Hebei catchment. Cultivated topsoil and gully soil were the main sediment sources, comprising more than 95% of the streambed sediment. There were significant differences (p < 0.01) in the contributions of cultivated topsoil and gully soil at different spatial scales. Cultivated topsoil contributed 47.8% and 42.0% in the sub-catchment and Hebei catchment, respectively, whereas gully soil contributed 49.6% and 55.3% (mean absolute fit >0.95). The upper stream segment mainly received sediment from the gullies (>60%) and the contribution from cultivated topsoil gradually increased downstream.

How to cite: Huang, D.: Effects of spatial scale on fingerprinting properties and sediment contributions in the black soil region of Northeast China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2075, https://doi.org/10.5194/egusphere-egu2020-2075, 2020.

EGU2020-2489 | Displays | SSS11.4

A framework of abrupt changes and trends detection for rainfall erosivity

Feng Qian, Bo Hu, Honghu Liu, and Jingjun Liu

Rainfall erosivity (R factor), in the Universal Soil Loss Equation (USLE) , a climate index, is used worldwide to assess and predict the potential of rainfall to cause erosion. The temporal variation in rainfall erosivity, informs of abrupt change and trend, are critical for soil loss prediction. To find a simple and effective method for accurate detection of abrupt change and trend has implication for soil and water conservation planning. In this paper, a four-step framework is proposed to detect abrupt change and trend in rainfall erosivity time series, i.e., evaluate the significance of variation in rainfall erosivity time series at three levels: no, weak and strong, abrupt change and trend detection for rainfall erosivity,  estimation of correlation coefficient between the variation component and rainfall erosivity series, remove the variation component with the largest correlation coefficient from the rainfall erosivity series, repeat the above steps for the new series until variance coefficient was insignificance. The first step is based on an index of Hurst coefficient. The trend detection is implemented using both Spearman rank and Kendall rank correlation test. For abrupt change ,three kinds of methods (Mann-Kendall, Moving T and Bayesian test) are employed.  This framework is applied to the annual rainfall erosivity series of the Three Gorges Reservoir , China. There was a large uncertainty in detecting variability with a single test method. Application of the proposed framework can reduce uncertainty  associated with soil erosion assessment and achieve more accurate regional soil and water management. 

How to cite: Qian, F., Hu, B., Liu, H., and Liu, J.: A framework of abrupt changes and trends detection for rainfall erosivity , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2489, https://doi.org/10.5194/egusphere-egu2020-2489, 2020.

EGU2020-4314 | Displays | SSS11.4

Study on the critical dynamics of compound erosion in the Pisha sandstone area

Chunxia Yang, Peiqing Xiao, and Pan Zhang

The Pisha sandstone area which distributed in Ordos of Inner Mongolia was the main source area of Yellow River sediment, The area has a characteristic of serious composite erosion and fragile ecological environment, So, which identifying the critical force occurrence conditions of compound erosion is an important prerequisite to prevent and control the multiple composite erosion. Using the method such as field observation, simulation experiments and literature review, this study preliminarily summarizes the dynamic critical conditions and key influencing factors of water erosion, wind erosion and freeze-thaw erosion.(1)Water erosion is affected by rainfall, rainfall intensity and soil moisture status, Rainfall and rainfall intensity are the two critical factors under the certain soil moisture status. the one critical conditions of water erosion was P > 34mm under the soil moisture of θv≈10%, and the other critical conditions was rainfall intensity I > 1.2mm/min (soil moisture θv>36%) or rainfall intensity I > 3.1mm/min(soil moisture θv<4%). (2)The wind erosion is affected by the surface covering particles and soil moisture. When the wind speed reaches more than 5 m/s, the soil particles of diameter d < 0.5 mm will be blown up. So the wind erosion is easier happens on exposed surface and slipped particles. Increasing the surface covering and water content can reduce wind erosion; (3)Freeze-thaw mainly occurs from November to March of each year, which destroys soil structure mainly through soil mass melting and particle fall down. The alternation times and moisture content of freeze-thaw are the key factors that affect freeze-thaw erosion. When the soil moisture is more than 10% and the freeze-thaw alternation is more than 10 times, the freezing and cracking damage is obvious. Therefore, the phenomenon of sliding and peeling off the exposed steep slope is common in Pisha sandstone area. (4)Multi dynamic composite erosion distributed by seasonal in the year, Wind and freeze-thaw composite erosion happened in the transition of autumn to winter and winter to spring, Water erosion mainly occurred in summer, and accompanied by wind erosion, Meanwhile, wind and freeze-thaw erosion products were all carried away by runoff. The results can provide theoretical basis for the measures selection of composite erosion control.

Key words: Pisha sandstone area, composite erosion, water erosion critical, wind erosion critical, freeze-thaw erosion critical, influencing factors

How to cite: Yang, C., Xiao, P., and Zhang, P.: Study on the critical dynamics of compound erosion in the Pisha sandstone area, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4314, https://doi.org/10.5194/egusphere-egu2020-4314, 2020.

The rapid development of expressway provide convenience for our life. But during the construction and operation, the slope instability is a serious ecological problems which can threat the normal use of the expressway. As slope protection is essential, the ecological slope protection is an environmental friendly method to reinforce the slope stability as the root can make contribution to the soil shear strength. From the macro perspective, the soil reinforced ability of root system is greatly affected by the structure and distribution morphology of plant root system. So it is crucial to study the influence of root distribution characteristics on the soil shear strength. As the structure of plant root has typical fractal feature, fractal dimension which is the most important quantitative parameter is chosen to establish the relationship with the soil strength. Because the structure of the plant roots is very complex and no two roots are identical, it is difficult to find the same root to conduct contrast tests. But at least four tests with different cell pressures are essential to obtain the cohesion and internal friction angel. Thus 3d printing method is a superior choice to ensure each test condition is as same as possible. The purpose of this study is to explore the relationship between the root fractal dimension and soil cohesion, and internal friction angel. In order to reduce the influence of root difference on the triaxial compression test, 3D printing method is applied to make simulative plant roots which can maintain the fractal dimension. So single variable experiment could be guaranteed, the general rule between fractal dimension of root system and soil reinforced ability can be revealed. Four roots of Cynodon dactylon with different fractal dimension were chosen to establish 3D printing model. Corresponding to each fractal dimension, four triaxial compression test were conducted with four cell pressure. The results indicate that both of the cohesion and internal friction rise with the increasing of the fractal dimension, but the influence of fractal dimension on cohesion is slight compared with the influence on the internal friction. That is to say, the root with larger fractal dimension possess better reinforced effect on slope soil by increasing the the internal friction.

How to cite: li, J. and zhang, Y.: Influence of root fractal dimension on soil shear strength with 3D printing method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4894, https://doi.org/10.5194/egusphere-egu2020-4894, 2020.

Abstract: The particulate matter (PM) in coal mining can bring pollution to the surrounding environment and have adverse effect on human health. In order to prevent and control the PM pollution in coal mine and better understand the PM transportation in the air, spatial and temporal distribution of PM concentration in two typical coal mining methods were studied in the arid desert region of northwest China. The mass concentrations of particulate matters, i.e., PM1, PM2.5, PM10 and TSP (total suspended particulate), were monitored by portable environmental particulate matter meter during two windy seasons—spring and winter in a typical opencast coal mine and an underground coal mine. The results show that:

(1) In the opencast mine, high concentrations of PM appeared in the mining area (MA) . Average PM10 and TSP concentration were 1950.18 μg·m-3 and 2393.56 μg·m-3 respectively in spring, while PM1 and PM2.5 concentration were 6.22 μg·m-3 and 42.58 μg·m-3 in winter. In the underground mine, it was concentrated in the coal yard (CY), average PM10 and TSP concentration were 920.95 μg·m-3 and 1225.89 μg·m-3 respectively in spring, while PM1 and PM2.5 concentration were 8.64 μg·m-3 and 35.93 μg·m-3  in winter.

(2) The variations of pollution index (PI) showed similar patterns in both spring and winter— that is, high in the morning then achieved maximum value exceeded 10, and decreasing from noon at the opencast mine entrance (ME), the mining area (MA), road in the mine (RM), and the coal storage yard (CS). However, the PI rose in the evening in spring, but decreased in winter. In the CY of the underground mine, the PI was high during the day; whereas in the evening it decreased in spring and increased in winter.

(3) In the opencast mine, the PM10 and TSP concentrations varied more obviously from season to season and from area to area than the concentrations of PM1 and PM2.5. Barometric pressure had the most significant influence on PM1, PM2.5 and PM10. Wind speed had the greatest influence on TSP. In the underground mine, the variation patterns of the concentration of the four different-sized particulate matters were basically the same from area to area. The concentrations of PM1 and PM2.5 had greater seasonal variation than PM10 and TSP. The most important meteorological factors were temperature and barometric pressure for PM1 and PM2.5, while air humidity had the greatest impact on PM10 and TSP.

Considering the above results, it is recommended to control the daily occurrence and spread of particulate matter at 08:00 and 18:00 in the opencast mine, and from 08:00 to 16:00 in the underground mine. Primary attention should be given to the influence of wind speed and relative humidity changes on the diffusion of coarse particles(PM10 and TSP) in spring, while the influence of changes in barometric pressure on the diffusion of fine particles(PM1 and PM2.5) should be considered in the mining area in winter for both the two typical coal mining methods. The diffusion of coarse particulate matter in the opencast mine and of fine particulate matter in the underground mine are the main issues to be considered, while it is essential to prevent and control the spread of fine particles in the areas of roadways.

How to cite: Wang, R. and Liu, Y.: Temporal and Spatial Distributions of Particulate Matters under Two Coal Mining Methods in Arid Desert Region of Northwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6590, https://doi.org/10.5194/egusphere-egu2020-6590, 2020.

The operation of the Three Gorges Reservoir (TGR) altered the distribution of the soil properties, the plant community composition and biomass in the water-level fluctuation zone (WLFZ). However, the vertical variation of soil erosion resistance in the WLFZ of the TGR is still unclear and need to be further evaluated. The objectives of this study were to assess the vertical variation of soil resistance to rill erosion in the WLFZ of the TGR and to identify the factors influencing these variations. Soil samples from 150-155 m, 155-160 m, 160-165 m, 165-170 m and 170-175 m were taken along a slope profile at the same time from the WLFZ of the TGR area. All the samples subjected to scour under the combinations of five slope gradients (8.74%, 17.63%, 26.79%, 36.40% and 46.63%) and five flow rates (5, 10, 15, 20 and 25 L min–1) by using a slope-adjustable steel hydraulic flume (4 m length, 0.4 m width, 0.2 m depth). The results showed that soil properties and biomass parameters were affected by the elevations of the WLFZ. The average soil detachment capacity fluctuated with the increase of elevation, maximum and minimum value of  which were located at the 165-170 m and 155-160 m, respectively. The soil detachment capacity was significantly negatively correlated with MWD (P<0.05), but not positively correlated with other properties (P>0.05).  The rill erodibility also fluctuated with the increase of elevation. Correlation analysis showed that rill erodibility corresponding to runoff shear stress and stream power respectively had significantly negative correlation with MWD (P<0.05), and rill erodibility corresponding to unit energy of water-carrying section had significant negative correlation with MWD (P<0.01). Therefore, the soil aggregate stability was the major factor responsible for the vertical variation in soil erosion resistance. In addition, critical shear stress, critical stream power and critical unit energy of water-carrying section ranged from 1.1950 to 1.6427 Pa, from 0.0132 to 0.3045 N•m-1•s-1 and from 0.0052 to 0.0062 m, respectively, all of them showed obvious fluctuations with the increase of elevation. These research results highlighted the effect of elevation on soil erosion resistance in the WLFZ and provide theoretical guidance for the establishment of soil and water loss prediction model as well as the development of soil and water conservation planning and controlling in the TGR area.

 

How to cite: Xiao, H.: Vertical variation of soil erosion resistance in the water-level fluctuation zone of the Three Gorges Reservoir, China , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12464, https://doi.org/10.5194/egusphere-egu2020-12464, 2020.

To study the mechanism of vegetation on gravity erosion may provide the theoretical basis for the design of soil and water conservation on the Loess Plateau, China. This study explores the effects of vegetation on the gravity erosion using the models of loess gully sidewall with the slope degree of 70 ° and height of 1.5 m under series of rainfall simulations, in which vegetational and bare lands were used, respectively. The experimental results are shown as follows: (1) The influence of the vegetation on the total amount of gravity erosion may be ignored. The average amount of gravity erosion for each event of rainfall on the vegetational sidewall was only decreased by 12% compared with that on the bare sidewall. (2) The plant had a positive effect on the mass failures after rainfalls. The ratio of the failure mass volume after rainfall to the total on the planted slope was almost 12%, while the ratio on the bare slope was only 1%. (3) The vegetation on the gully sidewall had different influences on the varied types of gravity erosion. Compared with those on the bare land, the average amounts of the avalanche and mudslide on the vegetational slope was decreased by 72% and 69%, respectively. In the meantime, the average amount of landslide in the vegetational slope was increased by 220% compared with that in bare slope. (4) The effects of vegetation on gravity erosion were caused by several factors. The plant roots may reinforce the soil and reduce the amount of gravity erosion, but the self-gravity of the plant and increase of the permeability on the planted slope might increase the gravity erosion. In addition, the soil permeability was increased by the plant roots, which could intensify the landslides. As a result, the plant practice was preferable for the sidewall vulnerable to mudslide. The results may be referred to analyze the mechanism of gravity erosion and design the control of mass failure.

How to cite: Zhao, X. and Xu, X.: Effects of Plants for Gravity Erosion on the Loess Gully Sidewall under Intense Rainfalls, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1767, https://doi.org/10.5194/egusphere-egu2020-1767, 2020.

SSS11.5 – Field and laboratory experiments in Soil Science, Geomorphology and Hydrology research and teaching | Posters only

EGU2020-2936 | Displays | SSS11.5

Swiping/pulse portable nozzle rainfall simulator

Martin Neumann, Petr Kavka, Tomáš Laburda, and Adam Tejkl

Research of surface runoff, retention and infiltration processes consequenced with soil erosion by water is worldwide problem. There are numerous of natural and artificial research methods to study this phenomena. Use of rainfall simulators is one of the most popular artificial method. There are many types of rainfall simulators, we are introducing new type of portable nozzle-type rainfall simulator. This device combines advantages of pulse and swiping nozzle droplet generation. Device criteria were: (i) 2 person operation (ii) low water consumption (iii) wide range of rainfall intensity and kinetic energy. The simulator is supported by 4 metal legs. One fast-replaceable nozzle is placed above the center of a plot in 2 or 2,5 m height. Nozzle is connected to a control unit with stepper motor which allows it to swing, or stay in the vertical position with water flow interruption (solenoid valve). Required rainfall intensity is controlled by the velocity of stepper motor and water flow interruption periods. Metal collector is placed under the nozzle to drain the surplus water back to the reservoir. Standalone electric water pump is used to pump water into the system. 12 V DC and 230 V AC electricity supply is needed to run the device. Experimental plot can be up to 4 m2 (2x2 m square) in size but usually a 1 m2 (1x1 m) is used. Rainfall intensity could be used up to 100 mm h-1. Kinetic energy for the tested nozzles were 4 – 5,5 J m-2 mm-1. The first testing shows Christiansen Uniformity up to 93% for 1 m2 plot and 73% for 4 m2 plot. The research has been carried out within the framework of projects QK1910029, TJ02000234 and TH02030428.[M3] 

How to cite: Neumann, M., Kavka, P., Laburda, T., and Tejkl, A.: Swiping/pulse portable nozzle rainfall simulator, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2936, https://doi.org/10.5194/egusphere-egu2020-2936, 2020.

EGU2020-4999 | Displays | SSS11.5

Low cost Evaporometers

Adam Tejkl and Petr Kavka

Research of the evaporation from the water surface is curtailing for measuring the water balance in small catchments.

An ongoing project aims to develop a simple and reliable, easy to reproduce evaporation measuring device. A core part of the device is measuring the water level in the field in cheap form. 3D printed design in combination with open-source cheap electronics is utilized. Methodology and results of the ongoing research project will be presented. The project investigates the affordable and simple technical measures that have the potential to increase the number of opportunities for the measuring of evaporation.

Continuously the theories are developed and tested, subsequently, conclusions are implemented into the next generation of the device. Five generations of 3D printed part have been done, and now the research focus on the electrical and software part of the device. Durability and reliability of the device are tested in the field, in three locations. All plots are also frequently checked by research staff and data is saved and later compared with data measured by the device. Refilling of the evaporation pan is also done by research staff.

Prototype 3 used the experience of all previous prototypes. The construction is equipped with 5 sets of electrodes, each with a measuring range of 10 mm. The total measuring range is 50 mm. The whole structural part of prototype 3 is designed as a printout on a 3D printer, electrodes are printed from a conductive material. Above the electrodes, there is a printed circuit board carrying the microelectronics control module.

The principle of measurement consists of gradual interrogation of the set of electrodes, a subsequent reversal of polarity and repeated interrogation. This cycle is repeated several times and the result is averaged, then the next set is measured. The polarity reversal is controlled by the relay. Thanks to the use of printed circuit board it was possible to simplify the device, so only 7 wires, one analog output, polarity reversal control and supply wire to 5 sets of electrodes are led from the whole device.

An important step in the evaluation of the obtained data (the values of current passed through the water), is its analysis. Because values are read very often they differ only slightly. A commonly used vapor unit is mm of water column per day. It is, therefore, necessary to analyze a long time series, at least longer than one day, and covering the entire day from 00:00 to 23:59.

The testing sites are the grounds of the CTU Faculty of Civil Engineering in Dejvice, the experimental sites of the CULS in Prague Suchdol and the Water Research Institute in Prague Podbaba.

The research is funded by the Technological Agency of the Czech Republic (research project TJ02000351 - Development of Tools and Methods Improving Estimation of annual Evaporation Balance).

How to cite: Tejkl, A. and Kavka, P.: Low cost Evaporometers, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4999, https://doi.org/10.5194/egusphere-egu2020-4999, 2020.

EGU2020-9148 | Displays | SSS11.5

An open rainfall-runoff measurement database

Jan Devátý, Hana Beitlerová, and Jonas Lenz

Measurement of runoff events induced by natural rainfall or rainfall simulators of various construction and dimensions is a common method for obtaining data needed for run-off and soil erosion models calibration. As every simulator is different so are the methods for data collection, recording, processing and utilization. Mining the data from different sources for comparison or a common purpose can be quite exhausting as all the teams and workers use different software, workflows and structures for storing the data. The database presented is an attempt to provide a robust structure for storing experimental data together with its metadata, relationships between data sets and other information about the data collection and preprocessing. The desired state is where any record is back-trackable to the original source field record regardless if it was written by hand on paper or registred by digital logger.

The relational database is built in MySQL and provides a comprehensive structure for storing and retrieving the data and metadata. The access to the database is differentiated into multiple levels with different rights. A public web user interface allows low-level access to the data that can be viewed as tables and charts. Private web interface provides logged-in users the rights to add, delete and alter data. The web interface incorporates basic search, order and filter capabilities on the data. High level access by direct querying the DB is available for trusted users who are familiar with MySQL language and so are capable of creating their own complex queries. The direct access to the database is possible via any programing language with appropriate libraries. Querying the DB directly by code comes especially handy when preparing extensive datasheets for statistical evaluation or model calibration runs.

The database follows the “FAIR Guiding Principles for scientific data management and stewardship”.

So far the database was successfully tested on the data from the three institutions of the authors' affiliation . Further development and tuning of the DB to enable incorporation of wider range of data structures is desired and any suggestions are welcome. If you are dealing with measurements related to rainfall-runoff processes and are interested in making your data accessible, please bring a typical dataset or an overview of recorded parameters to this PICO.

 

The research has been supported by the research project QK1810341 of Czech National Agricultural Research Agency and the European Social Fund in the Free State of Saxony (Förderbaustein: Promotionen)

How to cite: Devátý, J., Beitlerová, H., and Lenz, J.: An open rainfall-runoff measurement database, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9148, https://doi.org/10.5194/egusphere-egu2020-9148, 2020.

EGU2020-18556 | Displays | SSS11.5

A (small) step towards standardisation in rainfall simulation experiments

Jorge Isidoro, Ian Pattison, Thomas Iserloh, João de Lima, Daniel Green, Miriam Marzen, Isabel de Lima, Alexandre Silveira, and Ross Stirling

Rainfall simulation is widely used within hydrological and geomorphological sciences and is particularly important in the study of rainfall-runoff, erosion and pollutant transport processes. Rainfall simulators have been applied within laboratory- and field-based studies and have the advantages of enabling controlled and reproducible rainfall event characteristics in relation to rainfall intensity, duration, and drop spectra. The flexibility and advantages of using rainfall simulators to study a wide range of research objectives has resulted in significant diversity in the type, sizing, form, operation and methodologies of rainfall simulators, and an extensive review of rainfall simulator research has led to more than 250 different rainfall simulator setups being identified in the literature. Rainfall simulators come in all different shapes and sizes!

The adaptability of rainfall simulators to study a wide range of research areas of varying scale ultimately results in several issues when comparing results and outputs obtained from different simulator setups. In fact, comparisons between studies can be very difficult, if not impossible, as the different measurement methods, artificial rainfall event characteristics and test conditions result in considerable difficulties when benchmarking results and findings obtained from rainfall simulation experiments. Thus, the scientific community should establish set methodological procedures to allow comparisons between results obtained from different rainfall simulator setups. Harmonization of basic procedures in rainfall simulator based studies in the fields of hydrological and geomorphological sciences would ensure that results between different rainfall simulator studies are comparable, standardised and regulated. The first step in this process involves standardising rainfall simulators design characteristics, whereas further steps should focus on measurement methods and metrics so results can be compared.

This paper aims to bring together current understanding on the use of rainfall simulators within hydrological and geomorphological research, and provide a platform to discuss and enhance understanding of the requirements on the standardisation of rainfall simulator based experimental research. This paper also aims to establish an international research community focused on advancing standardisation in rainfall simulation based at different research facilities and institutes, and will kick-start discussions leading up to a future international symposium dealing with these issues (date TBC). Everyone is invited to join this (small) step towards standardisation in rainfall simulation!

How to cite: Isidoro, J., Pattison, I., Iserloh, T., de Lima, J., Green, D., Marzen, M., de Lima, I., Silveira, A., and Stirling, R.: A (small) step towards standardisation in rainfall simulation experiments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18556, https://doi.org/10.5194/egusphere-egu2020-18556, 2020.

EGU2020-15068 | Displays | SSS11.5

Wind erosion in Moroccan argan woodlands under extensive agro-silvo-pastoral management

Miriam Marzen, Kirchhoff Mario, Marzolff Irene, Aït Hssaine Ali, and Johannes B. Ries

The Moroccan argan woodlands form a unique ecosystem that is at acute risk of degradation and desertification. Beside the great impact on local and regional socio-economical structure, the characteristic landscape is assumed to protect populated and agriculturally productive areas such as the Souss-Massa-region against desertification processes from the adjacent desert areas in Southwest Morocco and Algeria.

The experimental-empirical study with the Trier Portable Wind Simulator was conducted to quantify sediment mobilisation by wind on various surface characteristics associated to argan woodlands under extensive agro-silvo-pastoral management. Tested surfaces included physical and biological crusts, stone and litter cover and ploughed surfaces.

We found that the argan woodlands of the Souss region may be a significant source of wind eroded sediment particularly facing effects of overexploitation and climate change. An adapted land management is key to prevent severe dust production and mitigate possible impacts of land use change and climate change related shifts in wind and rainfall patterns.  

How to cite: Marzen, M., Mario, K., Irene, M., Ali, A. H., and Ries, J. B.: Wind erosion in Moroccan argan woodlands under extensive agro-silvo-pastoral management, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-15068, https://doi.org/10.5194/egusphere-egu2020-15068, 2020.

EGU2020-16225 | Displays | SSS11.5

Determination of the effectiveness of high-speed cameras for identifying ejection particles during splash with regard to the sticky paper method

Agata Sochan, Michał Beczek, Rafał Mazur, Magdalena Ryżak, Zbigniew Łagodowski, Ernest Nieznaj, Adam Bobrowski, and Andrzej Bieganowski

The phenomenon of splash caused by water drop has been widely studied in recent years. There are many measurement methods, including the method based on the use of so-called high-speed cameras. Due to the possibility of recording of the phenomenon with a high time frequency (thousands of recorded frames per second), this method provides detailed information about the process of splashed particles, which were previously unavailable. These include, among others, precise tracking of single ejected particles, determination of their ejection angle, displacement distance, and division of splashed elements into groups depending on the place or moment of ejection from the particle bedding. Despite the numerous advantages of the method, there is no information about the percentage of splashed particles that the cameras are able to detect and identify. In order to determine such effectiveness, it is necessary to have a reference method that guarantees 100% identification of splashed particles.

The aim of this work was to determine the effectiveness of high-speed cameras in identification of particles ejected from the granular bedding during the water drop impact. Sticky paper was used as a reference method.

Dry spherical glass beads (425–600 μm size range), which were placed into an aluminium ring (30mm diameter, 10mm height) were used in the experiments. The aluminum ring was placed in a drilled hole (only slightly larger than the ring) in a horizontal wooden plate, and therefore, the surface of the beads was at the same level as the surrounding plane. Drops (d=4.2mm) of distilled water were created in a peristaltic pump and fell free from 1.5m. The final velocity of each drop was 4.98 m/s.

Three synchronized Phantom Miro M310 cameras were used to register the splash phenomenon (307 μs time interval, 1280x800 px resolution). The camera calibration process facilitated analysis of the trajectories of the splashed particles and determination of their velocities, ejection angles, and displacement distances. The analysis of the recorded images was carried out using the Dantec Dynamics Studio software. The particles were tracked by the Volumetric 3DPTV module, and the trajectories were further analyzed by our script written in LabVIEW.

A hole (30mm diameter) was cut out of a piece of sticky paper, and the paper was placed concentrically over the ring. This allowed recording of all splashed particles while avoiding their rebounding or rolling from the plane. Following the impact, the beads were photographed using a Nikon D7100 camera, and images were analyzed using ImageJ software. The number of particles and the distance from the geometrical center of the drop impact were recorded.

Measurements using the high-speed cameras and the sticky paper method were carried out in 16 repetitions.

The results obtained with both methods were compared with each other. Regarding the sticky paper method as a reference, the efficiency of identification with the high-speed cameras for the splash of glass beads was determined, which was estimated at 53%.

The study was partially funded by the National Science Centre, Poland, in the frame of the project no. 2017/26/D/ST10/01026.

How to cite: Sochan, A., Beczek, M., Mazur, R., Ryżak, M., Łagodowski, Z., Nieznaj, E., Bobrowski, A., and Bieganowski, A.: Determination of the effectiveness of high-speed cameras for identifying ejection particles during splash with regard to the sticky paper method, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16225, https://doi.org/10.5194/egusphere-egu2020-16225, 2020.

EGU2020-18081 | Displays | SSS11.5

SCIENCHY - catchy science with IBSE approach

Valentina Brombin, Enrico Calore, Roberta D'Onofrio, Claudia Lauro, Chiara Marchina, and Beatrice Pelorosso

The Sustainable Development Goal 4 of UN 2030 Agenda requires the implementation of education for sustainable development and sustainable lifestyle. In this context, Earth Sciences and related disciplines such as Environmental and Soil Sciences are fundamental teachings in any school to make younger generations aware about the effects of geological processes and human activities on climate change and to achieve possible solutions for sustainability. This aim clashes with the student difficulties in learning geosciences. In particular scientific terminology, abstract concepts, and depth of geological time make Earth Sciences difficult to understand and less attractive than others disciplines (King, 2012). As one of the hardest tasks for students is visualising unseen processes, Inquiry-Based Science Education (IBSE) is one of the best approaches to contrast this trend. This is an empirical learning method, based on “inquiry”, where students are encouraged to solve problems and explain phenomena, performing experiments. Despite in 1996 the USA National Science Education Standards defined IBSE as the best approach in natural science teaching, the majority of European classrooms are not implementing them (Rocard et al., 2007).

NOVA A.P.S. (Ferrara, Italy) promotes and disseminates STEAM (Science, Technology, Engineering, Arts, Mathematics) disciplines in secondary schools using the IBSE method. To evaluate the success of this approach, NOVA asked ninety 11-year-old students from an Italian school to perform a questionnaire about “Greenhouse gases: nature, potential sources, and effects on climate” after studying the theory with traditional frontal lessons. The questionnaire was proposed again to same group after the application of IBSE approach through its “5E” phases (Engage, Explore, Explain, Elaborate, Evaluate; Bybee, et al., 2006). Students were engaged to confirm the greenhouse theory exploring the phenomena in small different ecosystems built in cut-in-half plastic bottles, partially filled with 1) soil and 2) soil with plants, covered at the top with plastic wrap and exposed to sunlight. Another bottle with soil remained unwrapped to study also the potential effects in “absence of atmosphere”. For each bottle temperature changes and CO2 emissions were monitored with sensors connected to Arduino boards. The comparison of these parameters in different ecosystems and conditions led students to explain the greenhouse effect and elaborate this concept revealing also i) difference between global warming phenomena and greenhouse effect (a common misconception); ii) relevant role of soils on CO2 emissions; iii) importance of vegetation in preventing the rising temperature. Finally, students were encouraged to self-evaluate the new acquired knowledge. The future task of this project is creating a sharing platform for teachers, where downloading instructions of the experiment and questionnaire form, and, in turn, uploading feedbacks. Testing and evaluating this method could bring teachers to combine traditional deductive lessons with more practical and stimulating approaches.

 

Bybee R.W., et al. (2006). The BSCS 5E Instructional Model: Origins, effectiveness and applications. Retrieved from http://www.bscs.org/bscs-5e-instructional-model

 

King H. (2012). Student difficulties in learning geoscience, Planet, 25, 40-47.

 

Rocard M., et al. (2007). Science Education NOW: A renewed Pedagogy for the Future of Europe, Luxembourg, Office for Official Publications of the European Communities.

How to cite: Brombin, V., Calore, E., D'Onofrio, R., Lauro, C., Marchina, C., and Pelorosso, B.: SCIENCHY - catchy science with IBSE approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18081, https://doi.org/10.5194/egusphere-egu2020-18081, 2020.

The researches carried out by the AIGeo (Italian Association of Physical Geography and Geomorphology) members, also in collaboration with other researchers, cover various important topics of the Environmental and Earth Sciences. Geomorphology is central, also in the framework of dissemination strategies that are implemented and elaborated. A particular focus is, in fact, addressed to the development of educational strategies and applications focusing on landscape evolution through space and time having as target both students and teachers. The proposed strategies include fieldworks, multimedia activities and multidisciplinary approaches addressed mainly to secondary schools. In the Italian framework, the Ministerial National Guidelines provide indications about teaching these topics in the secondary schools. The guidelines indicate specifically, for the secondary schools of 2nd level, the topics and novelties concerning Physical Geography and Geomorphology. Among the general goals referred to the secondary school of 1st level, the landscape observation and the related natural phenomena are approached by the Geography teachers and by the Science teachers. Herein, we present an overview on the AIGeo activities regarding education in Physical Geography and Geomorphology. Some examples of the most recent researches planned and tested for the secondary school (1st and 2nd level) will be outlined. Moreover, the initiatives addressed specifically to present and future teachers will be illustrated too.

How to cite: Bollati, I. M.: Developing new approaches and strategies for teaching Physical Geography and Geomorphology: the role of AIGeo (Italian Association of Physical Geography and Geomorphology), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22102, https://doi.org/10.5194/egusphere-egu2020-22102, 2020.

SSS12.3 – Knowledge transfer to society: soil education and evidence syntheses in agro-environmental science

EGU2020-22011 | Displays | SSS12.3 | Highlight

How to give visibility to soil: attractive and innovative educational initiatives of Spanish Society of SoilScience (SECS)

Montserrat Díaz-Raviña, Maria Teresa Barral-Silva, Manuel Arias-Estévez, and Jorge Mataix-Solera

The Spanish Society of Soil Science (www.secs.com.es, SECS) was founded in 1947 by the Spanish National Research Council (CSIC) with the main objective of promoting the study and knowledge of Soil Science. To achieve the slogan of  2015 International Year of Soils, Healthy soils for a healthy life, taking into account our long experience working with the concept of soil as a living system, we planned several projects and activities to promote the knowledge of this living and non-renewable natural resource among the different sectors of the society. Educational programs and cooperation agreements with different Educational Centers and the Administration as well as collaboration with Universities, Ecology and Nature Associations, National and International Parks, Museums and others Institutions related with the conservation of terrestrial ecosystems, were established in order to get them involved in the Educational Projects (organization, participation, financing). One critical point in the success of the projects was the elaboration of diverse, innovative educational materials to stimulate, in an attractive way, the knowledge of this non-renewable natural resource among different sectors of society as well as the level of implication of persons involved on the projects.

In this contribution we will show some examples of these materials and initiatives concerning different aspects of Soil Science which result to be of interest to the general public: the comic Living in the Soil in different languages (Galician, Spanish, English, Italian and Catalan) and its corresponding Lesson Plans; Vivere nel Suolo: Giornata di Legalitá Ambientale;Vivire nel Suolo: Gionarta Mondiale del Suolo; Would life on the planet be possible without the soil?; Nature in the family; The game of soil; The elaboration of an Artificial Reproduction of a Soil Pedion and its inclusion in different centers related to soil; the creation of a Permanent Soil Room in the Museum of Natural History of Santiago de Compostela University (MHN); temporal exhibition Soil:Art Painting with soils; Pictures of José Caballo; group visits to the MHN and hence to the Permanent Soil Room; Soil Courses and Conferences; participation in Competitions. Our experience indicates that the inclusion of these innovative and attractive materials is very useful in the planning of activities related to soil to give visibility to this non-renewable resource hidden under the vegetation, the soil. We consider that these successful initiatives can be used as a prototype to transmit the message of importance on this natural resource, the soil, and the need of its protection all over the world.

Acknowlegments. All persons and organizations that participate in all these SECS activities and projects.

How to cite: Díaz-Raviña, M., Barral-Silva, M. T., Arias-Estévez, M., and Mataix-Solera, J.: How to give visibility to soil: attractive and innovative educational initiatives of Spanish Society of SoilScience (SECS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22011, https://doi.org/10.5194/egusphere-egu2020-22011, 2020.

Focusing on the number of the word “soil” in the field of science in the national guideline of Japan, it has been decreasing almost every ten years. Also, soil is taught inorganically and organic aspect is not treated in the field of science of the recent curriculum (Hirai et al. 2011). On the other hand, as urbanization is proceeding, people are gathering into city where the places with soil are scarce. Under such circumstances it would be important to analyze an interest and recognition of necessity on soil of elementary school pupils and junior high school students who are engaged with the present educational guideline. Therefore, soil education committee of Japanese Society of Soil Science and Plant Nutrition made a decision to conduct a questionnaire survey on soil in 2015. The questions in the questionnaire are; Q1. Are there places with soil around where you live, such as a rice field, forest, park or garden? Q2. Would you like to have places with soil around where you live? Q3. If you replied that you preferred to have a place with soil, what are your reasons? Q4. If you answered that you preferred not to have places with soil around in Q2, what are your reasons? Q5. In what situations have you touched soil? Q6. Circle all of the functions of soil that you think are useful in the lives of people, animals and plants which you are familiar with. Q7. Would you like to know more about soil? After the questionnaire survey, it was revealed that the questionnaire was answered by 5,396 pupils in the elementary schools and 3,472 students in the junior high schools. The results were partly summarized as follows: 1) The percentage of those who replied “I would like to have as many as possible” for Q2 decreased with increasing grade. The highest value was 48.3 % of 1st grader of elementary school, while the lowest was 27.5 % of 3rd grader of junior high school. The recognition of necessity on soil would be decreasing with increasing age. 2) The percentage of those who replied Q5 with “When working with flower pots” decreased with increasing grade. The highest value was 71.0 % of 1st grader of the elementary school, while the lowest was 23.1 % of 3rd grader of junior high school. Moreover, almost the same tendency was observed for “When taking a class at school”, that is, the highest value was 69.6 % of 1st grader of elementary school, while the lowest was 27.1 of 3rd grader of junior high school. 3) The percentage of those who replied “I would like to know as much as possible about soil” for Q7 decreased with increasing age. The highest value was 66.1 % of 2nd grader of elementary school, while the lowest value was 14.5 % of 3rd grader of junior high school.

How to cite: Hirai, H., Toma, M., and Akahane, I.: Analyses of interest and recognition of necessity on soil by elementary school pupils and junior high school students based on a questionnaire survey on soil in Japan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14833, https://doi.org/10.5194/egusphere-egu2020-14833, 2020.

EGU2020-22019 | Displays | SSS12.3 | Highlight

An innovative and attractive comic to transmit the message of soil importance to the Society: Living in the soil

Montserrat Díaz-Raviña, Maria Teresa Barral-Silva, Manuel Arias-Estévez, and Jorge Mataix-Solera

To commemorate the 2015 International Year of Soil, the Spanish Society of Soil Science (SECS-Territorial Delegation of Galicia) and the University of Santiago de Compostela published the comic Living in the soil, with the aim of raising awareness amongst young people the importance of soil and the need to protect it. The initial version, Vivir no solo, published by the Galician Culture Council, was modified and adapted  to the current  specific scenarios of the countries where it was edited, and translated  to Spanish, English and Italian as well as other languages (Galician, Catalan) for broadcasting it both at nationally at international level. In 2018 and 2019, the Spanish, Italian and Catalan versions were re-edited to commemorate the Decade International of Soils 2015-2024. All comic versions, including the English one, were edited in both paper (a total of 80.000 copies) and web format, the latter are available in the SECS web page (www.secs.com.es/publicaciones/).

Since 2015 up to now, the comic has been successful used in many projects/activities carried out in various institutions (Educational Centers, Natural Parks, Museums, Nature Associations, soil-related Institutions). The soil is a hidden resource very little known to the public. It is under our feet, but we can´t see it because it is covered by vegetation. However, agricultural or forest soil is a living systems, it is the home to a huge diversity of organisms of different sizes that perform important ecological functions and others linked to human activities. The protagonists of the comic are a snail, an earthworm and a mole that inhabit the soil as well as a group of young people who, trying to solve a problem of soil use management that occurs in a little village, show us several important soil aspects (concept, components, functions, threats, degradation, protection and restoration). Events, etc). Some examples of these events are: Science City Project: Living in the soil, 2015, Spanish Research Council  (CSIC), 2015; Would life on the planet be possible without the soil,  SECS, CSIC, 2019; Vivere nel Suolo: Giornata di Legalitá Ambientale; Vivere nel Suolo and Giornata Mondiale  del suolo,  SECS, Italian Society of Soil Science, Parco dei Nebrodi, European Soil Science Conservation, 2018-2019. Considering the success of all these events, it seems that the comic “Living in the soil” has a great potential as an innovative and attractive publication of great interest to disseminate and raise awareness worldwide about the importance of this non-renewable resource for maintaining life on the planet.

 Acknowlegments. All persons and organizations that participate in this initiative of the edition (2015) and re-edition (2018, 2019) of the comic in the different languages.  

 

How to cite: Díaz-Raviña, M., Barral-Silva, M. T., Arias-Estévez, M., and Mataix-Solera, J.: An innovative and attractive comic to transmit the message of soil importance to the Society: Living in the soil , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22019, https://doi.org/10.5194/egusphere-egu2020-22019, 2020.

EGU2020-87 | Displays | SSS12.3 | Highlight

Soil Education for General Public and School Students in Taiwan

Hung-Yu Lai, Wen-Yu Tseng, Yu-Shan Yen, Kuei-San Chen, and Chang-Jun Fong

Soil is the foundation for plant growth, animal habitats, and human society; however, there are few people focus on the soil nowadays. Soil courses are limited in the current curriculum education of elementary and high schools in Taiwan. The soil exhibition tour was thus conducted and its main objective is to improve the understanding of soil resources and its importance on social human beings and environmental quality, especially for school students. The lessons about soil science and the new expression of art combined with the environment were prepared to convey. Graduate students firstly guided children to the school’s cropland on their campus and sampled soil by auger. Then they taught children how to describe the soil color via Munsell soil color charts, structure, consistence, and to determine textural class by feel method while going on a soil survey out of the classroom. Another topic, since the soil color was determined by developing processes and environmental conditions, it would be several kinds of hue. We collected soil samples from different counties in Taiwan. Teaching children doing the watercolor made of soil themselves and drawing the postcards, which shows the major soil characteristics, such as, textural triangle, six ecological functions, and soil profile on the cover following. The detail of the activities can be adjusted according to the population and the age of the participants; hence it’s suitable for general adults or students in the elementary and high schools.

How to cite: Lai, H.-Y., Tseng, W.-Y., Yen, Y.-S., Chen, K.-S., and Fong, C.-J.: Soil Education for General Public and School Students in Taiwan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-87, https://doi.org/10.5194/egusphere-egu2020-87, 2020.

EGU2020-4029 | Displays | SSS12.3 | Highlight

How much do Japanese university students know about soil? A survey of university students who received science education in Japanese schools

Emi Yokoo, Aiki Masuda, Akiko Deguchi, and Hideaki Hirai

In the science curriculum in Japan, as Mori et al. (2019) examined the content of course of study for elementary schools, there are opportunities to plant and grow plants in soil, and to learn about the erosion, movement, and deposition of sediment. However, the science curriculum does not include specific learning content about the characteristics and functions of soil. Furthermore, in the new course of study to be implemented in 2020 (Ministry of Education, Culture, Sports, Science and Technology, 2017), an emphasis is placed on science education aimed at the prevention of natural disasters (sediment-related disasters caused by localized rainfall, etc.), which have caused substantial damage in Japan recently. Thus, in the current reality of science education in Japan, there are no occasions for teaching about how ordinary soil supports our lives and affluent living.
The purpose of this study is to obtain suggestions on what should be taught at schools about soil by conducting a survey of university students who received such school education in Japan, to investigate their level of comprehension regarding the characteristics and functions of soil. 
The survey was conducted in October 2019 in Tochigi Prefecture. Participants comprised 253 first-year university students who had just graduated from a high school (78 students majoring in humanities and social sciences, 175 students majoring in agricultural studies). The survey was in the form of a questionnaire. Soil’s “water retention” function received particular attention in this study. To survey the students’ understanding, they were asked the following two open-ended questions. Question 1: Why do plants require watering to grow? Question 2: How can weeds that grow on the roadside do so without watering? The first question was intended to examine the students’ understanding of why plants require watering to grow, while the second question was intended to assess their understanding of the water retention function of soil.
The most common answer to the first question was “Water is necessary for the growth of plants.” Sixty-five students majoring in humanities and social sciences and 165 students majoring in agricultural studies provided this answer. Approximately 25% of these students mentioned the mechanism of photosynthesis. Nearly half of the students answered, “because weeds are strong,” to the second question, which was the common answer. Twenty-six students majoring in humanities and social sciences and 77 students majoring in agricultural studies answered, “because it rains,” which was the second most common answer to the second question. Only four students majoring in agricultural studies, all of whom had attended university lectures on dendrology, were able to answer with reference to the water retention function of soil. 
The responses provided in this survey indicate that while the students were taught that plants require water for growth, they were not educated about soil and its functions that are necessary for this process, which arguably shows the results of the science curriculum in Japan. Thus, it is necessary to develop teaching materials and lessons that will educate students about the characteristics and functions of ordinary soil. 

How to cite: Yokoo, E., Masuda, A., Deguchi, A., and Hirai, H.: How much do Japanese university students know about soil? A survey of university students who received science education in Japanese schools, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4029, https://doi.org/10.5194/egusphere-egu2020-4029, 2020.

EGU2020-4030 | Displays | SSS12.3

Highlighting the importance of topsoil in human life through a soil education program

Aiki Masuda, Emi Yokoo, Hideaki Hirai, and Akiko Deguchi

This study aims to highlight the importance of topsoil in human life from the viewpoint of daily rice consumption in Japan. A questionnaire on rice and/or soil was distributed to elementary, junior high, and high school students and university students in order to investigate how much they know about soil and its importance. The results were reported using an earlier study (Hirai and Hirai, 2015). The findings revealed that most of the students recognized the soil function of plant production, but few recognized the area of paddy fields required to produce the amount of average rice consumed per person per year in Japan. In order to convey the importance of topsoil, an interactive class on “rice” was conducted with students in October 2019, as part of a soil education program. Before it, a rice hill with topsoil of 15 cm was taken from a paddy rice field and kept in a plastic container. We chose rice as the topic because Japanese students can easily relate to it. Students were told that to produce 150 g of edible rice, 70 g of dried rice is used. As part of an activity, they were asked to: 1) Count grains in 2 g of dried rice, and then calculate the number of grains in 70 g dried rice, 2) Observe a rice hill with topsoil , 3) Count the number of panicles of the rice plant and the number of rice hull in a panicle, 4) Multiply the number of rice hull with the panicle number to obtain the total number of rice hulls, and 5) Measure the total area and the weight of the topsoil. Thus, the students could understand how many rice hills with topsoil of 15 cm depth with a certain area are required to produce 150 g of edible rice. The students were also asked to touch and feel the soil and the rice plants, following a presentation about their learnings and findings. After this activity, a lecture from a professor of soil science was delivered. Moreover, the following questionnaire survey was conducted before and after the soil educational program aiming at recognizing the importance of soil. The number of participating students was 19, consisting of 5th and 6th graders of primary school and 1st to 3rd graders of junior high school. The following questions were asked: Q1. Would you like to have places with soil around where you live? Q2. If you prefer to have a place with soil around, what are the reasons behind it? Q3. Would you like to know more about soil? The number of students who answered Q2 with “because having a place with soil stops groundwater from drying up” increased from 5 to 15 after the program. In case of Q3, the number of students who answered “I would like to know as much as possible” increased from 10 to 18. Moreover, it is noteworthy that attendants stressed on touching the soil and measuring the area under rice plant cultivation.

How to cite: Masuda, A., Yokoo, E., Hirai, H., and Deguchi, A.: Highlighting the importance of topsoil in human life through a soil education program, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4030, https://doi.org/10.5194/egusphere-egu2020-4030, 2020.

The importance of and role that soil plays in ensuring the future sustainability of human and planetary health is well established and the emerging soil security concept clearly identifies that education is a crucial component to ensure the securing soil to be fit for this purpose. Traditionally education in soil science has been limited to developing expertise in the discipline. To be truly effective we need to go beyond the boundaries of the discipline, and even its natural home of academia, and begin to explore the types of learning that can be developed to engage the whole community and raise our collective connectivity with soil.

Previously theoretical frameworks based around the dimensions of to ‘know’, ‘know of’ and ‘be aware’ of soil have been accepted by the education community as well as experiential learning practices framed by the teaching-research-Industry-learning (TRIL) models. There is now the emerging question of the need for a set of newly proposed set of principles, in the same way as a set of elementary assumptions have been developed for disciplines in biology and geology, which will impact the design of learning and its engagement within the disciplinary and broader community. Starting with the Pedon this elementary level will ensure awareness of soil. Coupled with outward focused responsibility of providing salient knowledge together with the social intelligence will use the second principle of Processes to provide resolution to soil related problems. Traditionally, this knowledge is often used to tackle well know threats, but more recently the advances in digital soil mapping and decreasing soil modelling have enabled greater interdisciplinary opportunities to solve soil knowledge based around the principles of variation and ultimately forecasting soil change.

This paper will align the set of principles against the current soil science education practices and how these can be used to engage with the broader community outside of academia.  

How to cite: Field, D.: Do we need to new set of soil principles to guide the cross-sector engagement of soil education, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8810, https://doi.org/10.5194/egusphere-egu2020-8810, 2020.

Since plants are sessile due to their nature, they encounter- simultaneously or at different times numerous and various biotic and non-biotic stressors during their life span. Also, the severity and impacts of the stressors vary corresponding to the development stages and organs of the plant. Of the stress factors, salinity is considered as a major environmental constraint imposing limitations on growth, development, crop productivity, and quality of the plants in many regions of the world. Therefore, the studies concerned with salinity and its effects on plants are of the fundamental interests for agricultural issues. In order to alleviate the possible damages of salinity, exogenous applications of salicylic acid are of the common techniques used.  Herewith the study, the profiles of original and review articles under the topic of salicylic acid and salinity were examined by bibliometric analysis using VOSviewer tool. Along with the present study, it was aimed to answer the following research questions (RQ) associated to the researches regarding salt stress and salicylic acid interaction.

RQ1: Which plant species have been more focused for the studies?

RQ2: What kind of biochemical, physiological and molecular parameters have been used for analysis?

RQ3: How important the concentration of salicylic acid is? How important the mode of application of salicylic acid is?

RQ4: What are the research trends regarding salinity stress and salicylic acid considering the number and year of the publications, number of authors, main theme of the studies, country of the publications, core journals, the most cited documents etc.?

RQ5:  What is the spatial distribution of the researches? Do salinity stress faced countries mostly carry out the studies or not, considering the attributes influential on the performing the studies?

SCOPUS database was used for retrieving the related documents. For extracting documents, the following selection or limitation criteria were applied to profile the study concerned with salicylic acid and salinity interaction; (TITLE-ABS-KEY (salicylic AND acid)) AND (salt AND stress OR NaCl OR saline AND conditions OR salinity) AND (LIMIT-TO (SUBJAREA, "AGRI") OR LIMIT-TO (SUBJAREA, “BIOC")). Accordingly, 2,067 document results were retrieved. Then all documents were selected and exported to the CSV Excel. The documents were analyzed and visualized using VOSviewer tool. 

Accordingly, two main salicylic acid research clusters according to the most relevant terms were identified. First cluster was composed of abiotic stress terms and related antioxidant activity and enzymes. The first cluster can be considered as biochemistry and abiotic stress. The second cluster was related to the biotic stress factors and molecular biology approaches. For the keyword analysis, various clusters regarding hormonal cross-talks, antioxidant enzymes with oxidative stress, biotic stress factors, and osmoprotectants were composed. According to the country analysis, China, United States, Pakistan, South Korea, and Oman were grouped together in same cluster. India, Iran, Saudi Arabia, and Malaysia were in the same cluster. The results were discussed in comparison.

Keywords: Salicylic acid, salinity, bibliometric analysis, abiotic and biotic stress

How to cite: Kulak, M. and Kilic, N.: A bibliometric analysis: How important is salicylic in response to the salinity from NaCl?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1302, https://doi.org/10.5194/egusphere-egu2020-1302, 2020.

EGU2020-7577 | Displays | SSS12.3

Ecosystem-based solutions for gravitational natural hazard mitigation: a review on the use of protection forests for disaster risk reduction in mountain areas

Silvia Cocuccioni, Francesca Poratelli, Cristian Accastello, Stefan Steger, Stefan Schneiderbauer, and Filippo Brun

Mountain regions are affected by various natural hazards, of which gravitational mass movements are some of the most important ones. Due to the accumulation of settlements and intense economic activities in exposed areas, mountain regions such as the Alps constitute a risk hot-spot. The threat posed by gravitational natural hazards to human activities affirms the strong need for risk management, particularly for prevention. Structural measures are increasingly applied in combination with land use planning and ecosystem-based solutions. In particular, ecosystem-based solutions not only prevent the initiation of the processes but also act as a protective barrier. These green measures have been gaining an increasing attention also due to their adaptability to respond to the challenges posed by global change. Systematic reviews on how ecosystems can be used for disaster risk reduction have been carried out; however, their focus is on urban and coastal environments or on specific natural hazards such as shallow landslides. Up to now, there is no systematic review which addresses the role of ecosystems in disaster risk reduction regarding multiple gravitational natural hazards in mountain areas.

This contribution provides such a systematic review aimed at filling this knowledge gap to give a direction for future research. The review is composed of two main parts: a quantitative bibliometric analysis followed by a qualitative review. The quantitative part, based on the Scopus peer-reviewed database, aimed to investigate the publication trend on the ecosystem-based solutions for gravitational natural hazard mitigation by comparing it with the general trend of published scientific documents. The bibliometric analysis also served as a basis to select most relevant articles on which to conduct the subsequent qualitative analysis. The content of the so selected publications was analysed qualitatively the following  predefined criteria: the natural hazards addressed, the features of the ecosystem (i.e. forest species composition, management activities, effectiveness in risk mitigation), the development of alternative scenarios to test different hypothesis, the degree of stakeholder involvement, and the monetary evaluation of the measures (i.e. comparing them to structural measures). Results show a sharp increase in the number of publications on the topic from 1980 to 2018 compared to the overall number of documents published on Scopus. Although the overall topic is gaining more attention in scientific literature, the in-depth qualitative analysis revealed that research still pays little attention to stakeholder involvement and an economic evaluation of measures. We conclude that filling this research gap might help to foster a wider adoption of ecosystem-based solutions for disaster risk reduction across mountain areas.

How to cite: Cocuccioni, S., Poratelli, F., Accastello, C., Steger, S., Schneiderbauer, S., and Brun, F.: Ecosystem-based solutions for gravitational natural hazard mitigation: a review on the use of protection forests for disaster risk reduction in mountain areas, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7577, https://doi.org/10.5194/egusphere-egu2020-7577, 2020.

EGU2020-1139 | Displays | SSS12.3

Effects of nitrogen fertilization on yield and nitrogen-use efficiency of durum wheat in Tunisia: a meta-analysis

Amir Souissi, Haithem Bahri, Hatem Cheikh M’hamed, and Mohamed Annabi

Durum wheat (Triticum durum Desf.) is a crucial food crop and has occupied important areas in Tunisia. However, its production remains low and unstable even though the effort of intensification of this crop has been undertaken for many decades. Likewise, Nitrogen (N) is a major limiting input factor for the crop production. In this vein, the main objective of this meta-analysis is to quantify N-use efficiency of N-fertilizer (NUE) of durum wheat in Tunisia from published studies according to the type of crop management and bioclimatic zone. Nine hundred thirty-six observations (including grain yield and NUE as dependent variables) were extracted from 51 published studies, corresponding to trials conducted in rain-fed or irrigated, and conducted in conventional system or no-tillage. The results demonstrated that yields obtained within the experimental studies were below the cultivar potential yield, even at irrigated conditions. The grain yields obtained in no-tillage trials were lower (-26%) than those in conventional tillage ones. On the other hand, N-use efficiency was small and varied between 36 and 58 kg kg-1 N depending on the bioclimatic zone. Overall, the effect of irrigation on N-use efficiency was significantly positive (+16.4 kg kg-1 N; p <0.05) under conventional systems. Whereas NUE response to no-tillage was significantly negative (-12.1 kg kg-1 N; p <0.001) under rain-fed conditions. This latter is due mainly to the limitation of conservation agriculture (CA) in Tunisia to only no tillage practice and the negligence of the two other principles of CA namely crop rotations/species diversity, and soil cover by crop residues (at least 30% of the soil surface covered by crop residue at crop sowing). Therefore, enhancing N-use efficiency of durum wheat in Tunisia is paramount to increase production and avoid nitric pollution issues. This feature involves a best management of N-fertilization via synchronizing the timing and quantity of the nitrogen supply with the plant needs, and via using decision-making tools such as chlorophyll meter SPAD and GreenSeeker®, in order to accomplish this synchronization. The nexus between water and nitrogen in the soil is essential since it has conditioned the nitrogen use by durum in Mediterranean conditions.

How to cite: Souissi, A., Bahri, H., Cheikh M’hamed, H., and Annabi, M.: Effects of nitrogen fertilization on yield and nitrogen-use efficiency of durum wheat in Tunisia: a meta-analysis, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-1139, https://doi.org/10.5194/egusphere-egu2020-1139, 2020.

EGU2020-2919 | Displays | SSS12.3

A global bibliometric perspective on soil erosion modelling

Nejc Bezak and the Soil Erosion Modelling Team

Systematic bibliometric investigations are useful to evaluate and compare the scientific impact of journal papers, book chapters and conference proceedings. Such studies allow the detection of emerging research topics, the analyses of cooperation networks, and the collection of in-depth insights into a specific research topic. In the presented work, we carried out a bibliometric study in order to obtain an in-depth knowledge on soil erosion modelling applications worldwide.

As a starting point, we used the soil erosion modelling meta-analysis data collection generated by the authors of this abstract in a joint community effort. This database contains meta-information of more than 3,000 documents published between 1994 and 2018 that are indexed in the SCOPUS database. The documents were reviewed and database entries verified. The database contains various types of meta-information about the modelling studies (e.g., model used, study area, input data, calibration, etc.). The bibliometric information was also included in the database (e.g., number of citations, type of publication, Scopus category, etc.). We investigated differences among publication types and differences between papers published in journals that are part of various Scopus categories. Moreover, relationships between publication CiteScore, number of authors, and number of citations were analyzed. A boosted regression tree model was used to detect the relative impact of the selected meta-information such as erosion model used, spatial modelling scale, study period, field activity on the total number of citations. Detailed investigation of the most cited papers was also conducted. The VOSviewer software was used to analyze citations, co-citations, bibliographic coupling, and co-authorship networks of the database entries.  

Our bibliometric investigations demonstrated that journal publications, on average, receive more citations than book series or conference proceedings. There were differences among the erosion models used, and some specific models such as the WaTEM/SEDEM model, on average, receive more citations than other models (e.g., USLE). It should also be noted that self-citation rates in case of most frequently used models were similar. Global studies, on average, receive more citations than studies dealing with plot, regional, or national scales. According to the boosted regression tree model, model calibration, validation, or field activity do not have significant impact on the obtained publication citations. Co-citation investigation revealed some interesting patterns. Our results also indicate that papers about soil erosion modeling also attract citations from different fields and better international cooperation is needed to advance this field of research with regard to its visibility and impact on human societies.    

How to cite: Bezak, N. and the Soil Erosion Modelling Team: A global bibliometric perspective on soil erosion modelling , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2919, https://doi.org/10.5194/egusphere-egu2020-2919, 2020.

We illustrate how the use of scientometric methods and tools can facilitate the scanning and interpretation of large volumes of scientific outputs and benefit the literature review of a scientific topic, reducing the cognitive burden to identify emerging trends and shifts in scientific interest. We rely on a corpus of publications about permafrost which proves to be a fast-growing and multifaceted object of study in the geosciences (16,267 references retrieved from Scopus and published since the 1970s) and undertake a scientometric approach to understand the knowledge about permafrost that has been produced and disseminated so far. 

With the rise of digital technology and the increase in the amount of data available, scientometrics has benefited in its methods from text-mining and datavisualisation tools, thus enabling maps to be drawn up to visually represent the semantic space of a textual corpus (for example with networks representing graphically the proximity between strongly related terms) and to observe its dynamics over time.

We outline the benefits of 2 scientometric tools and a few of their specific functions: CiteSpace, for a structural analysis based on bibliographic data (e.g. co-citation networks to reveal underlying intellectual structures) and Cortext, for a lexicometric analysis based on terms extracted from metadata and press articles (e.g. co-occurrence networks to detect trends and transition patterns). First, we tackled the corpus in a global and objective way, without presupposing which fields have been involved. Then we focused on one particular field (civil engineering) to demonstrate how we can better feed these tools with terms extracted from a corpus of press articles mentioning construction and building issues.

In this longitudinal study, we use 3 units of analysis and evaluate their frequencies, shares and patterns of co-occurrences: disciplinary fields (retrieved via Scopus journal classification scheme), terms (automatically extracted from titles, abstracts and keywords and validated by similar extraction on media articles and expert review), geographical areas (automatically extracted with Name Entity Recognition function, and investigated both as a field of study and also as information about countries interested in any aspect of permafrost).

We can then show and explain the increasing share of publications about permafrost, the ever-growing number of disciplinary fields involved along with content fluctuations in the engineering field, the emergence of new associations between terms and in particular with "climate change", and the significant impact of studies about the Qinghai-Tibet plateau.

The focus on civil engineering allows us to perform contrast analyses with other sub-corpuses (about climate change or environmental sciences) and to identify the existing overlaps but mostly the gaps to be filled.

With this case study on permafrost, we show how scientometric tools can meet the need for objectivity in extensive literature reviews when fake news and climate scepticism are threats to science integrity and the sound dissemination of its results. Besides, we provide for more knowledge about the development of research on permafrost and initiate a particular focus on civil engineering issues providing evidence for future works.

 

How to cite: Bordignon, F.: Extracting value from scientific literature with scientometric methods and tools: a case study of permafrost and civil engineering, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4566, https://doi.org/10.5194/egusphere-egu2020-4566, 2020.

Conservation agriculture (CA) is characterized by minimal soil disturbance, permanent soil cover, and diversification of crop species, as stated by FAO in 2017. Many CA experiments, however, have been carried out so far, by taking into account only one or two of the three principles. Therefore, the meta-analyses recently published may fail in giving correct results about the CA effectiveness on agroecosystem variables, mostly on soil organic carbon (SOC) content or stock.

In preparation of conducting a meta-analysis, the present study was carried out to collect published results about the effect of the concurrent adoption of the three CA principles on SOC under Mediterranean climate with a systematic literature search in Scopus and Web of Science. Initially, a single nested query has been applied to both the database, using the Boolean operators, in order to include all the international literature about CA experiments and SOC variable without climate filter at this step. The resulting raw files were downloaded and merged in a unique dataframe using R software with "Bibliometrix" package1, which is an open-source tool developed for bibliometric analysis. The use of merged dataframe has mainly two advantages: it allows an easy duplicate removal (847 records in our case) and a more detailed information research both automatic and manual. Bibliometrix indeed provides tools for bibliometric analysis and data matrices building for co-citation, coupling, and co-word analysis highlighting, for example, that in the European continent both Italy and Spain are the most productive countries on these topics.
With these possibilities, as a further step, a new sub dataframe has been extracted by using the Köppen classification for Mediterranean climate (sub-climates, Csa/Csb/Csc), allowing a reduction of 32% of the records.

1) Aria, M., Cuccurullo, C., 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis, Journal of Informetrics, 11(4).

 

How to cite: Tadiello, T. and Acutis, M.: Effect of conservation agriculture on soil organic carbon sequestration in Mediterranean region. A systematic map., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-796, https://doi.org/10.5194/egusphere-egu2020-796, 2020.

EGU2020-12956 | Displays | SSS12.3 | Highlight

A systematic synthesis of agricultural management impacts on crop yield, soil quality, and environment

Madaline Young, Wim de Vries, and Gerard H. Ros

Management practices aiming to improve crop yields may have adverse effects on soil or environmental quality, whereas the reverse can also be true. There is a need for a better understanding of synergies and trade-offs of nutrient, crop and soil management impacts on agronomic and environmental indicators , taking into account a variety of regional agro-ecosystem properties.

Well-known key indicators in this context are crop yield, nutrient uptake and use efficiency, soil organic carbon (SOC) and nutrient content, soil compaction, GHG emissions, and nutrient surpluses. Meta-analysis is a valuable way to assess the magnitude of agricultural management impacts over multiple sites and years, assessing the overall effect from many empirical observations. As many meta-studies exist in the literature to quantify the effects of agricultural management practices, we are the first presenting an integrated overview of those published studies on the above-mentioned impacts simultaneously. We focused on management principles for sustainability, including crop rotation and residue incorporation, irrigation, tillage, the “4R” principles of right fertilizer source, rate, timing, and placement, as well as enhanced efficiency and biochar amendments.

We find that various management-impact relationships are covered by meta-studies, but there is a lack of holistic analysis of site properties (and their interactions), which control the effects of management measures. Since current meta-studies allow limited conclusions on the effects of specific soil and climate agro-ecosystem properties, better analyses of site-specific conditions are needed.

When multiple meta-studies report effect sizes for the same management impact and given indicators, we further synthesized the results by a weighted mean based on reported measures of variation. Our synthesis produced almost 2000 impact assessments of agronomic measures from meta-analysis papers, providing a valuable quantitative resource for scientists and stakeholders in agriculture. For example, when comparing best management practices relating to fertilizer source, tillage, and crop rotation, our results indicate combined fertilizer as most effective in reducing N surplus, organic fertilizer as most effective in increasing SOC, and no tillage as most effective in increasing yields.

Our review also focuses on key characteristics relating to quality and methodological approaches in meta-analysis. For example, a surprising number of meta-studies do not perform a weighted analysis, which we consider an important quality standard. In general, our insights are relevant for the state of meta-analysis in agricultural science, which can be considered a recently developed focus of research.

How to cite: Young, M., de Vries, W., and Ros, G. H.: A systematic synthesis of agricultural management impacts on crop yield, soil quality, and environment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12956, https://doi.org/10.5194/egusphere-egu2020-12956, 2020.

To collate all the prior information about modelling the soil bulk density (BD) in Mediterranean climate agro-ecosystems at a world-scale, a systematic map was carried out. The strength of the systematic map approach is the collection of all the international peer review publications available in different archives that allows for the historical track of the topic developments.

To estimate BD, the most common approach is the use of Pedotransfer functions (PTFs). In this study, a search query was developed to find out all the already published PTFs for BD estimation and the search was carried out on the two most used citation database of peer-reviewed literature, namely SCOPUS and Web of Science (WoS).

The Bibliometrix package developed by Aria and Cuccurullo (2017) was used to map the main bibliometric information, extracted from Scopus and WoS. Following the systematic map procedure, we carried out a search on title, abstract and keywords using the following query: (bulk  AND density  AND  pedotransfer)  OR  (bulk  AND density  AND Mediterranean)) that yielded 750 results in Scopus and 889 in WoS.

Alternatively, ((bulk density  AND  pedotransfer)  OR  (bulk density AND Mediterranean)  AND NOT  (forest  OR  amazon*  OR  petrol*))  AND  (LIMIT-TO (DOCTYPE , article)  OR LIMIT-TO (DOCTYPE, review)), which have yielded 717 and 567 records in WoS and Scopus respectively, of which the 30% were found in both database.

The researches were published between 1989 and 2020. The final database consists of 889 articles coming from 243 different journals. The average annual publication growth rate was 4%, but in 2019 it was the 10%. United States was the most productive country with more than 90 articles published, as it was confirmed by the number of publications found in Geoderma and the American Soil Science journal with 20 and 15 % respectively. We found that less than 5% of the records were relevant to our target objective.

This search provided a background in terms of variables used to build the PFT, methodologies used (e.g. multiple linear, nonlinear regression, machine learning), and detailed land use. Given the importance of SOC stock for carbon sequestration and soil fertility, a PTFs is a valid tool to estimate the BD and therefore the amount of SOC in Mediterranean agro-ecosystems.

How to cite: Acutis, M. and the SDAE 2019 team: Pedotransfer function to predict soil bulk density in Mediterranean agro-ecosystems, a systematic map., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16930, https://doi.org/10.5194/egusphere-egu2020-16930, 2020.

EGU2020-21316 | Displays | SSS12.3

Barley ideotyping for the adaptation to heat stress in the Mediterranean basin. A bibliometric search approach

Agostino Fricano, Erica Mica, Raffaella Battaglia, Alessandro Tondelli, Calogero Schillaci, and Alessia Perego

Barley is a widespread crop in the Mediterranean area and in temperate climates. Barley impact in the food chain is very important for its value as food and feed. The societal demand is for more productive varieties, which can be able to cope with the current and future climate scenarios. Change in climate is expected to result in more adverse conditions for the barley growth and alter land suitability in its growing regions, such as the Mediterranean basin. In this context, laboratory and modelling activities for the so-called “in silico ideotyping” can be effectively carried out to design new germplasms and to define optimal field management practices. As a first step to reach this objective, we collate the available scientific research about the identification of optimal phenotypic traits for the adaptation to harsh environments. In the framework of the GENDIBAR project (Utilization of local genetic diversity for studying barley adaptation to harsh environments and for pre-breeding; PRIMA European Funding Programme), a bibliometric analysis was carried out in the SCOPUS database with the aim to find published papers about barley adaptation in relation to changing climate. The initial query was (barley AND climate AND adaptation); it contained few keywords and resulted in less than 200 publications. By adding (barley AND ideotyping OR barley AND phenotyping), the search reached 450 records. The most comprehensive search was achieved by adding another OR condition (Barley AND future climate OR climate change) that yielded more than 1000 results. Although these records seemed relevant, a deeper analysis showed that less than 5% of these studies are of real interest and moreover the manual screening of the abstracts of all records will require around a month of work. The second query represents a compromise between the simplest query (barley AND climate AND adaptation) and the last query made by three conditions bonded together. This literature search approach highlighted the results of manipulative experiments and modelling studies for deriving phenotyping and agronomic traits to address in-silico ideotyping design. However, the search outcome suggests that there is a gap of knowledge about the barley phenotypic traits needed to cope with climate change in the semi-arid and arid regions of the Mediterranean basin. This approach is expected to further provide useful information for the development of land suitability models, as well as for barley breeding.

How to cite: Fricano, A., Mica, E., Battaglia, R., Tondelli, A., Schillaci, C., and Perego, A.: Barley ideotyping for the adaptation to heat stress in the Mediterranean basin. A bibliometric search approach, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21316, https://doi.org/10.5194/egusphere-egu2020-21316, 2020.

EGU2020-21359 | Displays | SSS12.3

“Soil Education Manual - Toolbox for DIY program at your classroom” by International Union of Soil Sciences (IUSS)

Takashi Kosaki, Rattan Lal, and Laura Bertha Reyes Sánchez

Soil education is one of the major topics to be enhanced and promoted in the International Decade of Soils 2015-2024 (IDS) project of the International Union of Soil Sciences (IUSS). The book entitled above has been just published by the IUSS to provide readers, who are interested in soils, geosciences, environment, ecosystems, art, etc. and may be teaching in schools at elementary through university levels, working at museums, educational or extension organizations and serving for NPOs, NGOs, etc., with basic framework of soil and soil science education and a collection of good practices currently employed, so that the readers could learn and share with whatever suited to their own condition efficiently.
The book consists of three parts, i.e. framing soil science education, good practices in soil education and future of soil and soil science education. The first part gives tenets and framework of soil education in pre and primary school, under- and post-graduate students and the general public or citizen. The second includes practical methods for soil and soil science education from all over the world, i.e. 1 from Africa, 3 from Asia, 3 from Europe, 2 from North America, 5 from South America and 2 from Oceania, which have been evaluated useful, efficient and promising in their own environments and situations. The final part is devoted for discussing the challenges and future of soil and soil science education. 
The IUSS is planning to distribute the above publication to a variety of societies so that the current contents and methods and the systems of soil and soil science education be criticized for further improvement towards promoting and enhancing research, education and public awareness of soils as one of the disciplines of geo- and bio-sciences in the future.

 

How to cite: Kosaki, T., Lal, R., and Bertha Reyes Sánchez, L.: “Soil Education Manual - Toolbox for DIY program at your classroom” by International Union of Soil Sciences (IUSS), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21359, https://doi.org/10.5194/egusphere-egu2020-21359, 2020.

Environmental changes have been studied in numerous local scale studies all around the world. They provide invaluable evidence on the causes and consequences of the way we use and change the environment. However, it remains unknown, how we can use this evidence beyond the study area boundaries, which limits the transferability of potential more sustainable solutions. We present a novel, interdisciplinary workflow on how to combine systematic reviews and meta-analyses with spatial analysis on the example of land use change. First, we performed a systematic review on local scale land use change. The collected studies were used to generate a classification of different actors behind land use change using clustering. Secondly, using the documented case study evidence, we statistically analysed how the location influences the spatial distribution of these studies. We used data on socio-economic, soil, terrain and climate variables. Using the derived statistical relationships, we were able to map the spatial likelihood of the studies, and how representative the study collection is for other parts of the world. The results enabled us to identify areas, which are similar to the meta-analysis collection. Conversely, areas that are very different can be used to identify understudied areas where more research is necessary. The proposed workflow can be used across different domains of environmental and earth system sciences.

How to cite: Malek, Z. and Verburg, P.: From local studies to global patterns: Example of systematic reviews on local land use change to study global change processes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21475, https://doi.org/10.5194/egusphere-egu2020-21475, 2020.

SSS12.7 – Current Debates on Land Degradation and Development

EGU2020-11744 | Displays | SSS12.7

Implementation of soft hydraulic conservation measures: are we done with soil erosion?

Olivier Cerdan, Valentin Landemaine, Rosalie Vandromme, and Thomas Grangeon

Numerous studies worldwide have reported a dramatic increase in soil erosion rates following the development of agriculture. In Western Europe, food security issues led to an intensification of agricultural practices after World War II. A profound modification of the landscapes was operated that translated into an increase in hydrosedimentary connectivity and a decrease in soil cover in winter. Related on-site soil degradation and off site societal and environmental detrimental effects rapidly started to call for the implementation of conservation measures. Since 2000, the French water agencies, through the European water framework directives, started to fund the implementation of soft hydraulic conservation measures, such as vegetated filter strips or linear vegetation barriers. These measures have the advantage to be easily implemented and to be visible in the landscape without compromising the intensive agriculture production system. After twenty years of funding of soft hydraulic conservation measures, soil erosion is still an issue. Are these solutions just a plaster on a wooden leg or are they really effective? Recent efforts consisting in catchment scale monitoring programs and modelling exercise tend to show that soft hydraulic conservation measures may be usefull for local mitigation actions but may have a limited impact in terms of floods and muddy floods. On the basis of simulation exercises in contrasting environments we will discuss the advantages and limitations of such measures.

How to cite: Cerdan, O., Landemaine, V., Vandromme, R., and Grangeon, T.: Implementation of soft hydraulic conservation measures: are we done with soil erosion?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11744, https://doi.org/10.5194/egusphere-egu2020-11744, 2020.

EGU2020-13275 | Displays | SSS12.7

Grasswise: monocultures or binary grass mixtures for African rangelands users?

Kevin Mganga, Dickson Nyariki, Luwieke Bosma, Theophilus Kioko, Nancy Kadenyi, and Frank van Steenbergen

Reseeding, using drought tolerant indigenous perennial grasses is a viable option for combating rangeland degradation, provision of livestock feed and improving livelihoods of pastoral communities. However, debates on whether monocultures or binary grass mixtures establishments are best suited for African rangelands managers, are still ongoing. Our opinion and contribution to this debate is informed by results obtained from a combination of an ecological field based and socioeconomic study in a typical semi-arid rangeland in Kenya. Perennial forage grasses indigenous to African rangelands Cenchrus ciliaris (African foxtail grass), Enteropogon macrostachyus (Bush rye grass) and Eragrostis superba (Maasai love grass) were established as monocultures and binary grass mixtures. Binary grass mixtures demonstrated significantly higher rehabilitation indices for plant frequency, basal cover and plant densities and soil hydrological properties (infiltration capacity, runoff and sediment production). However, pastoral communities showed preference to monoculture than binary mixtures. This was attributed to their role in livestock production. In conclusion, considering the ecological and socio-economic value of African rangelands to pastoral communities, the choice of either monoculture or binary grass mixture establishment will primarily be informed by the principle objective(s) of the rangeland manager.    

 

How to cite: Mganga, K., Nyariki, D., Bosma, L., Kioko, T., Kadenyi, N., and van Steenbergen, F.: Grasswise: monocultures or binary grass mixtures for African rangelands users?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13275, https://doi.org/10.5194/egusphere-egu2020-13275, 2020.

Biosolids are a source of nutrient-rich organic material that can be used to improve degraded or disturbed soils. However, public perception of the use of biosolids on land is both positive and negative and can change over time and be different in different regions of the world. Research on the land application of biosolids has increased in the past 20 years, but there is little consensus on how the environment responds to biosolids applications. Here, I (1) present public perception research on the use of biosolids in land application in British Columbia, Canada, (2) present a review of the literature on the effects of biosolids in land application with a particular focus on plant community development, and (3) provide recommendations for the use of biosolids in land application depending on potential differences in ecosystem reclamation goals. In the public perception research, many citizens see the value in the use of biosolids as a sustainable fertilizer, especially in mine reclamation, but some have expressed concerns about pathogens in biosolids and their effect on humans and animals. The literature review revealed that biosolids increase plant productivity but have no effect on plant diversity. The research suggests that climatic conditions and seeding are influential in altering ecosystem and community level responses to biosolids application.

How to cite: Fraser, L.: Why and when can biosolids be used as a soil amendment for ecosystem reclamation and rehabilitation?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2023, https://doi.org/10.5194/egusphere-egu2020-2023, 2020.

EGU2020-2159 | Displays | SSS12.7

Biochar manages salt-degraded land and conserves water: Effects and mechanism

Xinqing Lee, Yimin Huang, Fang Yang, Ying Xing, Liang Xu, Zhongtang Liu, Rongmei Wang, Ran Holtzman, Iddo Kan, Yunlong Li, Like Zhang, Wei Wu, Yuena Ma, and Hui Zhou

Soil salinization represents a wide-spread land degradation in the world, especially in arid regions. Current management involves excessive water consumption. As a pyrolyzed residue of biomass waste, biochar has the potential to combat salinization at limited water supply, the effect and mechanism, however, remain to be clarified. We monitored the movement of salts and water in the profile of irrigation-silt soil during watering and evaporation in both laboratory and the field in Kashgar oasis in Xinjiang, China, and found that biochar exacerbates salinization within a short period of time after its application due to its high content of salts, nevertheless, it strengthens salt leaching in irrigation while intensifies salt accumulation in the top soil at the expense below during evaporation, all as results of invigorated movement of salts. Removing the top 2 cm before sowing, therefore, rejuvenates the soil well. Adsorption of biochar retards migration of salts in cation forms, but the effect is trivial. Due to increase to soil water content, biochar promotes evaporation before soil cracking. This is reversed, however, once the cracking occurs, which is inevitable in irrigated farmland and increases evaporation by 77%. Biochar counteracts soil cracking by alleviating soil compaction, lowering water evaporation by 43% at 10% of biochar application rate. Our results indicated that agriculture application of biochar creates salt distribution conducive to desalting in a mechanical way. In conjunction with the effect of anti-fracturing and enhanced salt leaching, it lowers water demand substantially, providing a new solution to the agricultural sustainability at reduced water supply.

How to cite: Lee, X., Huang, Y., Yang, F., Xing, Y., Xu, L., Liu, Z., Wang, R., Holtzman, R., Kan, I., Li, Y., Zhang, L., Wu, W., Ma, Y., and Zhou, H.: Biochar manages salt-degraded land and conserves water: Effects and mechanism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2159, https://doi.org/10.5194/egusphere-egu2020-2159, 2020.

EGU2020-8255 | Displays | SSS12.7

Restoration monitoring of rare earth element (REE) mines in southern Jiangxi, China

Lifeng Xie, Weicheng Wu, Xiaolan Huang, Penghui Ou, Ziyu Lin, Yong Song, Zhiling Wang, Tao Lang, Wenchao Huangfu, Yang Zhang, Xiaoting Zhou, Xiao Fu, Jie Li, Jingheng Jiang, Ming Zhang, Zhenjiang Zhang, Yaozu Qin, Shanling Peng, and Chongjian Shao

Rare earth elements (REE) mines have an extremely high strategic value, especially, in national aerospace industry and military fields. The long-term open mining and extraction processing of REE in the weathered crust since 1970s have led to serious land degradation, e.g., vegetation degradation, soil loss, reduction of soil fertility, and especially, environmental pollution to subsoil and groundwater. Taking southern Jiangxi, where ion-type of REE mines are mainly located, as an instance, the total mining area is measured about 79 km2 from 1291 mines, of which 56 km2  have been or are being managed with restoration measures identified by comparison between multitemporal very high resolution images available on Google Earth. Visual interpretation revealed that large-scale mining activities occurred after 2000 and restoration management was not intervened until 2010, in particular, 2013. As implemented by different enterprises or companies, post-mining restoration has a strong spatial variability in both management approaches and effectiveness from mine to mine. Up to today, no systematic monitoring and assessment have been conducted for this restoration intervention. It is, therefore, the objective of our study to evaluate the effectiveness of such restoration efforts using multitemporal October Landsat data with scene path/row number of 121/42-121/43 from 2000 to 2017. Eight managed and seven unmanaged typical mines were selected for a comparative analysis and restoration assessment.

After atmospheric correction using COST model, NDVI and GDVI (Generalized Difference Vegetation Index) that is more suitable for low vegetation, as proxy of vegetation vigor and biomass production, were derived from all satellites images. The mean NDVI and GDVI values of each selected mine were calculated. The results show that NDVI of the managed REE mines has been increasing from 0.32 to 0.67 and GDVI from 0.55 to 0.90 year by year since 2010, indicating a vegetation recovery, especially, for those with effective management. In contrast, in the unmanaged mines, NDVI values remain low ranging from 0.20 to 0.40, and GDVI from 0.22 to 0.60, implying that the damaged vegetation cover caused by open mining and pollution has low capacity to recover without human intervention, where continue serious water loss and soil erosion. We also noted in some managed areas that planted grasses have survived but trees died or are dying probably because of the residual pollution in subsoil. This means a holistic management should be implemented in both surface, subsoil and groundwater, and monitoring be conducted by remote sensing in combination with soil sampling. This will be our next task of research.

 

How to cite: Xie, L., Wu, W., Huang, X., Ou, P., Lin, Z., Song, Y., Wang, Z., Lang, T., Huangfu, W., Zhang, Y., Zhou, X., Fu, X., Li, J., Jiang, J., Zhang, M., Zhang, Z., Qin, Y., Peng, S., and Shao, C.: Restoration monitoring of rare earth element (REE) mines in southern Jiangxi, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8255, https://doi.org/10.5194/egusphere-egu2020-8255, 2020.

Soil carbon storage is crucial for global carbon budget and at the same time affect many key ecosystem functions. There are several studies showing that in initial soil substrates and or degraded soils with little overall soil organic matter content have high ability to sequester carbon. Mechanisms that cause this fast SOM sequestration are not completely elucidated but most likely arise from availability of vacant spaces where SOM can be bound by various mechanism and set of positive feedback loops which cause that increase in one SOM pool may increase rate of saturation in other pools. There are also some indication that major mechanisms how the SOM its stored in soil vary along soil development gradient. In Initial soils there may be high rate of SOM sequestration achieved under fast growing plants producing easily available litter, in this stage incorporation POC in mineral matrix, storing microbial neuromas and activity of earthworms play crucial role in SOM sequestration. While in latter stages of soil development, when soil is already close to saturation slow growing plants, producing slow decomposing litter result in higher carbon sequestration, ir seems to be that shift of microbial necromass to fungal rather than bacterial necromass, and difference in litter and microbial necromass decomposability may play important role in this stage. Implication of these finding for ecosystem restoration is discussed. 

How to cite: Frouz, J.: Do heavily degraded soil really sequester carbon faster? Can that be change for soil restoration?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18269, https://doi.org/10.5194/egusphere-egu2020-18269, 2020.

EGU2020-10901 * | Displays | SSS12.7 | Highlight

Mining sites: Landscape degradation or Opportunity for Biodiversity?

Vaja Pavlovic

Massive biodiversity loss, alarming the scientific community, is a hot topic nowadays. On the other hand, mining sites, active or closed, represent almost 1 percent of Earths’ surface. Mine safety imposes physical protection and isolation of mines by high fences, signs and guards in active and sometimes even in closed mines. Human activity, other than extraction, is most often legally restricted in mines, and hence the human disturbance is low; even in active mines, extraction is mostly taking place in one relatively small part of the mine, at one time, while the fence protects the whole mining area. As such, even active mines might present shelters for biodiversity, especially outside the working hours (late afternoon and night) for animal species, or in areas that are not exploited at the moment for plant species.

However, active and closed mines are rarely regarded as an opportunity for biodiversity. They are rather commonly regarded as degradations that require intense fixing actions. Instead of constantly rehabilitating them, in order to make them less dangerous for local populations or making them functional for humans – by giving them back the function they had before mining (i.e. agriculture, forestry) or creating a new one like landfill or industrial zone in quarries or fishing, hiking or other leisure activities in gravel pits – should we keep them protected and look at them as potential biodiversity reservoirs, in nowadays landscapes, overpopulated and generally highly impacted by human activities?

Should we rehabilitate mining sites or let them be biodiversity sanctuaries, where nature will develop itself as is suits her? Should we humans constantly try to “improve” and “help” nature, or should we let it be?

Existing studies showed that spontaneous succession can lead to valuable high-diversity habitats, but the attention given to its effect in mining sites has not yet been extensive. We studied biodiversity in mining sties, and we present empirical evidence suggesting that mining sites where nature has been left to develop on its own should be regarded as opportunities for biodiversity.

We compared the influence of four different rehabilitation techniques - mineral base left to spontaneous succession, mineral base covered with topsoil, mineral base covered with topsoil and planted, and mineral base covered with topsoil, sown and planted - on biodiversity development in quarries and gravel pits, in order to determine the technique that favors the most biodiversity development. We conducted inventories of five taxonomic groups present on-site after application of those four different rehabilitation techniques. 29 flora plots and 18 fauna transects were thoroughly inventoried, several times, in sites in northeastern France. We recorded 186 species of plants, 14 individuals/2 species of reptiles, 479/11 of amphibians, 91/39 of butterflies and 325/27 of dragonflies. For all five taxonomic groups, natural succession had the most favorable impact, compared to other rehabilitation techniques.

Our results suggest a necessity for a perspective change in favor of regarding mining sites as opportunities for becoming biodiversity shelters.

How to cite: Pavlovic, V.: Mining sites: Landscape degradation or Opportunity for Biodiversity?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10901, https://doi.org/10.5194/egusphere-egu2020-10901, 2020.

EGU2020-8579 | Displays | SSS12.7

Land take and industrial zones

Jaroslava Janku, Josef Kozák, Kristina Macounová, Karel Jacko, Adéla Marie Marhoul, Jan Vopravil, and Jan Jehlička

Currently, we can see a rapid decline of agricultural land, especially for construction purposes. This negative trend is evident across Europe, the Czech Republic is the country with the fastest loss of land in the EU. One reason for the significant loss of agricultural land is building industrial zones is their utilisation of greenfield areas, and their occupying new areas of agricultural land, often the most the most fertile. The analysis deals with the occupied area (the area of a particular industrial zone), the percentage utilization of that industrial zone, the number of employees in the industrial zone, and the land quality expressed by means of the agricultural land protection class. The results of the analysis show the low usability of industrial zones, the large occupation of agricultural land, and the low benefits to the Czech state and Czech citizens. The results also show poor land use policy in relation to soil protection. This work is followed by the project Sustainable management of natural resources with emphasis on non-production and production ability of soil, the results of which will be included in legislation and binding for spatial planning.

Keywords: soil sealing, land take, land use changes, agricultural land management, land agriculture protection, brownfield

How to cite: Janku, J., Kozák, J., Macounová, K., Jacko, K., Marhoul, A. M., Vopravil, J., and Jehlička, J.: Land take and industrial zones, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8579, https://doi.org/10.5194/egusphere-egu2020-8579, 2020.

Rapid changes in land use due to intensifications of oil exploration and exploitation adversely affect the Eastern Mongolian steppe ecosystem. The expansion of supporting infrastructure and dirt road networks for oil production contribute to accelerate the human-induced land degradation process in the grasslands. So far, neither the extents of road networks nor the extent of surrounding grasslands affected by the oil industry are monitored which is generally labor consuming. This causes that no information on the changes in the area which is affected by those disturbance drivers is available. Therefore, the major aim of this study is to provide a cost-effective model to map the supporting infrastructure, sites and dirt roads of oil exploitation through classifying remotely sensed images using object-based classifications with Random Forest. By combining satellite data with different spatial and spectral resolutions (PlanetScope, RapidEye, and Landsat ETM+), the product delivers data since 2005. In the image classification, the variables of segmentation, spectral characteristics, and indices were extracted from all above mentioned imagery and used as predictors. Within this study examined the comparison analysis in order to quantify the uncertainty arising from the combination of data from different sensors in their spectral and spatial configurations. Besides that, this study analyzed the consequence of supporting infrastructure and dirt roads on surrounding ecosystems combining data from field vegetation surveys and drone imagery. Results show that overall accuracies of land use maps ranged 73%–93% mainly depending on satellites’ spatial resolution. Since 2005, the area of grassland disturbed by dirt roads and oil exploitation infrastructure increased by 88% with its highest expansion by 47% in the period 2005–2010. Consequently, the comparison of multiscale classification suggests that, although high spatial resolutions are clearly beneficial, all datasets were useful to delineate linear features such as roads. Furthermore, the results of this study provide an effective evaluation for the potential of Random Forest based model for extracting relatively narrow linear features such as roads from multiscale satellite images and map products that are possible to use for detailed land degradation assessments.

How to cite: Dashpurev, B., Bendix, J., and Lehnert, L.: Monitoring Oil Exploitation Infrastructure and Dirt Roads with Object-Based Image Analysis and Random Forest in the Eastern Mongolian Steppe, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5465, https://doi.org/10.5194/egusphere-egu2020-5465, 2020.

EGU2020-6141 * | Displays | SSS12.7 | Highlight

Is the impact of climate change on desertification predictable?

YaoJie Yue and Min Li

Desertification, as one of the gravest ecological and environmental problems in the world, is affected both by climate change and human activities. As the consequences of global warming, the temperature in global arid and semi-arid areas is expected to increase by 1-3℃ by the end of this century. This change will significantly influence the spatial and temporal pattern of temperature, precipitation and wind speed in global arid and semi-arid areas, and in turn, ultimately impact the processing of desertification. Although current studies point out that future climate change tends to increase the risk of desertification. However, the future global or regional desertification risk under different climate change scenarios hasn’t been quantitively assessed. In this paper, we focused on this question by building a new model to evaluate this risk of desertification under an extreme climate change scenario, i.e. RCP8.5 (Representative Concentration Pathways, RCPs). We selected the northern agro-pastoral ecotone in China as the study area, where is highly sensitive to desertification. Firstly, the risk indicators of desertification were chosen in both natural and anthropic aspects, such as temperature, precipitation, wind speed, evaporation, and population. Secondly, the decision tree C5.0 algorithm of the machine learning technique was used to construct the quantitative evaluation model of land desertification risk based on the database of the 1:100,000 desertification map in China. Thirdly, with the support of the simulated meteorological data by General Circulation Models of HadGEM2-ES, the risk of desertification in the agro-pastoral ecotone in the north China under the RCP 8.5 scenario and SSP3 scenario (Shared Socioeconomic Pathways, SSPs) were predicted. The results show that the overall accuracy of the C5.0-based quantitative evaluation model for desertification risk is up to 83.32%, indicating that the C5.0 can better distinguish the risk of desertification according to the status of desertification impacting factors. Under the influence of future climate change, the agro-pastoral ecotone in northern China was estimated to be dominated by mild desertification risk, covering an area of more than 70%. Severe and moderate desertification risk is mainly distributed in the vicinity of Hulunbuir sandy land in the northeast of Inner Mongolia and the Horqin sandy land in the junction between Inner Mongolia, Jilin and Liaoning provinces. Compared with the datum period, the risk of desertification will decrease under the RCP8.5-SSP3 scenario. However, the desertification risk in Hulunbuir sandy land and that in the northwest of Jilin province will increase. The results of this study provide a scientific basis for developing more effective desertification control strategies to adapt to climate change in the agro-pastoral ecotone in north China. More importantly, it shows that the desertification risk can be predicted under the different climate change scenarios, which will help us to make a better understanding of the potential trend of desertification in the future, especially when the earth is getting warmer.

How to cite: Yue, Y. and Li, M.: Is the impact of climate change on desertification predictable?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6141, https://doi.org/10.5194/egusphere-egu2020-6141, 2020.

Air pollution caused by human activities contributes to the deglaciations of Arctic ice and highland areas, accelerates the process of climate change on the planet and leads to land degradation. Black carbon is the second largest artificial contributor to global warming and accelerates the deglaciations rates after carbon dioxide. Black carbon is formed as a result of incomplete combustion of fossil fuels, biomass, etc. Another important aspect of organic matter role is the presence of specific formations of combined biogenic-mineral materials on the surface of the glaciers – cryoconites. Cryoconites represent soil like bodies formed not on normal parent material, but on the surface of the ice. This type of accumulations appear in microdepressions, formed due to thawing of ice under accumulation of black carbon on the surface of ice. During the thawing, the cryoconite substances become located deeper in relation to initial surface and this result in additional accumulation of organic matter in microdepressions, they become wider and deeper. Spatial web of cryoconite became more developed and this result in degradation of the glacier surface. This cryoconite formation result in degradation of upper layers of ice and increases deglaciation rates.  The organic carbon of the cryoconite origin could be considered as specific form of natural organic matter stabilization and should be investigated on the molecular level. The advantage nuclear magnetic resonance spectroscopy method is the ability to quantify the content of groups of structural fragments and identify individual structural fragments in humic acid molecules. Studies on the organic compounds of HAs for the soils of the polar area by the 1H-13C (HETCOR) NMR spectroscopy have not been carried out to current time. The advantage of this method is that, when analyzing the spectra of HAs, we can observe cross-peaks of H-C bonds, while for the 13C (CP/MAS) NMR spectroscopy we can only observe chemically bound carbon. The HETCOR method allows the study of single HAs fragments. Thus, the combination of the two methods 1H-13C (HETCOR) and 13C (CP/MAS) NMR spectroscopy can reliably determine the molecular structure of HAs. In our research we investigate the cryoconitte on the Grønfjorden area in western Spitsbergen, Svalbard. Analysis of the molecular composition of HAs showed that the molecules of HAs formed on cryoconites are enriched with aromatic fragments and they contain in their composition a considerable number of aromatic fragments (41–43%) with a relatively small fraction of carbohydrate periphery, as evidenced by higher values of AR/AL (0.75 and 0.69). Higher aromaticity of HAs causes their high stability and the degree of hydrophobicity of HAs in these soils is also higher, which indicates the stabilization of HAs.

Acknowledgements: This work was partially supported by Russian Foundation for Basic Research, projects No: 19-54-18003, 19-54-18003 and 19-05-50107

How to cite: Abakumov, E. and Polyakov, V.: Molecular composition of black carbon in the cryoconite in Arctic by Two-Dimensional 1H-13C HETCOR and 13C CP/MAS, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3920, https://doi.org/10.5194/egusphere-egu2020-3920, 2020.

Enhanced anthropogenic climate change (global warming) is already leading to significant changes in the properties, processes and dynamics of land surfaces of high latitude and high altitude areas. Rapid surface and subsurface warming, ice mass loss and ice margin retreat are now resulting in increased land surface instability. Evidence for this comes from increased sediment yield by mass movements on exposed slopes, and within river systems and along coasts. In turn, increased sediment yield results in geomorphic change in these areas. The concept of paraglacial response describes the nature of changes in sediment yield and land surface geomorphology during rapidly-warming deglacial periods. This concept is increasingly relevant in a global warming context to describe land surface changes in high latitude and high altitude areas. Hitherto, paraglacial land surface responses have not been considered as part of the wider topic of global land degradation, but increased slope sediment yield and changes in the sediment mass budgets of slopes, rivers and coasts have implications for the morphodynamics and geohazards of high latitude and high altitude areas, and are similar to land degradation processes found in other climatic and physical settings. This study highlights the similarities and differences in (i) processes, (ii) spatial and temporal scale of operation, (iii) geomorphic and sediment system responses, (iv) geomorphic and environmental hazards, both direct and indirect, and (v) societal or community impacts and responses. This comparison is undertaken between paraglacial relaxation in recently deglaciated terrain, and land degradation associated with desertification in Africa. Examples of deglaciating land surfaces in Spitsbergen and in mountain blocks worldwide are used to demonstrate the wide range of contemporary paraglacial (land degradation) processes affecting these high latitude and high altitude environments. It is notable that land degradation caused by paraglaciation in these areas pose significant challenges to the sustainability of communities and to environmental monitoring and management.

How to cite: Knight, J. and Strzelecki, M.: Land degradation in high latitude areas: the role of paraglacial land surface changes driven by global warming , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6435, https://doi.org/10.5194/egusphere-egu2020-6435, 2020.

A goal of Land Degradation Neutrality by the year 2030 was agreed by the Rio+20 conference in 2012, and subsequently included in the Sustainable Development Goals. It dilutes earlier goals of unrestricted control of desertification, for example, by proposing that the rate of land degradation should be reduced and the rate of restoration of degraded land increased so they offset each other by 2030. As with many environmental concepts that have emerged in recent decades, Land Degradation Neutrality was proposed in the political arena, and scientific study is only now starting to evolve. Yet distinct positions are already forming within the scientific community, for example, on the feasibility of monitoring land degradation neutrality in dry areas when there are no reliable estimates for the rate of desertification, and on what constitutes land restoration in dry areas. Land degradation neutrality is also yet to be put in the wider context of environmental degradation as a whole, e.g. how does it relate to the forest degradation component of the Reducing Emissions from Deforestation and Degradation (REDD+) mechanism of the UN Framework Convention on Climate Change, and to degradation of biodiversity which the Convention on Biological Diversity is seeking to reduce. This session will allow scientists working in the field of land degradation neutrality to share their perspectives in this emerging field.

How to cite: Grainger, A.: Is existing scientific knowledge sufficient to provide the basis for reliable monitoring of achieving land degradation neutrality?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22216, https://doi.org/10.5194/egusphere-egu2020-22216, 2020.

EGU2020-6192 * | Displays | SSS12.7 | Highlight

Demonstrating sustainable land management and delivering multiple environmental, economic and social benefits in Australian pastoral systems.

Cathleen Waters, Susan Orgill, Susan Ogilvy, and Aaron Simmons

Globally, grazing systems have been consistently implicated in land degradation as reflected by changes in woody cover, soil degradation and losses of biodiversity. Pastoral systems can be a major contributor to global greenhouse gas (GHG) emission or a low-cost carbon sink for climate mitigation. In Australia, the $AUD 2.55 billion Emissions Reduction Fund (ERF) is the centre piece of climate policy and has resulted in >3.8 million ha of land use change. Traditional pastoral systems are now including management which increases carbon pools in vegetation (regeneration of native vegetation in rangelands) and soils (regenerative pasture management to increase the amount of soil biomass and limit soil disturbance). The scale of this land-use change is providing an unpredicted opportunity to deliver multiple ecosystem services, or core benefits (production of food and fibre, carbon sequestration and reduced loss of soil carbon). While there is increasing anecdotal evidence that regenerative agricultural practices results in increased farm profitability and greater wellbeing, there are key uncertainties around their potential to deliver multifunctional landscapes and contested views on the magnitude of these changes and opportunities. A major uncertainty revolves around climate impacts on carbon sequestration.

We provide two case studies which explicitly incorporate carbon sequestration and regenerative management practices and have the potential to deliver multiple environmental, economic and social benefits; (i) using a rangeland carbon farming example, we show how income from carbon sequestration in vegetation, re-directed to managing of grazing intensity, is leading to greater ecological and social resilience. Additional value of these carbon farming areas through ecological thinning and the use of woody residue for biochar production represents further mitigation potential as well as increased benefits in habitat for biodiversity (ii) using a temperate grazing system, implementing regenerative agricultural practices which reduce the amount of soil organic matter decline through minimal disturbance and pasture management may increase soil organic carbon. For each case study, Land Use Trade-Offs (LUTO) model, a high-resolution integrated environmental-economic model, is used to illustrate spatiotemporal dynamics of land-use options, quantify the magnitude of trade-offs adjusted for future climate impacts and assess farm-scale land use prioritisation and optimisation for multiple benefits. We identify land management practices that increase carbon sequestration (vegetation and soils) and realise opportunities for additional farm income are integrated with sustainable land management.

How to cite: Waters, C., Orgill, S., Ogilvy, S., and Simmons, A.: Demonstrating sustainable land management and delivering multiple environmental, economic and social benefits in Australian pastoral systems. , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6192, https://doi.org/10.5194/egusphere-egu2020-6192, 2020.

EGU2020-7469 | Displays | SSS12.7 | Highlight

Phytoindicators of marginal saline lands: Potential for improving dryland management to increase agroecosystem resilience and productivity

Kristina Toderich, Elena Shuyskaya, Marina Lebedeva, Temur Khujanazarov, and Hidenari Yasui

Throughout the world, the arable agricultural lands are already fully utilized, and hence marginal land, including saline land, is being brought into consideration. Owing to its geographical and climatic characteristics, aggravated by impacts of climate change and anthropogenic pressures, Central Asian countries (CACs) are facing serious food and nutrition security challenges. Current agropastoral and farming-livestock systems have little experience in designing and implementing climate-smart land-use initiatives from so-called ‘marginal lands’.  As an instance, a land that is “marginal” for crop production may be well suited for grazing, bio-energy production, silvi-pastoral use. “Fragile” land may be sensitive to degradation under cultivation but may be sustainable used for agroforestry and afforestation practices. Nowadays there is not a world-known definition of the extent and characteristics of categories of marginal lands. Purposes of study: (1) investigate if land-use types have discrete, quantifiable vegetation characteristics; and (2) if these also have discrete soil characteristics.  Overall goal: in future, use the information to (1) characterize land use over the entire district and (2) better manage land to make more productive, increasing food and nutrition security of the local population.  Quantitative and qualitative assessment of vegetation condition of 6 land categories were performed using plant communities’ characteristics, species composition, canopy cover and biomass production along a salinity gradient. We rank the sites by their content of sodium ions in the salt surface crusts and the underlying soil horizons. The majority of lands of research target areas are strongly saline at the surface and with a vertical distribution of salinity typically down to a depth of 10 cm (with a maximum depth to 18 cm). This distribution of readily soluble salts is due to the proximity of saline groundwater.  With extreme arid climatic conditions, the toxic salts can be readily drawn upward toward the surface. Differences between sites are observed by the extent of salinization of the middle and lower soil horizons. The first land clusters are very high in salt content throughout the depth of the soil. The second group consists of lands in which salinity of the middle and lower soil horizons does not get above the mean (>0.3%).  There is quite low salinity (> 0.1%) immediately under the salt crust, (as estimated by the total amount of toxic salts). Investigated lands categories differed in plant functional types (glycophytes>euhalophytes>recretohalophytes). As soil salinity increased, the proportion of the perennial growth form increased from ~60% of species in sites with lower soil salinity to 100% in the natural solonchak with the greatest soil salinity. Remediation measures and multi-purpose use of marginal lands, such as saline lands; degraded pastures, abandoned farmer lands; wastelands surrounding water bodies and hydrothermal wells, field margins; tugay forest wetlands were recommended.

 

 

How to cite: Toderich, K., Shuyskaya, E., Lebedeva, M., Khujanazarov, T., and Yasui, H.: Phytoindicators of marginal saline lands: Potential for improving dryland management to increase agroecosystem resilience and productivity, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7469, https://doi.org/10.5194/egusphere-egu2020-7469, 2020.

EGU2020-7638 | Displays | SSS12.7

Changes in ecological networks and eco-environmental effects on urban ecosystem in China’s three typical urban agglomerations

Ying Fang, Jing Wang, Jingjing Liu, and Zehui Li

The trace element composition of stratified peat soils is interesting for the reconstruction of the geochemical background of atmospheric aerosol. The monitoring of trace element contents in peat deposits is often used for the identification of pollution around large industrial centers. The destabilization of the peatlands of the cryolithozone presents a global environmental hazard of the input of inorganic pollutants into the hydrologic network and their subsequent transport into the Arctic Ocean. Climate warming and permafrost degradation enhance the influence of deep peat layers on the trace element composition of groundwater and rivers. The purpose of the work is to assess the accumulation of trace elements in peat soils as a result of the aerogenic pollution of the territory and to identify their internal profile migration and accumulative characteristics. The peatlands investigated are in the far north taiga (Northeastern European Russia, 65°54′ N, 60° 26′ E), ecoton south tundra – forest-tundra (67°03′ N, 62° 56′ E) and ecoton north tundra – south tundra (68°02′ N, 62° 43′ E). The upper level of trace element accumulation was confined to the active (seasonally thawed) layer owing to airborne contamination over a long time span and related to the bioaccumulation of Hg, Cd, Pb, Cu, and other heavy metals (HMs) by plants and humus materials. The character of element accumulation and migration in the active layer is controlled by the stability of HM humates. Under high-acidity conditions, HMs are highly mobile and migrate to the lower boundary of the active layer, which is indicated by an increase in the fraction of water-soluble forms of a number of elements. Analysis with a scanning electron microscope revealed the presence of spherical and semispherical particles up to 1 μm in size containing Pb, Zn, Cr, and Ni in the upper peat levels, which indicates an anthropogenic source of their input owing to long-distance and local transport of air masses. The central level of element accumulation was confined to peat layers in the permafrost zone (60–120 cm), where enrichment in As and Cd relative to the mean contents in the Earth’s crust (and approximate permissible concentrations, APC, for soils) and accumulation of Fe, Al, S, and siderophile elements were observed. The source rocks of the peatlands are loams enriched in Cd, Zn, and As. The statistical analysis of relations of the contents of major and trace elements in the stratified peat horizons with the composition of peat-forming materials showed a significant contribution of the biogenic accumulation of elements. The reported study was funded by the RFBR No 18-05-60195 (No AAAA-A18-118062090029-0).

How to cite: Vasilevich, R.: Assessment of the trace element composition of peat soils from the European Arctic in a changing climate conditions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18613, https://doi.org/10.5194/egusphere-egu2020-18613, 2020.

Numerous methodologies are available so far measuring trends of land (LD) and ecosystem degradation (ED) with spatially explicit manner. Yet the delineation of spatial and temporal covariance between LD and ED remains challenging which limited the effectiveness of future conservation decision making for preventing risks of LD and ED simultaneously, especially in cold and drought areas because of high cost of restoration. Here, we produced the spatial networks for managing and restoring LD and ED based on the risk projection of LD and ED in Tibet plateau under human exploitation pressure and climate change. Firstly, we simulated 10 indicators for LD and ED separately by monthly interval from 2000 to 2015 to capture the current trends of LD and ED. Secondly, resilience, resistant, and risk exposure have been assessed to connect the vegetation traits, threaten factors and their reflections. Thirdly, by the exploration of relationship between LD and ED and their impact factors, we projected risks for both of them using 12 scenarios from different climate and land use change combinations identifying the key area of preventing LD and ED spatially. Finally, an effectiveness analysis has been processed ordering results under each scenarios leaded to the decline of nature capital for providing alternative strategies of regional land and ecosystem management. By our research, we found that LD and ED in Tibetan plateau have similar pattern of dynamic, while ED shows more significant correlation with climate change due to stronger intrinsic resilience in front of stressors. In opposites, once serious land degradation occurs, it is hardly being recovered by increasing of precipitation and temperature. Based on the relationship analysis, we modeled LE and ED risks under various potential scenarios suggesting that at least 100,000km2 area needed to human intervention for restoration. These suggested sites covered the worst 60% areas of both LD and ED producing 12.5 billion USD  dollars revenue from the maintenance of key regulating ecosystem services.

How to cite: Zhang, L.: Projection of land and ecosystem degradation for preventing risk of natural capital decline in Tibet plateau., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13459, https://doi.org/10.5194/egusphere-egu2020-13459, 2020.

EGU2020-5235 | Displays | SSS12.7

Soil nutrients dynamics and the evolution of multi-decadal degradation in alpine wetlands of the Qinghai-Tibetan Plateau

Hailing Li, Tingting Li, Wenjuan Sun, Wen Zhang, Lijun Yu, Bin Guo, Jia Liu, and Xingchu Zha

The Qinghai-Tibetan Plateau (QTP) is the highest plateau on earth and has a large area of alpine swampy meadows. In the past few decades, overgrazing and climate change have caused severe desiccation and degradation of the alpine wetlands. The remote sensing technology has been used to assess the wetland shrinkage. However, changes in soil nutrients associated with the duration of alpine wetland degradation are poorly known. We took soil samples in three swampy meadows of the QTP, one terrain was relatively flat and the other two were with hummocks and hollows. Decadal gradients of degradation from nondegraded swampy meadows to degraded meadows were selected. The contents of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) were analyzed. The SOC, TN, and TP contents loss in degraded swampy meadows occurred mainly during the first decade. The soil nutrients loss was highly affected by the geomorphic characteristics of the wetland area. After degradation, the SOC, TN, and TP contents decreased at exponential rates on the flat terrain site. The top layer SOC, TN, and TP contents of the degraded about 30 years area were 24.76±0.91, 2.22±0.07 and 0.45±0.01 (mean ± SE) g kg-1, respectively; and the SOC, TN, and TP contents decrease were 75%, 72% and 56% that of the nondegraded swampy meadows, respectively. On one hummock-hollow sites the top layer SOC, TN, and TP contents of the degraded for about 30 years area were 61.22±11.94, 4.09±0.73 and 0.44±0.05 (mean ± SE) g kg-1, respectively; and the SOC, TN, and TP contents decrease were 45%, 52% and 46% that of the nondegraded swampy meadows, respectively. The soil nutrients decomposition rate of hummock-hollow sites was much lower than the flat terrain site. Large and tough hummocks in swampy meadow degradation sites can resist environment erosion and stabilize soil nutrients content at high levels.

How to cite: Li, H., Li, T., Sun, W., Zhang, W., Yu, L., Guo, B., Liu, J., and Zha, X.: Soil nutrients dynamics and the evolution of multi-decadal degradation in alpine wetlands of the Qinghai-Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5235, https://doi.org/10.5194/egusphere-egu2020-5235, 2020.

EGU2020-13538 | Displays | SSS12.7

What is the optimal level of soil organic matter in tropical climates to prevent soil degradation?

Christian Guzman, Tigist Tebebu, Fasikaw Zimale, and Tammo Steenhuis

Land degradation emerges when a critical component of productive land begins to diminish beyond a threshold. In tropical soils, organic matter may vary depending on the local climatic conditions and production of litter and organic materials and furthermore drastic changes in land use may be responsible for changes in organic matter which coincides with soil physical changes. In two research regions in mountainous (sub) humid conditions, organic matter was measured alongside surface and profile characteristics. In the Ethiopian Highlands, we measured organic matter, soil penetration resistance, soil texture, pH, and bulk density in three land use classifications (native forests, pasture lands, croplands).  In this region, soil in cropped regions and pasturelands had organic matter roughly below 4 %, had greater soil penetration resistance, lower pH (more acidic), and had greater bulk density. Soils in the native forests had organic matter roughly between the range of 4% to 12 % with lower soil penetration resistance, higher pH (less acidic) and lower bulk density.

The soils were investigated in the Andean region of the southwest of Colombia were analyzed for organic matter, hydraulic conductivity, soil texture, pH, and bulk density across two main land use classifications (native- and regenerated-forests and cultivated and pastureland). Soils in the cropped and pasturelands had organic matter around 4.8%, with low saturated hydraulic conductivity, greater fraction of fine particles, lower pH (more acidic), and greater bulk density. Soils in the native and regenerated forest cover had organic matter between 5 to 7%, with greater saturated hydraulic conductivity, lower fraction of fine particles, higher pH (less acidic), and a lower bulk density. While a universal optimal level of soil organic matter may not be applicable across various tropical regions, there are distinct changes that are consistent when organic matter falls below a regional threshold including increased compaction, acidity, and shifting of soil texture.  

How to cite: Guzman, C., Tebebu, T., Zimale, F., and Steenhuis, T.: What is the optimal level of soil organic matter in tropical climates to prevent soil degradation?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13538, https://doi.org/10.5194/egusphere-egu2020-13538, 2020.

EGU2020-22040 | Displays | SSS12.7 | Highlight

High probability of yield gain through conservation agriculture in dry and cool regions for major staple crops

Yang Su, Benoit Gabrielle, Damien Beillouin, and David Makowski

Conservation agriculture (CA) has been promoted to reduce land degradation, improve the soil fertility, the soil structure and increase the level of soil organic carbon over time. It is expected to mitigate climate change and enhance the resistance of crops to the changing climate. Yet, its impacts on crop yields remains controversial. To gain further insight on the sustainability of CA, we mapped the probability of yield gain when switching from conventional tillage systems (CT) to CA worldwide. The range of yield changes were estimated with machine learning algorithms trained by 2828 paired yield observations on 8 crop species extracted from 323 publications. CA stands a more than 50% chance to outperform CT in dry and cool regions of the world, while it can lead to yield losses of up to 59% in warmer and wetter regions. Residue retention has the largest positive impact on CA productivity compared to other management practices. The promising and the risky regions for CA global implementation were identified. The productive performance of CA for different crops in future climate were also estimated and mapped globally, the results of different scenarios were compared and analyzed. Overall, with proper managements, CA appears as a sustainable agricultural practice for specific climatic regions and crop species.

How to cite: Su, Y., Gabrielle, B., Beillouin, D., and Makowski, D.: High probability of yield gain through conservation agriculture in dry and cool regions for major staple crops, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22040, https://doi.org/10.5194/egusphere-egu2020-22040, 2020.

EGU2020-2041 | Displays | SSS12.7

How do shrubs impact the mass failures on the loess sidewall?

Hang Gao, and Xiangzhou Xu

The effects of plants on gravity erosion are still controversial, although vegetation has been widely used in soil and water conservation. In order to evaluate the influence of vegetation on gravity erosion, a series of laboratory experiments was performed on a 1.5-m-high loess-gully sidewall with a 70° slope, involving two types of shrubland (SL model) and bare land (BL model). The results revealed only an 8–20% decrease in total gravity erosion in the SL model compared to the corresponding BL model, which indicated that the impact of vegetation on gravity erosion is not significant. Compared with the BL model, the average landslide volume was 42% greater in the SL model, while the average avalanche and mudslide volumes in the SL model were 50% and 36% less, respectively. In addition, vegetation can change the type of gravity erosion and improve the degree of soil fragmentation. The amount of erosion after rain in the SL model was 33.17×103 cm3 more than that in the BL model. Compared with the anchoring effect of vegetation, the change of soil water caused by vegetation on the slope has a greater effect on the gravity erosion under heavy rains. It is suggested that the shrub restoration measures can be used in the areas with frequent debris flow and hydraulic erosion, and structural measures may reduce the negative impact of plants on gravity erosion of the Loess Plateau.

How to cite: Gao,, H. and Xu, X.: How do shrubs impact the mass failures on the loess sidewall?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2041, https://doi.org/10.5194/egusphere-egu2020-2041, 2020.

Assessments of land degradation in arid and semi-arid regions frequently employ models calculating annual erosion rates from the size of sediment bodies, assuming grain-by-grain transport and constant processes of deposition. It is often attempted to connect historic sediment bodies to past land use and climate by correlations with demographic estimates and reconstructions of past precipitation averages. In addition, mass transport is often equalled with soil loss and fertility degradation, based on the idea that humus-rich topsoils store the greatest part of soil nutrients. However, such concepts are based on premises transferred from temperate regions, and their suitability for arid and semi-arid regions is questionable. For example, dryland soils usually contain very small amounts of organic matter, which means that their fertility is mostly a function of texture, and a limited loss of topsoil is rather irrelevant for agricultural productivity. Part of the sediments deposited in valleys come from soft, easily erodible rocks, which means that they reflect slope denudation and not soil erosion. As well, erosion-sedimentation processes do often not take place by continuous transport of single grains. This is illustrated with a valley fill in northern Jordan: sediments were deposited discontinuously, mainly by slumping and earth flows, and the largest parts of the fill accumulated in time frames of ~100 years during the two Little Ice Ages (6th and 14th century AD/CE). Due to a dominance of smectites, the clay-rich Red Mediterranean Soils in the vicinity shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without erosion risk. However, when water-saturated, soils expand and may move in slump flows. Soil-covered geoarchaeological features like a buried ancient cemetery illustrate that such viscous flows created new land surfaces, sealing cavities but not filling them. This suggests a major role of rare but intense rainfall events in erosion-deposition processes. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that levels of soil moisture triggering similar slump flows have not been reached during times of modern rainfall monitoring. That ancient land use played a minor role for erosion is supported by intense surveys of archaeological material on fields surrounding the valley, which indicate that the periods of most intensive land use coincided with very limited sediment deposition. Concepts of land degradation in semi-arid and arid regions should be reconsidered, respecting the more irregular environmental setting, the specific soil properties, and traditional land use systems which evolved in constant adaptation to this environment. Rare but extreme rainfall events as potential main drivers of land degradation should be considered more: they are difficult to control or mitigate, but may increase due to climate change.

How to cite: Lucke, B.: Questioning models of land degradation in arid and semi-arid regions: a re-assessment based on evidence from northern Jordan, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9275, https://doi.org/10.5194/egusphere-egu2020-9275, 2020.

EGU2020-9678 * | Displays | SSS12.7 | Highlight

How high can we go: defining and breaching the threshold for soil organic matter to improve soil water holding capacity?

Gary Feng, Xinhu Li, and Dennis Reginelli

Soil water holding capacity is an important soil property which influences soil and water conservation as well as land degradation and development. Some studies indicated that field capacity (FC) was increased as soil organic matter (SOM) is improved, but the positive effect of SOM on FC was still contradictory. No consistent reports were found for the SOM potential that could be increased. Whether FC could be improved due to increase in SOM by organic amendment is not well established. It is still unknown whether or not there is benefit of improving SOM for enhancing FC; what is the threshold level of SOM for increasing FC, and how much SOM can be boosted. The field study and literature review were conducted to answer all those questions. Soil samples were taken at four sties manured and not manured in the Southern United States, then SOM and FC were measured. The soils amended with poultry litter had higher SOM (3.2%) and FC (35.38%), while the soils without amendment of poultry litter had lower SOM (1.7%) and FC (30.33%), a positive effect of SOM on FC was observed. For different soils with various clay content, a strong positive relationship was observed for soils with clay content less than 15% (R2= 0.7). We found that FC started increasing as SOM was increased over 2%, it is the threshold level of SOM for improving FC. Previous research also reported that there was no positive effect on FC for cultivated soils with a mean SOM of 1.2% in Greece. Another study found that the increase in water content is significant for sandy soils with 0 to 20% clay content. Our results revealed a pronounced effect for silt loam soils with 1 to 28% clay as SOM was larger than 2%. The SOM ranged from 0.9 to 5.42 %, with a mean value of 2.60 % for the 167 soil samples we measured. We found the highest level of SOM that amendment of poultry litter can increase was not greater than 6.0 %. We suggest SOM should be increased over 2% for improving FC, there is large room for SOM improvement in subtropical humid regions.

How to cite: Feng, G., Li, X., and Reginelli, D.: How high can we go: defining and breaching the threshold for soil organic matter to improve soil water holding capacity?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9678, https://doi.org/10.5194/egusphere-egu2020-9678, 2020.

In the highlands of Tigray both crop yield and soil erosion are important concerns. At the same time the impact of climate change is felt in the form of delayed and more erratic rains. Different adaptation strategies are proposed to increase resilience. The successful implementation of most of these strategies, like for example, agroforestry, conservation tillage and water harvesting, heavily relies on improved infiltration and the amount of water stored in the root zone. In this presentation the water storage in the root zone is discussed in relation to crop productivity and hydrological performance of the local (agricultural) land use system. For this purpose measurements of (gravimetric) soil moisture content, taken at different depths in the root zone and at regular time intervals during four growing seasons in the period 2010-2013, were considered. In total 43 sites were involved, which were measured for one up to three years. In addition to soil moisture content, at selected sites also bulk density, saturation, field capacity and wilting point were determined. On the basis of the data collected, site-specific changes in soil moisture budgets were analyzed and trends observed were related to crop productivity and hydrological parameters (like rainfall and evapotranspiration). First outcomes pointed to a relatively rapid increase of soil moisture stock at the start of the growing season, followed by a more or less stable level, and ending at crop maturation with a very rapid decrease. Typical figures for gravimetric moisture content at the stable level were between 25 and 30 %. Soil depth was in most cases shallow (around 40 cm) and likely limiting moisture storage capacity. Assuming that at the start of the stable phase rainfall still is exceeding evapotranspiration, this then will point to a relatively high risk for run off at this stage. Stock change of soil moisture as such appears a relevant and low cost indicator to assess hydrological performance of land use systems in terms of infiltration capacity and soil moisture availability. In line with that, analysis of stock change of soil moisture might provide relevant clues for designing and optimizing effective land management strategies that successfully deal with erosion hazard and result in a more resilient and sustainable production of food crops.

How to cite: Kraaijvanger, R.: Stock change of soil moisture under crop cultivation: A relevant and low cost indicator to assess hydrological performance of agricultural land use systems in Tigray, northern Ethiopia., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7750, https://doi.org/10.5194/egusphere-egu2020-7750, 2020.

EGU2020-12254 | Displays | SSS12.7

Will no-till be the new panacea for degraded tropical landscapes?

Tammo Steenhuis, Misbah Hussein, Habtamu muche, Sisay Belay, Azalu Gessess, Christian Guzman, Petra Schmitter, Manuel Reyes, and Seifu Tilahun

General knowledge based on the good agricultural soils in temperate climates is that no-till and conservation-till practices increase infiltration of the rainwater and decrease runoff and erosion.  Experiments in the semi-humid Ethiopian highlands do not often show the same benefits and in many cases no-till actually increases runoff above conventional and deep tillage. In contrast, for conservation-tillage with mulch at the surface, more of the water infiltrates and enhances plant growth

Reduced tillage systems increase infiltration through soil fauna that form soil macropores through which rainwater flows to the subsoil bypassing the soil matrix with limited conductivity. Most degraded soils (at least in the Ethiopian highlands) have a hardpan at shallow depths restricting downward movement of water. Runoff on conventionally tilled soils is caused by saturation excess when the perched water table in the plowed soil layer reaches the surface.  Thus, the amount of runoff is determined by the water free pore space in the surface layer.  Since this pore space is less under no-till, no-till has greater amounts of runoff than conventional till. 

Under mulch tillage, organic matter is introduced at the surface and soil fauna becomes well-developed which will improve the soil structure and porosity of the soil.  This structure will be maintained because the mulch decreases the sediment concentration in the water and the pores will remain open. Under conventional tillage sediment concentrations are high and any pores formed will be filled up with sediment. Our expectation is that since organic matter under mixed farming is used to feed the cattle, widespread implementation of no-till and conservation tillage will be limited to areas with high value crops in which farmers can afford using organic matter as a mulch.

How to cite: Steenhuis, T., Hussein, M., muche, H., Belay, S., Gessess, A., Guzman, C., Schmitter, P., Reyes, M., and Tilahun, S.: Will no-till be the new panacea for degraded tropical landscapes?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12254, https://doi.org/10.5194/egusphere-egu2020-12254, 2020.

EGU2020-12589 | Displays | SSS12.7

Fifty years of sustainable no-tillage agriculture in the semi-arid Canadian Prairies

Sina Adl, Manoj Kumar, and Lucia Paupescu

Fifty years of sustainable no-tillage agriculture in the semi-arid Canadian Prairies 

Agriculture collapsed in the Canadian Prairies during the multi-year drought of 1926-1934. Two changes to local agriculture practice became critical in the recovery of top-soil and agricultural yield. One was abandonment of summer fallow, the other was adoption of no-tillage techniques pioneered in this region. We have obtained soil samples from commercial fields in cereal production (up to one century), from long-term experimental field-plots at research stations, from undisturbed prairies, and from secondary grasslands converted from agriculture. The data provides a chronosequence of fields about 40 years in continuous no-tillage, to contrast against fields in traditional tillage, against secondary grasslands, and undisturbed native prairie. For all samples, we measured free-living nitrogen fixation capacity (15N) in the laboratory, aggregate size distribution, microbial nitrogen fixing community (nif gene), and both bacteria (16S DNA) and eukaryote (18S DNA) diversity. We reconstructed eukaryote community structure and food web structure for the fields. Our results indicate that despite decades of continuous no-tillage, free-living nitrogen fixing capacity remains far below undisturbed prairies, but improved from ploughed fields. Soil aggregate size distribution remains lower in continuous no-tillage, but grasslands contain more larger-sized aggregates enabling more nitrogen fixation. Biodiversity indices follow a pattern of reduced diversity with increased disturbance from agriculture. Biodiversity improves with years into no-tillage or abandonment to secondary grasslands. Overall, we had anticipated a greater recovery of biodiversity, food web complexity, and of free-living nitrogen fixation in decades old continuous no-tillage fields, compared to continuous tillage. Nonetheless, the region of Canadian prairies in no-tillage has been resilient to cyclical droughts, and has accumulated soil organic carbon since adoption of no-tillage. The results are significant because about 95% of the area in cereal crops (~10 million Ha) is in no-tillage, and significant soil organic matter has accumulated in the agroecosystem to contribute to carbon storage to mitigate climate change. 

How to cite: Adl, S., Kumar, M., and Paupescu, L.: Fifty years of sustainable no-tillage agriculture in the semi-arid Canadian Prairies , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12589, https://doi.org/10.5194/egusphere-egu2020-12589, 2020.

Cities in the humid- and seasonal-humid tropics depend on small watersheds for their water supplies.  Under normal conditions with ample rainfall, water supplies are reliable.   However, water shortages can occur during extended dry periods.  The literature contains contradictory findings regarding the effectiveness of different land management strategies aimed at enhanced delivery of hydrologic ecosystem services during periods of significant rainfall deficit, so-called “green infrastructure”.  Recent research results from field and modeling studies in the Panama Canal Watershed indicated that land-cover dependent flow paths play an important role in partitioning throughfall into subsurface stormflow and groundwater recharge.  Land management practices considered included continuous and rotational grazing, silvipastoral treatments, and different ages of secondary succession including old regrowth forest.  The effectiveness of land management was found to depend on both land use practice and annual rainfall as determined by orography in steep regions.   These dependencies at least partially explain some of the discrepancies in the literature.

How to cite: Ogden, F. L.: On the Effectiveness of Land Management Decisions in Restoration of Hydrologic Ecosystem Services in Humid and Seasonal-Tropical Catchments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20329, https://doi.org/10.5194/egusphere-egu2020-20329, 2020.

Since 1970s, an increasing attention has been paid to land degradation worldwide (FAO, 1971; Zhou et al., 2017). Generally speaking, the connotation of land degradation commonly refers to the destroy of ecological balance, and the decline of soil quality and environmental capacity  (regeneration, and carrying capacity), and could be categorized as soil erosion, land desertification, soil salinization-alkalization, land impoverishment, land contamination, land destruction  according to their reasons (water/wind erosion, deforestation / overgrazing, unreasonable irrigation, inadequate fertilizer, pollution, mineral resources exploitation) (Liu, 1995; Zhou & Huang, 2001). The various related theories have been developed to evaluate the land degradation, such as global assessment of human-induced soil degradation (GLASOD), the assessment of the status of human-induced soil degradation in South and Southeast Asia (ASSOD), and the theory put forward by the Moscow State University and Russia Academy of Science (RUSSIA) (Sun et al., 2001). For each type of land degradation, it has various indicators and varied in different countries and regions (Morales & Zuleta, 2019).

Human activities are recognized as the major reason of land degradation, and countermeasures for effective prevention and treatment of land degradation are developed accordingly, including the formulation of laws and policies (Liu, 1995; Sun et al., 2001). Soil-environmental criteria are multi-objective functions with the range of values based on scientific research on relationships between soil pollutant concentrations and ecological risk or human health effects (Zhou et al., 2007). Compared with soil-environmental standards, they do not consider economic or technological factors and are not mandatory, but are the data foundations and scientific bases for development of soil-environmental standards (Zhou et al, 2017; Teng & Zhou, 2018). Currently, many countries and regions have developed various soil-environmental quality standards to meet the demand for soil management, such as screening levels, and intervention values. Generally, the methodological and deriving researches of soil-environmental criteria were far from adequacy for the development and revision of their standards, and further to serve the prevention and treatment of  land degradation.

 

References

Food and Agriculture Organization of the United Nations (FAO) (1971). Land Degradation. Soils Bulletin 13, Rome, 1091, 1-10.

Liu, H. (1995). Types and characteristics of land degradation and countermeasures in China. Resources Science, 4, 26-32.

Morales, N. S., & Zuleta, G. A. (2019). Comparison of different land degradation indicators: Do the world regions really matter? Land Degradation & Development, 1-13.

Sun, H., Zhang, T. L., & Wang, X. X. (2001). Land Degradation and its evaluating methodology. Agro-environmental Protection, 20(4), 283-285.

Teng, Y., & Zhou, Q. X. (2018). Conversion relationships between environmental quality criteria of water/air and soil. Science China-Earth Sciences, 61(12), 1781-1791.

Zhou, Q. X., & Huang, G. H. (2001). Environmental Biogeochemistry & Global Environmental Changes. Beijing, China: Science Press.

Zhou, Q. X., Luo, Y., & Zhu, L. Y. (2007). Scientific research on environmental benchmark values and revision of national environmental standards in China. Journal of Agro-Environment Science, 26(1), 1-5.

Zhou, Q. X., Teng, Y., & Liu, Y. (2017). A study on soil-environmental quality criteria and standards of arsenic. Applied Geochemistry, 77, 158-166.

How to cite: Teng, Y. and Zhou, Q.: The Action of Soil-environmental Criteria in Prevention and Treatment of Land Degradation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9742, https://doi.org/10.5194/egusphere-egu2020-9742, 2020.

Grazing largely affects vegetation dynamic of grassland communities. An intensified grazing will likely lead to grassland degradation. Therefore, to restore degraded grasslands, grazing exclusion by fence might be very helpful. However, the direction and the strength of grazing management effects on vegetation characteristics and plant diversity are currently disputable. In addition, vegetation cover and species richness are often independently examined under different grazing regimes in typical studies. Diversity-cover relationship is not adequately detected in degraded grasslands.

In this study, I aim at understanding effects of grazing exclusion on vegetation characteristics, plant diversity and their relationship. For this, I performed a fencing experiment in three grassland types, namely meadow (since 2009), mountain steppe (since 2013) and dry steppe (since 2013) in Mongolia. Each of three grasslands was set by two treatments: grazing exclusion and freely grazing. Vegetation characteristics were mirrored by vegetation cover and height. Plant diversity was evaluated by indices of species richness, Shannon-Wiener diversity and Pielou evenness.

The empirical results show that grazing exclusion by fence generally increases vegetation height regardless of grassland types. On the other hand, the changing direction of vegetation cover caused by grazing exclusion is not consistent in three grasslands. Fencing decreases species richness and Shannon diversity. While Pielou evenness responds slightly to changes in grazing regimes. Greater species richness benefits an increment of vegetation cover independent of grazing treatments and grassland types.

This study fills the knowledge gap of grazing management effects on vegetation characteristics and plant diversity in Mongolian rangelands. The results clearly demonstrate that grazing exclusion by fence is not an efficient way to restore degraded grasslands. This will also allow to project the impact of changes in land use on ecosystem functioning.

How to cite: Guo, T.: The role of grazing exclusion by fence in regulating vegetation characteristics and plant diversity in Mongolian rangelands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2131, https://doi.org/10.5194/egusphere-egu2020-2131, 2020.

EGU2020-20046 | Displays | SSS12.7

The impact of "Dzud" on vegetation condition in Gobi regions of Mongolia

Oyudari Vova, Martin Kappas, Steven R. Fassnacht, and Tsolmon Renchin

A Dzud is a climate event in the Mongolian that causes serious environmental and economic damage. Although a natural phenomenon, its effects can be exacerbated by human activities such as livestock overgrazing and inadequate fodder, resulting in mass deaths of the livestock in the spring following a severe winter. This article is based on the analysis of various Dzud events (2000, 2001, 2002, and 2010) and their specific effect on the vegetation condition by analyzing Normalized Difference Vegetation Index NDVI in the Gobi regions of Mongolia. Our evaluation methods utilize the seasonal aridity index, time series of MODIS NDVI and data from livestock statistics. Heavy snowfall is one of the limiting factors for animal productivity and socioeconomic development in Mongolia. Based on the findings, steppe areas have the highest degree of vulnerability of climate, with the potential decline of growth grassland being stronger for humid areas. When there are high snowy winters, there is a 10 to a 20-day earlier peak of NDVI values as well as an increase in vegetation growth. Additionally, grazing pressure (caused by high livestock loss) played a minor role in plant growth. We found that during the dry winter conditions of a black Dzud, low soil moisture, and high evapotranspiration, the vegetation growth phase begins later due to water deficiency, leading to a lower peak in growth. During the year 2009/2010, a white Dzud occurred in the presence of a thick snow layer, which acted as a water reservoir. The effect of livestock loss and the reduction of grazing pressure played a minor part in vegetation recovery after different types of Dzud events in Mongolia.

 

How to cite: Vova, O., Kappas, M., Fassnacht, S. R., and Renchin, T.: The impact of "Dzud" on vegetation condition in Gobi regions of Mongolia, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20046, https://doi.org/10.5194/egusphere-egu2020-20046, 2020.

EGU2020-2363 | Displays | SSS12.7

Analysis of spatiotemporal patterns and driving forces for land degradation and restoration in Mongolia from 1990 to 2015

Juanle Wang, Haishuo Wei, Jinyi Yao, Yating Shao, Xiya Liang, Sonomdagva Chonokhuu, Altansukh Ochir, and Davaadorj Davaasuren

      Land degradation is an important ecological and environmental problem facing the world. “Land Degradation Neutrality” is one of the core indicators in the United Nations Sustainable Development Goals for 2030. However, achieving this is a serious challenge in Mongolia where land degradation continues. The increasingly serious land degradation in Mongolia has had a direct impact on the ecology of the entire Mongolian plateau and adjacent regions. Land degradation and restoration in this region fluctuate spatially and temporally because of the impacts of global climate change and human activity.

      We obtained land cover data for Mongolia for 1990, 2000, 2010, and 2015 with a resolution of 30 m using the object-oriented remote sensing image interpretation method.Land cover types include forest, real steppe, meadow steppe, desert steppe, cropland, built area, water, sand, and barren land. Based on a spatial analysis module in a geographic information system, the multi-period land cover data were superimposed and calculated. We defined the land degradation cover types and restoration cover types in the processing. Thus, a serials of high-resolution distribution maps of land degradation and restoration for fixed monitoring time intervals were obtained for first time.

      We analyzed trends in land degradation and restoration and estimated the typical areas of each in Mongolia. We specifically analyzed the process of land cover change in these areas, comprehensively considered natural factors and human activities driving this change. Finally, we proposed targeted strategies to control the land degradation and promote land restoration in different regions in Mongolia.

How to cite: Wang, J., Wei, H., Yao, J., Shao, Y., Liang, X., Chonokhuu, S., Ochir, A., and Davaasuren, D.: Analysis of spatiotemporal patterns and driving forces for land degradation and restoration in Mongolia from 1990 to 2015, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2363, https://doi.org/10.5194/egusphere-egu2020-2363, 2020.

EGU2020-10249 | Displays | SSS12.7

Land degradation by soil erosion and sedimentation within Sarata catchment, Republic of Moldova

Silvia Vacula, Lilian Niacsu, Cristian Secu, and Ionut Vasiliniuc
Land degradation by geomorphological processes (soil erosion, gully erosion, landslides and
sedimentation) represents an important environmental threat all over the Republic of Moldova.
The main causes are related to the favourable natural conditions such as friable lithology,
typically hilly fragmentation or climatic aggressiveness on the background of a sustained human
impact developed in the last two centuries. Despite the widespread soil and water conservation
measures that have been implemented during the soviet period, following the Agricultural Real
Estate Act applied in 1991, a revival of these processes is easier to observe especially by means
of floodplains aggradation. Under these circumstances, our study aims to assess the
sedimentation rates on the floodplains and reservoirs and to establish the source area of the
eroded sediments as well as the responsible process. Based on field campaigns, we took
representative in-situ soil / sediment samples from floodplains and reservoirs all over the Sarata
catchment, including wind-blown samples from the intefluvial ridges. The laboratory analyses
consisted of physical and chemical features such as: weight, apparent density, texture, ph,
electrical conductibility, total organic carbon, inorganic carbon, organic matter, inorganic
nitrogen (N), total phosphorus (P), total potassium (K) and other macro elements (i.e. Na+,
Mg2+, Ca2+, and Cl-). The preliminary results show that the soil erosion remains an important
process not by quantity but by quality. This is related also to the widespread high efficiency of
gully erosion control measures that have been implemented. A secondary role, most often
neglected, is held by wind erosion

How to cite: Vacula, S., Niacsu, L., Secu, C., and Vasiliniuc, I.: Land degradation by soil erosion and sedimentation within Sarata catchment, Republic of Moldova, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10249, https://doi.org/10.5194/egusphere-egu2020-10249, 2020.

EGU2020-2311 | Displays | SSS12.7

Land degradation and soil conservation in the Barlad Plateau, Romania: a case study from Racova catchment

Lilian Niacsu, Ion Ionita, Claudia Samoila, Georgel Grigoras, and Ana-Maria Belebea-Apostu

Land degradation by soil erosion, gullying, landslides and reservoir sedimentation is a major environmental threat in the Barlad Plateau of Romania. This paper reviews both land degradation and the development of soil conservation measures in a representative 32,908 ha catchment. Previous studies focused on larger regional areas and provided insufficient detailed information about land degradation and land improvements. Results estimated the mean value of soil loses at 22.7 t ha-1 y-1 based mostly on the USLE. Gully erosion is very limited in extent (covering 3% of the catchment area), but has considerable impacts in terms of sediment production and triggering or reactivating landslides. The 1:5,000 scale landslide distribution map shows that 56% of Racova Catchment is covered by landslides, in any shape or age. Most of them are shallow seated and inactive landslides. Traditional agriculture in the Barlad Plateau focused on ‘up-and-down slope’ farming on small plots. Soil conservation measures were actively undertaken over a 20-year period (1970-1989). However, more recent legislation (No. 18/1991 Agricultural Real Estate Act) includes two provisions that discourage maintaining and extending soil conservation practises. Hence, the former contour farming system has been abandoned in favour of the traditional, degradational farming methods. The mean annual sedimentation rate in reservoirs is moderate at 2.7 cm y-1 in the upper Racova Catchment and almost double that rate in Puscasi Reservoir at the catchment outlet. Consequently, land degradation remains a serious problem in the study area and effective soil conservation is urgently needed.

How to cite: Niacsu, L., Ionita, I., Samoila, C., Grigoras, G., and Belebea-Apostu, A.-M.: Land degradation and soil conservation in the Barlad Plateau, Romania: a case study from Racova catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2311, https://doi.org/10.5194/egusphere-egu2020-2311, 2020.

EGU2020-3845 | Displays | SSS12.7

Soil cracking induced by overgrazing triggers the severe degradation or initiates the natural recovery of overgrazed alpine meadows on the Tibetan plateau?

Yujie Niu, Huimin Zhu, Siwei Yang, Jianwei Zhou, Bin Chu, Sujie Ma, Rui Hua, Ting Wang, and Limin Hua

Soil cracking is an important feature of degraded terrestrial ecosystems, which cuts the closed and intact land, alters microtopography and also influences the dynamics of soil nutrients, water and heat, then further affect species distributions. Despite their importance, the patterns and causes of cracks related to overgrazing on alpine rangeland have rarely been reported previously, and the effects of cracks on soil properties and plant distributions are poorly understood. Therefore, we used a comprehensive cross-scale approach to investigate the distribution of crack-soil areas at the eastern Tibetan plateau (217 survey sites), then selected the grazing-induced parameter that was closely related to the cracks at a small scale, and quantified the effects of microtopography (raised areas and healed cracks) induced by cracking on the soil properties, and community composition at crack-mosaic patch from 2013-2018, then to evaluate the further roles of soil cracking on alpine rangelands. The results showed that cracks only formed in the alpine meadow after overstocking. The increased soil compaction under overgrazing was closely related to soil cracking. On crack patch scale, the healed cracks facilitated nutrient and water enrichment due to the increasing surface roughness, then improved the plant communities. To some extent, healed crack mosaics are good for the conservation of water and nutrients. We provide key and easy-to-measure indicators to prevent overgrazing and cracking: a residual biomass greater than 65 g/m2 and a height greater than 6 cm, and the soil compaction should be lower than 1044.26 ± 188.88 kPa. We should pay more attention to crack phenomena to prevent severe degradation. Overgrazed alpine meadows should be treated in the early phase of cracking and it may be able to return to optimum conditions in healthy rangelands. Otherwise, soil cracking becomes the most critical turning point in the process of alpine rangeland severe degradation.

How to cite: Niu, Y., Zhu, H., Yang, S., Zhou, J., Chu, B., Ma, S., Hua, R., Wang, T., and Hua, L.: Soil cracking induced by overgrazing triggers the severe degradation or initiates the natural recovery of overgrazed alpine meadows on the Tibetan plateau?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3845, https://doi.org/10.5194/egusphere-egu2020-3845, 2020.

EGU2020-10192 | Displays | SSS12.7

Forest recovery and its driving forces in karst areas of southwest China

Xiaona Guo, Ruishan Chen, Qiang Li, Michael E. Meadows, and Zhenzhen Pan

Abstract: Globally, the loss of forest is of great concern as forest plays many key roles in the earth system, for example, it contributes to biogeochemical cycles and rural livelihoods. Forest could provide ecosystem services such as soil retention and flood regulation and is especially critical in mountain environments. Deforestation in such regions further results in carbon emission and biodiversity loss and may reduce agricultural productivity and increase the poverty rate. In China, recognition of these problems has prompted a series of ecological construction programs, including “Returning Farmland to Forest” (RFF), which advocates stopping farming on sloping land that is prone to soil erosion and promotes afforestation and recovery of forest vegetation and was initially implemented in 1999. The program has been widely applied in Guizhou Province, a typical fragile karst mountain area of southwest China. There is, however, a lack of knowledge of the effectiveness of the RFF policy, and the relative roles played by possible factors that lead to forest change. Here we analyze the pattern and process of forest change in the karst mountain regions of Guizhou province between 1980 and 2018 and evaluate how RFF and other driving forces contribute to these changes. Based on a temporal sequence of satellite images, we develop a Markov model to examine the forest change, and found that most of the forests grow on the slopes of 15-25°, the forest cover has increased by 1,410 km2 between 1980 and 2019, and 36% of cropland in Guizhou province has been converted to forest since 1980. Out of nine municipalities in the province, the most significant increases in forest cover occurs in Qiandongnan, which accounts for 20% (583 km2) of the increased area. we also found that the RFF program has had a marked positive impact on forest cover and has also improved hydrothermal conditions in the region. However, population, GDP, and traffic accessibility have a negative impact on forest cover. Climate factors appear to have the least impact on forest change during the period of 1980 to 2018. The findings offer useful information for resource managers to engage in forest protection, deforestation prevention, and ecological restoration in regions with similar conditions.    

KEYWORDS: forest; restoration; RFF; GDP; karst areas

How to cite: Guo, X., Chen, R., Li, Q., Meadows, M. E., and Pan, Z.: Forest recovery and its driving forces in karst areas of southwest China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10192, https://doi.org/10.5194/egusphere-egu2020-10192, 2020.

EGU2020-4456 | Displays | SSS12.7

Forestland change and soil erosion in karst watershed under the Grain to Green Project

Siwen Feng, Hongya Wang, Hongyan Liu, Chenyi Zhu, and Shuai Li
With the implementation of the Grain to Green Project, the vegetation growth in karst region in southwest China has increased. In order to explore whether the growth of trees can be sustained after artificial afforestation in karst area and the influence of the forestland change on soil erosion, the WaTEM/SEDEM model was used to simulate the 11 stages of annual soil erosion in the past 33 years in Chongan river drainage basin in Guizhou, and the dominant influencing factors of soil erosion change in the past 33 years were discussed based the pixel scale in this study. The results showed that the forestland increased in a fluctuating way after the conversion project, and the decrease of forestland was mainly caused by drought, especially in the area where the dolomites were distributed. Therefore, the change of forestland caused no significant improvement in soil erosion since the Grain to Green Project.

How to cite: Feng, S., Wang, H., Liu, H., Zhu, C., and Li, S.: Forestland change and soil erosion in karst watershed under the Grain to Green Project, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4456, https://doi.org/10.5194/egusphere-egu2020-4456, 2020.

The Geo-Hazards Triggered of Serial Reclamation Land of Extreme Precipitation in Typical Regions of the Loess Plateau
Gao Zhe1,Zhang Genguang 1*,Gao Jian'en1,2,3,Li Xingyao1,Han Jianqiao2,3,Kang Youcai3,Guo Zihao3,Long Shaobo2,Dou Shaohui2,Zhang Yuanyuan3
1. College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China;
2. Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, Shaanxi, China;
3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China;

The “Gully Land Consolidation Project”(GLCP) was widely carried out all over the world, such as Spain, the United States and China. It was a new attempt to solve the shortage of regional land resources. Aiming at the problem that the influence of extreme rainstorms on the “Gully Land Consolidation Project”(GLCP) on the Loess Plateau.By using the method of actual measurement and analysis of categorical data, the erosion disaster in July 26 2017 was investigated in Niu Xue Gully of Wuding River Watershed in Zizhou County of the Central part of the Loess Plateau. The results showed : 

(1) The Niu Xue Gully Small Watershed in Zizhou County (109°55'25"E, 37°39'46"N), which was located in the central part of the Loess Plateau and belonged to the northern Shaanxi Loess Hilly-Gully region. The Niu Xuegou catchment covered an area of 0.48 km2 and the average altitude of the region in about 1000-1200 meters, land consolidation in the basin about 38 mu(25333.3m2)since 2014.

(2) This storm was characterized by "long duration and large precipitation", the accumulated rainfall was 147.9 mm, the average rainfall intensity was 13.45 mm/h, the maximum rainfall intensity was close to 5 mm/min, the maximum flood peak discharge was 44.64 m3/s, the flood duration was about 11 hours, and the flood recurrence period was more than once in a hundred years.

(3) The storm caused nearly a thousand geological hazards at the channel of the basin. The main types of disasters were as follows, gravity erosion types, such as landslides, landslides, and mudflows, account for 14.85% of the conventional geological hazards; secondary disasters of water erosion types, such as trench erosion and dam erosion, occurring at different locations on the slope, accounted for 51.05% and composite new-derived land destruction and dam break disasters account for nearly 10% .

(4) The damage of cascade land preparation was closely related to the average flood discharge, embankment height and ecological vegetation cover in the watershed.
The investigation provided technical support for the consolidation of the Chinese implementation of the "Cropland to Forest (Grass)" results on the Loess Plateau, and also provided theoretical support for the safe implementation of the “Gully Land Consolidation Project”(GLCP) around the world.

Keywords: The loess plateau; Extreme rainstorm;The “Gully Land Consolidation Project”(GLCP)

Funding:(National Key R&D Program of China: 2017YFC0504703);(National Natural Science Foundation of China,41877078,41371276,51879227);(Research and Development and Integrated demonstration of key Technologies in soil and Water Conservation Engineering,A315021615)

        

How to cite: Gao, Z.: The Geo-Hazards Triggered of Serial Reclamation Land of Extreme Precipitation in Typical Regions of the Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-16059, https://doi.org/10.5194/egusphere-egu2020-16059, 2020.

EGU2020-12261 | Displays | SSS12.7

Relationship between land use change and agricultural production in Chinese Yellow River Basin

Jingjing Liu, Jing Wang, Ying Fang, and Zehui Li

EGU2020-5349 | Displays | SSS12.7

Ecological impacts of apple orchards on China's Loess Plateau

Min Yang, Shaofei Wang, Xining Zhao, and Xiaodong Gao

Due to their great economic benefits, there are many apple orchards on the Loess Plateau and aggressive expansion is planned. However, little is known about their ecological impact in relation to the deep soil water, soil organic carbon and soil particle aggregation. An accurate evaluation of the ecological impact of apple orchards is crucial to ensure the establishment of sustainable ecosystems on the Loess Plateau. We, therefore, measured the soil water content variation in deep layers (WCAD) (200-800 cm), soil organic carbon (SOC) content and density (0-800 cm) and, soil aggregate stability (0-40 cm) in apple (Malus pumila) orchards and ecological plantations of black locust (Robinia pesudoacacia) and korshinsk peashrub (Caragana korshinskii). The results suggested that (1) the soil water in deep soil was generally lower under apple orchards (13.29%), black locust (12.4%) and korshinsk peashrub (13.46%) than under arable land (18.35%), both in the semiarid and semihumid regions. This finding implied that apple orchard, black locust and korshinsk peashrub plantations caused intense reductions in soil moisture compared with the arable land, leading to severe soil desiccation. (2) Apple orchards (1.85 to 5.49 g kg-1) had significantly (p <0.05) lower SOC density than ecological plantations (2.15 to 8.95 g kg-1), especially in 0-100 cm soil layer, in both semiarid and semihumid regions. This result suggests that apple orchards have no profitless for SOC sequestration over the long-term because their clean cultivation management increase the risk of SOC loss by soil erosion. (3) In semiarid and semihumid regions, soil aggregate stability (the mean weight diameter, MWD) in apple orchards (0.26-0.63 mm) was significantly (p <0.05) lower than under black locust (0.63-2.97 mm) and korshinsk peashrub (0.72-2.13 mm) plantations in 0-40 cm layers, and even lower than in arable land in the 0-20 cm layer in most regions, which means that apple orchards have low anti-erodibility. Our results suggest that continued expansion of apple orchards and ecological plantations both consumed much deep soil water, but the ecological effect (e.g., SOC sequestration, soil and water conservation) brought by apple orchard is much lower than that of ecological plantations. In the interest of sustainable development in the region, apple cultivation should be undertaken with caution, especially in semiarid regions.

How to cite: Yang, M., Wang, S., Zhao, X., and Gao, X.: Ecological impacts of apple orchards on China's Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-5349, https://doi.org/10.5194/egusphere-egu2020-5349, 2020.

EGU2020-13425 | Displays | SSS12.7

Sandy land structural consolidation engineering drive modern agricultural development in China’s Mu Us Sandy Land

Yongsheng Wang, Wenhao Wu, and Yuheng Li

Evaluation of the influences of the Beijing–Tianjin Sand Source Control Project on soil wind erosion and ecosystem services is imperative for mastering the benefits and drawbacks of the program, as well as for distinguishing more reasonable estimations to evaluate regional sustainable development. Within the Beijing–Tianjin Sand Source Region, we quantified the spatiotemporal patterns of land use/cover changes (LUCCs), soil wind erosion modulus (SWEM), and essential ecosystem services throughout 2000–2015 by utilizing field investigations, remotely sensed data, meteorological data, and modeling. The influences of ecological projects on wind erosion and ecosystem services has been subsequently assessed by using those modifications brought on via the LUCCs (e.g., conversion from cropland to grassland/woodland) during the ecological construction. The results indicated that the SWEM showed a decline and ecosystem services which included carbon storage, water retention, and air quality regulation exhibited growth driven by using both local climate exchanges and human activities such as ecological projects. Excluding the effects of climate factors, the LUCCs stemming from ecological projects caused a total SWEM decrease of 3.77 million tons during 2000–2015, of which approximately 70% was prompted by the way of the transition from desert to sparse grassland. The sub-regions of desert grassland in Bayannur, Ordos Sandy Land, and Otindag Sandy Land were hot spots for wind erosion declines and ecosystem service enhancements induced by the ecological projects. We recommend that endeavors be coordinated toward the scientific management of the degraded lands and distribution of the local populace, as well as the implementation of diverse measures in the expected hotter and drier future.

How to cite: Zhao, Y. and Chi, W.: Ecological and environmental consequences of ecological projects in the Beijing–Tianjin Sand Source Region, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12375, https://doi.org/10.5194/egusphere-egu2020-12375, 2020.

EGU2020-21144 | Displays | SSS12.7

Combination of subsurface organic fertilization and film mulching could effectively optimize soil structure in saline alkali soil

Hongyuan Zhang, Huancheng Pang, Chuang Lu, Jing Wang, Guoli Wang, Fangdi Chang, and Yuyi Li

AbstractSaline soil has a serious negative effect on crop growth in the world, subsurface organic fertilizationcombined with plastic film mulching (OMP) is one of the effective measures to solve this issue, which could alleviate salt stress, increase nutrient content and microflora diversity, then furtherly improve crop productivity. However, its impact on soil structure especially soil pore structure has not well documented, so a three-year experiment was conducted to analysis effect of OMP on aggregate distribution and stability, aggregate organic carbon distribution and pore size distribution, during 2015-2017 in Wuyuan Country, Inner Mongolia, China. Four treatments were set in the experiment, including plowing without plastic mulching (CK), plowing plus plastic mulching (PM), subsurface (10–30 cm) treatment with organic manure (OM), and OM plus plastic mulching (OMP). The results showed that in condition of no mulching OM significantly increased the 0.25-2mm aggregates content (18.09%) in 10-30cm soil layer, and significantly increased the organic carbon content of > 2mm (30.79-158.76%) and 0.25-2mm aggregates (161.27-290.94%) in each soil layer compared with CK.In condition of mulching, only OMP can significantly increase the average weight diameter (21.58% for 0-10 cm and 55.95% for 10-30 cm) and the organic carbon content (2.44-94.35% for 0-10 cm and 23.23-215.29% for 10-30 cm) of soil aggregates compared with CK.  Under the condition of subsurface organic fertilization (OM, OMP), the dominant particle size of each soil layer changed from < 0.053 mm aggregate to 0.25-2 mm aggregate, which increased the content of large aggregate and water stability.Compared with OM, the average weight diameter of soil aggregates in 0-10cm and 10-30cm soil layers of OMP increased by 21.58% and 14.36% respectively, but the content of organic carbon in each particle size aggregate in 0-10cm and 10-30cm soil of OMP decreased by 4.24-24.89% and 19.35-40.26% respectively. Furtherly, the large porosity (greater than 30 μm) of 10-30cm and 30-40cm soil layers of OMP increased by 10.52% and 0.71% than that of CK, and the porosity of each equivalent pore size range also increased significantly. Therefore, combination of subsurface organic fertilization and film mulching could effectively optimize soil physical structure by increasing the stability of soil aggregates, maintaining higher organic carbon content, enhancing soil respiration and improving soil pore structure.

Key wordsSaline alkali soil; organic fertilizer; soil aggregate; soil pore structure; micro CT

How to cite: Zhang, H., Pang, H., Lu, C., Wang, J., Wang, G., Chang, F., and Li, Y.: Combination of subsurface organic fertilization and film mulching could effectively optimize soil structure in saline alkali soil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21144, https://doi.org/10.5194/egusphere-egu2020-21144, 2020.

Artemisia halodendron Turcz. ex Besser occurs following the appearance of a pioneer species, Agriophyllum squarrosum (L.) Moq., and the former “killed” and replaced the latter during the naturally vegetation succession in sandy dune regions in China. A previous study revealed that the foliage litter of A. halodendron had strong negative allelopathic effects on germination of the soil seed bank and on the seedling growth. It is unclear whether an allelopathic effect of A. halodendron litters positively or negatively affects the seed germination, leading to a progressively replacement of the plant species in sandy dune regions.

We, therefore, carried out a seed germination experiment to determine the allelopathic effects of three litter types of A. halodendron (roots, foliage, and stems) on seed germination of six plant species that progressively occur along a successional gradient in the semi-arid grasslands of northeastern China.

In line with our expectation, we found that the early-successional species rather than the late-successional species were negatively affected by the allelopathic effects of A. halodendron, and that the allelopathic effects on seed germination increase with increasing concentration of litter extracts, irrespective of litter types.

Our study evidenced the negative allelopathic effects of A. halodendron on the species replacement and on the community composition during dune stabilization. Further studies are needed to better understand the successional process and thus to promote the vegetation restoration, as A. halodendron itself disappeared also during the process.

How to cite: Du, Z., Luo, Y., Yan, Z., Zhao, X., Li, Y., Yang, Y., and Li, M.-H.: Artemisia halodendron litters have strong negative allelopathic effects on earlier successional plants during vegetation restoration in a semi-arid sandy dune region in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6041, https://doi.org/10.5194/egusphere-egu2020-6041, 2020.

Agriculture is a drive for land reclamation. Reclaiming coastal saline soils is increasingly undertaken as water and heat resources are normally plentiful in coastal land. However, growth of both crops and soil microorganisms is limited due to high cation content and osmotic stress, making saline soils unproductive when converted to arable land. For crops, great efforts have to be made to screen salt-tolerant species suitable for land reclamation. For soil microorganisms in saline soils, will the same separation and domestication of salt-tolerant species be necessary to improve microbial activity as done with crops?

To improve such understandings, we studied coastal saline soils covering non-, mild-, and severe-salinity. Their bacterial diversities were characterized by high throughput sequencing, and microbial metabolic activities analyzed with substrate-induced heat release curves. Abundant and diverse bacterial communities were detected in the severe-salinity soils. While we did not observe soil salinity significantly affected the microbial richness, it did shift soil bacterial community composition. However, the severe-salinity soil was not dominant with salt-tolerant microbial species. With thermodynamic analysis, we discovered glucose amendment efficiently promoted microbial metabolic activity regardless of their community composition. Severe salinity did not inhibit potential metabolic activity of soil microbial community. A further 2-month incubation experiment supported that microbial metabolic kinetics of the severe-salinity soil amended with maize straw recovered and moved toward to the non-salinity soil.

Therefore, our study supported that salt-tolerant species are not indispensable in land reclamation. An addition of labile organic amendments can help to rapidly multiply microbial growth and recover soil microbial functions.

How to cite: Chen, R., Zhang, J., and Feng, Y.: Can reclaimed land be converted to arable land? –Positive: Evidences of soil microbial activity from a laboratory experiment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6499, https://doi.org/10.5194/egusphere-egu2020-6499, 2020.

EGU2020-12309 | Displays | SSS12.7

The Formation Mechanism Of Mudflat Soil Aggregates Driven By Exogenous Organic Matters

Yanchao Bai, Chuanhui Gu, and Yuhua Shan

Mudflats are valuable land resources located in the interaction zone between land and sea and are found in many parts of the world. The newly reclaimed mudflats are high in salinity and low in fertility as indicated by poor soil structure, extremely low organic matter content, low nutrient level and lack of microbial diversity, which is not suitable for cultivation. The keys to mudflat reclamation to arable lands are (1) to reduce salinity and (2) to increase the soil organic matter content and thus soil fertility. The former determines whether the reclaimed mudflat can be used for crop production and the latter determines whether the crop production is sustainable. On the basis of salt reduction measures, adding exogenous organic matter to drive the formation of soil aggregates in mudflat saline-alkali soil is a prerequisite for inhibiting the return of salt, improving fertility and promoting the transformation of mudflat reclaimed soil into arable soil. Research on the formation of clustered soil aggregates during the evolution of mudflat soil into arable soil should focus on the regulatory, formation, and stability mechanism of different exogenous organic matter. In addition, exploration of the effects of the special properties of mudflat soil, e.g., high salinity, high pH, and low microbial diversity, on the formation and stability of soil aggregates is necessary. The regularity and regulation of soil structure and fertility evolution of the mudflat driven by exogenous organic matter were clarified. Research on soil aggregate formation not only enrich the basic theory of soil quality evolution of mudflat, but also have practical guiding significance for the maturation of mudflat soil.

How to cite: Bai, Y., Gu, C., and Shan, Y.: The Formation Mechanism Of Mudflat Soil Aggregates Driven By Exogenous Organic Matters, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12309, https://doi.org/10.5194/egusphere-egu2020-12309, 2020.

EGU2020-9067 | Displays | SSS12.7

The practice of reclaimed land be converted to arable land in China

Xiangbing Kong and Liangyou Wen

 

Land reclaim can be converted to arable land in China. Land reclamation is the process of reclamation and restoration to arable land on the basis of the original abandoned independent land. It mainly includes: land for coal mines, quarries, brick kilns, warehouses, other enterprises and institutions, and abandoned rural construction land. As of 2015, China's construction activities and natural disasters have damaged about 10 million hm2 of land, with an annual increase of about 270,000 hm2. China's land reclamation rate is about 45%, of which about 50% of the land reclaimed is arable land. China has a large number of land reclamation practices and has very rich experience. First, we carried out land adaptability evaluation in the reclamation area .we selected the currently land for coal mines, quarries, brick kilns, warehouses, and other enterprises and institutions from natural, economic, and social aspects to evaluate its suitability, comprehensively calculated the consolidation potential, and calculated the area that could be reclaimed as arable land. Second, we carried out arable land construction in the reclamation area. Through land consolidation methods such as land leveling, farmland irrigation and drainage construction, shelterbelt network layout, and farmland road construction, rural residential areas that can be reclaimed as arable land, which will be sorted higher productivity arable land with a centralized patch, good irrigation and drainage , and complete farmland roads. Third, according to the soil conditions of the reclamation area, we carry out soil fertilization. We plowed the soil, applyed organic manure and soil biochar, improved soil water retention and porosity, enhanced soil fertility, improved arable land quality, and increased land production potential. Finally, after the land is reclaimed as arable land, we will monitor the soil conditions and ecological environment of the newly reclaimed arable land on a regular basis through the establishment of a regulatory agency. As same time, while we tried to meeting the fertility of the newly reclaimed arable land, we moinitor the ecological environment of the newly reclaimed land, ensuring sustainable use of arable land. Through the land reclamation, the per capita arable land area in the country have be increased by 0.08 mu. the annual grain yield per mu is calculated at 400kg, which increased 40 billion kg of grain each year. what’s more, farmers have increased the area of ​​arable land, increased their family income, and let themselves live better. By land be reclaimed to arable land, Chinese government has effectively protected 1.2 billion hm2 of Red line of arable land and ensured national food security. At same time, farmers' income was increased by increasing of crop area, and intensive land conservation has been achieved, which has solved our country to a certain extent.

How to cite: Kong, X. and Wen, L.: The practice of reclaimed land be converted to arable land in China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9067, https://doi.org/10.5194/egusphere-egu2020-9067, 2020.

Xinjiang is located in the northwest of China and in the hinterland of Eurasia. The area is dominated by basins and deserts, with less rainfall and large evaporation. Therefore, most of the agricultural cultivation in this area is developed in piedmont oases. 
 Shihezi City is located in the middle of Xinjiang and has a typical continental climate. We have carried out long-term follow-up observation on two cultivated lands near Shihezi. Plots 147 # and 148 # were originally used for planting cotton, but due to the shortage of irrigation and the serious problem of soil salinization, cotton plants in these two plots were eventually abandoned. In 2008, local farmers began to use drip irrigation system to replant wheat on fallow land 147 # and 148 #. The outcome shows some achievements have been made. In 2008, the amount of irrigation on 147 # and 148 # was 360mm-405mm, and the yield was 7676kg/hm2-8879kg/hm2
 We believe that there are three main reasons for successful farming on reclaimed land: 
(1) The reclaimed land was leveled to reduce the difference in land height and improve the uniformity of irrigation. 
(2) Compared with previous flooding irrigation, the drip irrigation system can better save water and reduces soil salinization; 
(3) The application of water-soluble chemical fertilizer has changed the traditional fertilization method in the past and improved the efficiency of using fertilizer. 
After ten years of reclamation and cultivation, what has attracted our attention is that there are also problems in plots 147 # and 148 #: 
(1) White pollution: In order to reduce soil evaporation brought by local heat, farmers generally use plastic mulching to cover the soil. According to the field observation and our related research, the problem of plastic film residue in the soil is very serious. At present, the density of plastic film residue increases around 16.37 kg/hm2 per year. 
(2) Excessive application of chemical fertilizer causes potential soil pollution: Compared with traditional flood irrigation, the amount of fertilizer applied after the drip irrigation system is reduced, but the amount of chemical fertilizer used is still very large, which causes potential soil pollution. 
(3) The problem of soil salinization always exists: the drip irrigation system can effectively reduce the salt on the surface of the soil during the growth cycle of crops, but the salt deep in the soil always accumulates and cannot be effectively excreted. 
In view of the above problems, the more effective solutions at present are: 
(1) Degradable plastic film: The new plastic film can degrade itself and reduce accumulation in soil. 
(2) New plastic film recycling machine: improve the recovery rate of plastic film. 
(3) Optimizing irrigation and fertilization scheme: Through field experiments, find out the most reasonable irrigation and fertilization scheme. 
(3) Salinization control: Different methods such as using an underground pipe to discharge salt and applying soil conditioners are adopted to control the salinization of land, but different saline-alkali land control measures have their own advantages and disadvantages, therefore, further analysis is needed in practice. 

How to cite: Wang, T., Wang, Z., and Zhang, J.: Experience and Problems in Planting Winter Wheat in Reclaimed Wasteland in An Oasis Area in Xinjiang, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10270, https://doi.org/10.5194/egusphere-egu2020-10270, 2020.

Whether the hot and humid subtropical plateau region could leads to land degradation in the form of weathering and gully erosion. In this study, chemical weathering, gully erosion and cohesiveness are investigated together to bring out a new comprehensive idea with a view to understand their controlling factors. This study aimed to address potential land degradation in the extended part of Chotanagpur plateau region. The layers of controlling factors of gully erosion were developed and prioritized considering advanced decision tree, decision tree and random forest algorithms in the R software and the results of these methods were also validated using receiver operating characteristic (ROC) curves. Degree of chemical weathering and cohesiveness were measured through the chemical, physical and spectroscopic analysis of the randomly collected 412 soil samples. Apart from this, the climatic elements like temperature and rainfall were considered for estimating the chemical weathering. The results of the gully erosion models have superb accuracy, i.e. ROC values were 0.970, 0.960 and 0.955 respectively. Therefore, advanced decision tree model has been integrated with the results of degree of chemical weathering and cohesiveness in GIS platform end eventually the land degradation map has been developed. The land degradation map shown that 15% of the study area is highly affected by land degradation whereas 18% area is moderately affected by land degradation and rest of the 67% area is less affected by land degradation. This study provides essential information to the policy makers in order to taking decision for minimizing and controlling the land degradation. This innovative comprehensive approach is significant to assess degradation of existing land to a large scale.

Keywords: Land degradation; weathering; cohesiveness; gully erosion; spectroscopic analysis

How to cite: Chandra Pal, S. and Chakrabortty, R.: Responses of chemical weathering and gully erosion causing land degradation in the extended part of Chotanagpur plateau in India, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6607, https://doi.org/10.5194/egusphere-egu2020-6607, 2020.

EGU2020-6295 | Displays | SSS12.7

Recent degradation and transformation of grasslands in the Terai ecosystems of the Indian subcontinent

Subham Banerjee, Dhritiman Das, and Robert John

The importance of grasslands for the sustenance of global biodiversity is paramount. Grassland ecosystems support rich and unique diversity at all trophic levels, are remarkably productive, and resilient to environmental changes. Grasslands in the Indian subcontinent are among the most threatened due to habitat loss, sparking renewed interest in the ecology of the different grasslands found here. We studied land cover dynamics of woodland-grassland mixtures that are part of the Terai ecosystems located at the base of the Himalayan mountain ranges. The vegetation in this region is known to be extremely dynamic even within short time scales, but the patterns and processes associated with this dynamism are not well understood. We analyzed the landcover changes at eight protected wildlife conservation areas from the region (four from India and four from Nepal) that occurred over the last three decades. We used the random forest classifier and an ensemble-based classification technique to carry out supervised classification of the land cover, which was dominated by vegetation. Landsat data, verified with a set of ground measurements and Google earth imagery, were used to generate the landcover types. Using the time series of land cover data, we quantified the observed transitions over decadal timescales. We then used Linear Discriminant functions and Bayesian spatial models to determine the relative importance of environmental variables influencing land cover transitions. We found that the area occupied by grasslands have reduced across all the protected areas we studied. In the last 30 years, the overall natural grassland area decreased by 24 percent, while the agricultural area doubled. The woodland cover increased by 28 percent as a result of ecological succession. Distance from human settlements was found to be the most crucial factor affecting the transitions, followed by topography and distance to water bodies. The grasslands are being widely transformed or degraded to early successional woodland and farmlands, and show increased alien plant invasions. Human encroachment and an increase in human activities have a major influence on these transitions. The impact of these changes on biodiversity and ecosystem function needs to be studied and the urgent attention of managers to stop further degradation is needed.

How to cite: Banerjee, S., Das, D., and John, R.: Recent degradation and transformation of grasslands in the Terai ecosystems of the Indian subcontinent, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6295, https://doi.org/10.5194/egusphere-egu2020-6295, 2020.

In the period of globalization, India a subtropical region, presently facing the acute problem of land degradation and it has severe impact on earth ecosystem as well as economy in defectively. Where India is a most populated agricultural based country, need a large volume of food grain production to control starvation condition with balancing between the need of the population and production yield. Though the conversion of fallow and forest cover area to agricultural land is increasing day by day but due to the people’s daily needs and rapid growth of settlement is capturing productive land and ultimately amount of agricultural land remains in static. Thus, such consequent processes are declining soil fertility and land degradation have been witnessed in different forms of erosion as like sheet, rills, gullies, ravines etc. with the passage of time non tillage farming practices are accreting by replacing the tillage farming for maximizing the rate of production which causes the large scale soil erosion and make a source of sedimentation. The government and local stakeholders are already taken some initiatives for reduction of land degradation by some support practices with considering both structural and non-structural measures. The structural measures especially the engineering construction (check dam, percolation tank etc.) are installed or constructed without considering eco-centric approach.

The current research work has focused the light to evaluate the positive and negative impact of support practices on land resources. This study is mainly conducted on the basis of empirical field observation in different parts of the India. For reducing the rate of soil erosion, the plantation programme has been initiated and still going on as an accepted scheme. This valuable programme has been committed through the plantation of traditional vegetation and external species (Acacia auriculiformis, Eucalyptus globulus). The introduction of external species which are not only changing the properties of soil but also demolishing the soil fertility and soil moisture to cause land degradation. The local administrations are providing this type of external species for plantation programme without making the consciousness about the heath of environment.

Key Words: subtropical region; conversion of fallow; land degradation; structural measures; plantation programme

How to cite: Chakrabortty, R. and Chandra Pal, S.: Role of support practices for minimizing the vulnerability of land degradation in sub-tropical India: positive and negative impacts on land resources, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6638, https://doi.org/10.5194/egusphere-egu2020-6638, 2020.

The main objective of this research is to build a simulation model of land use change and coverage (LULC) of the Capucuy River Basin (Ecuadorian Amazon Region) by the year 2026 through the use of official historical cartographic information to estimate changes in LULC and carbon stock. First, it was quantified and defined the most representative anthropic drivers that have been affected LULC in the basin and modeled with historical LULC cartography from the years 1990 to 2016 with the help of DYNAMIC EGO program. Second, forest biomass was determined using an indirect method where 3 forest plots were established to obtain dasometric parameters and estimated the carbon stock of each different type of forest of the basin. Finally, agricultural carbon stock was determined with surveys and secondary data through the use of DNDC program. The results obtained show that the simulation of the maps of 2008 - 2016 allows us to obtain a simulated map of 2026 with an error of less than 5%, presenting the most significant error in the anthropic area with a 3.18% difference. It is expected that by 2026 the forest, the body of water, agricultural land and the anthropic zone occupy 56.83 %, 2.14 %, 40.09 % y 1.34 % of the total area of the Capucuy River Basin, respectively. Also, this model allowed to estimate the carbon stock reduction and its impact on climate change.

How to cite: Salazar, J., Campos, C., Chamorro, P., and Fernández De Arroyabe, P.: Multitemporal analysis of change of soil use and vegetable coverage for the development of a probabilistic prospective model and estimation of carbon stock in the capucuy river basin, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20162, https://doi.org/10.5194/egusphere-egu2020-20162, 2020.

EGU2020-11899 | Displays | SSS12.7

Integrated Crop-Livestock-Forest Systems: Soil Carbon Sequestration and Organic Matter stabilization as detected by laser-based spectroscopies

Amanda Maria Tadini, Alfredo Augusto Pereira Xavier, Ladislau Martin-Neto, Débora Marcondes Bastos Pereira Milori, and Alberto Carlos de Campos Bernardi

The Integrated Crop-Livestock-Forest Systems (CLF) have been able to capture and store the carbon (C) in the form of Soil Organic Matter (SOM), in different regions in Brazil, thereby contributing to mitigate agricultural greenhouse gases emission. This is an eligible practice in Low Carbon Emission Agriculture Plan in Brazil, and currently has around 15 million hectares under use, a very positive and important trend in soil land use in Brazil. SOM is considered a relevant indicator of soil quality due to its direct relationship with biological, chemical, and physical properties, allowing it to evaluate the impacts of agricultural management. Laser-based spectroscopies as Laser-Induced Fluorescence Spectroscopy (LIFS) and Laser-Induced Breakdown Spectroscopy (LIBS) have become promising tools in the evaluation of the SOM in agricultural soils. LIBS can measure soil C, and LIFS can infer about the chemical structure of SOM, mainly aromaticity. The standard protocol for measuring soil C changes involves soil sampling at the field and chemical sample preparation for laboratory analysis. Although this procedure produces precise results, it takes time, generates chemical residues, and the costs restrict its routine for large scale use in agricultural projects. Thus, there is a need to develop clean (green chemistry), rapid, precise, and cost-efficient methods for measuring soil C changes in the field. Also, information about the chemical structure of SOM usually is done through spectroscopic techniques, such as 13C NMR, EPR, and fluorescence of humic acid, which are not applied for large scale measurement and mapping. LIFS can be applied in whole soil and can be used to evaluate the aromaticity of SOM, and consequently, its chemical stability.  The objectives of this study were to evaluatethe soil C stock and SOM Stability of some Brazilian soils under different integrated systems, such as,Crop-Livestock-Forest (CLF), Crop-Livestock (CL) and Livestock-Forest(LF). The results showed the combination of soil carbon accumulation, and an increase of SOM aromaticity for CLF, which can be promising for sustainable intensification in agriculture.

Keywords: Sustainable Intensification; Soil Organic Matter; Carbon stock; Laser-Induced Fluorescence Spectroscopy; Integrated Crop-Livestock-Forest Systems

How to cite: Tadini, A. M., Xavier, A. A. P., Martin-Neto, L., Milori, D. M. B. P., and Bernardi, A. C. D. C.: Integrated Crop-Livestock-Forest Systems: Soil Carbon Sequestration and Organic Matter stabilization as detected by laser-based spectroscopies, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11899, https://doi.org/10.5194/egusphere-egu2020-11899, 2020.

EGU2020-11778 | Displays | SSS12.7

No-till and integrated crop-livestock system ensure high rice yield through soil fertility improvement of Brazilian lowlands

Luiz Gustavo de Oliveira Denardin, Amanda Posselt Martins, Tales Tiecher, Paulo César de Faccio Carvalho, Abad Chabbi, and Ibanor Anghinoni

Lowland soils represent 4 to 6% of the earth's surface, covering an area of 7 to 9 million km2. Most of these areas can be used for flooded rice cultivation, as a paddy field. These soils commonly have low fertility due to the traditional flooded rice cultivation systems, which are based on intensive soil tillage and rice monocropping. On the other hand, soil conservation management systems, such as no-tillage and integrated crop-livestock systems (ICLS) may increase the soil fertility and consequently improve rice yield. In lowlands, these practices are contributing to sustainable soil management. Therefore, our study aimed to evaluate soil fertility properties by measuring soil organic matter (SOM) and soil available phosphorus (P) and potassium (K) contents, five years after the adoption of different paddy-farming systems in an Albaqualf soil. The long-term ICLS experiment is located in Cristal county, Rio Grande do Sul State, in Southern Brazil. The systems consisted of two ICLS under no-tillage (NT), in comparison to the traditional system (S1) of flooded rice cultivation under soil disturbance, rice monocropping, and winter fallow. The ICLS systems were based in: rice cultivation in summer season and pasture (annual ryegrass) with cattle grazing in winter season (S2), and crop rotation (rice and soybean) in summer season and livestock production in winter season (S3). In 2013, at the beginning of the experiment, and after five years (2018), soil samples were collected in the 0–10 and 10–20 cm layers, and then the SOM, and available P and K contents were analyzed. Regarding the rice yield, S2 and S3 always had higher rice yields than S1. The S2 and S3 showed increases in yields of 8.9 and 16.4% in relation to S1, with average yields of 11.3 and 12.1 Mg ha-1, respectively. In addition to S3 having the highest rice yields, it also had high soybean yields for lowland environment in the period evaluated, with an average of 3.8 Mg ha-1. After five years, S2 and S3 increased SOM contents by 27% and 50%, respectively, in the 0–20 cm soil layer. Similar behavior was verified in available P, with decrease of 4.6 mg dm-3 in S1 and increase of 16.0 mg dm-3 in the S3 compared to the initial evaluation. The available K content was higher in S3 (79.3 mg dm-3), followed by S2 (68.1 mg dm-3) and S1 (59.5 mg dm-3) on average of two years evaluated, in the 0–10 cm soil layer. Therefore, the results shows that NT adoption, combined with crop rotation and ICLS, improve soil fertility attributes, which results in high rice yields over time, reaching the sustainable intensification of lowlands.

How to cite: Denardin, L. G. D. O., Martins, A. P., Tiecher, T., Carvalho, P. C. D. F., Chabbi, A., and Anghinoni, I.: No-till and integrated crop-livestock system ensure high rice yield through soil fertility improvement of Brazilian lowlands, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11778, https://doi.org/10.5194/egusphere-egu2020-11778, 2020.

EGU2020-20664 | Displays | SSS12.7

Drivers of Degradation: Linking Large-scale Degradation to Human Influence in the Nigerian Guinea Savannah

Ademola. A Adenle and Chinwe Ifejika Speranza

The Nigerian Guinea Savannah is the largest agro-ecological belt, encompassing about 49% of Nigeria, and is one of the most diverse, fragile and threatened ecosystems in the country.  Land degradation in the zone is a serious challenge driven by deforestation, agriculture and other livelihood needs. Yet the link between land degradation and unsustainable human influence is widely acknowledged but spatially under explored. The study thus examined the spatial relation of human influence with land degradation in order to inform better land use management. We updated the Human Influence Index by combining the following spatial layers, namely: (1) distance to a major city; (2) land use/land cover; (3) human population density; (4) distance to major roads; (5) distance to railways; and (6) navigable waterways. We then overlaid the Human Influence Index with MODIS-derived land degradation status in order to explain the level of human influence on land degradation. In total, 38% of the Nigerian Guinea Savannah land area are becoming more degraded, while 14% and 48% of the remaining area show either improvement or no change, respectively. However, spatial proximity of human activities was observed to influence land degradation, but with more degradation occurring in areas of low population density. This shows that the spatial pattern of Human Influence Index data cannot completely explain land degradation in the zone. We thus present a more holistic approach to identifying human influence on land degradation in the Nigerian Guinea Savannah.  

How to cite: Adenle, A. A. and Ifejika Speranza, C.: Drivers of Degradation: Linking Large-scale Degradation to Human Influence in the Nigerian Guinea Savannah, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20664, https://doi.org/10.5194/egusphere-egu2020-20664, 2020.

EGU2020-6761 | Displays | SSS12.7

Relative Contribution of aggregated soil Carbon to soil organic carbon pool in an Ultisol, SouthEastern Nigeria

Akudo Ogechukwu Onunwa, Ifeyinwa Monica Uzoh, Chukwuebuka Christopher Okolo, Charles Arinze Igwe, and John Nwite

 

                                                                        ABSTRACT

Maintenance of Soil Organic Matter (SOM) has been recognized as a strategy that could reduce soil degradation, improve soil organic carbon (SOC) pool thereby reducing atmospheric concentration of carbon iv oxide (CO2) so as to ameliorate the effect of carbon and other greenhouse gases on the environment. Soil fertility depletion in the humid tropics is a serious problem emanating from erosion and leaching due to intense rainfall. Decrease in soil fertility and productivity is believed to be due to depletion in SOM. This study aims at determining the relative contributions (RC) of the various aggregated soil carbon (CWSA) (which is a function of available organic matter in the soil) to Soil organic carbon pool. Soil samples were collected from an area of land (0.1125ha) planted to sole cowpea, sole maize and maize-cowpea intercrop in No till (NT) and conventionally tilled (CT) plots amended with poultry droppings (PD), pig waste (PW), cassava peels (CP) at 20t/ha each and a control in a split-split plot in Randomized Complete Block Design with three replicates. Cropping system was assigned to the main plots, tillage system was assigned to split plot while organic amendments and control was assigned to the split-split plot measuring 7.5m2. The same treatment was maintained for two planting seasons (2012 and 2013), with the residual taken in 2013. Soil samples were collected at 0-30cm at the end of each planting season and SOC of the whole soil and the aggregated  soil carbon (2mm, 2-1mm,1-0.5mm 0.5-0.25mm and < 0.25mm) were determined using Walkley  and Black method as described by Nelson and Sommers (1982). Data collected were subjected to Analysis of Variance (ANOVA) using Genstat release 7.22D. The result revealed that there is a trend of aggregate size fractions 1-0.25mm contributing more carbon to the SOC than aggregate size fractions >2-1mm irrespective of the cropping system, tillage method or organic amendments applied. The highest relative contribution of aggregated soil carbon to the SOC pool shifted from the micro-aggregates (<0.25mm) to the macro-aggregates (1.0-0.25mm) for as long as the organic amendments lasted but gradually returned to the micro-aggregates when the amendments were withdrawn. It is therefore recommended that organic amendments be use to improve the soil aggregation which goes a long way in improving soil carbon pool thereby ameliorating the effect of carbon and other green house gases on the environment.

Key Words: Soil Organic carbon pool, Soil Aggregated carbon, Relative Contribution, Macro and Micro Aggregates

How to cite: Onunwa, A. O., Uzoh, I. M., Okolo, C. C., Igwe, C. A., and Nwite, J.: Relative Contribution of aggregated soil Carbon to soil organic carbon pool in an Ultisol, SouthEastern Nigeria, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6761, https://doi.org/10.5194/egusphere-egu2020-6761, 2020.

South Africa is greatly affected by land degradation, partly due to the high variability of its climatic conditions, the strong population growth and resulting economic demands. Thus reaching a number of SDGs, like achieving food security (#2), access to clean water (#6), and the sustainable use of terrestrial (#15) and marine (#14) resources represents a clear challenge under the present global change pressures. Land degradation has been linked in South Africa to the terms veld degradation and soil degradation and has been addressed by numerous measures. But there is still uncertainty on the extent of human induced land degradation as compared to periodic climate induced land surface property changes.

In cooperation with South African institutions and stakeholders (ARC-ISCW, SAEON, SANParks, SANSA, Stellenbosch University and University of the Free State, Equispectives Research and Consulting Services, Nuwejaars Wetlands SMA), the overarching goal of SALDi is to implement novel, adaptive, and sustainable tools for assessing land degradation in multi-use landscapes in South Africa. Building upon the state of the art in land degradation assessments, the project aims to advance current methodologies for multi-use landscapes by innovatively incorporating inter-annual and seasonal variability in a spatially explicit approach. SALDi takes advantage of the emerging availability of high spatio-temporal resolution Earth observation data (e.g. Copernicus Sentinels, DLR TanDEM-X, NASA/USGS Landsat program), growing sources of in-situ data and advancements in modelling approaches. Particularly, SALDi aims to:

  1. i) develop an automated system for high temporal frequency (bi-weekly) and spatial resolution (10 to 30 m) change detection monitoring of ecosystem service dynamics,
  2. ii) develop, adapt and apply a Regional Earth System Model (RESM) to South Africa and investigate the feedbacks between land surface properties and the regional climate,

iii)    advance current soil degradation process assessment tools for soil erosion, as this process represents an intrinsic limiting factor for biomass production and other regulating, supporting and provisioning ecosystem services, like providing clean water.

The aim of this presentation is to introduce this new cooperative research project to the EGU Community and to seek new opportunities for collaboration.

How to cite: Baade, J. and Kaiser, A. and the team of SALDi: South African Land Degradation Monitor (SALDI) – A German – South African SPACES collaboration to advance land degradation assessments, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21870, https://doi.org/10.5194/egusphere-egu2020-21870, 2020.

EGU2020-20700 | Displays | SSS12.7

Economic efficiency and physical effectiveness of erosion control systems towards their adoption in the Highlands of Rwanda

Jules Rutebuka, Alfred R. Bizoza, Désiré M. Kagabo, Peter Vermeir, and Ann Verdoodt

Despite huge efforts in soil and water conservations such as terraces, little or no evidence of economic efficiency and physical effectiveness is known. Thus, this study aimed to identify whether these investments are economically and technically viable and profitable for smallholder farmers. The economic surplus approach which is rooted in the Double-in-Difference approach was used to assess the economic performance of bench terraces (BT) on potato yields based on two sub-sample populations randomly selected from two datasets collected in two different periods (2004 and 2009) in the Congo-Nile divide (highlands) namely in Nyamagabe District. In terms of physical effectiveness of bench terraces, we compared traditional slope farming practice, referred to as non-protected plots (NP) against bench terraces (BT) in terms of runoff, soil and nutrient losses in the Beburuka highlands (Burera District) using Wischmeier-type bounded erosion plots (22.2x5 m) at 43% slope gradient.

Our findings suggest improved land productivity associated with investment in bench terraces. Potato yields increase for the period 2004 to 2009 is about 60% on bench terraces compared to the change of 40% without BT. However, the change in yield cannot solely be attributed to the fact that a given household has terraced land (or not) but also other multiple variables determinants of the economic performance of household specific characteristics. On the other hand of physical effectiveness of bench terraces, results revealed that bench (BT) terraces effectively control erosion, once they are well established, managed and regularly maintained by land owners. Terraces effectively reduced runoff and soil and nutrient losses with more than 85 and 98%, respectively. Both assessments thus confirmed the huge potential of bench terraces to reduce soil erosion effects and improve land productivity when established within an integrated approach, paying attention to correct installation and fertility-supporting agronomic practices. Bench terracing proved to be most effective but with slow economic efficiency in Rwanda which influences its adoption.

 

 

 

 

How to cite: Rutebuka, J., R. Bizoza, A., M. Kagabo, D., Vermeir, P., and Verdoodt, A.: Economic efficiency and physical effectiveness of erosion control systems towards their adoption in the Highlands of Rwanda , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20700, https://doi.org/10.5194/egusphere-egu2020-20700, 2020.

EGU2020-9385 | Displays | SSS12.7

Modelling land use/cover change scenarios in a transboundary catchment

Stanley Chasia, Luke Olang, Lewis Sitoki, and Mathew Hernnergger

Changes in land use/cover are among the most important anthropogenic transformation on the physical environment affecting proper functioning of the earth system. Hitherto, land characterization has often been studied using archived satellite data products to understandd trends in space and time. However, due to future uncertainties in land use change in developing countries and the associated impacts on the physical environment, there is need to model these changes at a local scale. A modelling framework to simulate empirically quantified relations between land use and its driving factors was used in the Sio-Malaba-Malakisi catchment between Kenya and Uganda. Changes for the catchment were simulated for a period of 30 years (2017 – 2047) using model parameters that define location characteristics, spatial policies, area restrictions, land use demand and conversion elasticity settings. Elevation, slope, population density, soil organic carbon, soil CEC and precipitation were potential factors selected to evaluate the suitability of devoting a grid cell to a land use type using a stepwise regression model. The scenarios evaluated include first growth, slow growth and an urbanization scenario. The high ROC value in all statistical tests (>0.72) indicated that the spatial distribution of some land use types in the basin could be explained by the selected driving variables. In a fast growth scenario (under policy restriction), areas under open soil and shrubland would be converted to cropland when demand for cash crop goes up in the region. Areas under open trees and marshland outside protected zones, would be converted to agricultural land while barren land with rock outcrops would remain largely unchanged over the period. In a slow growth scenario, expansion of the area under cropland would follow historical trend at 1.25% growth per annum. Marshland areas unsuitable for agricultural expansion are projected to remain the same. In an urbanization scenario, built-up areas would increase steadily at >1% per annum especially in areas earmarked for infrastructural development. In all the scenarios explored, topography, precipitation, soil characteristics and population density were identified as the key drivers of land use change. Results of this study would enhance the understanding of the complexities in projecting future land cover changes and provide baseline data for supporting ongoing soil and land management programs in a data scarce area.

Key words: Land use change; CLUE-S model; Scenario analysis; Sio-Malaba-Malakisi catchment; Transboundary basin

How to cite: Chasia, S., Olang, L., Sitoki, L., and Hernnergger, M.: Modelling land use/cover change scenarios in a transboundary catchment, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9385, https://doi.org/10.5194/egusphere-egu2020-9385, 2020.

EGU2020-3315 | Displays | SSS12.7

Historical land degradation strongly influences soil geography – a case in Ethiopia’s mountains

Jan Nyssen, Sander Tielens, Kassa Teka, Mitiku Haile, Amanuel Zenebe, R. Neil Munro, Jean Poesen, Stefaan Dondeyne, Amaury Frankl, Seppe Deckers, and Alemtsehay Tsegay

Understanding the geographical distribution of soils is indispensable for policy and decision makers to achieve the goal of increasing agricultural production and reduce poverty, particularly in the Global South. The soilscapes of the Giba catchment (900-3300 m a.s.l.; 5133 km²) in northern Ethiopia were studied, in support of sustainable soil use and land management. Based on their morphologic, physical and chemical properties, 141 soil profile pits and 1381 additional augered profiles were classified according to the World Reference Base for soil resources. The dominant soil units are Leptosols (19% coverage), Vertic Cambisols (14%), Regosols and Cambisols (10%), Skeletic and Leptic Cambisols and Regosols (9%), Rendzic Leptosols (7%), Calcaric and Calcic Vertisols (6%), Chromic Luvisols (6%) and Chromic and Pellic Vertisols (5%). The soilscapes are best explained by the topography and parent material that are the major factors determining the geomorphic processes in the area. Besides these two factors, land cover that is strongly impacted by human activities, may not be overlooked. Except for the Vertisols and patchy Phaeozems that are stable since the Mid-Holocene, all other soil units in the study area are the result of profile truncation on the one hand, and colluviation more downslope on the other hand. In addition, due to three millennia of soil tillage, lynchets have been formed at many places along the slope, and rock fragments concentrated on the surface, leading to armouring that locally prevents deeper erosion. Our soil suitability study shows that currently, after thousands of years of agricultural land use and concomitant land degradation, a new dynamic equilibrium has come into existence in the soilscape, in which ca. 65% of the catchment remains suitable  for agricultural production.

How to cite: Nyssen, J., Tielens, S., Teka, K., Haile, M., Zenebe, A., Munro, R. N., Poesen, J., Dondeyne, S., Frankl, A., Deckers, S., and Tsegay, A.: Historical land degradation strongly influences soil geography – a case in Ethiopia’s mountains, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3315, https://doi.org/10.5194/egusphere-egu2020-3315, 2020.

Ancient land management is inherited and at the base of the current landscapes and must be known to facilitate a sustainable land development for the future. Understanding past land-use systems is helpful for evaluating the current and future state of both biological and physical environments, and for disentangling the role of people in shaping current landscapes. Many different perspectives are involved in reconstructing the cultural impact on the environment. Palynology has great potentiality for environmental and palaeoethnobotanical purposes, with the study of high-resolution sequences formed under natural and anthropic (cultural) forces. Pollen data are fruitfully used to reconstruct land transformations in a diachronic palaeoecological perspective. For example, palynological records from central Mediterranean archaeological sites showed evidence of land uses and evolution of agrarian systems from Neolithic to Bronze Age, allowing a comparative view of the long-term changes in the land footprint of ancient Mediterranean societies. In this study we report on the level of detail on land management provided by palynological research from archaeological sites of Greek Basilicata (south Italy) and Roman Tuscany (central Italy). The local land use types and different management strategies inferred from palynology provide an important contribution to the knowledge of land development and implications for a sustainable soil management in these regions.

 

How to cite: Mercuri, A. M. and Florenzano, A.: Palynology as a tool for the knowledge on the millennial human impact and land management in the central Mediterranean, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10224, https://doi.org/10.5194/egusphere-egu2020-10224, 2020.

Do conservation practices contribute to the sustainability of soils in row crop agriculture?

Martin A. Locke

In row crop agriculture in the United States, so called conservation practices such as reduced tillage and cover crops are promoted as a means to improve the condition of soil (i.e., soil health, soil quality, soil sustainability).  In a series of studies conducted in the alluvial plain of the Mississippi River, various conservation practices were implemented, and several parameters were measured to determine how these practices influenced soil conditions.  Conservation management practices in corn or cotton production systems included reduced tillage, cover crops, and a government sponsored called Conservation Reserve Program, or CRP, where land is removed from agricultural production and replanted with native species as a fallow or buffer area.  Synthesized conclusions from the reduced tillage and cover crop studies showed that: (a) Cover crop and reduced tillage resulted in modest increases in soil organic carbon and nitrogen; (b) Soil biological activity was enhanced by cover crops (e.g., enzymes, mycorrhizae); (c) Runoff losses of solids was reduced with no-tillage and cover crop; (d) The phosphorus and nitrogen associated with runoff solids were reduced with cover crop and no-tillage; (e) Soluble phosphorus and nitrogen in runoff was variable; at times higher with cover crop and no-tillage; (f) cotton and corn grain production in cover crop and reduced tillage systems did not differ from that of conventional systems.  Three years after implementing CRP, microbial biomass, enzyme activities (phosphatase, glucosidase, and N-acetylglucosaminidase), and soil carbon and nitrogen in the surface of CRP soils were higher than in adjacent row crop soils.  Loss of some nutrients in runoff from the CRP was lower than that of row crop areas.  These two studies indicate that conservation practices can improve some environmental parameters related to soil sustainability.  Economics needs to be evaluated to determine the sustainability of maintaining these systems.

How to cite: Locke, M.: Do conservation practices contribute to the sustainability of soils in row crop agriculture?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22043, https://doi.org/10.5194/egusphere-egu2020-22043, 2020.

Identifying the relationship between earthworm activity and soil organic carbon is vital for both planning and performing farming operations. Numerous studies have emphasized that earthworms affect soil organic carbon greatly. However, the extent of this effect is still somewhat vague, and very little is known, not to mention the role of earthworm excrement. The objective for this study is to determine the effect of earthworm excrement on soil organic carbon following different tillage practices based on physical structure stability parameters. Both no tillage (NT) and ridge tillage (RT) led to significant total pore surface area, permeability, fluid conductivity, water resistance index and tensile strength increment than moldboard plow (MP) (p<0.05), whereas water repellency significant decrement (p<0.05). Similar to soil organic carbon, NT and RT significantly increase organic carbon in earthworm excrement than MP (p<0.05). A significant positive correlation (p<0.05) was found between organic carbon in earthworm excrement and total pore surface area, water repellency, tensile strength, respectively. This finding demonstrates that conservation tillage increase organic carbon in earthworm excrement through physical structure stability namely aggregation effect of earthworm excrement on soil water movement and gas diffusion, potentially important for the soil organic carbon increment.

How to cite: Chen, X., Liang, A., Wu, D., Jia, S., and Zhang, Y.: Conservation tillage positively influences soil organic carbon through earthworm excrement physical structure stability in a Chinese Mollisoil, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3973, https://doi.org/10.5194/egusphere-egu2020-3973, 2020.

The interaction between plants and arbuscular mycorrhizal fungi in the rhizosphere plays a vital role in driving vegetation recovery and restoration of soil nutrients. However, how this interaction affects vegetation succession and how soil nutrient recovery is driven by vegetation restoration and rhizosphere processes are still largely unknown. In this study, a well‐documented grassland restoration chronosequence on the Loess Plateau, China (fields at 0, 7, 12, 17, 22, and 32 years after farmland abandonment and a natural grassland reference) was selected. The species richness and diversity reached maximum values between 17 and 22 years after farmland abandonment, whereas the plant total above and belowground biomasses simultaneously peaked at 22 years and then remained stable. In the dominant plant rhizosphere and bulk soil concentrations of total glomalin‐related soil protein (including both old and recently produced fungal proteins) substantially increased from 3.58 to 4.87 g kg-1 and from 2.67 to 3.86 g kg-1, respectively, between 12 and 32 years after farmland abandonment. The concentrations of soil organic carbon (SOC) and total nitrogen (TN) in the plant rhizosphere and bulk soil significantly increased between 17 and 32 years and reached the levels of the natural grassland. The aboveground plant biomass, soil SOC, and TN concentrations were positively correlated with the glomalin‐related soil protein (GRSP) concentration (p < 0.05). Our study suggested that interactions among plant‐mycorrhizae association, plant diversity, and biomass promote GRSP and nutrient accumulation in the plant rhizosphere and bulk soil, and GRSP largely contributes to SOC stabilization and the accumulation of SOC and TN.

How to cite: Liu, H., Xue, S., and Liu, G.: Plant‐mycorrhizae association affects plant diversity, biomass, and soil nutrients along temporal gradients of natural restoration after farmland abandonment in the Loess Plateau, China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4265, https://doi.org/10.5194/egusphere-egu2020-4265, 2020.

EGU2020-4561 | Displays | SSS12.7

Spatial variability of 137Cs-drived total soil erosion rate and its driving factors at regional scale: a meta-analysis in China’s Loess Plateau

Jian Hu, Yihe Lü, Bojie Fu, Alexis J Comber, Lianhai Wu, and Paul Harris

Soil erosion, contributing to land degradation, was identified as an essential driving factor for the evolution of Earth’s critical zone. Although runoff plots along the slope and weirs on river valleys are often used to monitor short-term soil and water loss, it is usually difficult to evaluate the long-term soil loss rates across spatial scales. The 137Cs tracer can effectively measure the long-term soil erosion rates but its capability to quantify regional soil erosion characteristics and the driving mechanisms remains a big challenge. To deal with this gap, we integrated and synthesized 61 peer-reviewed articles of soil erosion research by using 137Cs tracer methods in the Loess Plateau of China to reveal the regional variability of soil erosion and the effects of land uses on (a) reference 137Cs inventory, (b) 137Cs soil profile distribution and (c) 137Cs-derived total measured erosion rate. The results showed that reference 137Cs inventory range from 900 to 1750 Bq/m2 with a mean value of 1351 Bq/m2. The reference 137Cs inventory decreased significantly with the increase of latitude and longitude (p<0.001), while it didn’t change obviously with the mean annual precipitation and temperature. The assumption of 137Cs tracing method was supported by 137Cs soil profile distribution under tillage and un-disturbed land. Tillage land was considered to have uniform distribution in soil profile and a similar exponential distribution of 137Cs content can be found in terrace and no-tillage land. Furthermore, 137Cs loss percent had a significant positive relationship with soil erosion rate (p<0.001). Average long-term soil erosion rate of cropland was more than 15000 t/(km2·a) and significantly higher than no-tillage land (5462.52 t/(km2·a) including that of grassland (3890.86 t/(km2·a)), forest (>6000 t/(km2·a)), and terrace (<5000 t/(km2·a)) (p<0.001). The average long-term soil erosion rate of cropland presented high spatial variability and loess hill and gully region had significantly higher average long-term soil erosion rate on cropland due to the coupling effects between heavy rainfall and steep slope. Appropriate reference sites and soil erosion conversion models were important factors for accurately quantifying the long-term soil erosion while the variation of climate, land uses, and geomorphic types had significant impacts on the spatial distribution of erosion rates. Our study can facilitate the understanding of the 137Cs tracing method for long-term soil erosion rate and its spatial pattern, which can be supportive for soil and water conservation planning and relevant policy-making.

How to cite: Hu, J., Lü, Y., Fu, B., Comber, A. J., Wu, L., and Harris, P.: Spatial variability of 137Cs-drived total soil erosion rate and its driving factors at regional scale: a meta-analysis in China’s Loess Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4561, https://doi.org/10.5194/egusphere-egu2020-4561, 2020.

Understanding the interactions among different soil microbial species and how they responded to reclamation is essential to ecological restoration and the land development. In this study, we investigated the bacterial distribution in different reclamation sites and constructed molecular ecological networks to reveal the interactions among soil bacterial communities along the reclamation timeline. The relationship between the microbial network module and environmental factors were also analyzed. Bacterial community diversity and composition changed dramatically along the reclamation timeline. PCA and NMDS analysis showed the microbial distribution patterns varied along the reclamation years. Additionally, based on the network profile, phyla Acidobacteria, Planctomycetes and Proteobacteria were distinguished as the key microbial populations in most reclamation sites. Moreover, different network structures were significantly correlated with different soil properties, such as pH value, soil organic matter, soil dehydrogenase and urease activity, which implied that microbial network interactions might influence the soil ecological functions. The variation of the network complexity along the reclamation years revealed that the microbial development and the persistent agricultural utilization promoted the land development of the reclaimed soil in disturbed mining area. Overall, our findings could provide some information of how microorganisms changed along the increasing reclamation time, and how they responded to reclamation activity by regulating their interactions in different ecosystems.

How to cite: Chen, F. and Ma, J.: Explicating potential soil development of reclaimed farmlands using the molecular ecological network analysis in mining disturbed area, East China, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6475, https://doi.org/10.5194/egusphere-egu2020-6475, 2020.

EGU2020-13007 | Displays | SSS12.7

Impact of maize cob and wood-derived biochar on soybean plant growth and soil aggregate structure in dry land

Hua Ma, Qirui Li, and Sonoko D. Bellingrath-Kimura

Soil structure plays important roles in land degradation, soil fertility, and agricultural productivity and thus has great ecological importance. Soil aggregation is a crucial soil function for maintaining soil porosity and enhancing the stability of soil structure to prevent soil erosion. Biochar was reported to be a binding agent for organic matter in aggregate formation and thus alleviate aggregates degradation. Therefore, this study attempts to a) investigate the impact of the biochar on soybean plant growth, plant nutrients content and soil chemical properties; b) analyze the effect of maize cob biochar (CB) and wood biochar (WB) on soil aggregate structure in vulnerable dry land area.

Field trial was performed on two sandy soil fields (at MLZ and BDG village) and one loamy clay soil field (at RQ village) which located in Ningxia, China. Two treatments (20 t ha-1 of CB and WB application) and control were repeated 7 times. In this study, we analyzed biomass, grain yield, and nutrients content of soybean plant while soil nutrients were observed as well. Nine soil aggregate size classes (ASCs) were obtained (>10, 10-7, 7-5, 5-3, 3-2, 2-1, 1-0.5, 0.5-0.25 and <0.25 mm) through dry sieving to analyze soil structure. In addition, soil dry mean weight diameter (dMWD), dry geometric mean diameter (dGMD), and structure coefficient (Ks) were measured to estimate the aggregate stability, erodible fraction, and agronomically valuable fraction. After that, redundancy analysis and ridge regression analysis were applied for further data processing.

Our results indicated a) biomass and grain yield: both CB and WB significantly increased shoot biomass in loamy clay soil by 48.7% and 45.0%, respectively. In the two sandy soils, biochar indicated no significant enhancement on the plant growth and grain yield. Even though, the mean value of grain yield increased by 29.7% and 35.1% with the CB and WB application in the MLZ field, respectively. CB application also increased the mean value of grain yield by 34.2% in the BDG field. Although the data shows insignificant difference with high standard errors due to field heterogeneity, the mean values can still give insights into agricultural field practices; b) soil aggregate structure: soil type exerted stronger influence on soil aggregation and plant growth rather than biochar. The sandy field in MLZ showed high soil loss potential by wind erosion referring to a low value of dGMD, and the loamy clay field showed the highest dMWD, dGMD and Ks values for an ideal aggregate structure for crop growth. Findings indicate that biochar had no significant influence on aggregate structure in both sandy and loamy clay soils; c) soil nutrients: CB can significantly increase soil total carbon content in RQ and BDG fields. Soil potassium content can be enhanced by CB application in loamy clay soil.

How to cite: Ma, H., Li, Q., and Bellingrath-Kimura, S. D.: Impact of maize cob and wood-derived biochar on soybean plant growth and soil aggregate structure in dry land, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13007, https://doi.org/10.5194/egusphere-egu2020-13007, 2020.

EGU2020-12936 | Displays | SSS12.7

Soil P, Arbuscular mycorrhizal spore count and root colonization of cowpea in biochar amended soils under maize/cowpea cropping systems

Ifeyinwa Monica Uzoh, Chukwuebuka Christopher Okolo, Akudo Ogechukwu Onunwa, and Olubukola Oluranti Babalola

Abstract

Cowpea, a food and nutrition security crop is being threatened by decline in soil fertility especially in small holder farmstead. The natural arbuscular mycorrhizal fungi in the soil could improve its ability to acquire and retain nutrients thereby leading to higher yield. This irrigated field research was conducted to determine the effect of biochar rates and cropping systems on selected soil chemical properties, soil microbial biomass carbon (SMBC), nitrogen (SMBN), phosphorus (SMBP), and vesicular-arbuscular mycorrhizal (VAM) spore count and mycorrhizal fungi colonization (AMF) of cowpea. Experimental design was 3 x 3 factorial in randomized complete block design (RCBD). Factor A was three cropping systems; sole cowpea, intercropping and intra-cropping, while factor B was three biochar rates; control (biochar at 0 t ha-1 (B0)), biochar at 2.5 t ha-1 (B1) and biochar at 5 t ha-1 (B2). These were replicated in three blocks to constitute 27 plots. The entire plot was cleared, ploughed and demarcated into beds with hoes and diggers. Cowpea sole or inter- or intra- cropped with maize were planted in a spacing distance of 25cm by 75cm, with intercropped cowpea being in-between the interrow spacing (75 cm), while the intracropped cowpeas was planted between the intrarow spacing (25 cm). Biochar soil amendment were applied two weeks after planting by making a groove in-between the rows in the soil and covering them with soil. The result showed that biochar soil amendment and interaction of biochar with cropping system significantly (p<0.05) affected SMBN, SMBC, total  VAM spore count and AMF colonization by cowpea, whereas cropping system significantly affected only total VAM spore count and AMF colonization by cowpea. B2 amended soil had the highest SMBC content (0.028 mg kg-1) while the least was from control plot (0.021 mg kg -1), SMBN was highest in B1 amended soil (0.004 mg kg-1), followed by control plot (0.002 mg kg-1). Control had higher AMF and total VAM spore count while biochar amended soil had higher soil microbial properties. Considering the cropping systems, inter and intra-cropping had higher microbial biomass and total VAM spore count than sole cowpea whereas sole cowpea had higher AMF infection of cowpea than the intercropped cowpea. Biochar at 5 tha-1 had the highest available P. Generally, this study showed superiority of the interaction of biochar with cropping systems over sole cropping in the improvement of soil properties in degraded soils of North-West province of South Africa.

Key words: Cropping systems; Chromic Luvisol; Microbial properties; Soil fertility; Soil amendment

How to cite: Uzoh, I. M., Okolo, C. C., Onunwa, A. O., and Babalola, O. O.: Soil P, Arbuscular mycorrhizal spore count and root colonization of cowpea in biochar amended soils under maize/cowpea cropping systems , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12936, https://doi.org/10.5194/egusphere-egu2020-12936, 2020.

EGU2020-6481 | Displays | SSS12.7

Colloidal dynamics of soil clay under the effect of fine-sized biochars: Implication for biochar amendment towards preventing clay loss and soil erosion

Nga T. Mai, Nga T. T. Pham, Anh T. Q. Nguyen, Anh T. N. Nguyen, Anh M. Nguyen, Nhung T. H. Bach, Chi L. Do, Thom T. Nguyen, Nam H. Nguyen, Stefan Dultz, and Minh N. Nguyen

In soils clay loss by leaching and surface runoff is one of the initial steps increasing the risk of erosion. Here we set out to determine the effect of fine-sized biochar amendment on colloidal dynamics of soil clay, with the aim of answering whether biochar addition enhances or curbs soil erosion. Fine-sized biochar samples were prepared from fern Dicranopteris linearis’s biomass under non-biochar-oriented pyrolysis (open heating) and biochar-oriented pyrolysis (N2-supported heating) over a temperature range from 400 to 900°C. The clay fraction (< 2 µm) separated from a clay-rich soil in a hilly area of the Red River basin containing relatively high amounts of kaolinite was tested for its dispersion properties under the presence of the prepared biochars. Surface charge of biochar-soil clay mixtures was determined by polyelectrolyte titration using a particle charge detector, while corresponding colloidal properties of the mixtures were examined by the test tube method. Both, the soil clay fraction and biochar samples showed strongly negative surface charge and their surface charge was variable depending on pH. In a pH range from 3 to 10 and at an electrolyte background of 0.01 M NaCl, surface charge of the clay fraction decreased from -1.68 to -44.75 mmolc Kg-1, while the biochars surface charge varied from -0.6 to -48.8 mmolc Kg-1. Soil clays were more strongly dispersed in the presence of biochars by increasing electrostatic repulsive forces. The biochar preparation method had a crucial role for surface charge properties of biochars and in consequence colloidal dynamics of biochar-clay mixtures. The N2-supported pyrolysis at lower temperatures does not increase charge density but creates a more porous structure, thereby increasing the total negative net charges. As a result, the N2-supported biochars favor clay dispersion more effectively, while the open-pyrolysis biochars showed lesser effects. Our results indicate that fine-sized biochar amendments generally enhance the risk of clay loss, however, such techniques for creating low-charged biochars can help to decrease clay dispersibility when applying biochar for soil.

How to cite: T. Mai, N., T. T. Pham, N., T. Q. Nguyen, A., T. N. Nguyen, A., M. Nguyen, A., T. H. Bach, N., L. Do, C., T. Nguyen, T., H. Nguyen, N., Dultz, S., and N. Nguyen, M.: Colloidal dynamics of soil clay under the effect of fine-sized biochars: Implication for biochar amendment towards preventing clay loss and soil erosion, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6481, https://doi.org/10.5194/egusphere-egu2020-6481, 2020.

EGU2020-7490 | Displays | SSS12.7

Effects of long term application of chicken manure and spent mushroom substrate on organic matter and storage of water in sandy soils

Jerzy Lipiec, Boguslaw Usowicz, Jerzy Klopotek, Marcin Turski, and Magdalena Frac

The aim of this study was to evaluate the effects of long-term application of exogenous organic matter on soil organic matter and water storage. Addition of organic matter is of importance in sandy soils that are in general poor in organic matter, acidic, conducive to drought and used in agricultural production throughout the world. In this study the sandy podzol (63-74% sand) was amended with chicken manure or waste spent mushroom substrate through more than 20 years. Soil organic matter content, water retention curves, acidity and structural stability were determined at three depths in the top 60 cm in organic amended and control plots. Enrichment of the soil with chicken manure and spent mushroom substrate caused increase in soil organic matter content in the top 0-20 cm from 1.34 to 3.50% and from 0.86 to 4.71%, respectively. Corresponding increases in field water capacity were from 13.6 to 31.8 m3 m−3 and from 17.7 to 27.2 m3 m−3. Both amendments improved soil structure, reaction and nutrient status. In general, these positive effects were greater in chicken manure than spent mushroom substrate amended soil and less pronounced at depths 20-40 cm and 40-60 cm compared to upper soil. Increase in the field water capacity and water storage capacity made the soils amended with  organic matter more drought resistant. Our findings provide valuable insights the spent mushroom substrate left after growing the mushrooms and chicken manure are environmentally friendly and economical viable soil management practices to increase soil quality and crop productivity.

 

 Acknowledgements

The work was partially funded by the HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015–2020).

How to cite: Lipiec, J., Usowicz, B., Klopotek, J., Turski, M., and Frac, M.: Effects of long term application of chicken manure and spent mushroom substrate on organic matter and storage of water in sandy soils , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7490, https://doi.org/10.5194/egusphere-egu2020-7490, 2020.

Bioflocculants produced by microorganisms have advantages in removing heavy metals because of their environmental friendliness and biodegradability. In this study, the bioflocculant from a soil bacteria was investigated for its application in chromium (Ⅵ) and arsenic (Ⅲ) removal. The bioflocculant-producing strain was indentified as Pseudomonas fluorescens. It showed maximum flocculating activity of 2579.94 U/mL and yield of 4.84 g/L under optimal condition. With a fed‑batch fermentation strategy, bioflocculant production was further enhanced by 32.6%. The bioflocculant was as extracellular polymer substance composed of 76.67% polysaccharides and 15.8% protein with a molecular weight of 117 kDa. It showed excellent capacities in heavy metal removal, 80.13 and 45.93 mg/g for chromium(Ⅵ) and arsenic (Ⅲ), respectively. The bioflocculant outperformed conventional adsorption materials and could represent a promising biotechnology for the remediation of environmental problems.

How to cite: He, N.: A novel bioflocculant for chromium (Ⅵ) and arsenic (Ⅲ) removal: Extracellular polymeric substance (EPS) of Pseudomonas fluorescens, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7964, https://doi.org/10.5194/egusphere-egu2020-7964, 2020.

Greater Shanghai, one of China’s top megacities, is susceptible to extreme heat events during the summer. This study investigated the spatiotemporal dynamics of land development intensity and its influence on summertime extreme surface urban heat island (SUHI) effect in Greater Shanghai, during 1990 and 2017. Driven by the robust economic development and population growth, the formation of Greater Shanghai has dramatically changed from a traditionally compact city to an explosively urbanizing region in 1990–2017. The results revealed an overall increase in regional LDI of Greater Shanghai in the loss of cropland and water bodies. Simultaneously, the intensified SUHI effect was measured by the increasing relative SUHI intensity (from 1.81℃ in 1990 to 3.16℃ in 2017) and magnitude (from 306.80 km2 in 1990 to 1570.56 km2 in 2017). The urban-rural gradient analysis based on centric buffers and the representative transects further revealed the spatiotemporal heterogeneity of LDI and its linkage with the evolutionary pattern of the SUHI effect. As indicated, the areal extent of downtown Shanghai within the 0–15 km buffer increased by 201.70 km2 in 1990–2017. However, its stably decreasing trends in LDI and associated SUHI effect were observed across the study period. In contrast, the urban periphery and exurban area, which attracted huge investment to develop the infrastructure required for population resettlement and the industrial restructure, experienced a dramatic increase in 1660.57km2 of newly developed land. Concurrently, the remarkably increases in LDI and associated SUHI effect the urban periphery and exurban area were notable. Finally, focusing on the overall alarming situation of the summertime SUHI effect in Greater Shanghai, policy implications, and practical suggestions towards sustainable land development and UHI mitigation were discussed.   

How to cite: Zhang, H. and Dai, X.: Spatiotemporal dynamics of land development intensity and summertime extreme surface urban heat island effect in Greater Shanghai (1990-2017), EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-21923, https://doi.org/10.5194/egusphere-egu2020-21923, 2020.

EGU2020-11621 | Displays | SSS12.7

A web based Geospatial Decision Support System to quantify the impact of soil sealing on soil functions

Piero Manna, Angelo Basile, Antonello Bonfante, Amedeo D'Antonio, Carlo De Michele, Michela Iamarino, Giuliano Langella, Florindo Antonio Mileti, Michele Munafò, and Fabio Terribile

Soil sealing is considered one of the most dangerous land degradation processes on global, European and national scales. Numerous policies aiming to mitigate this soil threat testify the importance of the phenomenon, which however is continuously growing, or at least does not shows signs of abating. Here we would show a spatial decision support system (S-DSS) – based on a Geospatial Cyberinfrastructure – with the aim of applying it as an operational instrument aiming towards soil sealing mitigation. The system developed within the framework of the LANDSUPPORT EU project (www.landsupport.eu) started on May 2018 has the ambition to impact on those who take decision over soil sealing issues.  It currently represents an evolution of a previous S-DSS tool named Soil sealing and landscape planning, still operational and described in a scientific publication (https://doi.org/10.1002/ldr.2802). The system, focusing on mitigating such crucial land degradation, allows the users - freely and via the Web – to produce ‘what-if’ land planning scenarios thanks to the ‘on-the-fly’ modelling engines. Therefore, integrated geospatial quantitative data and procedures may be directly and freely used by planners. The system is continuously evolving and is thought to function on the fly from local (administrative limits) to the European scale, addressing among others the issues of rural fragmentation, loss of soil ecosystem services, estimates of soil sealing evolution over time, etc. The tool is being developed with the help of end users and indirectly explores a change of paradigm where soil science and landscape/urban planning work together to provide operational instruments that may be adopted by local communities in addressing soil sealing issues with a proactive approach.

How to cite: Manna, P., Basile, A., Bonfante, A., D'Antonio, A., De Michele, C., Iamarino, M., Langella, G., Mileti, F. A., Munafò, M., and Terribile, F.: A web based Geospatial Decision Support System to quantify the impact of soil sealing on soil functions, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11621, https://doi.org/10.5194/egusphere-egu2020-11621, 2020.

EGU2020-13169 | Displays | SSS12.7

Soil cover development in the coastal zones of disappearing lakes

Michał Słowiński, Bogusława Kruczkowska, Jerzy Jonczak, Sandra Słowińska, Arkadiusz Bartczak, Mateusz Kramkowski, Łukasz Uzarowicz, and Sebastian Tyszkowski

An increased rate of shallow lakes overgrowth is a commonly observed process in the European lowlands. The transition period from the lake to the peatland state is the most productive phase in the whole evolutionary history of a lake. In this study, we analyze the influence of environmental changes in the Lake Rakutowskie wetlands complex (central Poland) and water level fluctuations on soil cover modifications in the immediate vicinity of the lake.  Multidisciplinary research was conducted in a transect consisting of eight soil profiles. The transformation of soil cover was reconstructed on the basis of detailed studies of soil characteristics, water level fluctuations, radiocarbon dating, etc. Significant acceleration of the lake decline rate is associated not only with natural processes but predominantly with anthropic pressure. The obtained C14dates indicate a very rapid disappearance of the lake. Taking into account the causative factors, the lake will most likely disappear in the next hundreds of years. The contemporary surface of Lake Rakutowskie is several times smaller than in the past, and this is an effect of the influence of natural and anthropogenic factors. Former fibric materials have been transformed into sapric and hemic ones as an effect of soil exsiccation. The next (and last) step in the degradation of organic soils is muck formation. Along with the progressive dehydration and mineralization of organic soils, its physical and chemical properties have deteriorated, which is visible e.g. in soil structure and elemental content, especially TOC and TN. With the disappearance of the lake, larger adjacent areas are subjected to gradual degradation, leading directly to plant cover changes and irreparable landscape modifications.

 

How to cite: Słowiński, M., Kruczkowska, B., Jonczak, J., Słowińska, S., Bartczak, A., Kramkowski, M., Uzarowicz, Ł., and Tyszkowski, S.: Soil cover development in the coastal zones of disappearing lakes, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13169, https://doi.org/10.5194/egusphere-egu2020-13169, 2020.

High resolution remote sensing images plays a critical role in detection and monitoring of land degradation and development. Monitoring the soil parameters represents great importance for sustainable development and agriculture, as well as smart food production. The space segment component of the Copernicus programme (e.g., Sentinel-1, Sentinel-2 etc.) enables continuously monitoring of Earth’s surface at 10-m spatial resolution. New technologies, development, and minimization of sensors led to the development of micro-satellites (e.g., PlanetScope). These satellites allow us to monitor the Earth's surface daily in 3-m spatial resolution. The developed algorithm for soil moisture mapping is based on the fusion of Sentinel-2 and PlanetScope images. This allows a soil moisture mapping in high spatial resolution. Soil moisture was estimated based on the Leaf Area Index (LAI) and Enhanced Vegetation Index (EVI) using modified water cloud model. Ground-truth data were collected from 15 stations of the International Soil Moisture Network across the globe and used for mapping and validation of soil moisture. The developed algorithm provides a new knowledge that can be widely applied in various research for the detection and monitoring of land degradation and development.

How to cite: Gašparović, M. and Kumar Singh, S.: Fusion of Sentinel and PlanetScope images for high resolution soil moisture mapping: Algorithm and preliminary validation, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8324, https://doi.org/10.5194/egusphere-egu2020-8324, 2020.

Grassland degradation is a global ecological problem, and grassland on the Qinghai-Tibetan Plateau (QTP) is suffering serious and continuous degradation. Due to the vulnerability of grassland ecosystem on the QTP and its sensitivity to global climate change, alpine grassland degradation needs more attention. In this study, we extracted 7 visible vegetation indices by using an unmanned aerial vehicle (UAV) with visible light sensors. We used random forest model and stepwise multiple regression establishing the relationship between visible vegetation indices and filed degradation index to assess alpine meadow degradation. The result showed that ExG (Excess Green Index) was effective in the simulation with an R2 value of 0.53. The degradation distributions of 50 field sites were obtained at 10cm spatial resolution. This study with visible vegetation indices by UAV provides an effective approach for monitoring grassland degradation at low altitude. The high resolution contributes to more refined grassland management.

How to cite: Han, W., Su, X., and Liu, G.: Assessment of grassland degradation in alpine meadow using visible vegetation indices by UAV on Qinghai-Tibetan Plateau, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12415, https://doi.org/10.5194/egusphere-egu2020-12415, 2020.

EGU2020-12710 | Displays | SSS12.7

Land degradation risk mapping using novel machine learning algorithms

Ali Torabi Haghighi, Hamid Darabi, Zahra Karimidastenaei, Ali Akbar Davudirad, Sajad Rouzbeh, Farzaneh Sajedi Hosseini, and Björn Klöve

Land degradation (LD) is a complex process affected by both anthropogenic and natural driving variables, and monitoring LD progression in areas under human‐induced stresses has become an essential task. In this study, we developed an approach for evaluating and mapping potential LD risks associated with human-induced and biophysical driving variables. We employed machine learning algorithms (Support Vector Machine (SVM), Multivariate Adaptive Regression Splines (MARS), Generalized Linear Model (GLM), and Dragonfly Algorithm (DA)) for LD risk mapping based on topographic (n=7), human-induced (n=5) and geo-environmental (n=6) variables and field measurements of degradation. The performance of different algorithms was assessed using receiver operating characteristic (ROC), Kappa index, and Taylor diagram. An urbanized watershed, Pole-doab in central Iran, was selected as the case study. The performance data indicated that DA (an novel optimized algorithm) was most accurate in LD risk mapping. In LD zone maps produced using SVM, GLM, MARS, and DA, 19.16%, 19.29%, 21.76%, and 22.40%, respectively, of total area in the Pole-doab watershed had a very high degradation risk. In all cases, the LD risk maps indicated that land in the southern part of the Pole-doab watershed is most exposed to degradation of different types.

How to cite: Torabi Haghighi, A., Darabi, H., Karimidastenaei, Z., Davudirad, A. A., Rouzbeh, S., Sajedi Hosseini, F., and Klöve, B.: Land degradation risk mapping using novel machine learning algorithms, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12710, https://doi.org/10.5194/egusphere-egu2020-12710, 2020.

EGU2020-22055 | Displays | SSS12.7

Pedotransfer functions to mapping total and adsorbed phosphate using Vis-NIR (DRS)

José Marques Júnior, Romário Pimenta Gomes, Luis Fernando Vieira da Silva, João de Deus Ferreira Silva, and Laércio Santos Silva

Pedotransfer functions to mapping total and adsorbed phosphate using Vis-NIR (DRS)

José Marques Júnior a, Romário Pimenta Gomes a, Luis Fernando Vieira da Silva a, João de Deus Ferreira e Silva a & Laércio Santos Silva a

Department of Soils and Fertilizers, Research Group CSME - Soil Characterization for Specific Management, State University of São Paulo (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14883-292 Jaboticabal, São Paulo, Brazil

 

Soil oxides-Fe can be an excellent predictor of spatial variability of total and adsorbed P, contributing to rapid mapping, low cost and differentiation of minimum areas of phosphate fertilizer management. In the Western Paulista Plateau (Brazil) were collected 300 soil samples representing the lithological (sandstone and basalt) and geomorphic variability (less, moderately and highly dissected), at a depth of 0.0 – 0.2 m. The total (Ptotal) and adsorbed phosphorus (Pads) determined by conventional methods and hematite and goethite by X-ray diffraction (XRD). By partial least squares regression (PLS) and chemometric calibration, internal validation and external calibration, the Ptotal and Pads were estimated by diffuse reflectance spectroscopy (Vis-NIR-DRS), using hematite (Hm) and goethite (Gt) as a predictor. Then, the spatial pattern was obtained by geostatitic analysis. Phosphorus ware influenced by geology and dissection of the landscape and is a covariate of Hm and Gt, important indicators of environments with high or low P adsorption and content potential. Partial least squares (PLS) regression analysis of the spectral data demonstrated the influence of iron oxides on Ptotal and Pads, whereby Hm affects the former and Gt the latter. The lower maximum phosphorus adsorption capacity indicates the scarcity of P minerals and Fe oxides from sandstone sediments, with severe risk of phosphate loss and environmental damage. Significant correlation between Ptotal and Hm and Pads and Gt in Vis-NIR-DRS indicates the potential of this study in mapping large areas based on iron oxides, which can be used to develop soil P inventories as well as monitor and estimate the future impacts of land use, considering the complex relations between soil and landscape.

Keywords: Diffuse reflectance spectroscopy, goethite, hematite, geostatistics.

How to cite: Marques Júnior, J., Gomes, R. P., da Silva, L. F. V., Silva, J. D. D. F., and Silva, L. S.: Pedotransfer functions to mapping total and adsorbed phosphate using Vis-NIR (DRS) , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-22055, https://doi.org/10.5194/egusphere-egu2020-22055, 2020.

EGU2020-9639 | Displays | SSS12.7

Projecting future vegetation change for northeast China using CMIP6

Wei Yuan, Shuang-ye Wu, and Shugui Hou

This study aims to establish future vegetation changes in the east and central of northern China (ECNC), an ecologically sensitive region in the transition zonal from humid monsoonal to arid continental climate. The region has experienced significant greening in the past several decades. However, few studies exist on how vegetation will change with future climate change, and great uncertainties exist due to complex, and often spatially non-stationary, relationships between vegetation and climate. In this study, we first used historical NDVI and climate data to model this spatially variable relationship with Geographically Weighted Logit Regression. We found that temperature and precipitation could explain, on average, 43% of NDVI variance, and they could be used to model NDVI fairly well. We then establish future climate change using the output of 11 CMIP6 models for the medium (SSP245) and high (SSP585) emission scenarios for the mid-century (2041-2070) and late-century (2071-2100). The results show that for this region, both temperature and precipitation will increase under both scenarios. By late-century under SSP585, precipitation is projected to increase by 25.12% and temperature is projected to increase 5.87oC in ECNC. Finally, we used future climate conditions as input for the regression models to project future vegetation (indicated by NDVI). We found that NDVI will increase under climate change. By mid-century, the average NDVI in ECNC will increase by 0.024 and 0.021 under SSP245 and SSP585. By late-century, it will increase by 0.016 and 0.006 under SSP245 and SSP585 respectively. Although NDVI is projected to increase, the magnitude of increase is likely to diminish with higher emission scenarios, possibly due to the benefit of precipitation increase being gradually encroached by the detrimental effects of temperature increase. Moreover, despite the overall NDVI increase, the area likely to suffer vegetation degradation will also expands, particularly in the western part of ECNC. With higher emissions and later into the century, region with low NDVI is likely to shift and/or expand north-forward. Our results could provide important information on possible vegetation changes, which could help to develop effective management strategies to ensure ecological and economic sustainability in the future.

How to cite: Yuan, W., Wu, S., and Hou, S.: Projecting future vegetation change for northeast China using CMIP6, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9639, https://doi.org/10.5194/egusphere-egu2020-9639, 2020.

EGU2020-19887 | Displays | SSS12.7

The impact of fertilization regime and land use change on the SOM after 60 years of maize cropping

Zoltán Szalai, Ujházy Noémi, Anna Vancsik, Azer Hallabi, Gergely Jakab, Tibor Filep, Andrea Borsodi, Melinda Megyes, Csilla Kiraly, Lili Szabó, Tamás Árendás, and Károly Márialigeti

The top metre of the soil is one of the largest terrestrial carbon reservoirs. More than 50% of the soil carbon is stored as soil organic matter (SOM). Several papers report about the SOM losses due to tillage and land-use change. On the other hand, a huge amount of papers focus on the environmental potential of various min-till, no-till and other techniques for regenerative agriculture. The change of the fertilization regime also has an influence on SOM so it also can influence the humus status of the soils. This presentation focuses on the effects of different kinds of fertilization and abandonment of arable lands on the quantity and quality of the SOM.
The present study is based on Martonvásár Experimental Station (Hungary) which was established in 1958. The research focused on maize monoculture with the following treatments: (a) no fertilization, (b) NPK, (c) NPK with manure addition. The soil of the plots is Chernozem. Two controls were selected: (a) a natural Grassland and a secondary grassland. The secondary grassland was an arable land until 1990. Five repetitions of soil samples were taken from each plot and times. Soils were fractionated to silt and clay associated OM (s+c), aggregate associated OM (S+A), dissolved organic matter (DOM) and particulate organic matter (POM) according to Zimmermann’s method (4). Quality parameters of the DOM were studied by CN analyser, UV-Vis spectrometer, spectrofluorometer, zetasizer and size exclusion chromatograph. Solid SOM fractions were studied by CHNS analyser, ATR-FTIR and DRIFT FTIR. The V3-V4 regions of the 16S rRNA gene obtained from the soil samples were sequenced on the Illuma platform for the description of microbial diversity.
Twenty years were enough to restore the natural SOM content of the soils (land-use change from arable land to grassland). Labile fractions of the SOM were higher in case of secondary than the primary grasslands. We have found differences in weight ratios of SOM fractions between fertilization regimes, as well. The proportion of microbial contribution to SOM were higher in the arable soils than the grasslands based on the C:N ratios of the SOM. However, the predominance of phyla Proteobacteria, Acidobacteria, Bacteriodetes, Actinobacteria and Verrucomicrobia in all studied soils, microbial diversity is generally higher in the grasslands than in the arable plots. The DOM of different fertilization regimes and land uses have shown the most characteristic differences. The difference between arable plots (with various fertilization regimes) and grasslands can be characterized by humic substances (HS) with higher condensation degree and molecular mass. The application of manure has result same proportion of peptide-like components and HS with lower molecular as the DOM of grassland soils.
The microbial diversity of abandoned arable land remained similar to that of the arable lands over twenty years. The major part of the growth of SOM occurred in the labile fractions. The change of the fertilization regime also has limited potential to grow a total mass of SOM.
Support of the GINOP 2.3.2-15-2016-00056 and National Research, Development and Innovation Office under contracts K123953 are gratefully acknowledged.

How to cite: Szalai, Z., Noémi, U., Vancsik, A., Hallabi, A., Jakab, G., Filep, T., Borsodi, A., Megyes, M., Kiraly, C., Szabó, L., Árendás, T., and Márialigeti, K.: The impact of fertilization regime and land use change on the SOM after 60 years of maize cropping, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19887, https://doi.org/10.5194/egusphere-egu2020-19887, 2020.

SSS12.9 – Digging the Future? Unearthing the power of soil science to address global challenges

EGU2020-4715 | Displays | SSS12.9

Determining regional scale carbon losses from tropical peatlands using ISBAS-InSAR

Martha Ledger, Sofie Sjögersten, Andrew Sowter, David Large, Chris Evans, and Keith Morrison

80% of peatlands in Indonesia and Malaysia (15% of Earth's soil carbon) are now drained for production of pulp wood and palm oil. Associated increased peat decomposition and large-scale forest fires are now significant contributors to global greenhouse gas emissions. However, carbon losses from these processes and the impact of peatland drainage remain poorly quantified across SE Asia because of the challenging scale and inaccessibility of dense tropical peatland forests.

Space-based platforms offer the opportunity for regular and efficient pan-regional monitoring and overcome inaccessibility of tropical peatland environments. A development in satellite interferometric synthetic aperture radar (InSAR) in monitoring surface motion has the potential to solve this problem. A new ‘intermittent small baseline subset’ (ISBAS) modelling technique provides excellent coverage across almost all land surfaces irrespective of ground cover, enabling long-term measurement of peatland surface motion across whole catchments, regions and countries. Importantly, the ISBAS technique is able to determine surface deformation under tropical forest canopy using C-band InSAR, enabling continuous monitoring of surface motion ranging from 0.1–40cm/yr at spatial scales ≥90x90m.

This project aims to determine whether rate of subsidence of the peat surface measured by ISBAS-InSAR is a proxy for rate of carbon loss in tropical peatlands in SE Asia. ISBAS-InSAR time series and field measurements of subsidence will be used to monitor and characterise seasonal tropical peat surface oscillations over time and field radar experiments will investigate C-band radar signal attenuation with the peat surface at different moisture contents.

How to cite: Ledger, M., Sjögersten, S., Sowter, A., Large, D., Evans, C., and Morrison, K.: Determining regional scale carbon losses from tropical peatlands using ISBAS-InSAR, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-4715, https://doi.org/10.5194/egusphere-egu2020-4715, 2020.

EGU2020-9662 | Displays | SSS12.9

Life cycle assessment of horticultural production on UK lowland peat soils.

Benjamin Freeman, David Styles, Christopher Evans, David Chadwick, and David Jones

Global peatlands store >600 Gt of Carbon (C) but are highly vulnerable to degradation following drainage for agriculture. The extensively drained East Anglian Fens include half of England’s most productive agricultural land, produce ~33% of England’s vegetables and support a food production industry worth approximately £3 billion GBP.  However under arable management, these fen peat soils produce ~37.5 t CO2 eq ha-1 of total greenhouse gas (GHG) emissions annually. This is likely to be the largest source of land use GHG emissions in the UK per unit area and there is interest in developing responsible management approaches to reduce emissions whilst maintaining economically productive systems. Lettuce (Lactuca sativa) is amongst the UK’s most valuable crops and a substantial proportion of UK production occurs in the Fens. We undertook a life cycle assessment to compare the carbon footprint of UK Fen lettuce with alternative sources of lettuce for the UK market. We also examined the potential for responsible peat management strategies and more efficient production to reduce the carbon footprint of Fen lettuce. It is hoped this study will help to inform land use decision making and encourage responsible management of UK lowland peat resources.

How to cite: Freeman, B., Styles, D., Evans, C., Chadwick, D., and Jones, D.: Life cycle assessment of horticultural production on UK lowland peat soils., EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9662, https://doi.org/10.5194/egusphere-egu2020-9662, 2020.

EGU2020-11148 | Displays | SSS12.9

Effects of crop residue on carbon dioxide, methane and nitrous oxide emissions on cultivated peat soils

Samuel Musarika, Davey Jones, Dave Chadwick, Niall McNamara, and Chris Evans

Peatlands cover three percent of the global land surface. However, they store significant amounts of carbon (C), approximately 30%. Peatlands are drained to support agricultural production. It’s estimated that agriculture exploits approximately 20% of peatlands worldwide. The exploited peatlands are significant emitters of carbon dioxide (CO2) and nitrous oxide (N2O). In Europe, agriculture is the second largest contributor of greenhouse gas (GHG) emissions. In addition to GHG emissions, we are fast losing productive peatlands; it’s estimated by 2050, a third of productive peatlands will be lost. Loss of productive peatlands will affect productivity and food security.

To prolong use of peatlands, ploughing in of crop residue, either from the previous season or specially grown crop, is often considered a mitigation option. Nevertheless, there is concern that fresh organic matter (FOM) might accelerate decomposition of existing organic. This study assesses effects of FOM on the emissions of CO2, methane (CH4) and N2O in a cultivated peatland. A mesocosm experiment was carried out using intact cores with added FOM and manipulated water table (WT), -20 and -50 cm.

The results show there is an effect of both WT and FOM on emissions. CO2, CH4, and N2O emissions differ in the different WT treatments. The -20 cm cores produced more methane than the -50 cm.  It is evident that leaving crop residue and then ploughing it in does not have the desired effect as it led to increased emissions.

How to cite: Musarika, S., Jones, D., Chadwick, D., McNamara, N., and Evans, C.: Effects of crop residue on carbon dioxide, methane and nitrous oxide emissions on cultivated peat soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11148, https://doi.org/10.5194/egusphere-egu2020-11148, 2020.

EGU2020-19732 | Displays | SSS12.9

Life, but not as we know it: exploring RNA viral diversity in soils through viromics

Luke Hillary, Evelien Adriaenssens, Davey Jones, and James McDonald

Viruses play a crucial and underexplored role in soil microbial ecosystems, but soil viral ecology has focused exclusively on DNA viruses. The role of RNA viruses in soil ecosystems has therefore been largely overlooked, despite their significant impact on public health and food security. Here, we report the first ever study to apply viromics to survey soil RNA viral communities from five sites along an altitudinal primary productivity gradient in the UK. We identified over 3,000 viral sequences, of which over half were unclassified, and newly identified viruses were placed in a global context by the phylogenetic comparison of their RNA-dependent RNA polymerase genes. Unlike DNA viral communities, the RNA viromes were heavily dominated by viruses of eukaryotes, including pathogens of plants, fungi, vertebrates and invertebrates. Sampling sites showed minimal similarity in viral community composition, suggesting that we have just scratched the surface of soil RNA viral diversity. Wider sequencing efforts and method development are required to further explore soil RNA viromes and understand their ecological function; however, this study represents an important step towards the characterisation of soil viral communities and interactions with their microbial hosts, which will provide a more holistic view of the biology of economically and ecologically important soils.

How to cite: Hillary, L., Adriaenssens, E., Jones, D., and McDonald, J.: Life, but not as we know it: exploring RNA viral diversity in soils through viromics, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19732, https://doi.org/10.5194/egusphere-egu2020-19732, 2020.

EGU2020-6098 * | Displays | SSS12.9 | Highlight

Characterisation of Martian soil simulant MMS-1 in mixture with green compost for future sustainable space agriculture

Paola Adamo, Simona Vingiani, Mario Palladino, Christophe El-Nakhel, Luigi G. Duri, Antonio Pannico, Youssef Rouphael, Stefania De Pascale, and Antonio G. Caporale

The configuration of a biologically active and fertile substrate consisting mainly of Martian regolith to facilitate the growth of edible plants during long-term manned missions to Mars constitutes one of the main challenges in spatial research. Regolith amendment with compost derived from recycled crew effluent crop waste generated by bioregenerative life support systems constitutes a substrate that may contribute to upgrade crew autonomy and long-term survival in space. In this context, the present work aimed to: i) study the geochemical and mineralogical composition of MMS-1 Mars simulant and the physicochemical and hydraulic properties of mixtures obtained by mixing MMS-1 and green compost at varying rates (0:100, 30:70, 70:30, 100:0; v:v); ii) evaluate the potential use of MMS-1 as growing medium of two lettuce cultivars; iii) assess how compost addition may impact on sustainability of space agriculture exploiting local resources. MMS-1 is a coarse-textured alkaline substrate consisting mostly of plagioclase, amorphous material and, to a lesser extent, zeolite, hematite and smectites. Although it can be source of nutrients, it lacks of organic matter, nitrogen (N), phosphorus (P) and sulphur (S), which may be supplied by compost. Both lettuce (Lactuca sativa L.) cultivars were able to grow on all mixtures for 19 days under fertigation. Red Salanova lettuce produced a statistically-greater dry biomass, leaf area and number than green Salanova. Leaf area and plant dry biomass were higher on 30:70 simulant/compost mixture. The shoot/root ratio of plants decreased as simulant in growth substrate increased. Lack of biological fertility and possible salt stress negatively impacted on plants grown in non-amended simulant. Our results show that it is possible to grow crops in Martian simulants adequately amended and fertilized. However, many remaining issue warrant further investigation concerning the dynamics of compost production, standardization of supply during long-term manned missions and representativeness of simulants to real Martian regolith.

 

How to cite: Adamo, P., Vingiani, S., Palladino, M., El-Nakhel, C., Duri, L. G., Pannico, A., Rouphael, Y., De Pascale, S., and Caporale, A. G.: Characterisation of Martian soil simulant MMS-1 in mixture with green compost for future sustainable space agriculture, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6098, https://doi.org/10.5194/egusphere-egu2020-6098, 2020.

EGU2020-20607 | Displays | SSS12.9

Effects of land use change and grazing on soil carbon dynamics in the semi arid Chaco, Argentina

Rose Durcan, Mariana Rufino, Nick Ostle, Natalia Banegas, and Emilce Viruel

In recent years deforestation of the Gran Chaco of Argentina has increased dramatically to make way for agricultural expansion.  Extensive cattle ranching in particular is widespread across the country, and in the Chaco region of the north west much of the natural vegetation has been cleared for beef and crop production.  The effects of forest clearance and grazing over time on soil carbon dynamics are unclear, with some evidence suggesting that soil carbon can to some extent recover under low intensity grazing practices, whilst others find that conversion to pasture followed by years of grazing consistently decreases soil carbon stocks.  This study investigates the effects of land use change from forest to pasture over time on soil carbon stocks in the dry Chaco of north western Argentina, through the measurement of biological, physical and chemical variables within the soil.  The hypothesis leading to this work is the key idea that livestock grazing can promote the accumulation of carbon in the soil over time through processes such as the stimulation of root growth of pasture grasses.  In turn, increased carbon inputs can lead to net carbon sequestration, with great potential to mitigate the greenhouse gas emissions of the livestock sector.  Using a chronosequence experimental design, destructive soil samples were taken from reference forest patches and pastures of 0-5, 10-15 and >20 years since deforestation and were tested for carbon, nitrogen, and phosphorus contents, root biomass, pH, electrical conductivity and texture. The research aims to investigate and explain the carbon dynamics of pastures in the years following deforestation, identify potential biotic and abiotic drivers of such dynamics, and predict potential future changes in soil carbon stocks.

How to cite: Durcan, R., Rufino, M., Ostle, N., Banegas, N., and Viruel, E.: Effects of land use change and grazing on soil carbon dynamics in the semi arid Chaco, Argentina, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20607, https://doi.org/10.5194/egusphere-egu2020-20607, 2020.

LA Kemp, Supervisors: A. Karley, A. Bennett, A. Taylor, N. McNamara, E.J Sayer

Short – rotation woody perennials such as Populus and Salix are often selected for bioenergy crops in temperate climates. In conjunction with providing a renewable crop, bioenergy crops can improve carbon storage in previously degraded soils and associate with beneficial mycorrhizal fungi. Applying nitrogen fertilizers to bioenergy crops can increase yield and carbon sink but may also increase CO2 emissions through increased soil respiration and N2O through increased microbial activity which alter population and community dynamics.

Changing environmental conditions due to climate change such as prolonged droughting and increasing intensity of rewetting are also impacting plant-soil interactions. However, there are gaps in the understanding of the mechanisms responsible for plant responses to changing abiotic conditions. Therefore, the scale of future carbon cycling, CH4 and N2O emissions by temperate tree species are still very unclear.

To address this my experiment, focuses on two temperate tree species used in bioenergy production known to associate with mycorrhizal fungi. The study will run over two growing seasons, using a randomized block design with four fungal treatments, four nutrient treatments and then implementing two abiotic treatments during the second growing season. I aim to determine how soil nutrient availability influences: i) plant – mycorrhiza associations, ii) plant carbon cycling and storage, iii) soil respiration rates, iv) plant and soil GHG emission rates. v) carbon cycling and GHG emissions under different climate controls.

How to cite: Kemp, L.-A.: The influence of soil fertility on carbon cycling and storage in temperate tree bioenergy crops , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-3686, https://doi.org/10.5194/egusphere-egu2020-3686, 2020.

EGU2020-19459 | Displays | SSS12.9

Anaerobic Digestate Fraction and Nutrient Stoichiometry Significantly Influence the Carbon Cycle in Grassland Soils

Marta Cattin, Marc Stutter, Alfonso Lag-Brotons, Phil Wadley, Kirk T. Semple, Chris Parry, and Ben W.J. Surridge

The application of digestate from anaerobic digestion to grassland soils is of growing interest as an agricultural practice. However, significant uncertainties surrounding the potential impacts of digestate application on processes associated with the soil microbial community remain, particularly for processes governing Carbon Use Efficiency (CUE) and the broader soil C cycle. In this research, we examined how the C:N stoichiometry of digestate and the nutrient status of soil influenced the impact of digestate application on the soil C cycle.  

Three fractions of digestate (whole [WD], solid [SD] and liquid [LD]), spanning a range of C:N, were each applied to two soils of contrasting starting nutrient status (high and low) and compared to unamended controls (Ctr). Two short-term incubations, each lasting seven days, were undertaken. In the first, applications of WD, SD and LD each achieved the same total N input to soils. In the second, digestate applications were adjusted to provide consistent total C input to soils. In each incubation, CO2-C efflux, microbial biomass C (Cmicro) and pH were determined.  

In each of the two incubations, the application of digestate significantly increased cumulative CO2-C efflux compared to control soils. However, the precise effect of digestate application varied between the two incubations and with both soil nutrient status and digestate fraction. Microbial biomass C was largely unchanged by the treatments in both incubations. During the first incubation, soil pH decreased substantially following each digestate treatment in both soil types. A similar pattern was observed within the second incubation in the high nutrient soil. However, in contrast, soil pH increased substantially following LD and WD application to the low nutrient soil in the second incubation. Varying CUE responses are likely to be observed following the application of digestate to agricultural soils, dependent on digestate fraction, C:N ratio of the digestate, and the initial soil nutrient status. Therefore, digestate application rates and soil management must be carefully planned in order to avoid adverse impacts of digestate application to land. 

 

How to cite: Cattin, M., Stutter, M., Lag-Brotons, A., Wadley, P., Semple, K. T., Parry, C., and Surridge, B. W. J.: Anaerobic Digestate Fraction and Nutrient Stoichiometry Significantly Influence the Carbon Cycle in Grassland Soils, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19459, https://doi.org/10.5194/egusphere-egu2020-19459, 2020.

EGU2020-17990 | Displays | SSS12.9

Regional Characterisation of Soils from Ground, Air and Space

Uwe Meyer, Michaela Frei, and Elke Fries

EGU2020-2212 | Displays | SSS12.9

The utilisation of Amino methyl phosphonic acid by soil micro-organisms as a phosphorus nutrient source

Anchen Kehler, Martin Blackwell, Phil Haygarth, and Federica Tamburini

Our global climate continues to change, and with that comes the change of our soil climate. Reports by the IPCC indicate annual increases in prolonged rainfall events within temperate climates; thus exacerbating widespread autumn/winter waterlogged conditions within in the years to come. For our soils, this means the development of anaerobic systems as wetland areas and frequent flooding become more common. Reducing systems like these are capable of facilitating conditions in which alternative oxidation states of the vital elements needed for soil health present themselves. The change of our soil climate is rarely considered when attempting to understand how phosphorus is cycled and how it might be affected in an alternative environment. Existing knowledge from the marine sector demonstrates that a low oxidation state group of compounds known as phosphonates (+3) are successfully utilised by micro-organisms instead of phosphate (+5) as their phosphorus source; thus demonstrating that the phosphorus biogeochemical cycle is much more complex than previously regarded. In the case of the soil environment, there is a large quantity of inaccessible phosphorus present that might be utilised through similar microbial mechanisms when considering a reducing system. The aim of this research is to alter the understanding of global phosphorus cycling and additionally of ecosystem phosphorus limitation. This is done by assessing the capabilities of certain biological species to process phosphorus in alternative oxidation states, highlighting the importance of reduced phosphorus compounds on the global redox cycle.

How to cite: Kehler, A., Blackwell, M., Haygarth, P., and Tamburini, F.: The utilisation of Amino methyl phosphonic acid by soil micro-organisms as a phosphorus nutrient source , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2212, https://doi.org/10.5194/egusphere-egu2020-2212, 2020.

EGU2020-18572 | Displays | SSS12.9

Soil Microbial Indicators of Alkane Flux around a Natural Gas Seep

Thomas Bott, Simon Gregory, George Shaw, and Barbara Palumbo-Roe

The UK has a legacy of onshore oil and gas wells. Aging extraction wells, with deteriorating cap engineering, may act as preferential pathways for gas seepage from the sub-surface. Seeps from hydrocarbon reservoirs are predominately composed of potent greenhouse gases, such as methane and carbon dioxide. Shifts in the soil microbial community are potential indicators of alkane gases rising from the sub-surface. Therefore, soil microbial community change could be used as a tool for monitoring aging, legacy wells, for gas seepage. An increased abundance in bacteria that metabolise methane (methanotrophs), or, C3-C4 alkanes (propanotrophs/butanotrophs) should be correlated with an increased flux of those gases, thereby indicating the presence of a seep.

In the South-East of the Auvergne-Rhône-Alpes region of France, there are several natural-gas analogue macro-seeps where the soil microbial community is potentially interacting with increased alkane fluxes. A well characterised natural gas seepage site was visited, and soil samples were collected for DNA analysis. Surface gas flux measurements and soil-pore gas concentrations (at 1 metre depth) were collected at the same sampling locations by BGRM involved in the ERA-ACT funded Subsurface Evaluation of Carbon capture and storage and Unconventional Risk (SECURe) project. The abundance of alkanotrophs within the bacterial community was explored using quantitative-PCR assays of the key genes used in alkane metabolism. DNA was used in qPCR assays to estimate the proportion of methane monooxygenase and butane/propane oxidising genes within the total bacterial community (using 16S as a proxy). The in-field measurements of gases were contrasted with the relative abundance of methanotrophs and propanotrophs/butanotrophs.

Preliminary results suggest an increased abundance of methanotrophs above soils with higher pore gas concentrations of methane. These methanotrophs have oxidised the rising methane producing small isolated anomalies of increased methane flux at the surface. This suggests that methanotrophs might be a tool for locating soils with an increased methane concentration.

How to cite: Bott, T., Gregory, S., Shaw, G., and Palumbo-Roe, B.: Soil Microbial Indicators of Alkane Flux around a Natural Gas Seep , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18572, https://doi.org/10.5194/egusphere-egu2020-18572, 2020.

EGU2020-18579 | Displays | SSS12.9

Phosphorus chemical changes under soils over a period of agricultural intensification

Andrew Tweedie, Philip M. Haygarth, Anthony Edwards, Allan Lilly, Nikki Baggaley, and Marc Stutter

The use of phosphorus (P) fertilizer has been one of the defining contributors to productive agriculture since the green revolution during the middle of the last century. However, these increased yields have come at the cost of dependency upon the declining resources of P rock reserves and eutrophication of water bodies downstream. In this context, it is important to understand the long-term effects of these P fertilizer additions on soil chemistry over ~50 years in order explain past and current patterns in fertilizer usage and so to better inform future soil management.

We tested the hypothesis that phosphorus forms and availability in mixed use (arable and grazed) agricultural soil have changed over a period of 50 to 80 years of agricultural intensification. Spatially matched samples of soil from 34 agricultural sites in North East (NE) Scotland were collected at two timepoints. The first samples were taken between 1951 and 1981 and in all cases the resampling took place in the autumn of 2017. The soils sampled were representative of agricultural soils in NE Scotland.

The hypothesis was tested by employing a range of soil tests on the ‘old’ and ‘new’ time points.  These included water extraction for inorganic and organic P, nitrate and ammonium and dissolved organic carbon, acid ammonium oxalate extraction to investigate the soil P exchange complex and NaOH-EDTA extraction as a strong alkaline extractant which preserves organic P forms. Analysis by 31P NMR was conducted on the NaOH-EDTA extracts from 5 pairs of samples, to investigate the organic P chemistry of in greater detail.

Phosphorus concentrations for stronger extractants (NaOH-EDTA, acid ammonium oxalate) did not increase significantly (P<0.05) over time. However, water extraction results showed increases in total P (P<0.01) and inorganic P but decreases in organic P. Additionally, analysis by 31P NMR detected changes between timepoints in α-glycero-phosphate and pyrophosphate.

These results indicate that differences in the various chemical forms of P present in soil between the timepoints can be detected many decades apart. This indicates changes in the functioning of the P cycle in these soils under intensive agricultural land use over time. Knowledge of the P-cycling response of soils under agricultural land-use over decades provides an opportunity to understand changes in soil nutrient concentrations, balances and availability and inform studies seeking to improve the sustainable management of soil fertility.

How to cite: Tweedie, A., Haygarth, P. M., Edwards, A., Lilly, A., Baggaley, N., and Stutter, M.: Phosphorus chemical changes under soils over a period of agricultural intensification, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-18579, https://doi.org/10.5194/egusphere-egu2020-18579, 2020.

EGU2020-9843 | Displays | SSS12.9

Exploring nitrogen losses from urine patches between upland and lowland grazing systems

Danielle Hunt, David Jones, Laura Cardenas, and David Chadwick

Urine patches in grassland ecosystems present unique environments where extreme nitrogen (N) loading occurs. This results in N losses into the atmosphere or leaching from soil. N losses vary due to climate conditions, soil conditions, and management practices. However, we do not fully understand how these factors influence N cycling and nitrous oxide (N2O) emissions from urine patches. Much of the current literature on urine patch N cycling has focused on typical lowland agricultural systems. Very little work has explored other grazing systems, such as upland farming which is conducted across much of Wales. We have investigated this by using a catena sequence crossing both upland and lowland agricultural grazing systems. The range of soil types allowed us to explore how N2O emissions and N losses vary under different conditions. Here we report on both a laboratory incubation and a mesocosm experiment examining these issues. This work should help to fill the knowledge gap around how emissions from urine patches could vary between UK uplands and lowlands. We hope to improve understanding of N losses and provide more realistic, regional, and accurate emission factors for upland farming systems.

How to cite: Hunt, D., Jones, D., Cardenas, L., and Chadwick, D.: Exploring nitrogen losses from urine patches between upland and lowland grazing systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9843, https://doi.org/10.5194/egusphere-egu2020-9843, 2020.

EGU2020-20947 | Displays | SSS12.9

Geochemical fingerprinting of lemon juices and cultivation soils for authentication and traceability of geographical provenience

Luigi Ruggiero, Maria Chiara Fontanella, Carmine Amalfitano, Gian Maria Beone, Claudio Di Vaio, and Paola Adamo

Food habits or more generally food consumption, especially agro-food products, have always been linked to the territory of production. The Sorrento lemon (Citrus limon (L.) Burm. f. cv. Ovale di Sorrento), is known for its characteristic cultivation on terraces in Sorrento peninsula of Campania (south Italy). In this environment, the peculiar soil and climatic features and the traditional cultivation on terraces have contributed not only to high-quality lemon productions but also to protect the landscape. Indeed, in terms of soil and climatic features, the Sorrento peninsula is very heterogeneous. The geographical conformation of the territory, along with the rainfall increase with elevation and in more inland areas, leads to different microclimates and habitats, even at a very small scale.  Main aim of this work was to develop a chemometric discriminant model to authenticate and track Sorrento lemons at a small geographical scale by multi-element fingerprinting and Linear Discriminant Analysis (LDA) in order to protect the PGI lemon from lemons of other geographical origins. The variability of the total and bioavailable mineral contents in soil (top and subsoil) and their relationship with lemon juices were analysed. The multi-element fingerprinting of different areas are different for mineralogical and geochemical composition. The array of inorganic elements of agrofoods is greatly affected by the soil features, such as mineralogy, pH, moisture, and organic constituents. The LDA model was developed and cross-validated with the cultivar “Ovale di Sorrento”. External validation with other cultivars (Femminello Zagara Bianca, Femminello Siracusano 2KR, Femminello Sfusato Amalfitano, Femminello Adamo, and Femminello Cerza), grown in the same areas, was carried out. The LDA model was applied to 102 samples of “Ovale di Sorrento” lemons, cross-validated (96.08% of correct classification) and validated with external validation of 67 lemons juices from other cultivars (94.03% of correct classification) according to geographical origins. Pearson correlation analysis of the total and bioavailable element content of cultivation soils (top and subsoil) and lemons juices was performed.

How to cite: Ruggiero, L., Fontanella, M. C., Amalfitano, C., Beone, G. M., Di Vaio, C., and Adamo, P.: Geochemical fingerprinting of lemon juices and cultivation soils for authentication and traceability of geographical provenience, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20947, https://doi.org/10.5194/egusphere-egu2020-20947, 2020.

EGU2020-2637 | Displays | SSS12.9

Sediment origins across the terrestrial-aquatic continuum: climate threat mitigation and promotion of water quality

Katy Wiltshire, Toby Waine, Bob Grabowski, Miriam Glendell, Steve Addy, Nikki Baggaley, Barry Thornton, Jeroen Meersmans, and Fiona Napier

Although fine-grained sediment (FGS) is a natural component of river systems, increased fluxes can impact FGS levels to such an extent they cause detrimental, irreversible changes in the way rivers function intensifying flood risk and negatively affecting water quality.

Previous catchment scale studies indicate there is no simple link between areas of sediment loss and the organic carbon (OC) load in waterways; areas with a high soil loss rate may not contribute most sediment to the rivers and areas that contribute the most sediment may not contribute the most OC. Anthropogenic and climate changes can accelerate soil erosion and the role of soil OC transported by erosional processes in the fluxes of C between land, water and atmosphere is still debated. Tracing sediment pathways, likely depositional areas and connections to streams leads to better assumptions about control processes and better estimation of OC fluxes.

In this innovative study OC fingerprinting of sediment reaching a catchment’s waterbodies is combined with OC stock and erosion modelling of the terrestrial catchment. Initial results show disconnect between catchment OC loss erosion modelling and fingerprinting results, which could be due to failure to model connectivity between the land and river channel. The current soil erosion model RUSLE (Revised Universal Soil Loss Equation) calculates only the spatial pattern of mean annual soil erosion rates. Using the WaTEM SEDEM model, which in includes routing (and possible en route deposition) of eroded sediments to river channels, we aim to determine the dominant source of OC within catchment streams by identification of both the land-use specific areas with the highest OC loss and the transport pathways between the sources and river channel.

How to cite: Wiltshire, K., Waine, T., Grabowski, B., Glendell, M., Addy, S., Baggaley, N., Thornton, B., Meersmans, J., and Napier, F.: Sediment origins across the terrestrial-aquatic continuum: climate threat mitigation and promotion of water quality, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-2637, https://doi.org/10.5194/egusphere-egu2020-2637, 2020.

CC BY 4.0